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 Free space optical communication links are an attractive technology for 

broadband communications when fiber optic links are unavailable or simply not 

feasible.  Atmospheric turbulence, aerosols, and molecular absorption all affect the 

propagation of optical waves in the atmosphere.  Since atmospheric turbulence is the 

major source of errors on free space optical communication links, this dissertation 

investigates two techniques to reduce the impact of atmospheric turbulence on such 

links.  These two techniques are aperture averaging and the integration of nonimaging 

optical elements into optical receiver systems. 

 Aperture averaging is the process by which atmospheric turbulence-induced 

intensity fluctuations are averaged across a receiver aperture of sufficient size.  We 

investigate the behavior of aperture averaging in weak and strong turbulence conditions 

by comparing experimental data with available models for plane and spherical wave 



propagation.  New expressions for the aperture averaging factor in weak turbulence are 

given.  In strong turbulence conditions, aperture averaging is analyzed with special 

attention to the various wavenumber spectrum models.  This is the first report of 

experimental strong fluctuation aperture averaging data acquired in non-saturated 

conditions. 

 Nonimaging optical elements are particularly useful for the mitigation of 

atmospheric turbulence-induced beam wander in the focal plane of a free space optical 

communication receiver.  Experimental results of the bit error ratio enhancement due to 

the incorporation of a nonimaging optical element, specifically a compound parabolic 

concentrator, are presented.  Two link ranges were tested, a 1.7 km link at the 

University of Maryland experiencing weak turbulence, and a 32.4 km link at the Naval 

Research Laboratory’s Chesapeake Bay Detachment experiencing saturated, strong 

turbulence.  These results are the first reported experimental test of a nonimaging 

optical element integrated into an outdoor free space optical communications system. 
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3.18: Spherical wave aperture averaging factor for ℓo = 1.45 cm using Eq. 
(3.17) plotted along with the new data. The dashed line represents Eq. 
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Chapter 1 

Introduction 

 

1.1 History of Free Space Optical Communication 

Since the invention of the Ruby laser in 1960, scientists have attempted to 

establish reliable communications channels by modulating and propagating optical 

signals over a line-of-sight path [1].  Most of the early development of free space 

optical communication links was directed towards space-based applications [2,3,4].  

Due to the relative immaturity of laser technology and flawed system demonstrations, 

research in free space optical communication began a cycle of declining interest and 

funding, only to be resurrected over and over again. 

During the mid- to late-1990s, free space laser communication was once again 

resurrected.  This time, an increasing demand for high bandwidth communications, 

fueled by the explosion of the internet, renewed interest in free space optics (FSO).  By 

this time, optical fiber communications was well established, and researchers had found 

ways to use these efficient, cost-effective components in FSO systems.   

FSO was voted one of the ten hottest technologies in 2001 [5].  The hype 

surrounding the technology was partly due to the lack of optical fiber backbone 

connectivity in metropolitan areas and the high cost of laying optical fiber in those 

areas.  After September 11, 2001, FSO systems were deployed to reconnect parts of the 

critical New York City infrastructure; after copper wires, optical fiber, and RF antennas 

were destroyed.  The advantages of FSO were trumpeted throughout the 
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telecommunications sector.  These advantages include: rapidly deployablility; support 

for high bandwidth transmissions; high security; the ability to extend the reach of the 

optical fiber backbone; and use in disaster recovery situations.  Unfortunately, the 

technology bubble in the stock market burst.  This left FSO vendors without 

telecommunication and cable carriers who could purchase and deploy FSO units on a 

large scale. 

Even with the significant capital investment in FSO during this time, researchers 

did not solve the technology’s reliability problems due to atmospheric turbulence, 

aerosols, and molecular attenuation.  These three environmental properties destroy the 

coherence of a propagating optical wavefront.  The research presented here 

demonstrates techniques to mitigate the distortions induced on the optical beam by 

atmospheric turbulence. 

1.2 Free Space Optical Communication Techniques 

Researchers have pursued a variety of system architectures in an attempt to 

improve the reliability of FSO links.  A “bare bones” FSO system transmits “1” bits by 

turning the optical source on, and “0” bits by turning the optical source off.  This 

method is called intensity modulation/direct detection (IM/DD), or on-off keying 

(OOK).  This is a low overhead technique, because there is no attempt made to ensure 

the integrity of the signal.  This transmission scheme attempts to collect enough photons 

at the receiver to correctly detect “1” and “0” bits.  Atmospheric turbulence may easily 

prevent the detection of a sufficient number of photons to correctly interpret the 

received bits. 
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Beyond the basic IM/DD scheme, researchers have tried to come up with 

techniques to improve the likelihood that data bits will be received correctly.  Scientists 

have used adaptive optics techniques, originally developed to improve the quality of 

stellar telescopes, to try to restore a distorted wavefront to its original state before it was 

destroyed by atmospheric turbulence.  Some used phase conjugation techniques, to pre-

distort the beam and hope that atmospheric turbulence, by distorting the wavefront, will 

actually work to render the wavefront to its unperturbed form.  Although these 

techniques have shown limited success, they require bulky and computation-intensive 

systems to achieve wavefront correction.  Additionally, systems have not been able to 

compute the wavefront correction fast enough to entirely counteract the affects of 

atmospheric turbulence. 

Diversity techniques are another method of improving the reliability of an FSO 

system.  In effect, if the optical wavefront propagates in at least two distinct ways, there 

is an increased likelihood that the detected signal will be read correctly.  Diversity can 

occur in the form of spatial diversity (requiring multiple transmitters and/or receivers), 

temporal diversity (requiring a signal to be transmitted twice, separated by a time 

delay), or wavelength diversity (requiring the transmission of data on at least two 

distinct wavelengths).  Each of these techniques requires a synchronization of the 

received signals.  Although the techniques are promising, they do require a significant 

electronic overhead in the retiming and synchronization process. 

