
ABSTRACT

Title of dissertation: CROSS-PLATFORM QUESTION ANSWERING
IN SOCIAL NETWORKING SERVICES

Mossaab Bagdouri, Doctor of Philosophy, 2017

Dissertation directed by: Professor Douglas W. Oard
College of Information Studies
and Department of Computer Science

The last two decades have made the Internet a major source for knowledge

seeking. Several platforms have been developed to find answers to one’s questions

such as search engines and online encyclopedias. The wide adoption of social net-

working services has pushed the possibilities even further by giving people the op-

portunity to stimulate the generation of answers that are not already present on

the Internet. Some of these social media services are primarily community question

answering (CQA) sites, while the others have a more general audience but can also

be used to ask and answer questions.

The choice of a particular platform (e.g., a CQA site, a microblogging service,

or a search engine) by some user depends on several factors such as awareness of

available resources and expectations from different platforms, and thus will some-

times be suboptimal. Hence, we introduce cross-platform question answering, a

framework that aims to improve our ability to satisfy complex information needs by

returning answers from different platforms, including those where the question has

not been originally asked.

We propose to build this core capability by defining a general architecture

for designing and implementing real-time services for answering naturally occurring

questions. This architecture consists of four key components: (1) real-time detec-

tion of questions, (2) a set of platforms from which answers can be returned, (3)

question processing by the selected answering systems, which optionally involves

question transformation when questions are answered by services that enforce dif-

fering conventions from the original source, and (4) answer presentation, including

ranking, merging, and deciding whether to return the answer.

We demonstrate the feasibility of this general architecture by instantiating

a restricted development version in which we collect the questions from one CQA

website, one microblogging service or directly from the asker, and find answers

from among some subset of those CQA and microblogging services. To enable the

integration of new answering platforms in our architecture, we introduce a framework

for automatic evaluation of their effectiveness.

CROSS-PLATFORM QUESTION ANSWERING
IN SOCIAL NETWORKING SERVICES

by

Mossaab Bagdouri

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2017

Advisory Committee:
Professor Douglas W. Oard, Chair/Advisor
Professor Héctor Corrada Bravo
Professor Hal Daumé III
Dr. David D. Lewis
Professor Philip Resnik

© Copyright by
Mossaab Bagdouri

2017

Dedication

To mom and dad,

Khadija, Chahid, Jannat and Ayat,

Amine, Abderrahman and Hiba.

ii

Acknowledgments

The Prophet Muhammad, peace and blessings be upon him, said: “He who
does not thank people, does not thank Allah.” (Musnad Ahmad, Sunan At-Tirmidhî).
It has been a long journey—longer than I had anticipated or was prepared for. This
is why I owe plenty of gratitude to everyone who offered an unconditional support,
making a dream becoming true.

First and foremost, I would like to express my deep gratitude to Doug Oard
for offering to advise me since my first day at the University of Maryland. I have
been amazed by his deep knowledge, broad perspectives and continuous availability,
and have enjoyed his cordial comments during our meetings at the CLIP lab, during
road trips, or while he was running to catch the next flight. Doug has also opened
the door for me to collaborate with incredible researchers from around the world on
a diverse spectrum of projects.

I would like to thank Héctor Corrada Bravo, Hal Daumé III, Dave Lewis, and
Philip Resnik for accepting the invitation to serve on my dissertation committee,
and for the suggestions they provided on various occasions, including co-authorship
on papers, practice talks for conferences, my thesis proposal, and of course my
dissertation work. I particularly learned from Dave the practice of maintaining a
detailed record of my experiments, both as a script that I can re-run in the future,
and as a report that I can share with my collaborators.

William Webber deserves a special mention for getting me up-to-speed on
tools and methodologies needed for conducting research on IR Evaluation, especially
during my first two years at the E-Discovery lab (and this is an opportunity to
acknowledge the support of the NSF E-Discovery grant No. 1065250).

I want to thank Radu Florian and Vittorio Castelli for mentoring me during
an internship at the IBM T. J. Watson Research Center, where I learned several
techniques that I applied in my research on question answering; and for endorsing
my application for the IBM PhD Fellowship, which has supported me during my
final year at UMD. It was also a pleasure to collaborate with them during the BOLT
project that supported my research through DARPA Contract HR0011-12-C-0015.

A substantial portion of this dissertation was conducted in the context of
the ArQAT project (QNRF grant # NPRP 6-1377-1-257). I am grateful to the
valuable feedback I have constantly received from Tamer Elsayed, Walid Magdy,
Mark Sanderson and Marwan Torki, and to the friendly atmosphere during my
collaboration with Omid Aghili, Suliman Aladhadh, Rahma Ali, Fatimah Alqahtani,
Maram Hasanain, Ahmed Mourad, Abdelrahman Shouman, and Ameer Tawfik.

I have learned a lot both from side conversations and from organized meetings
with the former and current members of the CLIP lab. In this respect, I would
like to thank Marine Carpuat for her patience while I was running several of my
experiments reported in this dissertation on her GPUs, Jimmy Lin for introducing
me to Big Data algorithms (through his course) and practice (through the Hadoop
clusters), and Louiqa Raschid for her advice about my future career. I also want to

iii

thank Snigdha Chaturvedi (for telling me not to worry about leaving most of my
papers out of the thesis proposal), Ahmed Elgohary (especially for introducing me to
a deep-learning toolkit that I used in many experiments of this dissertation), Allyson
Ettinger, Ning Gao (for performing some annotations and for coming up with a quick
and effective solution that I used for evaluating one of the methods introduced in
this thesis), Sergey Golitsynskiy, Raul David Guerra, He He, Hua He (notably for
his patience with the heat and noise of his desktop, while I was exploiting his
GPU), Mohit Iyyer (for a crash course on deep learning), Tiffany Jachja, Joseph
Malionek, Khanh Nguyen, Thang Nguyen (for teaching me some basics of topic
modeling and that paper that we have never submitted), Jiaul Paik, Sudha Rao,
Kristine Rogers, Rashmi Sankepally (for helping out with some annotations and for
the weekly meetings we had last semester, in which I pretended to be her mentor),
Amr Sharaf, Bryan Toth, Ferhan Ture (for being always there when I needed some
advice since he persuaded me to join UMD upon my admission), Jyothi Vinjumur
(for the encouragements to pursue an academic career), Yogarshi Vyas, Yulu Wang,
Ke Wu (for a crash course on machine translation toolkits), and Tan Xu (for his
tips on how to maintain an excellent relationship with my advisor).

My interest in Information Retrieval started when I took an IR class from Jim
Martin at the University of Colorado Boulder. I would like to thank him for advising
me during the two years I spent there, and for encouraging me to apply for the PhD
program at UMD. I also want to extend my sincere thanks to Leysia Palen for her
amazing mentorship and personal support while I was working on my master’s thesis
at CU. Project EPIC was a unique learning experience as I was walking my first
steps in research, inspired by the work of Ban Al-Ani, Ken Anderson, Gloria Mark,
Martha Palmer, and all of my labmates.

The Tauba House in College Park has been a great community for me and my
family. While all of our extended family lives overseas, I am in debt to my dearest
friends and their families for their support during times of hardship, for the trust
we share with each other, for the activities we performed together, and for simply
allowing my kids to have somebody nearby they can consider as “uncle,” “aunt,” or
“cousin.” Al-Huda School has also been an amazing educational environment for my
children. While I was overtaken by my studies and experiments—sometimes more
than I should have—I was happy that Chahid and Jannat were in good hands. It is
not a surprise that the presence of this school was a key factor for having decided
to move to Maryland.

My endless thanks go to my mom, Salwa, for keeping me in her prayers, for
her patience during the times I did not spend with her, for her hope that I’ll return
back soon, for, well, everything. My dad, Mehdi, has always been my role model. I
cannot thank him enough for teaching me critical thinking at an early age, for the
pride he shows as I advance in my career, and for the unrestricted support he has
provided to me to grow my little family. I feel a great honor in seeing my brothers
Amine and Abderrahman starting a career similar to mine. I thank them for this
unique feeling, and I thank my little sister Hiba for the smiley faces she has been
sending since she first learned how to use a smartphone.

My parents-in-law, Ahmed and Amina, my sisters-in-law, Hajar and Mariam,

iv

my cousin-in-law, Moad, and my aunt Intissar: their presence (although for short
periods) was vital to several milestones along this adventure. Whether that was an
out-of-state internship, an overseas conference, or simply that next deadline, I could
not have made it through if it wasn’t thanks to their help taking care of my family.

My warmest thanks go to my wife, Khadija. Her tremendous care and un-
equivocal sacrifice were not a secret. Together we set our goals, together we planned,
together we traveled, but then she postponed her career so that I can establish mine.
All my love and thanks go to her for reminding me of our goals when I get lost in
details, for reassuring me that I’m almost there at moments of doubt, for being
both a mom and a dad to our little ones, and for her hardworking days and sleepless
nights. I would also like to thank my kids Chahid, Jannat, and Ayat for taking part
in this journey, from its beginning, middle or end, not knowing other job for me
besides being a student, and counting the days left before we go back “home.”

I know I cannot return those enormous favors, but I promise to do my best to
pay them forward, in sha Allah.

Thank you, all!
Thank you, Allah!

v

Contents

Dedication ii

Acknowledgments iii

List of Tables x

List of Figures xi

List of Abbreviations xii

1 Introduction 1
1.1 Motivation and General Background 1
1.2 General Architecture . 3

1.2.1 Questions . 3
1.2.2 Answering Platforms . 7
1.2.3 Answering . 8
1.2.4 Answer Presentation . 9

1.3 Evaluation of Answering Platforms 9
1.4 Research Questions . 12
1.5 Contributions . 12
1.6 Dissertation Outline . 15

2 Related Work 16
2.1 Factoid Question Answering . 17
2.2 Cross-Platform Live Question Answering 19
2.3 Evaluation of Information Retrieval Systems 22
2.4 Community Question Answering . 24
2.5 Federated Search . 25
2.6 Routing Questions to Users and Communities 27

3 Detecting Answerable Questions 29
3.1 Detection of Interrogative Tweets (Itweets) 32
3.2 Detecting Questions with Real Information Needs (Qweets) 34

3.2.1 Qweets Corpora . 36
3.2.2 Evaluation Measures . 36
3.2.3 Classification Methods . 37

vi

3.2.3.1 Tweet Preprocessing 37
3.2.3.2 Deep Neural Networks 38
3.2.3.3 Support Vector Machines Baselines 42

3.2.4 Effectiveness of Qweet Detectors 44
3.2.4.1 Training and Evaluation 44
3.2.4.2 Results . 46

3.3 Detecting Answerable Qweets (Aqweets) 52
3.3.1 Source . 53
3.3.2 Annotations . 54
3.3.3 SVM Aqweet Classifiers . 58
3.3.4 BLSTM Aqweet Classifiers . 60
3.3.5 Evaluation . 61
3.3.6 Enhancing Recall with Active Learning 62

3.4 Towards an End-to-End Pipeline . 65
3.4.1 Overall Effectiveness . 66
3.4.2 Alternative Implementation Strategies 70

3.5 Chapter Summary . 73

4 Finding Useful Answers 74
4.1 TREC Evaluation Campaigns . 75

4.1.1 TREC Live Question Answering Track 75
4.1.2 TREC Real-Time Summarization Track 77

4.2 Collections of Answers . 79
4.2.1 A Crawl of Yahoo! Answers 79
4.2.2 Collections of Tweets . 82

4.2.2.1 A Large Corpus of Random Tweets 83
4.2.2.2 A Small Corpus of Selected Tweets 83
4.2.2.3 Questions and Answers in Twitter 86
4.2.2.4 Recent Tweets . 86
4.2.2.5 Future Tweets . 87

4.3 Answering Aqweets . 87
4.3.1 Where to Search . 88
4.3.2 Scoring Function . 89
4.3.3 Question Rewriting . 90

4.3.3.1 Hashtag Normalization 91
4.3.3.2 Spelling Correction 93
4.3.3.3 Synonyms . 94

4.3.4 Term Statistics . 95
4.3.5 Question/Question Similarity 95
4.3.6 Learning to Rank Threads . 96
4.3.7 Combining Twitter Replies and Yahoo! Answers 97
4.3.8 Baselines . 99

4.3.8.1 Twitter Replies . 99
4.3.8.2 Yahoo! Answers’ Internal Search 100

4.3.9 Annotations . 101

vii

4.3.10 Results . 104
4.4 Answering Live Yahoo! Questions . 106

4.4.1 Answering with Old Yahoo! Answers 107
4.4.1.1 A Simple Configuration Selector 107
4.4.1.2 A Cascade of Scoring Functions 109
4.4.1.3 Answer Presentation 113

4.4.2 Answering from Twitter . 114
4.4.2.1 Preprocessing . 116
4.4.2.2 Rescoring with TREC 2015 Microblog Models 117
4.4.2.3 Answer Generation 118

4.4.3 Evaluation . 118
4.4.3.1 Systems . 118
4.4.3.2 Overall Effectiveness 121
4.4.3.3 Scores per Category 122
4.4.3.4 Using the Body of the Question 125
4.4.3.5 Retrieval Field for Old Yahoo! Answers 126
4.4.3.6 Best CLIP-YA Configuration 127
4.4.3.7 Effect of Twitter Retrieval Corpus 127

4.4.4 On Combining Answers from Twitter and Yahoo! Answers . . 128
4.5 Deciding to Answer . 130

4.5.1 Components . 130
4.5.1.1 Relevance Models 130
4.5.1.2 Tweet Rescoring . 133
4.5.1.3 Novelty Detection 134

4.5.2 Deciding when to Answer . 134
4.5.3 Evaluation Metrics . 135
4.5.4 Results and Analysis . 136

4.6 Chapter Summary . 139

5 Evaluating Future Answers 141
5.1 Relevance Estimation Methods . 145

5.1.1 Item Length . 146
5.1.2 Clipped Term Counts . 147
5.1.3 Core Vocabulary . 148
5.1.4 Vocabulary Expansion . 149
5.1.5 Item Embedding . 150
5.1.6 Augmented Diversity Sampling 152

5.2 Evaluating Reusability . 153
5.2.1 Single-Ablation with Regression 153
5.2.2 Paired-Ablation Evaluation 154

5.3 TREC 2015 LiveQA Evaluation . 156
5.3.1 Test Collection . 157
5.3.2 Single-Ablation Unregressed Results 157
5.3.3 Single-Ablation Regressed Results 159
5.3.4 Paired-Ablation Results . 161

viii

5.4 TREC-8 Ad Hoc Evaluation . 164
5.5 Chapter Summary . 168

6 Conclusion 169
6.1 Limitations . 173
6.2 Lessons Learned . 176

6.2.1 Big Data Win . 177
6.2.2 Fast Data Win . 177
6.2.3 Smart Data Win . 178
6.2.4 Platform Agnostic Answering Pipeline 178
6.2.5 One-Shot Crowdsourcing Annotations Are Safer 179
6.2.6 BLSTM Classifiers are Often a Good Choice 179
6.2.7 Task Specific Effectiveness Tuning 180

6.3 Future Work . 181
6.4 Implications . 184

6.4.1 Other Applications of Item Embedding 184
6.4.2 The Future of Question Answering 186

Bibliography 188

ix

List of Tables

3.1 Systems’ effectiveness on the qweet detection task. 47
3.2 Random vs. pre-trained initialization of word embeddings. 48
3.3 Frozen vs. updated embeddings. 49
3.4 Effect of CNN filter lengths on the English corpus. 50
3.5 Effect of CNN filter length on the Arabic corpus. 51
3.6 Effect of RNN variants on the English corpus. 51
3.7 Effect of RNN variants on the Arabic corpus. 51
3.8 Effect of Bidirectional RNN on the English corpus. 52
3.9 Effect of Bidirectional RNN on the Arabic corpus. 52
3.10 Effectiveness on the aqweet detection task. 62
3.11 Effect of cascade filters on available tweets in February 2016. 67
3.12 Effectiveness of individual components of the aqweet detection pipeline. 68
3.13 Itweets coverage in Twitter: sample stream vs. word tracking. 69

4.1 Example of a TREC RTS topic . 78
4.2 Words selected from Yahoo! Answers to be tracked in Twitter. 85
4.3 Effectiveness of aqweet answering configurations over the scale [0-3]. . 105
4.4 Effectiveness of participating systems in the LiveQA task. 121
4.5 TREC LiveQA scores per category. 124
4.6 Fields used by CLIP-YA (2015) from new questions. 125
4.7 Indexed fields used by CLIP-YA (2015). 126
4.8 Effect of corpus on CLIP-TW (2015) performance. 128
4.9 Oracular answer selection from CLIP-YA and CLIP-TW-A 129
4.10 Effectiveness of participating systems in Scenario A of the RTS track. 139

x

List of Figures

1.1 Implementation of the cross-platform question answering architecture. 4

3.1 A convolutional neural network. 40
3.2 A bidirectional recurrent neural network. 41
3.3 Guidelines of the aqweet detection annotation task on CrowdFlower. 55
3.4 Aqweet annotation guidelines tooltip. 56
3.5 Prevalence of aqweets as a function of label confidence. 57
3.6 A BLSTM network with enriched features. 61
3.7 Learning curve for the BLSTM+Wikipedia model on a fixed test-set. 63
3.8 A pipeline for detecting aqweets. 66

4.1 A question posted on the Pets category, and its selected best answer. 75
4.2 Collections of tweets and Y!A questions and answers. 81
4.3 Example of a question requiring several transformations. 91
4.4 An architecture for detecting duplicate questions. 96
4.5 Guidelines for the aqweet answering annotation task on CrowdFlower.101
4.6 A test pair where either of two checked boxes would be a good label. 102
4.7 A thread where candidate answers are replies to an aqweet. 103
4.8 Architecture of System CLIP-YA (2015). 108
4.9 Architecture of System CLIP-YA (2016). 111
4.10 Architecture of Systems CLIP-TW. 115
4.11 Distribution of questions across the TREC LiveQA track categories. . 123
4.12 Architecture of our TREC 2016 RTS Systems. 131
4.13 Comparison of RTS official scores between all participating systems. . 137

5.1 TREC-2015 LiveQA scores of unregressed single ablation. 158
5.2 TREC-2015 LiveQA scores of regressed single ablation. 160
5.3 TREC-2015 LiveQA scores of regressed paired ablation. 162
5.4 TREC-8 Ad Hoc scores of regressed single ablation. 167

6.1 Live demo for answering aqweets using Yahoo! Answers. 180

xi

List of Abbreviations

Acc Accuracy
ApD Answer per Document
API Application Program Interface
Aqweet Answerable Question Tweet
BGRU Bidirectional Gated Recurrent Unit
BLSTM Bidirectional Long Short-Term Memory
BNS Bi-Normal Separation
ciQA Complex, Interactive Question Answering
CNN Convolutional Neural Network
CQA Community Question Answering
CV Cross Validation
DF Document Frequency
DNN Deep Neural Network
GPU Graphics Processing Unit
GRU Gated Recurrent Unit
HDD Hard Disk Drive
JSON JavaScript Object Notation
KL Kullback–Leibler
k-NN k-Nearest Neighbors
IDF Inverse Document Frequency
IR Information Retrieval
L2R Learning to Rank
LiveQA Live Question Answering
LSTM Long Short-Term Memory
MAP Mean Average Precision
MSA Modern Standard Arabic
NDCG Normalized Discounted Cumulative Gain
NIST National Institute of Standards and Technology
NLP Natural Language Processing
POS Part of Speech
Prec Precision
QA Question Answering
QpD Question per Document
Qweet Question Tweet

xii

Rec Recall
RNN Recurrent Neural Network
RT Retweet
RTS Real-Time Summarization
SNS Social Networking Service
SSD Solid-State Drive
SVM Support Vector Machine
tanh Hyperbolic Tangent
TF Term Frequency
TREC Text REtrieval Conference
URL Uniform Resource Locator
UTC Coordinated Universal Time
XML Extensible Markup Language
Y!A Yahoo! Answers

xiii

Chapter 1: Introduction

1.1 Motivation and General Background

The Internet has for a long time been a source from which knowledge seekers

can fulfill their needs. Several tools and platforms, such as search engines and on-

line encyclopedias, have been developed to find answers to one’s questions. Recent

developments and wide adoption of social networking services (SNS) pushed the pos-

sibilities even further by giving people the opportunity to stimulate the generation

of answers that are not already present on the Web (e.g., for novel questions), or are

difficult to obtain because of different constraints (e.g., language barrier, real-time

need, limitations of the device used, or lack of trust in the available information).

Several online communities are built on top of different technologies to address

such needs. Some mailing lists that are dedicated to specific topic or product allow

subscribers to email questions and receive answers from more experts. Technical

question answering platforms (e.g., StackExchange1) help users search in a knowl-

edge base in addition to seeking answers to new questions. Other community driven

platforms, such as Yahoo! Answers,2 allow a wider range of topics, even those that
1http://stackexchange.com
2http://answers.yahoo.com

1

http://stackexchange.com
http://answers.yahoo.com

do not have canonical answers and are merely opinions of people who may or may

not have experienced the circumstances of the inquirer. Users of more general so-

cial platforms that are based on the notions of friendship and followership such as

Facebook3 and Twitter4 rely on their “friends” to provide trusted answers. While

“friendship” motivates answering in this case, and reputation (expressed in the form

of badges and points) is a key stimulus for community questions and answers (CQA)

websites, financial compensation encourages workers to answer questions, presented

in the form of tasks, in crowdsourcing marketplaces such as Amazon Mechanical

Turk5 and CrowdFlower.6

A person who asks a question somewhere typically hopes to receive an answer

at the same venue. Indeed, when a user issues a query to an online search engine,

she looks forward to examining the links returned by this engine just below the

search box. On the other hand, when someone posts a question on a CQA website,

she will revisit the question page, where answers will eventually be sent by other

users. Likewise, a tweeter who posts a question on her account is likely anticipating

replies from other users to her tweet.

People choose a particular platform for a wide range of reasons such as limited

awareness of available resources, contrasting expectations from different platforms,

low hope for a sufficient reward from a lengthy registration process, prior experience

with previous questions, and technical constraints. Indeed, some recent studies
3http://facebook.com
4http://twitter.com
5http://mturk.com
6http://crowdflower.com

2

http://facebook.com
http://twitter.com
http://mturk.com
http://crowdflower.com

compared the satisfaction of users with a particular resource vs. another, as is the

case for social networks vs. search engines [106], and Web search vs. CQA services

[86]. Nonetheless, this selection is, perhaps, arbitrary in several cases, and might

lead to suboptimal user satisfaction. Therefore, an automated system that returns

answers from different platforms has the potential for improving user satisfaction.

We7 have just introduced the problem of cross-platform question answering.

It is composed of four main components, which we described next.

1.2 General Architecture

We organize the general architecture of cross-platform question answering into

four components: the users and their questions, platform scoring and selection,

answering, and answer presentation. We illustrate them with Figure 1.1.

1.2.1 Questions

The entry to our architecture is an information need expressed by a user who

might be willing to trade timeliness for accuracy. This information need can reach

our system in several ways. But we focus in this dissertation on three different

scenarios.

In the first scenario, a user has a general interest in some broad topic, and

wants to stay up to date on it. A motivating use case is a brand management

specialist who needs a real-time tool for monitoring the perception of her brand by
7Using ‘we’ in this dissertation is a style choice that refers to the author, unless there is a

pointer to a publication of two or more co-authors.

3

?

Answer 1
Answer 2

…
Answer N

Answer

CQAs Microblogs

CQAs Microblogs

Answer 1
Answer 2

…
Answer N

Answer

Question platform

Answering platform

Answer

Platform selection

Answer generation

Answer presentation

ANSWERS

ANSWERS

Figure 1.1: Implementation of the cross-platform question answering architecture.

its customers. This specialist would prefer receiving a notification as soon as some

important event is detected, such as an expression of dissatisfaction by unhappy

4

customers, rather than performing a periodic search every now and then. However,

the same event might be reported several times (e.g., disruption of service in some

region), and receiving a notification for each occurrence (even if it was expressed

in different ways) might do more harm than good, as it can cause distraction from

paying attention to other important events. Thus, a notification should be sent only

once for each critical event (potentially with a weight indicating its importance). As

the search is expected to have continuing value to the user over an extended period

(i.e., the information need is expressed only once, but the notifications will be sent

for a long period), we assume that the user provides extensive details about her

topic of interest, instead of just a couple of terms as is typically practiced with

search engines. Those details represent at the same time an opportunity for scoping

the exact information need, and a challenge for automatically detecting important

from less important pieces of information. In this dissertation, we study a variant

of this use case in which a user has a general information need, and the stream of

documents from which the notifications generate is Twitter’s public stream.

In the second scenario, the user has a specific information need, optionally

about some personal experience, expressed as a complex question with extensive

details to a community of people. This user hopes that someone from the community

will read the question and then will provide a useful answer (e.g. a fact or an opinion)

within a reasonable period of time. But she would also consider an automatically

generated answer if it is made available spontaneously. An automated system would

hence need to analyze the question, find some related old answers, construct one

answer from them, and present it to the asker. While there is a similarity with the

5

first scenario in terms of the opportunity and the challenge present with the detailed

question, there are also several differences. First, the system has to acquire a large

repository of answers; and given typical resource limitations (e.g., crawling time and

disk space) and some expectation of the topics of the questions to be posted, it has to

focus on collecting content that has a high chance of being useful for the future (i.e.,

unseen) questions. Second, the question here is expected to have a narrow focus,

compared to the broad topic of interest in the first scenario. Third, the question is

written with an expectation that a human is the primary reader, while in the first

scenario the user is aware that she is communicating with a machine.

In the third scenario, the question occurs naturally intermingled with other

content. This arises often in online interaction with help desk, and a bot that can

proactively detect questions and provide answers (e.g., by searching in a knowledge

base) will expedite solving the problem that the customer is facing. However, au-

tomatically detecting that something is a question has its own challenges. In fact,

question marks and cue phrases are not perfect indicators of questions with real

information needs. Some questions, for instance, are rhetorical (e.g., imagine a bot

trying to answer the question “how is your day going so far?”), and we should not

answer them. Even those that convey a real information need might be unanswer-

able due to missing context or vital details. Hence, we can save some processing

time (and our face) by not attempting to answer them.

6

1.2.2 Answering Platforms

Once some question is detected, either explicitly by an indication from the

user or implicitly as a prediction of a classifier, we would like to provide an answer.

In this dissertation, we only examine returning answers by searching in one or more

corpora, and defer other alternatives, such as routing the questions to experts (e.g.,

see our own work about finding journalists in Twitter [7]), to future work. Within

the many platforms available for searching for answers, we study two SNS families,

which are microblogs and CQA services.

• Microblogs: Microblogging services, such as Twitter, enable a rich commu-

nication behavior with various usage patterns. A prevalent practice, among

others, is asking questions. It is natural, thus, to consider Twitter as a plat-

form for answering at least some types of questions. To do that, we need

to build a classifier that detects questions that are seeking real answers, and

another that detects which tweets are useful for providing answers.

• CQA services: Community question answering websites are getting more

attraction recently. Some of them target a community specialized in some

particular field, such as the technical platform StackExchange. Others, such

as Yahoo! Answers, allow a wider range of topics, even those that do not have

canonical answers and are merely opinions of people who may (or may not)

have experienced the circumstances of the inquirer. In this work, we focus on

Yahoo! Answers, which is a well established platform that has been in service

7

for over a decade. It contains hundreds of millions of questions with their

answers in one main and 22 localized versions.

Once a platform is selected, there are different options for searching there. One

way is online, such as by using the internal search engine of that platform. This is an

attractive option, since substantial efforts might have been put in by the developers

of that platform to tune their search results. However, the use cases and structure

of questions on which that internal search engine was optimized might be different

from ours. Thus, our strategy in this dissertation is to collect a large amount of data

from the selected platform, whenever applicable, to use it as a primary source for

searching for answers; and to rely on its search engine only as a secondary source for

enriching our pool of answers. By doing so, we gain more control on the parameters

we want to study, but we also collect a substantial amount of data that can be used

to train a classifier (or re-ranker) to enhance the performance of our retrieval.

1.2.3 Answering

Given a question and an answering platform, we might need to perform some

sort of question transformation from the source to the target platform. In fact, dif-

ferent platforms adopt different conventions for asking questions. In microblogging

services, there usually is a limit on the length of the post (e.g., 140 characters for

Twitter). Users can also specify a hashtag that indicates that the post is actually a

question, which would increase its exposure to candidate answerers. Another con-

vention is to seek the attention of certain user (e.g., an expert in the topic of the

8

question) by mentioning her username. On Yahoo! Answers (Y!A) and other CQA

services, there is some structure associated with each question, such as organizing

it into a title and a description, and assigning it to a category. The particularities

of how the questions are represented in different platforms need to be accounted for

while we try to find useful answers.

The content of the question is not the only source of signal for considering

what to retrieve. Additional evidence can be available as a set of features from the

asker, such as her history of previous questions and her interaction with other users.

However, we neglect asker information in this dissertation, deferring personalization

to future work.

1.2.4 Answer Presentation

The available answers can be presented in different ways to the asker. For

instance, on a web browser, we can have a ranked list for each selected platform in

a different tab. In addition, we can merge the answers from the various answering

platforms and present them as a single combined list. We can also return a single

answer, which can be selected from available ones or synthesized from their content.

Another way to present an answer is through a push notification into a smartphone.

1.3 Evaluation of Answering Platforms

Building good answering systems requires the ability to evaluate their perfor-

mance. Ideally, we would like to base our evaluation on direct feedback from the

9

users of those systems. But due to the complexity and cost of user-centric evalua-

tion (e.g., we need ground truth labels from a large and representative set of users

whose perception of relevance might be different), we adopt a system-centered eval-

uation that exploits the annotations of independent trained assessors who indicate

the usefulness of the retrieved answers.

We adopt three evaluation approaches in this dissertation. Our first (and

preferred) choice is a direct evaluation, by a third party, of the answers returned by

our answering platform. For over two decades, the National Institute of Standards

and Technology (NIST) has been organizing several evaluation campaigns in the

context of the Text REtrieval Conference (TREC). Every year, a set of tracks are

introduced about some specific themes in information retrieval, and teams around

the world (interested in those themes) compete by building the best systems they

can to solve the problem addressed in those tracks. In each of the past two years,

we participated in the Live Question Answering (LiveQA) track; and in 2016, we

participated in the first edition of the Real-Time Summarization (RTS) track. The

organizers of these tracks have provided us with useful annotations for evaluating

our answering systems.

Some of the problems we study in this dissertation have unique characteristics,

and have not been addressed by any evaluation campaign of which we are aware.

In such cases, we collect the annotations needed for our studies by referring to

crowdsourcing. In this second evaluation approach, we generate the output of several

systems we want to compare, and ask independent paid workers to assess the quality

of this output, which allows us to draw some conclusions. The confidence in the

10

annotations obtained with this approach is typically lower than that of the first one

because (1) there is less control on the training of the annotators, and (2) there might

be some experimenter bias, since the same person who is conducting the research

is also managing the annotation process. However, this evaluation approach has

three benefits, as (1) it allows us to study the actual problem of interest (instead

of a variant that complies with TREC’s setup); (2) it provides a quick feedback

about the issue we are examining (compare a few hours or days in crowdsourcing to

several months in typical TREC evaluation); and (3) it has relatively a low cost (a

few hundred dollars for the entire problem we study).

Our third approach is an instance of indirect evaluation. The cost associated

with either of the previous evaluation approaches can be amortized if the annotations

that have already been collected are reused to evaluate new systems (i.e., those that

did not produce the original answers that were assessed). Test collection reusability

has been studied extensively in the context of closed corpora (i.e., when there is a

finite pre-determined set of documents that are used for retrieval). For our goal of

studying the usefulness of new answering platforms, we will typically have a new

set of documents, and traditional evaluation techniques with incomplete judgments

cannot be applied in such cases. Hence, it is our goal in this dissertation to also

study ways of estimating the effectiveness of new answering platforms when none of

their answers have been annotated before.

11

1.4 Research Questions

This dissertation argues that cross-platform question answering extends

the ability to satisfy the information needs. We support this claim by ad-

dressing the following research questions:

RQ1. How well can we detect answerable questions in Twitter?

RQ2. How well can questions asked in one platform be answered using information

from another one?

RQ3. How well can automated question transformations improve the ability

of automated matching systems to answer Twitter questions from Ya-

hoo! Answers?

RQ4. How well can we make a binary decision whether to return an answer?

RQ5. How well can we estimate the effectiveness of a new answering platform

before any of the answers from that platform have been manually scored?

1.5 Contributions

Answering the research questions listed in Section 1.4 results in several contri-

butions that are distributed across generalizable knowledge (K), classification and

retrieval systems (S) for which we advance the state of the art for existing tasks or

examine the effectiveness for novel tasks, framework and metrics for evaluating (E)

some of those systems, and corpora (C) for further investigation of our novel tasks.

12

K1 We introduce the general problem of cross-platform question answering (Sec-

tion 1.2).

S2 We advance the state of the art for detecting questions in microblogs that

convey a real information need (Section 3.2.4.2).

S3 We introduce the problem of identifying answerable questions in Twitter

(aqweets) and study the performance of two families of classifiers for solv-

ing it (Section 3.3).

K4 We introduce an end-to-end pipeline for detecting aqweets, and examine the

performance of its main components (Section 3.4).

C5 We release a test collection for aqweet detection (Section 3.3.2).

S6 We study an instance of making a binary decision on whether to return an

answer from an answering platform given that the asker might have already re-

ceived some replies to her question from her friends (Sections 4.3.7 and 4.3.10).

C7 We release a test collection for answering aqweets using Yahoo! Answers (Sec-

tion 4.3.9).

K8 We develop a method for collecting tweets that are likely to contain rich infor-

mation relevant to some category of questions (Sections 4.2.2.2 and 4.4.3.7).

S9 We suggest two different ways for using tweets to return answers to Y!A ques-

tions (Section 4.2.2.3), and compare their effectiveness (Section 4.4.3.2).

S10 We build a state-of-the-art system for answering new Y!A questions using a

large crawl of Yahoo! Answers (Section 4.4.1.2).

13

K11 We introduce a method for adapting the training of the TREC Microblog data

to build a learning-to-rank model for scoring candidate tweets to be returned

as answers for the TREC LiveQA track (Section 4.4.2.2).

K12 We compare the effectiveness of two answering platforms on different cate-

gories of questions asked on Yahoo! Answers (Section 4.4.3.3) and study the

potential gain from combining their answers (Section 4.4.4).

K13 We provide a simple, but effective, function that correlates the size of a cate-

gory of questions and their diversity with the performance of the state-of-the-

art answering system on that category (Section 4.4.3.3).

S14 We investigate the problem of making a binary decision for whether to return

relevant novel tweets, and develop a corresponding system that has a state-

of-the-art effectiveness (Section 4.5).

E15 We introduce a framework for evaluating automatic performance estimators

of systems that retrieve only new answers (Section 5.2).

E16 We introduce a new measure for automatic estimation of the performance of

systems that return only new documents, and study its effectiveness on the

TREC 2015 LiveQA and TREC-8 Ad Hoc tracks (Chapter 5).

E17 We contribute to the design of a new correlation coefficient that focuses on

the maintenance of score differences between highly ranked ablated systems

(Section 5.2.1).

14

1.6 Dissertation Outline

The remainder of this dissertation is structured as follows: We survey re-

lated work in Chapter 2. In Chapter 3, we study the detection of answerable ques-

tions in microblogs. Next in Chapter 4, we examine several cases of cross-platform

question answering, including answering Twitter questions using content from Ya-

hoo! Answers, answering questions from Yahoo! Answers using content from both

Twitter and Yahoo! Answers, and deciding whether or not to return a potential

response. Then in Chapter 5, we introduce an automatic evaluation measure for as-

sessing future answers, which makes it possible to estimate the effectiveness of new

answering platforms without new annotations. We conclude in Chapter 6, scop-

ing our contributions in the context of experimental limitations, looking to future

directions, and articulating some of the broader impacts of our work.

15

Chapter 2: Related Work

The work reported in this dissertation is related to several lines of research.

Our work is akin to early efforts in factoid question answering (Section 2.1), no-

tably on their focus on the reusability of complex, interactive QA test collections.

The choice of a particular answering platform was faced by all participants of the

TREC LiveQA track (Section 2.2). Chapter 5 about estimating the effectiveness of

new answering platforms is an instance of IR evaluation, and is complimentary to

previous approaches for evaluation with incomplete judgments (Section 2.3). Look-

ing for similar past questions to answer new questions is inspired by findings from

research on community question answering (Section 2.4). The cross-platform no-

tion is analogous to some instances of federated search (Section 2.5), and shares

some similarities with community question routing (Section 2.6), especially in terms

of proactive intervention by systems to increase the likelihood of satisfying askers’

information needs. We focus this chapter on describing the relevant related work

on those topics, but we note that more detailed pointers to some related work on

the question detection and the TREC LiveQA and RTS tracks can be found in

Chapters 3 and 4, respectively.

16

2.1 Factoid Question Answering

The first key effort in modern QA is, perhaps, the TREC-8 Question Answering

track [136]. The motivation was to shift traditional information retrieval systems

from merely indicating which documents contain an answer, to returning the answer

itself. Since then, a wide range of approaches have been proposed and a large number

of applications have been developed. QA systems usually contain three processing

steps [65], starting from query formulation and classification, going to document

and passage retrieval and finishing by answer processing. Such systems assume

the existence of a corpus of documents containing the answer, and the engine is

responsible for finding it.

The first stage, question processing, aims to enrich the question with suffi-

cient context to infer the intention behind it. Such processing might involve using

information about the user, considering previous questions in the same session, ex-

ploiting the domain knowledge for the inferred question type, and making use of

linguistic resources such as part-of-speech tagging, WordNet [100] and PropBank

[71], especially for the question. Harabagiu [53] indicates that this step is important

for both finding a candidate set of answers, and selecting an answer out of them.

Extracting an answer often involves deep Natural Language Processing (NLP)

computation that makes the offline pre-processing for a large collection prohibitively

expensive [51]. To mitigate this challenge, the question, or a rewritten version of it,

is issued as a query to an index of the collection of documents where answers might

exist, and returns “hotspots,” which are text fragments that have high relevance

17

to the topic of the question [30]. Complex linguistic processing, including answer

extraction, is then applied only to the retrieved hotspots.

Following the success of the early TREC QA tracks, another series of tasks

was introduced under the name complex, interactive Question Answering (ciQA)

[66]. These questions still seek answers about facts, but are more complex in their

nature. For instance they look for the definition of a concept or the relationship

between several entities. Interestingly, this task stimulated a wide body of work on

the (re)usability of test collections created within the context of such tasks. Lin and

Demner-Fushman [81, 82] introduced POURPRE as a unigram metric that exploits

a list of “information nuggets” to evaluate definitional questions. It simply counts

the overlap between the answer and each nugget after ensuring that all words ap-

pear within the same answer string. They find a high correlation between the scores

computed using this metric and the official scores provided in the ciQA tracks of

TREC 2003-2005. In a subsequent work, Marton and Radul [95] proposed the met-

ric Nuggeteer, which gives high credit to n-grams that appear in a large number

of nuggets, and scores new answers accordingly. Both lines of work show that the

proposed metrics experience a high correlation with human assessments, when com-

pared to other n-gram metrics such as ROUGE [80] and BLEU [111]. Nevertheless,

the corpus for these experiments is limited to the news domain, and there is no

indication of whether the suggested metric is appropriate for evaluating runs that

did not participate in the pool of answers that was used to create the nuggets.

Nugget-based evaluation became since a standard for assessing systems an-

swering complex questions [83], with a body of work analyzing the stability [83] and

18

reusability [113] of test-collections when nuggets are manually prepared by human

assessors. Other pieces of work focused on the extraction of nuggets from documents

for evaluation purposes in a semi-automated manner [41, 118, 157]. These efforts

were also limited to the context of factoid questions (including complex questions)

and do not provide recommendations for fully automated approaches when nuggets

are not already present in a test collection.

2.2 Cross-Platform Live Question Answering

A substantial amount of this dissertation work was conducted during our par-

ticipation in the TREC LiveQA track [1, 2]. We provide additional details about

this track in Section 4.1.1, but we mention here that this challenge was characterized

by a stream of live questions posted on Yahoo! Answers, and that the participating

systems had to return a short answer within one minute from whatever online or

offline resources they could assemble. Hence, in addition to the traditional chal-

lenges of providing a good scoring function (e.g., by applying a state-of-the-art IR

ranking function, or by training a learning-to-rank classifier), the participants had

to decide, first, which platform should be interrogated for generating candidate an-

swers. In some instances, they also had to face the issue of selecting a final answer

from different platforms.

