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This work isolates the physics of aerodynamics and structural dynamics from

the helicopter rotor aeromechanics problem, investigates them separately, identifies

the prediction deficiencies in each, improves upon them, and couples them back to-

gether. The objective is to develop a comprehensive analysis capability for accurate

and consistent prediction of rotor vibratory loads in steady level flight. The rotor

vibratory loads are the dominant source of helicopter vibration. There are two crit-

ical vibration regimes for helicopters in steady level flight: (1) low speed transition

and (2) high speed forward flight. The mechanism of rotor vibration at low speed

transition is well understood - inter-twinning of blade tip vortices below the rotor

disk. The mechanism of rotor vibration at high speed is not clear. The focus in

this research is on high speed flight. The goal is to understand the key mechanisms

involved and accurately model them.



Measured lift, chord force, pitching moment and damper force from the UH-

60A Flight Test Program are used to predict, validate and refine the rotor structural

dynamics. The prediction errors originate entirely from structural modeling. Once

validated, the resultant blade deformations are used to predict and validate aerody-

namics. Air loads are calculated using a table look up based unsteady lifting-line

model and compared with predictions from a 3-dimensional unsteady CFD model.

Both Navier-Stokes and Euler predictions are studied. By separating aerodynam-

ics from structural dynamics, it is established that the advancing blade lift phase

problem and the problem of vibratory air loads at high speed stem from inaccurate

aerodynamic modeling, not structural dynamic modeling. Vibratory lift at high

speed is caused by large elastic torsion deformations (-8 to -10 degrees near the tip)

driven by pitching moments and wake interactions on the advancing blade. The

dominant phenomenon at the outboard stations (86.5% R to 99% R) is the elas-

tic torsion. Vibratory lift at these stations are dominantly 3/rev and arise from

2/rev elastic torsion. At the inboard stations (67.5% R and 77.5% R), the vibra-

tory lift is impulsive in nature and is not captured by elastic torsion alone. An

accurate rotor wake model is necessary in addition to accurate elastic torsion. Ac-

curate elastic torsion requires accurate pitching moments. Lifting-line models, with

airfoil tables, unsteady aerodynamics, near wake and far wake do not capture the

unsteady transonic pitching moments at the outboard stations (86.5% R to 99% R).

A 3-dimensional CFD analyses, both Navier-Stokes and Euler, significantly improve

pitching moment predictions at the outboard stations.

The 3D Navier-Stokes CFD analysis is then consistently coupled with a rotor



comprehensive analysis to improve prediction of rotor vibratory loads at high speed.

The CFD-comprehensive code coupling is achieved using a loose coupling method-

ology. The CFD analysis significantly improves section pitching moment prediction

near the blade tip. because it captures the steady and unsteady 3D transonic effects.

Accurate pitching moments drive elastic twist deformations which together with a

refined rotor wake model generate the right vibratory airload harmonics at all radial

stations. The flap bending moments, torsion bending moments and pitch link load

predictions are significantly improved by CFD coupling.
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Chapter 1

Introduction

Prediction of helicopter rotor loads and vibration is a key thrust area within

the field of rotor aeromechanics. Rotor aeromechanics covers a wide area of multi-

disciplinary research, from aeroelastic response and stability, to vibration prediction

and control, to unsteady aerodynamics, wake modeling, Computational Fluid Dy-

namics (CFD), to flight mechanics and handling qualities. It draws upon extensive

wind tunnel and flight test programs conducted to gain physical insight behind the

various mechanisms at play as well as development and synthesis of analysis method-

ologies to model and predict those mechanisms. This work focuses on the modeling,

analyses and fundamental understanding of helicopter rotor loads and vibration at

high speed level flight.

The rotor loads are the dominant source of helicopter vibration. Helicopter
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vibration is a critical aspect of helicopter design and a major reason for extended

lead times during the aircraft development phase. Consistent ability to accurately

predict helicopter vibration is challenging and beyond the state of the art. This

chapter introduces the topic of helicopter vibration - from the physical mechanisms

at play, to the analyses methods required to model them, from the state-of-the-art

in prediction capabilities to the unsolved problems of fundamental importance. It

states the goal of the present research, explains the approach taken and summarizes

the contributions.

1.1 Helicopter Vibration

Helicopter vibration is the unsteady acceleration of any given location inside

the fuselage, e.g. at the pilot seat, co-pilot seat or at a given crew or passenger

station measured along three mutually orthogonal axes (as a fraction of acceleration

due to gravity, g).

1.1.1 Measure of Helicopter Vibration

The basic measure of helicopter vibration, as given in the Aeronautical Design

Standard (released in 1986 as ADS-27 by the U.S. Army Aviation Systems Com-

mand, AVSCOM), is the Intrusion Index (II) [1]. This is computed by normalizing

triaxial accelerometer data for the four largest spectral peaks up to 60 Hz. The four

largest spectral peaks generally correspond to multiples of the rotor RPM (Revolu-

tions Per Minute) e.g. 1/rev (once per revolution, same as the rotor RPM), 2/rev,
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3/rev etc, indicating that they arise from main rotor loads. For conventional heli-

copter rotors, the RPM corresponds to around 4 to 4.5 Hz. The ADS-27 measure

does not include the 1/rev vibration. This is to emphasize the special importance

of this harmonic. The 1/rev vibration arises in the fuselage if the blades are out

of track - i.e, when all the blades do not follow the same trajectory in space. For

tracked and identical rotor blades, the frequencies, in /rev, transmitted to the fuse-

lage via the rotor hub are integral multiples of blade number. For example for a

4-bladed helicopter like the UH-60A, 4/rev, 8/rev, 12/rev and so on are transmitted

to the fuselage. The frequency corresponding to the blade number, 4/rev in this

case, is called the blade passage frequency. Non-integral multiples are transmitted

only in the case of non-identical (damaged or dissimilar) or out of track blades.

The four largest harmonics are measured along each axis and their norm is

used to obtain the intrusion index. This produces a single scalar quantity as a

measure of vibration which combines 12 harmonics (four each in three axes). The

three axes are weighted differently, the vertical vibrations are weighted most heavily,

the lateral vibrations have a 0.75 weight relative to the vertical and the longitudinal

vibrations have a 0.50 weight relative to the vertical. This is done to allow designers

the freedom to trade off between directions and frequency within the confines of a

single scalar measure of vibration.

The ADS-27 relaxed the fuselage vibration levels compared to original stan-

dards set by the Utility Tactical Transport Aircraft System (UTTAS) and Advanced

Attack Helicopter (AAH) developmental programs [2]. None of the helicopter de-

signs even came close to those original specifications. The revised ADS-27 standards
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are still too stringent. For example, for the UH-60A Black Hawk helicopter with an

articulated 4 bladed main rotor system, the vibration levels can be 100% higher in

forward flight compared to the ADS-27 requirements [3].

The intrusion index at the pilot floor for the UH-60A at transition speed

of around 40 kts is about 2.1 (ADS-27 level is about 1.1) [3]. 4/rev and 8/rev

harmonics account for 91% of this number. At high speed of about 155 kts, 4 and

8/rev contribute to around 67% of the index. 2/rev and 6/rev contribute to 19% and

5% of the index. This shows that frequencies corresponding to non-integer multiples

of blade number can contribute significantly to fuselage vibration at certain flight

conditions.

Currently, vibration reduction devices, active and passive, are used to meet

these requirements. Their cost and weight penalty has been excessive in part because

of inadequate vibration prediction capability. Accurate prediction capability at an

early design stage may enable the design of low vibration helicopter systems.

1.1.2 Causes of Helicopter Vibration

The dominant source of helicopter vibration is the main rotor. The frequency

of vibration caused by the main rotor is at integer multiples of the rotor RPM - 1 per

revolution (1/rev) is the rotor RPM, then 2/rev, 3/rev and so on. In addition to the

main rotor, other sources of vibration are - the engine/fan system, the main rotor

transmission/drive-shaft/gear system, the tail rotor and its transmission system and

loose components that are a regular or external part of the aircraft. Examples are
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out of balance rotor blades, loose tail fins, loose engine shaft mounts, unsecured

canopy, landing gear system or external weapons or cargo systems.

The fuselage vibration at any station depends not only on the external loadings

but also on the fuselage dynamic characteristics. The fuselage dynamic character-

istics are in general coupled with the dynamics of other component structures. For

example, the main rotor loads are transmitted to the fuselage via the rotor hub.

The fuselage dynamic response feeds back into the blade motions via the hub and

pylon assembly.

In addition to dynamic coupling, a significant amount of aerodynamic inter-

ference or coupling exists between the main rotor, airframe and tail rotor structures.

The flow around the fuselage affect the aerodynamics of the main rotor and the tail

rotor. The downwash from the main rotor changes the aerodynamics of the fuselage,

tail rotor and horizontal tail and stabilizers. Under certain low speed conditions,

the vortex wake from the main rotor impinges directly on the tail boom that gives

rise to fuselage vibration at the blade passage frequency.

For accurate prediction of fuselage vibration, the dynamics and aerodynamics

of all components - main rotor, airframe, tail rotor etc and their mutual interactions

must be modeled accurately. However, the most significant contribution to fuselage

vibration is the loads of the main rotor system. Because only the harmonics of

the blade passage frequency are dominantly transferred to the fuselage, main rotor

loads which generate those harmonics are termed vibratory loads. In addition to the

vibratory loads, oscillatory blade loads arising out of blade dynamics are also critical.

They are important for the design of blades, control linkages, hub attachments as
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well as rotor performance. The rotor vibratory and oscillatory loads are described

in the next subsection.

1.1.3 Rotor Vibratory and Oscillatory Loads

The dominant contributor to fuselage vibration is the main rotor - the os-

cillatory loads that are transmitted to the airframe via the rotor hub and pylon

assembly. The oscillatory and vibratory blade loads originate due to : (1) unsteady

aerodynamic environment and (2) dynamic response of the flexible rotor blades.

The dynamic response of the blades are determined by non-linear inertial couplings

between flap, lag, elastic torsion and axial degrees of motion, moderately large de-

formations, large pitch angles required for rotor trim, damper properties, material

non-linearities and rotor-fuselage dynamic interactions.

The problem of rotor loads and vibration has been the focus of dynamics

research since the beginning of the industry. The aerodynamics of a rotor blade

differ from that of a fixed wing due to the following phenomenon.

• Rotor inflow, generated by high RPM of the blades (around 250 for conven-

tional main rotors), necessary for vertical flight.

• Cyclic variation of blade pitch angle, necessary for control.

• Time varying, assymetric flow in forward flight with large variations of angle

of attack in the advancing and retreating sides.

• Enormous compressibility effects including shocks on the advancing side and
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stalled flow on the retreating side.

• The complex, unsteady wake structure of each blade interacting with following

blades.

Because of rotation, the outboard span stations of the blades generate more

lift and trail strong tip vortices. The tip vortices are the dominant features of the

wake and in general contribute to non-uniform inflow variation around the rotor

disk. Unlike airplane wings, these vortices remain in the vicinity of the rotor disk

and interact with the following blades.

A fixed wing aircraft uses wings for lift, control surfaces for vehicle control and

thrusters for propulsion. On the other hand, in a rotary wing aircraft, the main rotor

performs all three functions at the same time. The rotor disk angle is controlled by

time varying 1/rev pitch inputs to the blades (using swash-plate). The rotor thrust

is controlled by steady pitch input to the blades (collective angle). This generates

steady and 1/rev air loads at each blade section which collectively determine the

magnitude and orientation of the rotor thrust.

In forward flight, the assymetric velocity variation around the rotor disk to-

gether with cyclic pitch angles and complex inflow distribution generate higher har-

monic air loads, 3/rev and higher. For example, a velocity variation of zero and

1/rev creates a zero, 1 and 2/rev variation in the square of velocity, which when

multiplied with 1/rev cyclic angles generates zero, 1, 2 and 3/rev airloads. The

steady components are used to trim the vehicle, the 1/rev components are required

for control, the higher harmonics give rise to rotor vibration. At certain flight con-
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ditions, significant higher harmonic air loads are generated creating severe rotor

vibration - e.g., tip vortex induced airloads in transition flight, dynamic stall air

loads in high thrust flight, unsteady transonic air loads at high speed flights and a

combination of all in maneuvering flight.

The long slender rotor blades are highly flexible. As a result significant elastic

bending deformations occur in flap, lag and twist in response to airloads. Because

they are equi-spaced from one another in azimuth angle, and identical, their aerody-

namic loading and structural dynamic response is expected to differ only in phase.

And because they are all joined at the hub, the individual blade loads at the hub

add up to cancel the non-integral harmonics of blade passage frequency. For exam-

ple, as mentioned before, in the case of a 4 bladed rotor system like the UH-60A

Black Hawk, only steady, 4/rev, 8/rev, 12/rev, i.e., in general pNb/rev, where p

is an integer, are transmitted from the rotor system to the hub. Dissimilarities or

damage of the blades make them non-identical and generate non pNb/rev loads [4].

This forms a separate field of study and is outside the scope of the present thesis.

For identical blades, only integral harmonics are transmitted. Because of sim-

ple trigonometry, the integral blade number harmonics in the fixed hub system are

generated by the adjoining harmonics in the rotating blades. Thus, (3/4/5)/rev

blade loads in the rotating frame generate 4/rev hub loads in the fixed frame,

(7/8/9)/rev blade loads generate 8/rev hub loads and in general (p + 1)Nb, pNb,

(p− 1)Nb/rev blade loads in the rotating frame generate pNb/rev hub loads in the

fixed frame. All harmonics of blade loads are important for blade design, but only

blade passage harmonics (and multiples) and their adjoining harmonics have the

8



potential for hub and fuselage vibration. The large deflection response of the rotor

blades feeds back to the air loads which generate time varying aerodynamic stiffness

and damping matrices. The damping of the rotor system comes primarily from aero-

dynamics. The structural response of the rotor blades are therefore aeroelastic in

nature and governed by the periodic stiffness, damping and forcing functions. In ad-

dition, the moderate to large flap, lag and elastic torsion deformations of the blades

form a nonlinear coupled system with complex boundary conditions and multiple

load paths at the root.

Accurate prediction of rotor loads is key to advanced rotorcraft design. Attrac-

tive and radical low noise, high performance (range and endurance) rotor designs

may be evaluated quickly and at low cost using reliable analyses methods. For a

reliable analysis, it is necessary to understand and model the physics of structural

dynamics and aerodynamics accurately. Such a capability does not exist today (dis-

cussed later). Designers rely on costly and time consuming wind tunnel and flight

tests. Rotor aeromechanics is at the heart of the helicopter system and any mod-

ification in existing design cannot be undertaken unless its impact on blade loads,

control loads and vibration are clearly ascertained. Prediction of control loads is

important for designing more agile and maneuverable rotor systems. While the peak

magnitudes are important for sizing and design of the control system components,

the phase of the response is important for implementing control algorithms.

Apart from degraded ride quality, high vibration directly increases mainte-

nance and operating costs because of frequent replacement schedules of critical fa-

tigued components. The maintenance, and direct operating cost of a helicopter is
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the greatest hindrance toward its becoming a serious candidate for civilian short

haul flight. A helicopter with its unique vertical take off and landing capability

offers the most promising solution for reducing airport and air traffic congestion.

Vibration is one of the major hindrances to fulfilling this potential.

Smart structure actuated on-blade active control mechanisms show enormous

potential for reducing and controlling rotor vibration [5, 6, 7]. The actuator require-

ments and control limits can be reliably designed and tested, without expensive wind

tunnel or flight tests, provided the mechanisms of helicopter vibration are well un-

derstood and predicted. Passive vibration reduction techniques, using composite

tailoring [8] and structural optimization, can be devised and tested with confidence

without expensive wind tunnel tests. Detailed discussion of smart structures tech-

nology is outside the scope of the present thesis. A comprehensive review of this

topic can be found in Chopra [9].

The state of the art in helicopter loads and vibration prediction is well char-

acterized by Johnson in 1985 [10] who said, “For a good prediction of loads it is

necessary to do everything right, all of the time. With current technology it is pos-

sible to do some of the things right, some of the time”.

The fundamental difficulty in predicting rotor loads and vibration arises due

to its rotary-wings. The kinetic energy of the massive rotating blades are of the

order of 1× 108 Joules. The potential energy change due to blade deformations can

at the most be as high as 1 × 106 Joules. To accurately predict the blade loads

and vibration it is necessary to pick up fluctuations of potential energy levels that

are two orders of magnitude lower than the total energy level of the system. This
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enormous imbalance between the magnitudes of kinetic and potential energy makes

the rotor loads prediction problem fundamentally difficult and challenging compared

to other dynamical systems.

1.2 Analysis of Helicopter Vibration

For accurate prediction of helicopter vibration at any fuselage station, the

following physical mechanisms must be modeled.

1. Structural dynamics of the main rotor with non-linear inertial couplings, mod-

erately large deformations, boundary conditions with multiple load paths,

pitch link and damper properties at the root, advanced geometry blades with

sweep, droop and pre-twist and rotor-airframe coupling terms.

2. Aerodynamics of the main rotor which accounts for time varying unsteady ef-

fects, attached flow, stalled flow, dynamic stall, free or prescribed rotor wake,

a lifting-line or lifting-surface model for calculating the blade airloads compat-

ible with airfoil property data.

3. Aerodynamic and structural dynamic model of the airframe or fuselage which

includes a tail rotor model, properties of the vertical and horizontal tail and

fuselage center of gravity location. A detailed structural model of the flexible

fuselage would include rotor-body coupling terms and modeling of rotor hub,

pylon, tail boom and other difficult components.

4. Rotor-fuselage aerodynamic interaction effects. The downwash from the ro-
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tor and the upwash from the fuselage affect the fuselage and rotor airflows

respectively as well as coupling their aerodynamic characteristics.

5. A vehicle trim model using a isolated rotor wind tunnel trim, or a free flight

propulsive trim under steady level or steady maneuvering conditions.

6. Computation Fluid Dynamic models can be used to replace - from parts of the

aerodynamic modeling of the main rotor, to the full rotor system to the entire

rotor-fuselage-tail rotor flow field, depending on the level of details sought,

scope of analysis and resources available.

7. Active on-blade components like trailing edge flaps, actuators and blade to

blade structural and aerodynamic dissimilarities and damage.