Finally, coding schemes used in RF and wired communications systems have 

been adapted for FSO communication.  Methods requiring heterodyne detection, 

including phase shift keying and quadrature amplitude modulation, have been 
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experimentally demonstrated but do not guarantee enough improvement to be viable 

commercially [6,7].  Forward error-correction (FEC) codes insert check bits into the 

data stream, which contribute an additional power and bandwidth overhead on the 

system.  Although coding provides an additional layer of information security, studies 

have shown that even the best FEC codes cannot negate the affects of atmospheric 

turbulence alone [6,8,9]. 

1.3 Low-Overhead Techniques to Mitigate the Effects of Atmospheric Turbulence 

The research presented here demonstrates how high-performance FSO 

communication systems may be designed using techniques that add nearly no power, 

bandwidth, size, or weight overhead to the overall design. 

1.3.1 Aperture Averaging 

Aperture averaging is a well known concept, which states that the amount of 

measured radiation may be increased by increasing the size of the receiver collecting 

lens aperture.  In effect, any irradiance fluctuations across the collecting lens are 

“averaged” by the size of the lens.  Therefore, a lens of any diameter will collect more 

photons than an ideal point receiver.  In a binary communications transmission, such as 

OOK, aperture averaging will increase the likelihood of correctly detecting the 

transmitted data stream. 

Aperture averaging of irradiance fluctuations was first studied by Fried in 1967 

[10].  Fried developed a theoretical expression characterizing the amount of aperture 

averaging given an incident infinite plane wave.  Aperture averaging was 

experimentally investigated for both horizontal and space-to-ground paths under weak 
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levels of atmospheric turbulence.  However, Fried came to an erroneous conclusion that 

the amount of aperture averaging is proportional to the inverse square of the aperture 

diameter.  Later in 1973, Fried came to the correct conclusion that there is a 3/7−  

power dependence. 

Subsequent experiments on aperture averaging in weak atmospheric turbulence 

found very poor agreement with theory.  The concept that the amount of irradiance 

fluctuations saturates after a certain propagation distance was not understood, so 

scientists could not truly differentiate between weak and strong fluctuations.  Finally, in 

1991, Churnside published experimental results that have shown the best agreement 

with theory in weak turbulence conditions until now [11].  The behavior of optical 

waves propagating in strong turbulence is not well understood, although new theories 

and models have been developed recently.  As such, there have been no consistent 

experimental results for aperture averaging in strong turbulence. 

1.3.2 Nonimaging Optics 

On a basic level, imaging optics form an image based on the transformation of 

an object by an imaging element.   A lens or compound lens is a typical imaging 

element.  If a converging lens is used, then the object and image are located on opposite 

sides of the lens, when the object is placed at or beyond the focal length of the lens.  A 

diverging lens will form a virtual image on the same side of the lens as the object.  

Ideally, the image or virtual image is a perfect replica of the object, although its size 

may be magnified or reduced. 

Imaging optics are useful when the quality of an optical wavefront must be 

preserved.  In the case of FSO with IM/DD, we are only concerned with collecting a 
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maximum number of photons.  Any information about the phase of the wavefront is 

ignored.  Atmospheric turbulence will destroy the coherence of a propagating optical 

wave, and induce phenemona that will affect the collection of a maximum number of 

photons. 

Nonimaging optics are not required to preserve the integrity of the object.  

Instead, what would be the image may be partially or completely randomized.  Only the 

conservation of energy is required.  A special type of nonimaging optical element is 

called a concentrator.  These elements collect radiation over a restricted angular range, 

and dispense radiation over a wider angular range.  The concentrator operates on the 

principle of conservation of brightness, preserving the relationship between the 

irradiance and its angular distribution.   

In this research, a nonimaging concentrator is used to mitigate the affects of 

atmospheric turbulence on the focal plane of an imaging optical receiver.  The 

nonimaging concentrator will not preserve the coherence of the wavefront, but will 

improve the detection efficiency of the receiver.   

1.4 Useful Terminology 

Radiometric terminology has been loosely used in scientific research.  Here, we 

specifically define radiometric terms used throughout this dissertation. 

Solid angle – Ω, the projection of an area onto a unit sphere; measured in steradians (sr).  

A sphere has a 4π solid angle. 

Projected area – the area projected onto a plane whose normal is the line of sight; the 

area is multiplied by the cosine of the angle between the normal to the area and the line 

of sight. 
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Optical power – P, also known as radiant flux; the flow of radiant energy per unit time; 

expressed in W/m2. 

Radiance – L, the optical power (or radiant flux) per unit projected area per unit solid 

angle; expressed in W/m2sr. 

Irradiance – Ω= d
dPI , also known in this work as intensity; the flow of energy per 

unit area per unit time; expressed in W/m2.  The irradiance is proportional to the square 

of the amplitude of the electric field of an optical wave.  

Spectral radiance – λλ d
dLL = , the distribution of radiance per unit wavelength; 

expressed in W/m2srHz.  The spectral radiance is meaningful by integrating it over a 

wavelength range. 

Frequency – ν , the number of cycles per second; measured in Hz or sec-1. 

Optical wavenumber – λ
π2=k , where λ is the wavelength of the optical wave. 

Spatial wavenumber – κ, the inverse of a spatial scale length. 

1.5 Organization 

This dissertation is organized in four chapters detailing the theory, methodology, 

and analysis used to study techniques to mitigate the effects of atmospheric turbulence.  