All of the participants (to the best of our knowledge) used some content from

at least one CQA website. With the except of Marx and Coelho who indexed a

crawl of StackOverflow and used it for retrieving the answers of some questions

19

[96], the other teams used Yahoo! Answers, sometimes in combination with up to

seven other CQA services. The strategies for accessing and using Y!A differed

across participants. One approach relied on using the internal search engine of

Yahoo! Answers [3, 32, 68, 104, 122, 123, 140, 141, 145, 155]. In a second approach,

participating systems used the Webscope L6 corpus [129] (which was collected in

2007 and contains over 4.4 million questions from Y!A with their answers) as training

data for answer ranking [122, 135, 140, 155], as an indexed source of retrieved

answers [15, 28, 36, 92, 94, 130], and/or as a way to estimate term statistics, such

as document frequencies [140].

Several systems used Web search as a source of candidate answers. Bing was a

popular choice thanks to its API1 (e.g., [32, 68, 92, 94, 122, 123, 135, 139, 140, 141,

145]). But a couple of other systems relied on Google [94, 104], and in one instance

[36], on Google Knowledge Graph.2

Combining answers from different sources was a problem that was addressed

in a variety of ways. Some systems were agnostic to the platform from which the

answer originated. They implemented such an approach either by merging different

corpora in a single local index [28, 92] or by retrieving a set of candidate answers

from different platforms before applying the same scoring function to all of them

[68, 94, 96, 122, 123, 140, 141]. In either case, some choices had to be made about

how to represent the documents, such as by having a short field that corresponds

to the title of an old CQA question or the title of a web page, and a long field that
1https://www.microsoft.com/cognitive-services/en-us/bing-web-search-api
2https://developers.google.com/knowledge-graph/

20

corresponds to the body of the old CQA question or the snippet of a Web search

result. Another parallel approach involved a manually set weight for the answering

platforms incorporated in the scoring function [3, 145], with higher weights set for

the CQA services compared to search engines, and a higher weight configured for

Yahoo! Answers compared to other CQA websites. Yet another approach was a

strategy in which the answering platforms were interrogated in a sequential order,

moving from one platform to another only when a small number of candidate answers

were retrieved [32] or when a score threshold was not met [36]. In some cases, the

participants submitted systems retrieving answers from different platforms, without

attempting to merge them [92]. That is, they had an independent system for each

platform.

Our systems are different from the approaches above in two major aspects.

First, we participated with two systems that each retrieve answers from a different

type of platforms, namely microblogs, which is Twitter. Second, for our third system,

we crawled a large corpus of questions and answers from Yahoo! Answers, which

increased our chances of finding answers (compared to using Webscope L6), allowed

us to control the scoring of the candidate answers (compared to using Y!A’s internal

search engine), and provided us a substantial amount of training data. We shared

a portion of our large crawl with Malhas et al., and their results show that their

systems that included that crawl performed better than their other system that did

not include it [94].

21

2.3 Evaluation of Information Retrieval Systems

Information Retrieval is inherently an empirical discipline. As a consequence,

evaluation has been one of its central foci, allowing us to compare between different

retrieval techniques and to track our progress in finding useful content. Evaluation of

IR systems is typically based on four dimensions: an information need, an IR system,

an item retrieved by the system for that information need, and an assessment of the

usefulness of the retrieved item for the information need. Different applications

call for different ways of combining these dimensions. For instance, we might be

interested in a single information need (e.g., finding privileged documents in an

attorney-client communication [31, 105]), a pool of queries within one broad subject

(e.g., finding scientific abstracts relevant to available medical conditions [120]), or a

large sample of diverse topics (e.g., in Web search). Our goal might be to improve

an existing single system (e.g., an internal enterprise search engine), study different

variants of an algorithm (e.g., with parameter tuning), compare a diverse set of

independent systems (e.g., in a competition), or even examine the ability of human

“systems” to find relevant information (e.g., to establish a reasonable effectiveness

target for automated systems). The user might have an interest in a single useful

piece of information (e.g., the address of some place), an exhaustive enumeration of

all relevant materials (e.g., with patent search [91]), or something in between (e.g.,

recommendations of nearby restaurants). Finally, the assessments can be made by

the user who formulated the query either directly (e.g., by providing a score) or

indirectly (e.g., through a click [56]); by a third party that can be a single person or

22

a committee of assessors who might be experts in the topic of the information need

(e.g., medical doctors or senior lawyers), untrained workers (e.g., in some instances of

crowdsourcing [75]), or non-expert trained annotators (e.g., undergraduate students

in a controlled experiment); or by another automated system that has access to

some information (e.g., the ground truth of a sample of items) that is not available

to the retrieval system being assessed.

The primary goal of IR evaluation is to produce an unbiased and sufficiently

precise estimate of the difference in the effectiveness between different system con-

figurations (e.g., ranking techniques, sources of information, etc.) for future data

(i.e., new systems, queries or documents). This estimation can be improved by re-

ducing the variance in measurement, which typically translates into acquiring more

information (e.g., more assessments); or increasing the quality of measurement (e.g.,

by training the annotators). But that might come at an unaffordable cost. For this

reason, research in IR evaluation often examines ways for reducing the measurement

cost while maintaining the ability to detect statistically significant differences. For

instance, observing that the average precision follows a normal distribution [25],

Carterette and Allan took advantage of the cluster hypothesis [119] to show that

inter-document similarity can be useful to minimize the number of judgments needed

for comparing the mean average precision [18] of different retrieval systems [24]. In

a binary relevance setup, they used cosine similarity to estimate the probability of

relevance of unassessed documents given a prior distribution over their relevance,

and the labels of assessed documents. This approach is useful to minimize the

number of annotations by propagating the relevance judgments through the pooled

23

documents. This approach, unfortunately, does not generalize to cases where new

systems are present with only brand new documents.

Büttcher et al. [21] studied the bias in evaluating systems that did not con-

tribute to the pool of assessed documents within the context of the TREC 2006 Ter-

abyte track [20]. They showed that some standard IR evaluation measures react in

opposite directions, as bpref [19], for instance, appears to be favoring such systems,

while average precision is penalizing them. Then, they demonstrated that a slightly

more stable evaluation can be obtained with two classifiers (support vector machines

and Kullback-Leibler divergence) trained on the pool of assessed documents to pre-

dict the relevance of the unassessed documents. However, there is no indication of

the usefulness of the assessed documents to compare two non-participating systems,

and this work is also limited to binary relevance.

2.4 Community Question Answering

With the emergence of Web 2.0 and Social Media, community driven ques-

tion answering platforms became popular. The research community followed up by

suggesting approaches to answer new questions from old answers or to route the

questions to expert users (Section 2.6). Wang et al. [142] focused on finding similar

questions to a new question based on matching syntactic tree kernels. They obtained

good performance by returning the answer of the most similar question. A simpler

model was proposed by Shtok et al. [125]. They answered new questions from past

answers by first selecting candidate similar questions with cosine similarity, and

24

then training a classifier that predicts the performance of a past answer given the

new and old questions. Zhou et al. [158] took the approach of expert finding to map

questions to the users who might answer them. In a supervised setup, they showed

that KL-divergence between the new question and the language model of a user’s

answered questions yields good results when independent statistics of the categories

of the new question and past answers are included as features. Nevertheless, Yen-

iterzi and Callan pointed out to a potential bias that arises from using the votes of

old answers as ground truth for evaluating such systems [148].

2.5 Federated Search

Our work can been seen as an instance of federated search [124]. In this

problem, a system is presented with a query, and needs to match it against several

resources, returning documents from each, and combining them together in some

presentation layout. Some motivations of this work can be traced back to the early

days of Web search, when each search engine was indexing only a fraction of the

Web [13]. In such a case, a metasearch engine obtains results in an online manner

from other search engines before combining them [98]. An example of a metasearch

engine would be a portal that shows, for a given query, results from Bing and Google.

A more recent instance of federated search is known as aggregated search [4]. In

this case, the engine has a number of indices, one per vertical, and runs the query

on a subset of them, before moving to the combination step. Most modern web

search engines have this functionality built in. For instance, when searching for

25

“Paris,” Google shows a map, a definition box, and a box for pictures, in addition

to “normal” search results. These, perhaps, correspond to four verticals.

Most of the research on federated search focuses on three aspects: represen-

tation, selection and merging [124]. Collection representation deals with gathering

and maintaining information about the individual search engines or verticals, such

as the terms statistics [50] and query logs [5]. In uncooperative cases (i.e., the indi-

vidual collections do not expose their information), statistics can be approximated

from documents returned after issuing a series of queries [23]. To optimize the usage

of resources, a selection phase is often performed to restrict the collections that will

be searched for a particular query. For this, a similarity is calculated between the

query and the collections. For instance, the GIOSS method gives preference for

collections that are estimated to have a high number of documents containing all

of the query terms [49]. On the other hand, the CORI algorithm adapts the BM25

model to estimate the “belief” in associating a term with a collection [22]. Finally,

the search results are returned from selected collections, and need to be merged.

The main challenge in this stage is to convert collections-specific retrieval scores

into global scores. For example, Si and Callan [126] proposed to train a regression

model to predict this score mapping. Learning takes place by creating a large in-

dex that contains a sample of documents from the individual collections, and then

comparing, for a given query and a matching document, the local and global re-

trieval scores. Other papers addressed finding duplicate documents across different

collections (e.g. [154]).

26

2.6 Routing Questions to Users and Communities

A wide body of work is interested in matching questions with experts in CQA

services and other communities. For instance, Pal and Konstan [108] observed that

experts in a tax-related CQA tend to prefer answering questions that have not yet

received good answers. This question selection bias is then exploited for early identi-

fication of experts in such a community [109]. Pal and Counts examined methods for

finding authoritative accounts on Twitter for a particular topic [107]. They showed

that probabilistic clustering is useful to eliminate outliers, and that ranking users

with a Gaussian algorithm is both effective and efficient. Looking at the problem

from the opposite perspective (i.e., the expert is already available and wishes to re-

ceive questions), Dror et al. [37] modeled question routing as a recommender system

that suggests to potential answerers questions in which they might be interested.

Among several classifiers, they found that a Gradient Boosted Decision Tree [43]

was the most robust for recommending new questions in Yahoo! Answers to candi-

date users. They also noted that content features have better prediction power than

social features, and that better performance can be obtained by combining both.

Instead of relying only on individual experts, sometimes a group of people

may be better positioned to provide an answer in a collaborative fashion. Chang

and Pal [27], for instance, indicated that questions for which there are several con-

tributors are more likely to experience a long lasting value (measured as the total

number of views) than those with only one answerer. Bouguessa et al. [16] in-

troduced the concept of a knowledge-sharing community, which is composed of

27

askers and authoritative users, all interested in a particular topic. They used the

Expectation-Maximization algorithm to estimate the parameters of the proposed

mixture model, and identify the authoritative users within these communities. Pal

et al. [110] suggested that a question could be routed to a community of users. They

studied question, user and community features, in addition to some similarity met-

rics among them, which they used to propose a k-NN based algorithm for routing

an incoming question.

Routing questions between heterogeneous platforms has seen little work.

Oeldorf-Hirsch et al. [106] built a simple interface that contained a text zone for

asking questions and four options to direct the question to a one of two social net-

working services or one of two search engines. A total of 82 recruited participants

used this interface to ask questions and were given a few days before collecting

the answers. The results showed that most questions were directed to search en-

gines, especially for prompted information needs. Opinions and recommendations

are the questions the mostly asked on social media for unprompted information

needs. Jeong et al. designed and implemented a crowdsourcing pipeline to answer

questions asked on Twitter [59]. They found no difference in quality between the

answers of crowdworkers and those of the friends.

The next chapter explores the first component of our framework: detecting

answerable questions.

28

Chapter 3: Detecting Answerable Questions1

Most research on answering questions has assumed that questions are easy to

recognize. For example, in the TREC Question Answering track [136], questions

were found in the <question> field, and in the more recent TREC LiveQA track [1,

2], real people type real questions into a text box that is followed by a button labeled

“Find Answers.” In many potential applications of question answering systems,

finding the question is not so straightforward. For example, help desk staff might

resolve problems more quickly if automated systems were to listen to an interaction

and automatically bring up possible answers to a user’s question that the agent could

then select from and interpret on the fly [101]. Today’s automated assistants such as

Siri and Cortana respond only when they hear a clue phrase that indicates a question

is coming next, but one could imagine a brave new world in which evolved versions

of such systems help out when someone who has taken a wrong turn shouts “Darn,

what should I do now?” Those systems would necessarily require a component for

automatic identification of questions.

We focus on detecting questions that are asked in Twitter. As with others who
1Some parts of this chapter were taken from a paper in preparation by Bagdouri and Oard

[11].

29

have worked on this task, we start by selecting questions that have some obvious

marker that we would expect to be associated with questions (in our case, a question

mark or phrase). Then, we attempt to automatically determine which of those are

questions for which answers are desired. Not all of the questions are actually seeking

an answer. In fact, some interrogative tweets are, for instance, rhetorical. Others

are followed by an answer provided by the asker herself. And a number of tweets

containing questions are simply advertising a product. We refer to tweets that ask

questions for which an answer is expected as qweets [79].

As it turns out, merely detecting a qweet accurately is not a sufficient require-

ment before attempting to provide an answer. Consider for instance when someone

asks her friend: “@user hey, when u coming back?” This is, indeed, a question

seeking a real answer—justifying its positive label in the corpus released by Zhao

and Mei [156]. Nevertheless, until we develop some very smart agents capable of

inferring people’s future plans from publicly accessible data, we believe that only

that particular @user (or perhaps some of her friends) can provide a useful answer.

Hence, we go one step further in the types of qweets we want to find, and introduce

the novel problem of detecting answerable qweets, or simply aqweets. We define an

aqweet as a qweet for which there might exist some stranger (i.e., someone who does

not know the asker and has no interaction with her) who could potentially read the

question and provide a useful answer.

The task of detecting questions in Twitter arises in several academic settings,

such as when seeking to study the needs of specific populations such as scholars

[117], journalists [55], or people responding to natural disasters [117]. It also arises

30

as a component in larger systems. For instance, Paul et al. [112] found that 81.3%

of the questions asked on Twitter that are not addressed to a specific user receive

no response at all. With an accurate aqweet detector, one might develop automatic

agents that can answer those questions or route them to a relevant expert [78].

Question detection is a classification task that has been traditionally ap-

proached by selecting some classifier design (e.g., SVM) and then experimenting

with different techniques for feature selection and shaping in order to optimize some

evaluation measure (e.g., accuracy or F1). Recently, deep learning techniques have

offered the promise of using generic neural network designs that are able to learn to

optimally select and shape “raw” features (i.e., features that are provided in what-

ever form they are directly observed). We are not aware of any prior application

of these techniques to question detection in Twitter, so our goal is to empirically

determine whether they live up to their hype for this task. Our contributions in this

chapter are, hence: (1) we present a pipeline for detecting answerable questions in

Twitter; (2) we improve the state of the art on the problem of qweet detection; (3)

we introduce the novel problem of aqweet identification; (4) we release a corpus that

enables the study of this problem; and (5) we report the effectiveness of different

classifiers and features, establishing a baseline for future work.

In the remainder of this chapter, we present the problem of finding inter-

rogative tweets (Section 3.1), we address the task of detecting questions with real

information needs (Section 3.2), and we introduce the problem of identifying an-

swerable questions (Section 3.3). An end-to-end pipeline is proposed and discussed

in Section 3.4. We summarize our findings in Section 3.5.

31

3.1 Detection of Interrogative Tweets (Itweets)

In a survey of 624 employees from a large company, in which they were re-

quested to provide examples of questions they had asked on Facebook and Twitter,

Morris et al. indicated that 81.5% of the examples explicitly included a question

mark [103]. That is, the question mark had a recall of 0.815 in recovering posts

with information needs within this small demographic. By design, this process of

collecting questions has perfect precision.

The work of Li et al. provides a close recall estimate [79]. Two raters labeled

(individually, and then converged after a discussion) a set of 2,045 English tweets

that were published through Twitter’s sample API over a period of one hour. They

found that 84.6% of the interrogative tweets (defined as those that contain a question

sentence) also have a question mark, and that including tweets with 5W1H terms2

increases the coverage to 97.3%, but at the same time it drops the precision from

0.8653 to 0.547. The authors applied two heuristics consisting of (1) requiring the

5W1H words to appear at the beginning of a sentence, and (2) adding some auxiliary

words, such as “is” and “are” after “what.” These heuristics helped attaining a recall

of 0.907 and a precision of 0.954, and no supervised technique was able to match

those values.
2The actual terms were not explicitly mentioned in that work, but they typically refer to What,

Who, Where, When, Why, and How, as indicated in https://en.wikipedia.org/wiki/Five_Ws.
3The paper indicates the precision to be 0.969, but we found this number inconsistent with

Tables 2 and 3. We confirmed, in a private communication with the authors, that the precision

should have been reported as 0.865

32

https://en.wikipedia.org/wiki/Five_Ws

As an alternative to the 5W1H question terms, Efron and Winget included

tweets that contain any instance of a small set of phrases, such as “I’m looking for,”

within the interrogative tweets [40]. While they did not indicate the recall resulting

in this approach, a verification over a small sample of 100 tweets shows a precision

of 0.93.

All of the work above focused on English tweets, which might have some

characteristics that are not generalizable to other languages. Hasanain et al. also

worked on the problem of question detection, but for Arabic tweets [54]. Arabic is

arguably more challenging due to its morphological complexity and to its presence

as a mixture of Modern Standard Arabic (MSA) and several local dialects [33]. A

notable consequence is the need for a large set of question terms and phrases to

find itweets. Hence, Hasanain et al. constructed a list of 488 such phrases that they

used, combined with the Arabic and Latin variants of the question mark, to detect

the itweets. They reported that this method has a precision of 0.79, but they did

not measure its recall.

Overall it appears that relying on an obvious marker (e.g., question mark or

phrase) is a widely adopted approach in prior work that focuses on the detection or

analysis of the information needs of Twitter users, and that a recall and a precision

of about 0.8 are reasonable estimates. We follow this trend in the subsequent stages

as well, adopting the same particular marker that had been used in the released

corpora to maintain the comparability of results. That is, we use question marks

for English tweets to compare our work with that of Zhao and Mei (Section 3.2.1),

and question phrases for Arabic tweets for the comparison with Hasanain et al..

33

3.2 Detecting Questions with Real Information Needs (Qweets)

Different families of taxonomies have been introduced for categorizing the

questions that people post on social media in general and Twitter in particular.

Perhaps the most dominating ones are topical classification and purpose-oriented

classification. Among the former classification, Morris et al. enumerated nine topics,

among which Technology and Entertainment are the most frequent in their survey

[103]. Using the same coding scheme, Paul et al. [112] found a different distribution

in their sample of tweets where the most prominent topics are Entertainment and

Personal & Health. A more fine-grained taxonomy of topics was introduced by

Liu and Jansen based on an automated tagging by the OpenCalais service,4 where

Human Interest and Entertainment Culture were detected to be the most prevalent

topics [88].

The purpose-oriented taxonomies, which are of interest to this dissertation,

have been introduced in different bodies of work. Among these types of questions,

we find primarily:

1. those that express an information need [158], which can be subjective [89]

such as opinions [40, 103] and recommendations [103] or objective [89] such as

factual information [40, 103];

2. those that seek help [79] or a favor [103], such as inviting [40] or coordinating

[40, 103] an action; and
4http://www.opencalais.com

34

http://www.opencalais.com

3. those that aim for some sort of dissemination, such as providing an offer that

could be social [103] or promotional [79], posting a question with its answer

[40, 79], expressing an opinion in a rhetorical way [40, 79, 103], maintaining

a social connection [103], or simply quoting the question of another person or

article [79].

Within the questions that seek to address an information need, Hasanain et al.

had a more detailed look at the special demographic of Arab journalists [55]. They

suggested three sub-categories for factual information needs (Find Fact, Find Infor-

mation Source, and Confirm Fact), and two sub-categories for opinion-based infor-

mation needs (Find Opinion, and Clarify Opinion).

To operationalize the types of questions as a classification task, a binary la-

bel indicating whether a tweet is a “qweet” has been suggested. However, this

term, coined by Li et al. [79], appears to have slightly different definitions among

researchers. In fact, a qweet was originally referring to tweets that “ask for some

information or help” [79], suggesting to exclude tweets of type (3) and include those

of both types (1) and (2). On the other hand, Hasanain et al. mean by qweets the

tweets that “convey real information needs” [54], which is what Zhao and Mei also

focus on, but without using the term qweet [156]. With this definition, tweets of

type (2) are not qweets. In this dissertation, we aim to find questions that con-

vey real information needs, and hence we use the term qweet to refer to the latter

definition. This section studies the detection of qweets among itweets.

35

3.2.1 Qweets Corpora

We study the qweet detection problem in two corpora. For English, we use the

collection released by Zhao and Mei [156]. They released 2,466 tweets of the 3,119

that had been used for the experiments they reported, so as a baseline we replicate

their study on those 2,466 tweets.5 Because their collection is balanced, they (and

we) report accuracy as an evaluation measure. For Arabic, we use the test collection

released by Hasanain et al. [54]. They released 3,341 of the 3,342 tweets that had

been used for the experiments reported in their paper (one tweet was excluded for

being a duplicate of another tweet). Because this collection was not balanced (it

has about five non-qweets for each actual qweet), they (and we) report F1 as an

evaluation measure.

3.2.2 Evaluation Measures

To compare the performance of two classifiers, we report point estimates for

the evaluation measures (accuracy, F1, and its components precision and recall), and

we test differences for statistical significance using a randomization test [127, 147]

constructed as follows. We consider two classifiers A and B predicting label sets

LA and LB, respectively. Each classifier produces a point estimate (EA and EB,

respectively) for the same measure. Under the null hypothesis, the differences in

that measure between LA and LB are due to chance only. Consequently, we can
5We do not know why the other 653 tweets were missing, nor do we know whether the remaining

2,466 tweets represent an unbiased sample of the original set.

36

safely flip the assignment of the labels for the same document between LA and LB.

Based on this observation, and for each document for which the labels disagree, we

assign the label randomly to either of the lists. We then compute the new point

estimates E ′
A and E ′

B. We repeat this process nt = 220 times,6 and record the

number of times nc in which the difference between the two new point estimates is

greater than that between the original point estimates (i.e., |E ′
A−E ′

B| > |EA−EB|).7

The significance level p is, then, at most (nc + 1)/(nt + 1).

3.2.3 Classification Methods

In this section, we describe the preprocessing of the tweets, our neural methods,

and the baselines against which we compare our results.

3.2.3.1 Tweet Preprocessing

We focus, in all of our experiments with qweet detection (including both base-

lines), only on the text of the tweet, deferring other attributes, such as tweet meta-

data and user information to future work. For both tasks, we remove the retweet

term (RT) if present, and replace all of the user mentions and URLs with two spe-

cial tokens, respectively. For the Arabic tweets, we additionally replace the Arabic

question mark with its Latin equivalent before applying standard Arabic normaliza-

tion techniques similar to the ones proposed by Darwish et al. [35]. Finally, we split
6This number is indicated to be large enough by [147].
7As we are performing a two-sided paired test, this inequality is different than the one men-

tioned in [147], which can be written as E′
A − E′

B > EA − EB .

37

the text on punctuation and special characters, adding white space before and after

them. As a result, each sequence of question marks becomes a token, and hashtags

are split into at least two tokens (the hash symbol “#,” and one or more tokens for

the corresponding word or expression).

3.2.3.2 Deep Neural Networks

Recent developments in Deep Neural Networks (DNNs) have advanced the

state of the art in several text classification problems, such as factoid question

answering [57, 58], sentiment [58, 69, 132] and subjectivity [69] analysis, textual

entailment [17] and paraphrase detection [151]. Similarly to other classification

algorithms such as support vector machines and random forests, a deep neural model

has a component for predicting the labels of the classes. But DNNs distinguish

themselves with an additional component for representing the tokens of the input

text. In this architecture, the representation and the classification are trained jointly

to satisfy the goal of the supervised task.

Although several DNN architectures have been proposed, two families became

quickly prominent in text classification. Convolutional Neural Networks (CNNs)

generate several transformations (a.k.a. filters), where each filter is applied on to-

ken n-grams of a fixed width in order to learn a repeating pattern [48]. Recurrent

Neural Networks (RNNs) learn a single transformation for updating the represen-

tation of the entire input in a sequential order (i.e., one token at a time) [48]. Two

implementations of RNNs have been predominantly used: Long Short-Term Mem-

38

ory (LSTM) networks and Gated Recurrent Units (GRU). As there is no theoretical

evidence that would encourage us to favor one over the other [29], we consider both

RNN variants for our classification task, in addition to CNNs.

3.2.3.2.1 Training Word Embeddings

The input to each of our neural networks is a sequence of L terms represented

as an embedding vector. This vector can be pre-trained or randomly initialized.

The elements of each vector are then either frozen to their initial values, or updated

during the training of the network.

To train those embeddings, we use a collection of tweets from Twitter’s sample

stream available at the Internet Archive8 and covering the period between October

2011 and August 2016. We rely on the “lang” field of the JSON object of the tweet

provided by Twitter’s API to extract 1.5B English and 296M Arabic tweets. Then

we train the embeddings for each language with word2vec [99] using its default

options except for the number of dimensions, which we set to D = 300, following

previous work on sentence-level classification [58, 69, 132, 144].

3.2.3.2.2 Convolutional Neural Network

Figure 3.1 illustrates the basic structure of the convolutional network. For

simplicity, we only show five dimensions instead of 300. Each sequence of N terms

(e.g., N = 3 in this figure) goes through a convolution filter, before the activation
8Downloaded from https://archive.org/details/twitterstream. More details are pro-

vided in Section 4.2.2.1.

39

https://archive.org/details/twitterstream

is qweet?

Pooling layer

Max Mean

anyone selling # iphone ?isEmbedding
layer

Convolutional layer

Figure 3.1: A convolutional neural network (filter length = 3).

function tanh is applied. The result is a sequence of L−N + 1 elements. We then

apply max and mean pooling by selecting the maximum and mean values over all of

those elements. This process was performed using one filter. We repeat it for a total

of D filters.9 The label is, then, a linear combination over a final vector of length

2D. We optimize it with the Adam adaptive stochastic gradient descent optimizer

[70], using the mean squared error as a loss function. We augment this structure by

using multiple filters of different lengths (not shown), and feeding their combined

output through the linear combination of the label. We refer to this architecture as

CNNij..., where i, j, ... correspond to the filter lengths.
9We chose the number of filters to be identical to the embedding dimension to avoid the

complexity of tuning this hyperparameter.

40

is qweet?

Max Mean Max Mean Max Mean Max Mean Max Mean

Pooling
layer

anyone selling # iphone ?is

Recurrent
layer

Embedding
layer

Figure 3.2: A bidirectional recurrent neural network.

3.2.3.2.3 Recurrent Neural Network

Figure 3.2 shows the basic structure of a RNN. Each term in the sequence is

connected to a forward layer, followed by the activation function tanh. The sequence

output, for which we chose that each element has the same number of dimensions

D as the terms, is fed through a pooling layer, where we compute the maximum

and mean, for each dimension over all elements. As with CNN, we end up with a

vector of length 2D, which is followed by a linear combination. This structure can

be enriched with a backward layer, making it bidirectional. We refer to our forward-

only recurrent networks as LSTM and GRU, and to the corresponding bidirectional

variants as BLSTM and BGRU.

41

3.2.3.3 Support Vector Machines Baselines

Our baseline methods rely on a greater degree of feature engineering, some of

which occurs during preprocessing. We therefore describe the baseline to which we

compare for each language, including the preprocessing used by that method.

3.2.3.3.1 English Baseline

With 21% less data, we cannot replicate the results reported by Zhao and

Mei [156] exactly, so we reimplemented their best system that used only lexical

features to determine what accuracy can be achieved on the released set of 2,466

tweets. To do this, we first substitute a special keyword for all user mentions and

then we tokenize on spaces and special characters, retaining those characters as

separate tokens. We finally lower case all of the resulting tokens and apply the

Krovetz stemmer [73] before generating token unigrams, bigrams and trigrams. A

total of 54,408 unique n-grams result from this process.

Zhao and Mei tried two approaches to feature selection. In one approach, they

selected only features that appear at least 5 times, resulting in 1,789 unique n-grams

that we use as features. In their other approach, they used Bi-Normal Separation

(BNS) [42] to select important features. BNS requires a hyperparameter for the

number of n-grams to be selected. They found, post-hoc, that 3,119 was the best

value for this hyperparameter, and that values between 3,000 and 4,000 would have

been reasonable choices. We therefore used BNS to select 3,119 unique n-grams.

Following their experimental setup, we evaluated four configurations using

42

LIBSVM [26] with a linear kernel, and setting other parameters to their default

values: (a) retaining all 54,408 unique n-grams as features, (b) using BNS alone to

select 3,119 unique n-grams, (c) first removing tokens that occur only once and then

using BNS to select 3,119 of the remaining 6,824 unique n-grams, and (d) retain-

ing only the 1,789 unique n-grams that occur five or more times in the collection.

We obtained the best accuracy of 0.8045 using 10-fold cross validation (CV) with

configuration (a).

This result is strikingly different from the results reported by Zhao and Mei,

who indicated that removing unique tokens that occur fewer than five times results in

44,121 lexical features.10 They then apply BNS to select 3,119 of those features, and

report an accuracy of 0.856 using 10-fold CV, described below. We have discussed

this discrepancy with Zhao, who generously provided code that we have used as a

reference for our replication. That code, however, is not the same that was used to

produce the results published in their paper. Neither he nor we are able to explain

the discrepancy, however. We therefore report both their reported results (on their

slightly larger test collection) and those of our replication in Section 3.2.4.2.

3.2.3.3.2 Arabic Baseline

Interestingly, using different evaluation measures and a test collection with

somewhat different characteristics, Hasanain et al. [54] report having found that

token n-grams alone did not work well in their case for Arabic. Hence, they focused
10This value is close to the 48,649 (non-unique) n-gram occurrences that we observe after

performing feature selection in the same way.

43

on augmenting n-gram features with some additional non-lexical features including

structural, tweet and question-specific features. They also acquired a list of ques-

tion phrases, in MSA and some Arabic dialects, to enlarge their feature set. They

reported an F1 score of 0.716 with leave-one-out CV, which is very close to the F1

score of 0.712 we got with 10-fold CV, both of which were with the default options

of SVMlight [60]. We observed a slightly lower performance using LIBSVM instead

(F1 = 0.693).

We note that Zhao and Mei also experimented with additional non-lexical

features from WordNet, part-of-speech tags and tweet metadata, obtaining a 0.01

accuracy improvement. We used Hasanain et al.’s additional features when reimple-

menting their work because we were able to run their code, but the results we report

for Zhao and Mei lack their additional features because their code was available to

us only as a reference implementation, their reported gains were rather modest, and

the focus of our work is on lexical features.

3.2.4 Effectiveness of Qweet Detectors

We describe the training and evaluation process for the qweet detection task

before comparing the effectiveness of the classifiers.

3.2.4.1 Training and Evaluation

Following Zhao and Mei [156], we report 10-fold CV results [72]. Hasanain

et al. [54] instead reported leave-one-out CV results, but the training time for our

44

neural networks makes that evaluation design impractical for collections of this size.

For each fold selected for test, we use the other nine folds for training. This produces

10% of the results that we need, so then we repeat the entire process nine more times,

selecting a different test fold each time.

Using Keras,11 with Theano as a backend,12 we train our neural networks (but

not our baselines) with an inner 9-fold CV loop. We first select one of the remaining

9 folds (10% of the total; 1/9 of the outer loop’s training set) to use for validation,

and we train a classifier on the remaining 8 folds. We iterate through the 8 training

folds in several epochs. Within each epoch, the 8 folds, randomly shuffled, are

further split into “mini-batches,” each of 20 tweets. We use the ninth fold to detect

when the performance (measured by accuracy or F1, whichever is our optimization

goal) on that validation fold has not improved over the best prior performance in the

most recent 10 epochs, and we then select the model that had the best performance

on that validation set (this will be one of those last 10, but perhaps not the very

last one). Because there are 9 folds that we might have selected for validation, we

then repeat this process 8 more times, selecting a different validation fold each time.

The result is a committee of 9 classifiers, each with a slightly different training set.

This committee then selects, by majority voting, the label to assign to each tweet

in the test fold.
11http://keras.io
12http://deeplearning.net/software/theano

45

http://keras.io
http://deeplearning.net/software/theano

3.2.4.2 Results

Training neural networks can be non-deterministic for at least two reasons.

First, random initialization of the weights in each layer would change with every

run. Second, the associative propriety might be lost in the GPU computations,

especially with single-prcision floating-point representation, as was the case in our

experiments. To study this potential limitation, we fixed the random seed for all

runs, and produced the results in Table 3.1 (lines 1 to 28). Using the same random

seed, we produced a second batch of results (that we do not report), and then we

compared the scores of the same neural network configuration between both batches

of runs. We found a maximum difference of ±0.0016 in the accuracy and F1 score

(for English and Arabic, respectively), with statistical significance at p < 0.05 noted

in only 4 of the 56 cases. Since a Bonferroni correction [39] indicates that the overall

results are not significant at p<0.05, and because none of these four cases (indicated

in italics in that Table 3.1) involve our best system (discussed below), we analyze

the results here based on our first batch of runs.

In the remainder of this results section, we start with an overview indicating

the best neural configuration, and comparing it against the SVM baselines and other

neural configurations. Then, we look at the individual impact of each condition of

the neural networks. Namely, we compare frozen vs. updated, and random vs.

trained embeddings. Then we discuss the effect of adding filters with longer lengths

on the CNN architecture. Finally, we compare the variants of the RNN architectures.

46

Table 3.1: Systems’ effectiveness on the qweet detection task. The maximum value
for a given column over the classifiers we implemented is indicated in bold.

Method Embedding English Corpus Arabic Corpus
Init. Weights Acc Rec Prec F1 Acc Rec Prec F1

1 CNN23

Tr
ai
ne

d

Fr
oz
en

.838 .839 .830 .834 .928 .707 .819 .759
2 CNN234 .835 .830 .831 .830 .927 .722 .803 .760
3 CNN2345 .832 .829 .826 .828 .926 .731 .790 .760
4 LSTM .845 .843 .840 .841 .929 .757 .791 .774
5 BLSTM .851 .852 .844 .848 .931 .774 .793 .784
6 GRU .843 .842 .836 .839 .929 .733 .809 .769
7 BGRU .835 .833 .829 .831 .931 .744 .813 .777

8 CNN23

Tr
ai
ne

d

U
pd

at
ed

.834 .823 .834 .828 .907 .750 .693 .720
9 CNN234 .830 .820 .828 .824 .907 .744 .696 .720
10 CNN2345 .835 .824 .835 .830 .913 .735 .728 .732
11 LSTM .819 .827 .806 .816 .905 .772 .680 .723
12 BLSTM .825 .827 .816 .821 .906 .784 .681 .729
13 GRU .818 .820 .809 .815 .905 .780 .679 .726
14 BGRU .814 .814 .806 .810 .910 .787 .693 .737

15 CNN23

R
an

do
m

Fr
oz
en

.817 .801 .819 .810 .913 .679 .752 .714
16 CNN234 .818 .809 .815 .812 .909 .674 .737 .704
17 CNN2345 .823 .813 .821 .817 .911 .670 .751 .708
18 LSTM .814 .830 .797 .813 .911 .728 .721 .724
19 BLSTM .822 .838 .804 .821 .910 .711 .722 .716
20 GRU .831 .830 .824 .827 .919 .694 .775 .732
21 BGRU .818 .820 .809 .814 .921 .692 .789 .738

22 CNN23

R
an

do
m

U
pd

at
ed

.805 .794 .804 .798 .891 .722 .642 .680
23 CNN234 .816 .811 .812 .811 .898 .724 .669 .695
24 CNN2345 .819 .809 .817 .813 .906 .731 .698 .714
25 LSTM .807 .816 .794 .805 .890 .729 .638 .681
26 BLSTM .811 .815 .801 .808 .896 .722 .662 .690
27 GRU .798 .811 .782 .796 .891 .765 .634 .693
28 BGRU .789 .793 .778 .785 .893 .754 .642 .694

Zhao and Mei (reported in [156]) .856 - - - - - -
Zhao and Mei (reimplemented) .805 .809 .793 .801 - - - -
Hasanain et al. (reported in [54]) - - - - - .644 .806 .716
Hasanain et al. (reproduced) - - - - .903 .681 .746 .712

3.2.4.2.1 Best Configuration

The accuracy and F1 scores in Table 3.1 suggest that the BLSTM network

with trained and frozen embeddings (line 5) is the best configuration among those

47

Table 3.2: Effect of initializing the word embeddings randomly vs. with pre-training.
Those embeddings are then either updated or kept frozen to their original weights.

Method Shared condition Compared condition on embeddings
on embeddings English Arabic

CNN23 Frozen Trained ≫ Random Trained ≫ Random
CNN234 Frozen Trained > Random Trained ≫ Random
CNN2345 Frozen Trained ≈ Random Trained ≫ Random
LSTM Frozen Trained ≫ Random Trained ≫ Random
BLSTM Frozen Trained ≫ Random Trained ≫ Random
GRU Frozen Trained ≈ Random Trained ≫ Random
BGRU Frozen Trained ≫ Random Trained ≫ Random
CNN23 Updated Trained ≫ Random Trained ≫ Random
CNN234 Updated Trained > Random Trained > Random
CNN2345 Updated Trained ≫ Random Trained ≈ Random
LSTM Updated Trained ≈ Random Trained ≫ Random
BLSTM Updated Trained > Random Trained ≫ Random
GRU Updated Trained ≫ Random Trained ≫ Random
BGRU Updated Trained ≫ Random Trained ≫ Random

we have tried. The accuracy and F1 results on line 5 are significantly better (with

p < 0.01) than every other neural model other than those shown on line 7 (for

Arabic), and lines 4 and 6 (for both languages). Each of those statistically indistin-

guishable configurations involved trained frozen embeddings. Our best classifier also

performs substantially and significantly (p < 0.01) better than our reimplmentation

of the classifiers of Zhao and Mei (e.g., compare the accuracies 0.851 and 0.805) and

Hasanain et al. (e.g., compare the F1 scores 0.784 and 0.712).

3.2.4.2.2 Embedding Conditions

In Table 3.2, we set the embedding weights to be either frozen or updated

during the training of the DNNs, and then we compare the effect of using the vectors

trained with word2vec versus initializing the vectors randomly. We show significance

test results for the differences in accuracy (for English) and F1 (for Arabic) using

48

Table 3.3: Effect of freezing the embedding vectors to their original weights (which
are either randomly initialized or pre-trained with word2vec), versus allowing the
training of the neural network to update their values.

Method Shared condition Compared condition on embeddings
on embeddings English Arabic

CNN23 Trained Frozen ≈ Updated Frozen ≫ Updated
CNN234 Trained Frozen ≈ Updated Frozen ≫ Updated
CNN2345 Trained Frozen ≈ Updated Frozen ≫ Updated
LSTM Trained Frozen ≫ Updated Frozen ≫ Updated
BLSTM Trained Frozen ≫ Updated Frozen ≫ Updated
GRU Trained Frozen ≫ Updated Frozen ≫ Updated
BGRU Trained Frozen ≫ Updated Frozen ≫ Updated
CNN23 Random Frozen ≈ Updated Frozen ≫ Updated
CNN234 Random Frozen ≈ Updated Frozen ≈ Updated
CNN2345 Random Frozen ≈ Updated Frozen ≈ Updated
LSTM Random Frozen ≈ Updated Frozen ≫ Updated
BLSTM Random Frozen ≈ Updated Frozen > Updated
GRU Random Frozen ≫ Updated Frozen ≫ Updated
BGRU Random Frozen ≫ Updated Frozen ≫ Updated

“≫,” “>” and “≈,” for p < 0.01, p < 0.05 and p ≥ 0.05, respectively. Pre-training

the embeddings appears to have a positive impact on all of the configurations for

both accuracy and F1. In fact, only 4 of the 28 configurations lack significant

differences, and all of those that are significant favor pre-trained embeddings.

In Table 3.3, we set the original weights of the embeddings to be either pre-

trained (with word2vec) or randomly initialized. Then we compare between the

effects of freezing those weights or allowing them to be updated during the training

of the neural networks. The significant differences all favor frozen embeddings,

and this is clearer when the embeddings are pre-trained. Given the small size of

the training set, it may be the case that the classifier overfits when updating the

embedding vectors for terms seen only during training, instead of updating the

49

Table 3.4: Effect of CNN filter lengths on the English corpus.