The above models can be combined together to synthesize a comprehensive

analysis to predict helicopter performance, airloads, blade loads and fuselage vi-

bration. Detailed modeling of all the above mechanisms are prohibitive in terms

of computational and modeling costs and cannot be routinely used for design pur-

poses. Nor is it necessary for preliminary design. Depending on the level of accuracy

and type of results sought from the analysis, simplifying assumptions can be made

which focuses on the key mechanisms. For example, for calculation of basic rotor

performance, blade airloads are more important than rotor-fuselage aerodynamic in-

teractions. For calculation of blade airloads at low thrust conditions, dynamic stall

models need not be used. For calculation of bending moments, flexible blade modes

are more important than fuselage dynamics. At low speed transition flight, a free

wake model is more important than transonic effects. At a high speed, transonic
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effects are more important than free wake. Thus, if the underlying key mechanisms

of a particular flight condition are understood and modeled, reasonably accurate

solutions can be obtained from a simplified analysis. In general, for accurate pre-

diction of fuselage vibration at all flight conditions, all the above mechanisms need

to be modeled.

A survey of the state-of-the-art in modeling of the above mechanisms is dis-

cussed below. A survey of rotor testing is also included. These rotor tests are crucial

for the development, validation and refinement of analyses models. For example, the

present work uses the UH-60A flight test data extensively for validation purposes.

A detailed discussion on the lack of understanding of the key mechanisms at high

speed flight condition is treated separately in the next section.

1.2.1 Rotor Structural Model

The linear coupled flap-lag-torsion dynamics of the rotor blades were well

established by Houbolt and Brooks in 1958 [11]. Ref [12] used a rigid blade with a

spring restrained hinge to show the importance of modeling Coriolis and centrifugal

non-linearities even if only flap and lag degrees of freedom were included. Hodges and

Dowell [13] presented a rigorous and consistent set of elastic, coupled, nonlinear flap-

lag-torsion equations for moderately large deformations. The nature of the elastic

torsion variable was later clarified by Hodges, Ormiston and Peters [14] and treated

as a quasi-coordinate. A number of researchers like Kvaternik et al [15], Friedmann

and Rosen [16] and Johnson [17] have extended these formulations to consistently
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include the nonlinear structural and inertial terms for moderately large deflections.

These formulations laid the foundation of nonlinear structural dynamics of coupled

bending, torsion and axial deformation of twisted non-uniform rotor blades with

center of gravity offsets. The structural model in all these formulations use the

Euler-Bernoulli beam theory for isotropic materials.

The structural model for anisotropic or composite materials is developed in

references [18, 19, 20]. These formulations include the effects of cross-sectional warp-

ing and transverse shear in the section structural properties. These models also

eliminate the assumption that an elastic axis exists. Analysis of advanced geometry

blades with tip sweep, drop and pretwist were incorporated in rotor aeroelastic anal-

yses in references [21, 22, 23, 24, 25]. Advanced geometry modeling was incorporated

in composite rotor blades in references [26, 27].

The structural equations can be discretized in two ways : (1) using a lumped

parameter (or transfer matrix or Myklestad) approach [28, 29], and (2) using a fi-

nite element approach [30, 31]. The Myklestad approach becomes involved for blades

with load redundancies. Most modern structural analyses solve the governing equa-

tions of motion using a finite element method. The finite element method is versatile

and can handle complex blade geometries and redundancies. For conventional rotor

structural analyses, the first few elastic modes of the rotor blades can be used to re-

duce the size of the structural dynamic problem. The finite element method is used

to construct the normal modes which are then used reduce the degrees of freedom

of the problem to improve efficiency and reduce computational cost without a sig-

nificant loss in solution accuracy. With increase in available computational power,
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full finite element solutions can be obtained, without the need for modal reduction.

Conventional formulations of the structural dynamic equations exploit the

topology of a helicopter rotor system to simplify the derivation of the governing

equations. This leads to a loss of expandability of the analysis. For example, to

model a coupled rotor-fuselage system, the blade equations must be rederived. A

small increase in the scope of analysis (e.g. modeling the flexible shaft or swash-

plate) involves the entire analysis, and the growth becomes progressively harder with

each new feature. Moreover with each new formulation, the same model which is now

expressed with a new set of equations, must be revalidated again and again. In recent

years, multi-body formulations are developed to address this issue [32, 33, 35, 36].

These formulations significantly increase the scope of simulation capability with de-

tailed models of control linkages, complex hub geometries, swash-plate assembly etc.,

without having to rederive the structural dynamic equations with each additional

feature.

1.2.2 Rotor Aerodynamic Model

The rotor aerodynamic model can be conceptualized in two parts - based on

a cause and effect relationship.

The first part, the cause, is the excitation which causes the airloads. It consists

of the relative motion of the airfoil with respect to air, i.e., the section angle of attack

variation. The section angle of attack variation is calculated based on the flexible

blade deformations, the air velocities - incident and gust, and the rotor wake induced
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velocities. The blade deformations are from structural dynamics, the air velocity

depends on flight speed and fuselage trim attitudes, the wake induced velocities

depend on wake or inflow modeling.

The second part, the effect, is the pressure response on the surfaces of the airfoil

(and the viscous drag) which generate the unsteady airloads. This part depends

on the airfoil shape, boundary layer response and the near wake from the airfoil

(trailed and shed). Given the blade deformations and air velocities, the aerodynamic

model involves two critical calculations : (1) non-uniform inflow or the wake and (2)

unsteady pressure or airload response of the airfoils. The state of the art methods of

treating these two components are discussed below. CFD methods, to be discussed

later, are able to provide more detailed pressure and wake distributions but at a

much higher computational cost. On the other hand, Lagrangian wake models (to

be discussed later) are ideally suited to handle the first problem, i.e. calculation of

induced inflow. This is due to the inherently dissipative nature of the CFD solvers

which artificially destroy the vortical wake structures in the flow field.

Rotor Inflow Calculation

It was understood during the 1950s that non-uniform inflow is important to

predict rotor aerodynamics. Piziali and DuWaldt [37, 38], showed improved airload

prediction using prescribed wake geometry. Landgrebe developed a prescribed wake

geometry model based on experimental observations of induced velocities [39, 40]

which significantly improved predictions of rotor hover performance. Around the

same time Scully [41], showed that the wake geometry can be modeled as a distorted
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or free wake without being prescribed a priori. His Euler time-marching wake algo-

rithm, similar to the time-marching approach introduced by Crimi [42], had limited

success due to severe numerical instabilities. The convergence problem was subse-

quently overcome with Scully’s relaxation wake model [43]. In the relaxation wake

model, the wake is constrained to be periodic in time and the solution is valid for

steady-state flight conditions. Crimi, Scully, Piziali and Landgrebe’s work form the

basis of modern time accurate free wake, relaxation (periodic, steady-state) free

wake and prescribed wake geometry models.

Prescribed wake geometry models have been subsequently refined [44] and ex-

tended to forward flight, e.g. Egolf and Landgrebe [45] and Beddoes [46]. Free

wake geometry models have since developed adopting different numerical methods.

Broadly, they can be classified into relaxation methods and time-marching methods.

The relaxation methods include - constant vorticity contour method by Quacken-

bush and Wachspress [47], pseudo-implicit predictor-corrector method by Bagai and

Leishman [49], the general free wake geometry method by Johnson [48] and more

recently a refinement of the later in the form of the multiple trailer with consoli-

dation method [50]. Scully’s relaxation free wake was applicable to a single rotor

with identical blades, a single tip vortex and a single peak circulation distribution.

Modern free wake analysis incorporate multiple rotors [51], multiple trailers, dual

peak circulation distributions [52] and dissimilar blades [48].

The time marching free wake methods underwent subsequent developments

by Clark and Leiper [53], Landgrebe [39] and Sadler [54]. Clark and Leiper used a

predictor-corrector approach to remove instabilities in hover. This is because wake
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periodicity was explicitly enforced. Landgrebe focussed on forward flight. Land-

grebe’s hover calculations showed similar instabilities as Scully. Sadler developed an

explicit Euler time-marching wake methodology for multiple rotors in forward flight.

Other time-marching methods are - and explicit Euler vortex lattice rotor wake

model by Egolf [55] and a second-order time marching using an Adams-Bashforth

type method by Baron and Baffadossi [56].

Time-marching wake studies by Jain et al. [57] and Lee et al. [58] have

focussed on the numerical instabilities in hover and found them consistent with

experiments [59]. Near real time simulations have been shown by Quackenbush [60].

Recently, comprehensive time accurate vortex wake methods have been developed

by Bhagwat and Leishman [61, 62]. They showed that the instabilities in hover are

due to various inherent physical disturbances in the wake but are not related to

instabilities in numerical solution. Thus good correlations may often be fortuitous

but in general not always possible. The time accurate wake geometry models are

necessary for the analyses of unsteady maneuvers.

Over the past three decades these free-vortex methods have emerged as prac-

tical tools for modeling the vortical wake geometry generated by helicopter rotors.

The models are based on the assumption of irrotational, incompressible (i.e. poten-

tial) flow with all of the vorticity concentrated into filaments. The motion of a point

in the vortex filament is given by the Lagrangian fluid equation of motion, which

simply states that the time derivative of position equals velocity. The free-vortex

wake is therefore also called Lagrangian wake. Once the vortex wake geometry is

known, the induced inflow can be obtained at any point in the flow field
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Another type of inflow calculations are performed by the Dynamic Inflow

models. They are not used for detailed modeling of the localized unsteady inflow at

the blade element level. These models assume a inflow distribution over the rotor

disk in terms of a time series and relate the coefficients of the series to the net rotor

thrusts and moments. A popular dynamic inflow model is that of Pitt and Peters [63]

with subsequent refinements by Peters and He [64] and Morillo and Peters [65]. The

dynamic inflow models do not calculate the wake geometry. Dynamic inflow models

appear adequate for aeroelastic stability calculations but not for prediction of rotor

vibration.

Unsteady Airloads Calculation

In the rotor environment, the blade pitching motions supply both an angle of

attack as well as a rate of change of angle of attack, the flapping motion supplies

a plunging motion, the inflow supplies a gust type velocity pattern, the unsteady

response to all these stimuli are different and complex. An comprehensive treatment

of these effects can be found in a recent text by Leishman [66]. In general, most rotor

simulations combine these effects to define an instantaneous angle of attack for each

airfoil section calculated at the 3/4 chord location. The airloads are then calculated

using the ’look-up’ tables obtained from wind tunnel tests. These can be termed

pseudo-steady airloads. For quasi-steady airloads, the next level of refinement, un-

steady non-circulatory airloads are added to the pseudo-steady components using a

quasi-steady thin airfoil theory. For a truly unsteady prediction, the pseudo-steady

airloads are corrected in phase and magnitude using classical Theodorsen’s theory
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(frequency domain). These corrections account for the near shed wake effects. The

Wagner’s problem formulation is more useful for rotor problems. It is formulated in

the time domain, and accounts for both non-circulatory and shed wake effects (cir-

culatory). These classical 2D theories ignore compressibility, viscous effects, affect

of airfoil shape and most significantly separation and dynamic stall.

Over the last three decades, significant improvements have been made in

usteady aerodynamic modeling. Oscillating airfoil wind tunnel data have been used

to develop semi-empirical models that attempt to capture the real fluid viscous ef-

fects, separation and dynamic stall, compressibility effects and can be obtained for

each specific airfoil. For example, semi-empirical indicial models were developed for

high sub-sonic (up to Mach number 0.8) 2D unsteady aerodynamics by Leishman

and Beddoes [67, 68]. The models were further extended to include nonlinear ef-

fects of flow separation [69], dynamic stall [70] and effects of blade sweep on dynamic

stall [71]. Other dynamic stall models are the Johnson model [72], Boeing model [73],

ONERA EDLIN (Equations Differentielles Linearires) model [74] and the ONERA

BH (Bifurcation de Hopf)model [75]. All models are 2-D and semi-empirical in na-

ture. Dynamic stall is characterized by a delay in angle of attack before stall (or

separation) and high transient loads induced by a leading edge vortex after stall.

All dynamic stall models, model the delay in angle of attack and the aerodynamic

coefficient increments after stall. In the Leishman-Beddoes model uses first-order

differential equations for the delayed angle of attack and leading-edge vortex lift.

The ONERA EDLIN and BH models use second-order differential equations to cal-

culate delayed angle of attack and lift, drag and moment increments. The Johnson
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model uses an angle of attack delay proportional to the rate of change of angle of

attack. The Boeing model uses an angle of attack delay proportional to the square-

root of the rate of change of angle of attack. In general the agreement between

different models are good considering the simplicity of the models, but correlation

with test data show significant errors, as expected with empirical models [76].

The 3-dimensional flow effects are modeled using lifting-line, nonlinear lifting-

line [77] and lifting-surface [47] methodologies. These are adapted to include steady

airfoil properties and can be used to add corrections to a 2D strip theory or blade

element method based angle of attack calculation to account for 3D effects. 3D

effects of advanced geometry swept tip blades have been studied analytically and

experimentally by several researchers [78, 79, 80, 81].

1.2.3 Coupled Rotor-Fuselage Analysis

The rotor-fuselage coupled analyses can be classified into four categories - (i)

coupled trim analyses, (ii) stability analyses like ground resonance and air-resonance,

(iii) fully coupled loads and vibration analyses and (iv) rotor-fuselage aerodynamic

interaction studies. The term airframe or fuselage includes the tail rotor, landing

gear, engines, tail boom etc, i.e. all non main rotor components of the helicopter.

The trim analysis incorporates the basic fuselage aerodynamic properties, the

horizontal and vertical tail aerodynamic properties and center of location, the tail

rotor aerodynamics and locations and the vehicle center of gravity offsets. The

coupled rotor-fuselage stability analysis is well developed. An excellent review on
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the subject is found in Chopra [82]. Rotor-fuselage coupling for vibration analysis

and prediction have been performed by Vellaichamy and Chopra [83] and Chiu and

Friedmann [84]. The former used a stick fuselage model while the later a full 3D

fuselage model. However, both used idealized uniform inflow, quasi-steady aero-

dynamics. Yeo and Chopra [85] presented a fully coupled rotor-fuselage vibration

analysis of the AH-1G helicopter with Leishman-Bagai free wake and detailed diffi-

cult component modeling. The AH-1G helicopter has a two bladed teetering rotor

system. The calculated 2/rev (blade passage frequency for the AH-1G) at the pi-

lot seat showed good correlation with flight test results. The coupled main rotor

pylon roll mode had a significant contribution (26%) in the 2/rev vibration at the

pilot seat. The 4/rev vibration prediction was generally poor. The study neglected

rotor-fuselage aerodynamic interaction effects.

A recent rotor-body interactional aerodynamics study by Wachspress, Quack-

enbush and Boschitsch [86] shows the current state of the art. Interactional effects

were studied using a full span constant vorticity contour free wake and a panel

method to model the fuselage bodies and lifting surfaces. Despite limitations in

predicting viscous phenomenon, the potential flow solution captured the fuselage

steady and unsteady pressure variations quite well. The test data used were that

of a model rotor/fuselage combination obtained by Leishman and Bi [87]. One

difficulty in prediction was that of unsteady pressure fluctuations associated with

wake/surface interactions on the rear of the fuselage. In recent years, Euler and

Navier-Stokes CFD codes have begun to be applied to the problem [88, 89]. In

addition to the challenges of computation time and grid generation, one particular
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challenge is the numerical dissipation of the main rotor vortex wake. The vortex

wake is important is capturing wake/surface interactions.

A full coupled rotor-fuselage model including both dynamic and aerodynamic

analyses is however still beyond the current state of the art.

1.2.4 Trim Model

The helicopter model must be trimmed in steady flight to maintain equilib-

rium. Johnson [90] summarized several trim options. Broadly these can be classified

into two categories - free flight trim and wind tunnel trim.

For a free flight trim, the rotor control angles (collective, lateral and longitu-

dinal cyclic angles), the tail rotor collective and the fuselage lateral and longitudinal

attitude angles are obtained to maintain three force (vertical, longitudinal, lateral)

and three moment equilibrium (pitch, roll and yaw). Vehicle weight, speed and flight

path angle are prescribed. In propulsive free flight trim it is assumed that the engine

can supply all the power needed to maintain the flight condition. In an auxiliary

propulsive trim (or partial power propulsive trim) only a part of the total thrust is

provided by the engine. The vehicle equilibrium equations are nonlinear and coupled

to rotor response and inflow equations and are solved numerically using an iterative

procedure. Frequently, assumptions are made to simplify trim calculations.

• The rotor response is assume flap only, undergoing simple harmonic motion

(β0, β1C and β1S).

• Neglect yawing moment equilibrium and tail rotor collective. The influence
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on trim solution is found to be small [94].

• Neglect yawing moment and lateral force equilibrium, dropping both tail rotor

collective and shaft lateral tilt (or fuselage tilt) from the solution. This may

cause a small change in trim solution at high speed as the lateral tilt does

not introduce any vertical flow due to forward speed. However, the lateral

tilt affects the rotor wake geometry and can have a larger impact on the trim

solution at transition speeds.

• A more simplified procedure assumes that the vehicle center of gravity is at the

rotor hub and neglects the the pitch and roll moment equilibriums equations.

This results in cyclic flap angles (β1C and β1S with respect to hub plane) equal

to zero. The yaw equilibrium and tail rotor collective is ignored. The rotor

collective and the longitudinal and lateral shaft tilts are calculated from the

three force equilibrium equations.

A wind tunnel trim, or an isolated rotor trim simulates the test conditions in

a tunnel. In a wind tunnel trim, the shaft longitudinal and lateral tilt angles and

the rotor collective are prescribed. There is no tail rotor. For a given forward speed,

the cyclic pitch angles (θ1C and θ1S) are adjusted to trim the flap angles (β1C and

β1S) to zero.

1.2.5 Response and Loads Model

The steady blade response involves the calculation of blade deflected positions

about the azimuth for one complete revolution. For steady flight, the response
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is assumed periodic with a time period of one cycle (i.e. one rotor revolution,

2π). In the first step, the spatial coordinate in the structural dynamic equations

is eliminated using finite element, or continuum methods, such as Rayleigh-Ritz or

Galerkin. This reduces the flap-lag-torsion-extention partial differential equations

to a set of coupled nonlinear ordinary differential equations in time. The number of

these equations are often reduced to a few typically 6 to 10, by using the rotating

natural vibration modes. These equations are then solved in time using one of the

following methods.