Chapter 2 reviews both the physical nature of atmospheric turbulence and theories 

developed to characterize atmospheric turbulence.  A framework for studying optical 

wave propagation through atmosphere turbulence, in strong and weak turbulence 

conditions, is presented.  Chapter 3 involves an in depth study of aperture averaging in 

weak turbulence conditions.  Aperture averaging models, experimental methodology, 
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and analysis of new experimental data are explained.  Chapter 4 follows the 

organization of Chapter 3, but instead addresses aperture averaging in strong turbulence 

conditions.  New experimental data in the strong turbulence region are analyzed and 

compared with available models.  Chapter 5 studies and characterizes the performance 

enhancement of free space optical communication systems when nonimaging optics are 

integrated into the optical receiver.  Chapter 6 summarizes the contributions of this 

work and addresses areas for future research. 
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Chapter 2 

Optical Wave Propagation through Atmospheric Turbulence 

 

2.1 The Atmosphere 

Propagation of optical waves through the atmosphere is affected by atmospheric 

turbulence, scattering off aerosols, and atmospheric absorption.  This thesis addresses 

the predominant cause of distortion of optical waves in the atmosphere, which is 

atmospheric turbulence.  Atmospheric turbulence is a result of localized variations of 

temperature, humidity, and pressure in the atmosphere.  These variations result in 

localized refractive index fluctuations, where each localized area of lower or higher 

refractive index is known as a turbulent eddy [1].  The refractive index of each 

individual eddy is not much greater than unity, but the cumulative effect of eddys over a 

1 km path is great. 

The refractive index of air at optical frequencies is, 
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where n is the total refractive index, λ is the wavelength in µm, p is the pressure in mb, 

and T is the temperature in K.  At sea level, n − 1 is typically 3×10-4 [1].  Humidity 

effects are typically neglected over land, since humidity affects the value of the 

refractive index by less than 1%.   
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2.2 Turbulent Energy Flow 

Turbulent flows result when large inertial forces draw together fluid volumes 

with very different velocities, and irregular velocity fluctuations are apparent.  

Turbulent flows exist when the Reynolds number is greater than 2500 to 5000 [12], 

where the Reynolds number is defined by: 

υ/ULRe =  (2.2) 

where U is the characteristic flow velocity, L is the characteristic dimension of viscous 

flow, and υ is the kinematic viscosity of the fluid.  Since Reynolds numbers in the 

atmosphere are large, the associated fluid flows are also highly unstable.  Eddys of scale 

sizes on the order of flow dimensions move randomly, and eventually give rise to eddys 

of smaller scale sizes and lower velocities.  Eventually, eddys become small enough 

that viscosity forces overcome inertial forces, and the eddys can no longer decay.  The 

breakdown in eddies is dictated by [12], 

( ) ( ) ( ) ( )jjjj LURe υ=  (2.3) 

where j is the order of the eddy.  Higher orders denote smaller eddies. 

Richardson first developed a picture of the turbulent energy redistribution in the 

atmosphere.  The process is shown pictorially in Figure 2.1, with an energy input 

region, inertial subrange, and energy dissipation region.  The dissipation rate ε is related 

to the velocity Uℓ of an eddy with characteristic length ℓ by [12], 

( ) 3/1
ll ε≈U  (2.4) 

At large characteristic lengths ℓ, a portion of kinetic energy in the atmosphere is 

converted into turbulent energy [13].  When the characteristic length reaches a specified 



 11

outer scale length, Lo, energy begins to cascade.  The energy of one eddy is 

progressively redistributed into eddies of smaller scales, until eddies reach a size equal 

to the inner scale length, ℓo.  The inner scale length, or Kolmogorov microscale, is 

defined by, 

( ) 4/134.7 ευ=ol  (2.5) 

At the surface layer of the Earth, ℓo is typically on the order of 4 mm [12], and υ is 

typically 0.148 cm2s-1 [13].  Kolmogorov proposed that in the inertial subrange, where 

Lo > ℓ > ℓo, turbulence is isotropic and may be transferred from eddy to eddy without 

loss.  When the diameter of a decaying eddy reaches ℓo, the energy of the eddy is 

dissipated as heat energy through viscosity processes [13]. 

 
Figure 2.1: Depiction of the process of turbulent decay, showing the energy cascade and 
subsequent division of turbulent eddies in the atmosphere [adapted from Ref. 13]. 
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2.3 Kolmogorov Turbulence 

Turbulence is by nature a random process, and as such may be described using 

statistical quantities.  In 1941, Kolmogorov first developed a universal description of 

atmospheric turbulence by developing a structure tensor to describe a mean square 

velocity difference between two points in the atmosphere.    The structure function, 

( )rDij
r , is [1]: 

( ) ( ) ( )[ ] ( ) ( )[ ]1111 rvrrvrvrrvrD jjiiij
rrrrrrr

−+⋅−+=  (2.6) 

where rr  is the displacement between two points in space, rr rr
+1  and 1r

v  [1]; and i and j 

are two velocity components.  To continue the structure function analysis, two 

approximations are made given the condition that the displacement is within the inertial 

subrange.  The first is to assume local homogeneity in the atmosphere, which restricts 

the dependence of the velocity statistics in Eq. (2.6) to the vector displacement, rr .  A 

second assumption of local isotropy limits Eq. (2.6) to a dependence on the magnitude 

of rr , given as rr .  These assumptions allow the velocity structure function to be 

treated as a scalar function [1]: 

( ) ( ) ( ) ( ) ijjiij rDnnrDrDrD δrrrr
⊥⊥ −−= ][ ||  (2.7) 

where ( )rD r
||  and ( )rD r

⊥  are the structure function components of the wind velocity 

field parallel and transverse to rr , { }jijiij ≠⇒=⇒∈ 0;1δ , and ni, nj are the 

components of a unit vector along rr  [1].  To continue this analysis, the flow is assumed 

to be incompressible, giving 0=⋅∇ vr .  This assumption is valid when 122 <<aν
r

, 
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where a is the velocity of sound [12].   Using the assumption of an incompressible flow, 

we can relate the parallel and transverse components of the velocity structure function: 

( )||
2

2
1 DrD dr

d
r=⊥ . (2.8) 

With this relation, we can describe the structure function in terms of one component: 

( ) ( )[ ]211|||| rvrrvD −+=  (2.9) 