Embedding Filters

Tr
ai

ne
d

Fr
oz

en 23 ≈ 234
234 ≈ 2345
23 ≈ 2345

Tr
ai

ne
d

U
pd

at
ed 23 ≈ 234

234 ≈ 2345
23 ≈ 2345

Embedding Filters

R
an

do
m

Fr
oz

en 23 ≈ 234
234 ≈ 2345
23 ≈ 2345

R
an

do
m

U
pd

at
ed 23 ≈ 234

234 < 2345
23 < 2345

weights of the upper layers (e.g., convolutional and recurrent layers). In other terms,

while the representations of the training and test words were original learned in a

similar manner (i.e., either randomly, or with word2vec), allowing the embedding

weights to be updated during the training of the neural network means that only the

training words might have their representations altered. If we had a substantially

larger training set, we would expect the overfitting to be reduced, as there are more

chances that the test words would have already been seen in the training set.

3.2.4.2.3 Convolutional Networks Filters

We show in Tables 3.4 and 3.5 the effect of adding filters with longer lengths

(i.e., 4 and 5) to the convolutional network after fixing the embedding conditions.

Those longer filters appear to have little effect. We observe only four cases in

which there is a significant difference at p < 0.05. All four are improvements with

random updated embeddings (i.e., lower half of the right tables). Those longer

filters, perhaps, help compensate for the missing pre-training of the embeddings.

50

Table 3.5: Effect of CNN filter length on the Arabic corpus.

Embedding Filters

Tr
ai

ne
d

Fr
oz

en 23 ≈ 234
234 ≈ 2345
23 ≈ 2345

Tr
ai

ne
d

U
pd

at
ed 23 ≈ 234

234 ≈ 2345
23 ≈ 2345

Embedding Filters

R
an

do
m

Fr
oz

en 23 ≈ 234
234 ≈ 2345
23 ≈ 2345

R
an

do
m

U
pd

at
ed 23 ≈ 234

234 ≪ 2345
23 ≪ 2345

Table 3.6: Effect of RNN variants on the English corpus.

Embedding RNN

Tr
ai
ne
d

Fr
oz
en LSTM ≈ GRU

BLSTM ≫ BGRU

Tr
ai
ne
d

U
pd

at
ed LSTM ≈ GRU

BLSTM ≈ BGRU

Embedding RNN

R
an

do
m

Fr
oz
en LSTM < GRU

BLSTM ≈ BGRU
R
an

do
m

U
pd

at
ed LSTM ≈ GRU

BLSTM ≫ BGRU

Table 3.7: Effect of RNN variants on the Arabic corpus.

Embedding RNN

Tr
ai
ne
d

Fr
oz
en LSTM ≈ GRU

BLSTM ≈ BGRU

Tr
ai
ne
d

U
pd

at
ed LSTM ≈ GRU

BLSTM ≈ BGRU

Embedding RNN

R
an

do
m

Fr
oz
en LSTM ≈ GRU

BLSTM < BGRU

R
an

do
m

U
pd

at
ed LSTM ≈ GRU

BLSTM ≈ BGRU

3.2.4.2.4 Comparison of Recurrent Networks

There is no clear winner between forward-only LSTM and GRU, and between

BLSTM and BGRU (Tables 3.6 and 3.7). Within the sixteen comparisons, only four

51

Table 3.8: Effect of Bidirectional RNN on the English corpus.

Embedding RNN

Tr
ai
ne
d

Fr
oz
en LSTM ≈ BLSTM

GRU ≈ BGRU
Tr

ai
ne
d

U
pd

at
ed LSTM ≈ BLSTM

GRU ≈ BGRU

Embedding RNN

R
an

do
m

Fr
oz
en LSTM ≈ BLSTM

GRU ≫ BGRU

R
an

do
m

U
pd

at
ed LSTM ≈ BLSTM

GRU > BGRU

Table 3.9: Effect of Bidirectional RNN on the Arabic corpus.

Embedding RNN

Tr
ai
ne
d

Fr
oz
en LSTM ≈ BLSTM

GRU ≈ BGRU

Tr
ai
ne
d

U
pd

at
ed LSTM ≈ BLSTM

GRU ≈ BGRU

Embedding RNN

R
an

do
m

Fr
oz
en LSTM ≈ BLSTM

GRU ≈ BGRU
R
an

do
m

U
pd

at
ed LSTM ≈ BLSTM

GRU ≈ BGRU

are statistically significant at p < 0.05, with GRU and BGRU winning in one case

each, and BLSTM in the other two. Bidirectional RNNs do not appear to have any

positive effect (Tables 3.8 and 3.9). In the only two cases where there is a statistical

significance, GRU performed better than BGRU.

3.3 Detecting Answerable Qweets (Aqweets)

In a pilot study, we applied our best qweet detector (i.e., BLSTM with trained

frozen embeddings, as shown in Section 3.2.4.2.1), trained on the whole corpus of

2,466 tweets released by Zhao and Mei, to the tweets that were posted in March

2013 through Twitter’s sample stream, and we randomly sampled 100 tweets that

52

were predicted to be qweets. We found that 82 of them were, indeed, questions

seeking real answers, validating the high precision of our classifier. Among those,

we found that 77 qweets were addressing a specific user about a personal matter

(e.g., “@user Where you at?”) or required external context beyond what the text of

the tweet offered (e.g., “Does anyone else have a word for today’s poetry game?”).

We believe that none of these questions that convey a real information need can be

answered by a stranger or a bot. That is, they are not aqweets. Hence, they should

be excluded from the types of questions we would attempt to answer.

Overall, we found only five sampled qweets for which one would hope that some

stranger might be able to provide a useful answer. We observed that none of these

are mentioning any user, and that 71 of the 100 sampled qweets are mentioning at

least one user. Therefore, we decided to exclude any tweet that has a user mention.

With this process, we managed to eliminate 71/100=71% of the non-aqweets, while

maintaining an aqweet recall of 5/5=100%. This recall has an approximate lower

bound one-sided confidence interval [143] of 0.7831.

3.3.1 Source

We downloaded the tweets of Twitter’s sample stream from the Internet

Archive for February 2016. We restricted the tweets to those that are not retweets,

have a question mark and indicated in their metadata to be in English, yielding a

set of itweets. We applied our best qweet detector to this set of itweets, maintaining

those predicted to be qweets. To comply with Twitter’s terms of service, and to

53

maximize the lifetime of our release, we checked each of those tweets, removing the

ones that are not publicly available anymore. Following our observation from the

pilot study, we removed qweets that have a user mention.

At the last stage, we obtained a list of curse words,13 and removed all of the

tweets that contain any of them, before running a deduplication on the tokenized

lower-cased text of the tweets.

3.3.2 Annotations

We defined and refined the annotation guidelines through several iterations

with the help of two graduate students who volunteered to assess a total of 200 tweets

from March 2013. We then turned to the crowdsourcing platform CrowdFlower to

gather the annotations of 5,000 predicted qweets. We titled the task “is this a real

question that some stranger could answer?” and instructed the assessors to respond

with “yes,” “maybe,” “no ” or “cannot tell,” with corresponding unshown scores of

1, 0.5, 0 and 0, respectively. We presented few examples with each of these options

(Figure 3.3). To help the annotators to adhere to the instructions carefully, we also

showed a tooltip with shortened guidelines whenever they would hover over one of

the four options (Figure 3.4).

We labeled 238 tweets from a random sample of 350 tweets from March 2013,

including those that were annotated by the two volunteers. Those 238 tweets were

used to control the performance of the crowdsourced annotations. A candidate

worker had to get all of the labels of the qualification task (5 tweets) correct, and
13https://gist.github.com/roxlu/1769577

54

https://gist.github.com/roxlu/1769577

Is This A Real Question That Some Stranger Could Answer?

Overview

We want to build a new system that can learn to automatically offer useful answers to questions that are asked on Twitter, but
we only want our system to try to answer “real answerable questions.” We need your help to find examples of “real
answerable questions.”

We call a question a real answerable question if:
1. It is a question that is actually seeking an answer, and
2. It does not depend fully on some specific unknown context, such as time (today), location (nearby) and person

(her), and
3. Some stranger (someone who does not know the asker) probably exists who could read the question and offer a

useful answer (not necessarily an exact one, even if they might need to look up that answer)

IMPORTANT!!! We are NOT asking you whether ANY stranger can answer. Instead, you should tell us whether there might
exist someone who can read and answer the question (in a followup task we will try to find such a stranger).

Guidelines

You'll be given a list of tweets and asked to put each into one of these categories:

Yes
You are pretty sure that this is a real answerable question. Examples might include, but are not limited to:
 Questions about facts

o Why isn't there a Jesus emoji?
 Questions seeking opinions

o Are the Obamacare price increases really a problem?
 Questions seeking suggestions or advice

o How can I lose 10 pounds in 3 days?
 Questions seeking descriptions of experiences

o What’s it like to go white water rafting?
IMPORTANT!!! The question must still be answerable by some stranger.

No
You are pretty sure that this is not a real answerable question. Examples might include, but are not limited to:
 Rhetorical questions in which the asker doesn’t really want an answer

o Am I supposed to believe those politicians?
 Questions that only some specific person(s), known to the asker, could answer

o Who wants to play soccer this weekend?
 Questions whose apparent purpose is to provide information

o Did you know that 11% of people are left handed?
 Questions that can’t be answered unless you knew more about the asked

o Is it hot there?
 Jokes

o How can a man go eight days without sleep? (He sleeps at night)
 Spam

o Need a new bed? We can help!

Maybe
You think it might be an answerable question, but you aren’t sure enough to say Yes. Don’t try to split hairs--if you are
pretty sure, say Yes. if you choose Maybe, write us a brief note about why you’re not sure.

Can't Tell
You just don’t understand the tweet, so someone else will need to look at this one. If you choose Can’t Tell, write us a
brief note about the problem. Examples might include, but are not limited to:
 Tweet written in a language you don't know

o The revenant ke, ola bola ke, deadpool ke, the mermaid ek?

Figure 3.3: Guidelines of the aqweet detection annotation task on CrowdFlower.

maintain an average performance of 85% (which is substantially higher than the

default threshold of 70%) in the subsequent pages, where we present one control

and five unlabeled tweets per page. We configured the annotation job to request 7

55

Figure 3.4: Tooltip accompanying each radio box of the available annotation options.

additional assessments if any of the original 3 assessments of a tweet disagreed with

the others on the four possible labels.

In total, we collected 30,447 valid assessments for the 5,000 tweets (i.e., just

over 6 annotations per tweet) from 183 assessors. As our annotations are ordi-

nal categories with missing data (i.e., not all assessors have annotated all tweets),

we computed the chance-corrected agreement among the assessors using Conger’s

Kappa [52], which is a generalization of the simpler and more widely adopted (but,

in our case, inapplicable) Cohen’s Kappa measure. We found κ = 0.587, which is

at the high end of moderate agreement, using magnitude guidelines provided by

Landis and Koch [74].

56

0 20 40 60 80 100

0

20

40

60

80

100

Label confidence (%)

C
la

ss
 p

re
va

le
nc

e
(%

)

No

Yes

Maybe No

Maybe Yes

Figure 3.5: Prevalence of aqweets as a function of label confidence in a corpus of
5,000 tweets.

For each tweet, CrowdFlower computes an aggregate label with a confidence

score, based on the votes of the assessors, weighted by their performance on the

quality control tweets. Figure 3.5 depicts the prevalence of the aqweets as a function

of the minimum confidence required. The number of positive documents range

from 847 (ignoring the confidence) to 221 (when restricted to tweets with perfect

agreement.) We suspect that using the tweets with a very low confidence will add

noise to both training and evaluation, and that restricting ourselves to labels with

very high confidence will make the evaluation too easy. Hence we decided to settle

with a middle ground confidence of 75% (indicated by the vertical dashed line).

At that cutoff, we have 362 positive and 3,325 negative tweets, corresponding to a

prevalence of 9.82%.

57

3.3.3 SVM Aqweet Classifiers

While the specific problem of detecting answerable questions in microblogs,

to the best of our knowledge, has not been studied before, we found some pieces of

work related to the broader topic of question answerability. Uthus and Aha studied

the detection of questions posted on Ubuntu’s Internet Relay Chat channel that are

answerable by a bot [134]. They found that an SVM classifier performs better than

a k-NN classifier, and that character n-grams are more useful than word n-grams.

While this work is close to ours due to the similarities between microblogs and chat

messages in terms of length and language style (e.g., abbreviations, emoticons and

misspellings), our problem differs in that we are not restricting our focus to factoid

questions on a single domain (i.e. Ubuntu) around which a community evolved, and

we are not assuming in the first place that the questions are answerable (i.e., they

made the implicit assumption that all of the questions were answerable by experts).

Nevertheless, that work motivated us to include character n-grams in the features

that will be used by our SVM classifier.

In another domain-specific work, Yu and Sable studied the answerability of

200 questions annotated by physicians [152]. They observed a modest increase in

effectiveness by using a biomedical text processing toolkit known as the Unified

Medical Language System. While that system would not be useful to our case, its

large database of biomedical concepts, synonyms and relations inspired our use of

detected entities to enrich our feature set.

58

A variant of detecting question answerability was explored in the context of

CQA services. Yang et al. built a classifier to predict whether a question will receive

an answer in Yahoo! Answers [146]. Dror et al. extended that work to the prediction

of the number of answers that a question will attract [38]. Both of these papers

obtained their best performance using an SVM classifier trained on the question

unigrams, in addition to other metadata features. Our universal definition of an-

swerability is a bit different from their specific one. In particular, they consider

a question for which an answer exists only outside of Y!A to be an unanswerable

question. Despite this difference, and that our starting point is a tweet that is not

even guaranteed to be a question, the usefulness of Y!A’s metadata encourages us

to explore Twitter’s metadata in our task.

Following the work on detecting qweets, token n-grams seem to be a good

start for the features that might be useful. Consider, for instance, words such as

“she” and “her.” With the absence of the name of a person, as in “Did she delete

her Twitter?”, it is likely that any stranger, missing some crucial context, would

not be able to provide a useful answer. On the other hand “I,” as in “Any awesome

places in Chicago I should check out?”, is a good hint that some stranger might be

able to provide a useful recommendation. Hence, we use the n-grams of tokenized

lower-cased terms as features, and optionally add to them their n-grams stems.

Part-of-speech (POS) tags provided a small improvement in accuracy of less

than 0.01 in the qweet detection task, as reported by Zhao and Mei. We use Google’s

cloud natural language API14 to extract POS tags and add them to our features.
14http://cloud.google.com/natural-language

59

http://cloud.google.com/natural-language

Name entities can be useful as well. In “Any awesome places in Chicago I

should check out?”, the mention of Chicago is a key element that makes that qweet

answerable. We extract the count of each entity type detected using Google’s API.

However, not all entities are equally informative. Even if the user mentions the full

name of her friend, a stranger would still be missing sufficient context that would

help her provide a useful answer. Thus, we also use Google’s API to extract the

Wikipedia pages of detected entities. In addition, we measure the popularity of that

entity as the log of the count of other Wikipedia pages linking to it.

Finally, some features can be extracted from the metadata of the tweet. We

performed an ablation study, and maintained the following ones: the user id, the log

of both the number of her friends and the number of lists in which she is present,

the presence of geolocation information, and the indication of the device used for

the publication of the tweet.

3.3.4 BLSTM Aqweet Classifiers

We saw in the qweet detection experiments that BLSTM with frozen trained

embeddings is at least as good as an SVM classifier trained on hand-crafted fea-

tures. We want to check whether that observation holds for the aqweet detection

task as well. We adopt the same BLSTM classifier depicted in Figure 3.2, but we

augment it with the non-lexical features we introduced for the SVM classifier. The

corresponding architecture is presented in Figure 3.6.

60

is aqweet?

Fixed Trained Embeddings

BLSTM

Mean / Max Pooling Other

numerical

features

Figure 3.6: A BLSTM network with enriched features.

3.3.5 Evaluation

With a frequency of 9.82%, the F1 score is more appropriate to use as an

evaluation measure than accuracy. With this measure, a trivial acceptor (i.e., a

classifier that predicts every qweet to be an aqweet) would have a score of 0.1788.

Table 3.10 shows, for 10-folds CV, that both SVM and BLSTM perform much better

than that simple baseline. For SVM (trained with the SVMperf software, optimizing

directly for F1 [61]), term n-grams (line 1) appear to perform better than character

n-grams (line 2), but with no statistical significance at p < 0.05. Combining them

(line 4) does not seem to be helpful. In general, the incremental performance gains

by adding one set of features at a time are not statistically significant at p < 0.05.

But combined, that gain of 0.4915 − 0.4481 = 0.0434, is statistically significant

(p ≪ 0.01). BLSTM has an F1 score higher than all of the SVM configurations,

due to the substantial difference in precision. However, a significance at p < 0.05 is

observed only with respect to the simplest SVM model (i.e., line 1). The only feature

that seems to improve BLSTM (again, with no statistical significance) is Wikipedia

popularity (line 14), achieving our highest F1 score on this task of 0.5069.

61

Table 3.10: Effectiveness on the aqweet detection task.

Model Acc. Rec. Prec. F1

0 Trivial acceptor 0.9118 1.0000 0.0982 0.1788

1 SVM on uni/bi-grams 0.8831 0.4834 0.4177 0.4481
2 SVM on character 5/6-grams 0.8948 0.4199 0.4606 0.4393
3 SVM on stemmed uni/bi-grams 0.8693 0.4337 0.3618 0.3945
4 (1) + (2) 0.8950 0.4254 0.4625 0.4432
5 (1) + (3) 0.8942 0.4696 0.4620 0.4658
6 (5) + Tweet metadata features 0.8953 0.4917 0.4684 0.4797
7 (6) + POS counts 0.8934 0.5138 0.4615 0.4863
8 (7) + Entity-type counts 0.8931 0.5166 0.4606 0.4870
9 (8) + Wikipedia popularity 0.8940 0.5221 0.4644 0.4915

10 BLSTM (frozen trained embeddings) 0.9197 0.4116 0.6422 0.5017
11 (10) + Tweet metadata features 0.9222 0.4088 0.6496 0.5018
12 (10) + POS counts 0.9216 0.3978 0.6698 0.4991
13 (10) + Entity-type counts 0.9216 0.4038 0.6622 0.5017
14 (10) + Wikipedia popularity 0.9224 0.4061 0.6743 0.5069

The lack of significance in the difference in the F1 score between the best

SVM and best BLSTM classifiers (lines 9 and 14, respectively) hides significant and

substantial differences in its two components of recall and precision. BLSTM has

a superior precision of 0.6743 (compared to 0.4644), while SVM has a higher recall

of 0.5221 (compared to 0.4061). Both of these are significant at p ≪ 0.01. In the

following section we attempt to improve the recall of BLSTM (and, consequently,

the F1 score), by gathering more annotations.

3.3.6 Enhancing Recall with Active Learning

After finding out that the external features contribute, at most, a limited

gain to the performance of our best classifier (Section 3.3.5), we study whether

62

0 2000 4000 6000

0

20

40

60

Training annotations

%

Precision
F1
Recall
Prevalence
Piecewise log fit
Projected log fit

Figure 3.7: Learning curve for the BLSTM+Wikipedia model on a fixed test-set.
The Training tweets are add randomly (left) or through active learning (right).

more annotations would have a substantial impact. We split our corpus into two

equal halves. We reserve one for testing and use the other for training. We run a

document ablation experiment on the training set, randomly removing 100 tweets,

down to a training size of 500 tweets. We train our best classifier (i.e., BLSTM +

Wikipedia popularity) on the training subset (after removing the tweets with a label

confidence lower than 75%), and compute the corresponding recall, precision and

F1 scores. We repeat this ablation 10 times, and average the performance measures.

The left portion of Figure 3.7 (i.e., less than 2,500 tweets) shows the corresponding

learning curves. As recall is lower than precision, F1 is closer to the former. All of

the three performance measures increase slowly, and it appears from the projected

log fits of those curves that we need to double the size of the training set to reach

an F1 score of 0.5, which is about equal to what we had obtained with 10-fold CV.

63

An alternative approach for gathering more useful annotations (that we restrict

to training) is through active learning. We start by training a model using the whole

training set. We apply that model on all of the unlabeled qweets and select a subset

of 100 qweets that we send to CrowdFlower for labeling. We add this batch of 100

labeled qweets to our training set, and we repeat this process again. Among the

range of possible selection methods, we consider relevance and uncertainty sampling.

A small difference in performance in favor of the latter was found by Lewis and Gale

in very low prevalence topics (i.e. frequency < 1%) [76, 77]. However, Roegiest and

Cormack recently found that the annotation behavior differs when the annotators

are presented with documents selected by either strategy, compared with the other

[121]. Therefore, we adopt a hybrid approach in the following way. We split the

training set into 10 folds. We train 10 BLSTM models (with Wikipedia popularity),

each using 9 folds for training, and 1 for validation (Section 3.2.4.1). Each model

votes for the label of an unlabeled tweet. We randomly select 10 tweets out of those

that get 5 positive votes (i.e., with uncertainty sampling), and 10 out of those that

get 10 positive votes (i.e., with relevance sampling). Then, we randomly select 20

tweets for each bin in between (i.e., from 6 to 9 positive votes).

The right portion of Figure 3.7 (i.e., starting from 2,500 training annotations)

shows the learning curves in the active learning mode. As the frequency of the

positive class increases in the training set, the recall grows faster than it did in

the “passive” learning mode, while the precision appears to be stable (with some

variance). As a consequence, the F1 score is increasing faster as well. After 20

iterations (corresponding to 2,000 new annotations, out of which 1,092 were at or

64

above the label confidence threshold of 75%), the F1 score increased from 0.4326

(recall = 0.3297, precision = 0.6289) to 0.5806 (recall = 0.5351, precision = 0.6346),

attaining a maximum of 0.5859 (recall = 0.5622, precision = 0.6118) at iteration 19.

Following the logarithmic fit, it appears that the learning curve has not plateaued

yet, and that more annotations will still be fruitful, perhaps as long as more positive

tweets are selected by the trained model for annotation.

3.4 Towards an End-to-End Pipeline

In the previous sections we introduced the individual components of a pipeline

that would allow us to detect aqweets in microblogs. Next, we discuss the overall

effectiveness expected for this pipeline, before pointing to some possible directions

for improvement.

Figure 3.8 depicts the cascade of filters applied to a stream of tweets to de-

tect aqweets. Previous work has stopped at the stage of qweet identification. We

extended the filters to aqweet detection. Three filters (language identification and

qweet and aqweet detection) are based on supervised learning. The other filters are

simple and implemented through some hard coded rules, as in the case for verifying

the presence of a user mention, which can be performed by checking the metadata

of a tweet (which is what we did), or applying a regular expression to its content.

65

Sample stream

Non-retweets

English tweets

Itweets

Publicly available

Qweets

Without @user mention

Deduplicated

Without curse words

Aqweets

Tracking
stream

Ex
pe

rim
en

ta
l

pi
pe

lin
e

Re
al

is
tic

 p
ip

el
in

e

Previous work

Extended pipeline

Figure 3.8: A pipeline for detecting aqweets. The black boxes indicate filters based
on supervised learning, while rule-based approaches are applied for the white boxes.
The top left corner corresponds to previous work. The remaining components cor-
respond to our suggested extension. Our experiments are based on the cascade of
filters shown by the the green arrows on the left side. For a real application, we
suggest following the blue arrows on the right side.

3.4.1 Overall Effectiveness

Table 3.11 shows the distribution of tweets resulting from this cascade of filters.

It also shows the number of aqweets we expect to exist based on the prevalence found

66

Table 3.11: Effect of cascade filters on available tweets in February 2016.

Subset Size
Sample stream 107,465,739
English tweets 36,188,015
Non-retweets 19,317,184
Itweets 1,535,437
Qweets 600,024
Publicly available 485,945
Without @user mention 104,167
Without curse words 96,068
Deduplicated 92,756
Aqweets (expected) 9,107

in Section 3.3.2. As can be observed, that number of aqweets is over five orders of

magnitude smaller than the number of tweets we started with in the sample stream.

One reason for that is that people post things other than just answerable questions.

But a more important reason is the performance of the different stages.

We want to estimate the recall and precision of detecting aqweets in the whole

pipeline. So, we start by estimating them for the individual stages (Table 3.12).15

As some estimates are based on small collections, we indicate the point estimate

and the 95% lower bound one-sided confidence interval of the recall and precision

for each stage.

The sample stream is a 1% random sample of the stream of public tweets.

Thus, we expect the recall and precision of this stage to be 0.01 and 1.0, respectively.

Twitter automatically detects the languages of the tweets with a classifier reported
15For our analysis, we are not interested in retweets, tweets that are not available anymore,

tweets containing curse words, and duplicates. We ignore their effect in Table 3.12, but we revisit

them in Section 3.4.2.

67

Table 3.12: Effectiveness of individual components of the aqweet detection pipeline.

Subset Recall Precision
Lower Bound Point Lower Bound Point

95% Conf. Int. Estimate 95% Conf. Int. Estimate
Sample stream 0.0100 0.0100 1.0000 1.0000
English tweets 0.8775 0.8830 0.9900 0.9900
Itweets 0.8030 0.8458 0.8236 0.8649
Qweets 0.8341 0.8518 0.8264 0.8518
No @user mention 0.7831 1.0000 1.0000 1.0000
Aqweets 0.4744 0.5351 0.5696 0.6346

to have a precision of 0.99 on English tweets.16 However, we are not aware of any

official estimate of the recall, and we might no be able to directly measure it due to

a restriction on Twitter’s API terms of service.17 Hence, we approximate Twitter’s

official recall by the recall reported in a recent work on language identification

of tweets. Lui and Baldwin indicate having achieved a macro-averaged recall of

0.883 on a dataset of 14,178 tweets across 65 languages [90]. We use this value to

approximate Twitter’s recall on English tweets, and the method proposed by Webber

[143] to calculate the lower bound of the one-sided 95% confidence interval in recall.

Finally, we include the effectiveness on the itweet, qweet, and aqweet detection tasks

that we have reported in Sections 3.1, 3.2 and 3.3, respectively.

The precision of the pipeline is just the precision of the last stage (by definition,

it is the number of true aqweets we detect over all of the aqweets we return). Of

course, it is implicitly impacted by the earlier stages. The recall, on the other hand,
16https://blog.twitter.com/node/6883
17“Do not use, access or analyze the Twitter API to monitor or measure the availability, per-

formance, functionality, usage statistics or results of Twitter Services.” https://dev.twitter.

com/overview/terms/agreement-and-policy#f-be-a-good-partner-to-twitter

68

https://blog.twitter.com/node/6883
https://dev.twitter.com/overview/terms/agreement-and-policy#f-be-a-good-partner-to-twitter
https://dev.twitter.com/overview/terms/agreement-and-policy#f-be-a-good-partner-to-twitter

Table 3.13: Comparison of itweets coverage between Twitter’s sample stream and
tracking stream for the day of February 16, 2017.

Subset Sample stream Tracking stream
Captured tweets 3,575,907 450,940
English tweets 1,187,392 450,940
Non-retweets 589,621 266,807
Itweets 47,666 228,572

is the number of true aqweets we detect over all of the aqweets that exist, subject

to our restriction to non-retweets that are publicly available, have no curse words,

and contain no duplicates. Assuming the distributions of aqweets in the unretrieved

sequential sets is identical to those in their corresponding retrieved sets, we can

estimate the overall recall by multiplying the sequence of recalls, yielding the point

estimate of 0.0034.

It is possible to gather more itweets, and hence more aqweets in the subsequent

stages, by tracking English tweets that have a question mark, instead of starting

with the sample stream (refer to the top right box of Figure 3.8). Table 3.13 shows

the number of (predicted) itweets we obtained on February 16, 2017 using both

approaches. The tracking stream processed 87.39% fewer tweets than the sample

stream, but captured 380% more itweets.18 With this approach, we avoid the 0.01

recall enforced by design in the sample stream. Hence, we expect our final recall to

be 0.3404.
18The tracking stream returns also tweets for which the question mark appears in a URL. Unless

the text also contains a question mark, we exclude those from the set of itweets. This explains the

discrepancy of 266, 807 − 228, 572 = 38, 235 between what we requested to track as itweets, and

what we actually obtained.

69

3.4.2 Alternative Implementation Strategies

The setup discussed earlier in Section 3.4 is not the only possible implemen-

tation, as both the order and the implementation of most of the components can

be modified. The elimination of retweets (as a “copy” of the original tweet) was

motivated by two implicit assumptions: (1) only the original tweet would have been

actually seeking an answer, or (2) the label of the original tweet would propagate

to its retweets. Neither of these assumptions is necessarily true. A question that

is rhetorical for its original sender might create a real information need for the

retweeter. This partially explains why the annotators would sometimes disagree

on the label of a tweet, and suggests that an aqweet detector does not have to be

universal. That is, with sufficient training data, we could develop a personalized

version of it.

Itweet detection was based, in our experiments on English tweets, only on

the presence of a question mark in the content of a tweet. As we indicated in

Section 3.1, Li et al. have tried a supervised approach that underperformed their

rule-based method (which relied on hand-crafted rules over 5W1H words, in addition

to the question mark). However, this might be a simple consequence of the small

size of their corpus of 2,045 tweets, for which they had only 35 itweets with no

question mark. It would be interesting to see whether a better classifier can be

obtained with a larger set of tweets. We could also attempt to gather more itweets

with no question mark using active learning (Section 3.3.6). In our experiments, we

focused on publicly available tweets (i.e., those that did not get deleted) to comply

70

with Twitter’s terms of service, and to maximize the shelf life of our released corpus

of aqweets. In a real application, for which we would provide an immediate answer

after detecting the question, we could simply skip this stage. But another option is

to use a classifier that predicts the deletion of aqweets. That is, if our answering

component is slow to the extent that we can generate an answer only after the

question is already deleted, then it is better to save some computational resources

and ignore the soon-to-be-deleted aqweets. This problem of predicting the deletion

of tweets in general (i.e., not aqweets) has been studied recently [8, 14, 115]. In our

own work, we observed that the state-of-the-art performance is obtained by ignoring

the content of the tweet, and using only the identity of the user as a feature [8].

This would be particularly worth investigating for personalized aqweet detection.

We filtered out tweets with user mentions because we observed, in a small set

of 71 qweets with such mentions, that none of them is an aqweet. In fact, a lot of the

discussions on Twitter that are publicly available are private in their nature. But

this hard coded rule can also be replaced by a supervised classifier. Consider a user

who directs her question to an expert who does not know her. She would typically

phrase it with sufficient context that would make it answerable by that expert (who

is a stranger). Our hard-coded rule would miss this aqweet. On the other hand,

mentioning a user (by inserting the “@” symbol before her user name in a tweet) is

not the only way to bring the attention of somebody. In an ongoing discussion, for

instance, two or more people might use a first name (without mentioning the user

name). Our hard coded rule fails to filter out such cases.

71

We redacted tweets that have a curse word for ethical reasons. First, we did

not want to expose our annotators and future researchers to such words. Second,

we preferred not to focus on such questions for the answering stage. The choice

of a particular set of words was, to some extent, arbitrary. But also, some of the

words might be accepted in some context and not in another. It would be more

useful to use a classifier that accurately detects aqweets with appropriate content.

The “appropriateness” has yet to be defined by some annotators looking at specific

examples. In addition, back to the point about personalized aqweet detection, what

might be appropriate for some person can be inappropriate for another one (consider

for example the age, profession, health condition, religion, etc.). Thus, it would be

useful to train a personalized appropriateness classifier.

Duplicate tweets share some similarities with retweets. In addition to what we

discussed earlier in this section for retweets, a few other details are worth mentioning.

Some near duplicate detection algorithms can be deployed instead of exact duplicate

detection. Jaccard similarity is a simple technique (but not the only one) that proved

itself to be useful for microblogs [93]. Duplicate (or near duplicate) detection is also

useful from an efficiency standpoint. We can cache a question that becomes popular

during some period of time and return an answer that would have been generated

only once. The number of times a question is posted by different people is also

a signal that could be used as a feature for deciding whether it is seeking a real

answer, or if it is answerable.

Figure 3.4 can be augmented with other components. One such component

is a classifier that predicts whether and when an aqweet will be answered by the

72

crowd. In fact, we would be better off focusing on questions that are unlikely to

get any attention, instead of those that are guaranteed to be answered (e.g., by the

followers of the asker) in a short period of time. But it could also be the case that

the answer we would provide enriches the diversity of the pool of answers, and is

useful even with the presence of those answers.

3.5 Chapter Summary

By comparing the number of questions worthy of receiving an automatic an-

swer to the number of daily posts on Twitter, it appears that our problem is more

difficult than looking for a needle in a haystack. Nevertheless, we were able to

achieve a reasonable effectiveness by breaking the problem into a series of stages.

We focused our experiments in this chapter on two main filters: extracting qweets

(i.e., questions that seek a real information need) out of all questions, and identi-

fying aqweets (i.e., those that can be answerable by a stranger, and thus we would

hope that a bot might be able to provide some useful answer). A BLSTM neural

architecture works fairly well on both stages. We use it to automatically detect

questions asked on Twitter, before attempting to answer them (in Chapter 4).

73

Chapter 4: Finding Useful Answers1

A large fraction of questions asked on social media attract poor answers or

remain unanswered. Even those that receive good answers might do so after a

long period, or could suffer from a redundancy of the answers. In this chapter, we

study how to harvest past and future user-generated content to automatically and

quickly return answers to the asker. We address some of the issues stated above

in the context of two TREC evaluation campaigns (Section 4.1): the Live Question

Answering (LiveQA) track, which evaluates system that can provide answers in less

than one minute to complex questions posted in Yahoo! Answers, and the Real-

Time Summarization (RTS) track, which focuses on detecting novel relevant tweets

as soon as they are published. We also introduce a new task of answering questions

asked on microblogs using content from community question answering websites

(Section 4.3). Our methods (Section 4.4 and 4.5) are based on two large collections

of user-generated content that we crawled with a special attention to exhaustiveness

(Section 4.2).
1Some parts of this chapter were extracted from publications by Bagdouri and Oard [6, 9, 10].

74

Pets Cats

Cat questions help please?
Safe for me to pick up cat she scratched my sister almost bit my cousin (the owner) but she really likes me she starts to treat me really nice. Her nails are very long
but i've never been hurt by her is it safe to pick her up i tried 2 times she didn't scratch me or try to bite she really like me so is it safe to pick her up?

 Follow 6 answers

Answers

 Best Answer: Please: The Nails. (1) remove the nails, especially front nails. You can see how to do this by going with your mother to the public library and getting
a book about care of cats. There was larger nail clippers that your mother or father could use--I tried clipping the nails (quickly)---but I clipped one a day, sicne he was
a kitten, and training him so he could get used to the clipping. Now, he is a year old, and I can clip all of them at once; he may meow, but when he is in a comfortable
position, and usually in the afternoon when he takes a nap, he's usually more gentle, and it can be done quickly. Take practicing on it.

(2) Picking up a Cat. I let my cat know when I want to pick him up---he has been warned. I put my left arm around it's belly and chest, and my right arm around his
hips and back legs. He then should feel comfortable. But my cat still "mourns" when I pick him up. But I do it anyway, since I want him now to be a lap cat, and tell
him I love him.

(3) Biting Can Be Dangerous to You. Be careful with a bite----especially if it bleeds from the cat's bites and scrapes. Cat's mouths are not clean because they clean
themselves off with their tongue---which would be part of the feces from the litter box---which they clean with their tongue. Ask another vet what to do about a bite from
a cat. The Human Society asks if the cat has bitten anyone within a three-week period. You could ask the Human Society, too. Or you could ask a nurse in a doctor's
office what to do with the bite. Sometimes the cat doesn't want to be touched---they want space to be themselves. My cat gives me a "warning bite"---which means
that he is warning me---it's his space----"respect me." The "warning bite" is not dangerous because it doesn't harm the person. But if it's a real bite, ask a professional
person....you want to protect yourself.

Grandma Lynn

Source(s):
My life experience and reading about cat's vets from the public library.

lynn · 7 years ago

Asker's rating

1 1

50%

BEST
ANSWERS

lynn
Member Since: August 21, 2010
Points: 113 • Level: 1
Total Answers: 2
Points this week: 0

Figure 4.1: A question posted on the Pets category, and its selected best answer.2

4.1 TREC Evaluation Campaigns

Our participation in two tracks of the NIST TREC evaluation campaign has

allowed us to study several aspects related to searching, selecting, returning and

presenting answers that address some information needs.

4.1.1 TREC Live Question Answering Track

TREC LiveQA is a new track that loosely follows the earlier TREC QA track,

but with several substantial design changes [1, 2]. In this new track, the questions

come in real time from real users, as posted on Yahoo! Answers. A question, such as

the one illustrated in Figure 4.1, has a title, an optional description (or body), and

belongs to a hierarchy of categories. This results in more natural and diverse top-

75

ics than was the case with earlier QA tasks in which the questions were developed

by assessors or selected from query logs. LiveQA also incorporates an efficiency

challenge, as the answers have to be provided in near real-time (specifically, in no

more than one minute). This constraint models a user who is eager to receive a fast

answer, especially when future user-generated answers will be posted late. A third

challenge is that no document collection is provided, so participants must assemble

any online or offline resources on which their systems will base their answers. In ad-

dition to being a challenge, this lack of a shared data collection is an opportunity to

study how the contents from different platforms might be useful to answer different

questions.

The first edition of this track focused on eight categories, namely Arts &

Humanities, Beauty & Style, Health, Home & Garden, Pets, Sports, Travel and

Computers & Internet. The last category was dropped in the second year due to

difficulties in annotations. The systems were required to return only one answer

per question of no more than 1,000 characters, which then was judged on a 4-

level scale (0 = bad, 1 = fair, 2 = good, and 3 = excellent). These restrictions

of one answer and 1,000 characters are not particularly interesting to our work.

In fact, some questions require detailed answers that exceed this limit. Also, we

would be better off having several candidate answers judged. However, we think

that the advantages of this track setup exceed those limitations. Hence, we use

our participation in the two editions of this track as an opportunity to study the

performance of three systems that provide answers from two sources: a crawl of old
2https://answers.yahoo.com/question/?qid=20100821220150AAkU07g

76

https://answers.yahoo.com/question/?qid=20100821220150AAkU07g

questions and answers from Yahoo! Answers, and a large collection of tweets. We try

to mitigate the limitations of the track by summarizing long answers, concatenating

short answers, and introducing a new approach for evaluating answers that have not

been annotated (Chapter 5).

4.1.2 TREC Real-Time Summarization Track

Performance of information retrieval systems is typically assumed to be non-

negative, which is reflected in measures such as recall, precision, MAP and nDCG.

This makes sense in an interactive search task, where the user has initiated the

communication with a search engine (e.g., through a query) and is waiting for a

response. The user, in this case, has already dedicated some time for her search

session, and whatever she obtains as results will not decrease her prior information

(although it might indirectly create new information needs). As a consequence, de-

velopers of retrieval systems are mainly concerned about returning a good ranking of

documents. But there are also cases in which the user would not expect a response

at any specific time, but she would want to receive a good answer whenever one be-

comes available. In this case, the system would interrupt the user with that answer.

This interruption would have a cost (e.g., distraction of the user from whatever else

she is doing), and should be allowed only when the reward is sufficiently high (e.g.,

the answer is highly useful). Another example is if we would provide an unsolicited

answer to a tweet we have detected to be a question with a real information need.

If that answer is very good, then perhaps we shouldn’t worry much. But if we pro-

77

Table 4.1: Topic MB229 of the TREC 2015 Microblog track [84], that was also used
in the TREC 2016 Real-Time Summarization track [85].

Title bus service to NYC
Description Find information on bus service to NYC.
Narrative The user needs to travel to New York City (NYC) and

is considering using the bus to get there. He is looking
for other passengers’ opinions of the various bus lines
regarding aspects such as the quality of service, economic
value, driver safety, cleanliness, reliability, and safety of
pickup/drop off locations.

vide a bad answer, or we naively answer a rhetorical question, then the user might

consider our reply to be a spam. Hence, there is a need to model some penalty

for providing bad answers, and to train the retrieval system to return a candidate

answer only if the reward is expected to exceed the risk.

An experimental setup that allows us to study a variant of this problem is the

“push scenario” (a.k.a. Scenario A) of the TREC 2016 Real-Time Summarization

(RTS) track [85], which originally started in the TREC 2015 Microblog track [84]. In

this task, a user has an interest in some broad topic (see Table 4.1 for an example),

and wants to stay up to date in that topic using a stream of microblog posts. To do

so, a system should monitor that stream in real time and notify the user with novel

and relevant tweets within a short time after they are first posted. However, the user

should not be bombarded with too many notifications. A limit of 10 notifications

per day is therefore enforced. The track ran for 10 days from August 2 to 11, 2016

(UTC), and was based on Twitter’s sample stream.