• Harmonic balance method [91]. The response is assumed to be a summation

of a finite number of sine and cosine harmonics and then using the substitu-

tion method or operational method, a set of nonlinear algebraic equations are

obtained. These are solved numerically using standard methods like Newton-

Raphson.

• Iterative procedure based on Floquet theory [92]. It consists of determining

the proper initial conditions for a periodic solution, and then integrating the

equations for one period. The method is not very robust for nonlinear prob-

lems.

• A finite element in time method using Hamilton’s weak principle [93]. This

method has been used in the present thesis. This method includes all harmon-

ics and is efficient and robust for nonlinear systems.

• Numerical integration of the nonlinear differential equations until the solution

settles to a steady condition. For example Lockheed’s REXOR, Bell’s C81
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and Sikorsky’s DYMORE use time integration methods. They are relatively

computation heavy because of the settling time required to reach the steady-

state solution. Artificial damping is often required in the initial stages to damp

out the natural response.

When the blade response is known, the sectional loads (shear forces and bend-

ing moments) can be calculated. Two frequently used approaches are the : (1)

deflection or curvature method and (2) force summation method. In the curvature

method (also called modal method), the loads at a given blade section are deter-

mined by the elastic motion induced curvature and structural properties at that

section. The accuracy of this calculation depends on the accuracy of the curvature

and the number of modes or shape functions used in the solution to represent it.

The curvature can be linearized, nonlinear up to second order or exact. If there

is a radial step change in structural properties, e.g. bending stiffness, there should

be a corresponding step in curvature, so that the physical load remains continuous.

With a small number modes or shape functions this discontinuity cannot be cap-

tured. The effect of concentrated loading, e.g. a damper force, is similar. Greater

number of modes are required to capture its effect on the local blade loads. Also, the

curvature method gives zero load on an element without elastic degrees of freedom.

A force summation method rectifies the above deficiencies. It is a force balance

method which obtains the section loads from the difference between the applied

forces and the inertial forces acting on the blade on one side of the section. The forces

used for this purpose must be exactly same as those used for solving the structural
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dynamic equations, otherwise inconsistent loads are obtained. For example, the

bending moments at a pure hinge would not be identically zero. With lesser number

of modes, the force summation method better captures the effects of concentrated

loading and radial discontinuities of structural properties. However, with increase

in number of modes the curvature method and the force summation method must

reach the exact same solution.

1.2.6 Rotor Codes and Comprehensive Analyses

Vibration analyses methodologies have developed which incorporate and com-

bine some or all of the above mentioned analyses capabilities. Most codes focus on

the details of one physical mechanism while using simplified or no models for the

rest. These codes can be termed in general as rotor analyses codes.

Comprehensive analyses codes are a subset of these general rotor codes. A

comprehensive analysis code includes all the basic component models essential for

handling the multidisciplinary nature of helicopter problems - i.e., it can calculate

performance, loads, vibration, response and stability. It must have a rotor wake

model; include airfoil properties and stall, nonlinear dynamics of the flexible ro-

tor blades in flap, lag and torsion, airframe dynamics, fuselage aerodynamics and

tail rotor and mode free flight trim to identify the control positions and aircraft

orientation required to achieve a specified operating condition. The analyses must

perform trim, transient and flutter tasks. Examples of comprehensive analysis are

the CAMRAD family, UMARC and RCAS. The value of non-comprehensive rotor
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codes is in their capability to model one or more physical phenomenon in greater

detail, accuracy and scope than that currently available in a comprehensive code.

A detailed list of the current rotor analyses codes are given below. The specific

areas of focus within each code are identified.

• The CAMRAD family - CAMRAD, then CAMRAD JA, updated to CAMRAD

II [76]. Comprehensive Analysis code.

• 2GCHAS now extensively modified to RCAS [95, 33]. Comprehensive Analysis

code.

• The UMARC family [96]. Comprehensive Analysis code.

• CHARM [47] based on the earlier generations of RotorCRAFT codes. Fo-

cus on detailed free wake modeling and includes rotor-fuselage aerodynamic

interactions.

• KTRAN-RDYNE-GENHEL (Sikorsky). KTRAN for structural dynamics,

RDYNE for structural dynamics and aerodynamics. GENHEL [34] for flight

dynamics, trim etc.

• DYMORE and DYMORE II [35]. Focus on generalized multibody dynamics

capability. Simplified aerodynamics with dynamic inflow model.

• R150 and Westland/DERA [97] (GKN-Westland Helicopters).

• C81 and COPTER [98] (Bell Helicopter Textron).

• R85/METAR (developed by Eurocopter France) [97].
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None of the codes, in general, include all capabilities. For example, CAMRAD

II, RCAS and UMARC have recently included full main rotor 3D-CFD coupling

option but does not include rotor-body interactional aerodynamics. CHARM has

full rotor-body interactional aerodynamics but no CFD coupling. UMARC has

fully coupled rotor-flexible fuselage dynamic coupling but no generalized multi-body

dynamics capability. DYMORE has detailed multibody dynamics capability but a

simplified aerodynamic model.

Validation studies with wind tunnel and flight test data, show significant dis-

crepancies in main rotor loads prediction from all of the above analyses methods. A

sample set of references documenting airload and blade load validation studies from

some of the above codes can be found in the following references. Bousman [99]

and Lim [100] for CAMRAD/JA and 2GCHAS predictions and correlation of air-

loads and blade loads with UH-60A flight test data, Yeo [101] for CAMRAD II

predictions and correlation of airloads for five different wind tunnel and flight tests,

reference [102] for UMARC predictions of airloads and blade loads for the full scale

UH-60A, Wang [103] showed predictions from UMARC/S (UMARC modified by

Sikorsky), RDYNE and KTRAN, Wachspress et al. [47] showed predictions from

CHARM and Sopher and Duh [104] for predictions from KTRAN, RDYNE coupled

with GENHEL (flight dynamics code). In some cases, the peak to peak magnitude

of blade loads, air loads and control loads were reasonably predicted, but in all cases

large errors in waveform and phase predictions were observed. The details of these

prediction discrepancies are discussed later in section 1.4.
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1.2.7 CFD methods

The use of CFD for studying fuselage flow and rotor-fuselage interactional

effects have already been discussed (section 1.2.3). Of great importance is the ap-

plication of CFD to calculate main rotor blade airloads - replacing conventional

look-up tables and unsteady models. A CFD analysis that can be used to calculate

the rotor blade airloads must satisfy the two key requirements - (i) flexible blade

deformations using deforming meshes, and (ii) calculate or incorporate the vortex

wake. In addition, for comprehensive analysis, it must be consistently coupled to

the structural analysis and it should include a trim methodology. The blade defor-

mations can be included by moving the mesh points to conform to the deformed

blade surface while preserving the geometric conservation laws of the surfaces and

volumes of the control cells [105]. The vortex wake can be included externally using

a Field Velocity Approach [106] or simulated directly using a multi-block or over-set

mesh to prevent numerical dissipation.

Coupling between CFD and rotorcraft comprehensive codes can be accom-

plished in two ways : (1) loose or weak coupling, and (2) tight or strong coupling.

In loose coupling, airloads and blade deformations are transferred between com-

prehensive code and CFD once every rotor revolution. It allows for modular com-

munication between the CFD and comprehensive code using an interface without

the need for modifying the original codes. The time accuracy in each can be han-

dled independently of the other. Trim solution can be easily achieved within the

comprehensive analysis.
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Tight coupling is a more rigorous approach in that the fluid dynamic and

structural dynamic equations are integrated simultaneously. Time accuracy must

be ensured and rotor trim is problematic. On the other hand aeroelastic stability

analysis can be performed using transient response. Altmikus [107] compared the

two coupling approaches and showed that the tight coupling requires a 2.5 times

increase in computational cost while generating same airload predictions at high

speed using a loose coupling. References [108, 109] have studied tight coupling with

fixed control angles thus avoiding the trim issue.

The first CFD loose coupling procedure to structural codes were developed

by Tung, Caradonna and Johnson in 1987 [110]. In this procedure, called the delta

method, the comprehensive analysis supplies the airload sensitivities to blade defor-

mations which provide aerodynamic damping during convergence. The CFD code

was a conservative full potential code for transonic small disturbances (TSD). Only

the 3D CFD lift was coupled. Subsequent efforts by Strawn and Desopper [111] and

Strawn and Bridgeman [112] led to the refinement of the coupling technique and

inclusion of unsteady aerodynamic terms due to the airfoil pitch rate and large lag

angle. In 1991, Kim, Desopper and Chopra [113] coupled a TSD code with UMARC.

This analysis further refined the coupling technique by consistently updating the ve-

hicle trim and rotor response in the coupling process, and using both the 3D lift

and pitching moment results. Direct pitching moment coupling led to divergence.

The divergence could be avoided by including an average of 3D pitching moments

and 2D pitching moments in the aeroelastic analysis. The reason for divergence was

identified as inaccurate 3D pitching moments due to the inherent inability of a TSD
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code in modeling the shock boundary layer interaction. Loose coupling with Euler

codes have been performed recently by Altmikus [107] and Servera, Beaumier and

Costes [114]. Navier-Stokes loose coupling have been performed by Pahlke [115].

Baeder and Sitaraman [116] obtained Navier-Stokes solution to a prescribed

set of blade deformations for the UH-60A at high speed forward flight. The TURNS-

3D code was used. The blade deformations were obtained using measured airloads

as part of the present research work. The control angles were measured. Coupling

between TURNS-3D and UMARC comprehensive analysis have been carried out,

as part of the present work in reference [117]. The loose coupling scheme used was

different from that proposed in Reference [110] in that the airload sensitivities from

the comprehensive analyses were not used during convergence. The coupling scheme

was unstable and ill-posed and required numerical sub-iterations for calculation of

control angles in trim response. Although good vibratory airload predictions were

obtained, the blade loads gradually diverged. The study showed that loose coupling

between a pure structural dynamic analysis and an aerodynamic analyses is an ill-

posed problem.

Subsequently, the TURNS-3D code underwent significant refinements in the

way far field boundary conditions were handled. Free stream boundary conditions

were changed to characteristics boundary conditions [118]. With the refined bound-

ary conditions, the vibratory normal force predictions deteriorated at the mid-span

stations (67.5% R, 77.5% R). However, predictions further inboard were improved,

predictions further outboard remain unchanged. It was found that the use of free

stream boundary conditions together with Newton sub-iterations to ensure the time
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accuracy, caused oscillations in the pressure distribution at the blade surface, which

emerge as impulses in the sectional air loads. These impulses were misinterpreted as

physically significant effects. Yawed flow and 3D blade flap effects were investigated

in order to understand this effect. Both these mechanisms have been subsequently

discarded as dominant contributors of vibratory normal force at these radial stations.

The coupling methodology was re-formulated using the original method [110],

and the up-dated TURNS-3D code was coupled with UMARC in reference [118].

Stable and converged trim, air loads and blade loads were obtained for the UH-60A

helicopter at high speed forward flight. A contemporary research effort at NASA

Ames/AFDD was carried out with OVERFLOW-D coupled with CAMRAD-II and

RCAS by Potsdam, Yeo and Johnson [119]. The key difference is in the implementa-

tion of far wake. OVERFLOW-D includes all four blades in the analysis and directly

computes the far field inflow using multi-block or overset meshes. TURNS-3D is a

single blade analysis which obtains the far wake inflow from the Bagai-Leishman

free wake model in UMARC.

1.2.8 Model and Full Scale Rotor Tests

Accurate prediction of helicopter vibration and rotor vibratory loads is a com-

plex, multi-disciplinary and difficult problem. Development of a reliable prediction

capability requires careful comparison of theory and experiment. Over the last fifty

years, major wind tunnel and flight tests have been conducted where detailed blade

airloads and structural loads were measured. An enormous volume of data is avail-
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able from the NACA/Langley 2 bladed, 15 ft dia. teetering model tested by Rabbott

and Churchill in the 1950s to the most recent U.S.Army/NASA Ames 4 bladed, 52

ft dia. articulated Black Hawk flight tests in the 1990s.

Test data, model scale and full scale, for various types of rotor systems and

blade numbers are necessary for the development and validation of theoretical anal-

ysis. A theoretical analyses is successfully validated when - (i) it captures the

fundamental loading patterns common to all rotor systems and (ii) captures the

differences observed among different rotor configurations.

An survey of all major rotor tests, wind tunnel and full-scale, from the 1950s

to the first half of the 1980s can be found in Hooper [120]. It focussed on measured

airloads and identified consistent patterns that are common to all rotor systems

- regardless of blade number, size and trim conditions. The work showed that the

vibratory airloads are remarkably consistent in the transition regime. At high speed,

they were similar but in general more variable.

Bousman [121] made a comprehensive survey of full scale rotor tests focusing

on the vibratory structural response. Like in the case of vibratory airloads, con-

sistent patterns were identified in vibratory structural response behavior, largely

independent of rotor configuration. For example, the dominant vibratory flap re-

sponse always occurs at 3/rev, the root chord bending moment shows a negative

to positive loading at the start of the third quadrant and the pitch-link loads for

articulated rotors showed large positive-negative oscillations between the first and

second quadrants. On the other hand the vibratory chord bending moments differed

significantly between rotor to rotor. The pitch-link load of teetering rotors like the

34



AH-1G differed significantly from that of articulated rotors like the UH-60A.

A summary of the major rotor tests, which focussed on airloads and blade

loads of main rotor systems are given in tables 1.1 and 1.2. Tiltrotor tests have

been left out of this summary. Acoustic tests have also been left out, except, the

HART and ONERA tests, from which airloads measurements are often used for

validation purposes.

Other rotor test programs for loads measurements are those of Lynx fitted with

BERP blades [137], NASA model hover test [138], DNW tests of the Boeing 360

rotor [139] and McDonnell Douglas HARP rotor [140]. The BERP data were helpful

in identifying regions of blade stall and the NASA model rotor was used to study

blade-vortex interactions. UTRC and Sikorksy, under sponcership of U.S.Army

(USAAATD) have carried out extensive wind-tunnel testing (at Duits Nederlands

Windtunnel, DNW, in Holland) of a 4 bladed 9.4 ft dia scale (1:5.73) model of

the UH-60A BlackHawk articulated rotor system [141]. The hover test program

included blade pressures, surface flow, performance, wake geometry and flow field

velocities (using a laser velocimeter). The tests were extended to forward flight in

1989 and included acoustic, dynamic, performance and airloads measurements of

baseline pressure-instrumented rotors and non-instrumented rotors with modified

tip geometries. An detailed discussion of the measured airloads can be found in

Lorber [142].

In addition, two recent acoustic tests provide reliable airloads data. They are

the HART/HART II [143] and HELISHAPE [114]. The HART test was conducted

on 40% geometrically and aeroelastically scaled model of a hingeless BO-105 ro-
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tor in the DNW tunnel, in 1994. The HART II test was conducted in 2001. The

HART II tests were carried out to emphasize on wake measurements. Both were col-

laborations between German DLR, French ONERA, NASA Langley and U.S.Army.

The HELISHAPE program was an initiative between all 3 European manufacturers,

Eurocopter, Augusta and Westland, and 13 other Research Institutes and Univer-

sities. Airloads measurements are available for the ONERA-Eurocopter swept-back

parabolic/anhedral tip 7AD1 blade and rectangular tip 7A blades [114].

Although all the above tests were used to validate numerical models, in gen-

eral, each test focussed on a specific set of phenomenon. None of them were fully

comprehensive, covering steady and maneuvering flight, high thrust dynamic stall

conditions, pressure data, strain gauge data, pitch link loads and fuselage vibration

measurements. Wind tunnel models, even when full scale, do not include full heli-

copter components. For example, the model UH-60A rotor did not have a non-linear

lag damper or bifilar pendulums at the hub. On the one hand, wind tunnel tests

are more controlled thereby limiting uncertainties in atmospheric conditions, varia-

tions in speed due to gusts and sideslip angles, pilot error etc. On the other hand,

the real objective of measuring fuselage vibration cannot be accomplished by wind

tunnel models. Only a full-scale flight test program can provide fuselage vibration

data, with associated rotor airloads, blade loads, control loads, performance data

and vehicle trim data, which can then be used to validate all aspects of a com-

prehensive analysis consistently. A truly extensive flight test program would cover

steady level flight, steady and unsteady maneuvers, low speed and high speed flight,

low thrust and high thrust flight, each conducted multiple times to ensure repeata-
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bility and accuracy of the data. The test conditions and the blade and helicopter

properties (fuselage properties, c.g. location, fuel content, armament weight and

placement etc) must be accurately and carefully documented before and after each

flight, minimizing uncertainties as much as possible. The U.S.Army/NASA-Ames

UH-60A Black Hawk Airloads Program [144] is such a detailed flight test program.

The comprehensive set of repeatable test data from the UH-60A Airloads Program

have established benchmarks to validate various aspects of a comprehensive rotor

analyses.

The UH-60A flight test program conducted 31 flights. They covered Steady

flight (7 flights), Maneuver flight (3), Ground Acoustic Measurements (9), In-flight

Acoustic Measurements (6) and Flight dynamics (6). Pressure gauge measurements

(airloads obtained by integrating) were taken at 9 stations, flap bending gauges

at 9 stations, chord bending gauges at 8 stations and torsion bending gauges at 4

stations. All four pitch links were instrumented to measure control loads. This is

perhaps the most extensive instrumentation suites used in a flight test, providing

reliable and repeatable test data. The present work uses the UH-60A flight test

data. Details of the structural, aerodynamic and trim data sets are discussed in the

appropriate chapters.