As mentioned previously, Kolmogorov determined that as long as r is within the 

intertial subrange, we can assume localized fluctuations and the structure function 

becomes [1]: 

3/22
|| rCD v=  (2.10) 

where Cv
2 is the velocity structure constant with units m-2/3.  Eq. (2.10) is the 

Kolmogorov-Obukhov “two-thirds” power law [12]. To use this relation in 

electromagnetic wave propagation problems, the velocity fluctuation form of Eq. (2.10) 

must be transformed into a refractive index fluctuation form.  This is accomplished by 

using the potential temperature, θ, which is the temperature of a parcel of air that is 

brought adiabatically (where heat is neither gained nor lost) from a state having 

pressure p and temperature T to a state where pressure p0 = 1000 mbar [14].  For small 

values of r, as when r is in the inertial subrange, the potential temperature can be 

approximated by [15]: 

hT
pc

g+=θ  (2.11) 

where T is the absolute temperature in Celsius, g is the acceleration of gravity, cp is the 

specific heat, pcg = 9.8 °/km, and h is the height of the parcel above the Earth’s 
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surface [1,16].  The value pcg  is also the adiabatic rate of decrease of the absolute 

temperature.  At small heights above the Earth’s surface, the adiabatic rate pcg  can be 

neglected and T is treated as a passive additive [1,16,17].  Passive additives to do not 

affect turbulence statistics, and therefore do not alter the two-thirds law in Eq. (2.10).  

The structure function for the potential temperature is well known [1], and is described 

by: 

( ) 3/22rCrD θθ =  (2.12) 

By taking the derivative of both sides of Eq. (2.1) with respect to n, we find: 
















 ∂
−

∂







 ⋅
+=∂

−

T
T

p
p

T
pn 2

31052.716.77
λ

 (2.13) 

Knowing that pressure fluctuations are relatively small compared to temperature 

fluctuations, we can approximate 0→∂p , giving: 

6
22

3

101052.716.77 −
−

⋅∂














 ⋅
+=∂ T

T
pn

λ
 (2.14) 

Using the relation of potential temperature to absolute temperature from Eq. (2.11), and 

the relation of their derivatives θ∂=∂T  because T is a passive additive, we find that for 

λ = 0.6328µm: 

6
2 1006.79 −⋅∂






=∂ θ

T
pn  (2.15) 

The direct relationship between refractive index fluctuations and potential temperature 

fluctuations is shown in Eq. (2.16).  We can now infer a relationship between the 

structure parameter for refractive index and that of the potential temperature as: 
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62
2

2 1006.79 −⋅





= θC

T
pCn  (2.16) 

Optical refractive index fluctuations near the Earth’s surface are a result of temperature 

variations [1].  2
nC  is formally known as the refractive index structure parameter, and 

varies spatially and temporally.  We use this indicator to quantify the strength of 

turbulence along the path of the optical propagation.  The value of 2
nC  typically varies 

from 10-17 m-2/3 under “weak turbulence” conditions to 10-13 m-2/3 in “strong turbulence” 

conditions.  Using previous information, the refractive index structure function obeys 

the same Kolmogorov-Obukhov “two-thirds” power law: 

( ) 3/22 rCrD nn
rr

=   (2.17) 

2.4 Wavenumber Spectrum Models 

By using a methodology similar to that used for the characterization of the 

strength of various frequency components in a time-varying electrical signal, we can 

define a Fourier transform to quantify the ability of different eddy sizes to influence the 

refractive index of a random medium.  To develop a Fourier spectrum, we must first 

determine how refractive index fluctuations vary between different points in the 

atmosphere.  This relationship is given by a spatial covariance [1,13]: 

( ) ( ) ( )1111 , rnrrnrrrBn
rrrrrr δδ +=+  (2.18) 

where nδ is the fluctuating part of the refractive index, with nnn δ+= .  Following the 

previous discussion of Kolmogorov turbulence (Sec. 2.3), the assumption of 

homogeneity implies that only the separation between two points and not the location of 



 16

the two points in a random medium affects the physics, so that ( ) ( )rBrrrB nn
rrrr

→+ 11 , .  

Near the Earth’s surface, the random medium may be treated as isotropic, allowing 

( ) ( )rBrB nn →
r .   In spherical coordinates, the three-dimensional Fourier transform for 

the spatial covariance is: 

( ) [ ] ( )

( ) [ ] ( )

( ) ( )
r

rd

ridddd

ridrB

n

n

nn

κ
κκκκπ

κκκφθθκκ

κκκ
π π

sin4

expsin

exp

0

2

0

2

0

2

3

Φ=

Φ⋅=

Φ⋅=

∫

∫ ∫ ∫

∫

∞

∞

∞−

rrr

rrrr

 (2.19) 

where ( )κnΦ  is the isotropic and homogeneous turbulence spectrum.  A Fourier 

integral also relates the structure function to the isotropic and homogeneous turbulence 

spectrum: 

( ) ( ) ( )
∫
∞







 −Φ=

0

2 sin18
r

rdrD nn κ
κκκκπ  (2.20) 

which has been derived from the generic Fourier transform description of the spatial 

covariance and the definition of the refractive index structure function, 

( ) ( ) ( )[ ]2
1111 , rnrrnrrrDn δδ −+=+ .  The two descriptions of the refractive index 

structure function from Eqs. (2.17) and (2.20) may be compared to determine the 

wavenumber power spectrum: 

( ) ( )
∫
∞







 −Φ=

0

23/22 sin18
r

rdrC nn κ
κκκκπ  (2.21) 

Using power law relations, the wavenumber spectrum is [1,3]: 

( ) 3/112033.0 −=Φ κκ nn C  (2.22) 
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Eq. (2.22) is the Kolmogorov spectrum.  It is only valid in the range 
oo lL

11 <<<< κ .  

( )κnΦ  is an equivalent representation of ( )rDn  in inverse space. 