Clearly, the broad topic is not necessarily a question, and the topical relevance

of a tweet does not necessarily translate into an answer usefulness. However, those

78

approximations allow us to study the interesting problem of making a binary deci-

sion for whether to return a document, when a penalty might be imposed if that

document turns out to be not useful.

4.2 Collections of Answers

While typical evaluation of question answering (and document retrieval) sys-

tems relies an a corpus of documents in which systems are restricted to search,

more realistic setups relax this restriction, adding the complexity of gathering some

content that might potentially be useful. The TREC LiveQA track, for instance,

requires the participants to assemble any online or offline resources on which their

systems will base their answers [1, 2]. Similarly, for answerable questions posted on

microblogging services such as Twitter, we need to decide where to search for an-

swers. This section describes two major sources of potential answers: a substantial

crawl of Yahoo! Answers, and a large corpus of tweets.

4.2.1 A Crawl of Yahoo! Answers

A study by Shtok et al. has shown that about 25% of the question titles posted

on Yahoo! Answers in a 3-month period had occurred in a similar form (i.e., with

a cosine similarity above 0.9) in a prior 11-month period [125]. This suggests that

it may often be possible to find similar questions that have previously been asked.

Assuming that similar questions will have similar answers (which is not necessarily

true, for instance, for generic or experience-based questions), then we might be able

79

to find useful answers to new questions by searching in old questions and answers.

For this reason, we decided to crawl all of the questions and answers that have ever

been published on this platform, and that are still accessible (i.e., they did not get

deleted). We do so in four steps, illustrated in the upper section of Figure 4.2:

1. Crawl the pages of all categories of the main website, in addition to its 22

localized versions3 to gather a fairly large set of question identifiers, and add

them to a set Q. Each webpage shows up to 1,000 of the most recent questions.

2. Let Q∗ be the subset of questions in Q that have not been crawled yet. Crawl

the webpages of questions in Q∗ to obtain the questions, their answers, and

the user identifiers of those who asked or answered the questions. Add the

user identifiers to a set U .

3. Let U∗ be the subset of users in U that have not been crawled yet. Crawl the

webpages of users in U∗ to obtain the identifiers of the questions they asked

or responded to, which we add to the set Q, and to acquire the user identifiers

for their friends and followers, which we add to the set U .

4. If either of Q∗ and U∗ is not empty, then go back to Step 2.

While this process has allowed us to gather a large set of 260M questions

and 1.4B answers from 49M users, it is not guaranteed that we have obtained all

of the data available in the website. This is the case for at least two reasons.

First, the privacy settings of some users may be configured to hide the identifiers of
3e.g., https://es.answers.yahoo.com

80

https://es.answers.yahoo.com

Y!A

?
Questions

Answers

Y!A

1%

4 Years of
Random
Sampling

Words Tracking

Offline Crawl of Yahoo! Answers

O
ffl

in
e

Cr
aw

l o
f T

w
ee

ts

Is
Question?

TW-A

TW-Q

No

Yes

Select Tracking Words

(Question ID)

(Title + Body)

(User ID)

(All Categories)

(User Profile)

(Qweet classifier)

Question

Reply

(Local Crawl)

(answers.yahoo.com)

(8 Categories)

(Local Crawl)

(8 small sets)

(twitter.com)

(Online retrieval)

1%

O
nl

in
e

Ac
ce

ss
 to

 T
w

itt
er

(Online search)

(Online streaming)

Figure 4.2: Collections of tweets and Y!A questions and answers.

81

the questions they asked or answered or the identifiers of their friends and followers.

Second, some groups of users (especially the least active ones) might form an isolated

clique that is not accessible by following links (based on questions or users) from

the seed questions.

We limit our focus to the 123M questions and 673M answers downloaded from

the main Yahoo! Answers website,4 which are expected to be in English. Crawling

the other (localized) systems allows us to identify additional users, who may have

also posted questions or answers to the main website, but we ignore the questions

and answers from those localized websites because we do not expect many useful

matches to be found there.

4.2.2 Collections of Tweets

Twitter, like several other popular social networking services, constitutes an

enormous resource for information and opinions that are continuously produced by

people around the globe. This makes it a potential place to find answers to some

questions. However, we do not have access to all of the tweets that have ever been

posted. In this section, we describe some ways for increasing our chances of gathering

tweets that will be useful for the expected questions. They are illustrated in the

bottom section of Figure 4.2.
4https://answers.yahoo.com

82

https://answers.yahoo.com

4.2.2.1 A Large Corpus of Random Tweets

A random sample of 1% of Twitter’s public stream is accessible through Twit-

ter’s API as JSON objects.5 While this is a small portion of all tweets published

at any given time, an accumulation over a long period can help to collect a large

number of them. The Internet Archive Team has been collecting these tweets for

several years.6 Because of some technical difficulties, tweets sent on some days are

missing from this collection. Hence, we only have tweets from 1,452 days within

the period September 27, 2011 to March 31, 2016. We add to these a collection of

tweets that we obtained using the streaming API between April 1, 2016 and May

22, 2016. We extract over 1.6B English tweets (using the “lang” field of the JSON

object). We denote this collection SampleStream.

4.2.2.2 A Small Corpus of Selected Tweets

If we know in advance the distribution of words of a particular set of questions,

we can collect tweets that contain specifically those words, instead of a random

sample of tweets. In fact, the Twitter API allows us to track7 a set of up to 400

keywords.8 When doing so, the API returns the tweets that contain at least one

of these keywords, subject to the 1% limit computed over all tweets. For each of

the eight TREC LiveQA categories (Section 4.1.1), we think that selecting some
5https://dev.twitter.com/streaming/reference/get/statuses/sample
6https://archive.org/details/twitterstream
7https://dev.twitter.com/streaming/overview/request-parameters#track
8https://dev.twitter.com/streaming/reference/post/statuses/filter

83

https://dev.twitter.com/streaming/reference/get/statuses/sample
https://archive.org/details/twitterstream
https://dev.twitter.com/streaming/overview/request-parameters#track
https://dev.twitter.com/streaming/reference/post/statuses/filter

keywords that represent its core vocabulary and then tracking tweets that contain

at least one of those keywords might give us a set of tweets that is richer (in terms

of relevance to the potential questions) than the ones we would get by relying solely

on the sample stream.

We construct these eight core vocabularies following Fung et al. [44]. Formally,

let a document in Yahoo! Answers be a question, its description or one of its answers.

we denote by DF (wG) the document frequency of a word w in a set of documents

G. We then scale DF (wG) to a value between 0 and 1 as:

df(wG) =
DF (wG)− min

w′∈G
DF (w′

G)

max
w′∈G

DF (w′
G)− min

w′∈G
DF (w′

G)
.

Finally, for a given category i, we denote by Hi the value

Hi(w) = df(wC)− df(wC),

where C and C are two instances of G, such that C contains all of the documents

that belong to the category i, and C contains all of the remaining documents.

This value gives higher credit to words that are more frequent within the

category i than within all of the other categories. In other terms, Hi defines a

ranking of words by their relevance to the questions and answers of the category i.

We observe that using the top 400 keywords for each category causes the

Twitter API to send warnings for hitting the 1% maximum. Thus, we heuristically

set the number of keywords, for every category, so that their filter matches about

84

Table 4.2: Words selected from Yahoo! Answers to be tracked in Twitter.

Arts & Humanities Beauty & Style Computers & Internet Health
book hair computer doctor
books wear windows weight
poem color laptop diet
novel skin download exercise

writing makeup pc body
author dress software fat
story style install muscle

twilight click pain
characters files eating
authors program calories

(13 more) (11 more) (5 more)

Home & Garden Pets Sports Travel
plant dog team travel
paint dogs football city
wood vet players trip
walls pet win hotel
plants cat teams airport
garden cats fan flight

wall breed player hotels
furniture puppy wwe cities

depot pets tourist
soil animals places

(65 more) (13 more) (14 more)

1% of all the posted tweets. The final set of keywords for these eight categories is

presented in Table 4.2. We tracked these eight9 sets of keywords using eight Twitter

accounts for three weeks (in TREC 2015 LiveQA) and 55 days (in TREC 2016

LiveQA). We denote each of the eight corresponding collections by TrackedWordsi,

while i corresponds to the name of the category.
9The organizer of the TREC 2016 LiveQA track removed the category Computers & Internet.

Thus, we did not track the corresponding words in that year.

85

4.2.2.3 Questions and Answers in Twitter

Oftentimes, tweets that are retrieved following a search operation are them-

selves questions. Such tweets should not be returned to the asker as answers to

her question. This led us to make the distinction between two conceptual types of

tweets: those that contain a question, and others (because those that do not contain

a question might contain an answer). To implement this distinction, we extract two

subsets from Corpusi for each category i:

• Corpusi,q is the subset of tweets that are detected to be questions seeking an

answer using our reimplementation of the qweet identifier of Zhao and Mei

(Section 3.2.3.3). Their replies, extracted online should a qweet be retrieved,

would potentially contain some useful answers.

• Corpusi,a is the subset of tweets that are not detected (by that same classifier)

to be qweets. Such tweets are themselves potential answers.

We denote by TW-Q and TW-A, respectively, the unions of corpora Corpusi,q

and Corpusi,a.

4.2.2.4 Recent Tweets

Hoping to cover questions about current events, we add a third source of

tweets. To do so, we start by extracting term bi- and tri-grams from the question.

Then, using Twitter’s search API, we issue a series of queries using those n-grams

(starting with tri-grams first), requesting up to 100 tweets for each query. To avoid

86

exceeding the 60 seconds answering time allowed in the TREC LiveQA track, we

stop when the total time spent in communicating with Twitter reaches 40 seconds.

4.2.2.5 Future Tweets

The TREC RTS track has the special particularity of monitoring a stream of

tweets to detect novel relevant tweets. In other words, we aim to retrieve “future”

tweets with respect to the topic of interest. Per the task’s guidelines, that stream of

tweets is accessible through Twitter’s sample API. Since there is no offline collection

in which we search, we need to approximate document frequencies (typically used

to weight the terms of a query) from an external source. We use the statistics of

the SampleStream corpus to this end.

4.3 Answering Aqweets

In this section, we investigate the ability to answer microblog questions by

searching in Yahoo! Answers. Our goal is to return a “thread” (e.g., an old question

with its answers) that the asker might find useful. We start with the set of 362

aqweets (i.e., answerable question tweets) we had collected in Section 3.3.2, which

we split into 177 training and 185 test aqweets. Then, we study different search

strategies using our crawl of Yahoo! Answers and considering some transformations

that can be applied on the questions. Next, we study how to select among the

various available configurations in a learning-to-rank (L2R) framework. After that,

we examine how to combine the L2R answers and the replies that the aqweets might

87

have received over time. We compare the effectiveness of our techniques against two

baselines, one is based on the aqweet replies, and the other returns the answers

using the internal search engine of Yahoo! Answers.

4.3.1 Where to Search

Our techniques for searching for answers use our crawl of Yahoo! Answers

(Section 4.2.1), which we limit to the questions posted on or before December 31,

2015 (i.e., at least one month prior to the posting time of the aqweets). We also

exclude crawled questions and answers that contain any term from the same list of

curse words we had used for filtering aqweets (Section 3.3.1).

A thread in Yahoo! Answers has several fields in which we can search. One

possibility we consider is the concatenation of the title and body of the question,

as well as all of its answers. This approximates a simple search for a Web page by

a search engine. Alternatively, we can index each field separately. This allows us

to study the importance of every field independently from the others, and examine

different combinations.

There are two possibilities for indexing the fields of a thread. In the first, we

index each field of the question, in addition to the concatenation of all of its answers.

We call this indexing setup question-per-document, and refer to it as QpD. In the

second possibility, the indexed document contains the fields of the question, and one

answer at a time. That is, we index as many documents for a given thread as the

number of its answers. We call this indexing setup answer-per-document, and refer

to it as ApD.

88

The fields we index are the title (T) and body (B) of the question, their

concatenation (C) and the answer (or concatenation of answers for QdP) (A). We

experiment with various combinations of these four indexed fields. Finally, each

configuration returns the top-1 thread. We break ties by selecting the most recent

thread (this is often needed when we restrict our search to the title field, because

different questions may share the same title).

4.3.2 Scoring Function

We adopt the BM25 ranking scheme for our retrieval of answers [63]. There

are few variants of this ranking function. We use the one implemented in Lucene

6.4.2 as BM25Similarity. For a term t from a question q, let the term frequency

TF (t, d, f) be the number of times the term t appears in the indexed field f of a

thread d. The document frequency DF (t, f) is the number of threads in which the

term t appears at least once within the field f . The inverse document frequency

IDF (t, f) is defined, provided the number of indexed threads of the field Nf , as:

IDF (t, f) = log

(
1 +

Nf −DF (t, f) + 0.5

DF (t, f) + 0.5

)
.

BM25 scores the thread d with respect to the term t and the field f as:

bm25(d, t, f) = IDF (t, f)× TF (t, d, f)× (k1 + 1)

TF (t, d, f) + k1 ×
(
1− b+ b× len(d,f)

len(f)

) ,
where the length len(d, f) is the count of the occurrences of all terms in the field

89

f of thread d, len(f) is the average length over all threads of that field, k1 is a

free parameter that controls the saturation of the term frequency, and b is a free

parameter that controls the document length normalization. Their default values in

Lucene are set to 1.2 and 0.75, respectively.

Finally, for a set of fields F , we compute the BM25 score of the thread d with

respect to the question q as:

BM25(d, q, F) =
∑
f∈F

∑
t∈q

bm25(d, t, f).

4.3.3 Question Rewriting

Tweets experience some characteristics that are unusual in other platforms,

such as misspellings, abbreviations and multi-words hashtags (e.g., Figure 4.3). We

address each of these challenges with a dedicated rewriting method that generates

one or a list of candidate replacements. Candidate generation involves using a

character n-gram language model built by indexing character 1-4-grams from the

vocabulary of the Twitter SampleStream corpus (Section 4.2.2.1). Candidate selec-

tion involves using a word n-gram language model created as a positional Lucene

index built from the same corpus, where we add special START and END tokens at

the boundaries of the tweets, and tokenize them using Lucene’s standard analyzer

(without stemming) with an empty stop list.

90

Tiffany Wheatland
@OnNegritude

Ques: Should the govt be paying for
#healthinsurance for #immigrants or should
private companies? #AfricanVoicesMatter
4:35 PM ­ 3 Feb 2016

Figure 4.3: Example of a question requiring several transformations.10

4.3.3.1 Hashtag Normalization

Twitter users often use hashtags to highlight a special notion. A hashtag

cannot contain a space. Hence, users would concatenate the terms of a multi-word

expression into a single hashtag. Some times they would do so using the CamelCase

convention, as is the example for #AfricanVoicesMatter in Figure 4.3. In other

instances, they would not bother alternating between upper and lower cases, as

with #healthinsurance in the same tweet. We expect hashtag segmentation to

improve retrieval performance, but we should be careful about what to segment.

For instance, #immigrants should be kept as a single word in that tweet.

On the other hand, not all hashtags are equally useful. Some of them substitute

for regular words (or expressions) within the content of the question, as is the case

for both #healthinsurance and #immigrants. Other hashtags occur after the end

of the question (i.e., after the question mark), providing some context, but without

being part of the question itself. #AfricanVoicesMatter is an example.

10https://twitter.com/OnNegritude/status/695042981242486784

91

https://twitter.com/OnNegritude/status/695042981242486784

We normalize the hashtags following two steps. First, we remove the hashtags

that appear after the last question mark. Then, we perform a segmentation over the

remaining hashtags. Our approach for segmenting a candidate hashtag is based on

three stages. In the first stage, we remove the # symbol, and use Google’s cloud nat-

ural language API to check if that term is detected within the question, as an entity

of any type besides OTHER. This stage aims to avoid segmenting single-word proper

names. In the second stage, we generate one or more candidate segmentations. If

a hashtag follows the CamelCase convention (detected with a regular expression),11

we extract the corresponding segmentation. Otherwise, we use the vocabulary of

our Twitter index to extract all possible segmentations, with a maximum of 3 words

per candidate segmentation12 (a limit is helpful to restrict the number of candi-

dates, especially for long hashtags, and in some words it could be set dynamically

as a function of the hashtag length). Some of the candidate segmentations would be

invalid (e.g., segmenting #iPhone into “i phone”). Hence, in a third stage, we filter

out all segmentations that appear (as a sequence) in Twitter’s positional index less

frequently than the hashtag (without the # symbol). If no segmentation passes this

filter, we maintain the hashtag (but remove the # symbol). Otherwise, we replace

it with the segmentation that has the highest frequency (breaking ties arbitrarily).
11We use the regex below suggested in http://stackoverflow.com/questions/2559759:

(?<=[A-Z])(?=[A-Z][a-z])|(?<=[Â-Z])(?=[A-Z])|(?<=[A-Za-z])(?=[Â-Za-z])
12We use the WordBreakSpellChecker.suggestWordBreaks() method of Lucene 6.4.2.

92

http://stackoverflow.com/questions/2559759

4.3.3.2 Spelling Correction

Twitter is mostly accessed from mobile devices.13 The tiny keyboards on

those devices increase the chance of misspellings in the posted tweets. Consider

for example the question “Why did the great awaking happen?”14 We have little

hope for finding an answer, or even a similar old question, unless the spelling of

awaking is corrected to awakening. This problem is particularly critical when the

misspelled word is a key term in the question (as in the example above), causing us

to miss the relevant threads even if we would go deep in the retrieved list. Another

potential impact might appear when a high frequency word (e.g., a stop word) is

misspelled as a rare word with high IDF. An example of such a case is “should igo to

school tomorrow?”,15 where igo leads to the undesirable retrieval of threads about

intergovernmental organizations.

We perform spelling correction in three stages. As with hashtag segmentation,

we exclude from this process terms that are detected to be entities. In the second

stage, we generate a list of up to 1,000 closest words with Levenstein’s distance, using

the character n-grams index.16 In the third stage, we maintain only alternatives for

which both their document frequencies and the document frequencies of their n-

gram context, are greater than those of the original word. The n-gram context

is constructed by appending the left and right words or special START and END
13http://venturebeat.com/?p=2014007
14https://twitter.com/HistoricEmily/status/699268868351664129
15https://twitter.com/xChipmunk_/status/317080343700197376
16We use the SpellChecker.suggestSimilar() method of Lucene 6.4.2

93

http://venturebeat.com/?p=2014007
https://twitter.com/HistoricEmily/status/699268868351664129
https://twitter.com/xChipmunk_/status/317080343700197376

markers, until a non-stop word is encountered, or no additional words are available.

If one or more alternatives pass this filter, we return the alternative with the highest

document frequency as a synonym to the original word.

Once a spelling correction is found, we consider it to be a synonym of the

original word, and compute the BM25 score, for a particular field, after summing

their term frequencies in that field, and approximating their combined document

frequency by the maximum of their individual document frequencies (which is, by

construction, the document frequency of the alternative word).

4.3.3.3 Synonyms

The informal language of tweets encourages the adoption of some writing con-

ventions that are less frequent in other places. For example, you and conversations

would be valid (and perhaps even better) synonyms to u and convos, for the ques-

tion “Should u read your kids convos on the Internet?”17 The process of finding

synonyms is also divided into three stages. The first (filtering entities) and the

third (checking the frequency of the synonym and its context) are identical to what

we did for spelling correction (Section 4.3.3.2). For the second stage (suggesting a

candidate synonym), we use a word2vec [99] model trained on our SampleStream

corpus (Section 4.2.2.1) to suggest the nearest word to the original one, but only if

the cosine similarity of their vectors exceeds a threshold of 0.5.
17https://twitter.com/DeadDinero/status/318060250542518272

94

https://twitter.com/DeadDinero/status/318060250542518272

4.3.4 Term Statistics

The importance of a term is indicated, in the BM25 scoring function, by its

IDF (Section 4.3.2). As a result, the same term might have different IDF values

in different indices. For the question “What am I gunna do with this dog for the

night?”,18 we observed that night has a high IDF in Yahoo! Answers compared to

dog, although it appears that the latter is more important than the former for this

particular question. Using the document frequencies from a Twitter index (built

based on the SampleStream), we had the opposite observation of having a higher IDF

value for dog. Hence, some words seem to suffer from a “cost of fame.” That is, they

are so important, that so many questions are asked about them in Yahoo! Answers

(e.g., there is an entire subcategory for questions about dogs), diminishing their

IDF. We suggest using the IDF statistic from our index of tweets, which will have

the same value for all of the fields.

4.3.5 Question/Question Similarity

The same question might be phrased in different ways, even within the same

platform. Hence, it would be useful to detect if an aqweet is, semantically, a du-

plicate of a question in Yahoo! Answers. Quora has recently released a corpus of

404,351 pairs of questions, among which 149,306 are indicated to be duplicates.19

We use 90% of those pairs to train the neural network depicted in Figure 4.4, and
18https://twitter.com/TheFizzyBubbly/status/317901609373937665
19http://qim.ec.quoracdn.net/quora_duplicate_questions.tsv

95

https://twitter.com/TheFizzyBubbly/status/317901609373937665
http://qim.ec.quoracdn.net/quora_duplicate_questions.tsv

Embedding

BLSTM

Pooling

Question 1 Embedding

BLSTM

Pooling

Question 2

Cosine

Softmax

Is duplicate?

Figure 4.4: An architecture for detecting duplicate questions.

the remaining validation subset to stop training when the accuracy does not im-

prove over the best prior performance in the previous 10 epochs. We return the

model that has the best accuracy (0.855) on that validation set, after optimizing it

with the Adam adaptive stochastic gradient descent optimizer [70], using the mean

squared error as a loss function, as implemented in Keras, backed by Theano.

4.3.6 Learning to Rank Threads

The approaches we have introduced so far for searching in our crawl of Ya-

hoo! Answers aim to find the configurations that would work best, on average. How-

ever, it is also possible to use features of the questions and the answers to select the

thread to be returned among the ones that were retrieved by different configura-

tions. We operationalize this selection in a learning-to-rank (L2R) framework. We

start with all of the single-field (i.e., T, B, C, A or P) retrieval models, including

those where one or all of the question rewriting techniques were applied, and those

for which alternate term statistics were used. For each aqweet, we retrieve the union

of the top-1 threads of these retrieval models. Then we score all of threads in this

96

union using all of the retrieval models. That is, if two retrieval models RMi and

RMj return two different threads di and dj, then we compute a total of 2× 2 BM25

scores. At the end of this stage, we represent each thread as a vector of BM25

scores, where each element corresponds to one retrieval model.

Next, for each thread, we add the following features:

• The Jaccard coefficient and Quora-based similarity between the aqweet and

the title of the thread.

• The minimum, maximum and mean of the similarity between the aqweet and

each of the answers of the thread, using both Jaccard coefficient and Quora-

based similarity.

• The number of answers in the thread.

We standardize each feature (including the BM25 scores) by applying the z-

score transformation (learned from all threads of the training aqweets, and applied

to all threads of the training and test aqweets). Finally, we train a L2R model based

on the threads of the training aqweets using the SVMrank software [62]. We use that

model to select the final top-1 thread for each aqweet in the training and test sets.

4.3.7 Combining Twitter Replies and Yahoo! Answers

People might react to the questions they see on Twitter by replying to them.

Some of those replies might contain useful answers. Hence, the asker could already

have some level of satisfaction when there is no intervention on our part. In general,

97

the longer the asker would wait, the better the answers she is expected to receive

become. For this reason, we looked at the replies returned within 1 hour, 1 day and

1 year. If the asker has received an answer outside of the replies we have collected

(e.g., a private message, a deleted reply, a tweet that is not a reply), then we cannot

observe that. Thus, the asker satisfaction estimated based on the observed replies

is, in reality, a lower bound of the actual user satisfaction. For simplicity, however,

we will restrict ourselves to the replies we observed.

When a tweet receives no reply at all, it is obvious we should always attempt

to return the best thread we can obtain.20 When there are some replies to a given

aqweet, then the decision for returning a thread from Y!A depends on how we model

the satisfaction of the user if she is presented with answers from the two sources

(i.e., Twitter and Yahoo! Answers). One model we consider can be expressed as:

satisfaction(Twitter, Y !A) = max{satisfaction(Twitter), satisfaction(Y !A)}.

With this model, we should always return the best thread we have. A more conser-

vative (and interesting) model is expressed as:

satisfaction(Twitter, Y !A) = min{satisfaction(Twitter), satisfaction(Y !A)}.

In this case, we need to (automatically) decide whether our best retrieved thread

should be returned or not. In the remainder of this section, we restrict ourselves to
20We implicitly assume that there is no penalty for returning an unsolicited bad answer.

98

this latter user-satisfaction model.

We suggest two methods for combining the answers. In the first method, we

always prefer Twitter’s replies when they exist. That is, we return a thread only

for aqweets that have not received any reply. In the second method, we train a

classifier (on the training aqweets) that learns to make this decision. The model is

trained only on the questions for which the scores of Twitter replies and our top-1

thread differ.21 For an aqweet with its replies and a candidate thread, we use the

following six features, based on the Jaccard similarity and the similarity predicted

by the model trained on the Quora corpus:

• The similarity between the aqweet and the title of the thread.

• The maximum similarity between the aqweet and its replies.

• The maximum similarity between the aqweet and the answers of the thread.

4.3.8 Baselines

We consider two reasonable baselines for answering aqweets: the replies that

the question receives on Twitter, and a search using Y!A’s internal search engine.

4.3.8.1 Twitter Replies

The first baseline we look at is the set of replies that the question receives

over time (Section 4.3.7). We crawled the web page of each aqweet, extracting the

content and publication time of every available reply. We found that 89 aqweets had
21We use SVMlight with its default options for training and prediction.

99

at least one reply within one hour of their publication time. This number increases

as we allow longer waiting periods, reaching 102 aqweets with one or more reply

within one day, and 110 aqweets with one or more reply within one year.

4.3.8.2 Yahoo! Answers’ Internal Search

The second baseline we consider is the result of a search using Yahoo! Answers’

internal search engine. The ranking of the results in that engine might not be tuned

for aqweets. In fact, for 187 out of 362 aqweets we issued to the engine as queries

(with no modification), no thread was retrieved at all. In such cases, we removed

one term at a time from the question, alternating between its start and end, before

issuing it again to the search engine. We consider four configurations for this online

Yahoo! Answers search. In the first one, we restrict the retrieved results to the ones

we have also included in our indexed crawl. This enables a direct comparison of the

respective ranking functions. In the second configuration, we restrict the retrieved

results to the same period covered in our crawl (i.e., until December 31, 2015). This

allows us to validate the exhaustiveness of our crawl. In the third configuration, we

include all of the threads that were posted anytime prior to the posting date of the

aqweet. This is particularly useful for questions about recent events. Finally, in the

fourth configuration, we relax all of the restrictions to include even the threads that

were posted after the aqweet’s posting time.

100

Does This Thread Contain A Useful Answer?
Overview
We have developed a system that looks at the questions people ask on Twitter, and searches for answers in the Web.
We need your help to identify if those answers are useful.

Guidelines

 For each question tweet, we will show you one thread that contains a title, an optional description, and a list of answers.
 You need to indicate to us if the whole thread contains some information that would be useful to answer the tweet

question.
 If the thread discusses the topic of the tweet question without providing any element of the answer, then this is a BAD

thread.
 Again, topical relevance does NOT necessarily imply answer goodness.

Examples
 Tweet Question

 Where do I draw the line? After what was done, how can I forgive someone for what they put me through?

 Thread
 Title: Where do you draw the line?

Answer 1: I draw the line at betrayal. It's all done after that..

Answer 2: I'll tell you when I draw it.._________________ o..look there it is...

 How is this Thread useful for answering the Tweet Question?

Excellent – a significant amount of useful information, fully answers the question
Good – partially answers the question

Fair – marginally useful information

Bad – contains no useful information for the question

 Reason: Drawing a line in the question is metaphoric. The real question is about forgiveness.

Figure 4.5: Guidelines for the aqweet answering annotation task on CrowdFlower.

4.3.9 Annotations

In our search task, we want to retrieve a “thread” (i.e., an old question with

its answers) from Yahoo! Answers that would be useful for answering the aqweet.

In practice, it is difficult for the annotators to assess the relevance of a long thread.

Thus, we decided to present the thread using its question title and body, and a

small number of answers. One answer is selected as the best-answer, if one exists,

or as the one with the highest difference between the thumbs-up and thumbs-down,

breaking the ties by the score of the relevance model. Another answer is selected

101

 Tweet Question

 Should u check out the things your kids do on the Internet? Read their convos?

 Thread
 Title: Parents: where do you cross the line with privacy?

 Body: With your children. Do you give them privacy? Do you check their internet history or read their journal? What do you
expect from them with your privacy? Where do you cross the line? ``` Thanks :]

Answer 1: Do you give them privacy? [a little, but not much] Do you check their internet history or read their
journal? [All the time] What do you expect from them with your privacy? [Whatever is polite and makes
sense] Where do you cross the line? [Dunno what that metphor means in this context]

Answer 2: I have a 14 year old and privacy is a very personal thing. By that I mean, the air space to 1" around his
body is protected domain. Anything under the roof is my domain and I reserve the right to inspect, check,
read, look under, or anything I need to do if I feel (perceived or imagined) there is a problem or danger
that could harm us. To me there isn't much that crosses the line where health and safety issues are
concerned; and that is all I watch for. I actually enjoy not knowing some stuff but as the responsible adult
in the household, I also reserve the right to change the rules at any time given the circumstances. I have
almost no privacy, it's a luxury right now.

 How is this Thread useful for answering the Tweet Question?

Excellent – a significant amount of useful information, fully answers the question
Good – partially answers the question

Fair – marginally useful information

Bad – contains no useful information for the question

 Reason: The two answers indicate how some parents check what their kids do on the Internet.

Figure 4.6: A test pair where either of two checked boxes would be a good label.

by the relevance model used to find that particular thread. In the rare case when

multiple relevance models retrieve the same thread but disagree on the scores of the

answers, then we include the union of these top-1 answers in the pool of answers

presented in the thread.

We instantiated the annotation task on CrowdFlower and requested the an-

notators to assess the relevance of a thread to an aqweet on a 4-level scale (Fig-

ure 4.5), following the setup of the two editions of the TREC LiveQA tracks [1, 2].

We provided a reference example for each of the four options. We prepared 200

aqweet/thread pairs, which we used for a pre-qualification stage, where the annota-

tors were required to pass a test with a score of 6/6. Then, as they proceeded within

the annotation task (5 unlabeled pairs + 1 test pair per page), they had to maintain

102

 Tweet Question

 Does anyone know a remedies for a blocked nose/cold? 😓

 Thread
 Title: Does anyone know a remedies for a blocked nose/cold? 😓

Answer 1: fresh ginger, honey & lemon in hot water. Loads of ginger

Answer 2: thanks Hun

Answer 3: it will lol & don't forget to close your eyes when you do it 😩

Answer 4: get one of them olbus inhaler things or even the oil and put it in a bowl of steaming hot water. Put your
head over the bowl..

Answer 5: same, can't stand it but you've gotta just bite the bullet cuz it really works

Answer 6: why? What will happen Lool

Answer 7: from where

Answer 8: I knew that 🙄😂 bye

Answer 9: hopefully this works. I'm literally dying 😩

Answer 10: ..& cover it with a towel or something for about 5 mins it really helps 👌

 How is this Thread useful for answering the Tweet Question?

Excellent – a significant amount of useful information, fully answers the question
Good – partially answers the question

Fair – marginally useful information

Bad – contains no useful information for the question

Figure 4.7: A thread where candidate answers are replies to an aqweet.

an accuracy of at least 85%. Due to the subjectivity of the relevance assessment, we

sometimes would accept more than one label for a test pair (the annotators would

still make a single choice). This is illustrated in Figure 4.6.

The replies to the aqweet are represented as a thread as well. We replicate

the content of the tweet in the title of the thread and hide the description field. We

present each reply as an independent answer in a chronological order (Figure 4.7).

The final label of the aqweet/thread pair is aggregated as a weighted average

score over three annotators, where the weights correspond to the performance of

these annotators over the test questions. We use those labels to report the results

of Section 4.3.10.

103

4.3.10 Results

We experimented with a total of 65 configurations, in addition to the baselines

and the L2R models. Table 4.3 shows the average top-1 accuracy (over the scale

[0-3]) for a subset of configurations. First, we note the low average scores of the

Twitter answers (lines 1 to 3), due, to a large extent, to the absence of any replies

for most of the questions. Our own simple search, which considers the thread to

be a single concatenated page (line 8), performs significantly better than all of the

Twitter “systems” on the training set (p < 0.05 with a 2-sided paired t-test). Its

score is also higher on the test set, but we lose significance as we allow more time

for the replies (p < 0.05 for 1 hour, p < 0.1 for 1 day, and no significance for 1 year).

There is an incremental increase in the scores of the Yahoo! Answers online

search systems (e.g., from 0.75 to 0.81 on the test set) as we relax the restrictions on

the threads to be retrieved. None of the differences, however, is statistically signif-

icant. Our own simple search (i.e. with QpD-P) is comparable to Yahoo! Answers’

internal search systems, as none of the differences is statistically significant.

Looking at the combinations of fields, we observe that the single best field

is the title (line 9). In both sets, it is significantly better than the body and the

answer fields (lines 10 and 15, with p < 0.01), as well as the page field (line 8, with

p < 0.05). But its outperformance over the concatenation of the body and answer

fields (line 12) is significant only on the training set (p < 0.05).

Comparing the question-per-document indexing setup and the answer-per-

document setup (compare lines 13, 14 and 15 to 16, 17 and 18), the former ap-

104

Table 4.3: Effectiveness of aqweet answering configurations over the scale [0-3].

Average score
Configuration Parameter Training Test
1 Twitter future replies 1 hour 0.40 0.63
2 Twitter future replies 1 day 0.51 0.68
3 Twitter future replies 1 year 0.53 0.76
4 Yahoo!Answers online search Crawled subset 0.71 0.75
5 Yahoo!Answers online search Crawled period 0.75 0.77
6 Yahoo!Answers online search Recent QAs 0.74 0.80
7 Yahoo!Answers online search Future QAs 0.77 0.81
8 BM25 QpD-P 0.74 0.86
9 BM25 QpD-T 1.19 1.15
10 BM25 QpD-B 0.74 0.74
11 BM25 QpD-TB 1.02 1.01
12 BM25 QpD-C 1.03 1.05
13 BM25 QpD-TA 1.11 1.16
14 BM25 QpD-TBA 1.01 1.05
15 BM25 QpD-A 0.65 0.64
16 BM25 ApD-TA 0.97 1.07
17 BM25 ApD-TBA 0.87 1.00
18 BM25 ApD-A 0.46 0.50
19 BM25 + Hashtag Normalization QpD-T 1.21 1.14
20 BM25 + Hashtag Normalization QpD-TA 1.14 1.16
21 BM25 + Spelling Correction QpD-T 1.19 1.16
22 BM25 + Spelling Correction QpD-TA 1.12 1.16
23 BM25 + Syonyms QpD-T 1.19 1.18
24 BM25 + Syonyms QpD-TA 1.12 1.17
25 BM25 + 3 Rewriters QpD-T 1.22 1.19
26 BM25 + 3 Rewriters QpD-TA 1.15 1.19
27 BM25 + Twitter IDF QpD-T 1.21 1.14
28 BM25 + Twitter IDF QpD-TA 1.06 1.07
29 L2R 1.33 1.36
30 Twitter replies + L2R + Fixed Rule 1 hour 1.45 1.52
31 Twitter replies + L2R + Fixed Rule 1 day 1.53 1.53
32 Twitter replies + L2R + Fixed Rule 1 year 1.52 1.58
33 Twitter replies + L2R + Classifier 1 hour 1.50 1.54
34 Twitter replies + L2R + Classifier 1 day 1.59 1.55
35 Twitter replies + L2R + Classifier 1 year 1.60 1.59
36 Twitter replies + L2R + Oracle 1 hour 1.54 1.64
37 Twitter replies + L2R + Oracle 1 day 1.61 1.66
38 Twitter replies + L2R + Oracle 1 year 1.61 1.70
39 Oracle 2.13 2.12

105

pears to be better. However, the significance is observed only on the training set

(p < 0.05).

None of the query rewriting methods, including their combination, improves

the performance significantly, and the same is observed for using the IDF of the

Twitter index.

The L2R model is statistically better (p < 0.05) than all of the previous

configurations, with scores of 1.33 (training) and 1.36 (test).

The hard-coded method for combining Twitter and L2R models (i.e., always

preferring Twitter replies when they exist) performs significantly better than all of

the previous configurations (p < 0.05). Further improvements are observed with the

classification-based combination (lines 33 to 35), but with significance seen only on

the training set (p < 0.05).

To summarize our strongest findings about search strategies for answering

aqweets, it appears that the simplest good search approach is applying BM25 scoring

on the title field of the crawled Yahoo! Answers. A better learning-to-rank model

can be obtained by integrating the output of several retrieval models. Further

improvements can be achieved when this L2R model is chosen only when the aqweet

receives no replies.

4.4 Answering Live Yahoo! Questions

We study in this section the effect of selecting a particular source of answers,

and we examine some approaches for maximizing the answering performance once

106

a source is selected. We do so by describing the architecture of our participating

systems in the TREC LiveQA tracks and analyzing their performance.

4.4.1 Answering with Old Yahoo! Answers

In each of the two editions of the TREC LiveQA track we participated with a

system that retrieves answers from a crawl of Yahoo! Answers (Section 4.2.1). We

index one document per answer. The fields we indexed are the title, the description,

their concatenation, and the content of the answer. We tokenize, remove stop words

and apply Porter’s stemmer [116] with Lucene’s English analyzer.

4.4.1.1 A Simple Configuration Selector

With a large corpus of prior questions and answers, we have several fields we

can use for retrieval. Here we consider only the following six possibilities (Figure 4.8).

For the incoming question, we use the title, but we also optionally concatenate it

with the description. For the old questions, we consider searching in the title only,

in the concatenation of the title and the description, or only in the contents of the

subset of best answers. When we search in old questions, we return its corresponding

best answer. When we search in old best answers, we just return the best answer

that we find. Because we did not have any ground truth for pre-retrieval selection

among these alternatives in the first year of the track, we instantiated a small

crowdsourcing task on CrowdFlower, in which we showed the annotators questions

from a dry run, with up to six answers from the six retrieval configurations (when

107

BM25
Candidate

Summarization Answer
Jaccard

(Classifier)

Scoring

Presentation

Configuration Selector

Y!A
(Local Crawl)

Title + Body Best Answer

Title

Title + Body

Title

LiveQA 2015 Question

Retrieval

Training

Training and Prediction

Figure 4.8: Architecture of System CLIP-YA (2015).

two or more methods returned the same answer, we would show fewer than six

options). We allowed them to check-mark any answer they thought does indeed

answer the question. Using the annotations of 61 questions assessed by at least

three annotators for which at least one of them checked at least one of the answers,

we trained a classifier to predict which configuration would be best for an incoming

question. As features, we used the number of words and characters in the title and

description fields in their stemmed and unstemmed versions, the category of the

question, and the Jaccard similarity between the stemmed title and the stemmed

description. We trained the cost-sensitive multiclass classifier of VowpalWabbit22

22https://github.com/JohnLangford/vowpal_wabbit

108

https://github.com/JohnLangford/vowpal_wabbit

using these features. Formally, for a training document assessed by N annotators,

let vi,n be the binary value implicitly indicated by annotator n for one of the I = 6

retrieval configurations i. The cost ci associated with predicting the configuration i

is:

ci = 1−
N∑

n=1

vi,n

/ I∑
i′=1

N∑
n=1

vi′,n.

In other words, we assign a high cost for errors on questions for which all of

the annotators agreed on the same answer, and a low cost for questions that have

multiple good answers marked or high disagreement amongst the annotators. When

a new question is received, we apply the trained model to choose which one of the

six configurations to use to answer that question.

4.4.1.2 A Cascade of Scoring Functions

An alternative for selecting answers is to defer ranking until after retrieval.

Hence, in the second edition of the track, we start by concatenating the title and

the description fields of the new question, and we issue the concatenation as a

query targeting the fields title, description and answer (i.e., not just best-answer)

of the indexed old questions. A list of 100 candidate answers is returned, ranked by

Lucene’s implementation of BM25.

4.4.1.2.1 Initial Scoring with Old Yahoo! Answers

A retrieval model might be able to find topically relevant answers, but it might

fail to identify the good answers among those. Fortunately, we can use our crawl of

109

Yahoo! Answers to train a classifier to rank topically relevant answers. For a given

old question, we assume that all (or most) of its answers are relevant, but that some

are more useful than others. We extract this usefulness from the social interaction of

the crowd with the answers. As illustrated in Figure 4.1, Y!A users can choose up to

one best-answer for any given question. They can also vote for different answers by

providing thumbs-up and thumbs-down. We define a ranking of the answers for any

given question by placing the best-answer, if one is available, at the top of the list.