1.2.9 Prediction Capability of Analysis Methods

The 1973 AGARD (Advisory Group for Aerospace Research and Develop-

ment) Specialists Meeting on Helicopter Rotor Loads and Prediction Methods [145]
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summarized the state-of-the-art in loads prediction up to that time. The status was

summarized by Loewy [146] as, “Instead of running into unexpected high loads almost

everywhere the first time the full flight envelop is explored, we now only run into them

occasionally, at some extreme flight condition”. In terms of physical understanding,

more emphasis was called for on diagnostics, for example instead of comparing only

peak magnitudes of blade stresses to compare magnitude and phase. The prediction

of phase was poor, indicating fundamental deficiencies in physical understanding of

the problem. Piziali in his commentary [147] summarized, “...the progress has been

primarily in the expansion of the scope of predictive capability. Over the last 10-12

years, the improvement in the correlation of the predicted and measured results has

not been significant”. He concluded that for improved prediction, the air loads and

dynamic response must be resolved into meaningful components to provide infor-

mation as to the source of the discrepancies.

The state of the art in helicopter loads and vibration prediction up to 1994

was summarized by the AHS organized Lynx helicopter workshop [148]. Vibratory

hub load predictions from eight comprehensive codes were compared with Lynx

level flight test data. None of the codes achieved prediction accuracy of more than

50%. The greatest deficiency was at high speed (158 kts) where the predictions not

only differed greatly from the test data but also equally greatly from one another.

The Lynx blades were not pressure instrumented and therefore air loads correlation

could not be performed. Extensive air loads correlation was then performed with

the Research Puma data [97]. Predictions from four Lifting-line codes and two

CFD analyses (FPR and TSP) were compared with test data. Although in general
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satisfactory prediction of vibratory lift was obtained from all codes, some suggested

wake as the most important phenomenon, others suggested blade elasticity. The role

of trim solution was not clear. The pitching moment predictions from lifting-line

models were poor. Predicted pitching moments from the CFD method diverged the

solution procedure and could not be iteratively coupled.

Bousman in 1999 [3] reviewed the lack of progress in understanding the physics

of vibratory rotor loads over the past three decades. As understood, high vibrations

take place in two flight regimes in level flight, low speed transition and high speed

forward flight. In transition flight, the key source of vibratory loads is identified

as the intertwining of rotor tip vortices below the rotor disk. In high speed flight

the mechanism is not clear. The negative loading on the advancing blade appear

to play a key role. The problems of negative lift in high speed flight and erroneous

blade pitching moments were identified as the two fundamental prediction deficien-

cies in aeromechanics. The focus of the present work lies in the investigation and

understanding of these two prediction deficiencies. The details of the two predic-

tion deficiencies and prior research focussed on understanding them are discussed in

greater detail in the section on High Speed Loads and Vibration Prediction. Bous-

man suggested that it is not only important to break up a difficult problem into

manageable pieces and solve those pieces but it is equally important to “...remem-

ber the purpose of what we are doing and that is to complete the synthesis, to bring

the parts back together and demonstrate that they work. We need to understand that

the value of our work exists only in that it will be used and contribute to the whole”.

The present work embodies Piziali and Bousman’s ideas of resolving the prob-
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lem into meaningful components, investigating them separately and finally bringing

the pieces back together as a whole.

1.3 Objective of Present Research

The objective of this research is to refine a state of the art comprehensive

analysis for accurate and consistent prediction of rotor vibratory loads in steady

level flight. There are two critical vibration regimes in steady level flight - (1) low

speed transition (around 40 kts) and (2) high speed forward flight (around 160

kts). Unlike low speed, where inter-twinning of rotor tip vortices are understood

to be the dominant source of rotor vibration [3, 99, 149, 150], the mechanism of

rotor vibration at high speed flight is not fully understood. Aeroelastic predictions

show more than 50% error compared to flight test measurements, specially in the

prediction of phase [148]. The focus of this research is therefore on high speed flight.

The goal is to gain fundamental understanding of the key vibration mechanisms

involved and to develop a consistent and accurate prediction capability.

The approach is to isolate the physics of vibratory air loads from that of

vibratory blade loads by systematically comparing UH-60A flight test data with

predictions. Vibratory loads, as explained before, are defined as those harmonics of

air loads and blade loads which contribute to the shaft transmitted vibration of a

helicopter. In the present work, three and higher harmonics (3/rev and higher) are

collectively referred to as vibratory harmonics. Zero, one and two harmonics are

collectively referred to as non-vibratory harmonics. One and higher harmonics are
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collectively referred to as oscillatory harmonics.

1.4 Rotor Loads Prediction at High Speed -

State of Art

The state-of-the-art in rotor loads and vibration prediction in high-speed flight

is far from satisfactory, even though both vibratory air loads and structural response

show consistent patterns for a large number of helicopters [120, 121]. A good indica-

tor is the AHS organized Dynamics Workshop (1994) where predicted vibratory hub

loads from eight aeroelastic analyses were compared with Lynx flight test data [148]

(figure 1.1). Accuracy of prediction was less than 50% with significant discrep-

ancy between predictions from various codes. The Lynx blades were not pressure

instrumented, hence, the discrepancies could not be traced back to blade air loads.

The UH-60A flight test data provide the opportunity for tracing back the

sources of prediction deficiencies to discrepancies in air loads and blade loads cal-

culation. Figure 1.2 shows the predicted and measured mid-span flap bending mo-

ments for the UH-60A in high speed forward flight. None of the two state-of-the-art

comprehensive analyses predictions (Lim [151]) capture the correct waveform. Both

analyses include elastic blade model, free wake, test airfoil tables, 2D unsteady

aerodynamics and tip sweep. The vibratory component of the flap bending moment

(3/rev and higher) is dominated by 3/rev component. This is due to the proxim-

ity of the second flap mode frequency (2.82/rev) to 3/rev. Figure 1.3 shows the
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predicted magnitude and phase of 3/rev flap bending moment over a range of level

flight speeds. At high speed, the bending moment is under-predicted by more than

50%. Accuracy of predicted flap bending depends on predicted blade lift. Figure 1.4

compares flight test lift with predictions from three comprehensive analysis. None

of the analyses capture the advancing blade lift correctly, inboard or outboard. The

drop in the predicted lift on the advancing side leads the flight test lift by a phase

error of around 40 degrees. This discrepancy is linked to inaccurate vibratory lift

prediction (to be discussed in chapter 3) 3/rev and higher. At an inboard station,

e.g. 77.5% R, the vibratory harmonics show an impulsive behavior in the advancing

blade. Towards the tip, e.g., 96.5% R, the vibratory harmonics have a dominant

3/rev character. Both analyses consistently miss the phase of vibratory harmonics.

The lift phase error is the first of the two fundamental prediction deficiencies

of articulated rotor aeromechanics identified by Bousman in 1999 [3]. The second

fundamental prediction error for articulated rotors is the prediction of pitch-link

load (or control load). The two problems are inter-connected, as described below.

The two problems, form the focus of the present research effort.

Comprehensive predictions showed relatively good agreement with measured

negative lift for the Research Puma helicopter [97]. However, for the UH-60A, both

2GCHAS and CAMRAD/JA showed significant deviation in phase prediction [151].

Lim [151] studied the effects of various modeling options in 2GCHAS on full scale lift

prediction. Effects of fuselage trim attitude and detailed blade sweep modeling were

investigated. However, no improvement of the prediction of lift phase was noticed.

Model-scale UH-60A data obtained from DNW wind-tunnel tests [142] also
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show the same negative lift at high-speed flight as measured in the full-scale heli-

copter [152], figure 1.5. The model rotor did not have bifilar absorbers unlike the full

scale UH-60A, and had a viscous lag damper to prevent ground resonance. Because

both the full-scale helicopter and the model-scale rotor have the same measured

negative lift phase, it is possible to rule out fuselage up wash, fuselage dynamics,

side slip angle, non-linear lead-lag damper or bifilar modeling as possible sources

of error in the prediction of negative lift phase. References [153] and [154] inves-

tigated model scale lift prediction. In Ref. [153], measured air loads were used to

predict structural response. In Ref. [154], measured deflections were used to predict

air loads. With measured air loads, blade torsional bending was not accurately pre-

dicted, but with measured elastic twist, good correlation of lift phase was obtained.

The measured elastic twist in the later case, was not physically measured. It was

deduced from blade torsion bending using a modal approach. Recently another ar-

ticulated rotor system, the French ONERA 7A has shown similar advancing blade

lift phase behavior during wind tunnel tests, figure 1.5, [114]. Although the neg-

ative lift peak occurs at a slightly different azimuth, the lift drop off occurs at the

same azimuth as the UH-60A flight test.

The H-34 articulated rotor system, also exhibits similar high-speed negative

lift characteristics as the Black Hawk - both in flight test and wind tunnel test [120].

This similarity is strong near the tip and gradually diminishes inboard. A section

at 75% span on the H-34 blades, shows no phase delay [155]. None of the analytical

methods reported in Ref. [120] were successful in accurate prediction of lift phase

towards the blade tip. Recently in 2004, Yeo and Johnson [101] compared high
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speed measured air loads in level flight for five articulated rotor configurations and

compared with CAMRAD II calculations. The configurations were - H-34 full scale

in wind tunnel (µ = 0.39, CT/σ = 0.06), SA 330 or the Research Puma full scale

in flight (µ = 0.362, CT/σ = 0.07), SA 349/2 full scale in flight (µ = 0.361, CT/σ

= 0.071) and also the UH-60A full scale in flight as discussed above (µ = 0.368,

CT/σ = 0.0783). Except the Research Puma, all the rotor systems showed the

advancing blade lift phase problem. H-34 has a trapezoidal tip, SA 349/2 has a

straight tip, UH-60A has a swept tip - clearly tip shape alone cannot be the source

of the problem. The rigid pre-twist for the rotors range from -8.3 degrees (ONERA

7A) to approximately -16 degrees for the UH-60A. Therefore, high rigid twist alone

cannot be the problem either. Moreover, the SA 349/2 blades do not show a negative

loading near the tip at all, yet, has the same phase error as the UH-60A.

The pitch-link loads are the rotor control loads near the blade root - primarily

an integrated effect of the blade torsion bending moments. The pitch-link loads

are under-predicted by 50% at all flight speeds, figure 1.7. Figure 1.8 shows the

predicted pitch-link load at high speed. Inaccurate pitch-link load arises due to

to inaccurate aerodynamic pitching moments. Pitching moment predictions, for all

the rotors, including the research Puma was poor. Figure 1.6 shows the predicted

pitching moments of the UH-60A at high speed flight (taken from Lim [151]). They

are over-predicted inboard and under-predicted at the outboard stations.

The section pitching moments determine elastic torsion which directly affects

the blade lift as a contributing component of the angle of attack. It can be shown

that elastic torsion is the dominant contributor to advancing blade lift in high speed
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flight (chapter 4). Thus the two problems of advancing blade lift and pitching

moment prediction are related to each other via the accuracy of structural response

calculation. Lim [156], in agreement with Bousman’s assessment summarized the

state of the art as [3], “We are still in the stage that we do not understand the basics

: is this discrepancy from the structural or aerodynamic (especially wake) modeling

or both ?”.

The intent of the present work is to isolate these two effects - decouple aerody-

namics from structural dynamics, study them separately, understand the prediction

deficiencies in each, improve upon them, and bring them back together.

1.5 Approach of Present Research

The present research differs from previous work in that it tries to separate

the physics of aerodynamics and structural dynamics from the complex aeroelastic

problem, investigate them separately and then bring them back together again.

Flight test measured air loads are used to validate and refine a structural

model - the errors in prediction now originate entirely from structural modeling.

Once validated, the obtained deformations are prescribed to calculated air loads

- the errors in prediction originate from aerodynamic modeling. Lifting-line and

CFD aerodynamic models are investigated and compared. The lifting-line and CFD

aerodynamic models are then used to perform comprehensive analysis of the UH-

60A Black Hawk helicopter. The lifting-line comprehensive analysis is used to gain

fundamental insights into the two key problems of articulated rotor aeromechanics
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- advancing blade lift phase and pitch link loads. Consistency of rotor modeling is

investigated with step-wise modeling refinements. The CFD aerodynamic model is

then consistently coupled with the lifting-line comprehensive analysis to resolve the

two problems and significantly improve the prediction of air loads and blade loads.

The reasons for improvements are established and understood from the prescribed

deformations air loads study.

1.6 Contributions of the Present Research

The key contributions of this research can be divided into two categories - 1.

fundamental understanding of rotor vibration in high speed forward flight and 2.

improvements in the accuracy and scope of prediction capability to capture them.

The specific conclusions can be summarized as follows.

1. Prediction errors in vibratory and oscillatory blade loads and pitch link loads

in high-speed forward flight stem from inaccurate aerodynamic modeling, not

structural modeling. Error in oscillatory pitch link load stems from inaccurate

aerodynamic pitching moments. Error in vibratory blade loads stems from

inaccurate vibratory lift. Fundamental deficiency in the prediction of vibratory

lift manifests as an advancing blade lift phase error.

2. Vibratory lift at high speed is dominated by elastic torsion at outboard sta-

tions (85% outboard) and a combination of elastic torsion and wake of preced-

ing blades inboard (60%-85% radial stations). Both elastic torsion and rotor

wake, together, are key to accurate prediction of vibratory lift at the inboard
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stations. Either of the factors alone does not improve vibratory lift or lift

phase predictions at these stations.

3. A 3D-CFD analyses (TURNS 3D) consistently coupled to a comprehensive

aeroelastic analyses (UMARC) predicts the aerodynamic pitching-moments

accurately and therefore the elastic torsion deformations at high speed. The

coupling methodology is robust, stable, well-posed and easy to converge in

five or six iterations. Improved predictions from CFD coupling stem from

improved aerodynamic pitching moment predictions - most significantly near

the blade tip, and all across the span in general.

4. An accurate set of blade deformations are obtained by using flight test mea-

sured airloads at high speed flight. In absence of measured deformations, this

deformation set forms a reasonably accurate alternative to validate airloads

calculations.

5. UMARC/TURNS-3D loose coupling methodology significantly resolves the

high speed vibratory airloads, blade loads, lift phase and pitch link load pre-

diction problem from first principles.

1.7 Organization of the thesis

Chapter 1 describes the helicopter loads and vibration problem, surveys the

evolution and state of the art in analyses capability, focuses on the fundamental high

speed flight prediction errors and discusses the main focus and key contributions of
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the present work.

Chapter 2 to 5 describes the present research work step by step. Chapter 2

describes the structural modeling and validation. At the end of Chapter 2, a set of

prescribed deformations are obtained with which to validate the aerodynamic mod-

els. Chapter 3 deals with aerodynamic modeling and validation. Chapter 4 describes

lifting-line comprehensive analysis with focus on fundamental understanding issues.

Chapter 5 describes 3D CFD-comprehensive code loose coupling methodology for

improved prediction of air loads and blade loads predictions from first principles. A

set of summary observations are included at the end of each chapter.

Chapter 6 states the key conclusion of the present research along with recom-

mendations for future work.
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Table 1.1: Major Rotor Tests

Rotor Test Configuration Reference

NASA Langley model ro-

tor

2 bladed teetering rotor

15 ft dia

1956 [122]

Bell UH-1 flight tests 2 bladed teetering rotor 1961 [123]

Sikorsky H-34 (CH-34)

flight test, NASA Langley

4 bladed articulated 1964 [124]

H-34 (CH-34) full scale

wind tunnel test, NASA

Ames

4 bladed articulated 1966 [125]

Vertol CH-47A flight

tests, USAAVLABS

3 bladed tandem rotor 1968 [126]

Lockheed XH-51A flight

tests

4 bladed compound heli-

copter

1968 [127]

Sikorsky NH-3A flight

tests

5 bladed, compound ver-

sion of the S-61

1970 [128]

Sikorsky CH-53A flight

tests, U.S.Navy

6 bladed articulated 1970 [129]

Bell AH-1G flight tests,

U.S.Army

2 bladed teetering. Test

conducted for aero and

structural loads

1976 [130]
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Table 1.2: Major Rotor Tests Continued

Rotor Test Configuration Reference

Bell AH-1G flight tests,

NASA

2 bladed teetering. Test

conducted for aero-

acoustic measurements

1983 [131]

Sikorksy S-76 full scale

wind tunnel tests

4 bladed articulated 1980 [132]

Bell AH-1G flight tests 2 bladed teetering 1988 [133]

Aerospatial SA-330 Re-

search Puma flight tests

4 bladed articulated 1983, 1986.[97]

Aerospatial SA 349/2

Gazelle flight tests

3 bladed articulated 1986 [134]

Westland Lynx flight

tests

4 bladed hingeless 1993 [135]

McDonnell Douglas

MDART full scale wind

tunnel tests

4 bladed advanced

bearingless rotor, pre-

production version of

MD900 rotor

1993 [136]
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Figure 1.1: Vibratory hub load predictions from eight aeroelastic codes

compared with Lynx data, Cockpit starboard location, high-speed steady

level flight at 158 knots, Hansford and Vorwald [148]
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Figure 1.2: Predicted Flap Bending Moment at 50% R radial station in

high-speed steady level flight compared with UH-60A data; µ = 0.368,

Cw/σ = 0.0783, Lim [151]

0 0.1 0.2 0.3 0.4 0.5
0

90

180

270

360

M
om

en
t, 

lb
−

ft

Advance ratio, µ

FLT85 

FLT85 

FLT9 

CAMRAD/JA 

0 0.1 0.2 0.3 0.4 0.5
−60

30

120

210

300

Advance ratio, µ

P
ha

se
, d

eg
s.

FLT85 

FLT85 

FLT9 

CAMRAD/JA 

Figure 1.3: Predicted and measured 3p flap bending moment at 50% R for

UH-60A Black Hawk in steady level flight; CW/σ = 0.0783, Bousman [99]
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Figure 1.4: State-of-the-Art normal force prediction in high-speed steady

level flight compared with UH-60A data; µ = 0.368, Cw/σ = 0.0783,

Lim [151]
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pared with DNW wind tunnel test and ONERA 7A articulated rotor

wind tunnel test data, Bousman [152], ONERA [114]
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Figure 1.6: State-of-the-Art pitching moment prediction (about quarter-

chord) in high-speed steady level flight compared with UH-60A data; µ

= 0.368, Cw/σ = 0.0783, Lim [151]
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Figure 1.7: State-of-the-Art in Pitch Link Load prediction in high-speed

steady level flight compared with UH-60A data; µ = 0.368, Cw/σ = 0.0783,

Bousman [3]
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Chapter 2

Structural Model of Rotor Blades

This chapter describes and validates the structural dynamic model of UH-60A

rotor blades. Flight test measured air loads, control angles and lag damper force are

used to calculate the rotor structural response and dynamic blade loads. Prediction

errors originate entirely from structural modeling. Thus the physics of structural

dynamics is isolated from the aeroelastic response problem. The focus is on funda-

mental understanding of the structural dynamic mechanisms behind oscillatory and

vibratory blade loads.