There are other spectrum models that attempt to describe behavior beyond the 

inertial subrange.  The Tatarskii spectrum uses a Gaussian function to extend coverage 

to the dissipation range (
ol

1>κ ), where small eddies are influential: 

( ) 




−=Φ −

m
nn C κ

κκκ exp033.0 3/112  (2.23) 

where 
o

m l
92.5=κ .  The von Karman model is the most widely-used model to describe 

characteristics in the energy-input region (
oL

1<κ ).  Although it does an excellent job 

of describing large eddy formation in the troposphere, the model was originally 

proposed to describe fluid flow in a circular pipe [18].  The von Karman spectrum 

integrates the small eddy dependence in the Tatarskii spectrum with a large eddy 

description to give: 

( ) ( )
( ) 6/1122

22
2 /exp033.0

in

m
nn C

κκ
κκκ

+

−
=Φ  for mκκ <<0  (2.24) 

where om l92.5=κ  and oin L1=κ .  In the inertial subrange, the von Karman spectrum 

reduces to the Kolmogorov spectrum value.   

The Kolmogorov and von Karman spectrums fail to show a “bump” at high 

wavenumber values in the inertial subrange, near mκ .  Hill constructed an exact 

spectrum that accounts for the high wavenumber rise [19].  Andrews developed an 

analytical approximation to the Hill spectrum, since the Hill spectrum uses a second-
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order differential equation that has to be solved numerically.  Andrews calls his 

approximation the Modified Atmospheric Spectrum, which has the representation [20]:  

( )

( )
( )22

22

6/7
2

exp

254.0802.11033.0

in

l

ll
nn C

κκ
κκ

κ
κ

κ
κκ

+
−

×




















−








+=Φ

 (2.25)  

The Kolmogorov, von Karman, and modified atmospheric spectrums are plotted 

in Fig. 2.2 for scale sizes of Lo = 10 m and lo = 5 mm.  The high wavenumber “bump” 

occurs in the transition between the inertial subrange and dissipation range.  The bump 

occurs in the plot of the modified atmospheric spectrum at the boundary between the 

energy dissipation range and the inertial subrange in Fig. 2.2, and is especially apparent 

in the scaled spectral plot in Fig. 2.3. 

 
Fig. 2.2:  Three wavenumber spectrum models for refractive index fluctuations.  The 
three energy ranges relevant to turbulence statistics are indicated. 
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Fig. 2.3: Scaled spectral models for the von Karman spectrum, Eq. (2.24), and modified 
atmospheric spectrum, Eq. (2.25), plotted against the wavenumber scaled by the inner 
scale. 

2.5 Rytov Approximation 

The Rytov approximation is a method to solve Maxwell’s equations for 

electromagnetic wave propagation while accounting for diffraction effects [1,21,22].   A 

derivation of optical wave propagation is begun from Maxwell’s equations, assuming 

no free charges, µ0 permeability, and an electromagnetic field with a harmonic time 

dependence of e-jωt [1,22]: 

( )
( ) ( )[ ]
( ) ( ) ( )
( ) ( )trHjktrE

trEtrnjktrH

trEtrn

trH

,,

,,,

0,,

0,

0

2
0

2

rrrr

rrrrr

rrr

rr

=×∇

−=×∇

=⋅∇

=⋅∇

 (2.26) 
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where ck ω=0  is the free space wavenumber, c is the speed of light in vacuum, n = 

n(r) is the refractive index of the atmosphere, and 1−=j .  It is also assumed that the 

variation of the field with time is much slower than e-jωt, which justifies a quasi-steady 

state approach.  After some manipulation with vector identities and substitution [1,22], 

a wave equation is found: 

( )( ) 0ln2222 =∇⋅∇−+∇ nEEnkE
rrr

 (2.27) 

where the third term on the left hand side is a depolarization term.  Since it has been 

shown that the change in polarization of a propagating wave is negligible for both cases 

of λ << lo and λ > lo [1], this term may be dismissed.  Eq. (2.28) becomes: 

0222 =+∇ EnkE
rr

 (2.28) 

Eq. (2.28) may be transformed into a scalar equation for each of the three electric field 

components.  Given a mean air refractive index of 1, the total refractive index is: 

( )rnrn rr δ+= 1)(  (2.29) 

where δn << 1.  The Rytov method considers a solution of the form: 

( ) ( )( )rrE rr
Ψ= exp  (2.30) 

Substitution of Eq. (2.30) into Eq. (2.29) yields the nonlinear Ricatti equation [22,23]:  

( ) ( ) ( ) ( )rnkrrr rrrr 22
0

2 δ−=Ψ∇⋅Ψ∇+Ψ∇  (2.31) 

The Ricatti equation may be solved by a multiplicative perturbation method with a 

solution [22,23,45]: 

( ) ( ) ( ) ( ) ( ) ...3210 +Ψ+Ψ+Ψ+Ψ=Ψ rrrrr rrrrr  (2.32) 
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The field equation for the basic Rytov solution is a result of keeping the first two terms 

in the expansion [22,23,45]: 

( ) ( ) ( ) ( )rnkrrr rrrr δ2
0101

2 22 −=Ψ∇⋅Ψ∇+Ψ∇  (2.33) 

Amplitude and phase information for the propagating wave falls out of the Rytov 

approximation.  The first iterative solution to Eq. (2.33) may be written as the perturbed 

field ( ) ( )( )rrUrU rrr
10 exp)( Ψ= , where ( )rU r

0  is the unperturbed field [45].  Following 

Refs. [20] and [45], the complex phase perturbation is written as ( ) 11 iSr +=Ψ χr  

)()/ln( 00 SSiAA −+=  where χ is the logarithm of the amplitude A, and S is the phase 

of the field ( )rU r .  The unperturbed amplitude and unperturbed phase are denoted by A0 

and S0, respectively.  This analysis shows that under the Rytov approximation, 

irradiance fluctuations obey a lognormal distribution, since [ ] 2/)/ln( 2AI=χ  [20,45].  