Then we sort the remaining answers in decreasing order according to the difference

between the number of thumbs-up and thumbs-down, breaking ties arbitrarily.

The question then arises how best to select the training data, of negative and

positive instances, on which we can train a classifier. Obviously, the answer at

the top of the ranked list can be a positive instance. How best to select negative

instances is, perhaps, less obvious. An answer ranked near the top of the list might

actually be as good as the top one (consider a case where two identical good answers

are present, but the website forces the asker to select no more than one best-answer).

Some of the answers at the bottom of the list might be completely irrelevant to the

question (e.g., spam). Hence, we decided to choose, as a negative instance, the

answer located at the middle of the ranked list, after limiting ourselves to questions

that have at least three answers.

Answers are often accompanied by user information (Figure 4.1). When this

is the case, we extract the following seven integer features, which might serve as a

surrogate for the reputation or the expertise of that user: two values that indicate

how active a user is: her level and number of points; the numbers of questions,

110

Y!A

(Local Crawl)

BM25
LSTM

Answer
content

Embed.

LSTM

Question
body

Embed.

LSTM

Question
title

Reputation

Answer
user

3 Dense Layers

Label

Embed.

Normalization

LiveQA 2015

Candidates

Rescoring

• TF-IDF
• BM25
• Doc2Vec

• Old question features
• Old asker features
• Old answer features

Training

Training

Summarization Concatenation Answer
Jaccard

Prediction

Retrieval

LiveQA 2016 Question

Scoring

PresentationPrediction

Figure 4.9: Architecture of System CLIP-YA (2016).

answers and best answers; and the numbers of friends and followers. Otherwise,

we simply stuff that feature vector with zeros. Finally, each training instance is

composed of the binary label for inferred utility, the title and body of the question,

the answer content, and the seven-element feature vector for the answerer.

The top right corner of Figure 4.9 shows a deep neural network for training on

this collection, which we implement in Keras, using Theano as a backend. Each text

field is represented with an embedding layer of 200 dimensions, followed by an LSTM

layer of 100 dimensions (the choice of LSTM was inspired by the best performing

111

system in the first edition of the track [140]). Each of the user features is normalized

to a value between 0 and 1, where the scaling parameters are inferred from training.

The three text layers and the user layer are then concatenated, forming a layer

of 307 dimensions, which we connect to a stack of three fully connected layers of

dimensions 100, 50 and 100, respectively, followed by the output layer (i.e., the label

of the answer). A sigmoid activation is applied between every pair of layers, as well

as within the LSTM layers.

At prediction time, this network returns, for the title and body of the new

question, and the content and the user of candidate answers, a score that we use in

the rescoring stage, which we describe next.

4.4.1.2.2 Rescoring with LiveQA 2015 Qrels

The process in Section 4.4.1.2.1 is useful for scoring old answers with respect

to a new question. However, it does not use the similarity between the old and new

questions. By crawling the URLs of the answers that the participants of the TREC

2015 LiveQA track returned from Yahoo! Answers, we construct a training corpus

that contains, for each instance, the new question, the old question, the answer

returned, and the annotated label. For each instance, we extract:

• Old question features: number of follows and answers.

• Old asker features: asker level (divided by 7 to bring it to the [0-1] range), the

ratio of the best answers that the asker has to all his answers, and the loga-

rithms of one plus the asker points, questions, answers, friends and followers.

112

• Old answer features: whether the answer is a best answer, the number of

thumbs-up and thumbs-down, the rating of the answer (a value provided by

the asker between 0 and 5, which we divide by 5), and the count of comments

that answer received.

• Similarity between the old and new questions: Lucene’s implementation of

both of TF-IDF and BM25 similarities, and doc2vec cosine similarity (where

the document vector is the mean of the vectors of its terms, trained with

word2vec [99] on the crawled Y!A corpus) between the title, the body, their

concatenation and the answer for the old question from one side, and the

title, the body and their concatenation for the new question from the other

side (i.e., 3× 4× 3 = 36 similarity values).

With the SVMrank software [62], we train a learning-to-rank classifier using

the features above, in addition to the score returned by the neural network.

4.4.1.3 Answer Presentation

The TREC LiveQA guidelines limit the answer length to a maximum of 1,000

characters. We summarize each candidate answer exceeding 1,000 characters in the

following way. We split it into sentences based on periods and retain the first and

last sentence, and as many of the sentences with the highest Jaccard similarity to

the title of the question as possible until the 1,000-character limit would be exceeded

by adding an additional sentence.

113

For candidate answers that contain less than 1,000 characters we take a dif-

ferent approach. The best performing system from the first edition of the track

often combined multiple answers into a single one [140]. This has motivated us, in

our participation in TREC LiveQA 2016, to create a synthetic answer in the fol-

lowing way. We start with the first summary and then concatenate the subsequent

summaries in the ranked list that have at least 100 characters, and for which, the

concatenation would not violate the 1,000-character limit. This synthetic answer is

what we return as a final answer.

We note, though, that while this approach of “stuffing” answers together

might have contributed to improving the performance of our answering system (Sec-

tion 4.4.3.2), it has also introduced a limitation on the evaluation. In particular,

when a good label is assigned to a concatenation of two or more answers, we do not

know which answers should get the credit of that label.

4.4.2 Answering from Twitter

Our second source for answering TREC LiveQA questions is Twitter (Fig-

ure 4.10). The collection of tweets in which we search is the union of the Sam-

pleStream (Section 4.2.2.1), TrackedWords (Section 4.2.2.2) and RecentTweets (Sec-

tion 4.2.2.4), which we further split into questions, for which we return their replies,

and non-questions (Section 4.2.2).

114

Scoring

Presentation

1%

4 Years of
Random Sampling

Is
Question?

TW-ATW-Q

NoYes

(Qweet classifier)

Question

Reply

(8 small sets)

(Online retrieval)

(n-grams Online search)

1%

Microblog 2015Rescoring

Candidates

Deduplication Concatenation Answer

• Tweet features
• Topic - tweet similarity

BM25BM25

Jaccard

Jaccard

LiveQA Question

(Only in
LiveQA
2015)

(Only in LiveQA 2016)

(Only in LiveQA 2016)
(Local crawls)

Non-deleted

Training

Figure 4.10: Architecture of Systems CLIP-TW.

115

4.4.2.1 Preprocessing

We normalize all the tweets by removing emoticons, user mentions, URLs, RT

indicators, and punctuation before stemming them with the Porter stemmer.

All of the questions have a title, and most of them have a description as well.

As both of these fields can be long, running the query as their concatenation risks

generating a high disk input/output load, and thus exceeding the limit of one minute

per question. In our participation in the TREC 2015 LiveQA track, we mitigated

this limitation by heuristically selecting the words of the query following these steps

after stemming both the title and the description with Porter stemmer:

1. If the stemmed title has more than seven terms, we remove from them a list of

74 terms that we had manually selected from the most 100 frequent stemmed

terms in our Yahoo! Answers crawl (Section 4.2.1).

2. We issue the preprocessed title as a query to the subcorpus of the local index

corresponding to the category of the question, using the BM25 retrieval model.

3. We use the retrieved documents as a backup if the next stage does not complete

within the allowed time limit.

4. We concatenate the processed title to the description field (processed in a

similar manner), and issue the combined query to the local search engine.

In our participation in the TREC 2016 LiveQA track, we avoided the risk of

timing out by placing our index on a solid-state drive (SSD), instead of a traditional

116

hard disk drive (HDD). This allowed us to use all of the terms of the title and the

body of the question with no risk.

4.4.2.2 Rescoring with TREC 2015 Microblog Models

In the first edition of the LiveQA track, we relied only on the BM25 scoring

function to rank the tweets. In the second year, we enhanced our scoring with a

learning-to-rank (L2R) model. With a limited number of good Twitter-based an-

swers, the TREC 2015 LiveQA qrels might be insufficient to train a useful L2R

model. For this reason, we use a surrogate training corpus: the TREC 2015 Mi-

croblog Track [84]. The topics of that track contain three fields (e.g., Table 4.1): a

short title (usually two to three terms), a description (in the order of a sentence),

and a narrative (in the order of a short paragraph). For every <topic, tweet> pair,

we extract the following features:

• Tweet features: word and stem counts and their ratio; the number of characters

in the stemmed tweet; the presence of URLs, hashtags and mentions; and the

logarithm of the ratio of number of followers to the number of friends.

• Topic - tweet similarity features: similarity value between the stemmed tweet

on one side, and the stemmed topic description and narrative on the other

side, using TF-IDF, BM25, Jaccard similarity and doc2vec similarity.

We apply the trained model to each LiveQA question by substituting for the

topic description the question title, and for the topic narrative the question body.

This produces a ranked list of the candidate tweets.

117

4.4.2.3 Answer Generation

In our first participation in the LiveQA track, we returned a single tweet as

a final answer to the incoming question. Observing the low performance of this

approach (Section 4.4.3.2), we consider returning a concatenation of several tweets,

instead of only one. First, we remove near-duplicate tweets by running a single-link

clustering algorithm using Jaccard similarity with a threshold of 0.6 (which was

the best threshold we had obtained in our TREC 2015 Microblog participation [6]).

With the remaining ranked tweets, we create a synthetic answer, starting with the

first tweet, and then concatenating the subsequent tweets that have at least six

words, without exceeding the 1,000 characters limit.

4.4.3 Evaluation

We present some systems that participated in the TREC LiveQA track and

compare their performance.

4.4.3.1 Systems

We report and compare the performances of the following systems:

• System CLIP-YA (2015) uses a simple classifier to select the fields to use for

search in a crawl of Yahoo! Answers. The top-1 result is summarized before

being returned (Figure 4.8).

• System CLIP-YA (2016) starts by retrieving a list of 100 candidate answers

118

using all the fields of the new question and those of the indexed local crawl of

Yahoo! Answers. An initial scoring stage is applied using a deep neural network

trained on the Yahoo! Answers crawl. A second rescoring stage is applied

using a learning-to-rank classifier trained on the TREC 2015 LiveQA qrels.

The rescored answers are summarized and concatenated until the maximum

length is reached. This synthetic answer is the final output (Figure 4.9).

• Only 642 out of the 1,015 answers that System CLIP-YA (2016) returned

were assessed, for reasons of which we are not aware. Thus, we report the

scores of a fictive System CLIP-YA* (2016), for which we computed an

expected score by multiplying the official score by the ratio of the total number

of answers to the number of answers that were annotated: 1.58 = 1, 015/642.

• System CLIP-TW-A (2015) searches in the crawled tweets (i.e., both of

SampleStream and TrackedWords) predicted to be non questions. The top

scored tweet that has not been deleted is returned (Figure 4.10).

• System CLIP-TW-Q (2015) searches in the crawled tweets (i.e., both of Sam-

pleStream and TrackedWords) predicted to be questions. Among the replies to

the top 20 scored tweets that have not been deleted, we return the one with

the highest Jaccard similarity (Figure 4.10).

• System CLIP-TW-A (2016) searches in the crawled tweets,23 as well as in

the recent tweets returned by Twitter’s Search API (i.e., RecentTweets), with
23We had a particular focus on the Travel category, hence we tracked the words of its 27

subcategories as well.

119

a restriction to tweets predicted to be non questions. The top scored tweets

(for which the exact number depends on the number of tweets returned by

the Search API) are rescored with a learning-to-rank model trained on the

TREC 2015 Microblog qrels. The resulting ranked list is deduplicated with

the single-link clustering algorithm using Jaccard as a similarity measure, and

concatenated up to the allowed limit of 1,000 characters. Unfortunately, none

of the answers returned by this system was assessed. While we do not know the

exact reason, we have found that Java’s default XML parser has a known bug

prohibiting it from loading XML files with emojis.24 Since emojis are present

in the answers we have returned, we speculate that they raised an error that

removed all of the Twitter-based answers from the annotation pipeline. Thus,

we report the scores of a fictive System CLIP-TW-A* (2016), for which we

computed an expected score using the method described in Chapter 5.

• CMU-OAQA is a system from the Carnegie Mellon University team [140,

141]. It uses a deep neural network and synthesizes one answer or more into a

single one. This system has the highest official score over all automatic runs

in both editions of the LiveQA track.

• Emory-Crowd is a hybrid system from the Emory University team [123],

where the crowd workers participated in the selection of returned answers.

This system has the highest score among the teams that participated in the

second edition of the LiveQA track.
24http://stackoverflow.com/questions/31867818

120

http://stackoverflow.com/questions/31867818

Table 4.4: Effectiveness of participating systems in the LiveQA task. In 2016 only,
the average of all runs includes manual runs.

Year System Answers Score
2016 Human-QUAL 778 1.561
2016 Human-SPEED 849 1.440
2016 CLIP-YA* 1,015 1.344
2016 Emory-Crowd 976 1.260
2016 CMU-OAQA 954 1.155
2016 CLIP-YA 642 0.850
2016 CLIP-TW-A* 1,015 0.846
2016 Mean(all runs) 774 0.643
2015 CMU-OAQA 1,064 1.081
2015 CLIP-YA 1,079 0.615
2015 CLIP-TW-A 805 0.144
2015 CLIP-TW-Q 1,066 0.081
2015 Mean(all runs) 1,007 0.465

• Human-SPEED and Human-QUAL are two fictive systems that the or-

ganizers of the second edition of the LiveQA track created by crawling the

answers posted on the question Web page one week after the evaluation took

place. The former uses the first answer submitted to each question, while the

second uses the best answer selected by the asker, if one exists, or is selected

by “Yahoo’s quality scoring algorithm” [2].

• We also report the average scores of all participating runs (including the hu-

man and hybrid systems, when applicable).

4.4.3.2 Overall Effectiveness

In Table 4.4, we compare the effectiveness of our systems with the best per-

forming systems in the two editions of the LiveQA track. Looking at Twitter based

systems, both performed very badly in 2015 (with scores below average). But be-

121

tween the two, CLIP-TW-A is better. This encouraged us to drop CLIP-TW-Q

in 2016, focusing on the improvement of CLIP-TW-A. Using our score estimator

(see Chapter 5), it appears that our modifications to this system were fruitful, in-

creasing its score from 0.144 (below average) to 0.846 (above average).25 Our use of

a SSD also helped us to avoid timing out.

CLIP-YA is our best system in both years. The two scoring stages, combined

with the answer synthesis step contributed to doubling its score from 0.615 in 2015

to an estimated score of 1.344 in 2016. Interestingly, this system, in its second year,

performed better than the hybrid system, and not very far away from the human

runs. The comparison against the latter systems is, of course, not fair, given that

the number of answers provided by the human assessors is less than those returned

by CLIP-YA*. However, those unanswered questions suggest that combining our

automatic system with human answers might lead to a higher user satisfaction. One

way for combining them can be by training a classifier in a manner similar to what

we have shown in Section 4.3.7 for answering Twitter questions.

In the remainder of this section, we look at the results from different perspec-

tives, with a focus on CLIP-YA and CLIP-TW-A (for both years).

4.4.3.3 Scores per Category

The questions of the TREC LiveQA track are not equally distributed across

their categories. This distribution has an indirect impact on the aggregate perfor-
25We assume that the topics maintain their difficulty between the two years and, consequently,

that a comparison across the two years is meaningful.

122

0 50 100 150 200 250 300 350 400

Arts & Humanities

Health

Beauty & Style

Sports

Home & Garden

Pets

Travel

Computers & Internet

2015 2016

Figure 4.11: Distribution of questions across the TREC LiveQA track categories.

mance of the systems (e.g., it is perhaps more important to improve the accuracy

on popular categories). As Figure 4.11 indicates, there is a clear dominance of the

Health category, which accounts for about one third of the questions, followed by

Computers & Internet, corresponding to about one fifth of the questions in the first

edition of the track. Next to that, we have Arts & Humanities, Beauty & Style, and

Sports that, each, matches about one tenth of the questions. Each of the remaining

three categories correspond to between 5% and 9% of all questions.

The performance of our systems also vary per category, with a general tendency

towards demonstrating good results on popular categories. In Table 4.5, we show

the improvement of the scores across two years for each category and system. We

also indicate the size of the documents in our crawl used for retrieval in the second

year (i.e., number of question/answer pairs for CLIP-YA, and tweets count for

CLIP-TW-A). This table confirms the superiority of CLIP-YA over CLIP-TW-

A, but we note that their performance is comparable on the Travel category, which

appears to be the most difficult topic for the former system in both years, and for

123

Table 4.5: Average scores of our LiveQA systems per category, with the relative
improvement between two years, and the size of the indexed corpus.

Category #Leaves CLIP-YA[*] CLIP-TW-A[*]
2015 2016 Imprv. Size 2015 2016 Imprv. Size

Arts & Humanit. 14 0.64 1.37 +114% 17M 0.16 0.70 +337% 45M
Health 21 0.77 1.50 +114% 41M 0.20 0.85 +305% 43M
Beauty & Style 6 0.50 1.60 +220% 33M 0.21 0.87 +314% 42M
Sports 56 0.51 0.98 +92% 31M 0.23 0.80 +248% 43M
Home & Garden 6 0.60 0.96 +60% 5M 0.09 0.81 +800% 69M
Pets 8 0.65 1.55 +138% 22M 0.17 0.95 +459% 36M
Travel 368 0.29 0.63 +117% 9M 0.25 0.65 +160% 748M
Computers & Int. 20 0.60 - - - -26 - - -

the latter system in the second year. Interestingly, that category was the easiest

one for CLIP-TW-A in the first edition of the track (which has encouraged us to

gather more tweets for it in the second year).

We observe a moderate correlation (Pearson’s ρ = 0.63) between the perfor-

mance of CLIP-YA* in 2016, and the size of its retrieval corpora. This has two

potential explanations. With a large crawl, (1) we are perhaps more likely to cover

new questions, and (2) we have more training data for our initial scoring stage

(Section 4.4.1.2.1).

There is an additional factor that impacts the differences in the performance

of our CLIP-YA* system across the seven categories. We looked at the number

of leaf categories in the hierarchies of those parent categories, and found a large

variance between them. For instance, the most difficult category (i.e., Travel),

has a large number of leaves (i.e., 368). An intuitive potential explanation is that

almost identical questions about two different places (i.e., from two different sub-
26Due to a corruption in our index of the Computers & Internet category, CLIP-TW-A missed

answering all questions in that category.

124

Table 4.6: Number of questions answered by each of our TREC-2015 LiveQA sys-
tems with(out) using the body, with the corresponding score.

CLIP-YA CLIP-TW-Q CLIP-TW-A
Score # Score # Score #

Body used 0.82 11 0.10 199 0.37 65
Body not used 0.62 1068 0.09 867 0.18 740
- body empty 0.50 387 0.09 380 0.20 267
- timeout - 0 0.09 461 0.15 395
- classifier decision or risk timeout 0.68 681 0.08 26 0.19 98

categories), might require very different answers. Over the seven categories, we

found a moderate negative correlation (ρ = −0.75) between our performance on

one category, and the number of its leaf nodes. Finally, we combined the size of

the crawled category, and the number of leaves in the function below, and found

it has a high statistically significant positive correlation with the performance of

CLIP-YA* (ρ = 0.87, p < 0.05):

f(category) =
log (size(category))

leaves(category)
.

4.4.3.4 Using the Body of the Question

Our 2015 systems have different strategies to decide whether to use the terms

that appear in the body of the question for retrieving answers (Section 4.4.1.1). For

CLIP-YA, we delegate this decision to a classifier. This classifier chose to use the

body of the question in only 11 out of 1,079 questions (Table 4.6). The average

score over these questions (0.82) is higher than the average score over the questions

where only the terms of the title were used (0.62).

125

Table 4.7: Number of questions answered by CLIP-YA (2015) depending on the
retrieval field, with the corresponding score.

CLIP-YA (2015)
Score Count

Question title 0.43 109
Question title and body 0.54 186
Answer 0.67 784

For both CLIP-TW-Q and CLIP-TW-A, the answer retrieval for a sub-

stantial number of questions using the body timed out (461 or 395, respectively).

In some additional cases (26 or 98, respectively), the retrieval using only the title of

the question took more than half of the allowed response period. These two systems

are configured not to attempt to use the body of the question when this happens.

As we have observed for CLIP-YA, the questions for which the body was used got

an average score higher than those for which only the title was used, although for

CLIP-TW-Q the difference is quite small.

4.4.3.5 Retrieval Field for Old Yahoo! Answers

The classifier used by System CLIP-YA (2015) chooses between three config-

urations for the fields to be searched in the old answers. As shown in Table 4.7, in

most cases (784 of 1,079), the decision was to match the incoming question against

the content of the old answers. Questions for which this configuration was selected

had an average score (0.67) higher than those for which the classifier chose to search

in the content of the old questions. Among the latter cases, the average score when

the body of the old question was included in the search is higher than the average

score when it was not included (0.54 vs 0.43, respectively). Overall, it appears that

126

the more content we search in, the better the result we can expect. Consequently,

we decided, in the second edition of the LiveQA track, to search in the combination

of the title, body, and answer of old answers, for each incoming question.

4.4.3.6 Best CLIP-YA Configuration

Combining these insights, we might speculate that the best configuration of

our CLIP-YA (2015) system would be one that uses the title and the body of the

incoming question as a query (Section 4.4.3.4), and the index of old answers for

retrieval (Section 4.4.3.5). As it happens, only three questions were answered using

both of those conditions together; their average score is 1.67. Although based on too

little data for us to draw any firm conclusion, that average is certainly high enough

to get our attention, which justifies our inclusion of all text fields of the incoming

questions and the crawled question/answer pairs in the second year.

4.4.3.7 Effect of Twitter Retrieval Corpus

Systems CLIP-TW (2015) retrieve answers from Twitter using the union of

two disjoint corpora: a large corpus of random tweets and a smaller focused corpus

of selected tweets. For every question, we can thus look at the origin of the returned

tweet (the small or the large corpus). As Table 4.8 shows, when an answer is found

in the smaller focused corpus, the average score is higher. This suggests that a

larger (i.e., longer) focused crawl of tweets that are expected to match the expected

question categories might be worthwhile. We, therefore, collected more tweets with

127

Table 4.8: Number of questions answered by the CLIP-TW (2015) systems for each
corpus, with the corresponding score.

CLIP-TW-Q CLIP-TW-A
Score Count Score Count

Selected tweets (small) 0.11 158 0.46 24
Random tweets (large) 0.09 908 0.19 781

this method, on which CLIP-TW-A* (2016) was evaluated.

4.4.4 On Combining Answers from Twitter and Yahoo! Answers

Our TREC LiveQA systems were running in parallel independently from each

other. Whereas, on average, CLIP-YA is better than each of the CLIP-TW-A

and CLIP-TW-Q systems, it might be the case that each of them excels at different

questions. To assess the extent to which that might be the case, we examine the

effectiveness we can obtain if an oracle were to tell us us which system to interrogate

for which question. We consider only the systems CLIP-YA and CLIP-TW-A

because they had the highest scores among our three systems in the first edition of

the track and because these are the only systems we used in our participation in the

second year.

To focus our analysis, we limit ourselves to the 805 questions that were an-

swered by both systems in 2015, and to the 498 questions for which (1) we obtained

official annotations in 2016 (only for system CLIP-YA), and (2) at least one answer

from some participating system (including human systems) was assessed as excel-

lent.27 We group the questions by Yahoo! Answers pre-defined question category
27Our relevance estimator that we apply to estimate the effectiveness of CLIP-TW-A requires

128

Table 4.9: Expected scores from an oracular selection between the answers of CLIP-
YA and CLIP-TW-A.

Category Year #Ques. CLIP-YA CLIP-TW-A Oracle Improv.

Arts & Humanities 2015 111 0.66 0.16 0.75 13.70%
2016 61 1.66 0.72 1.72 3.68%

Health 2015 293 0.81 0.20 0.86 6.78%
2016 220 1.65 0.88 1.76 6.86%

Beauty & Style 2015 107 0.50 0.21 0.60 18.52%
2016 47 1.81 0.87 1.90 4.85%

Sports 2015 115 0.52 0.23 0.64 23.33%
2016 32 1.16 0.82 1.51 30.61%

Home & Garden 2015 44 0.64 0.09 0.66 3.57%
2016 33 1.30 0.81 1.47 13.09%

Pets 2015 82 0.72 0.17 0.79 10.17%
2016 65 1.80 0.99 1.98 9.85%

Travel 2015 53 0.28 0.25 0.47 66.67%
2016 40 0.83 0.65 1.07 29.34%

All 2015 805 0.65 0.20 0.74 12.76%
2016 498 1.56 0.85 1.71 9.10%

and compute (or estimate) the average score of both systems per category. Finally,

we calculate the score of the oracle by selecting the maximum score between the

two systems for each question, and then computing the average over each question

category.

Table 4.9 shows the results, including the relative potential improvement com-

pared to using the average best system only (which is not the best system for each

individual question). We can get about 10% improvement over all of the questions.

But the relative improvements differ per category. In particular, those potential

improvements are higher for categories in which CLIP-YA scores poorly. For each

edition of the track, we computed the Pearson correlation between the average score

that at least one labeled answer has a perfect score (Chapter 5).

129

of CLIP-YA in each category, and the potential relative improvement. We found

a strong negative statistically significant correlation in each year (ρ = −0.89 and

p < 0.01 for both of them). This sets a clear direction for future work on combining

answers from Twitter and Yahoo! Answers on categories for which CLIP-YA has

the least performance, which are Travel and Sports. We note that this agrees with

our earlier observation about the diversity of the questions, in which those same

categories had the highest number of leaf categories (Section 4.4.3.3).

4.5 Deciding to Answer

The TREC RTS track (Section 4.1.2) allows us to study a variant of the

problem of deciding whether to return an answer to a question. In this section, we

describe a system that makes a real-time decision for returning a novel interesting

tweet to a user, and analyze its performance.

4.5.1 Components

Our main components for this task are a relevance model, a learning-to-rank

stage, and a novelty detector (Figure 4.12).

4.5.1.1 Relevance Models

A topic is represented as a triple of a title that contains few keywords, a

description that summarizes the topic in one sentence, and a narrative that consists

of a paragraph that gives more details (e.g., Figure 4.1). We stem the topic fields

130

Query Expansion

Word2Vec PSQ

Description

Title Relevance Model
Okapi BM25

Tweet Rescoring

Topic

Narrative

Doc2Vec Jaccard

Novelty Detection
Jaccard

Score < β

Normalization

Old clusters

Sim < τ
Yes

New
cluster

Add

No

Microblog
2015

Training

Figure 4.12: Architecture of our TREC 2016 RTS Systems.

with the Porter stemmer as implemented in Lucene 6.0 using its default list of

stopwords. We use regular expressions to normalize all the tweets by removing

emoticons, user mentions, URLs, RT indicators, and punctuation, before stemming.

Our relevance models are based on Okapi BM25 term weights and title expan-

sion using word embeddings and probabilistic structured queries [34]. We use the

tweets of the SampleStream corpus (Section 4.2.2.1) to train a word2vec model [99]

and to estimate the document frequency (DF) of each term. The word2vec model is

used to expand the title query stems with additional similar stems using the cosine

similarity over 200-dimensional vectors.

131

Let ti be a stemmed query term in the title, ti,j one of the top J stemmed

terms similar to, but different from, ti, with a similarity value of Pi,j; and d an

incoming tweet. The score of the expanded title query is computed as:

Score(d,QTitle,exp) =
∑
i

BM25(TF (ti,exp, d), DF (ti,exp)),

where the expanded term frequency is estimated as:

TF (ti,exp, d) = TF (ti, d) +
∑
j

Pi,jTF (ti,j, d),

and the expanded document frequency as:

DF (ti,exp) = DF (ti) +
∑
j

Pi,jDF (ti,j).

We obtain the scores for the description and narrative fields by applying the

BM25 model without expansion. That is, for a stemmed term t of either field:

Score(d,QField) =
∑

t∈Field

BM25(TF (t, d), DF (t)).

We tune the parameters using a grid search on the TREC 2015 Microblog

track topics. We set k1 = 0.09, b = 0.5 and average document length = 21 for

BM25, and J = 5.

132

4.5.1.2 Tweet Rescoring

To refine the scores of the relevant tweets, we use the SVMrank package [62]

to train a learning-to-rank model based on the TREC 2015 Microblog track topics,

using the relevance scores of the previous stage (Section 4.5.1.1), in addition to the

following features:

• Sender popularity feature: log of the ratio of the number of followers to

the number of friends.

• Tweet features: count of stems, count of stems that are not stopwords, ratio

of the previous two features, count of characters in the stemmed tweet, count

of URLs, count of hashtags, and count of user mentions.

• Tweet - query similarity features: the two variants of Jaccard similarities

(proposed by Magdy et al. [93], in which the denominator of Jaccard index is

either the minimum or the maximum size of the compared bag-of-word pairs,

instead of the size of their union) between the tweet and each of the title and

description fields of the topic, and the cosine similarity between the doc2vec

vector (i.e., the mean of the word2vec vectors) of the stemmed terms of the

tweet and the doc2vec vectors of each of the description and narrative fields

of the topic.

Tweets that have a (re-scored) score less than a threshold β (set manually based on

our participation in the TREC 2015 Microblog track [6]) are eliminated at the end

of this stage. The remaining tweets go to the novelty detection phase.

133

4.5.1.3 Novelty Detection

According to the TREC RTS task definition, a tweet is not considered inter-

esting when the information it conveys has already been reported in an antecedent

tweet that was present in the 1% public sample. We implement novelty detec-

tion with online single-link clustering based on the Jaccard similarity between the

stemmed tweets. For each incoming tweet for topic Q that has not been discarded

in the rescoring stage, we assign the tweet to the cluster containing the most similar

tweet, if the similarity exceeds certain manually selected threshold τ (described be-

low). Otherwise, a new cluster is created and the incoming tweet is assigned to it.

We maintain the same set of clusters for the entire 10 days of the live experiment

since we don’t want to return a relevant tweet if a similar one was returned even in

a previous day. The tweet is pushed to the user as soon as a new cluster is created,

and that cluster is then marked so that it won’t be used to suggest interesting tweets

to the user (although it will keep gathering similar tweets, so that no new cluster

with similar content is created).

4.5.2 Deciding when to Answer

Deciding when to set the cutoff point for returning candidate tweets is a dif-

ficult task. We tried to estimate that cutoff point in the following way. Given the

title of a profile, we issue all of its terms as a query to Twitter.28 If no tweet is
28Instead of using Twitter’s search API, which is limited to tweets posted in the last two weeks,

we scrape the web page https://twitter.com/i/search/timeline?q=[QUERY].

134

https://twitter.com/i/search/timeline?q=[QUERY]

returned, we consider the union of tweets returned from issuing subqueries in which

one term of the title was removed. We score all of the returned tweets as explained

in Section 4.5.1.2. We compute the minimum, mean and maximum scores, which

give us three possible relevance thresholds to be used to decide whether a tweet

should be returned during the evaluation period.

4.5.3 Evaluation Metrics

Two distinct evaluation setups were introduced for the push scenario task of the

TREC 2016 Real-Time Summarization track. In the first setup, the tweets returned

by participating systems are communicated to a “broker,” which then sends them

to real users (paid students) as push notifications on their smartphones. Those

users might decide to ignore the tweet, or judge it as relevant, redundant (i.e., the

relevant content has been communicated earlier in another tweet), or not relevant.

Two precision measures were reported based on this framework using the judged

tweets. They differ on whether redundant tweets are considered to be relevant. We

adopt the precision measure that penalizes redundant tweets (P(strict)), and we

note that the ranking of our systems versus the other systems does not change if we

alternate the precision measure.

The second evaluation setup is based on standard batch evaluation by TREC

assessors. For each interest profile, a pool of tweets was first constructed from the

submitted runs (including the “email digest” scenario—not of our interest in this

dissertation). Next, those tweets were judged as not relevant (gain=0), relevant

135

(gain=0.5) or highly relevant (gain=1). The relevant and highly relevant tweets

were then grouped into semantic clusters to indicate redundancy. If a system re-

trieves more than one relevant tweet from the same cluster, then only one of them

is considered to be relevant. Among the seven measures that were reported for the

tweets returned by a system for an interest profile on a particular day, we focus on

one variant of the Expected Gain (EG), which is generally defined as the sum of the

gain divided by the number of returned tweets. The variant of expected gain on

which we focus, EG-1, gives full credit on a silent day for systems that returned

nothing, and a score of 0 if they returned anything. We chose EG-1 because it

was used for the official rank of systems, and because it takes in consideration the

decisions made by participating systems during silent days.

4.5.4 Results and Analysis

We participated with three systems in this task. CLIP-A-0.7-MAX has a

manually selected clustering threshold of 0.7; it uses the maximum relevance thresh-

old for deciding when to return a tweet. CLIP-A-0.5-MEAN and CLIP-A-0.5-0

both have a clustering threshold of 0.5. The former uses the mean relevance thresh-

old for deciding when to return a tweet, while the latter uses a fixed relevance

threshold of 0, shared between all topics. This arbitrary threshold of 0 was chosen

to be sufficiently lower than all of the per-topic minimum thresholds (for which the

values range between 4.38 and 10.43).

136

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 0.1 0.2 0.3 0.4 0.5 0.6

EG
-1

P(strict)

Empty CLIP Other automatic Manual

Figure 4.13: Comparison of RTS official scores between all participating systems.

We compare our systems against four other systems. PolyU-run3 is the best

system based on each of the measures P(strict) and EG-1. The Hong Kong Poly-

technic University team, who developed this system, made a manual intervention

to select query terms [133]. QUBaseline is the best automatic system based on

the EG-1 measure, and was developed at Qatar University [131]. UmdHcilBase-

line is the only automatic system that had a P(strict) value higher than some of

our systems. It was developed by the HCIL team at the University of Maryland

independently from ours [85]. Empty-run is a fictive system that returns nothing.

Figure 4.13 compares the performance of our systems against all other systems

on both measures. We note, first, that the empty run is a strong baseline for EG-1.

In fact, only 13 (including all ours) out of 34 automatic runs managed to get a higher

score. This phenomenon is due, to some extent, to an arbitrary choice made for the

definition of this measure. EG-1 penalizes equally a silent system on a verbose day

(i.e., false negatives), and a verbose system on a silent day (false positives). In a

137

real application, a user might be more tolerant of one error versus another. For

instance, she might not be bothered much by a single interruption on a silent day,

as long as relevant novel tweets are fully covered on other days. Another critique

of this measure is that it gives the same penalty, on a silent day, for a system that

returned only 1 tweet and another one that returned 10 tweets. We expect a user to

be more displeased with the second system. Hence, the penalty in a better measure

should reflect the degree of verbosity of systems on silent days.

We observe four main clusters of systems that outperformed the empty run

on EG-1. Three manual runs (all from the same team) are located at the top

right corner of the scatter plot. One of them (PolyU-run3) scores the best on both

measures (see Table 4.10). Our systems, by contrast, barely exceed the performance

of the empty run on EG-1. However, our strict precision is better than most of the

other automatic runs by a large margin.29 The only automatic system that has a

strict precision higher than two of our systems (UmdHcilBaseline) has an EG-1

below that of the empty run. The best automatic run on EG-1 (QUBaseline) has

a relatively low strict precision (0.3), and appears to be isolated as a third cluster.

The fourth group of runs is clustered just above the empty run’s threshold with a

strict precision less than 0.4.

The detailed differences between our own systems are indicated in Table 4.10.

System CLIP-A-0.7-MAX is the only automatic system that has a strict precision

above 0.5. This is perhaps due to its high clustering and relevance thresholds,
29We do not have access to the complete individual runs of other systems to run statistical

significance tests.

138

Table 4.10: Effectiveness of participating systems in Scenario A of the RTS track.

Mobile assessors NIST
System relev. redund. not rel. unjudged P(strict) EG-1
CLIP-A-0.7-MAX 91 1 89 507 0.5028 0.2366
CLIP-A-0.5-MEAN 158 7 171 911 0.4702 0.2407
CLIP-A-0.5-0 170 7 189 1,071 0.4645 0.2397
PolyU-run3 (manual) 193 4 141 1243 0.5710 0.2698
QUBaseline 56 3 108 477 0.3353 0.2643
UmdHcilBaseline 20 0 22 176 0.4762 0.2145
Empty-run 0 0 0 0 - 0.2339

compared to CLIP-A-0.5-MEAN and CLIP-A-0.5-0. For instance, the 6.93%

relative improvement in P(strict) between CLIP-A-0.5-MEAN and CLIP-A-0.7-

MAX came at a small relative loss of 1.70% in EG-1.

Although there is no official recall measure reported, perhaps because the

number of tweets assessed for each system is different, we observe that the number

of relevant tweets we returned is substantially larger than that of the two automatic

systems QUBaseline and UmdHcilBaseline. Thus, our high precision was ob-

tained with relatively high recall as well (the empty run might be considered to have

a perfect precision of 1.0 but its recall would be zero). It appears that both our

scoring of the tweets, and the cutoff point were relatively good for this task.

4.6 Chapter Summary

We studied in this chapter several aspects for providing answers within and

cross platforms. For questions asked on Twitter, we found that user satisfaction

can be improved substantially if we return a thread from Yahoo! Answers that has

a similar question in the title. Further improvements are obtained with a learning-

139

to-rank model, especially if the retrieved threads are combined with the replies that

the original question receives on Twitter. For questions asked on Yahoo! Answers,

we found that a two stages scoring approach, based on answers retrieved from a

large crawl of old Yahoo! Answers, advances the state of the art on answering live

complex questions, as organized in the TREC LiveQA track. Seeking answers in

another platform, we found that Twitter can be particularly useful for categories

of questions that are difficult to address using old Yahoo! Answers. Finally, we

examined the problem of deciding whether to return tweets to some interest profile.

We introduced a system that makes such a decision based on statistics from old

tweets. This system had the highest precision in the TREC RTS track.

Developing better answering systems requires the ability to assess their effec-

tiveness. The setup of the TREC LiveQA track evaluation makes the reusability of

the released test collection non trivial. Next chapter discusses this challenge and

proposes some adequate solutions.

140

Chapter 5: Evaluating Future Answers1

Modern information retrieval test collections have proven to be remarkably

useful as a basis for rapidly and affordably comparing alternative retrieval algo-

rithms. In recent years, this capability has also been leveraged to learn parameter

settings that optimize specific evaluation measures, an approach now commonly

called learning to rank [87]. In large-scale systems, these “offline” evaluations typ-

ically serve as initial triage before subjecting well tuned systems to further testing

(e.g., A-B testing or interleaving) with live users. Creating test collections that can

be used in this way can, however, be an expensive undertaking. The fundamental

challenge is that to evaluate a system we must know the relevance of the items (i.e.,

documents or answers) that it finds, but to know which items good systems will

find we must already have good systems. The usual approach is therefore iterative.

For example, first-year test collections for a new task that are created by TREC

typically only include relevance judgments for items found by what will (in future

years) be thought of as baseline systems. Second-year test collections are typically

built using relevance judgments for samples drawn from the results of better sys-

tems, and thus are more useful as a basis for tuning relatively good systems. It is
1Some parts of this chapter were taken from a paper under review by Bagdouri and Oard [12].

141

typically in the third year of a task that systems that are well tuned to a specific

evaluation measure can be created.

A good deal of effort has gone into shortening this cycle by developing tech-

niques that can support the requisite system comparisons using less well sampled

relevance judgments, an approach we might think of in a shorthand way as seeking

to achieve “year 3 results in year 2.” Three broad types of approaches have been

tried. The first approach was what we might today call “diversity sampling.” The

goal of this type of diversity sampling is to increase the chance that the judgments

performed when the test collection was created will have been performed on some

items that ultimately will be retrieved by future systems. The initial approach to

diversity sampling was “pooling” – the aggregation of highly ranked items from a

diverse range of systems into a pool that would then be exhaustively judged [137].

It was quickly realized that fully automatic systems were often not sufficiently di-

verse for this purpose, so results from human-in-the-loop systems were also often

included in the judgment pools [137]. Early evaluation measures such as Mean Av-

erage Precision (MAP) [18] were computed using an implicit or explicit assumption

that unjudged items were not relevant. Typically, however, very good future sys-

tems will find relevant items that were not found by any early system, and thus

were not judged. This led to the development of measures such as bpref [19] and

xinfAP [150] that could be used to more reliably compare systems despite a relative

paucity of judgments for items retrieved by those systems. Of course, this approach

is fundamentally limited since it requires that judgments be available for at least

some of the items that future systems will retrieve.

