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Abstract
Epidemiological investigation of the impact of climate change on human health, particularly

chronic diseases, is hindered by the lack of exposure metrics that can be used as a marker

of climate change that are compatible with health data. Here, we present a surrogate expo-

sure metric created using a 30-year baseline (1960–1989) that allows users to quantify

long-term changes in exposure to frequency of extreme heat events with near unabridged

spatial coverage in a scale that is compatible with national/state health outcome data. We

evaluate the exposure metric by decade, seasonality, area of the country, and its ability to

capture long-term changes in weather (climate), including natural climate modes. Our find-

ings show that this generic exposure metric is potentially useful to monitor trends in the fre-

quency of extreme heat events across varying regions because it captures long-term

changes; is sensitive to the natural climate modes (ENSO events); responds well to spatial

variability, and; is amenable to spatial/temporal aggregation, making it useful for epidemio-

logical studies.

Introduction
Climate change is expected to cause approximately 250,000 deaths per year between 2030 and
2050 with direct damage costs totaling $ 2–4 billion USD per year by 2030 [1]. Chronic dis-
eases, that may be exacerbated by climate change, disproportionately affect more vulnerable
populations—including children, older adults, the socially isolated, and those with mental
health issues [2]. Epidemiological investigation of the impact of climate change on human
health is hindered by the differing temporal scale of the primary exposure of interest (climate
change: decadal scale) and health outcomes that have varying sensitive time windows (days to
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years) in epidemiological studies that are based on a few years of data [3,4]. There is a need for
a set of suitable exposure metrics that can capture the subtle attributes of changing climate (e.g.
frequency, duration, and intensity of extreme events that are expected to rise), and would allow
for comparisons across different geographical locations and time periods. Such an exposure
metric should have enough flexibility for temporal aggregation to meet the needs of different
types of epidemiological studies. Furthermore, for national health studies, there is a need for
spatial compatibility, as meteorological data are often available at station level or a specific
grid, whereas, national health data (e.g., behavioral risk factor surveillance system (BRFSS),
Centers for Medicare and Medicaid Services (CMS), healthcare cost and utilization project
(HCUP), CDC’s Public Health Tracking data) are commonly available at zip code, county or
state levels, often with a non-uniform spatial resolution.

Public health researchers are increasingly using temperature measures (maximum, mini-
mum, heat index, and apparent temperature), and heat wave episodes to identify the acute
health outcomes associated with weather. While the linkage of frequency and intensity of heat
waves with acute health outcomes provide important information about long-term climate
trends and health, heat waves are still relatively uncommon in most locations in the US [5,6],
limiting the generalizability of study results across locations and over time. Moreover, heat
wave measurements are designed to capture physical phenomenon: most common definitions
include a certain number of consecutive days exceeding a location-specific threshold [7].
Hence, by definition, heat wave does not capture isolated days where temperatures may have
been high and, possibly, affecting health. Extreme heat events, on the contrary, will capture
such isolated event.

For chronic health outcomes, the meaningful window of exposure may vary from months
to several years. Not surprisingly, the relationships between climate change and chronic health
outcomes are less understood than acute health outcomes, such as mortality or an emergency
department (ED) visit, owing to the difficulty in defining appropriate exposure metrics that
characterize underlying and long-term climate change at varying temporal and spatial resolu-
tions and that are appropriate for chronic health outcomes [8,9].

In this paper we describe an indicator designed to capture exposure to climate variability
and change at a spatial scale that is consistent with publically available county-level health out-
come data. This indicator, henceforth referred to as an exposure metric or “extreme heat
event”, captures positive anomaly derived using distributions of county- and month-specific
climatology using a 30-year reference period (1960–1989). Although both extreme heat and
extreme cold are important, this manuscript focuses exclusively on extreme heat because
warmer temperature is associated with etiology of many infectious (higher rates of pathogen
replication) as well as chronic diseases (increases in concentration of pollutant such as ozone).
The exposure metric enables users to look at spatial and temporal changes over time using
location specific baselines and serves as an additional resource to investigate the potential rela-
tionships between climate change and human health. We tabulate this exposure metric by time
period, season, Census division, and 2006 urban-rural classification, documenting how the
exposure metric is amenable to spatial and temporal aggregation across factors that are known
to be associated with variability in temperature. Finally, we evaluate this exposure metric by
assessing its correspondence to the different phases of El-Niño-Southern Oscillation (ENSO), a
natural oscillation patterns that affect the weather phenomenon in the continental US and
other parts of the world.
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Materials and Methods
Meteorological data were acquired from the National Climatic Data Center (NCDC) branch of
the National Oceanic and Atmospheric Association (NOAA) that maintains the world’s largest
archive of meteorological data from the past 150 years. The data used to develop the metric are
archived in two broad categories: DSI-3200 and DSI-3210. The DSI-3210 network is a smaller
subset of DSI-3200 stations that collect several additional weather variables besides tempera-
ture and precipitation (e.g., barometric pressure, wind speed, wind direction), but has a poor
spatial coverage. Therefore we chose the DSI-3200 database that contains approximately 8,000
active stations, with up to 23,000 stations for various years. The stations cover all 50 states plus
Puerto Rico, US Virgin Islands and Pacific Island territories. Each dataset underwent quality
control measures through both automated and manual edits by the NCDC, which consisted of
internal consistency checks and evaluation against adjacent stations [10]. To develop and eval-
uate the metric, we used climate data for the 48 contiguous states and the District of Columbia.
The county boundaries used for all years were defined by the 2000 Federal Processing Stan-
dards (FIPS) codes.