The Rytov approximation yields a log amplitude variance 2χ  for infinite plane wave 

propagation [22,45]: 

6/76/11222 307.0 kLCn== χσχ  (2.34) 

It has been shown that Eq. (2.34) is a good approximation to the log amplitude variance 

in the range 2
χσ < 1.  The log intensity is related to the log amplitude variance by [1,45]: 

222
log 4loglog χσσ =−= III  (2.35) 

and 

26/76/1122
log 23.1 RnI kLC σσ ==  (2.36) 
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where 2
Rσ  is the Rytov variance.  The Rytov variance of an infinite plane wave helps to 

define the strength of irradiance fluctuations, although it is not an absolute measure of 

turbulence strength, as shown in Table 2.1.   

Strength of Fluctuations Rytov variance

Weak 3.02 <Rσ  

Intermediate 1~2
Rσ  

Strong 12 >>Rσ  

Table 2.1: Typical Rytov variance ranges corresponding to weak, intermediate, and 
strong turbulence levels. 

A better comparison of the strength of irradiance fluctuations is provided by the 

transverse coherence length for a optical wave [13,24].  The coherence length for a 

plane wave is: 

( ) 5/322
0 46.1 −

= nLCkρ  (2.37) 

The coherence length for a spherical wave is: 

( ) 5/322
0 546.0 −

= nCLkρ  (2.38) 

Fried defined a coherence radius 00 099.2 ρ=r  where ρ0 is defined in Eq. (2.38) [25,1]. 

A better way to determine the region of turbulence experienced by a propagating 

optical wavefront is to plot the three relevant scale sizes: the transverse coherence 

length, ρ0, the Fresnel zone size, zλ , and the scattering disk size, 0/ ρkL .  These are 

plotted in Fig. 2.3 for the plane wave case with Cn
2 = 5×10-14 m-2/3, Fig. 2.4 for the 

spherical wave case with Cn
2 = 5×10-15 m-2/3, and Fig. 2.5 for the spherical wave case 

with Cn
2 = 5×10-13 m-2/3.  The intersection of the three scale sizes denotes the onset of 

strong scintillation [19].  
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Eq. (2.37) is bounded by inner scale and outer scale scattering parameters, since 

optical propagation in the visible and near-infrared wavelengths near the Earth’s surface 

is dominated by Fresnel scattering [21].  The large eddies in the spectrum set the outer 

scale scattering parameter: 

2
00 2 LLλπζ =  (2.39) 

while the small eddies define the inner scale scattering parameter: 

2
0

2
2 56.5

l
λκζ L

k
L m

m ==  (2.40) 

For a test range length of L = 863 m and a wavelength λ = 0.6328 µm, the Fresnel 

length is 2.47 cm, which is well away from the scale of either scattering parameter. 

 
Fig. 2.4: The Fresnel zone size, coherence length, and scattering disk size plotted for a 
plane wave against propagation distance.  For L = 863 m, there are scale sizes on the 
link contributing to strong fluctuations.  The shaded area shows scale sizes that do not 
contribute to strong fluctuations. 
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Fig. 2.5: Three scale sizes plotted against the propagation distance for the spherical 
wave case with L = 863 m.  When Cn

2 = 5×10-15 m-2/3, the wavefront sees weak 
scintillations with contributing scale sizes on the order of the Fresnel zone size.  

 
Fig. 2.6: Three scale sizes plotted against the propagation distance for the spherical 
wave case with L = 863 m.  From the graph, the wavefront experiences strong 
fluctuations when Cn

2 = 5×10-13 m-2/3, with contributing scale sizes beyond the shaded 
area. 
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2.6 Strong Turbulence Theory 

Multiple scattering of an optical wave by refractive index inhomogeneities 

results in strong fluctuations of the irradiance.  As the amount of multiple scattering 

increases with increasing propagation path length, irradiance fluctuations saturate and 

approach a value of one.  This phenomenon was first experimentally reported in a 

Russian journal by Gracheva and Gurvich [26].  Although Rytov and other Markov 

based solutions to the stochastic wave equation were investigated [27], no existing 

analysis method was successful in describing the saturation of scintillation.  New 

research in perturbation theory led to the development of the asymptotic theory for 

strong scintillations [27,28,29,30].  Other scientists used heuristic methods to predict 

the saturation of amplitude fluctuations [31,32].  Although the heuristic methods show 

good results, there is no well-defined relationship between amplitude and irradiance 

fluctuations in strong turbulence.  Heuristic theory will not be used in the analysis of 

aperture averaging, since the analysis requires information of the value of the logarithm 

of the amplitude.   

2.6.1 Andrews – Prokhorov Asymptotic Analysis 

The propagation of an optical wave is defined by different moments of the field.    

The angular spread of the beam is characterized by the second order moment, which is 

known as the mutual coherence function (MCF).  The fourth order moment defines the 

irradiance fluctuations of the propagating wave.  When the propagating wavelength is 

small compared to the scale size of inhomogeneities in the random medium, and the 

variation of the refractive index is much less than one, the fourth order moment with E
r

 

in the ẑ propagation direction is [27,29]: 
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( ) ( ) ( ) ( ) ( )21
**

21214 ,0,,,,, rrzEzErzErzErrz +=Γ  (2.41) 

The irradiance variance is related to the fourth order moment by [29]: 

( ) ( ) 10,0,4
22 −Γ=−= zIIIσ  (2.42) 

With the lack of an analytical solution to Eq. (2.42), asymptotic solutions for the fourth 

order moment yield the best results for strong turbulence over long propagation paths.  

Prokhorov summarized the development of asymptotic analysis using the local method 

of small perturbations [27].  He constructed a set of equations for the averaged field to 

which the moments of the field were solutions.  The local method of small perturbations 

required that the phase of the fluctuating wave experiences only small variations over a 

propagating distance 0zz − , and satisfies the limit: 

1222 <<∆ lεk  (2.43) 

where ( ) εεεε /2 −=∆  and ℓ is the scale of the inhomogeneities in the turbulent 

medium. 