142

Initial retrieval tasks focused on retrieval of documents. However, retrieving

parts of documents (e.g., passages or facts) magnifies the combinatorial complexity

of the sampling process. Moreover, the introduction of tasks such as the TREC-

2015 LiveQA track [1], in which the items to be judged might be automatically

constructed from parts of multiple documents, and in which future answers might

be constructed from documents that did not exist (or were not known) at the time

the initial judgments were performed, moves us beyond any hope of being able to

rely on pre-constructed judgments alone. To address such cases, a third approach

based on automatically estimating what judgment a human assessor would have

made if presented with a newly retrieved item was developed [24].

One challenge with evaluation approaches based on estimated relevance judg-

ments is that the systems that we are seeking to evaluate are themselves algorithms

for estimating relevance judgments. This leads to a potential circularity in which

we are in essence using one retrieval system to evaluate another. This only makes

sense when the estimation approach that we are using as a basis for evaluation has

more information available about the likely relevance of an item than do the systems

being evaluated. Approaches to evaluation that are based on estimated relevance

are thus naturally, and necessarily, based in the first instance on diversity sampling.

Evaluation measures that are designed to accommodate unjudged items in effect (al-

though not always explicitly) implement a restricted form of relevance estimation,

so a well designed approach to relevance estimation may not benefit further from

the use of such measures.

We introduce two new relevance estimation techniques based on word embed-

143

dings. They both achieve excellent reusability results for the TREC 2015 LiveQA

track, and the best of them also demonstrates a good reusability with the TREC-8

Ad Hoc document retrieval task [138]. Our third, and best, technique also leverages

an approach to diversity sampling, improving our relevance estimates. We compare

our results with three increasingly complex baselines.

The dominant paradigm for evaluating reusability has been to ablate a single

system and then to estimate what retrieval effectiveness score (e.g., NDCG or MAP)

that ablated system would have achieved given some way of combining one or more of

diversity sampling, relevance estimation, and a sparsity-tolerant evaluation measure.

We therefore report results in that way for comparability with earlier work. We also

report results using an improvement to that approach in which we learn a regression

function to map estimated scores to the same score space as the unablated systems.

We characterize the resulting stability or instability of system rankings using a new

correlation coefficient that was developed specifically to code the ranking of best

systems and the gap between their scores [47].

One limitation of the single-system-ablation approach is that it is necessarily

focused on mean values across many queries, but it is insensitive to changes in the

estimated variance. We therefore also adopt an approach similar to that proposed

by Moffat et al. [102] and Jones et al. [64] in which we characterize the effect of

system ablation on the results of a statistical significance test (in our case, the t-

test). Because these tests are conducted on paired system samples, we use paired

ablation in that case. All three approaches to evaluating reusability yield results that

are broadly consistent, and they specifically agree on the preference order among

144

the three methods for enhancing reusability using word embeddings (in one case

together with diversity sampling) that we introduce in this chapter.

The remainder of this chapter is organized as follows. Section 5.1 introduces

three baselines and three novel relevance estimation methods we use to enhance

reusability. That’s followed by Section 5.2 in which we introduce our two novel

approaches to assessing reusability. Section 5.3 then evaluates the six methods using

both the standard single-ablation approach and our two novel alternatives based on

the TREC-2015 LiveQA track runs. Section 5.4 briefly explores the generalizability

of our findings to the TREC-8 Ad Hoc runs. We summarize our observations in

Section 5.5.

5.1 Relevance Estimation Methods

Our goal is to predict the performance of a system that did not participate in

the TREC LiveQA track without requiring new annotations. Our intuition is that

by looking at the content of unlabeled “system candidate” items, and comparing

them to the content of labeled “reference” items, we can approximate the relevance

judgments that would have been assigned by TREC assessors to items returned by

future (i.e., non-participating) systems.2 In this section, we introduce three baselines

and three novel methods for performing this approximation. All of these methods
2In LiveQA the items are answers; in the TREC-8 Ad Hoc task the items are documents; for

generality we refer to items when discussing methods that could be used at either scope. Similarly,

we use “topics” as an inclusive term when we don’t wish to distinguish between questions in the

LiveQA setting and queries in the TREC Ad Hoc setting.

145

operate on stemmed unigrams after removing stop words using the default English

stemmer of Lucene 6.4.2. They take as input an unlabeled item d and a set of

reference (i.e., labeled) items R. They produce an unbounded estimated relevance

score EsRel(d,R) ∈]−∞,+∞[. When we wish to produce an estimated relevance

score that is comparable to the official ones (i.e., between 0 and 3 for TREC LiveQA;

and between 0 and 1 for TREC-8 Ad Hoc), we apply the relevance estimator to

each reference item r, producing a set of scores EsRel(r, R). We perform a linear

regression that maps these scores to the official ones. We project the original score

EsRel(d,R) with this linear fit. We then bound the values outside the allowed

interval to one of the edges of this interval (e.g., for TREC LiveQA, we clip the

scores to the [0, 3] interval). We denote by this final projected estimated relevance

EsRel(d,R).

5.1.1 Item Length

A simple baseline is the item length, which we express as the count of the

terms in the unlabeled item. The reference items are ignored in the calculation

of the unbounded estimated relevance score. But they are used for computing the

projected one.

EsRelTC(d,R) =
∑
t∈d

count(t, d)

The utility of this feature arises because neither of the evaluation measures for

either of the two test collections that we use in this chapter reward greater brevity.

We therefore include item length as a simple relevance estimator.

146

5.1.2 Clipped Term Counts

An improvement over item length is clipped term counts, which was intro-

duced by Papineni et al. as a first step in a series of computations to calculate the

BLEU score for machine translation evaluation [111]. BLEU is based on the overlap

between the output of a system and a set of reference translations, and clipped term

counts are a simple way of preventing any one term from dominating the result. In

this way it fills the same role as sublinear transformations such as the logarithm of

the term frequency in a vector space term weight function, but with the computa-

tional convenience of integer counts. We implement this notion in the following way.

We consider a reference item to be any item that has the highest possible relevance

score (for TREC-8 Ad Hoc, this is 1; for TREC LiveQA this is 3). Let t be a term

in an unlabeled item d, and r be one member of the set of reference items R. We

start with the maximum count of t in any reference item. We then clip this value to

be no larger than the count of t in the unlabeled item. The unbounded estimated

relevance score for the unlabeled item d is then computed as the sum of the clipped

counts:

EsRelCTC(d,R) =
∑
t∈d

min
(
count(t, d),max

r∈R
(count(t, r))

)

We note that this idea of clipped term counts is the only part of the BLEU

computation that we use.

147

5.1.3 Core Vocabulary

Clipped term counts leverage the good reference items, but they ignore the

evidence that is available from reference items that are known to be bad. So for our

third baseline approach, we would like to reduce the impact of terms that appear in

both good and bad items, and to give more weight to the terms that appear much

more often in good reference items than bad ones.

We propose to identify terms that are likely to be correlated with only good

items in the following way. For each topic (i.e., query or question), we create two

bags of terms. The first, denoted as the positive bag P , is a concatenation of all good

items (i.e., those labeled 1 in TREC-8 or 3 in LiveQA). The second is a concatenation

of all bad items and is denoted as the negative bag N . For every term that appears

in the positive bag, we compute its probability as the ratio of its occurrence to the

number of terms in the positive bag. We subtract from this value the probability

of the same term in the negative bag. The result is a value that indicates the

utility of this term. We restrict ourselves to the terms that have a utility above the

average utility of all terms in the positive bag, defining a core vocabulary for that

particular topic. Finally, we estimate the relevance of the unlabeled item as the sum

of the count of its terms that belong to the core vocabulary, divided by the natural

logarithm of one plus the term count of the unlabeled item.

EsRelCV (d,R) =

∑
t∈d∩v

count(t, d)

log

(
1 +

∑
t∈d

count(t, d)

)

148

5.1.4 Vocabulary Expansion

Both our clipped term counts and our core vocabulary baseline relevance es-

timators rely on an exact match between the terms in the unlabeled and reference

items. It might be useful to take into consideration terms that share some similar

meanings, even if they are not identical at the surface level. We propose to expand

the core vocabulary by expanding the positive and negative bags of terms for the

reference items. Assume we have access to a matrix that gives us the similarity

between any pair of words. For both the positive or the negative bags, we expand

each term with the most similar terms, using the value of this similarity (assumed to

be bounded between 0 and 1) as a substitute for the occurrence of the similar term.

In all of our experiments in this chapter, we used the word embeddings released by

the GloVe project [114]. We downloaded a model pre-trained on 840B words from

CommonCrawl,3 and stemmed the words using Lucene. When there was a collision

of terms after stemming, we maintained the vector of the first unstemmed word that

appears in the embeddings file. We used cosine between the vector representations

of two terms to estimate their similarity, restricting ourselves to the top 10 positive

values.4 Once we have the positive and negative bags expanded, we proceed in the

same manner as we do for the core vocabulary method above (Section 5.1.3).
3http://commoncrawl.org
4Unlike the bag-of-words model in which the feature values of each dimension are non-negative

(e.g., term count or TF-IDF), guaranteeing the cosine between any two vectors to be also non-

negative, the feature values in a fixed-length dense representation such as word2vec can be negative.

This implies that the cosine between two vectors can also be negative.

149

http://commoncrawl.org

5.1.5 Item Embedding

Instead of relying only on individual terms that can indicate whether an item is

useful, we want to use all of the semantic information represented by the combination

of all the terms present in that item. As we did in Section 5.1.4, we use the same

fixed-length dense vector representation of terms. But instead of extracting the core

vocabulary, we construct a “core vector” in the embedding space.

Let −→t be the unit vector of a term t in the embedding space. We compute −→
d ,

the unit vector of an unlabeled item d, as the average of the vectors of its terms:

−→
d =

∑
t∈d

count(t, d)
−→
t

/∥∥∥∥∥∑
t∈d

count(t, d)
−→
t

∥∥∥∥∥
2

Similarly we define unit vectors −→p and −→n , respectively, for each positive item

(i.e., each item with the highest possible score: 1 for TREC-8; 3 for LiveQA), and

for each negative item (i.e., each item with a score of 0 or, for LiveQA, with the

minimum score available if all reference answers have a score greater than 0).

We then define the “core vector” −→vR as the difference, in the embedding space,

between −→
P , the average of all positive vectors p ∈ R+, and −→

N , the average of all

negative vectors n ∈ R−:

−→vR =
−→
P −

−→
N

To compute a comparable “unlabeled vector” for the unlabeled item, we subtract

the average −→
N of negative vectors from the unlabeled vector −→

d . The cosine of the

resulting vector and the core vector gives us a preliminary relevance estimate:

150

EsRel′IE(d,R) = cosine
(−→vR,−→d −

−→
N
)

This preliminary relevance estimate comes with a caveat, though. It is unlikely

that vectors for different items will have identical cosines with the reference. Thus,

some differences will be claimed between unlabeled items—even the bad ones—when

in reality no meaningful differences exist. Even worse, whenever a system returns

a random item, it might be considered better than returning nothing. To mitigate

this problem, we set a lower threshold below which we consider all of the unlabeled

items to be equally bad (i.e., they get a score of 0), and an upper threshold above

which we consider all of the unlabeled items to be equally good (i.e., they get a

maximum allowed relevance score). We set the lower threshold as an aggregated

value over the preliminary relevance estimates of negative reference items, and the

upper threshold as an aggregated value over the preliminary relevance estimates of

positive reference items. If the preliminary relevance estimates of negative reference

items are separable from those of positive references items, then the corresponding

aggregated values are their maximum and the minimum, respectively. Otherwise

(e.g., there are outlier reference items or inconsistencies in the assessments), we use

the average as an aggregating function for both thresholds.

EsRelIE(d,R) =



0 if EsRel′IE(d,R) < max-or-mean
n∈R−

(EsRel′IE(n,R))

1 if EsRel′IE(d,R) > min-or-mean
p∈R+

(EsRel′IE(p,R))

EsRel′AE(d,R) otherwise

151

5.1.6 Augmented Diversity Sampling

All three of our baseline relevance estimation methods, and both of the word

embedding techniques that we have proposed above, rely only on relevance judg-

ments made by TREC assessors for items that had been proposed by some par-

ticipating system. In TREC-8, some of the teams participated with manual runs,

which involve some degree of human intervention. Several of those manual runs

were substantially better than all of the automated systems. The TREC 2015

LiveQA track had participations only from automated systems. It seems reasonable

to expect that additional diversity sampling would have been useful in that case.

One possible source of diverse answers are answers that were later provided on the

Yahoo! Answers platform that were subsequently indicated as good by the origi-

nal asker of the question. Of course, some questions never attract a good answer,

some good answers go unrewarded by the asker, and the askers may of course judge

answer quality differently than a TREC assessor would. Nonetheless, the benefits

of additional diversity may outweigh such sparsity and consistency concerns. We

therefore enrich the reference answers used for item embedding with the answers we

crawled (see Section 5.3 below). We use these “best answers” as positive references

(i.e., we assign them a score of 3). We then apply the same procedure described in

Section 5.1.5 above.

152

5.2 Evaluating Reusability

In this section we introduce our two novel approaches to characterizing the

reusability of a test collection.

5.2.1 Single-Ablation with Regression

The usual way in which system ablation has been done is to determine the

degree to which the original ranking of participating systems is preserved when we

substitute the official evaluation results (e.g., MAP or NDCG) of the ranked list that

they produce with evaluation results based on estimated relevance judgments. We

ablate the participating systems, one at a time, and consider the remaining systems

as providing reference items. Topics that have no good items are not useful for

evaluating a non-participating system. Thus, for every ablated system, we ignore

all topics that have no good reference items. We compute the average (over all

eligible topics) estimated score for every ablated system. We also compute the

average of the official scores over all topics (including the ones that were not eligible

for ablation).

We characterize the preservation of the ranking using Pearson rank (ρr) corre-

lation coefficient [47].5 Unlike the original Pearson correlation coefficient (ρ) [153],

ρr gives high weight to the items that have high official scores, and imposes more
5The dissertation’s author motivated the problem and conducted the simulation-based exper-

iments. Ning Gao, the lead author of the paper, defined the expression of ρr and provided the

proofs of its properties.

153

penalty to swaps that occur near the head of the official ranked list. Contrary

to other ranking-based correlation coefficients that fail to detect the change in the

score differences between systems that maintained their rank (such as Kendal’s τ

[67], τAP [149] and τGAp [45]), ρr is sensitive to those differences. Because we are

most interested in comparisons among the best systems, and especially those that

have the largest (ground truth) differences, Pearson rank appears to be the most

useful correlation coefficient, compared to other alternatives.

5.2.2 Paired-Ablation Evaluation

One limitation of the single-ablation approach is that the correlation coeffi-

cients are ignorant of the statistical significance of the differences between the scores,

in both the official and the estimated ones. That is, we could be rewarding or penal-

izing the estimators for chance only. Another problem is that the set of topics over

which average system estimated scores are computed is not necessarily the same.

To see why this is the case, consider what happens in LiveQA when the only system

that contributed the only item scored by the relevance judges as 3 is ablated. In

such a case, relevance estimators that rely on having positive examples (as do every

one other than the item length baseline) simply cannot estimate relevance. We thus

cannot estimate relevance for that topic for that system. If this effect were random

then the true mean was unchanged and only variance would increase, but because

this will likely happen more often for good systems than for bad ones, this may tend

to somewhat underestimate the quality of good systems.

154

We can mitigate these limitations by performing a series of t-tests for every

pair of systems, using the official and estimated scores. Namely, we suggest that

any two systems that we want to compare, based on estimated relevance, need to

share the same set of eligible topics and reference items. For this reason, we ablate

two systems at a time. For each pair of systems, and before doing any ablation, we

compute their P@N using the official evaluation results (N is 1 for LiveQA, or 10 for

TREC-8 Ad Hoc as we show in Sections 5.4) and we run a paired two-sided t-test

over all topics. Let A and B be two systems. For a given significance level (in this

chapter, α = 0.05), we denote by A = B the case were A and B are statistically

indistinguishable, regardless of the sign of the difference in their means. We denote

by A ̸= B the case in which there is a statistically significant difference in the means

of the scores of A and B, which we can further specify as A > B (i.e., the mean of

the score of A is greater than that of B) or vice-versa.

Next, we ablate the pair of systems, and repeat the same process of significance

test for the estimated scores, but, when necessary, ignoring topics for which no good

item is present within the references. Then, we compare the outcome of these t-tests,

yielding five cases:

• A > B → A > B: this is the best case scenario, where both the significance

of the test and the sign of the difference are maintained when we use the

estimated scores instead of the official ones.

• A > B → B > A: this is the worst case scenario, where the significance of the

test is maintained and the sign of the difference is flipped.

155

• A = B → A = B: we consider this to be a good outcome, as the indistin-

guishability of the difference is maintained.

• A = B → A ̸= B: this is potentially an erroneous case, as an apparently

statistically significant difference shows up (regardless of the sign) when rele-

vance estimation is used that was not present when the actual judgments were

available.

• A ̸= B → A = B: this is a somewhat less troubling erroneous case in which

what should have been a statistically significant difference, regardless of the

sign, is not detectable when relevance estimation is used.

In the results we report in Section 5.3.4, we show all of these comparisons.

When we wish to report a single-value measure for a particular score estimator,

we do so as a ratio of the concordant comparisons (i.e., A > B → A > B and

A = B → A = B) to all available comparisons. We refer to this single-value

measure as “consistency.”

5.3 TREC 2015 LiveQA Evaluation

The main motivation of this work is to make the TREC LiveQA test collections

reusable for researchers who seek to build better systems. We focus, in this section,

on the first edition of the track.

156

5.3.1 Test Collection

Twenty one systems participated in the TREC 2015 LiveQA track, returning

21,140 answers (all judged) for 1,087 questions. The official score reported for each

system is the average, over all questions, of the answers returned by that system.

In other words, it is the mean of the precision at 1, which we denote by P@1. In

addition to the official questions and answers introduced above, future answers to

these questions that were posted on Yahoo! Answers were also crawled. We used

only answers marked as “best answer” by the asker. A total of 176 questions did

have such a best-answer. We optionally add these to our pool of answers, increasing

the number of available perfect answers from 1,359 to 1,535 (i.e., +13%).

5.3.2 Single-Ablation Unregressed Results

Figure 5.1 depicts six scatter plots of the original versus the unregressed es-

timated P@1, corresponding to the six relevance estimators. The ranges of the

scores vary by estimator, and are far away from the range of the official scores. It

is underestimated for the two item embedding methods, and overestimated for all

of the other methods. Based on Pearson rank correlation coefficient, item length

is, unsurprisingly, the worst relevance estimator. The best system is incorrectly

outperformed by two systems (fourth and sixth dots from right to left), with a large

margin in one case.

The clipped count and core vocabulary estimators are slightly better than

the item length. Their main advantage is that the margin between the true best

157

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

20

40

60

80

100

120

Official P@ 1

U
nr

eg
re

ss
ed

 P
@

 1 ●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

ρr = 0.57

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

5

10

15

20

25

30

Official P@ 1

U
nr

eg
re

ss
ed

 P
@

 1

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

ρr = 0.58

(a) Item length (b) Clipped count

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

1

2

3

4

Official P@ 1

U
nr

eg
re

ss
ed

 P
@

 1

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

ρr = 0.58

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
1
2
3
4
5
6
7

Official P@ 1

U
nr

eg
re

ss
ed

 P
@

 1

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

ρr = 0.76

(c) Core vocabulary (d) Expanded core vocabulary

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.45

0.50

0.55

0.60

Official P@ 1

U
nr

eg
re

ss
ed

 P
@

 1

l

l

l

l

l

ll

l

l

l

l
l

l

l

l

l

l
l

l
l

l ρr = 0.83

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.45

0.50

0.55

0.60

Official P@ 1

U
nr

eg
re

ss
ed

 P
@

 1 l

l
l

l

l

ll

l

l

l

ll
l

l

l

l

l
l

l

l

l
ρr = 0.83

(e) Item embedding (f) Augmented item embedding

Figure 5.1: TREC-2015 LiveQA scores predicted by the unregressed relevance esti-
mators in the single-ablation mode.

158

system and the incorrectly outperforming systems are narrower. Expanding the core

vocabulary has a substantial impact (ρr increases from 0.58 to 0.76), as it preserves

the ranking of the best system, but only at a small margin. It appears, thus, that

the use of word embeddings helps reducing the lexical gap between the reference

and ablated answers.

Item embedding performs better than all of the other relevance estimators,

and seems to maintain better the relative gap between the systems, especially for

the best one. But there is no evidence that augmenting item embedding is useful.

5.3.3 Single-Ablation Regressed Results

As shown in Section 5.3.2, the unbounded relevance estimators produce scores

that are useful to rank systems and indicate how much one system is better than the

other, but sometimes we need to compare absolute performance of a future system

to the ones for which assessments are available. Figure 5.2 shows the scatter plots

of the six relevance estimators when regression was performed on the unbounded

estimated relevance scores.

Except for item length, the regression has a benefit (when we compare against

Figure 5.1) of improving the values of ρr, bringing them to 0.74 or higher. This is

clearly because, in all of the five cases, the best performing system is correctly ranked

first. Overall, it appears that applying the regression on relevance estimators with

similar performance yields better results at the presence of more information from

reference answers. Clipped count, which uses evidence of positive reference answers,

159

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Official P@ 1

R
eg

re
ss

ed
 P

@
 1

ll

l

l

l

l

l

l

l
l

l

ll

l

ll

l
l

ll
l

ρr = 0.37

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Official P@ 1

R
eg

re
ss

ed
 P

@
 1

l

l
ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
ll

ρr = 0.74

(a) Item length (b) Clipped count

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Official P@ 1

R
eg

re
ss

ed
 P

@
 1

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

ll

ρr = 0.75

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Official P@ 1

R
eg

re
ss

ed
 P

@
 1

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

ρr = 0.82

(c) Core vocabulary (d) Expanded core vocabulary

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Official P@ 1

R
eg

re
ss

ed
 P

@
 1

l

l
l

l

l

ll

l

l

l
l

l
l

l

l
l

l

l

l

l

l

ρr = 0.86

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Official P@ 1

R
eg

re
ss

ed
 P

@
 1 l

ll

l

l

ll

l

l

l
l

ll
l

l
l

l

l

l

l

l

ρr = 0.88

(e) Item embedding (f) Augmented item embedding

Figure 5.2: TREC-2015 LiveQA scores predicted by the regressed relevance estima-
tors in the single-ablation mode.

160

increases its ρr from 0.58 to 0.74, while item length, which uses no evidence from

reference answers, decreases from 0.57 to 0.37. Similarly, core vocabulary, which uses

evidence from both good and bad references improves (from 0.58 to 0.75) slightly

better than clipped count (from 0.58 to 0.74), which uses only good references.

Finally, augmented item embedding, which uses answers that were selected by the

askers as best-answers, has its ρr increase from 0.83 to 0.88, which is higher than

the increase observed for simple item embedding (from 0.83 to 0.86).

5.3.4 Paired-Ablation Results

As discussed earlier in Section 5.2.2, a paired-ablation evaluation is more fair

than single-ablation when we wish to compare two systems, because the underlying

reference items are identical. In addition, it allows us to check whether the potential

differences between these two systems would pass a statistical significance test.6

Building on the results of Sections 5.3.2 and 5.3.3 that show that regression improves

the performance of the relevance estimators, we limit ourselves in this subsection to

paired-ablation with regression.

Figure 5.3 shows how the pairwise comparisons between each pair of systems

changes when we substitute the official scores with the estimated scores. Answer

length appears to have the worst consistency ((152 + 0)/210 = 0.724), followed
6Because we run many paired tests we don’t claim that these tests as a group actually indicate

significance; rather, our focus is on whether the results of any one test would change as the result

of ablation (had that been the only test run).

161

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21

A > B → A > B : 152

A = B → A = B : 0

A ≠ B → A = B : 12

A = B → A ≠ B : 36

A > B → B > A : 10

Consistency: 0.724

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21

A > B → A > B : 153

A = B → A = B : 6

A ≠ B → A = B : 17

A = B → A ≠ B : 30

A > B → B > A : 4

Consistency: 0.757

(a) Item length (b) Clipped count

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21

A > B → A > B : 155

A = B → A = B : 12

A ≠ B → A = B : 16

A = B → A ≠ B : 24

A > B → B > A : 3

Consistency: 0.795

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21

A > B → A > B : 158

A = B → A = B : 11

A ≠ B → A = B : 13

A = B → A ≠ B : 25

A > B → B > A : 3

Consistency: 0.805

(c) Core vocabulary (d) Expanded core vocabulary

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21

A > B → A > B : 147

A = B → A = B : 20

A ≠ B → A = B : 27

A = B → A ≠ B : 16

A > B → B > A : 0

Consistency: 0.795

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21

A > B → A > B : 152

A = B → A = B : 23

A ≠ B → A = B : 21

A = B → A ≠ B : 13

A > B → B > A : 1

Consistency: 0.833

(e) Item embedding (f) Augmented item embedding

Figure 5.3: Maintenance of the (in)differences between TREC-2015 LiveQA systems.
The systems are sorted in a decreasing order from left to right by the official scores.

162

by the clipped count ((153 + 6)/210 = 0.757). This observation stands out when

we consider the most important error (i.e., A > B → B > A), which occurs ten

times for the former, and four times for the latter. Answer length has more tendency

towards claiming significant differences ((152+36+10)/210 = 0.943), while in reality

only (152+12+10)/210 = 0.829 of the differences are significant at the level of α =

0.05. Core vocabulary beats the clipped count considering the overall consistency

(i.e., 0.795 vs. 0.757), as well as each of its five components. Core vocabulary

expansion improves the overall consistency slightly (from (155+12)/210 = 0.795 to

(158 + 11)/210 = 0.805), as well as each of its five components.

While the overall consistency of simple item embedding is equal to that of

core vocabulary, the former is better than all of the other relevance estimators

when considering the important error—committing none. A conservative tendency is

evident, underclaiming significant differences ((147+ 16)/210 = 0.776). Augmented

item embedding has the highest overall consistency of (152 + 23)/210 = 0.833. The

only important error it makes corresponds to a pair near the tail of the ranked list.

Looking at the results from a different perspective, whenever this score estimator

claims that a system is significantly better than another one, there is a chance of

152/(152 + 13) = 0.921 that this is the same result that would have been seen

with the unablated judgments. Perhaps the most important observation about

augmented item embedding is that it is the only score estimator that correctly

detects that the best system is significantly better than all other systems. This

reinforces our observations from the single-ablation results (Section 5.3.3), in which

this score estimator maintained a relatively large gap between the best and second-

163

best systems. The sub-figure of augmented item embedding demonstrates, again,

that enriching the references with diverse answers from Yahoo! Answers improves

our ability to evaluate old ablated systems, and we would expect an even greater

benefits from augmented item embedding for future (even better) systems.

5.4 TREC-8 Ad Hoc Evaluation

We have thus far focused our experiments on the TREC 2015 LiveQA test

collection, as it exhibits the exact problem we want to solve: automated evaluation

of future systems that return only documents that have not been retrieved before.

With the exception of the evaluation campaigns oriented towards providing short

answers (usually between a handful of words and a couple of sentences) to factoid

questions, we are not aware of any test collection that has the same characteristics of

the main issue we are addressing in this chapter. We leave factoid QA test collections

for future work, and adapt a widely used test collection to our need.

The test collection created in the context of the TREC-8 Ad Hoc task [138] has

been used extensively to develop algorithms and evaluation measures that can infer

the relevance of unassessed documents based on their popularity [46, 128] or on their

order within a ranked list containing documents of known relevance [19, 150]. In this

track, 41 teams participated with a total of 129 systems, out of which 116 were fully

automated and 13 involved some human-in-the-loop process (which TREC calls a

“manual” run). They were asked to return up to 1,000 documents for each of 50

topics from a corpus of 528,155 documents. A pool of depth 100 was created from

164

some selected systems. 4,728 out of 86,830 assessments were found to be relevant in

total and MAP was reported as the official score for this task.

For the sake of visibility, we limit our experiments to single-ablation regressed

evaluation (there are too many pairs to be shown on a paired-ablation figure). We

perform the ablation in the following way. For any particular ablated system, we

remove all of its documents, down to a depth N, from the pool of assessments.7 We

then estimate the relevance of these documents using all of the documents remaining

in the pool. A choice of N that is very large will likely result in the disappearance

of a large number of relevant documents from the pool, especially for good systems,

thus penalizing the estimated score of these systems. A choice of N that is too

small will increase the variance of our results, given the small number of 50 topics.

Given that the average number of known relevant documents per topic is 94.56 in

the TREC-8 Ad Hoc collection, we set N to 10—an arbitrary value that we expect

is neither too large nor too small.

Recall that our regressed relevance estimators return a real number between 0

and 1. We opt, for simplicity, to report the scores based on the estimated precision

at 10 (P@10) for both the official and estimated scores, which is the average over

the scores over the top 10 documents.
7Note that we ablate not just the unique items by the ablated system (and no other system), but

all the items found by that system (regardless of whether they were also found by other systems.)

This is, thus, system-guided item ablation rather than system ablation. The motivation for this

choice comes from the fact that our methods address only cases where none of the documents

returned by a new system has ever been retrieved by any other old system.

165

We use the same relevance estimators we experimented with for the TREC

2015 LiveQA track. By default, we use only the automatic systems. When the

relevance estimator has, in addition, access to the manual run, we indicate that

estimator to be an augmented one.

In Figure 5.4 we plot the scatter plots of the six relevance estimators. Item

length, clipped count and core vocabulary (with and without expansion), all perform

very poorly with negative ρr values between -0.59 and -0.43. This might be due to

the sensitivity of these estimators to the variance of the item length. In fact, the

answers of the TREC 2015 LiveQA track have 85± 63 terms on average, while this

average is 343± 715 for the documents of the TREC-8 Ad Hoc collection.

The item embedding relevance estimator, which is insensitive to the item

length, performs relatively well in this test collection. It is slightly better with

augmentation (ρr increases from 0.55 to 0.57). But, it fails to identify the best au-

tomatic system. However, when we include the the manual systems in the ablation

study (i.e., we estimate their scores as well), we observe a considerable increase in

Pearson rank to ρ+o
r = 0.83. Several of these manual runs are substantially better

than the automatic runs. This suggests that augmented item embedding succeeds

in detecting best systems, particularly when their performance is largely better than

the remaining systems.

166

0.0 0.2 0.4 0.6 0.8

0.02

0.03

0.04

0.05

0.06

Official P@ 10

R
eg

re
ss

ed
 P

@
 1

0

l

l

ll
ll

lll lll l ll ll l l l
ll ll ll ll

l
ll

l
l

ll

l lll ll
ll lll l ll l ll ll ll

l l
l

ll ll ll

l

l

l

l
l

l
l l

l ll ll l lll l
ll

l
l ll l l

l ll
l l

l l ll l

l

l

l

l l

l

l
l l l

l ll
l l

ρr = −0.59

0.0 0.2 0.4 0.6 0.8

0.045

0.050

0.055

0.060

Official P@ 10

R
eg

re
ss

ed
 P

@
 1

0

l

l

ll

ll

l

l
l

ll

l l l
l

ll l l

l

ll
ll ll
l

l

l

l

l
ll

l
l l

l

ll
l

l

ll
ll

l
l

ll
l l

l

ll ll

l
l

l

l
l
l

l

l
l

l

l

l

l

l
l l

l
l

l ll

l
l

l
l

l
l

l
l

l l
l

l l

l

l
ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l l l
l

ll

l l

ρr = −0.44

(a) Item length (b) Clipped count

0.0 0.2 0.4 0.6 0.8

0.045

0.050

0.055

0.060

Official P@ 10

R
eg

re
ss

ed
 P

@
 1

0

l

l

ll

ll

l
l
l

ll
l l l

l
ll l l

l
ll

l
l ll

ll

l

ll

l

l

l

l

l

l
ll

l

lll ll
l l

l
l

l l
l

ll ll

l
l

l

l
l ll

l
l

l

l

l

l

l

l

l
l

l
l

l ll

l lll l ll
l

l
l

l l l

l l
l

l l

l
l
l

l
l

l

l

l

l l

l

l

l l
l

l

ll

l
l

ρr = −0.43

0.0 0.2 0.4 0.6 0.8

0.045

0.050

0.055

0.060

Official P@ 10

R
eg

re
ss

ed
 P

@
 1

0
l

l

ll

ll

l
l
l

ll
l l l

l
ll l l

l

ll
ll ll
ll

l

l
l

l

l

l

l
l

l
l

l
l

l

ll
ll

l l
ll

l l
l

ll ll

l l

l

l
l l

l
l
l

l

l

l

l

l

l

l
l

l
l

l ll

l l
ll

l lll
l l

l l l

l l
l

l l

l
l
l

l
l

l

l

l

l l

l

l

l l
l l

ll

l
l

ρr = −0.48

(c) Core vocabulary (d) Expanded core vocabulary

0.0 0.2 0.4 0.6 0.8

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Official P@ 10

R
eg

re
ss

ed
 P

@
 1

0

l

l

l
l

ll

l

l

l

l
l

l

l l

l ll
l l

l

ll

ll
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l l
l

ll

l

l

l l

l
l l

ll

l
l ll

l l

l

l
l

l

l

l
l

l

l
l

l

l

l l l

l l

l

l
l

l ll
l l

lll

l

l

l l l

l ll

l l

l l
l

l

l

l

l

l

l
l

l

l

l l

l

l

l

l

l

l

ρr = 0.55

0.0 0.2 0.4 0.6 0.8

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Official P@ 10

R
eg

re
ss

ed
 P

@
 1

0

l

l

ll

ll

l

l

l

l
l

l

l
l

l ll
l l

l

ll

ll
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l l
l

ll

l

l

l l

l
l l

ll

l
l ll

l l
l

l
l

l

l

ll

l

l
l

l

l

l l l

l l
l

l
l

l ll
l l

lll

l

l

l l l

l
ll

l l

l l
l

l

l

l

l

l

l
l

l

l

l l

l

l

l

l

l

l

l

l
ll

ll

ll l
l

ll

l

l

l

automatic
manual

ρr = 0.57
ρr

+o = 0.83

(e) Item embedding (f) Augmented item embedding

Figure 5.4: TREC-8 Ad Hoc scores predicted by the regressed relevance estimators in
the single-ablation mode. The special Pearson rank value noted by ρ+o

r corresponds
to a case where we also ablate the manual runs.

167

5.5 Chapter Summary

In this chapter, we have introduced the problem of reusing test collections

that are intended to be used to evaluate systems that retrieve only new documents.

Based on three families of system ablations, we studied six relevance estimators,

and found that one based on word embeddings and augmented with a diversity

sampling approach provides a plausible estimate on the TREC 2015 LiveQA and

TREC-8 Adhoc tracks. We have used this estimator to assess the performance of

our Twitter-based answering system, for which we were missing relevance judgments

(Section 4.4.3.2).

168

Chapter 6: Conclusion

Cross-platform question answering is a framework that aims to improve our

ability to satisfy complex information needs by returning answers from different

platforms, including those where the question has not been originally asked. This

dissertation provides a proof of concept for this general idea (Contribution K1) by

instantiating and studying some of its key components.

The input to a question answering system is the question itself. But questions

are not always easily identifiable. Chapter 3 introduced the problem of detecting an-

swerable questions in microblogging services, and suggested a pipeline for addressing

it, pointing to the individual effectiveness of each of its main components (Contri-

bution K4). We focused our experiments on two main filters: extracting qweets

(i.e., questions that seek a real information need) out of all questions, and identi-

fying aqweets (i.e., those that can be answerable by a stranger, and thus we would

hope that a bot might be able to provide some useful answer). Our best classifier

for detecting qweets is language agnostic and avoids the need for the hand-crafted

feature engineering and selection that was performed in previous work (Contribu-

tion S2). This BLSTM neural model, when run with frozen trained embeddings,

achieves an accuracy comparable to what Zhao and Mei report (compare our 0.851

169

to their 0.856), despite being trained on 21% less data. Its accuracy is considerably

and significantly better than our reimplementation of that work (which has an ac-

curacy of 0.805). It also yields the best results for Arabic, achieving substantially

and statistically significantly better F1 than Hasanain et al. (compare their 0.712

with our 0.784). A similar neural model performs well also on the novel problem of

aqweet prediction (Contribution S3). Its superior precision of 0.674 is significantly

higher than that of the best SVM model (0.464) in a 10-fold CV setup. We were able

to remedy the low recall (in a fixed test-set setup), by labeling a limited number of

tweets through active learning, increasing the recall from 0.330 to 0.535, while the

annotation of a random sample of the same number of tweets would have resulted in

a limited recall of 0.367. We are releasing our test collection for the task of detecting

aqweets (5,000 tweets with random sampling and 2,000 tweets with active learning),

the first of its kind to the best of our knowledge, to enable further research in this

direction (Contribution C5).

After passing this filtering stage, the input question should next be handled by

some answering platform. In Chapter 4, we looked at the problem of finding answers

from different perspectives. We started by answering aqweets. We found that only

110 out of 362 answerable questions have at least one reply. With an average

user satisfaction not exceeding 0.76/3 (which is attained after waiting for replies for

more than one day), this suggests that another platform might fill in the information

gap. We showed that a search for titles of old threads from Yahoo! Answers with

content similar to that of the aqweets produces a great improvement in average

user satisfaction (1.15/3 on a test set) compared to limiting the answers to the

170

replies that the asker might have received on Twitter. While some techniques such

as question rewriting did not demonstrate any statistically significant benefit, those

and other simple relevance models contributed to an additional improvement based

on a learning-to-rank model, attaining an average score of 1.36/3 on the test set. Our

best model considers the content of the replies, as well as that of retrieved threads,

before deciding to return an answer to the asker. By doing so, this classifier doubles

the initial user satisfaction, reaching 1.59/3 (Contribution S6). We are releasing

the annotations we have collected (4,881 relevance judgments distributed across 362

questions) to encourage more studies of aqweet answering (Contribution C7).

Next, we looked at the problem of answering complex questions such as the

ones posted on CQA websites (Section 4.4). We examined two resources for answer-

ing questions asked on Yahoo! Answers: a crawl of old questions and answers from

the same platform, and a large collection of tweets (Contributions K8 and S9). We

showed that a system based on two scoring stages involving a deep neural network

and a learning-to-rank model and that uses the Y!A crawl achieves, in expectation,

the state-of-the-art and near-human-level effectiveness on automatic question an-

swering, according to an independent evaluation within the TREC LiveQA track

(Contribution S10). We also presented a system that searches in a filtered set of

tweets and reranks the results using a learning-to-rank model trained on surrogate

data from the TREC Microblog track (Contribution K11). This system demon-

strated a substantial improvement in the expected retrieval effectiveness compared

to a naive search of tweets. Our experiments also indicate that while the former

system is generally a better choice, there are some types of questions, such as those

171

about Travel, for which the two systems exhibit a comparable effectiveness (Contri-

butions K12 and K13). This suggests that some combination of answers from the

two platforms for those types of questions (as we did for answering aqweets) might

lead to a better user satisfaction than if we would rely solely on either of them.

An important capability that a question answering system should implement

is the ability to make a binary decision on returning answers (Sections 4.1.2 and 4.5).

We addressed this problem first in the context of aqweet answering (Contribu-

tion S6). Given an answer returned by our best system from Yahoo! Answers, a

good binary decision is to return it only when no replies to the original question are

posted. Another method that delegates this decision to a SVM classifier has compa-

rable effectiveness. We revisited this problem again in the context of the TREC RTS

track, where we presented the architecture of a system that monitors a stream of

tweets and makes a real-time decision for returning some of them to the user. This

decision is based on a relevance-score threshold estimated automatically from old

tweets. Our system has the highest precision among automatic systems that were

evaluated by independent assessors on their mobile devices (Contribution S14).

Studying the usefulness of different platforms and building better answering

systems require a substantial number of annotations. Considerable resources were

allocated for generating and annotating the answers returned by several systems to

over 2,000 questions in the two editions of the TREC LiveQA track. Reusing these

annotations is, however, non-trivial. To make the annotations reusable, we intro-

duced in Chapter 5 a new relevance estimator that uses labeled answers to assess

the quality of unlabeled ones. Based on the embeddings of the terms of the labeled

172

and unlabeled answers, this estimator works best when augmented with answers

returned by humans (in addition to those selected by automatic systems), and when

future systems (i.e., those for which we want to estimate the performance) are sub-

stantially better than the old ones (Contribution E16). We have used this estimator

to evaluate our own Twitter-based system on the second edition of the TREC 2016

LiveQA track. We have also introduced three novel system-ablation approaches for

evaluating the reusability of test collections (Contribution E15). Our single-ablation

with regression approach is an improvement over typical traditional single-ablation,

in which we map the estimated scores to the same score space of the original scores.