For Urban-Rural status, we used the 2006 county level National Center for Health Statistics
(NCHS) Urban-Rural Classification Scheme. The 2006 NCHS urban-rural classification
scheme was developed for use in studying and monitoring health disparities across the urban-
rural continuum. The 2006 scheme consists of four levels of metropolitan counties (large cen-
tral, large fringe, medium and small metro) and two levels of nonmetropolitan counties
(micropolitan and non-core). This scheme is based on the December 2005 Office of Manage-
ment and Budget delineations of county classification, Metropolitan Statistical Area (MSA)
and principal city, MSA population-size cut points, and classification rules formulated by
NCHS [11]. In congruence with other studies [12–17], we opted to use this relatively recent
classification scheme for the complete 51 years of data (1960–2010). However, because the
2006 scheme is not as accurate for earlier time periods as it is for more recent time periods
[11], we also tabulated the extreme heat events using a 1990 urban rural classification [18] to
conduct a sensitivity analysis.

The census division classification used in this study consists of groups of contiguous states
as defined by the US Bureau of the Census (as: New England–CT, ME, MA, NH, RI, VT; Mid-
dle Atlantic–NJ, NY, PA; South Atlantic–DE, DC, FL, GA, MD, NC, SC, VA, WV; East South
Central–AL, KY, MS, TN; West South Central–AR, LA, OK, TX; East North Central- Il, IN,
MI, OH, WI; West North Central–IA, KS, MN, MO, NE, ND, SD; Mountain–AZ, CO, ID, MT,
NV, NM, UT, WY; and Pacific–CA, WA, OR). Seasons were defined as: Winter–December,
January, and February; Spring–March, April, and May; Summer–June, July, and August; and
Autumn–September, October, and November.

El-Niño-Southern Oscillation (ENSO) indicator data—Oceanic Niño Index (ONI)—were
obtained from the National Oceanic and Atmospheric Administration (NOAA), National
Weather Service Climate Prediction Center. The Climate Prediction Center is a coordinated
program that monitors, assesses and predicts climate phenomena and their linkage to weather
events. Warm and cold episodes are based on a threshold of +/- 0.5°C for the Oceanic Niño
Index (ONI)—a 3-month running median anomalies in the sea surface temperature in the
Niño 3.4 region (5°N-5°S, 120°-170°W). The threshold values are based on centered 30-year
base periods and are updated every 5 years. El Niño and La Niña episodes are defined when the
threshold is met for a minimum of 5 consecutive over-lapping seasons. This ENSO indices
data were used to categorize the months as La Niña, El Niño and Neutral months [19].
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Extreme Heat Events
We assigned daily maximum temperature for all counties using the following rules: 1) aver-
age of daily maximum temperatures from all stations within the county, 2) if no station data
were available from the county, the daily maximum temperature used was from the closest
available station within a 20 km radius of the county boundary, and 3) a missing value was
assigned if the previous two criteria were not met. In the complete dataset of observations,
99% of all counties had less than 1.5% missing data and there was no spatial pattern to the
location of missing data. To compute extreme heat events, we used 1960–1989 as a reference
period. This time period was chosen because the weather data were recorded consistently
with current methods of NCDC measurement and the 30-year time period is generally
accepted as the epoch (per the IPCC report) to represent the standardization of a climate
regime [20]. For each county within the continental US, we compiled daily maximum tem-
peratures (Tmax) by calendar months (e.g., Jan 1st to Jan 31st). For the 30-year reference
period with no missing data, the total number of values would be approximately 900 observa-
tions (30 years by ~30 days in a month) for each county and calendar month. Using this dis-
tribution of daily Tmax, we calculated the month specific 95th percentile thresholds for each
county. Using this cutoff value, we computed the calendar month and year specific extreme
heat events for each county as:

Ejk ¼
X

i
Iijk where Iijk ¼

1; if Tijk�max > Tjk�95

0; if Tijk�max � Tjk�95

ð1Þ
(

where Ejk is the total number of extreme heat events for county j in calendar month k; Tijk-max

is the daily maximum temperature (Tmax) in county j for day i of calendar month k; Tjk-95 is
the 95th percentile Tmax value for county j for calendar month k for the 1960–1989 period;
and Iijk represents the indicator of whether or not Tijk-max is greater than Tjk−95.