2.6.1.1 Andrews Asymptotic Analysis for a Plane Wave 

The equation for the fourth-order moment of the electric field of a plane wave 

propagating in a statistically homogeneous random medium is [27]: 

( )
21

4
2

4
4

rrk
iV

z rr
∂∂
Γ∂

−Γ−=
∂
Γ∂  (2.44) 

with 

( ) ( ) ( ) ( )
22

2121
21

rrDrrDrDrDV
rrrr

rr −′
−

+′
−′+′=  (2.45) 
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where Γ4 is the fourth moment of the field and ( )uD′  is the derivative of the phase 

structure function.  Prokhorov wrote the spectral function of irradiance fluctuations as 

[27]: 

( ) [ ] ( )2142 ,,exp
2
1,, rrzuqiudrqzM rrrrrrr

Γ−= ∫π
 (2.46) 

which is the Fourier transform of the fourth order moment with q representing the scale 

of frequency components in the spectrum.  The full power spectrum in the strong 

fluctuation regime is presented in Eq. (4.17) of Ref. [27].  In his analysis, Prokhorov 

derived the scintillation index, m2, or irradiance variance, in strong, saturated turbulence 

conditions [27]: 

( ) ( ){ } ( )( )

( ) 1/for 

/1
2/2

3
22

>>

+==
−−

kzD

kzDNmI

αα
ασ  (2.47) 
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( ) ( ) ( )

{ })1/(;;1,14
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
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
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




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+
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πα
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α

F
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 (2.48) 

where α is the power-law exponent of the phase structure function, α)()( kuCuD = , Γ 

represents the gamma function, and 2F1 is the confluent hypergeometric function.  The 

phase structure function in the inertial subrange approximates a 5/3 power relation [13].  

For α = 5/3, N3(α) = 1.22.  A solution to the scintillation index can be found using the 

phase structure function representation [27]: 

( ) 3/5329.2 zrkCrD n=  (2.49) 
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By substituting this into Eq. (2.47), we find the asymptotic relation between the 

scintillation index and the Rytov variance for a plane wave in saturated strong 

turbulence [20,27]: 

( ) 5/22
2 86.01

R
I

σ
σ +=  (2.50) 

For the duration of this thesis, we will refer to Eq. (2.50) as the Andrews asymptotic 

model for the plane wave case. 

The generalized asymptotic form for the covariance may also be written in terms 

of the transverse coherence length [24,11].  The form of the covariance for a plane wave 

is given by a two-scale model: 

( ) ( ) ( ) ( )[ ]ρρρ
ρ
ρρ 21

3/12
0

3
5

3

3/5

0 2
1exp bb

L
kNCI +




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


+












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






−=  (2.51) 

where b1 and b2 are scale functions that represent the influence of two different scale 

sizes on the propagating wave.  When ρ approaches zero, b1 and b2 go to unity; while as 

ρ approaches infinity, b1 and b2 go to zero.  When 0→ρ , Eq. (2.51) becomes the 

asymptotic form of the irradiance variance in Eq. (2.50), as expected. 

2.6.1.2 Andrews Asymptotic Analysis for the Spherical Wave 

In spherical coordinates, the fourth-order moment of the electric field for a 

propagating spherical wave in a statistically homogeneous random medium is [27]: 













∂∂
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∂∂
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where ( )φθ ,,r  are spherical coordinates with ( )φθ ξξ ,  and ( )φθ ηη ,  are constant 

differences in angular coordinates due to the conversion from cartesian to spherical 

coordinates.  In the region of the interest of the fourth moment, the angles of interest, 

( )φθ ξξ ,  and ( )φθ ηη , , are small and near the equator of the spherical coordinate system 

with θ ≈ π/2 [27].  Therefore, due to the small angles in the second derivative on the 

right hand side of Eq. (2.52), there will be an additional constant factor in the term.  In 

saturated strong turbulence, the scintillation index is [27]: 

( ) ( ){ } ( )( )αα
ασ

−−
+==

2/222 /1 krDNm spspspI  (2.53) 

with the spherical wave structure function related to the plane wave structure function 

in Eq. (2.49) by [27]: 

( ) ( ) ( )uDuDsp
11 −+= α  (2.54) 

and  

( ) ( ) ( ) ( )

( ) ( )22114

2/12/sin12
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2
1
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


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
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


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−

+
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α
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 (2.55) 

The spherical wave scintillation index is related to the plane wave phase structure 

function by [27]: 

( ) ( ){ } ( )( )αα
ασ

−−
+==

2/2

,3
22 /1 krDNm spspI  (2.56) 

where we have defined N3,sp as: 

( ) ( ) ( )( ) ( )ααα αα
spsp NN −−+= 2/2

,3 1  (2.57) 
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As for the plane wave, we assume the phase structure function obeys a 5/3 power law in 

the inertial subrange, giving N3,sp(5/3) = 3.86.  The asymptotic scintillation index for a 

spherical wave in saturated strong turbulence conditions with α = 5/3 becomes [20,27]: 

( ) 5/22
2 73.21

R
I

σ
σ +=  (2.58) 

The asymptotic formula for the covariance of a spherical wave is of the same form as 

the two-scale model given by Eq. (2.51), with the spherical values for N3, ρ0, b1, and b2 

used.  Throughout the rest of this thesis, we will refer to Eq. (2.58) as the Andrews 

asymptotic model for the spherical wave for convenience. 

2.6.2 Churnside Asymptotic Analysis 

After the phenomenon of saturation of scintillation was understood, Churnside 

built upon Fried’s work and published the first significant application of asymptotic 

theory to the study of aperture averaging.  Churnside used the covariance function in 

Eq. (2.48) to devise a framework to study intensity scintillations when the inner scale is 

small.   