A similar study was carried out in reference [157] using flight test and wind

tunnel air loads of a CH-34 rotor. The equations governing blade response in flap,

lag and torsion were linear. Flap and lag degrees of freedom were coupled only by

the local pitch angle. Torsion degree of freedom was uncoupled from flap and lag. In
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the present study, a fully coupled set of non-linear equations are used, as derived in

references [13, 14]. The effect of couplings produced by sectional center of gravity

offsets, tip sweep and structural nonlinearities are shown. A similar investigation

was carried out in Reference [153] for the UH-60A but the airloads used were that

of a model scale rotor.

The outcome of this exersize, once the structural model is satisfactorily vali-

dated, is an accurate set of blade deformations data. This set of deformations data

is valuable because flight test measurements of blade deformations are not available.

In absence of measured deformations, the deformation set obtained using measured

air loads, provides an opportunity for isolating the physics of aerodynamics from

the aeroelastic response problem. The deformations obtained using measured air

loads is termed prescribed blade deformations. Using this set of prescribed blade de-

formations constant, different aerodynamic models can be evaluated by comparing

air load predictions with flight test air loads. This study forms the subject matter of

Chapter 3. The success of isolating aerodynamics therefore depends on the accuracy

of the structural model. This forms the subject matter of this chapter.

First, the blade deformation geometry, governing equations of motion, mod-

eling assumptions, response and blade loads solution methods are described. Then

the structural model is validated using flight test data. Finally, using the validated

structural model, an accurate set of blade deformations at high-speed flight is ob-

tained.
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2.1 Governing Equations of Motion

The rotor blades are modeled as long, slender, homogeneous, isotropic beams

undergoing axial, flap, lag and torsion deformations. The deformations can be mod-

erate as the model includes geometric non-linearities up-to second order. Radial

non-uniformities of mass, stiffness, twist, etc., chordwise offsets of mass centroid

(center of gravity) and area centroid (tension axis) from the elastic axis, precone,

and warp of the cross section are included. The model follows the Hodges and

Dowell formulation [13] while treating elastic torsion and elastic axial deformation

as quasi-coordinates [14]. The baseline model assumes a straight blade. Model-

ing refinements required to incorporate structural sweep and droop are described

in details in Ganguli and Chopra [25]. The governing equations and their deriva-

tions remain same, the swept and drooped elements require additional coordinate

transformations and a modified finite element assembly procedure. The equations

of motion are developed using Hamilton’s Principle.

The governing partial differential equations are solved using finite element

method in time and space. The finite element method provides flexibility in the

implementation of boundary conditions for modern helicopter rotors. For example,

specialized details not treated in Ref. [13], like blade root pitch flexibility (pitch link

stiffness), pitch damping, elastomeric bearing stiffness and damping are incorporated

within a finite element model.
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2.1.1 Blade Coordinate Systems

There are 4 coordinate systems of interest, the hub-fixed system, (XH , YH, ZH)

with unit vectors ÎH , ĴH , K̂H , the hub-rotating system, (X, Y, Z) with unit vectors

Î , Ĵ , K̂, the undeformed blade coordinate system, (x, y, z) with unit vectors î, ĵ, k̂

and the deformed blade coordinate system, (ξ, η, ζ) with the unit vectors îξ, ĵη, k̂ζ.

These frames of references are denoted as H,R, U and D respectively. The hub-

rotating coordinate system is rotating at a constant angular velocity ΩK̂ with re-

spect to the hub-fixed coordinate system. The transformation between the hub-fixed

system and the hub-rotating system is defined as


Î

Ĵ

K̂




=




cosψ sinψ 0

− sinψ cosψ 0

0 0 1







ÎH

ĴH

K̂H




= TRH




ÎH

ĴH

K̂H




(2.1)

where the azimuth angle, ψ, equals Ω t. The undeformed blade coordinate system is

at a precone angle of βp with respect to the hub-fixed system. The transformation

between the undeformed blade coordinate system and the hub-fixed system is defined

as 


î

ĵ

k̂




=




cosβp 0 sin βp

0 1 0

− sin βp 0 cosβp







Î

Ĵ

K̂




= TUR




Î

Ĵ

K̂




(2.2)

The transformation between the undeformed blade coordinate system and the de-

formed blade coordinate system remains to be determined.
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2.1.2 Blade Deformation Geometry

Consider a generic point P on the undeformed blade elastic axis. The orienta-

tion of a frame consisting of the axes normal to and along principle axes for the cross

section at P defines the undeformed coordinate system (x, y, z). When the blade

deforms, P reaches P ′. The orientation of a frame consisting of the axes normal to

and along principle axes for the cross section at P ′ defines the deformed coordinate

system (ξ, η, ζ). Adequate description of the deformed blade requires in general a

total to six variables : three translational variables from P to P ′, u, v, w along x, y, z,

and three rotational variables from (x, y, z) system to (ξ, η, ζ) system, and any out of

plane deformations of the cross section, e.g., warp. These out of plane deformations

are neglected, which results in plane sections remaining plane after deformation i.e.,

the Euler-Bernoulli beam assumption. The Euler-Bernoulli assumption leads to a

further simplification - two of the three angles can be expressed as derivatives of the

deflection variables. Thus four deformation variables - three deflections u, v, w and

one rotational angle, completely determine the deformed geometry. The definition

of this rotation angle - the angle of elastic twist is described below.

The coordinate transformation matrix between the undeformed system and

the deformed system is defined by the direction cosines of (ξ, η, ζ) with respect to

(x, y, z), where x is tangent to the elastic axis of the undeformed blade and ξ is

tangent to the elastic axis of the deformed blade. The transformation matrix can
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be written as 


îξ

ĵη

k̂ζ




= TDU




î

ĵ

k̂




(2.3)

where TDU can be described as a function of three successive angular rotations in

space required to align (x, y, z) along (ξ, η, ζ). The two intermediate orientations

can be described as (x1, y1, z1) and (x2, y2, z2). Classical Euler angles use rotation

ψ about z, θ about x1 and φ about z2 to orient (x, y, z) along (ξ, η, ζ). Singularities

result when the second angle is zero because the first and third transformations are

then about the same axis. Small angle rotations are important for a rotor problem,

zero rotations being a special case. Therefore, instead of Euler angles, modified

Euler angles are used where the axes do not approach one another for rotations in

the neighborhood of zero. We assume that the unit vectors î, ĵ, k̂, initially coincident

with (x, y, z), undergo rotations ξ1, β1, θ1 about î,−ĵ, k̂ respectively, but necessarily

in that order, to finally align with îξ, ĵη, k̂ζ. Depending on the choice of order, six

combinations are possible. All lead to identical transformation matrices. Here the

following sequence is chosen - ξ1 about z resulting in the new set (x1, y1, z1), β1 about

−y1 resulting in (x2, y2, z2) and θ1 about x2 resulting in (ξ, η, ζ). This produces

TDU =




cβ1cξ1 cβ1sξ1 sβ1

−cξ1sβ1sθ1 − cθ1sξ1 cξ1cθ1 − sξ1sβ1sθ1 cβ1sθ1

−cξ1sβ1cθ1 + sθ1sξ1 −cξ1sθ1 − sξ1sβ1cθ1 cβ1cθ1




(2.4)

where c( ) = cos( ), s( ) = sin( ) and TDU
−1 = TDU

T. The goal is to express this

transformation as a function of blade deflections and one rotation angle.
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The position vector of any point on the deformed-blade elastic axis can be

written as

r̄ = (x+ u)̂i+ vĵ + wk̂ (2.5)

and the unit vector tangent to the elastic axis of the deformed blade is

∂r̄

∂r
= (x+ u)+î+ v+ĵ + w+k̂ (2.6)

where r is the curvilinear distance coordinate along the deformed-beam elastic axis

and ()+ = ∂/∂r(). Assuming pure bending and the cross sections remain normal to

the elastic axis during deformation

∂r̄

∂r
= îξ = T11î+ T12ĵ + T13k̂ (2.7)

where Tij is the element on the ith row and jthe column of TDU. Thus

T11 = (x+ u)+

T12 = v+

T13 = w+




(2.8)

In the case of a pure elastic axial elongation, ue, in addition to pure bending, it is

subtracted from total axial elongation to calculate the unit vector tangent to the

elastic axis of the deformed blade.

îξ = (x+ u− ue)
+î+ v+ĵ + w+k̂ (2.9)

and then

T11 = (x+ u− ue)
+

T12 = v+

T13 = w+




(2.10)
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Because TDU is orthonormal

T11
2 + T12

2 + T13
2 = 1 (2.11)

and therefore

(x+ u− ue)
+ =

√
1 − v+2 − w+2 (2.12)

Using equations (2.4) and (2.10) it can be deduced

sβ1 = w+

cβ1 =
√

1 − w+2

sξ1 = v+√
1−w+2

cξ1 =
√

1−v+ 2−w+ 2√
1−w+ 2




(2.13)

cθ1 and sθ1 remain to be expressed in terms of the blade deflections and some ap-

propriate measure of elastic torsion. The angular velocity of the frame (x, y, z) as it

moves to (ξ, η, ζ) is

ω = ξ̇1k̂ − β̇1ĵ1 + θ̇1î2

= ωξ îξ + ωη îη + ωζ îζ

(2.14)

where ĵ1 and î2 are unit vectors of the intermediate frames (x1, y1, z1) and (x2, y2, z2),

and ˙( ) = ∂/∂t( ). The components of the angular velocity are

ωξ = θ̇1 + ξ̇1 sβ1

ωη = −β̇1 cθ1 + ξ̇1 cβ1sθ1

ωζ = ξ̇1 cβ1 cθ1 + β̇1 sθ1




(2.15)

The bending curvatures and torsion (or angle of twist per unit length) can be de-

duced with the use of Kirchhoff’s kinetic analog [158] by replacing ˙( ) with ( )+.
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Thus,

κξ = θ+
1 + ξ+

1 sβ1

κη = −β+
1 cθ1 + ξ+

1 cβ1sθ1

κζ = ξ+
1 cβ1cθ1 + β+

1 sθ1




(2.16)

where κξ, κη and κζ are the components of bending curvatures in the deformed blade

ξ, η, ζ directions. κξ is the torsion. The angle of elastic twist, φ is defined such that

(θt + φ)+ = κξ (2.17)

where θ+
t = θ′tξ

+. θt is the rigid pretwist of the blade. From (2.16a) and (2.17) we

have

θ+
1 = (θt + φ)+ − ξ+w+ (2.18)

ξ can be expressed as a function of blade deflections. Using (2.4), (2.10b) and (2.13b)

we have

sξ =
v+√

(1 − w+)
(2.19)

Differentiating equation (2.19) and substituting equation (2.13d) we have

ξ+
1 =

v++

√
1 − v+2 − w+2

+
v+w+w++

(1 − w+2)
√

1 − v+2 − w+2
(2.20)

From (2.20) and (2.18) we have

θ+
1 = (θt + φ)+ − w+

√
1 − v+2 − w+2

(
v++ +

v+w+w++

1 − w+2

)
(2.21)

or

θ1 = θt + φ−
∫ r

0

w+

√
1 − v+2 − w+2

(
v++ +

v+w+w++

1 − w+2

)
dr (2.22)

and

θ1 = θt + φ̂ (2.23)
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where θt is the blade rigid twist arising from pre-twist and control angles. φ is the

blade elastic twist which is used in [13] as the rotation variable. φ̂ is the blade

elastic twist including the kinematic integral component and is used in the present

work as the rotation variable. The TDU matrix can now be expressed as a function

of the unknown blade deflections and one rotation angle θ1 related to the unknown

blade twist φ̂ via equation (2.23).

TDU =




√
(1 − v+2 − w+2) v+ w+

−v+cθ1 −w+sθ1

√
(1−v+2−w+2)√

(1−w+2)

cθ1

√
(1−v+2−w+2)− v+w+sθ1√

(1−w+2)
sθ1

√
(1 − w+2)

v+sθ1
−w+cθ1

√
(1−v+2−w+2)√

(1−w+2)

−sθ1

√
(1−v+2−w+2)− v+w+cθ1√

(1−w+2)
cθ1
√

(1 − w+2)




(2.24)

The above expressions and coordinate transformation TDU are exact. Now they are

reduced to second order. To second order ( )+ = ( )′. To second order

√
1 − v+2 − w+2

√
1 − w+2

=
1 − 1

2
(v′2 + w′2)

1 − 1
2
w′2

=
1 − 1

2
w′2

1 − 1
2
w′2 −

1
2
v′2

1 − 1
2
w′2

= 1 − 1

2
v′2

(2.25)

Finally we have

TDU =




1 − v′2
2
− w′2

2
v′ w′

−v′cθ1 − w′sθ1 (1 − v′2
2

)cθ1 − v′w′sθ1 (1 − w′2
2

)sθ1

v′sθ1 − w′cθ1 −(1 − v′2
2

)sθ1 − v′w′cθ1 (1 − w′2
2

)cθ1




(2.26)

where θ is expressed as

θ1 = θ0 + θ1C cos(ψ) + θ1S sin(ψ) + θtw + φ̂

= θ + φ̂

(2.27)
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θ0, θ1C , θ1S are the collective, lateral and longitudinal cyclic angles respectively, ψ is

the blade azimuth location, θtw is the rigid twist angle and φ̂ is the elastic rotation

angle. From equation (2.22), the elastic rotation is related to the blade elastic twist

as follows

φ̂ = φ−
∫ r

0

w′v′′dr (2.28)

where r denotes a blade radial station. Now the blade equations can be formulated

using Hamilton’s Principle. The equations are formulated in a non-dimensional

form.

2.1.3 Nondimensionalization and Ordering scheme

The entire analysis has been done in a nondimensional form. This avoids

scaling problems while computing results and increases the generality of the analysis.

Table 2.1 shows the reference parameters used to nondimensionalize the relevant

physical quantities.

In deriving a nonlinear system of equations, it is necessary to neglect higher-

order terms to avoid over-complicating the equations of motion. A systematic and

consistent set of guidelines has been adopted for determining which terms to retain

and which to ignore. The ordering scheme is same as in Ref. [13]. It is based

on a parameter ε which is of the order of nondimensional flap deflection w or lag

deflection v (nondimesionalized with respect to radius, R, as described in table 2.1).

u is of the same order as the square of w or v. The elastic twist φ is a small angle

in the sense that sin φ ≈ φ and cos φ ≈ 1. The axial coordinate x is of order R and
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Physical Quantity Reference Parameter

Length R

Time 1/Ω

Mass/Length m0

Velocity ΩR

Acceleration Ω2R

Force m0Ω2R2

Moment m0Ω2R3

Energy or Work m0Ω2R3

Table 2.1: Nondimensionalization of Physical Quantities

the lateral coordinates are of order chord, c, and thickness, t. Chord, c, thickness,

t and rigid blade twist θt are all of same order as v and w. The warp function λT

is of the same order of magnitude as u so that the warp displacement, which is λT

multiplied with twist is one order of magnitude less than u. Thus,

u
R

= O(ε2) λ
R

= O(ε2)

v
R

= O(ε) w
R

= O(ε)

η
R

= O(ε) ζ
R

= O(ε)

φ = O(ε) δλ/δη
R

= O(ε)

x
R

= O(ε) δλ/δζ
R

= O(ε)




(2.29)

The order of magnitude of the other nondimensional physical quantities are
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are as follows.

EA
m0Ω2R2 = O(ε−2)

x
R
, h
R
, xcg

R
, ycg

R
, m
m0
, δ
δψ
, δ
δx

= O(1)

µ, cosψ, sinψ, θ, θt,
c1
a
, d2
a

= O(1)

EIy
m0Ω2R4 ,

EIz
m0Ω2R4 ,

GJ
m0Ω2R4 = O(1)

βp,
kA

R
, km1

R
, km2

R
= O(ε)

αs, φs = 0(ε)

λ, ηc

R
, c0
a
, d1
a
, f0
a

= O(ε)

EB2

m0Ω2R5 ,
EC2

m0Ω2R5 = O(ε)

ed

R
, eg

R
, ea

R
= O(ε

3
2 )

α̇s, φ̇s = 0(ε
3
2 )

EB1

m0Ω2R6 ,
EC1

m0Ω2R6 = O(ε2)

d0
a
, f1
a

= O(ε2)




(2.30)

R is the rotor radius, Ω is the rotational speed, E is the Young’s Modulus, G is

the shear modulus, Iy and Iz are cross-section moment of inertia from the y and z

axis in the undeformed blade frame, J is the torsional rigidity constant, a is the lift

curve slope and m0 is mass per unit length of the blade. Rest of the symbols are

defined in the beginning and later on as they appear. m0 is defined as the mass per

unit length of an uniform beam which has the same flap moment of inertia as the

actual beam. Therefore

m0 =
3Iβ
R3

≈ 3
∫ R

0
mr2dr

R3
(2.31)
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Azimuth angle is considered as nondimensional time, therefore

˙( ) = δ( )
δt

= δ( )
δψ

δψ
δt

= Ω δ( )
δψ

(̈ ) = δ2( )
δ2t

= δ2( )
δ2ψ

δ2ψ
δ2t

= Ω2 δ
2( )
δ2ψ


 (2.32)

The ordering scheme is systematically and consistently adopted within the total

energy context as is explained during the calculation of the energy terms. However,

while following the scheme, terms are lost, which destroy the symmetric nature

of the mass and stiffness matrix of the system, or, the antisymmetric gyroscopic

nature of the modal equations, then those terms must be retained in violation to

the ordering scheme.

2.1.4 Formulation Using Hamilton’s Principle

Hamilton’s variational principle is used to derive the blade equations of mo-

tion. For a conservative system, Hamilton’s principle states that the true motion of a

system, between prescribed initial conditions at time t1 and final conditions at time

t2, is that particular motion for which the time integral of the difference between

the potential and kinetic energies is a minimum [159]. For an aeroelastic system,

e.g., the rotor, there are nonconservative forces which are not derived from a poten-

tial function. The generalized Hamilton’s Principle, applicable to nonconservative

systems, is expressed as

δΠb =

∫ t2

t1

(δU − δT − δW ) dt = 0 (2.33)

where δU is the virtual variation of strain energy and δT is the virtual variation

of kinetic energy. The δW is the virtual work done by the external forces. These
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virtual variations have contributions from the rotor blades and the fuselage.