Evaluation
The units of analysis for our evaluation of the indicator were the annual and monthly total
number of events; these are the metrics that are referenced throughout the paper. All covari-
ates of interest were defined at the county, year and month levels. We computed descriptive
statistics of the spatial (2006 urban-rural classification, Census division) and temporal (sea-
sonal, decadal) characteristics. Additional descriptive statistics were calculated for ENSO
periods. After checking the normality assumption, comparisons of means were performed
using one-way analysis of variance (ANOVA) and post-hoc Tukey’s honest significant differ-
ence (HSD) tests [21]. We further investigated the temporal and spatial dependency of the
exposure metric using negative binomial generalized estimation equation (GEE) models
[22,23]. The year and monthly total extreme heat event anomalies in each county were mod-
eled as a function of seasonality, ENSO, 2006 urban-rural classification, and Census division.
We identified findings as statistically significant with a p-value <0.05. Most statistical analy-
ses were performed using SAS 9.3 (SAS Institute, Cary, NC). In particular, PROC GENMOD
was used to fit the negative binomial GEE models using a first-order autoregressive covari-
ance structure. The exponent of the estimated regression coefficients was calculated to esti-
mate the percent change in the mean response (number of extreme heat events) associated
with changes in the covariates. Regression maps were created using ArcGIS 10 (esri, Red-
lands, CA) to display the county level regression parameter estimate for the impact of ENSO
on the number of extreme heat events after adjusting for seasonal and 2006 urban-rural
classification.
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Results
The final extreme heat event dataset consisted of 3,109 counties over 51 years (1960 to 2010)
located in the continental US (Table 1). In general, we observed significantly higher frequency
of extreme heat events during the 1990s and 2000s compared to the reference period (1960–
1989). This trend was consistent across season, 2006 urban-rural classifications and most Cen-
sus divisions, with few exceptions. Within the two time periods (1990s and 2000s) the large
central metro areas observed higher number extreme heat events compared to small metro and
micropolitan areas. We also found an increasing trend in extreme heat events that varied con-
siderably by area of the country, with the most pronounced trend observed for the New
England, Middle Atlantic and Mountain divisions with lesser increases in the East and West
North Central divisions (Fig 1). Interactions between time periods and Census divisions,
ENSO, and Seasons were found to be highly significant and justified the stratification of the
analysis by time period.

Table 2 provides the frequency of extreme heat events stratified by phases of ENSO for the 3
time periods (1960–1989, 1990–1999, and 2000–2010), across season, 2006 urban rural classifi-
cation, and Census Division. In general, La Niña periods were characterized by significantly
higher frequency of extreme heat events while El Niño periods showed significantly lower fre-
quency of extreme heat events for all seasons, 2006 urban-rural classifications, and most

Table 1. County-level annual frequency of extreme heat events (mean (standard deviation, SD)), excluding Alaska and Hawaii.