2.6.2.1 Churnside Asymptotic Analysis for the Plane Wave 

Churnside evaluated the two-scale model of the covariance function by 

representing the two scale functions, b1 and b2, as: 
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Both functions go to unity when ρ approaches zero, and go to zero when ρ approaches 

infinity.  Churnside’s scale functions are compact forms of the functions presented in 

Chapter 3 of Ref. [1].  Different authors have evaluated these equations under different 

constraints [1,29], and Churnside uses limits relevant to aperture averaging. Based on 

Eq. (2.59), Churnside calculated the irradiance variance to be: 
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or, in terms of the plane wave Rytov variance: 
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The Churnside asymptotic approximation is slightly different from that of Sec. 2.6.1. 

2.6.2.2 Churnside Asymptotic Analysis for the Spherical Wave 

The two-scale model of the covariance function in Eq. (2.51) is evaluated using 

Churnside’s spherical wave representations for b1: 
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where b2 is the same as in the plane wave case.  The Churnside asymptotic equation for 

the irradiance variance of a spherical wave is: 
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or, in terms of the plane wave Rytov variance: 
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( ) 5/22
2 35.51

R
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σ
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The multiplicative constant is slightly higher by Churnside’s calculation, compared to 

the earlier theory in Section 2.6.1.   

2.7  Irradiance Variance Models Valid in Both Weak and Strong Turbulence 

Conditions 

2.7.1  Scintillation Index Model for a Plane Wave 

Andrews and Philips developed a model to describe plane wave characteristics 

over the entire range of fluctuation conditions, from weak to strong turbulence [33].  

They use the effective Kolmogorov spectrum, which modifies the Kolmogorov 

spectrum by two filter functions that exclude mid-scale sizes that have an insignificant 

effect on the propagating wave in the moderate-to-strong turbulence region.  The 

effective Kolmogorov spectrum model is [20,33]: 

( ) ( ) ( )[ ]κκκκ yxnn GGC +=Φ − 3/112
, 033.0l  (2.65) 

where the large-scale filter function that passes only spatial frequencies xκκ < is: 
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and the small-scale filter function, passing only spatial frequencies yκκ > , is: 
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The wavenumber spectrum given by Eq. (2.65) is a two-scale model for generic scale 

sizes x and y.  Likewise, modified Rytov theory may be used to define the scintillation 

index, 2
Iσ , in terms of large-scale and small-scale scintillations [20,33]: 

( ) 1exp 2
ln

2
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2 −+= yxI σσσ  (2.68) 

where 2
ln xσ  and 2

ln yσ  are the large-scale and small-scale log irradiance fluctuations.  

These functions are evaluated in Ref. [33], to define the scintillation index for a plane 

wave, excluding inner scale effects, as: 
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where 2
Rσ  is the Rytov variance for a plane wave.  Eq. (2.69) reduces to the Rytov 

approximation in weak turbulence conditions, and the asymptotic model from Eq. (2.58) 

in strong turbulence saturation conditions. 

2.7.2  Scintillation Index Model for a Spherical Wave 

The scintillation index (SI) model attempts to describe the behavior of irradiance 

fluctuations over the entire range of turbulence strengths.  The model for a spherical 

wave is developed using the effective Kolmogorov spectrum, using the same two-scale 

filter functions presented in Eqs. (2.66) and (2.67) for the plane wave case.  The small 

scale and large scale log irradiance fluctuations are evaluated to define the scintillation 

index of a spherical wave, neglecting inner scale effects, by [20,33]: 
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where 2
Rσ  is the plane wave Rytov variance.  Eq. (2.70) has the same form as Eq. 

(2.69), when we rewrite Eq. (2.69) using the relation between the spherical wave and 

plane wave Rytov variances 22
, 4.0 RsphR σσ = . 

2.7.3 Scintillation Index Model using the Atmospheric Spectrum 

The modified atmospheric spectrum is useful when accounting for the influence 

of the inner scale, lo, in the calculation of the irradiance variance.   The spectrum is still 

represented by a two scale model, with an enhanced description of the large-scale filter 

function integrated into the model.  In order to properly account for the influence of the 

inner scale, the new large-scale filter function is defined as [20]: 
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where the term in the {} arises out of the modified atmospheric spectrum in Eq. (2.25).  

The small-scale filter function has the same form as in Eq. (2.67).  Eqs. (2.71) and 

(2.67) may be combined to form the Effective Atmospheric Spectrum, which is an 

extension of the modified atmospheric spectrum [20]: 

( ) ( ) ( )[ ]κκκκ yoxnn GGC +=Φ − l,033.0 3/112  (2.72) 

The irradiance variance of a spherical wave using the spectrum in Eq. (2.72) may be 

broken down into components attributed to the modified atmospheric spectrum and 

effective atmospheric spectrum [20]: 
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where L
kDd 4

2
= .  The components of Eq. (2.68) are defined in Eqs. (2.71) through 

(2.74).  The spherical wave Rytov variance is given by: 

6/116/722
, 497.0 LkCnspR =σ  (2.74) 

The scintillation index using the modified atmospheric spectrum in weak turbulence is 

[20]: 
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where 2/89.10 ol kLQ l= .  In saturated strong turbulence, the scintillation index becomes 

[20]: 
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Either Eq. (2.75) or Eq. (2.76) may be used in Eq. (2.73) depending on the strength of 

turbulence experienced on the link.  Finally, the part of the scintillation index resulting 

from the effective atmospheric spectrum, ( )ox D l,2
lnσ , in Eq. (2.73) is defined by [20]: 
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where 
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Although Eq. (2.73) may be used to quantify the effects of the inner scale lo on the 

irradiance variance, it is generally accepted that lo has little effect on the strong 

turbulence irradiance variance [20].  As such, the scintillation index model using the 

atmospheric spectrum presented in Eq. (2.73) will only be used in conjunction with 

weak turbulence analysis. 