The variations can be written as

δU = δUR + δUF =

(
Nb∑
b=1

δUb

)
+ δUF (2.34)

δT = δTR + δTF =

(
Nb∑
b=1

δTb

)
+ δTF (2.35)

δW = δWR + δWF =

(
Nb∑
b=1

δWb

)
+ δWF (2.36)

where the subscript R denotes the contribution from the rotor, which is the sum

of individual contributions from the Nb blades, and F denotes the contribution

from the fuselage. In the present study, only the rotor contribution is considered.

Strain energy variation from the flexible pitch links are included in the blade energy

terms. The expression for the virtual work δW has been dealt with in the chapter

on Aerodynamic Modeling.

2.1.5 Derivation of Strain Energy

Because each blade is assumed to be a long slender isotropic beam, the uniaxial

stress assumption (σyy = σyz = σzz = 0) can be used. The relation between stresses

and classical engineering strains are

σxx = Eεxx (2.37)

σxη = Gεxη (2.38)

σxζ = Gεxζ (2.39)
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where εxx is axial strain, and εxη and εxζ are engineering shear strains. The

expression for strain energy of the bth blade is

Ub =
1

2

∫ R

0

∫ ∫
A

(σxxεxx + σxηεxη + σxηεxη)dηdζdx (2.40)

Using the stress-strain relations the variation of strain energy becomes

δUb =

∫ R

0

∫ ∫
A

(Eεxxδεxx +Gεxηεxη +Gεxηεxη)dηdζdx (2.41)

The general non-linear strain displacement equations to second order are (from

Ref. [13])

εxx = u′ +
v′2

2
+
w′2

2
− λTφ

′′ + (η2 + ζ2)(θ′φ′ +
φ′2

2
)

− v′′ [ηcos(θ + φ) − ζsin(θ + φ)]

− w′′ [ηsin(θ + φ) + ζcos(θ + φ)]

(2.42)

εxη = −
(
ζ +

∂λT
∂η

)
φ′ = −ζ̂φ′ (2.43)

εxζ = −
(
η − ∂λT

∂ζ

)
φ′ = η̂φ′ (2.44)

where λT is the cross-sectional warping function. From equation (2.28) we have the

relations between the deformation variable φ and quasi-coordinate φ̂.

φ′ = φ̂′ + w′v′′

δφ′ = δφ̂′ + w′δv′′ + v′′δw′


 (2.45)

From equation (2.12) we have the relations between the deformation variable u and
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the quasi-coordinate ue.

u′ = u′e − 1
2
(v′2 + w′2)

u = ue − 1
2

∫ x
0
(v′2 + w′2)

δu′ = δu′e − v′δv′ − w′δw′

δu = δue −
∫ x

0
(v′δv′ + w′δw′)dx




(2.46)

Using equations (2.45) and (2.46) we obtain the strains as follows.

εxx =u′e − λT (φ̂′′ + w′v′′′ + v′′w′′) + (η2 + ζ2)(θ′φ̂′ + θ′w′v′′ +
φ̂′2

2
+
w′2v′′2

2
+ φ̂′w′v′′)

− v′′
[
ηcos(θ + φ̂) − ζsin(θ + φ̂)

]
− w′′

[
ηsin(θ + φ̂) + ζcos(θ + φ̂)

]
(2.47)

εxη = −ζ̂(φ̂′ + w′v′′) (2.48)

εxζ = η̂(φ̂′ + w′v′′) (2.49)

The variation of the strains are

δεxx =δu′e + λT (δφ̂′′ + w′δv′′ + v′′δw′′ + v′′′δw′ + w′′δv′′)

+ (η2 + ζ2)[θ′δφ̂′ + θ′w′δv′′ + θ′v′′δw′ + (φ̂′ + w′v′′)(δφ̂′ + w′δv′′ + v′′δw′)]

− [ηcos(θ + φ̂) − ζsin(θ + φ̂)]δv′′ + [ηsin(θ + φ̂) + ζcos(θ + φ̂)]v′′δφ̂

− [ηsin(θ + φ̂) + ζcos(θ + φ̂)]δw′′ − [ηcos(θ + φ̂) − ζsin(θ + φ̂)]w′′δφ̂

(2.50)

δεxη = −ζ̂(δφ′ + w′δv′′ + v′′δw′) (2.51)

δεxζ = η̂(δφ′ + w′δv′′ + v′′δw′) (2.52)

Substituting equations (2.50), (2.51) and (2.52) in equation (2.41) gives the variation

of strain energy as function of the deformation variables. It can be expressed in

nondimensional form as follows.
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δU =
δUb

m0Ω2R3
=

∫ 1

0

(Uu′eδu
′
e + Uv′δv

′ + Uw′δw′ + Uv′′δv
′′ + Uw′′δw′′

+ Uφ̂δφ̂+ Uφ̂′δφ̂
′ + Uφ̂′′δφ̂

′′)dx

(2.53)

In deriving the expressions the following section properties are used.

∫ ∫
A
dηdζ = A

∫ ∫
A
ηdηdζ = AeA∫ ∫
A
ζdηdζ = 0

∫ ∫
A
λTdηdζ = 0

∫ ∫
A
(η2 + ζ2)dηdζ = AK2

A∫ ∫
A
(η2 + ζ2)2dηdζ = B1∫ ∫

A
η(η2 + ζ2)2dηdζ = B2∫ ∫

A
η2dηdζ = IZ∫ ∫

A
ζ2dηdζ = IY∫ ∫

A
λ2
Tdηdζ = EC1∫ ∫

A
ζλTdηdζ = EC2




(2.54)

The coefficients, up to second order of non-linearities are given below.

Uu′e =EA

[
u′e +K2

A(θ′φ̂′ + θ′w′v′′ +
φ̂′2

2
)

]

− EAeA

[
v′′(cosθ − φ̂sinθ) + w′′(sinθ + φ̂cosθ)

] (2.55)

Uv′ = 0 (2.56)

Uw′ = (GJ + EB1θ
′2)φ̂′v′′ + EAK2

Aθ
′v′′u′e (2.57)
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Uv′′ =v′′[EIZcos2(θ + φ̂) + EIY sin
2(θ + φ̂)]

+ w′′(EIZ − EIY )cos(θ + φ̂)sin(θ + φ̂)

− EB2θ
′φ̂′cosθ − EAeAu

′
e(cosθ − φ̂sinθ) + EAK2

Au
′
ew

′θ′

+ (GJ + EB1θ
′2)φ̂′w′ −EC2φ̂

′′sinθ

(2.58)

Uw′′ =w′′[EIZsin2(θ + φ̂) + EIY cos
2(θ + φ̂)]

+ v′′[EIZ − EIY ]cos(θ + φ̂)sin(θ + φ̂)

− EAeAu
′
e(sinθ + φ̂cosθ) − EB2φ̂

′θ′sinθ + EC2φ̂
′′cosθ

(2.59)

Uφ̂ =w′′2(EIZ − EIY )cos(θ + φ̂)sin(θ + φ̂) − v′′2(EIZ − EIY )cos(θ + φ̂)sin(θ + φ̂)

v′′w′′(EIZ − EIY )cos2(θ + φ̂)

(2.60)

Uφ̂′ =GJ(φ̂′ + w′v′′) + EAK2
A(θ′ + φ′)u′e

EB1θ
′2φ̂′ − EB2θ

′(v′′cosθ + w′′sinθ)

(2.61)

Uφ̂′′ = EC1φ̂
′′ + EC2(w

′′cosθ − v′′sinθ) (2.62)

Note that in the above expressions, the cos(θ + φ̂) and sin(θ + φ̂) terms associated

with bending curvature, i.e., with EIZ and EIY , have been retained. These terms

are expanded to second order as

sin(θ + φ̂) = (1 − φ̂2

2
)sinθ + φ̂cosθ

cos(θ + φ̂) = (1 − φ̂2

2
)cosθ − φ̂sinθ


 (2.63)

This expansion introduces third order terms in Uv′′ , Uw′′ and Uφ̂ which are retained

in violation of the ordering scheme. This is to maintain consistency between the
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force-summation and modal methods of blade loads calculation. Thus we have the

following

Uv′′ =v′′(EIZcos2θ + EIY sin
2θ) + w′′(EIZ − EIY )cosθsinθ

− v′′φ̂sin2θ(EIZ − EIY ) + w′′φ̂cos2θ(EIZ −EIY )

− v′′φ̂2cos2θ(EIZ −EIY ) − w′′φ̂2sin2θ(EIZ − EIY )

(2.64)

Uw′′ =v′′(EIZsin2θ + EIY cos
2θ) + v′′(EIZ − EIY )cosθsinθ

+ w′′φ̂sin2θ(EIZ −EIY ) + v′′φ̂cos2θ(EIZ −EIY )

+ w′′φ̂2cos2θ(EIZ −EIY ) − v′′φ̂2sin2θ(EIZ − EIY )

(2.65)

Uφ̂ = (w′′2 − v′′2)cosθsinθ(EIZ − EIY ) + v′′w′′cos2θ

φ̂(w′′2 − v′′2)cos2θ(EIZ − EIY ) − 2φ̂v′′w′′sin2θ

(2.66)

2.1.6 Derivation of Kinetic Energy

The kinetic energy of the bth blade, δTb depends on the blade velocity relative

to the hub and the velocity of the hub itself. The velocity of the hub originates from

fuselage dynamics and is neglected in the present analysis.

Let the position of an arbitrary point after the beam has deformed is given by

(x1, y1, z1) where
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r̄ =

[
x1 y1 z1

]



î

ĵ

k̂




=

[
x+ u v w

]



î

ĵ

k̂




+

[
−λφ′ η ζ

]



îξ

ĵη

k̂ζ




=

{[
x+ u v w

]
+

[
−λφ′ η ζ

]
TDU

}



î

ĵ

k̂




(2.67)

Using equation (2.26) we obtain

x1 = x+ u− λφ′ − v′(y1 − v) − w′(z1 − w)

y1 = v + (y1 − v)

z1 = w + (z1 − w)




(2.68)

where

y1 − v = ηcos(θ + φ̂) − ζsin(θ + φ̂)

z1 − w = ηsin(θ + φ̂) + ζcos(θ + φ̂)


 (2.69)

Now,

V̄b =
∂r̄

∂t
+ Ω̄ × r̄ (2.70)

where using equation (2.2) we have

Ω̄ = ΩK̂ = Ωsinβpî+ Ωcosβpk̂ (2.71)

and

∂r̄

∂t
= ẋ1î+ ẏ1ĵ + ż1k̂ (2.72)
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Using equations (2.72) and (2.2) in equation (2.70) we have

V̄b = Vbxî+ Vby ĵ + Vbzk̂ (2.73)

where all velocities are non-dimensionalized with respect to ΩR and ˙( ) = ∂( )/∂ψ.

Vbx = ẋ1 − y1 cosβp (2.74)

Vby = ẏ1 + x1 cosβp − z1 sin βp (2.75)

Vbz = ż1 + y1 sin βp (2.76)

Taking variations of the velocities we have

V̄ .dV̄ = ẋ1δẋ1 − y1 cosβpδẋ1 − ẋ1 cosβpδy1 + y1 cos2 βpδy1

ẏ1δẏ1 + x1 cosβpδẏ1 − z1 sin βpδẏ1 + ẏ1 cosβpδx1

x1 cos2 βpδx1 − z1 sin βp cosβpδx1 − ẏ1 sin βpδz1 − x1 cos βp sin βpδz1

+ ż1 sin2 βpδz1 + ż1δż1 + y1 sin βpδż1 + ż1 sin βpδy1 + y1 sin2 βpδy1

(2.77)

According to variational method, this equation must be integrated in time between

two arbitrary points in time, t1 and t2 [13]. The initial and final values (e.g.,ẋ1δx1|t2t1)

are taken as zero. Anticipating integration by parts the various terms can be com-

bined in equation (2.77) to obtain

V̄ .dV̄ = −ẍ1δx1 + 2ẏ1 cos βpδx1 + y1 cos2 βpδy1 − ÿ1δy1

− 2ẋ1 cos βpδy1 + 2ż1 sin βpδy1 + x1 cos2 βpδx1

− z1 sin βp cosβpδx1 − 2ẏ1 sin βpδz1 − x1 cosβp sin βpδz1 + z1 sin2 βpδz1

− z̈1δz1 + y1 sin2 βpδy1

(2.78)
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For the bth, the resultant kinetic energy expression in non-dimensional form is given

by

δTb
m0Ω2R3

=

∫ 1

0

∫∫
A

ρV̄ .δV̄ dη dζ dx (2.79)

where ρ is the structural mass density. Substituting the velocity expressions as given

before we have

δTb
m0Ω2R3

=

∫ 1

0

[∫∫
A

ρ (Tx1δx1 + Ty1δy1 + Tz1δz1) dη dζ

]
dx (2.80)

where

Tx1 = −ẍ1 + 2ẏ1 cos βp + x1 cos2 βp − z1 sin βp cosβp (2.81)

Ty1 = y1 cos2 βp − ÿ1 − 2ẋ1 cosβp + y1 sin2 βp + 2ż1 sin βp (2.82)

Tz1 = −2ẏ1 sin βp − z̈1 + z1 sin2 βp − x1 cos βp sin βp (2.83)

Now, using equations (2.68) and (2.69) we have

ẏ1 = v̇ − (z1 − w)θ̇1

ż1 = ẇ + (y1 − v)θ̇1

ẋ1 = u̇− λT φ̇
′ − (v̇′ + w′θ̇1)(y − 1 − v) − (ẇ′ − v′θ̇1)(z1 − w)




(2.84)

and

ÿ1 = v̈ − (z1 − w)θ̈1 − (y1 − v)θ̇2

z̈1 = ẅ + (y1 − v)θ̈1 − (z1 − w)θ̇2

ẍ1 = ü− λT θ̈
′
1 − (y1 − v)(v̈′ + w′θ̈′ − v′θ̇2 + 2ẇ′θ̇1)

−(z1 − w)(ẅ′ − v′θ̈1 − w′θ̇2
1 − 2v̇′θ̇1)




(2.85)
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The variations are as follows

δy1 = δv − δφ̂(z1 − w)

δz1 = δw + δφ̂(y1 − v)

δx1 = δu− λT δφ̂
′ − (y1 − v)(δv′ + w′δφ̂)

−(z1 − w)(δw′ − v′δφ̂)




(2.86)

Using equations (2.86), (2.85), (2.84), (2.68) in (2.79) we obtain

δT =
δTb

m0Ω2R3
=

∫ 1

0

m(Tueδue + Tvδv + Twδw + Tw′δw′ + Tv′δv
′ + Tφδphi+ TF )dx

(2.87)

In deriving the expressions the following section properties are used.

∫ ∫
A
ρdηdζ = m

∫ ∫
A
ρηdηdζ = meg∫ ∫

A
ρζ2dηdζ = mk2

m1∫ ∫
A
ρη2dηdζ = mk2

m2

k2
m1

+ k2
m1

= k2
m∫ ∫

A
ρζdηdζ = 0

∫ ∫
A
ρηζdηdζ = 0

∫ ∫
A
ρλTdηdζ = 0




(2.88)

assuming cross-section symmetry about the η axis and an antisymmetric warp func-

tion λT . The terms involving (y1 − v) and (z1 − w) are given by

∫ ∫
A
ρ(y1 − v)dηdζ = megcos(θ + φ̂)

∫ ∫
A
ρ(z1 − w)dηdζ = megsin(θ + φ̂)

∫ ∫
A
ρ(z1 − w)(y1 − v)dηdζ = m(k2

m2
− k2

m1
)sin(θ + φ̂)cos(θ + φ̂)

∫ ∫
A
ρ[(y1 − v)2 − (z1 − w)2]dηdζ = mk2

m




(2.89)
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The coefficients in equation (2.87) are written up to second order, O(ε2), as follows

TUe = −ü+ u+ x+ 2v̇ (2.90)

where

u = ue − 1
2

∫ x
0
(v′2 + w′2)dx

ü = üe −
∫ x

0
(v̇′2 + v′v̈′ + ẇ′2 + w′ẅ′)dx


 (2.91)

Tv = − v̈ + egθ̈sinθ + egcosθ + v − φ̂sinθ + 2ẇβp + 2egv̇
′cosθ

+ 2egẇ
′sinθ +

¨̂
φegsinθ − 2u̇e + 2

∫ x

0

(v′v̇′ + w′ẇ′)dx

(2.92)

Tv′ = −eg(xcosθ − φ̂xsinθ + 2v̇cosθ) (2.93)

Tw = − ẅ − eg θ̈cosθ − eg
¨̂
φcosθ

− 2v̇βp − xβp

(2.94)

Tw′ = −eg(xsinθ + x̂cosθ + 2v̇sinθ) (2.95)

Tφ̂ = − k2
m

¨̂
φ− φ̂(k2

m2
− k2

m1
)cos2θ − (k2

m2
− k2

m1
)cosθsinθ − xβpegcosθ

− vegsinθ + xv′egsinθ − xw′egcosθ + v̈egsinθ − ëgcosθ − k2
mθ̈

(2.96)

The non-variation term TF is given by

TF = − (−ü+ u+ x+ 2v̇)

∫ x

0

(v′δv′ + w′δw′)

= −TUe

∫ x

0

(v′δv′ + w′δw′)

(2.97)

Note that the ordering scheme is violated in equation (2.97). It is important to keep

the entire TUe in the non-variation form for articulated rotors where the bending

moments at the hinge must go to zero. For hingeless rotors with large bending

moments at the blade root the error is negligible.
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2.1.7 Virtual Work

For each degree of freedom, there is a corresponding external force (or moment)

which contribute to virtual work on the system. The general expression is given by

δWb

m0Ω2R3
=

∫ 1

0

(LAu δu+ LAv δv + LAwδw +MA
φ̂
δφ̂)dx (2.98)

where LAu , LAv , LAw, MA
φ̂

are the distributed air loads in the x, y and z directions

and MA
φ̂

is the aerodynamic pitching moment about the undeformed elastic axis.