No. Counties Time Period

1960–1989 1990–1999 2000–2010

Contiguous US 3109 15.2 (1.2) 16.5 (6.2)+ 18. 2 (7.7)+

Season

Autumn 3109 3.7 (0.4) 4.1 (1.7)+ 4.9 (2.0)+

Winter 3109 3.9 (0.4) 5.1 (1.6)+ 4.5 (1.6)+

Spring 3109 3.8 (0.4) 3.6 (1.6)‡ 4.4 (2.2)+

Summer 3109 3.6 (0.4) 3.8 (2.7)+ 4.4 (3.4)+

County Urban-Rural Classification

Large central metro 63 15.2 (1.4) 20.9 (6.2)+ 19.7 (6.8)+

Large fringe metro 354 15.1 (1.4) 17.8 (6.2)+ 18.5 (8.0)+

Medium metro 329 15.2 (1.2) 17.7 (7.4)+ 19.2 (8.8)+

Small metro 340 15.0 (1.2) 17.0 (6.2)+ 18.0 (9.0)+

Micropolitan 688 15.1 (1.2) 16.1 (6.3)+ 18.0 (7.3)+

Non-core 1335 15.2 (1.2) 15.8 (5.6)+ 18.0 (7.3)+

Census Division

New England 67 16.3 (0.5) 19.9 (5.8)+ 21.6 (8.4)+

Middle Atlantic 150 16.1 (0.5) 21.4 (5.2)+ 21.7 (6.0)+

South Atlantic 589 14.5 (1.4) 18.3 (7.8)+ 17.9 (10.6)+

East South Central 364 14.7 (1.0) 14.6 (5.0) 17.2 (6.2)+

West South Central 470 14.1 (1.2) 15.7 (6.7)+ 18.4 (7.8)+

East North Central 437 15.6 (1.0) 16.3 (3.6)+ 17.4 (4.4)+

West North Central 618 15.9 (0.8) 14.2 (3.3) ‡ 16.7 (4.2) +

Mountain 281 15.4 (0.8) 18.0 (8.1)+ 21.5 (11.0)+

Pacific 133 15.8 (0.7) 18.2 (5.7)+ 18.2 (6.1)+

+Significantly higher than the baseline (1960–1989) period(Pvalue <0.05).
‡ Significantly lower than the baseline (1960–1989) period(Pvalue <0.05)

doi:10.1371/journal.pone.0144202.t001
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Census divisions when compared to the ENSO Neutral years. A noted exception to this pattern
appeared in the 1990–1999 when the frequency of extreme heat events during El Niño were
not lower than those observed during the ENSO neutral period, with some census divisions
such as New England, Middle Atlantic, East/West North Central, Mountain and Pacific regions
observing higher frequency of extreme heat events. Exceptions were also noted for winter of
1990s and 2000s, as well as summer of 1990s.

Table 3 presents the results from three negative binomial GEE models of monthly frequency
of extreme heat events stratified by three time periods: 1960–1989, 1990–1999, and 2000–2010.
Compared to ENSO neutral periods, El Niño periods were associated with significantly fewer
events at the national scale, ranging from 9% fewer (estimated eβ = 0.91, p<0.001) during the
1990s to 24% fewer (estimated eβ = 0.76, p<0.001) during the 2000s, after adjusting for season,
2006 urban-rural classification and Census division (Table 3). By comparison, La Niña periods
were associated with as much as 29% higher frequency of extreme heat events at the national
level (estimated eβ = 1.29, p<0.001 for 1990–1999 & 2000–2010). For the 1990s and 2000s,
counties that were large metropolitan areas based on the 2006 urban-rural classification tended
to have a higher frequency of extreme heat events (estimated eβ>1.0) compared to non-core
counties; although, this urban-rural difference was statistically significant only during the
1990s (p<0.05). Compared to New England, the other Census divisions of the country had sig-
nificantly fewer differences in the extreme heat events for each of the three time periods (esti-
mated eβ for all Census divisions<1.0), with the exception of the Middle Atlantic division.

The analysis for continental US were further broken down by Census division (Table 4).
Overall, the Census division results agreed with the country level analysis presented in Table 3
with few noted exceptions. For example, compared to ENSO neutral periods, El Niño years
were associated with significantly lower frequency of extreme heat events across Census divi-
sions during 1960–1989 and 2000–2010 period. However, during 1990–1999, El Niño years
were associated with increased frequency of extreme heat events compared to ENSO neutral
years in several Census divisions (New England, Mid Atlantic and the Pacific divisions). La
Niña periods were associated with a higher frequency of extreme heat events than ENSO neu-
tral periods across most Census divisions; with the largest effect (75%) observed for the West
South Central division during the 1990–1999 time periods. An exception to this pattern was in
the Pacific division, where the La Niña period was associated with 15% lower frequency of
extreme heat events compared to the ENSO neutral period during 2000–2010 (estimated eβ =
0.85, p<0.001).

Fig 1. Temporal trend in extreme heat events across census division for the 1960–2010 periods.

doi:10.1371/journal.pone.0144202.g001
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Spatial heterogeneity in these findings was further investigated using the county level regres-
sion coefficients (Fig 2). The findings presented in Fig 2 are in agreement with the results of the
divisional model (Table 4), but the finer county level resolution allows for the identification of
additional counties whose results were masked in the divisional level analysis (e.g., selected
counties in TX and ME experienced larger percent changes in frequency of extreme heat events
during El Niño periods). We conducted sensitivity analysis using 1990 NCHS Urban-Rural
Classification Scheme for Counties instead of the 2006 schemes; however this did not change
our conclusions (results not shown).

Table 2. County-level annual frequency of extreme heat events (mean (SD)) overall and by season, urbanization and Census Division, across
decades and ENSO periods.