We contributed to the definition of a new correlation measure, Pearson rank, which

focuses on the maintenance of the differences between the scores of best ablated

systems (Contribution E17), and which we adopted for our single-ablation study.

The paired-ablation evaluation (with and without regression) provides a fair setup

for comparing the maintenance of the direction and statistical significance of the

differences between two ablated systems. We also introduced a new chart for visu-

alizing these differences, and a single value, referred to as consistency, summarizing

them.

6.1 Limitations

A number of important limitations should be kept in mind when interpreting

the results reported in this dissertation. We note, in particular:

1. Cross-platform question answering can be implemented with tens of platform

173

types, and hundreds of instances. We limited ourselves to two instances (i.e.,

Twitter and Yahoo! Answers) from two platform types (i.e., microblogs and

CQA services).

2. The experiments investigating answering aqweets (Section 4.3) were conducted

on a set of tweets labeled to be aqweets. This is an optimistic setup, as in

reality we would be implementing our pipeline of aqweet detection, which

does not have a perfect accuracy. Hence, the user satisfaction expressed as an

average score over the top-1 answer accuracy should be regarded as an upper

bound of what we expect to achieve. Nevertheless, the comparison between

different retrieval models is still fair, given that they all share the same set of

true aqweets that was not intentionally selected to favor any particular model.

3. The size of the aqweet-answering collection (362 aqweets, and only one answer

per retrieval model) limited our ability to detect statistical significance for

some apparent differences. Similar experiments should be conducted using

larger collections.

4. Both the aqweet detection (Section 3.3) and answering (Section 4.3) tasks

might have suffered from some degree of experimenter bias. The researcher

who developed the systems and analyzed the results has also defined the task,

the annotation guidelines, and the test questions (on which the annotators

were evaluated). In a better setup, we would prefer to decouple system devel-

opment from data collection. Defining a task at some shared-task evaluation

venue, such as TREC, might be a good next step in this respect.

174

5. User satisfaction, as measured by crowdsourcing workers or NIST assessors, is

merely an approximation to the actual satisfaction by a third party. In reality,

what might be a rhetorical question for someone can be a question seeking

a real answer for somebody else. Similarly, two people receiving the same

answer to an identical question might perceive it differently. We expect other

factors of the answer utility (e.g., timeliness, source authority and diversity) to

influence the actual perception of the questions and answers, but we decided

to ignore such factors for the purpose of our study because doing so simplifies

evaluation. Hence, the scores we have reported (i.e., in the effectiveness of

the question detection and answering tasks) should be regarded as a basis

for computing relative differences and ranking between the various methods

for the aspect of system behavior that we have studied, rather than absolute

numbers that fully characterize the user satisfaction.

6. The scores of our systems that participated in the TREC 2016 LiveQA track

(Section 4.4.3), and on which we based some of our findings, are estimated

scores (due to missing annotations). Our conclusions are subject to the as-

sumptions that (1) the questions annotated for the CLIP-YA system are a

representative sample of all questions of the track, and (2) the augmented

item embeddings automatic performance estimator (applied to score CLIP-

TW-A) has a good accuracy on that edition of the track.

7. Each of our TREC systems is an end-to-end live system structured as a pipeline

of connected components (Sections 4.2, 4.4 and 4.5). While the evaluation

175

has demonstrated the good effectiveness of the overall systems, we are not

able to draw a decisive conclusion about the influence of each component

individually. Of course, now that the annotations have been released, we can

try to isolate those components to examine which ones need more attention

for improvement. Of course, any such effort will be subject to the limitations

of evaluation with incomplete judgments.

8. The work on automatic evaluation of future answering systems (Chapter 5)

might have been overfitted to the TREC 2015 LiveQA track. In fact, we

have observed a lower correlation with actual results on the TREC-8 Ad Hoc

experiments (although augmented item embedding was the best estimator in

both cases), and we do not know whether the first edition of the LiveQA track

was a special case, or whether our methods work only on question answering

passage retrieval (for which the TREC-8 Ad Hoc track was not an instance).

To answer this question, we suggest replicating the ablation studies on the

TREC 2016 LiveQA track.

6.2 Lessons Learned

Throughout this dissertation, we have learned some lessons that might be

useful for researchers and practitioners who want to continue the work on cross-

platform question answering.

176

6.2.1 Big Data Win

Acquiring local access to a large repository of past questions and answers is

beneficial to non-factoid question answering from different perspectives. First, we

get control over where, when, and how to search. For instance, we can determine

the fields to be searched, which is typically not possible in Web search. We can

run the search several times at any moment, without worrying about connection

latency or exceeding some Web search API quota. We can also try different tok-

enization/stemming choices and scoring functions, instead of being at the mercy of

mysterious decisions made by a remote search engine that might be tuned to tasks

other than ours. Second, we get our hands on large and free training data. This is

particularly useful when existing test collections, such as those built in the TREC

LiveQA track, are relatively small. The size of those small collections make them

more suitable for tuning some parameters of the classifier, instead of training it. Of

course, this big-data approach has its own challenges and limitations. The initial

crawl might be prohibitive, and a distributed crawler is sometimes needed. That

crawl might become outdated over time, calling for periodic or real-time refresh-

ment. The hardware cost for storing the index and performing the search moves

from the online search engine to the local search engine.

6.2.2 Fast Data Win

In near-real-time applications, speed is perhaps as important as effectiveness.

With large indexed corpora, and long questions used as queries, disk input and

177

output operations become lengthy on hard disk drives. As the price of solid-state

drives is getting more affordable, using them for storing the inverted indexes should

emerge as a natural solution.

6.2.3 Smart Data Win

While an enormous number of tweets are being publicly posted at any given

time, only a small fraction of them are expected to have useful content for the ques-

tions we anticipate. Out of those, we can access only about 1% through Twitter’s

sample stream. That is, we are left with little useful content. To mitigate this

limitation, we can leverage the knowledge we have about the categories of questions

we expect to receive to track the tweets that contain the vocabulary related to any

given category. By doing so, we get control over what is contained within the 1% set

of tweets, increasing our chances of acquiring useful answers to potential questions.

6.2.4 Platform Agnostic Answering Pipeline

The pipeline we proposed for cross-platform question answering should be a

default approach whenever we decide to integrate a new answering platform. After

(1) selecting the answering platform, (2) a substantial amount of data needs to

be collected. This collection is the basis for (3) a vanilla search with some state-

of-the-art scoring function such as BM25 that aims to retrieve a list of candidate

answers, and can also be used to (4) train and apply a re-ranking classifier that uses

additional features that are specific to that answering platform.

178

6.2.5 One-Shot Crowdsourcing Annotations Are Safer

Incremental population of test collections, in which (1) we develop a system,

(2) we collect annotations for its output, (3) we use those annotations to improve

that system, and (4) we get additional annotations only for new documents that

were found by the improved system, can help us to control the annotation budget

while producing useful effectiveness estimates. With crowdsourcing, however, this

might not necessarily be true. At every iteration, we get a different set of annotators

who might annotate answers in a different manner compared to previous annota-

tors. When this happens, it is difficult to attribute the difference we observe in the

improved system to its actual effectiveness, or to the assessment behavior across

different sets of annotators. To mitigate this limitation, we propose to gather a new

set of assessments for all systems in a single shot, after we finish with all iterations.

6.2.6 BLSTM Classifiers are Often a Good Choice

Across the various classification problems we have studied in this dissertation,

BLSTM seems to provide a good effectiveness, especially when there is a substantial

amount of (free) training data. We suggest that this family of deep neural networks

be tried first when approaching similar tasks (e.g., detection of information needs,

query intent classification, and re-ranking of retrieved documents). On the other

hand, some simple techniques work sometimes fairly well. For example, the Jaccard

similarity measure was useful as a feature for deciding whether to return a candidate

answer, and for detecting near-duplicate tweets. Such simple features should be

considered when we have a limited amount of training data.

179

Twitter Question and Yahoo! Answer

Aqweet: How important is a college degree ?

Answer: There are many fields you cannot hope to enter without a
college degree, but others require an apprenticeship and
licensing or a training and a diploma from a vocational school.
Some of those fields can be very well paid. The point, however,
is that if you hope to enter a decent career, you are really going
to have to get some form of post­secondary education, whether
it's a college degree or some specialized technical training.

Figure 6.1: From a live demo for answering aqweets using Yahoo! Answers.

6.2.7 Task Specific Effectiveness Tuning

Different goals for a given problem might suggest using different values for

the parameters of the model built to solve it. For instance, in the aqweet detection

problem (Section 3.3), we were trying to balance between precision and recall to

maximize the F1 score. For aqweet answering, we were assuming that returning any

answer for an aqweet that has no reply is better than returning nothing. However,

for the sake of demonstrating our end-to-end aqweet answering system (i.e., from

the publication of the tweet to returning the answer), we tuned our parameters

to prefer high precision, allowing some sacrifice in recall, which is justified by the

high volume of tweets. In an ad-hoc manner, we set a high threshold for deciding

whether a candidate tweet is an aqweet, and we required a high similarity value

(using the Quora-based classifier of Section 4.3.5) between the aqweet and the title

of the candidate thread from Yahoo! Answers. As a result, the question / answer

pairs that were detected by a real-time demonstration system and shown live during

the defense of this dissertation were often nicely matched (e.g., Figure 6.1).

180

6.3 Future Work

Our experience suggests several directions for future work.

1. Our experiments in this dissertation were focused on one type of answering,

which is searching for answers. More experiments need to be conducted on the

complimentary approach of answering by crowdsourcing. Consider for instance

a question that is too specific to be answered by returning an old answer. In

that case, we can try to find a user who is an expert on the broad topic of

the question, and who might be willing to provide an answer within certain

desirable period. While there has been substantial work on detecting experts

and routing questions to potential answerers (Section 2.6), doing this across

different platforms is worth studying, as it increases the chances of satisfying

the information need of the asker.

2. The evaluation of aqweet answering was inspired by the evaluation setup of

the TREC LiveQA track, especially for the range of scores [0-3]. With such

scoring, it is always better to return some answer instead of nothing. However,

there is a crucial difference between answering aqweets and answering Y!A

questions. In the latter case, we expect the asker to be looking for answers

from strangers (although not necessarily a bot). But in the former case, we

anticipate that the asker would be primarily calling for answers from her own

friends and followers. Hence, our unsolicited answer might be unappreciated,

especially if it turns out to be not useful. This can get even worse if the

181

predicted aqweet is a false positive (e.g., we answered something that isn’t a

question in the first place). We suggest three directions for addressing these

concerns. First, a user study should quantify the degree of tolerance to an

unsolicited answer, considering the quality of the answer and the surprise of

the asker. Second, such quantification should be reflected in a new evaluation

measure, perhaps one inspired by the expected gain measure of the TREC RTS

track (adding a penalty when no answer should have been provided). Third,

answering systems should be trained to optimize this new evaluation measure.

In particular, they need to learn to make a binary decision on whether to

return answers.

3. Breaking the aqweet detection task into three main stages (i.e., detection of

itweets, qweets and then aqweets), was a natural approach when we were

discovering the problem. Now that we have demonstrated that answerable

questions can be detected, we can revisit those stages and merge some or all

of them. In particular, we might benefit from the fact that all of the negative

tweets at certain stage are also negative tweets in the subsequent stages. We

might also take advantage of the fact that a similar neural architecture was

designed for detecting both qweets and aqweets. Thus, we can for instance

train a single classifier using the aqweets corpus, in addition to non-qweets

from the corpus released by Zhao and Mei [156].

4. It is not clear how much credit should be attributed to the (lower) embedding

layer versus the (higher) recurrent layer in our BLSTM networks that detect

182

qweets and aqweets. In other words, are the improvements over SVM due to

the reduction of lexical mismatch between the terms? Or does the structure of

the question make a contribution? To answer these questions, we suggest try-

ing deep averaging networks [58], which ignore the order of the term sequence,

considering a sentence to be a simple bag of vectors.

5. The paired-ablation evaluation is agnostic to the ranking of the systems and

the differences in scores between them. Our consistency measure, for instance,

gives equal penalties for swapping the top two systems or the bottom systems.

A more desirable measure should penalize swapping the top pair more than

the bottom pair, and we could use our work on Pearson rank to define a better

consistency measure. For the visualization chart as well, we could make the

hight of each row in a manner that is inversely proportional to the ranking of

its corresponding system.

6. The two methods we introduced for system ablation (i.e., regressed single

ablation, and regressed paired ablation) can be used for evaluating future

(and better) score estimators. The single-value measure we suggested for each

of the two ablation modes (i.e., Pearson rank and consistency) enables a direct

comparison between different estimators.

7. Our score estimator can be used when the content of the documents of IR

test collections cannot be made publicly available. Consider for instance the

TREC Microblog and RTS tracks [84, 85], where the relevance judgments

were released for tweet identifiers, but the contents of the tweets have to

183

be obtained directly from Twitter by the participants (because of Twitter’s

terms of service). The deletion of tweets over time (refer to our work on their

prediction [8]), causes “swiss cheese” decay of the Microblog test collection.

However, other tweets with similar content might be still available. If the

track organizers release an embedded core vector for each annotated topic,

the effort spent on the annotations can be exploited for a longer period by

evaluating new systems retrieving similar tweets using those core vectors.

6.4 Implications

Some of the problems we have studied and the techniques we have developed

have the potential for impact beyond the narrow scope of this dissertation.

6.4.1 Other Applications of Item Embedding

While item embedding was shown to be useful for estimating the effectiveness

of systems that did not participate in the creation of the pool of documents that

were assessed by human annotators, that technique might also be beneficial in other

settings. One such case is where strong restrictions are enforced on the distribution

of documents. For example, Twitter’s terms of service prohibit the distribution of

the content of tweets, and this is why the organizers of the TREC Microblog and

Real-Time Summarization tracks distribute the identifiers of the tweets instead of

their content. As tweets get deleted over time, newcomers who want to reproduce

previous results or develop new techniques may suffer from the diminishing number

184

of available annotations. Even those who already have access to those deleted tweets

are required to delete their own copies. This simply means that the shelf life of

such corpora are shorter than that of traditional test collections. However, if the

organizers would release an embedding vector for the relevant tweets, and another

one for non-relevant tweets, then the effort invested by the participating systems

(to find relevant tweets) and the organizers (in the preparation of the topics and the

annotations) could retain their value for a longer period. We would be able to assess

the effectiveness of future systems using the old topics and embedding vectors and

some future tweets. Of course, there would be some measurement error that needs

to be characterized.

Another use case would be evaluation using new documents even when old test

collections are still fully available. Consider for example a case in which we have

limited resources to crawl one out of a candidate set of online travel forums. We

could use the set of Travel questions from LiveQA that have some good answers,

issue each of them as a query to some major Web search engine with a restriction

to one candidate forum at a time, and then estimate the relevance of some top N

snippets using the positive and negative embedding vectors for those questions. We

might, for example, expect this approach to inform our decision about selecting

which platforms to crawl first.

185

6.4.2 The Future of Question Answering

Research in information retrieval has for a long time been focusing on develop-

ing methods for satisfying information needs. But detecting those information needs

is an area of research that has received less focus. For example, search engines as-

sume that the query issued in an input box is a formulation of an information need,

and the information that is sought in an evaluation campaign (such as in TREC)

is typically given as a <query, description, narrative> triplet to search systems.

However, focusing exclusively on such approaches would limit our ability to satisfy

an information need to the cases where some statement of the information need is

already at hand. Automatic identification of stated information needs appears to be

a low-hanging fruit, for which the techniques we have explored in this dissertation

might be applicable. In particular, looking at the broader implications of our work

on detecting aqweets, we note that while the fraction of qweets that are aqweets

is small, the amount of language produced by an average person on a daily basis

(about 16,000 words [97]) far exceeds the content in the tweets posted in a day by

an average user (about 5 tweets1). Hence, we might expect a larger impact from

something like our aqweet detector if it were consolidated in a smart device, such

as as a feature of some virtual assistant. Currently, these assistants are typically

triggered by some specific keyword or phrase. A better interaction might sometimes

result when a virtual assistant detects a question asked naturally (e.g., within a

conversation between two individuals), and proactively provides some answers.
1https://www.sec.gov/Archives/edgar/data/1418091/000119312513390321/d564001ds1.htm

186

https://www.sec.gov/Archives/edgar/data/1418091/000119312513390321/d564001ds1.htm

With more questions detected and higher expectations from the askers, one-

size-fits-all answering systems of the type we have focused on in this dissertation

will undoubtedly need to further evolve to address increasingly diverse and complex

information needs. The emergence of specialized communities such as online forums

for peer-based medical support, expatriate forums for people moving abroad, online

tax and legal counseling services, and Q&A broadcasting sessions for clerical ver-

dicts, provide a glimpse on what the panorama of answering platforms will look like

in the future. Some of those websites have their content dominated by some specific

languages. We anticipate that accuracy, timeliness, personalization, privacy, cross-

lingual access will all be competing factors for increasingly sophisticated algorithms

for cross-platform question answering. This dissertation is just the beginning.

187

Bibliography

[1] Eugene Agichtein, David Carmel, Dan Pelleg, Yuval Pinter, and Donna Har-
man. Overview of the TREC 2015 LiveQA track. In Proceedings of the
Twenty-Fourth Text REtrieval Conference, Gaithersburg, Maryland, USA,
2015. URL http://trec.nist.gov/pubs/trec24/papers/Overview-QA.
pdf.

[2] Eugene Agichtein, David Carmel, Dan Pelleg, Yuval Pinter, and Donna Har-
man. Overview of the TREC 2016 LiveQA track. In Proceedings of the
Twenty-Fifth Text REtrieval Conference, Gaithersburg, Maryland, USA, 2016.
Notebook version.

[3] Weijie An, Mengfei Shi, Xin Ouyang, Yan Yang, Qinmin Hu, and Liang He.
ECNU at 2016 LiveQA track: A parameter sharing long short term memory
model for learning question similarity. In Proceedings of the Twenty-Fifth
Text REtrieval Conference, Gaithersburg, Maryland, USA, 2016. URL http:
//trec.nist.gov/pubs/trec25/papers/ECNU-QA.pdf.

[4] Jaime Arguello. Aggregated search. Foundations and Trends® in Information
Retrieval, 10(5):365–502, 2017. ISSN 1554-0669. URL http://dx.doi.org/
10.1561/1500000052.

[5] Jaime Arguello, Fernando Diaz, Jamie Callan, and Jean-Francois Crespo.
Sources of evidence for vertical selection. In Proceedings of the 32nd Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’09, pages 315–322, Boston, MA, USA, 2009. ACM. ISBN
978-1-60558-483-6. URL http://doi.acm.org/10.1145/1571941.1571997.

[6] Mossaab Bagdouri and Douglas W. Oard. CLIP at TREC 2015: Microblog
and LiveQA. In Proceedings of the Twenty-Fourth Text REtrieval Conference,
TREC, Gaithersburg, Maryland, USA, 2015. URL http://trec.nist.gov/
pubs/trec24/papers/CLIP-MBQA.pdf.

[7] Mossaab Bagdouri and Douglas W. Oard. Profession-based person search in
microblogs: Using seed sets to find journalists. In Proceedings of the 24th
ACM International on Conference on Information and Knowledge Manage-
ment, CIKM ’15, pages 593–602, Melbourne, Australia, 2015. ACM. ISBN
978-1-4503-3794-6. URL http://doi.acm.org/10.1145/2806416.2806466.

188

http://trec.nist.gov/pubs/trec24/papers/Overview-QA.pdf
http://trec.nist.gov/pubs/trec24/papers/Overview-QA.pdf
http://trec.nist.gov/pubs/trec25/papers/ECNU-QA.pdf
http://trec.nist.gov/pubs/trec25/papers/ECNU-QA.pdf
http://dx.doi.org/10.1561/1500000052
http://dx.doi.org/10.1561/1500000052
http://doi.acm.org/10.1145/1571941.1571997
http://trec.nist.gov/pubs/trec24/papers/CLIP-MBQA.pdf
http://trec.nist.gov/pubs/trec24/papers/CLIP-MBQA.pdf
http://doi.acm.org/10.1145/2806416.2806466

[8] Mossaab Bagdouri and Douglas W. Oard. On predicting deletions of mi-
croblog posts. In Proceedings of the 24th ACM International on Confer-
ence on Information and Knowledge Management, CIKM ’15, pages 1707–
1710, Melbourne, Australia, 2015. ACM. ISBN 978-1-4503-3794-6. URL
http://doi.acm.org/10.1145/2806416.2806600.

[9] Mossaab Bagdouri and Douglas W. Oard. CLIP at TREC 2016: LiveQA and
RTS. In Proceedings of the Twenty-Fifth Text REtrieval Conference, TREC,
Gaithersburg, Maryland, USA, 2016. URL http://trec.nist.gov/pubs/
trec25/papers/CLIP-QA-RT.pdf.

[10] Mossaab Bagdouri and Douglas W. Oard. Building bridges across social plat-
forms: Answering Twitter questions with Yahoo! Answers. In Proceedings of
the 40th International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’17, Tokyo, Japan, 2017. ACM. ISBN 978-1-
4503-5022-8. URL http://doi.acm.org/10.1145/3077136.3080755.

[11] Mossaab Bagdouri and Douglas W. Oard. Detecting answerable questions in
microblogs. In preparation.

[12] Mossaab Bagdouri and Douglas W. Oard. On the reusability of open-resource
test collections: Estimating relevance with word embeddings. Under review.

[13] Ziv Bar-Yossef and Maxim Gurevich. Random sampling from a search engine’s
index. In Proceedings of the 15th International Conference on World Wide
Web, WWW ’06, pages 367–376, Edinburgh, Scotland, 2006. ACM. ISBN
1-59593-323-9. URL http://doi.acm.org/10.1145/1135777.1135833.

[14] Parantapa Bhattacharya and Niloy Ganguly. Characterizing deleted tweets
and their authors. In Proceedings of the 10th International AAAI Confer-
ence on Weblogs and Social Media, ICWSM ’16, Cologne, Germany, 2016.
URL http://www.aaai.org/ocs/index.php/ICWSM/ICWSM16/paper/view/
13133.

[15] Dasha Bogdanova, Debasis Ganguly, Jennifer Foster, and Ali Hosseinzadeh
Vahid. ADAPT.DCU at TREC LiveQA: A sentence retrieval based ap-
proach to live question answering. In Proceedings of the Twenty-Fourth
Text REtrieval Conference, Gaithersburg, Maryland, USA, 2015. URL http:
//trec.nist.gov/pubs/trec24/papers/ADAPT.DCU-QA.pdf.

[16] Mohamed Bouguessa, Shengrui Wang, and Benoit Dumoulin. Discovering
knowledge-sharing communities in question-answering forums. ACM Trans-
actions on Knowledge Discovery from Data, 5(1):3:1–3:49, December 2010.
ISSN 1556-4681. URL http://doi.acm.org/10.1145/1870096.1870099.

[17] Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D
Manning. A large annotated corpus for learning natural language inference.

189

http://doi.acm.org/10.1145/2806416.2806600
http://trec.nist.gov/pubs/trec25/papers/CLIP-QA-RT.pdf
http://trec.nist.gov/pubs/trec25/papers/CLIP-QA-RT.pdf
http://doi.acm.org/10.1145/3077136.3080755
http://doi.acm.org/10.1145/1135777.1135833
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM16/paper/view/13133
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM16/paper/view/13133
http://trec.nist.gov/pubs/trec24/papers/ADAPT.DCU-QA.pdf
http://trec.nist.gov/pubs/trec24/papers/ADAPT.DCU-QA.pdf
http://doi.acm.org/10.1145/1870096.1870099

In Proceedings of the 2015 Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP ’15, Lisbon, Portugal, 2015.

[18] Chris Buckley and Ellen M. Voorhees. Evaluating evaluation measure stability.
In Proceedings of the 23rd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’00, pages 33–40,
Athens, Greece, 2000. ACM. ISBN 1-58113-226-3. URL http://doi.acm.
org/10.1145/345508.345543.

[19] Chris Buckley and Ellen M. Voorhees. Retrieval evaluation with incomplete
information. In Proceedings of the 27th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR
’04, pages 25–32, Sheffield, United Kingdom, 2004. ACM. ISBN 1-58113-881-
4. URL http://doi.acm.org/10.1145/1008992.1009000.

[20] Stefan Büttcher, Charles L. A. Clarke, and Ian Soboroff. Overview of the
TREC 2006 terabyte track. In Proceedings of the Fifteenth Text REtrieval
Conference, Gaithersburg, Maryland, USA, 2006. URL http://trec.nist.
gov/pubs/trec15/papers/TERA06.OVERVIEW.pdf.

[21] Stefan Büttcher, Charles L. A. Clarke, Peter C. K. Yeung, and Ian Soboroff.
Reliable information retrieval evaluation with incomplete and biased judge-
ments. In Proceedings of the 30th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, SIGIR ’07, pages
63–70, Amsterdam, The Netherlands, 2007. ACM. ISBN 978-1-59593-597-7.
URL http://doi.acm.org/10.1145/1277741.1277755.

[22] Jamie Callan. Distributed information retrieval. In Advances in Informa-
tion Retrieval, volume 7 of The Information Retrieval Series, pages 127–150.
Springer US, 2000. ISBN 978-0-7923-7812-9. URL http://dx.doi.org/10.
1007/0-306-47019-5_5.

[23] Jamie Callan and Margaret Connell. Query-based sampling of text databases.
ACM Transactions on Information Systems, 19(2):97–130, April 2001. ISSN
1046-8188. URL http://doi.acm.org/10.1145/382979.383040.

[24] Ben Carterette and James Allan. Semiautomatic evaluation of retrieval sys-
tems using document similarities. In Proceedings of the Sixteenth ACM Con-
ference on Conference on Information and Knowledge Management, CIKM
’07, pages 873–876, Lisbon, Portugal, 2007. ACM. ISBN 978-1-59593-803-9.
URL http://doi.acm.org/10.1145/1321440.1321564.

[25] Ben Carterette, James Allan, and Ramesh Sitaraman. Minimal test collections
for retrieval evaluation. In Proceedings of the 29th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’06, pages 268–275, Seattle, Washington, USA, 2006. ACM. ISBN
1-59593-369-7. URL http://doi.acm.org/10.1145/1148170.1148219.

190

http://doi.acm.org/10.1145/345508.345543
http://doi.acm.org/10.1145/345508.345543
http://doi.acm.org/10.1145/1008992.1009000
http://trec.nist.gov/pubs/trec15/papers/TERA06.OVERVIEW.pdf
http://trec.nist.gov/pubs/trec15/papers/TERA06.OVERVIEW.pdf
http://doi.acm.org/10.1145/1277741.1277755
http://dx.doi.org/10.1007/0-306-47019-5_5
http://dx.doi.org/10.1007/0-306-47019-5_5
http://doi.acm.org/10.1145/382979.383040
http://doi.acm.org/10.1145/1321440.1321564
http://doi.acm.org/10.1145/1148170.1148219

[26] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology, 2(3):
27:1–27:27, May 2011. ISSN 2157-6904. URL http://doi.acm.org/10.1145/
1961189.1961199.

[27] Shuo Chang and Aditya Pal. Routing questions for collaborative answering in
community question answering. In Proceedings of the 2013 IEEE/ACM In-
ternational Conference on Advances in Social Networks Analysis and Mining,
ASONAM ’13, pages 494–501. ACM, 2013. ISBN 978-1-4503-2240-9. URL
http://doi.acm.org/10.1145/2492517.2492559.

[28] Ruey-Cheng Chen, J. Shane Culpepper, Tadele Tadela Damessie, Timothy
Jones, Ahmed Mourad, Kevin Ong, Falk Scholer, and Evi Yulianti. RMIT
at the TREC 2015 LiveQA track. In Proceedings of the Twenty-Fourth Text
REtrieval Conference, Gaithersburg, Maryland, USA, 2015. URL http://
trec.nist.gov/pubs/trec24/papers/RMIT-QA.pdf.

[29] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
In DLRL Workshop, 2014.

[30] Charles L. A. Clarke, Gordon V. Cormack, Thomas R. Lynam, and Egidio L.
Terra. Question answering by passage selection. In Tomek Strzalkowski and
Sanda M. Harabagiu, editors, Advances in Open Domain Question Answering,
volume 32 of Text, Speech and Language Technology, pages 259–283. Springer
Netherlands, 2006. ISBN 978-1-4020-4744-2. URL http://dx.doi.org/10.
1007/978-1-4020-4746-6_8.

[31] Gordon V. Cormack, Maura R. Grossman, Bruce Hedin, and Douglas W.
Oard. Overview of the TREC 2010 legal track. In Proceedings of the Nine-
teenth Text REtrieval Conference, Gaithersburg, Maryland, USA, 2010. URL
http://trec.nist.gov/pubs/trec19/papers/LEGAL10.OVERVIEW.pdf.

[32] Josue Balandrano Coronel. University of Texas Rio Grande Valley TREC
LiveQA 2016: Using topic modeling to answer complex questions. In
Proceedings of the Twenty-Fifth Text REtrieval Conference, Gaithersburg,
Maryland, USA, 2016. URL http://trec.nist.gov/pubs/trec25/papers/
JBC-TREC2016-QA.pdf.

[33] Kareem Darwish and Walid Magdy. Arabic information retrieval. Foundations
and Trends® in Information Retrieval, 7(4):239–342, 2014. ISSN 1554-0669.
URL http://dx.doi.org/10.1561/1500000031.

[34] Kareem Darwish and Douglas Oard. Probabilistic structured query methods.
In Proceedings of the 26th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’03, pages 338–
344, Toronto, Canada, 2003. ISBN 1-58113-646-3. URL http://doi.acm.
org/10.1145/860435.860497.

191

http://doi.acm.org/10.1145/1961189.1961199
http://doi.acm.org/10.1145/1961189.1961199
http://doi.acm.org/10.1145/2492517.2492559
http://trec.nist.gov/pubs/trec24/papers/RMIT-QA.pdf
http://trec.nist.gov/pubs/trec24/papers/RMIT-QA.pdf
http://dx.doi.org/10.1007/978-1-4020-4746-6_8
http://dx.doi.org/10.1007/978-1-4020-4746-6_8
http://trec.nist.gov/pubs/trec19/papers/LEGAL10.OVERVIEW.pdf
http://trec.nist.gov/pubs/trec25/papers/JBC-TREC2016-QA.pdf
http://trec.nist.gov/pubs/trec25/papers/JBC-TREC2016-QA.pdf
http://dx.doi.org/10.1561/1500000031
http://doi.acm.org/10.1145/860435.860497
http://doi.acm.org/10.1145/860435.860497

[35] Kareem Darwish, Walid Magdy, and Ahmed Mourad. Language processing
for Arabic microblog retrieval. In Proceedings of the 21st ACM International
Conference on Information and Knowledge Management, CIKM ’12, pages
2427–2430, Maui, Hawaii, USA, 2012. ISBN 978-1-4503-1156-4. URL http:
//dx.doi.org/10.1145/2396761.2398658.

[36] Vivek Datla, Sadid A. Hasan, Joey Liu, Yassine Benajiba, Kathy Lee, Ashequl
Qadir, Aaditya Prakash, and Oladimeji Farri. Open domain real-time question
answering based on semantic and syntactic question similarity. In Proceed-
ings of the Twenty-Fifth Text REtrieval Conference, Gaithersburg, Maryland,
USA, 2016. URL http://trec.nist.gov/pubs/trec25/papers/prna-QA.
pdf.

[37] Gideon Dror, Yehuda Koren, Yoelle Maarek, and Idan Szpektor. I want to
answer; who has a question?: Yahoo! Answers recommender system. In Pro-
ceedings of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’11, pages 1109–1117. ACM, 2011. ISBN
978-1-4503-0813-7. URL http://doi.acm.org/10.1145/2020408.2020582.

[38] Gideon Dror, Yoelle Maarek, and Idan Szpektor. Will my question be
answered? Predicting “question answerability” in community question-
answering sites. In Machine Learning and Knowledge Discovery in Databases,
volume 8190 of Lecture Notes in Computer Science, pages 499–514. Springer
Berlin Heidelberg, 2013. ISBN 978-3-642-40993-6. URL http://dx.doi.org/
10.1007/978-3-642-40994-3_32.

[39] Olive Jean Dunn. Multiple comparisons among means. Journal of the
American Statistical Association, 56(293):52–64, 1961. URL http://www.
tandfonline.com/doi/abs/10.1080/01621459.1961.10482090.

[40] Miles Efron and Megan Winget. Questions are content: A taxonomy of ques-
tions in a microblogging environment. Proceedings of the American Society
for Information Science and Technology, 47(1):1–10, 2010. ISSN 1550-8390.
URL http://dx.doi.org/10.1002/meet.14504701208.

[41] Matthew Ekstrand-Abueg, Virgil Pavlu, and Javed A. Aslam. Live nuggets
extractor: A semi-automated system for text extraction and test collection
creation. In Proceedings of the 36th International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’13, pages 1087–
1088, Dublin, Ireland, 2013. ACM. ISBN 978-1-4503-2034-4. URL http:
//doi.acm.org/10.1145/2484028.2484211.

[42] George Forman. An extensive empirical study of feature selection metrics for
text classification. Journal of Machine Learning Research, 3:1289–1305, March
2003. ISSN 1532-4435.

192

http://dx.doi.org/10.1145/2396761.2398658
http://dx.doi.org/10.1145/2396761.2398658
http://trec.nist.gov/pubs/trec25/papers/prna-QA.pdf
http://trec.nist.gov/pubs/trec25/papers/prna-QA.pdf
http://doi.acm.org/10.1145/2020408.2020582
http://dx.doi.org/10.1007/978-3-642-40994-3_32
http://dx.doi.org/10.1007/978-3-642-40994-3_32
http://www.tandfonline.com/doi/abs/10.1080/01621459.1961.10482090
http://www.tandfonline.com/doi/abs/10.1080/01621459.1961.10482090
http://dx.doi.org/10.1002/meet.14504701208
http://doi.acm.org/10.1145/2484028.2484211
http://doi.acm.org/10.1145/2484028.2484211

[43] Jerome H. Friedman. Greedy function approximation: A gradient boosting
machine. The Annals of Statistics, 29(5):1189–1232, 10 2001. URL http:
//dx.doi.org/10.1214/aos/1013203451.

[44] Gabriel Pui Cheong Fung, Jeffrey X. Yu, Hongjun Lu, and Philip S. Yu.
Text classification without negative examples revisit. IEEE Transactions on
Knowledge and Data Engineering, 18(1):6–20, January 2006. ISSN 1041-4347.
URL http://dx.doi.org/10.1109/TKDE.2006.16.

[45] Ning Gao and Douglas Oard. A head-weighted gap-sensitive correlation
coefficient. In Proceedings of the 38th International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, SIGIR ’15,
pages 799–802, Santiago, Chile, 2015. ACM. ISBN 978-1-4503-3621-5. URL
http://doi.acm.org/10.1145/2766462.2767793.

[46] Ning Gao, William Webber, and Douglas W. Oard. Reducing reliance on rel-
evance judgments for system comparison by using expectation-maximization.
In Advances in Information Retrieval, volume 8416 of Lecture Notes in Com-
puter Science, pages 1–12. Springer International Publishing, 2014. ISBN 978-
3-319-06028-6. URL http://dx.doi.org/10.1007/978-3-319-06028-6_1.

[47] Ning Gao, Mossaab Bagdouri, and Douglas W. Oard. Pearson rank: A head-
weighted gap-sensitive score-based correlation coefficient. In Proceedings of
the 39th International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’16, pages 941–944. ACM, 2016. ISBN 978-
1-4503-4069-4. URL http://doi.acm.org/10.1145/2911451.2914728.

[48] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. URL http://www.deeplearningbook.org.

[49] Luis Gravano, Héctor García-Molina, and Anthony Tomasic. The effectiveness
of GIOSS for the text database discovery problem. In Proceedings of the 1994
ACM SIGMOD International Conference on Management of Data, SIGMOD
’94, pages 126–137, Minneapolis, Minnesota, USA, 1994. ACM. ISBN 0-89791-
639-5. URL http://doi.acm.org/10.1145/191839.191869.

[50] Luis Gravano, Chen-Chuan K. Chang, Héctor García-Molina, and Andreas
Paepcke. Starts: Stanford proposal for internet meta-searching. In Proceed-
ings of the 1997 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’97, pages 207–218, Tucson, Arizona, USA, 1997. ACM. ISBN
0-89791-911-4. URL http://doi.acm.org/10.1145/253260.253299.

[51] Laszlo Grunfeld and Kui-Lam Kwok. Sentence ranking using keywords and
meta-keywords. In Advances in Open Domain Question Answering, volume 32
of Text, Speech and Language Technology, pages 229–258. Springer Nether-
lands, 2006. ISBN 978-1-4020-4744-2. URL http://dx.doi.org/10.1007/
978-1-4020-4746-6_7.

193

http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1109/TKDE.2006.16
http://doi.acm.org/10.1145/2766462.2767793
http://dx.doi.org/10.1007/978-3-319-06028-6_1
http://doi.acm.org/10.1145/2911451.2914728
http://www.deeplearningbook.org
http://doi.acm.org/10.1145/191839.191869
http://doi.acm.org/10.1145/253260.253299
http://dx.doi.org/10.1007/978-1-4020-4746-6_7
http://dx.doi.org/10.1007/978-1-4020-4746-6_7

[52] Kilem L Gwet. Handbook of inter-rater reliability: The definitive guide to
measuring the extent of agreement among raters. Advanced Analytics, LLC,
2014.

[53] Sanda M. Harabagiu. Questions and intentions. In Advances in Open Domain
Question Answering, volume 32 of Text, Speech and Language Technology,
pages 99–147. Springer Netherlands, 2006. ISBN 978-1-4020-4744-2. URL
http://dx.doi.org/10.1007/978-1-4020-4746-6_4.

[54] Maram Hasanain, Tamer Elsayed, and Walid Magdy. Identification of answer-
seeking questions in Arabic microblogs. In Proceedings of the 23rd ACM
International Conference on Conference on Information and Knowledge Man-
agement, CIKM ’14, pages 1839–1842, Shanghai, China, 2014. ACM. ISBN
978-1-4503-2598-1. URL http://doi.acm.org/10.1145/2661829.2661959.

[55] Maram Hasanain, Mossaab Bagdouri, Tamer Elsayed, and Douglas Oard.
What questions do journalists ask on Twitter? In Proceedings of the
ICWSM Workshop on Social Media in the Newsroom, 2016. URL http:
//www.aaai.org/ocs/index.php/ICWSM/ICWSM16/paper/view/13221.

[56] Katja Hofmann, Lihong Li, and Filip Radlinski. Online evaluation for informa-
tion retrieval. Foundations and Trends® in Information Retrieval, 10(1):1–117,
2016. ISSN 1554-0669. URL http://dx.doi.org/10.1561/1500000051.

[57] Mohit Iyyer, Jordan Boyd-Graber, Leonardo Claudino, Richard Socher, and
Hal Daumé III. A neural network for factoid question answering over para-
graphs. In Proceedings of the 2014 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP ’14, pages 633–644, Doha, Qatar, 2014.

[58] Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber, and Hal Daumé III.
Deep unordered composition rivals syntactic methods for text classification.
In Proceedings of the Association for Computational Linguistics, ACL ’15,
2015.

[59] Jin-Woo Jeong, Meredith Morris, Jaime Teevan, and Dan Liebling. A crowd-
powered socially embedded search engine. In Proceedings of the 7th In-
ternational AAAI Conference on Weblogs and Social Media, ICWSM ’13,
2013. URL http://www.aaai.org/ocs/index.php/ICWSM/ICWSM13/paper/
view/5986.

[60] Thorsten Joachims. Advances in kernel methods. chapter Making Large-scale
Support Vector Machine Learning Practical, pages 169–184. MIT Press, 1999.
ISBN 0-262-19416-3.

[61] Thorsten Joachims. A support vector method for multivariate performance
measures. In Proceedings of the 22nd International Conference on Machine
Learning, ICML ’05, pages 377–384, Bonn, Germany, 2005. ACM. ISBN 1-
59593-180-5. URL http://doi.acm.org/10.1145/1102351.1102399.

194

http://dx.doi.org/10.1007/978-1-4020-4746-6_4
http://doi.acm.org/10.1145/2661829.2661959
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM16/paper/view/13221
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM16/paper/view/13221
http://dx.doi.org/10.1561/1500000051
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM13/paper/view/5986
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM13/paper/view/5986
http://doi.acm.org/10.1145/1102351.1102399

[62] Thorsten Joachims. Training linear SVMs in linear time. In Proceedings of
the 12th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’06, pages 217–226, Philadelphia, PA, USA, 2006.
ACM. ISBN 1-59593-339-5. URL http://doi.acm.org/10.1145/1150402.
1150429.