Calculated air loads are motion dependent. Measured air loads are not motion

dependent.

In addition to distributed air loads, there can be concentrated forces and

moments acting on locations over the blade span, e.g. a prescribed damper force.

They can be included as follows.

δWb

m0Ω2R3
=

∫ 1

0

(LAu δu+ LAv δv + LAwδw +MA
φ̂
δφ̂)dx

+

∫ 1

0

(Fxδu+ Fyδv + Fzδw +Mxδφ̂−Myδw
′ +Mzδv

′)δ(x− xf )dx

(2.99)

where Fx, Fy, Fz, Mx, My, Mz are the concentrated forces and moments acting at

x = xf along the blade span. The calculated forces and moments are described in

Chapter 3.
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2.1.8 Equations of Motion

Integrating the strain energy, kinetic energy and virtual work expressions

(2.53), (2.87) and (2.98) by parts we obtain

δU =
∫ 1

0
(Yueδue + Yvδv + Ywδw + Yφ̂δφ̂)dx+ b(U)

δT =
∫ 1

0
(Zueδue + Zvδv + Zwδw + Zφ̂δφ̂)dx+ b(T )

δW =
∫ 1

0
(Wueδue +Wvδv +Wwδw +Wφ̂δφ̂)dx+ b(W )




(2.100)

where b(U), b(T ) and b(W ) are the force and displacement boundary conditions.

Using equation (2.33) and collecting terms associated with δu, δv, δw and δφ̂ we

obtain the blade equations as follows.

ue equation :

EA

[
u′e +K2

A(θ′φ̂′ + θ′w′v′′ +
φ̂′2

2
)

]′

− EAeA

[
v′′(cosθ − φ̂sinθ) + w′′(sinθ + φ̂cosθ)

]′
+m(üe − ue − x− 2v̇) = Lu

(2.101)

83



v equation :

[v′′[EIZcos2(θ + φ̂) + EIY sin
2(θ + φ̂)]

+ w′′(EIZ − EIY )cos(θ + φ̂)sin(θ + φ̂) −EB2θ
′φ̂′cosθ

−EAeAu
′
e(cosθ − φ̂sinθ) + EAK2

Au
′
ew

′θ′]′

−m[−v̈ + egθ̈sinθ + egcosθ + v − φ̂sinθ + 2ẇβp + 2egv̇
′cosθ

+ 2egẇ
′sinθ +

¨̂
φegsinθ − 2u̇e + 2

∫ x

0

(v′v̇′ + w′ẇ′)dx]

−meg(xcosθ − φ̂xsinθ + 2v̇cosθ)′ +
{
mv′

∫ 1

x

(−üe + ue + x+ 2v̇)

}′
= Lv

(2.102)

w equation :

[w′′[EIZsin2(θ + φ̂) + EIY cos
2(θ + φ̂)]

+ v′′[EIZ − EIY ]cos(θ + φ̂)sin(θ + φ̂)

− EAeAu
′
e(sinθ + φ̂cosθ) − EB2φ̂

′θ′sinθ + EC2φ̂
′′cosθ]′

−m(−ẅ − egθ̈cosθ − eg
¨̂
φcosθ − 2v̇βp − xβp)

−meg(xsinθ + x̂cosθ + 2v̇sinθ)′ +
{
mw′

∫ 1

x

(−üe + ue + x+ 2v̇)

}′
= Lv

(2.103)
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φ̂ equation :

w′′2(EIZ −EIY )cos(θ + φ̂)sin(θ + φ̂) − v′′2(EIZ − EIY )cos(θ + φ̂)sin(θ + φ̂)

v′′w′′(EIZ −EIY )cos2(θ + φ̂)

− [GJ(φ̂′ + w′v′′) + EAK2
A(θ′ + φ′)u′e + EB1θ

′2φ̂′ −EB2θ
′(v′′cosθ + w′′sinθ)]′

[EC1φ̂
′′ + EC2(w

′′cosθ − v′′sinθ)]′′

− (−k2
m

¨̂
φ− φ̂(k2

m2
− k2

m1
)cos2θ − (k2

m2
− k2

m1
)cosθsinθ − xβpegcosθ

− vegsinθ + xv′egsinθ − xw′egcosθ + v̈egsinθ − ëgcosθ − k2
mθ̈) = Lφ̂

(2.104)

2.2 Finite Element Method of Solution

A finite element method of solution, both in space and time, is formulated

directly from the energy and virtual work expressions. For the bth blade, the virtual

energy expression in equation (2.33) can be written in space and time discretized

form as

δΠb =

∫ ψF

ψI

[
N∑
i=1

(δUi − δTi − δWi)

]
b

dψ =

∫ ψF

ψI

[
N∑
i=1

∆i

]
b

dψ = 0 (2.105)

where i is the ith spatial beam element out of a total of N . Applying the finite

element method in space domain for this virtual energy expression yields the dis-

cretized equations of motion for the bth blade.
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2.2.1 Finite Element in Space

Each beam element consists of fifteen degrees of freedom [31] distributed over

five element nodes - two boundary nodes and three interior nodes. There are six

degrees of freedom at each element boundary node. These six degrees of freedom

are ue, v, v
′, w, w′ and φ̂. There are two internal nodes for ue and one for elastic

twist φ̂. Between elements there is continuity of displacement and slope for flap and

lag bending deflections, and continuity of displacement for elastic twist and axial

deflections. This element insures physically consistent linear variations of bending

moments and torsional moment, and quadratic variation of axial force within each

element. Using the interpolating polynomials, the distribution of deflections over a

beam element is expressed in terms of the elemental nodal displacements qi. For

the ith element the blade deflection, u(s), where s = xi/li, li is the length of the

ithe beam element, is as follows.

u(s) =




u(s)

v(s)

w(s)

φ̂(s)




=




Hu 0 0 0

0 H 0 0

0 0 H 0

0 0 0 Hφ̂




qi (2.106)

where the elemental nodal displacement vector is defined as

qi
T = [u1u2u3u4v1v

′
1v2v

′
2w1w

′
1w2w

′
2φ̂1φ̂2φ̂3] (2.107)
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and the interpolating polynomial shape functions are

Hu
T =




Hu1

Hu2

Hu3

Hu4




=




−4.5s3 + 9s2 − 5.5s+ 1

13.5s3 − 22.5s2 + 9s

−13.5s3 + 18s2 − 4.5s

4.5s3 − 4.5s2 + s




(2.108)

HT =




H1

H2

H3

H4




=




2s3 − 3s2 + 1

li(s
3 − 2s2 + s)

−2s3 + 3s2

li(s
3 − s2)




(2.109)

Hφ̂
T =




Hφ̂1

Hφ̂2

Hφ̂3




=




2s2 − 3s+ 1

−4s2 + 4s

2s2 − s




(2.110)

For flap and lag deflections the shape functions allow continuity of displacement

and slope (Hermite Polynomials), for elastic twist and axial deflection the shape

functions allow continuity of displacement (Lagrange Polynomials). Using the ap-

propriate shape functions, the elemental variation in energy, ∆i can be written in

the following matrix form.

∆i = δqi
T(Mbq̈ + Cbq̇ + Kbq − Fb)i (2.111)

where (Mb)i, (Cb)i, (Kb)i are elemental mass, damping, stiffness and forcing matrices

respectively. The matrices (Mb)i, (Cb)i, (Kb)i are obtained from linear terms only.

The non-linear terms are linearized using a first order Taylor series approximation
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and included in the forcing matrix (Fb)i.

(Fb)i = (F0)i + (FNL)i

= (F0)i + (FNL)|q0i
+
∂(FNL)i
∂qi

|q0i
(qi − q0)

(2.112)

The linearized part of the nonlinear force is derived analytically by differentiating

the nonlinear force vector terms with respect to the blade deformations. Each of the

mass, damping, stiffness and forcing matrices are dependent on space and azimuth.

Summation over the beam elements is achieved by assembling (adding) the elemental

matrices.

The elemental matrices are assembled ensuring compatibility between degrees

of freedom at adjoining nodes. By assembling elemental matrices over N spatial

beam elements, the following expression for the variation of total energy is obtained.

δΠ =

∫ ψF

ψI

δqT(Mbq̈ + Cbq̇ + Kbq − Fb) = 0 (2.113)

Because the virtual displacements, δq, are arbitrary, the integrand in equation

(2.113) must vanish. This gives the finite element equations of motion for the blade

as follows.

Mbq̈ + Cbq̇ +Kbq = Fb (2.114)

The geometric and force boundary conditions at the root end are enforced

during assembly of the element matrices. For an articulated rotor, as in the present

study, u, v and w are set to zero at the flap-lag hinge. Spring and damper prop-

erties of the elastomeric bearing at the hinge are incorporated at the hinge for the

v′ and w′ nodes. The pitch link stiffness and damping values are incorporated for
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the root φ̂ node. In general, kinematic boundary conditions for articulated, hinge-

less and bearingless rotors can be incorporated depending on the particular rotor

configuration.

The number of global degrees of freedom, NG (typically 150-200, here 182 for

20 elements) is reduced to m degrees of freedom (typically 5 to 10) using the blade

natural vibration modes. The natural vibration modes about the mean deflected

position are obtained by neglecting the damping and force matrices. The nonlinear

terms are not used for natural mode calculation. Thus the linearized contributions

of the nonlinear terms to mass, stiffness and damping matrices are neglected. Once

calculated, however, the normal modes are used to reduce the entire nonlinear equa-

tion.

The final normal mode equations for the blade are as follows.

M̄ p̈b + C̄ṗb + K̄pb = F̄ (2.115)

where the matrices are functions of ψ. The new reduced mass, stiffness, damping

and force matrices are as follows

M̄ = ΦTMbΦ

C̄ = ΦTCbΦ

K̄ = ΦTKbΦ

F̄ = ΦTFb




(2.116)

where Φ is an NG × m matrix of m normal modes, used to transform the global

displacement vector qb in terms of m modes. Thus

qb = Φpb (2.117)
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The eigen vectors are orthogonal to each other. Each eigen vector has a real and

positive eigenvalue associated with it. The square root of each eigen value gives the

blade natural frequency corresponding to a particular natural mode. The nonlinear

force matrix, after modal reduction, is of the following form.

F̄ (ψ,pb) = F̄0(ψ) + ¯FNL(ψ,pb)

= F̄0 + ¯FNL(ψ, pb0) +
∂ ¯FNL
∂pb

|pb0
(pb − pb0)

(2.118)

The normal mode equations given in (2.115) are nonlinear, periodic, ordinary

differential equations. They are solved in time using either a first order time march-

ing or a finite element in time method. A finite element in time is suitable for steady

flight conditions. It is, by comparison, an order of magnitude faster because it di-

rectly provides the steady state response. In the present study the finite element in

time method is used. The finite element in time method is described in the next

section.

2.2.2 Finite Element in Time

A temporal finite element method based on the Hamilton’s principle in weak

form is used to discretize the temporal dependence of the blade equations. The

normal mode coordinate pb around the azimuth is approximated by using Lagrange

polynomials as shape functions. In particular, if an nth order polynomial is used

in the approximation, then n + 1 nodes per degree of freedom are required to de-

scribe the variation of pb within the element. The temporal nodal coordinates are

denoted by ξ. Continuity of the generalized displacements is assumed between the
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time elements. The final result is a set of nonlinear algebraic equations which are

then solved using a modified Newton Method. Using Hamilton’s principle, equation

(2.115) is rewritten as

∫ 2π

0

δpb
T(M̄p̈b + C̄ṗb + K̄pb − F̄)dψ = 0 (2.119)

where 2π is the period of response and C̄(ψ) and K̄(ψ) contain periodic coefficients.

At this stage, all nonlinear terms are contained in F̄ , M̄, C̄, K̄ are not displacement

dependent. Assume M̄ is not a function of ψ. Integration by parts of equation

(2.119) gives

∫ 2π

0




δpb

δṗb



T 


F̄ − C̄ṗb − K̄pb

M̄ ṗb


 dψ =




δpb

δ̇pb



T 


M̄ ṗb

0




2π

0

(2.120)

The right hand side of equation (2.120) is zero because of periodicity i.e., ṗb(2π) =

ṗb(0). Equation (2.120) can be written as the following.

∫ 2π

0

δyTQdψ = 0 (2.121)

where

y =




pb

ṗb


 (2.122)

and

Q =




F̄ − C̄ṗb − K̄pb

M̄ ṗb


 (2.123)

In discretized for equation (2.121) takes the form

Nt∑
i=1

∫ ψi+1

ψi

δyTi Qidψ = 0 (2.124)
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where ψ1 = 0, ψNt+1 = 2π and Nt is the number of time elements used to discretize

one rotor revolution. Linearizing the vector Q about a steady state value of y0 =

[pb0
T ˙pb0

T]T we have

Nt∑
i=1

∫ ψi+1

ψi

δyTi Qi(y0 + ∆y)dψ =

Nt∑
i=1

∫ ψi+1

ψi

δyTi [Qi(y0) +Kti(y0)∆y]dψ = 0

(2.125)

where

Kti =




∂F̄
∂pb

− K̄ ∂F̄
∂ṗb

− C̄

0 M̄



i

(2.126)

where i denotes the ith time element. For the ithe time element, the time variation

of the modal displacement vector can be expressed in terms of temporal shape

functions, Ht, and temporal nodal displacement vector, ξi, as

pbi
(ψ) = Ht(s)ξi

˙pbi
= ˙Ht(s)ξi

δpbi
(ψ) = Ht(s)δξi

δ ˙pbi
= ˙Ht(s)δξi




(2.127)

where the local temporal coordinate s for the ith time element is

s =
ψ − ψi
ψi+1 − ψi

(2.128)

and 0 <= s <= 1. ψi+1 − ψi is the time-span of the ith time element. Ht(s) is the

temporal shape function matrix which has the form

Ht = [Ht1Im, ...,Htnt+1Im] (2.129)

Im is anm×m identity matrix. m is the dimension of the modal displacement vector.

In the above expression, the subscript nt refers to the order of the polynomial used
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in approximating the temporal variation of the modal displacement vector. For

example, if an nth order polynomial is used in the approximation, then n+ 1 nodes

for each blade mode are required to completely describe the variation of pb within

the time element. Therefore, Ht is an mxm(nt + 1) matrix, and ξi is an m(nt + 1)

vector. In the present study, fifth order shape functions (Lagrange Polynomials) are

used. Now, using equations (2.127) in equation (2.125) we have the following,

Nt∑
i=1

∫ ψi+1

ψi

δξTi N
T [Qi +KtiN∆ξi]dψ = 0 (2.130)

where

N =




Ht(ψ)

Ḣt(ψ)


 (2.131)

For a periodic solution, the boundary condition for the temporal finite element

equations are pb(0) = pb(2π). Finally, because the δξi are arbitrary for i = 1, ..., Nt,

equation (2.130) takes the form

QG +KG
t ∆ξG = 0 (2.132)

where G signifies global matrices after assembly as follows

QG =
∑Nt

i=1

∫ ψi+1

ψi
NTQidψ

KG
t =

∑Nt

i=1

∫ ψi+1

ψi
NTKtiNdψ

∆ξG =
∑Nt

i=1 ∆ξi




(2.133)

Matrix Kti given by equation (2.126) and the time element vector, Qi given

by equation (2.123) are calculated for each time element about a steady value of y0.

The element matrix Kti and the element vector Qi are assembled into the global

matrixKG
t and global vector QG using equations (2.133). Equations (2.132) are a set
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of time discretized nonlinear algebraic equations and are solved using the Newton’s

method. The updated response at the ith iteration is

ξGi+1 = ξGi + ∆ξGi (2.134)

Converged steady response implies ∆ξGi = 0.

2.3 Blade loads

The blade sectional loads, i.e. the flap, lag and torsion bending moments,

are calculated using two methods - (1) Modal Curvature and (2) Force Summation

Method. For converged blade response, i.e. when the response does not change

with increase in the number of blade normal modes, both methods should produce

identical loads. In the immediate vicinity of a concentrated loading, e.g., lag damper

force, the force summation method captures the blade loads with lesser number of

modes.

To obtain the same loads using force summation and modal curvature methods,

the response equations must be consistent with loads calculations. Consistency is

specially important for articulated rotors where the bending loads must reduce to

zero at the hinge.
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2.3.1 Modal Curvature Method

The flap and lag bending moments, Mη and Mζ are obtained as follows.

Mη =

∫ ∫
A

ζσdηdζ =

∫ ∫
A

Eζεxxdηdζ

= EIη[v
′′sin(θ + φ̂) − w′′cos(θ + φ̂)] −EC1φ̂

′′
(2.135)

Mζ = −
∫ ∫

A

ησdηdζ = −
∫ ∫

A

Eηεxxdηdζ

= EIζ [v
′′cos(θ + φ̂) + w′′sin(θ + φ̂)] −EAeAu

′
e − EB2θ

′φ̂′
(2.136)

The expression for torsion bending moment from Ref. [13] is given by

Mξ =

∫ ∫
A

[
ησxζ − ζσxη + λT (

∂σxη
∂η

+
∂σxζ
∂ζ

)

]
dηdζ

+
∂

∂x

∫ ∫
A

λTσxxdηdζ

+ (θ + φ̂)′
∫ ∫

A

(η2 + ζ2)σxxdηdζ

= EAk2
A(θ + φ̂)′u′e + EB1θ

′2φ̂′ − EB2θ
′(v′′cosθ + w′′sinθ)

+GJ(φ̂′ + w′v′′)

− [EC1φ̂
′′ + EC2(w

′′cosθ − v′′sinθ)]′

(2.137)

2.3.2 Force Summation Method

The loads occurring at a blade section are the reaction forces (and moments)

to those occurring outboard. It is equal (and opposite) to the integrated air loads

and inertial loads from blade tip to the desired section. The inertial forces and

moments at each blade section are given by the following.
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F I = − ∫ ∫
A
ρādηdζ

M I = − ∫ ∫
A
s̄ × ρdηdζ


 (2.138)

The acceleration of the section, ā is given by

ā = ¨̄r + Ω × (Ω × r̄) + 2(Ω × ˙̄r) (2.139)

The moment arm of a point on the blade section measured from the deformed shear

center, s̄ is obtained from equation(2.68) as

s̄ = −[v′(y1 − v) + w′(z1 − w)]̂i+ (y1 − v)ĵ + (z1 − w)k̂ (2.140)

Using equations (2.68), (2.71), (2.84), and (2.85) we obtain

ā = axî+ ay ĵ + azk̂ (2.141)

where

ax =ü− λT θ̈
′
1 − (y1 − v)(v̈′ + w′θ̈1 + 2ẇ′θ̇1 − v′θ̇2

1)

− (z1 − w)(ẅ′ − 2v̇′θ̇1 − v′θ̈1 − w′θ̇2
1) − 2[v̇ − θ̇1(z1 − w)]

+ βp[w + (z1 − w)] − [x+ u− v′(y1 − v) − w′(z1 − w)]

(2.142)

ay =v̈ − θ̈1(z1 − w) − θ̇2
1(y1 − v) − 2βp[ẇ + θ̇1(y1 − v)]

2[u̇− λT θ̇′1 − (y1 − v)(v̇′ + w′θ̇1) − (z1 − w)(ẇ′ − v′θ̇1)]−

βp[v + (y1 − v)] − [v + (y1 − v)]

(2.143)

az =ẅ + (y1 − v)θ̈1 − (z1 − w)θ̇2
1 + 2βp[v̇ − θ̇1(z1 − w)]

+ βp[x+ u− v′(y1 − v) − w′(z1 − w)]

(2.144)
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Let LIu, L
I
v, L

I
w and M I

u , M
I
v , M

I
w be the inertial forces and moments in the unde-

formed frame x, y, z directions. Then, to second order, we have the following.