No.
Counties

Time Periods

1960–1989 (Baseline) 1990–1999 2000–2010

Neutral La Niña El Niño Neutral La Niña El Niño Neutral La Niña El Niño

Contiguous US 3109 15.1 (2.3) 17.8 (3.0)+ 12.6 (2.1)‡ 14.7 (6.2) 22.8 (11.0)+ 15.3 (7.3)+ 17.8 (8.9) 22.3 (9.1)+ 13.0 (7.6)‡

Season

Autumn 3109 16.0 (3.8) 16.0 (4.3) 13.0 (3.1)‡ 13.9 (7.2) 21.6 (11.4)+ 14.1 (8.6) 19.4 (12.2) 24.6 (11.0)+ 11.8 (6.9)‡

Winter 3109 15.5 (2.6) 16.2 (3.8)+ 14.1 (4.9)‡ 15.6 (7.1) 9.0 (11.1)‡ 13.7 (9.0)‡ 18.2 (9.1) 15.1 (12.0)‡ 19.0 (13.0)

Spring 3109 13.6 (3.2) 19.0 (6.8)+ 12.1 (4.3)‡ 12.5 (10.0) 26.7 (24.3)+ 9.8 (11.4)‡ 15.6 (14.5) 25.4 (23.1)+ 14.8 (13.8)

Summer 3109 15.6 (3.7) 20.1 (6.0)+ 11.5 (3.4)‡ 16.4 (8.3) 27.2 (11.5)+ 22.2 (8.9)+ 18.7 (8.6) 21.1 (8.9)+ 9.4 (8.1)‡

County Urban-Rural
Classification

Large central
metro

63 15.0 (2.1) 18.0 (2.9)+ 12.7 (2.1)‡ 19.8 (6.7) 25.0 (10.0)+ 20.0 (8.1) 19.6 (7.8) 22.8 (7.7)+ 15.2 (7.4)‡

Large fringe
metro

354 14.6 (2.3) 18.7 (3.0)+ 12.3 (2.0)‡ 15.9 (5.8) 23.1 (11.2)+ 17.6 (8.0)+ 17.6 (9.0) 23.3 (9.2)+ 13.1 (7.2)‡

Medium metro 329 15.0 (2.1) 18.2 (3.1)+ 12.6 (2.1)‡ 16.2 (7.8) 24.1 (11.8)+ 15.7 (7.9) 18.2 (9.6) 23.8 (10.1)+ 14.2 (8.7)‡

Small metro 340 14.8 (2.3) 17.9 (3.1)+ 12.6 (2.2)‡ 15.0 (5.8) 23.4 (12.3)+ 15.9 (7.4) 17.6 (10.2) 22.0 (10.2)+ 12.7 (8.7)‡

Micropolitan 688 15.1 (2.3) 17.7 (3.1)+ 12.6 (2.2)‡ 14.2 (6.3) 22.5 (11.0)+ 14.7 (7.2) 17.5 (8.4) 22.2 (8.8)+ 12.8 (7.4)‡

Non-core 1335 15.4 (2.3) 17.5 (2.8)+ 12.6 (2.1)‡ 13.9 (5.7) 22.4 (10.3)+ 14.5 (6.6) 17.9 (8.6) 21.7 (8.6)+ 12.7 (7.3)‡

Census Division

New England 67 15.4 (0.9) 18.9 (1.9)+ 15.4 (1.4) 17.9 (5.2) 22.7 (8.4)+ 21.5 (6.9)+ 22.1 (9.5) 24.1 (8.7)+ 16.9 (6.5)‡

Middle Atlantic 150 15.0 (1.1) 20.5 (1.6)+ 13.6 (1.1)‡ 18.9 (4.8) 23.4 (8.3)+ 24.4 (6.2)+ 21.9 (6.8) 25.6 (6.6)+ 15.5 (5.0)‡

South Atlantic 589 13.8 (2.0) 19.3 (2.4)+ 11.2 (1.9)‡ 17.4 (7.7) 24.2 (12.8)+ 15.4 (9.2)‡ 16.3 (11.1) 22.6 (12.0)+ 14.2 (9.6)‡

East South
Central

364 14.5 (1.9) 17.9 (3.0)+ 11.9 (2.0)‡ 12.0 (5.0) 25.4 (9.7)+ 11.3 (5.3) 13.3 (5.9) 26.5 (8.9)+ 11.0 (5.3)‡

West South
Central

470 13.7 (2.2) 14.9 (2.2)+ 14.1 (2.2)+ 13.0 (6.4) 30.3 (14.0)+ 9.9 (4.9)‡ 15.6 (7.8) 25.1 (9.0)+ 13.7 (8.3)‡

East North
Central

437 14.6 (1.8) 20.1 (1.9)+ 12.9 (1.7)‡ 14.2 (3.7) 19.9 (6.1)+ 17.5 (4.1)+ 17.6 (6.0) 21.6 (4.9)+ 10.8 (4.4)‡

West North
Central

618 16.7 (1.5) 18.0 (1.9)+ 12.3 (1.5)‡ 12.4 (3.2) 17.5 (5.6)+ 15.2 (4.4)+ 17.8 (5.7) 19.7 (4.8)+ 10.2 (4.0)‡