[63] K. Sparck Jones, S. Walker, and S. E. Robertson. A probabilistic model of in-
formation retrieval: Development and comparative experiments. Information
Processing and Management, 36(6):779–808, November 2000. ISSN 0306-4573.
URL http://dx.doi.org/10.1016/S0306-4573(00)00015-7.

[64] Timothy Jones, Andrew Turpin, Stefano Mizzaro, Falk Scholer, and Mark
Sanderson. Size and source matter: Understanding inconsistencies in test
collection-based evaluation. In Proceedings of the 23rd ACM International
Conference on Conference on Information and Knowledge Management, CIKM
’14, pages 1843–1846, Shanghai, China, 2014. ACM. ISBN 978-1-4503-2598-1.
URL http://doi.acm.org/10.1145/2661829.2661945.

[65] Daniel Jurafsky and James H. Martin. Speech and Language Processing (2nd
Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2009. ISBN
0131873210.

[66] Diane Kelly and Jimmy Lin. Overview of the TREC 2006 ciQA task. SIGIR
Forum, 41(1):107–116, June 2007. ISSN 0163-5840. URL http://doi.acm.
org/10.1145/1273221.1273231.

[67] M. G. Kendall. A new measure of rank correlation. Biometrika, 30(1-2):81–93,
1938. URL http://dx.doi.org/10.1093/biomet/30.1-2.81.

[68] Maria Khvalchik and Anagha Kulkarni. San Francisco State University at
LiveQA track of TREC 2016. In Proceedings of the Twenty-Fifth Text
REtrieval Conference, Gaithersburg, Maryland, USA, 2016. URL http:
//trec.nist.gov/pubs/trec25/papers/IR.SFSU.2016-QA.pdf.

[69] Yoon Kim. Convolutional neural networks for sentence classification. In Pro-
ceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing, EMNLP ’14, Doha, Qatar, 2014.

[70] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. In 3rd International Conference on Learning Representations, ICLR ’15,
San Diego, CA, USA, 2015.

[71] Paul Kingsbury and Martha Palmer. From treebank to propbank. In Pro-
ceedings of the Third International Conference on Language Resources and
Evaluation, LREC ’02, pages 1989–1993, Las Palmas, Canary Islands - Spain,
2002. European Language Resources Association (ELRA).

195

http://doi.acm.org/10.1145/1150402.1150429
http://doi.acm.org/10.1145/1150402.1150429
http://dx.doi.org/10.1016/S0306-4573(00)00015-7
http://doi.acm.org/10.1145/2661829.2661945
http://doi.acm.org/10.1145/1273221.1273231
http://doi.acm.org/10.1145/1273221.1273231
http://dx.doi.org/10.1093/biomet/30.1-2.81
http://trec.nist.gov/pubs/trec25/papers/IR.SFSU.2016-QA.pdf
http://trec.nist.gov/pubs/trec25/papers/IR.SFSU.2016-QA.pdf

[72] Ron Kohavi. A study of cross-validation and bootstrap for accuracy estimation
and model selection. In Proceedings of the 14th International Joint Conference
on Artificial Intelligence - Volume 2, IJCAI ’95, pages 1137–1143, Montreal,
Quebec, Canada, 1995. Morgan Kaufmann Publishers Inc. ISBN 1-55860-363-
8.

[73] Robert Krovetz. Viewing morphology as an inference process. In Proceedings
of the 16th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’93, pages 191–202, Pittsburgh,
Pennsylvania, USA, 1993. ACM. ISBN 0-89791-605-0. URL http://doi.
acm.org/10.1145/160688.160718.

[74] J. Richard Landis and Gary G. Koch. The measurement of observer agree-
ment for categorical data. Biometrics, 33(1):159–174, 1977. ISSN 0006341X,
15410420. URL http://www.jstor.org/stable/2529310.

[75] Matthew Lease and Emine Yilmaz. Crowdsourcing for information retrieval.
SIGIR Forum, 45(2):66–75, January 2012. ISSN 0163-5840. URL http://
doi.acm.org/10.1145/2093346.2093356.

[76] David D. Lewis. A sequential algorithm for training text classifiers: Corrigen-
dum and additional data. SIGIR Forum, 29(2):13–19, September 1995. ISSN
0163-5840. URL http://doi.acm.org/10.1145/219587.219592.

[77] David D. Lewis and William A. Gale. A sequential algorithm for training
text classifiers. In Proceedings of the 17th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’94,
pages 3–12, Dublin, Ireland, 1994. Springer-Verlag New York, Inc. ISBN 0-
387-19889-X. URL http://dl.acm.org/citation.cfm?id=188490.188495.

[78] Baichuan Li and Irwin King. Routing questions to appropriate answerers in
community question answering services. In Proceedings of the 19th ACM
International Conference on Information and Knowledge Management, CIKM
’10, pages 1585–1588, Toronto, Ontario, Canada, 2010. ACM. ISBN 978-1-
4503-0099-5. URL http://doi.acm.org/10.1145/1871437.1871678.

[79] Baichuan Li, Xiance Si, Michael R. Lyu, Irwin King, and Edward Y. Chang.
Question identification on Twitter. In Proceedings of the 20th ACM Inter-
national Conference on Information and Knowledge Management, CIKM ’11,
pages 2477–2480, Glasgow, Scotland, UK, 2011. ACM. ISBN 978-1-4503-0717-
8. URL http://doi.acm.org/10.1145/2063576.2063996.

[80] Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries.
In Proceedings of the ACL Workshop on Text Summarization Branches Out,
pages 74–81, Barcelona, Spain, 2004. ACL.

[81] Jimmy Lin and Dina Demner-Fushman. Automatically evaluating answers to
definition questions. In Proceedings of the Conference on Human Language

196

http://doi.acm.org/10.1145/160688.160718
http://doi.acm.org/10.1145/160688.160718
http://www.jstor.org/stable/2529310
http://doi.acm.org/10.1145/2093346.2093356
http://doi.acm.org/10.1145/2093346.2093356
http://doi.acm.org/10.1145/219587.219592
http://dl.acm.org/citation.cfm?id=188490.188495
http://doi.acm.org/10.1145/1871437.1871678
http://doi.acm.org/10.1145/2063576.2063996

Technology and Empirical Methods in Natural Language Processing, HLT
’05, pages 931–938, Vancouver, British Columbia, Canada, 2005. ACL. URL
http://dx.doi.org/10.3115/1220575.1220692.

[82] Jimmy Lin and Dina Demner-Fushman. Methods for automatically evaluat-
ing answers to complex questions. Information Retrieval, 9(5):565–587, 2006.
ISSN 1386-4564. URL http://dx.doi.org/10.1007/s10791-006-9003-7.

[83] Jimmy Lin and Pengyi Zhang. Deconstructing nuggets: The stability and
reliability of complex question answering evaluation. In Proceedings of the
30th Annual International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, SIGIR ’07, pages 327–334, Amster-
dam, The Netherlands, 2007. ACM. ISBN 978-1-59593-597-7. URL http:
//doi.acm.org/10.1145/1277741.1277799.

[84] Jimmy Lin, Miles Efron, Yulu Wang, Garrick Sherman, and Ellen Voorhees.
Overview of the TREC-2015 microblog track. In Proceedings of the Twenty-
Fourth Text REtrieval Conference, Gaithersburg, Maryland, USA, 2015. URL
http://trec.nist.gov/pubs/trec24/papers/Overview-MB.pdf.

[85] Jimmy Lin, Adam Roegiest, Luchen Tan, Richard McCreadie, Ellen Voorhees,
and Fernando Diaz. Overview of the TREC 2016 real-time summariza-
tion track. In Proceedings of the Twenty-Fifth Text REtrieval Conference,
Gaithersburg, Maryland, USA, 2016. URL http://trec.nist.gov/pubs/
trec25/papers/Overview-RT.pdf.

[86] Qiaoling Liu, Eugene Agichtein, Gideon Dror, Evgeniy Gabrilovich, Yoelle
Maarek, Dan Pelleg, and Idan Szpektor. Predicting web searcher satisfaction
with existing community-based answers. In Proceedings of the 34th Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’11, pages 415–424, Beijing, China, 2011. ACM. ISBN 978-
1-4503-0757-4. URL http://doi.acm.org/10.1145/2009916.2009974.

[87] Tie-Yan Liu. Learning to rank for information retrieval. Foundations and
Trends® in Information Retrieval, 3(3):225–331, 2009. URL http://dx.doi.
org/10.1561/1500000016.

[88] Zhe Liu and Bernard J. Jansen. Almighty Twitter, what are people asking for?
Proceedings of the American Society for Information Science and Technology,
49(1):1–10, 2012. ISSN 1550-8390. URL http://dx.doi.org/10.1002/meet.
14504901134.

[89] Zhe Liu and Bernard J. Jansen. Subjective versus Objective Questions: Per-
ception of Question Subjectivity in Social Q&A, pages 131–140. Springer
International Publishing, Cham, 2015. ISBN 978-3-319-16268-3. URL http:
//dx.doi.org/10.1007/978-3-319-16268-3_14.

197

http://dx.doi.org/10.3115/1220575.1220692
http://dx.doi.org/10.1007/s10791-006-9003-7
http://doi.acm.org/10.1145/1277741.1277799
http://doi.acm.org/10.1145/1277741.1277799
http://trec.nist.gov/pubs/trec24/papers/Overview-MB.pdf
http://trec.nist.gov/pubs/trec25/papers/Overview-RT.pdf
http://trec.nist.gov/pubs/trec25/papers/Overview-RT.pdf
http://doi.acm.org/10.1145/2009916.2009974
http://dx.doi.org/10.1561/1500000016
http://dx.doi.org/10.1561/1500000016
http://dx.doi.org/10.1002/meet.14504901134
http://dx.doi.org/10.1002/meet.14504901134
http://dx.doi.org/10.1007/978-3-319-16268-3_14
http://dx.doi.org/10.1007/978-3-319-16268-3_14

[90] Marco Lui and Timothy Baldwin. Accurate language identification of Twitter
messages. In Proceedings of the 5th Workshop on Language Analysis for Social
Media @ EACL, LASM ’14, pages 17–25, Gothenburg, Sweden, 2014.

[91] Mihai Lupu and Allan Hanbury. Patent retrieval. Foundations and Trends®
in Information Retrieval, 7(1):1–97, 2013. ISSN 1554-0669. URL http://dx.
doi.org/10.1561/1500000027.

[92] Joel Mackenzie, Ruey-Cheng Chen, and J. Shane Culpepper. RMIT at the
TREC 2016 LiveQA track. In Proceedings of the Twenty-Fifth Text REtrieval
Conference, Gaithersburg, Maryland, USA, 2016. URL http://trec.nist.
gov/pubs/trec25/papers/RMIT-QA.pdf.

[93] Walid Magdy, Wei Gao, Tarek Elganainy, and Zhongyu Wei. QCRI at TREC
2014: Applying the KISS principle for the TTG task in the Microblog track.
In Proceedings of the Twenty-Third Text REtrieval Conference, 2014. URL
http://trec.nist.gov/pubs/trec23/papers/pro-QCRI_microblog.pdf.

[94] Rana Malhas, Marwan Torki, Rahma Ali Evi Yulianti, and Tamer Elsayed.
Real, live, and concise: Answering open-domain questions with word embed-
ding and summarization. In Proceedings of the Twenty-Fifth Text REtrieval
Conference, Gaithersburg, Maryland, USA, 2016. URL http://trec.nist.
gov/pubs/trec25/papers/QU-QA.pdf.

[95] Gregory Marton and Alexey Radul. Nuggeteer: Automatic nugget-based eval-
uation using descriptions and judgements. In Proceedings of the Main Con-
ference on Human Language Technology Conference of the North American
Chapter of the Association of Computational Linguistics, HLT-NAACL ’06,
pages 375–382, New York, New York, 2006. ACL. URL http://dx.doi.org/
10.3115/1220835.1220883.

[96] Edgard Marx and Sandro Coelho. Answering live questions from heteroge-
neous data sources: SMART in Live QA at TREC 2016. In Proceedings of
the Twenty-Fifth Text REtrieval Conference, Gaithersburg, Maryland, USA,
2016. URL http://trec.nist.gov/pubs/trec25/papers/AKSW-QA.pdf.

[97] Matthias R. Mehl, Simine Vazire, Nairán Ramírez-Esparza, Richard B.
Slatcher, and James W. Pennebaker. Are women really more talkative than
men? Science, 317(5834):82–82, 2007. URL http://science.sciencemag.
org/content/317/5834/82.

[98] Weiyi Meng, Clement Yu, and M. Tamer Ozsu. Advanced Metasearch En-
gine Technology. Morgan & Claypool Publishers, 2010. ISBN 1608451925,
9781608451920.

[99] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estima-
tion of word representations in vector space. In Proceedings of Workshop at

198

http://dx.doi.org/10.1561/1500000027
http://dx.doi.org/10.1561/1500000027
http://trec.nist.gov/pubs/trec25/papers/RMIT-QA.pdf
http://trec.nist.gov/pubs/trec25/papers/RMIT-QA.pdf
http://trec.nist.gov/pubs/trec23/papers/pro-QCRI_microblog.pdf
http://trec.nist.gov/pubs/trec25/papers/QU-QA.pdf
http://trec.nist.gov/pubs/trec25/papers/QU-QA.pdf
http://dx.doi.org/10.3115/1220835.1220883
http://dx.doi.org/10.3115/1220835.1220883
http://trec.nist.gov/pubs/trec25/papers/AKSW-QA.pdf
http://science.sciencemag.org/content/317/5834/82
http://science.sciencemag.org/content/317/5834/82

ICLR, Scottsdale, Arizona, USA, 2013. URL http://arxiv.org/abs/1301.
3781.

[100] George A. Miller. WordNet: A lexical database for English. Communications
of the ACM, 38(11):39–41, November 1995. ISSN 0001-0782. URL http:
//doi.acm.org/10.1145/219717.219748.

[101] Gilad Mishne, David Carmel, Ron Hoory, Alexey Roytman, and Aya Soffer.
Automatic analysis of call-center conversations. In Proceedings of the 14th
ACM International Conference on Information and Knowledge Management,
CIKM ’05, pages 453–459, Bremen, Germany, 2005. ACM. ISBN 1-59593-140-
6. URL http://doi.acm.org/10.1145/1099554.1099684.

[102] Alistair Moffat, Falk Scholer, and Paul Thomas. Models and metrics: IR
evaluation as a user process. In Proceedings of the Seventeenth Australasian
Document Computing Symposium, ADCS ’12, pages 47–54, Dunedin, New
Zealand, 2012. ACM. ISBN 978-1-4503-1411-4. URL http://doi.acm.org/
10.1145/2407085.2407092.

[103] Meredith Ringel Morris, Jaime Teevan, and Katrina Panovich. What do peo-
ple ask their social networks, and why?: A survey study of status message
Q&A behavior. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’10, pages 1739–1748, Atlanta, Georgia, USA,
2010. ACM. ISBN 978-1-60558-929-9. URL http://doi.acm.org/10.1145/
1753326.1753587.

[104] Yuanping Nie, Jiuming Huang, Zongsheng Xie, Hai Li, Pengfei Zhang, and Yan
Jia. NudtMDP at TREC 2015 LiveQA track. In Proceedings of the Twenty-
Fourth Text REtrieval Conference, Gaithersburg, Maryland, USA, 2015. URL
http://trec.nist.gov/pubs/trec24/papers/NUDTMDP-QA.pdf.

[105] Douglas W. Oard and William Webber. Information retrieval for e-discovery.
Foundations and Trends® in Information Retrieval, 7(2–3):99–237, 2013. ISSN
1554-0669. URL http://dx.doi.org/10.1561/1500000025.

[106] Anne Oeldorf-Hirsch, Brent Hecht, Meredith Ringel Morris, Jaime Teevan,
and Darren Gergle. To search or to ask: The routing of information needs
between traditional search engines and social networks. In Proceedings of
the 17th ACM Conference on Computer Supported Cooperative Work and
Social Computing, CSCW ’14, pages 16–27, Baltimore, Maryland, USA,
2014. ACM. ISBN 978-1-4503-2540-0. URL http://doi.acm.org/10.1145/
2531602.2531706.

[107] Aditya Pal and Scott Counts. Identifying topical authorities in microblogs. In
Proceedings of the Fourth ACM International Conference on Web Search and
Data Mining, WSDM ’11, pages 45–54, Hong Kong, China, 2011. ACM. ISBN
978-1-4503-0493-1. URL http://doi.acm.org/10.1145/1935826.1935843.

199

http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://doi.acm.org/10.1145/219717.219748
http://doi.acm.org/10.1145/219717.219748
http://doi.acm.org/10.1145/1099554.1099684
http://doi.acm.org/10.1145/2407085.2407092
http://doi.acm.org/10.1145/2407085.2407092
http://doi.acm.org/10.1145/1753326.1753587
http://doi.acm.org/10.1145/1753326.1753587
http://trec.nist.gov/pubs/trec24/papers/NUDTMDP-QA.pdf
http://dx.doi.org/10.1561/1500000025
http://doi.acm.org/10.1145/2531602.2531706
http://doi.acm.org/10.1145/2531602.2531706
http://doi.acm.org/10.1145/1935826.1935843

[108] Aditya Pal and Joseph A. Konstan. Expert identification in community ques-
tion answering: Exploring question selection bias. In Proceedings of the 19th
ACM International Conference on Information and Knowledge Management,
CIKM ’10, pages 1505–1508, Toronto, Ontario, Canada, 2010. ACM. ISBN
978-1-4503-0099-5. URL http://doi.acm.org/10.1145/1871437.1871658.

[109] Aditya Pal, Rosta Farzan, Joseph A. Konstan, and Robert E. Kraut. Early
detection of potential experts in question answering communities. In Proceed-
ings of the 19th International Conference on User Modeling, Adaption, and
Personalization, UMAP’11, pages 231–242, Berlin, Heidelberg, 2011. Springer-
Verlag. ISBN 978-3-642-22361-7. URL http://dl.acm.org/citation.cfm?
id=2021855.2021876.

[110] Aditya Pal, Fei Wang, Michelle X. Zhou, Jeffrey Nichols, and Barton A.
Smith. Question routing to user communities. In Proceedings of the 22nd
ACM International Conference on Conference on Information and Knowledge
Management, CIKM ’13, pages 2357–2362, San Francisco, California, USA,
2013. ACM. ISBN 978-1-4503-2263-8. URL http://doi.acm.org/10.1145/
2505515.2505669.

[111] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU:
A method for automatic evaluation of machine translation. In Proceedings
of the 40th Annual Meeting on Association for Computational Linguistics,
ACL ’02, pages 311–318, Philadelphia, Pennsylvania, 2002. ACL. URL http:
//dx.doi.org/10.3115/1073083.1073135.

[112] Sharoda A. Paul, Lichan Hong, and Ed H. Chi. Is Twitter a good place
for asking questions? A characterization study. In Proceedings of the 5th
International AAAI Conference on Weblogs and Social Media, ICWSM ’11,
2011. URL http://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/
view/2813/3225.

[113] Virgil Pavlu, Shahzad Rajput, Peter B. Golbus, and Javed A. Aslam. IR
system evaluation using nugget-based test collections. In Proceedings of the
Fifth ACM International Conference on Web Search and Data Mining, WSDM
’12, pages 393–402, Seattle, Washington, USA, 2012. ACM. ISBN 978-1-4503-
0747-5. URL http://doi.acm.org/10.1145/2124295.2124343.

[114] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. GloVe:
Global vectors for word representation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing, EMNLP ’14, pages
1532–1543, Doha, Qatar, 2014. URL http://www.aclweb.org/anthology/
D14-1162.

[115] Sasa Petrovic, Miles Osborne, and Victor Lavrenko. I wish I didn’t say that!
Analyzing and predicting deleted messages in Twitter. CoRR, abs/1305.3107,
2013. URL http://arxiv.org/abs/1305.3107.

200

http://doi.acm.org/10.1145/1871437.1871658
http://dl.acm.org/citation.cfm?id=2021855.2021876
http://dl.acm.org/citation.cfm?id=2021855.2021876
http://doi.acm.org/10.1145/2505515.2505669
http://doi.acm.org/10.1145/2505515.2505669
http://dx.doi.org/10.3115/1073083.1073135
http://dx.doi.org/10.3115/1073083.1073135
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/2813/3225
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/2813/3225
http://doi.acm.org/10.1145/2124295.2124343
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://arxiv.org/abs/1305.3107

[116] Martin F. Porter. Readings in information retrieval. chapter An Algorithm
for Suffix Stripping, pages 313–316. Morgan Kaufmann Publishers Inc., 1997.
ISBN 1-55860-454-5.

[117] Hemant Purohit, Carlos Castillo, Fernando Diaz, Amit Sheth, and Patrick
Meier. Emergency-relief coordination on social media: Automatically match-
ing resource requests and offers. First Monday, 19(1), 2013. ISSN 13960466.
URL http://firstmonday.org/ojs/index.php/fm/article/view/4848.

[118] Shahzad Rajput, Virgil Pavlu, Peter B. Golbus, and Javed A. Aslam. A
nugget-based test collection construction paradigm. In Proceedings of the 20th
ACM International Conference on Information and Knowledge Management,
CIKM ’11, pages 1945–1948, Glasgow, Scotland, UK, 2011. ACM. ISBN 978-
1-4503-0717-8. URL http://doi.acm.org/10.1145/2063576.2063861.

[119] C. J. Van Rijsbergen. Information Retrieval. Butterworth-Heinemann, 2nd
edition, 1979. ISBN 0408709294.

[120] Kirk Roberts, Dina Demner-Fushman, Ellen M. Voorhees, and William R.
Hersh. Overview of the TREC 2016 clinical decision support track. In
Proceedings of the Twenty-Fifth Text REtrieval Conference, Gaithersburg,
Maryland, USA, 2016. URL http://trec.nist.gov/pubs/trec25/papers/
Overview-CL.pdf.

[121] Adam Roegiest and Gordon V. Cormack. Impact of review-set selection on
human assessment for text classification. In Proceedings of the 39th Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’16, pages 861–864, Pisa, Italy, 2016. ISBN 978-1-4503-4069-
4. URL http://doi.acm.org/10.1145/2911451.2914709.

[122] Denis Savenkov. Ranking answers and web passages for non-factoid question
answering: Emory University at TREC LiveQA. In Proceedings of the Twenty-
Fourth Text REtrieval Conference, Gaithersburg, Maryland, USA, 2015. URL
http://trec.nist.gov/pubs/trec24/papers/emory-QA.pdf.

[123] Denis Savenkov and Eugene Agichtein. Emory University at TREC LiveQA
2016: Combining crowdsourcing and learning-to-rank approaches for real-
time complex question answering. In Proceedings of the Twenty-Fifth Text
REtrieval Conference, Gaithersburg, Maryland, USA, 2016. URL http:
//trec.nist.gov/pubs/trec25/papers/EmoryIrLab-QA.pdf.

[124] Milad Shokouhi and Luo Si. Federated search. Foundations and Trends®
in Information Retrieval, 5(1):1–102, 2011. ISSN 1554-0669. URL http:
//dx.doi.org/10.1561/1500000010.

[125] Anna Shtok, Gideon Dror, Yoelle Maarek, and Idan Szpektor. Learning from
the past: Answering new questions with past answers. In Proceedings of
the 21st International Conference on World Wide Web, WWW ’12, pages

201

http://firstmonday.org/ojs/index.php/fm/article/view/4848
http://doi.acm.org/10.1145/2063576.2063861
http://trec.nist.gov/pubs/trec25/papers/Overview-CL.pdf
http://trec.nist.gov/pubs/trec25/papers/Overview-CL.pdf
http://doi.acm.org/10.1145/2911451.2914709
http://trec.nist.gov/pubs/trec24/papers/emory-QA.pdf
http://trec.nist.gov/pubs/trec25/papers/EmoryIrLab-QA.pdf
http://trec.nist.gov/pubs/trec25/papers/EmoryIrLab-QA.pdf
http://dx.doi.org/10.1561/1500000010
http://dx.doi.org/10.1561/1500000010

759–768, Lyon, France, 2012. ACM. ISBN 978-1-4503-1229-5. URL http:
//doi.acm.org/10.1145/2187836.2187939.

[126] Luo Si and Jamie Callan. A semisupervised learning method to merge search
engine results. ACM Transactions on Information Systems, 21(4):457–491, Oc-
tober 2003. ISSN 1046-8188. URL http://doi.acm.org/10.1145/944012.
944017.

[127] Mark D. Smucker, James Allan, and Ben Carterette. A comparison of statis-
tical significance tests for information retrieval evaluation. In Proceedings of
the Sixteenth ACM Conference on Conference on Information and Knowledge
Management, CIKM ’07, pages 623–632, Lisbon, Portugal, 2007. ACM. ISBN
978-1-59593-803-9. URL http://doi.acm.org/10.1145/1321440.1321528.

[128] Ian Soboroff, Charles Nicholas, and Patrick Cahan. Ranking retrieval systems
without relevance judgments. In Proceedings of the 24th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’01, pages 66–73, New Orleans, Louisiana, USA, 2001. ACM.
ISBN 1-58113-331-6. URL http://doi.acm.org/10.1145/383952.383961.

[129] Mihai Surdeanu, Massimiliano Ciaramita, and Hugo Zaragoza. Learning to
rank answers on large online QA collections. In Proceedings of the 46th
Annual Meeting of the Association of Computational Linguistics, ACL ’08,
pages 719–727, Columbus, Ohio, 2008. ACL. URL http://www.aclweb.org/
anthology/P/P08/P08-1082.

[130] Reem Suwaileh, Maram Hasanain, Marwan Torki, and Tamer Elsayed. QU
at TREC-2015: Building real-time systems for tweet filtering and question
answering. In Proceedings of the Twenty-Fourth Text REtrieval Conference,
Gaithersburg, Maryland, USA, 2015. URL http://trec.nist.gov/pubs/
trec24/papers/QU-MBQA.pdf.

[131] Reem Suwaileh, Maram Hasanain, and Tamer Elsayed. Light-weight, conser-
vative, yet effective: Scalable real-time tweet summarizatio. In Proceedings of
the Twenty-Fifth Text REtrieval Conference, Gaithersburg, Maryland, USA,
2016. URL http://trec.nist.gov/pubs/trec25/papers/QU-RT.pdf.

[132] Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved seman-
tic representations from tree-structured long short-term memory networks. In
Proceedings of the 53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Conference on Natural Lan-
guage Processing, ACL ’15, 2015. URL http://www.aclweb.org/anthology/
P15-1150.

[133] Haihui Tan, Dajun Luo, and Wenjie Li. PolyU at TREC 2016 real-time sum-
marization. In Proceedings of the Twenty-Fifth Text REtrieval Conference,
Gaithersburg, Maryland, USA, 2016. URL http://trec.nist.gov/pubs/
trec25/papers/COMP2016-RT.pdf.

202

http://doi.acm.org/10.1145/2187836.2187939
http://doi.acm.org/10.1145/2187836.2187939
http://doi.acm.org/10.1145/944012.944017
http://doi.acm.org/10.1145/944012.944017
http://doi.acm.org/10.1145/1321440.1321528
http://doi.acm.org/10.1145/383952.383961
http://www.aclweb.org/anthology/P/P08/P08-1082
http://www.aclweb.org/anthology/P/P08/P08-1082
http://trec.nist.gov/pubs/trec24/papers/QU-MBQA.pdf
http://trec.nist.gov/pubs/trec24/papers/QU-MBQA.pdf
http://trec.nist.gov/pubs/trec25/papers/QU-RT.pdf
http://www.aclweb.org/anthology/P15-1150
http://www.aclweb.org/anthology/P15-1150
http://trec.nist.gov/pubs/trec25/papers/COMP2016-RT.pdf
http://trec.nist.gov/pubs/trec25/papers/COMP2016-RT.pdf

[134] David C. Uthus and David W. Aha. Detecting bot-answerable questions
in Ubuntu chat. In Sixth International Joint Conference on Natural Lan-
guage Processing, IJCNLP 2013, Nagoya, Japan, October 14-18, 2013, IJC-
NLP ’13, pages 747–752, 2013. URL http://aclweb.org/anthology/I/I13/
I13-1089.pdf.

[135] Stalin Varanasi and Günter Neumann. Question/answer matching for Ya-
hoo! Answers using a corpus-based extracted ngram-based mapping. In Pro-
ceedings of the Twenty-Fourth Text REtrieval Conference, Gaithersburg,
Maryland, USA, 2015. URL http://trec.nist.gov/pubs/trec24/papers/
dfkiqa-QA.pdf.

[136] Ellen M. Voorhees. The TREC-8 question answering track report. In Pro-
ceedings of the Eighth Text REtrieval Conference, pages 77–82, Gaithersburg,
Maryland, USA, 1999. URL http://trec.nist.gov/pubs/trec8/papers/
qa_report.pdf.

[137] Ellen M. Voorhees. The philosophy of information retrieval evaluation. In
Revised Papers from the Second Workshop of the Cross-Language Evalua-
tion Forum on Evaluation of Cross-Language Information Retrieval Systems,
CLEF ’01, pages 355–370. Springer-Verlag, 2002. ISBN 3-540-44042-9.

[138] Ellen M. Voorhees and Donna Harman. Overview of the eighth text re-
trieval conference (TREC-8). In Proceedings of the Eighth Text REtrieval
Conference, pages 1–23, Gaithersburg, Maryland, USA, 1999. URL http:
//trec.nist.gov/pubs/trec8/papers/overview_8.pdf.

[139] Alexandra Vtyurina, Ankita Dey, Bahareh Sarrafzadeh, and Charles L. A.
Clarke. WaterlooClarke: TREC 2015 LiveQA track. In Proceedings
of the Twenty-Fourth Text REtrieval Conference, Gaithersburg, Mary-
land, USA, 2015. URL http://trec.nist.gov/pubs/trec24/papers/
WaterlooClarke-QA.pdf.

[140] Di Wang and Eric Nyberg. CMU OAQA at TREC 2015 LiveQA: Discov-
ering the right answer with clues. In Proceedings of the Twenty-Fourth
Text REtrieval Conference, Gaithersburg, Maryland, USA, 2015. URL http:
//trec.nist.gov/pubs/trec24/papers/oaqa-QA.pdf.

[141] Di Wang and Eric Nyberg. CMU OAQA at TREC 2016 LiveQA: An atten-
tional neural encoder-decoder approach for answer ranking. In Proceedings of
the Twenty-Fifth Text REtrieval Conference, Gaithersburg, Maryland, USA,
2016. URL http://trec.nist.gov/pubs/trec25/papers/CMU-OAQA-QA.
pdf.

[142] Kai Wang, Zhaoyan Ming, and Tat-Seng Chua. A syntactic tree matching
approach to finding similar questions in community-based QA services. In
Proceedings of the 32nd International ACM SIGIR Conference on Research

203

http://aclweb.org/anthology/I/I13/I13-1089.pdf
http://aclweb.org/anthology/I/I13/I13-1089.pdf
http://trec.nist.gov/pubs/trec24/papers/dfkiqa-QA.pdf
http://trec.nist.gov/pubs/trec24/papers/dfkiqa-QA.pdf
http://trec.nist.gov/pubs/trec8/papers/qa_report.pdf
http://trec.nist.gov/pubs/trec8/papers/qa_report.pdf
http://trec.nist.gov/pubs/trec8/papers/overview_8.pdf
http://trec.nist.gov/pubs/trec8/papers/overview_8.pdf
http://trec.nist.gov/pubs/trec24/papers/WaterlooClarke-QA.pdf
http://trec.nist.gov/pubs/trec24/papers/WaterlooClarke-QA.pdf
http://trec.nist.gov/pubs/trec24/papers/oaqa-QA.pdf
http://trec.nist.gov/pubs/trec24/papers/oaqa-QA.pdf
http://trec.nist.gov/pubs/trec25/papers/CMU-OAQA-QA.pdf
http://trec.nist.gov/pubs/trec25/papers/CMU-OAQA-QA.pdf

and Development in Information Retrieval, SIGIR ’09, pages 187–194, Boston,
MA, USA, 2009. ACM. ISBN 978-1-60558-483-6. URL http://doi.acm.org/
10.1145/1571941.1571975.

[143] William Webber. Approximate recall confidence intervals. ACM Transactions
on Information Systems, 31(1):2:1–2:33, January 2013. ISSN 1046-8188. URL
http://doi.acm.org/10.1145/2414782.2414784.

[144] John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. Towards
universal paraphrastic sentence embeddings. In 4th International Conference
on Learning Representations, ICLR ’16, 2016.

[145] Guoshun Wu and Man Lan. Leverage web-based answer retrieval and hierar-
chical answer selection to improve the performance of live question answering.
In Proceedings of the Twenty-Fourth Text REtrieval Conference, Gaithers-
burg, Maryland, USA, 2015. URL http://trec.nist.gov/pubs/trec24/
papers/ecnucs-QA.pdf.

[146] Lichun Yang, Shenghua Bao, Qingliang Lin, Xian Wu, Dingyi Han, Zhong Su,
and Yong Yu. Analyzing and predicting not-answered questions in community-
based question answering services. In Proceedings of the Twenty-Fifth AAAI
Conference on Artificial Intelligence, AAAI ’11, pages 1273–1278, San Fran-
cisco, California, 2011. AAAI Press. URL http://www.aaai.org/ocs/index.
php/AAAI/AAAI11/paper/view/3598.

[147] Alexander Yeh. More accurate tests for the statistical significance of result
differences. In Proceedings of the 18th Conference on Computational Linguis-
tics - Volume 2, COLING’20, pages 947–953, Saarbrücken, Germany, 2000.
ACL.

[148] Reyyan Yeniterzi and Jamie Callan. Analyzing bias in CQA-based expert
finding test sets. In Proceedings of the 37th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, SIGIR ’14,
pages 967–970, Gold Coast, Queensland, Australia, 2014. ACM. ISBN 978-1-
4503-2257-7. URL http://doi.acm.org/10.1145/2600428.2609486.

[149] Emine Yilmaz, Javed A. Aslam, and Stephen Robertson. A new rank cor-
relation coefficient for information retrieval. In Proceedings of the 31st An-
nual International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’08, pages 587–594, Singapore, Singapore,
2008. ACM. ISBN 978-1-60558-164-4. URL http://doi.acm.org/10.1145/
1390334.1390435.

[150] Emine Yilmaz, Evangelos Kanoulas, and Javed A. Aslam. A simple and effi-
cient sampling method for estimating AP and NDCG. In Proceedings of the

204

http://doi.acm.org/10.1145/1571941.1571975
http://doi.acm.org/10.1145/1571941.1571975
http://doi.acm.org/10.1145/2414782.2414784
http://trec.nist.gov/pubs/trec24/papers/ecnucs-QA.pdf
http://trec.nist.gov/pubs/trec24/papers/ecnucs-QA.pdf
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3598
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3598
http://doi.acm.org/10.1145/2600428.2609486
http://doi.acm.org/10.1145/1390334.1390435
http://doi.acm.org/10.1145/1390334.1390435

31st Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, SIGIR ’08, pages 603–610, Singapore, Singa-
pore, 2008. ACM. ISBN 978-1-60558-164-4. URL http://doi.acm.org/10.
1145/1390334.1390437.

[151] Wenpeng Yin and Hinrich Schütze. Convolutional neural network for para-
phrase identification. In NAACL-HLT, pages 901–911, 2015.

[152] Hong Yu and Carl Sable. Being Erlang Shen: Identifying answerable questions.
In Proceedings of the IJCAI’05 Workshop on Knowledge and Reasoning for
Answering Questions, Edinburgh, Scotland, UK, 2005.

[153] G.U. Yule. An Introduction to the Theory of Statistics. Griffin’s sci. series.
C. Griffin, limited, 1911.

[154] Oren Zamir and Oren Etzioni. Grouper: A dynamic clustering interface to web
search results. In Proceedings of the Eighth International Conference on World
Wide Web, WWW ’99, pages 1361–1374, Toronto, Canada, 1999. Elsevier
North-Holland, Inc. URL http://dx.doi.org/10.1016/S1389-1286(99)
00054-7.

[155] Weiqian Zhang, Weijie An, Jinchao Ma, Yan Yang, Qinmin Hu, and Liang
He. ECNU at TREC 2015: LiveQA track. In Proceedings of the Twenty-
Fourth Text REtrieval Conference, Gaithersburg, Maryland, USA, 2015. URL
http://trec.nist.gov/pubs/trec24/papers/ECNU-QA.pdf.

[156] Zhe Zhao and Qiaozhu Mei. Questions about questions: An empirical analysis
of information needs on Twitter. In Proceedings of the 22nd International
Conference on World Wide Web, WWW ’13, pages 1545–1556, Rio de Janeiro,
Brazil, 2013. ACM. ISBN 978-1-4503-2035-1. URL http://doi.acm.org/10.
1145/2488388.2488523.

[157] Liang Zhou, Namhee Kwon, and Eduard Hovy. A semi-automatic evaluation
scheme: Automated nuggetization for manual annotation. In Human Lan-
guage Technologies 2007: The Conference of the North American Chapter
of the Association for Computational Linguistics; Companion Volume, Short
Papers, NAACL-Short ’07, pages 217–220, Rochester, New York, 2007. ACL.

[158] Tom Chao Zhou, Michael R. Lyu, and Irwin King. A classification-based ap-
proach to question routing in community question answering. In Proceedings
of the 21st International Conference on World Wide Web, WWW ’12 Com-
panion, pages 783–790, Lyon, France, 2012. ACM. ISBN 978-1-4503-1230-1.
URL http://doi.acm.org/10.1145/2187980.2188201.

205

http://doi.acm.org/10.1145/1390334.1390437
http://doi.acm.org/10.1145/1390334.1390437
http://dx.doi.org/10.1016/S1389-1286(99)00054-7
http://dx.doi.org/10.1016/S1389-1286(99)00054-7
http://trec.nist.gov/pubs/trec24/papers/ECNU-QA.pdf
http://doi.acm.org/10.1145/2488388.2488523
http://doi.acm.org/10.1145/2488388.2488523
http://doi.acm.org/10.1145/2187980.2188201

	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Motivation and General Background
	General Architecture
	Questions
	Answering Platforms
	Answering
	Answer Presentation

	Evaluation of Answering Platforms
	Research Questions
	Contributions
	Dissertation Outline

	Related Work
	Factoid Question Answering
	Cross-Platform Live Question Answering
	Evaluation of Information Retrieval Systems
	Community Question Answering
	Federated Search
	Routing Questions to Users and Communities

	Detecting Answerable Questions
	Detection of Interrogative Tweets (Itweets)
	Detecting Questions with Real Information Needs (Qweets)
	Qweets Corpora
	Evaluation Measures
	Classification Methods
	Effectiveness of Qweet Detectors

	Detecting Answerable Qweets (Aqweets)
	Source
	Annotations
	SVM Aqweet Classifiers
	BLSTM Aqweet Classifiers
	Evaluation
	Enhancing Recall with Active Learning

	Towards an End-to-End Pipeline
	Overall Effectiveness
	Alternative Implementation Strategies

	Chapter Summary

	Finding Useful Answers
	TREC Evaluation Campaigns
	TREC Live Question Answering Track
	TREC Real-Time Summarization Track

	Collections of Answers
	A Crawl of Yahoo!Answers
	Collections of Tweets

	Answering Aqweets
	Where to Search
	Scoring Function
	Question Rewriting
	Term Statistics
	Question/Question Similarity
	Learning to Rank Threads
	Combining Twitter Replies and Yahoo!Answers
	Baselines
	Annotations
	Results

	Answering Live Yahoo! Questions
	Answering with Old Yahoo!Answers
	Answering from Twitter
	Evaluation
	On Combining Answers from Twitter and Yahoo!Answers

	Deciding to Answer
	Components
	Deciding when to Answer
	Evaluation Metrics
	Results and Analysis

	Chapter Summary

	Evaluating Future Answers
	Relevance Estimation Methods
	Item Length
	Clipped Term Counts
	Core Vocabulary
	Vocabulary Expansion
	Item Embedding
	Augmented Diversity Sampling

	Evaluating Reusability
	Single-Ablation with Regression
	Paired-Ablation Evaluation

	TREC 2015 LiveQA Evaluation
	Test Collection
	Single-Ablation Unregressed Results
	Single-Ablation Regressed Results
	Paired-Ablation Results

	TREC-8 Ad Hoc Evaluation
	Chapter Summary

	Conclusion
	Limitations
	Lessons Learned
	Big Data Win
	Fast Data Win
	Smart Data Win
	Platform Agnostic Answering Pipeline
	One-Shot Crowdsourcing Annotations Are Safer
	BLSTM Classifiers are Often a Good Choice
	Task Specific Effectiveness Tuning

	Future Work
	Implications
	Other Applications of Item Embedding
	The Future of Question Answering

	Bibliography