Mountain 281 17.6 (1.9) 14.9 (2.5)‡ 11.8 (1.8)‡ 16.1 (7.8) 23.1 (12.0)+ 17.8 (8.1)+ 24.7 (12.3) 20.0 (11.2)‡ 17.3 (11.4)‡

Pacific 133 17.2 (1.4) 15.0 (2.3)‡ 14.0 (2.3)‡ 18.1 (6.6) 16.6 (7.0)‡ 19.6 (5.7)+ 22.9 (7.4) 13.7 (7.1)‡ 15.9 (6.6)‡

+Significantly higher than the ENSO Neutral period (Pvalue <0.05).
‡ Significantly lower than the ENSO Neutral period(Pvalue <0.05)

doi:10.1371/journal.pone.0144202.t002
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Discussion
We developed a generic surrogate exposure metric (extreme heat events) based on climatology
that has a broad spatial coverage for the contiguous US with a county level geographic resolu-
tion. This exposure metric can correspond to county-level end-points, including many health
outcome data such as behavioral risk factor surveillance system (BRFSS), Centers for Medicare
and Medicaid Services (CMS), healthcare cost and utilization project (HCUP), CDC’s Public
Health Tracking data and others. We assessed the exposure metric for its ability to capture the
ENSO events, while controlling for other temporal, seasonal, divisional, and urban-rural classi-
fication influences. The results showed the ability of the exposure metric to capture salient fea-
tures of climate variability and change (long term change in the frequency of extreme heat
events) including the effect of natural variability such as El Niño-Southern Oscillation (ENSO)
patterns that have distinct heterogeneous effects across geographical regions. We also demon-
strated how the exposure metric could provide flexibility in spatial and temporal aggregation of

Table 3. Relative percent change in extreme heat events, by time period, for the continental United
States, excluding Alaska and Hawaii.

Factors 1960–1989 1990–1999 2000–2010

ENSO

Neutral Reference

El Niño 0.85‡ 0.91‡ 0.76‡

La Niña 1.17‡ 1.29‡ 1.29‡

Season

Autumn Reference

Winter 1.04‡ 1.28‡ 0.88

Spring 1.03‡ 1.01 1

Summer 0.98‡ 0.91‡ 1

Urbanization

Large central metro 0.99 1.22‡ 1.05

Large fringe metro 0.99 1.06‡ 1.01

Medium metro 1 1.06‡ 1.04**

Micropolitan 0.99 0.99 0.99

Small metro 0.99 1.04** 1

Non-core Reference

Census Division

New England Reference

Middle Atlantic 0.98 1.07* 1

South Atlantic 0.88‡ 0.92‡ 0.83‡

East South Central 0.9‡ 0.72‡ 0.77‡

West South Central 0.87‡ 0.77‡ 0.84‡

East North Central 0.95‡ 0.82‡ 0.8‡

West North Central 0.97** 0.72‡ 0.78‡

Mountain 0.94‡ 0.91‡ 0.99

Pacific 0.97 0.92** 0.85‡

The coefficients are from the negative binomial GEE model described in the text.

*p < .05

** p < .005

‡ p < .001

doi:10.1371/journal.pone.0144202.t003
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Table 4. Relative percent change in count of extreme heat events, by Census Division (excluding Alaska and Hawaii).

Period Factors New
England

Middle
Atlantic

South
Atlantic

East South
Central

West South
Central

East North
Central

West North
Central

Mountain Pacific

1960–1989 (Baseline)

ENSO

Neutral# 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

El Niño 0.94** 0.86‡ 0.8‡ 0.82‡ 1.02** 0.82‡ 0.81‡ 0.81‡ 0.9‡

La Niña 1.13‡ 1.24‡ 1.31‡ 1.23‡ 1.04‡ 1.27‡ 1.15‡ 1.04‡ 0.99

Season

Autumn# 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Winter 1.02 1.06** 1.05‡ 1.04** 1.05‡ 1.06‡ 1.03** 1.01 0.96*

Spring 1.05 1.08‡ 1.06‡ 1.03* 1.04* 1.05‡ 1.01 1.02 1.01

Summer 0.96 0.95* 1.03** 1.00 0.98 0.95‡ 0.97** 0.92‡ 0.97

Urbanization

Large central
metro

1.00 1.02 1.00 0.95 0.95 0.97 0.95 0.98 1.00

Large fringe
metro

1.01 1.00 1.02 0.98 0.94* 0.97 1.01 0.98 0.98

Medium metro 0.99 1.01 1.01 0.98 1.01 1.01 1.00 0.99 1.00

Micropolitan 1.00 1.00 1.00 0.99 1.00 0.99 0.99 0.98 0.99

Small metro 0.99 0.99 1.01 0.98 0.97 0.97 1.01 0.98 0.98

Non-core# 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1990–1999

ENSO

Neutral# 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

El Niño 1.1** 1.15‡ 0.89‡ 0.81‡ 0.71‡ 1.01 1.01 1.00 1.08‡

La Niña 1.07* 1.04 1.23‡ 1.57‡ 1.75‡ 1.19‡ 1.12‡ 1.17‡ 0.91

Season

Autumn# 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Winter 1.63‡ 1.68‡ 1.29‡ 1.13‡ 1.3‡ 1.64‡ 1.32‡ 0.87‡ 0.86‡

Spring 1.16** 1.2‡ 1.04* 0.94* 1.32‡ 1.11‡ 0.8‡ 0.86‡ 0.94

Summer 1.2‡ 1.29‡ 1.21‡ 0.87‡ 1.17‡ 0.89‡ 0.42‡ 0.76‡ 0.84‡

Urbanization

Large central
metro

1.05 1.14* 1.39‡ 1.31* 1.34** 1.13 1.01 1.2* 1.15*

Large fringe
metro

1.11 1.03 1.15‡ 1.08 1.09 0.99 0.93 0.99 1.08

Medium metro 1.08 1.02 1.11** 1.1* 0.9* 1.06* 0.97 1.33‡ 1.00

Micropolitan 0.89* 1.06 0.9** 1.03 0.97 1.00 1.00 1.05 1.09*

Small metro 0.91 1.07 1.02 1.07 1.08* 1.03 0.99 1.05 1.09

Non-core# 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2000–2010

ENSO

Neutral# 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

El Niño 0.82‡ 0.74‡ 0.79‡ 0.7‡ 0.87‡ 0.69‡ 0.69‡ 0.9‡ 0.97

La Niña 1.2‡ 1.27‡ 1.27‡ 1.65‡ 1.37‡ 1.3‡ 1.21‡ 1.02 0.85‡

Season

Autumn# 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Winter 1.14‡ 1.21‡ 0.96* 0.8‡ 1.07‡ 0.85‡ 0.82‡ 0.64‡ 0.71‡

Spring 1.25‡ 1.09** 1.01 0.96* 1.39‡ 0.82‡ 0.72‡ 1.15‡ 1.3‡

(Continued)
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exposure—an ideal attribute for epidemiological studies. Our county level approach enables a
straightforward linkage of the exposure metric to many publically available national health out-
come data collected at the county level, facilitating investigations of the possible impacts of cli-
mate change on chronic health outcomes [24–26].

The threshold method we used has been used for defining extremes in studies looking at
temperature and precipitation extremes; however, exceedences have not been quantified on a
county level for the entire US [27–30]. The metric we developed captured the local impacts of

Table 4. (Continued)

Period Factors New
England

Middle
Atlantic

South
Atlantic

East South
Central

West South
Central

East North
Central

West North
Central

Mountain Pacific

Summer 1.27‡ 1.35‡ 1.25‡ 1.16‡ 1.18‡ 0.7‡ 0.54‡ 1.22‡ 1.05

Urbanization

Large central
metro

0.98 1.13* 1.01 1.01 1.28* 0.91 1.00 0.85* 1.19**

Large fringe
metro

1.10 1.08 1.02 1.04 1.04 0.91** 0.89** 1.27‡ 0.98

Medium metro 1.02 1.1* 1.01 0.98 1.03 0.97 0.99 1.45‡ 1.11

Micropolitan 0.94 1.08 0.91** 1.03 0.97 0.99 0.98 1.07* 1.09

Small metro 0.93 1.14* 0.98 1.01 1.06 0.93** 0.96 0.93* 1.12*

Non-core# 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

*p < .05

** p < .005

‡ p < .001
#Reference Category

doi:10.1371/journal.pone.0144202.t004

Fig 2. Relative percent change in monthly total extreme heat events for La Niña and El Niñomonths in
1960–2010 compared to ENSONeutral months, adjusted for seasonal and 2006 land-use
classification type.

doi:10.1371/journal.pone.0144202.g002
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ENSO. This oscillation between warm (El Niño) and cold (La Niña) conditions in the equato-
rial Pacific Ocean can alter weather patterns and latent heat release into the atmosphere. Such
changes lead to widespread remodeling in atmospheric circulation patterns far removed from
the Pacific Ocean [31]. ENSO events have been linked to droughts, rainfall and the alteration
of temperature and sunlight availability across the globe [32–34]. In North America, the statis-
tically significant relationships between ENSO and seasonal temperature extremes have
occurred mostly in winter [35]. In some divisions and times of year, El Niño and La Niña con-
ditions modify the probabilities of very warm or very cold seasons [35]. The effects of climate
change can manifest through natural forcing systems such as ENSO [36]. Globally, ENSO
impacts are largely symmetric. The warm state (El Niño) is generally associated with increased
precipitation and cooler temperature anomalies and the cold state (La Niña) changes the sign
of the anomalies, to a decrease in precipitation and increase in temperature [19]. The known
temperature-related impacts of ENSO were expressed in the results of our analysis. Though it
should be noted that the surface expressions of the ENSO anomalies in the tropical Pacific are
alleged to have changed since 2000 (albeit with similar onsets [37]) and the interconnectedness
of these events (teleconnections) over the US appear to have changed [38]. On a continental
scale, we found that La Niña periods were consistently associated with an increase in extreme
heat events and El Niño periods led to a decrease in extreme heat events. In certain region of
the country, the magnitude as well as direction of the associations between ENSO periods and
extreme heat events differed from this trend. In this context, the effects of climate change may
be local for health endpoints that may manifest via local weather changes [39,40].

Land use factors are an important contributor to divisional climate. Urbanization affects
divisional climates through changes in surface energy and water balance. The change in land
use can alter the effects of net radiation through the division of energy into sensible and latent
heat, and the partitioning of precipitation into soil water, evapotranspiration and runoff [37].
The urban “heat island” effect is an extreme case of how land use modifies divisional climate
[41,42]. Previous studies have suggested that a major portion of the reduction in diurnal tem-
perature range observed during the last several decades to urbanization and other land use
changes [43,44]. In congruence with available literature, using the 2006 urban-rural classifica-
tion, we found that more urbanized areas generally experienced relatively high proportional
change in extreme heat events compared to the less urbanized areas. However, this pattern was
not consistent across Census divisions and was only present during the latter 2 decades. These
results may be due, in part, to the classification scheme used in this analysis. This scheme was
developed based on the 2006 census statistics and applied in our study for time periods that
span more than 4 decades prior. However, sensitivity analyses using the 1990 census scheme
produced similar results.

More attention has been paid to the effects of hot temperature anomalies in the summer
and spring particularly because these changes can have an impact on biotic factors (e.g., pollen)
and industrial air pollution along with heat waves [45–49]. Using the metric, we identified
larger differences in extreme heat events occurring during the winter, spring and summer
months on a continental scale. Yet, at the divisional level, the patterns differ considerably, with
the New England and Middle Atlantic divisions experiencing the largest differences in extreme
heat events during winter and lowest level during autumn. In the Mountain and Pacific divi-
sions, the largest differences in extreme heat events were observed during spring and lowest
level observed during winter season.

Overall, the exposure metric captured subtle variability across geographic division, season,
and urban-rural categorization. More importantly, the exposure metric was sensitive to large
scale phenomenon such as ENSO that are known to govern local weather patterns. As stated
previously, the flexibility of this exposure metric lends itself to epidemiological studies of both
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infectious and chronic diseases. For example, in a recent study investigating the link between
changing climate and Salmonellosis, Jiang et al. (2015) showed that the frequency of extreme
heat and precipitation event was directly related to increased risk of Salmonellosis in Maryland,
and that the risk was more pronounced among the coastal communities compared to inland
communities [50]. Since the precise date of disease onset in the Jiang et al. (2015) was not
known, the authors linked monthly count of Salmonellosis with number of extreme heat and
precipitation event on the same month and employed negative binomial regression for the sta-
tistical analysis. In the instances where the precise date of onset is known (e.g., hospitalization
for asthma, or stroke), investigators can use case-crossover approach looking at presence/
absence of extreme events in the case period compared to control period with adequate lag
structure that are determined based on current knowledge about the disease etiology. In addi-
tion, the frequency of extreme heat events can also be used to investigate the spatio-temporal
pattern of vector borne diseases (e.g., Lyme disease) that are sensitive to temperature changes.
Previous studies have shown that the frequency as well as intensity of extreme events will con-
tinue to rise in the near future [51,52]. The exposure metric we have presented in this manu-
script allows investigators to document how increases in the frequency of extreme heat event
impacts human health.

Conclusion
We report on the development of a novel temperature-related exposure metric and quantify its
ability to capture small and large changes in climatic variability across the US and over time.
Findings from this study suggest that natural modes of forcing, seasonality, urban-rural classifi-
cation, and division of country have an impact on the number extreme heat events recorded.
We observed that the increases in frequency of extreme heat events differ across the geographi-
cal region and time periods. Likewise, we observed higher frequency of extreme heat events
during La Niña period and lower frequencies during the El Niño. At regional level, exceptions
to this trend were noted for El Niño years in selected geographical areas. This county level
exposure metric generated based on location specific climatology data is versatile and can be
easily extended to developing metrics for different time periods and county based geographic
aggregations. To facilitate research in this area, we will make this exposure metric freely avail-
able to potential users through a web portal.
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