LIu = −
∫ ∫

A

ρaxdηdζ = TUe (2.145)

LIv = −
∫ ∫

A

ρaydηdζ = Tv (2.146)

LIw = −
∫ ∫

A

ρazdηdζ = Tw (2.147)

M I
v = −

∫ ∫
A

[v′(y1 − v) + w′(z1 − w)az + (z1 − w)ax]dηdζ

≈ −
∫ ∫

A

(z1 − w)axdηdζ

= −T ′
w

(2.148)

M I
w =

∫ ∫
A

[v′(y1 − v) + w′(z1 − w)ay + (z1 − w)ax]dηdζ

≈
∫ ∫

A

(y1 − v)axdηdζ

= T ′
v

(2.149)

M I
u =

∫ ∫
A

[(z1 − w)ay − (y1 − v)az]dηdζ

= Tφ̂ − v′M I
v − w′M I

w

= Tφ̂ + v′T ′
w − w′T ′

v

(2.150)

where TUe, Tv, Tw, T ′
v, T

′
w, Tφ̂ are identical to those given in equations (2.90) to (2.96).

Thus the kinetic energy terms derived before are identical to the inertial terms

obtained here. This shows the equivalence of Hamilton’s Principle and Newton’s

Laws.

Let the external loads (air loads and other concentrated loadings if any e.g., a

prescribed lag damper force) be denoted by the superscript A. Then the total loads

97



distribution at a section is given by the sum of inertial and external loads

Lu = LAu + LIu

Lv = LAv + LIv

Lw = LAw + LIw

Mu = MA
φ̂

+M I
u

Mv = v′MA
φ̂

+M I
v

Mu = w′MA
φ̂

+M I
w




(2.151)

MA
φ̂

is the external pitching moment (e.g. aerodynamic pitching moment) acting in

the blade deformed frame. Its components in the x, y, z directions, MA
φ̂
, v′MA

φ̂
, w′MA

φ̂

are obtained using TDU from equation (2.26).

The resultant shear forces and bending moments at any blade section x0 is

given by the following. 


fx

fy

fz




=

∫ 1

x0




Lu

Lv

Lw



dx (2.152)




mx

my

mz




=

∫ 1

x0




−Lv(w − w0) + Lw(v − v0) +Mu

Lu(w − w0) − Lw(x+ u− x0 − u0) +Mv

−Lu(v − v0) + Lv(x+ u− x0 − u0) +Mw



dx (2.153)

To compute the contribution of the blade loads to the hub loads in the rotating

frame, the spanwise integration is carried out from the hub center to the blade

tip, and u0, v0, w0, x0 = 0 The hub loads in the fixed frame is calculated using
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transformation (2.1).

FX(ψ) =
∑Nb

m=1(f
m
x cosψm − fmy sinψm − fmz cosψmβp)

FY (ψ) =
∑Nb

m=1(f
m
x sinψm + fmy cosψm − fmz sinψmβp)

FZ(ψ) =
∑Nb

m=1(f
m
z + fmx βp)

MX(ψ) =
∑Nb

m=1(m
m
x cosψm −mm

y sinψm −mm
z cosψmβp)

MY (ψ) =
∑Nb

m=1(m
m
x sinψm +mm

y cosψm −mm
z sinψmβp)

MZ(ψ) =
∑Nb

m=1(m
m
z +mm

x βp)




(2.154)

where fx, fy, fz, mx, my, mz are the rotating frame hub loads, i.e., blade loads inte-

grated up to the hub. The steady values of the fixed frame hub loads (2.154) are

used for trimming the helicopter. The higher harmonics cause helicopter vibration.

For a tracked rotor, with identical structural and aerodynamic behavior, the higher

harmonics contain only those frequencies which are integral multiples of rotor fre-

quency. These harmonics are generated by harmonics of rotating frame blade loads

which are one higher and one lower than the rotor frequency.

For example, for an Nb bladed rotor, the higher harmonics in the fixed frame

hub loads are pNb/rev, where p is an integer. These harmonics are generated

by pNb ± 1/rev in-plane shear forces (fx, fy), pNb/rev vertical shear force (fz),

pNb±1/rev flap and torsion bending moments (mx, my) and pNb/rev chord bending

moment (mz). To predict helicopter vibration these rotating frame blade loads must

be predicted correctly.
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2.4 Validation of Structural Model

The structural model is validated using flight test measured air loads, damper

load and rotor control angles. Thus, errors in response and blade loads prediction

originate entirely from structural modeling.

2.4.1 Flight Test Data

The test data used in the present study are from Flight 85 of the UH-60A Black

Hawk Air Loads Program [144]. Flight 85 is a steady level flight and corresponds

to a nominal vehicle weight coefficient, CW/σ, of 0.08. Within Flight 85, Counter

numbers indicate air speed. For example, counter 34 data corresponds to high speed

forward flight - 155 kts : advance ratio, µ, of 0.368, CW/σ = 0.0783. Counter 15

data corresponds to low speed transition flight - 45 kts : advance ratio, µ, of 0.110,

CW/σ = 0.0782. The focus is on high speed flight, i.e. Flight 8534.

The loads data from this test condition are repeatable and considered highly

accurate. Most of the uncertainties are in the steady values not in the oscillatory

components. Figure 2.1(a) shows the measured pitch-link or push-rod loads on all

four blades of the Black Hawk in high-speed forward flight. The push rod loads

are generated by integrated blade torsion loads and therefore show the effect of

integrated span-wise errors. In addition, they are from four different blades with

different sets of instrumentation. In spite of these differences the push rod loads

from all four blades are remarkably similar.

For purposes of validation, measurements corresponding to Blade 1 are used.
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In general the first ten harmonics of all blade loads are extracted and compared

with analysis results. For example, figure 2.1(b) compares the first ten harmonics

of the push rod loads with the total oscillatory waveform.

2.4.2 Solution Procedure

The problem of determining rotor response with a prescribed set of air loads

which remain fixed and do not change with the response itself, can be termed as a

mechanical air loads problem. In the present case the measured airloads are used as

the prescribed set.

The mechanical air loads problem is fundamentally an ill-posed problem be-

cause the air loads are fixed and do not change in response to blade deformations.

This leads to zero aerodynamic damping. It cannot be solved for all rotor systems.

Consider a teetering, gimbaled or articulated rotor with fundamental flap frequency

of 1/rev (1p) with zero structural damping. If the measured aero hinge moment

is infinitesimally accurate, the 1p component will be identically zero in which case

the rotor response is undefined. The 1p component is identically zero because, at

resonance the damping force is equal and opposite to the forcing and they are both

are parts of the measured air loads. In practice measured air loads will have errors.

These errors will produce a 1p aerodynamic hinge moment which will drive the rotor

response to infinity. In presence of structural damping, which are small compared

to aerodynamic damping e.g. in flap 2% compared to 50%, the response will not be

infinite but the accuracy of the measured air loads required for a reasonably accurate
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response solution will be impossible to meet. The mechanical air loads problem is

therefore fundamentally inaccurate for low damped systems with natural frequen-

cies close to excitation harmonics. The Black Hawk blade frequencies are reasonably

well separated from excitation harmonics except the first natural frequency which

is 1.036/rev.

The rotor blade is modeled as a fully articulated beam with flap and lag hinges

coincident at 4.66% span. All blades are identical. Each blade is defined by 20

finite elements undergoing flap, lag, torsion and axial degrees of motion. The blade

property data, including nonlinear aerodynamic and structural twist distributions

are obtained from the NASA Ames master database. The tip sweep in the outer

6.9% of the blade span (reaching a maximum of 20 degrees at 94.5% span) is modeled

in two ways. The baseline model incorporates the tip sweep as a center of gravity

offset from a straight undeformed elastic axis. Thus, in the swept part of the blade,

the total center of gravity offset is the sum of the local offset with respect to swept

elastic axis and the offset due to blade sweep. The elastic axis of the UH-60A blade

is at the local quarter chord line. A refined model incorporates a structurally swept

elastic axis [23, 25]. The refined sweep model is seen to affect only the predicted

torsion dynamics. The measured air loads are applied at the local quarter chord

locations at all radial stations.

The non-linear lag damper force is imposed on the structure as a set of concen-

trated forces and moments acting at 7% of the blade span. These damper imposed

forces and moments vary with azimuth based on the nominal damper geometry. The

damper geometry is obtained from the master database. The pitch link is modeled
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as a linear spring-damper system. The elastomeric bearing stiffness and damping

are modeled as linear springs and dampers in flap, lag and torsion.

The rotor blade frequency plot and the first ten natural frequencies at the

operating RPM are shown in figure 2.2(a). These correspond to a collective angle

of 13.21 degrees and a baseline root torsion spring stiffness of 363 ft-lb/degree [160].

The root spring stiffness is an equivalent measure of the pitch link stiffness obtained

by multiplying the pitch link stiffness with the square of the pitch link arm perpen-

dicular to the blade elastic axis. A more realistic value of the root torsion spring

is 1090 ft-lbs/degree as measured in Ref. [161]. It corresponds to the fixed system

control stiffness for reactionless loading. The increased stiffness increases the first

torsion frequency from 3.8/rev to 4.2/rev as shown in figure 2.2(b). Flap and lag

frequencies remaining nominally constant. Figure 2.3 shows the variation of cal-

culated first torsion frequency with root spring stiffness. The present calculation

shows the same trend as that reported in Ref. [161] with a slightly increased value.

The swept elastic axis model, has a higher propeller moment in the tip region and

generates a marginally increased torsion frequency. The first eight structural modes

are used for the present study.

The measured air loads are in the deformed blade frame, and contain the

loading caused by the undeformed blade as well as by the aeroelastic response. They

are reduced to the undeformed frame iteratively using calculated deformations and

the flight test control angles at each step. These iterations have no effect on the

pitching moments and are insignificant for the normal force. They are important

only for obtaining the chord forces in the undeformed frame.
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The periodic blade response is calculated directly using finite element in time.

A time-marching algorithm, in comparison, requires more than an order of magni-

tude longer in computation time to settle down to the final steady state response.

This is due to the absence of aerodynamic damping and the proximity of modal

frequencies to forcing harmonics ( eg., 1st flap is 1.04/rev, 2nd flap is 2.82/rev,

1st torsion is 3.8/rev ). In addition, artificial damping is required initially during

convergence cycles and needs to be subsequently removed. Artificial damping accel-

erates the decay of the initial natural mode response in the absence of aerodynamic

damping.

2.4.3 Calculated Structural Response

The calculated structural response of the rotor blades are now compared with

high speed flight test data (Flight 8534). Root flap and lag angles, flap, lag and tor-

sion bending moments and pitch link loads are investigated. The bending moments

and pitch link loads corresponding to Flight 8515 are also shown.

Root Flap, Lag and Pitch Angles

The calculated oscillatory flap angle at the blade root is shown in figure 2.4(a).

The waveform is sensitive to structural damping in the first flap mode. A damping

value of 4% critical is used to obtain a good peak to peak match. The phase of the

resulting waveform shows satisfactory agreement.

The upper shaft bending moment, shown in figure 2.4(b), is consistent with
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the root flap angle in that it shows the same trend. Without the 4% damping,

the waveforms shows large error in magnitude and phase. The upper shaft bending

moment is the bending load at the rotor shaft. There are two sets of values which

are mutually orthogonal to each other, one set created by the root flap moments

from blades 1 and 3, and another set by the root flap moments from blades 2 and

4. The test data was available for the gauge reading which was generated by blades

1 and 3 and is used for the present comparison. The predicted shaft moments from

blades 1 and 3 and blades 2 and 4 are offcourse identical with only a phase shaft as

the blades are assumed identical.

A 4% structural damping value is an unrealistically high damping value to

be produced by a mechanical flap hinge damper. It appears that the phase error

in calculated root flap angle and upper shaft bending moment stems from small

errors in airload measurements as explained below. A structural damping value of

4% happens to be the amount required to offset this error. Figures 2.5 shows the

harmonics of the root flap angle. The largest contributer is 1/rev followed by 2, 3,

4 in decreasing order of magnitude. The largest magnitude error is in 1/rev with

an error in phase of around 50 degrees. The 4% damping rectifies the 1/rev error,

both in magnitude and phase, while keeping the higher harmonics unchanged. The

structural damping value is effective only at 1/rev because the rotor flap frequency

is very near 1/rev, 1.036/rev.

Figure 2.6(a) shows the 1/rev normal force harmonics at all radial stations.

The aerodynamic hinge moment shown in figures 2.6(b) and 2.6(c) has, on the

contrary, a very small 1/rev component. This is because, out of all the harmonics
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of the aerodynamic hinge moment, the 1/rev component is generated as a residual

of counter acting inboard and outboard normal forces - which are mutually 180

degree out of phase as shown in figure 2.6(a). This is required to generate a low

steady hub moment in trimmed level flight. This radial balance between the inboard

and outboard normal forces determine the phase of the 1/rev aerodynamic hinge

moment, figure 2.6(d). The radial balance is easily destroyed by a small error at

any one radial station. Small errors in air loads measurements at any one station

can therefore produce a large error in 1/rev aerodynamic hinge moment phase. It

appears that the phase error in calculated root flap angle stems from such an error

in the measured air loads. This error is then further magnified in the 1/rev root

flap angle prediction due to the proximity of the 1st flap frequency to 1/rev and

the lack of any aerodynamic damping in the system. Thus the error in root flap

angle prediction is an artifact of the 1/rev trim airload balance in forward flight and

the mechanical air loads problem which is fundamentally ill-posed rather than an

error in structural modeling. In fact the accuracy of lift measurements required to

produce an accurate root flap angle prediction may not be possible to meet.

Flap bending moments however are not significantly affected by the critical

damping value. This is because the 1/rev component of the hinge moment drives

mainly the rigid response of the rotor. The bending moment calculations shown in

the following sections therefore do not include this artificial damping value of 4%.

The root lag angle predictions are shown in figure 2.7(a). The root flap re-

sponse couples with the lag response via the rigid twist angle (which is 9.31 degrees

at the root) and hence the prediction is affected by the 4% structural damping value.
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The general waveform from Blade 2 and 3 is captured. Blade 1 shows measurement

discrepancies. The root pitch angle is shown in figure 2.7(b).

The predicted root pitch angle is the sum of flight test control angles (13.21

degrees of collective, 6.56 degrees of lateral cyclic and -9.07 degrees of longitudinal

collective), the rigid pre-twist at the root and an elastic twist component. The

elastic twist is very small at the root, but non-zero due to a finite stiffness of the

pitch bearing. Blades 2 and 3 shows a higher collective than Blade 1. The difference

in collective is around 3 degrees. Later, in comprehensive predictions, predicted

collective angles would be around 16.5 degrees compared to the flight test value of

13.21 degree. The flight test value is taken from Blade 1, which appears to be in

error. A value of 16.5 degree is more accurate in terms of Blade 2 and Blade 3. In

general there is an uncertainty in the flight test control angles both for the collective

and lateral cyclic.

Flap Bending Moment

The predicted flapwise bending moment distributions are compared with test

data in figure 2.8. The predicted steady values are within 10% of flight test values,

except at the 70% radial station, and are not included for comparison. The total (1-

10/rev) and vibratory components (3-10/rev) of the predicted bending moment show

similar trends as the test data. The vibratory components are dominated by 3/rev

loads at all radial stations. The predicted values however, show an over-prediction

of 5/rev response near the tip compared to the test data. Figure 2.9 compares the

predicted and measured flight test bending moment values at eight radial stations.
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The waveform at 10% radial station is affected by the lag damper force in the

retreating blade. The damper force affects both the chord-wise and flap-wise (normal

to chord) moments via a 9.3 degree blade pre-twist at this station. Figure 2.10

shows the radial distribution of the bending moment harmonics, both magnitude and

phase. All the first five harmonics show the correct trends in magnitude and phase.

The 3/rev component is under-predicted by about 20% along the blade span. The

5/rev component is over-predicted near the blade tip. The phase prediction is good

for all harmonics. Figures 2.9 and 2.10 establish that the flap bending moment

prediction problem shown in the introduction (figure 1.2) stem from inaccurate

aerodynamic modeling. A similar mechanical air loads solution for the low speed

transition regime (Flight 8515) also show satisfactory prediction of flap bending

moments, figure 2.11.

Torsion Bending Moment

The torsion bending moments at three radial stations and the pitch link load

at high speed are shown in figure 2.12. Predictions correspond to a soft pitch link

stiffness value, which was the value used by all participants of the UH-60A Black

Hawk Air loads Workshop. In general, the torsion loads are not as satisfactory

as the flap bending moments. Predicted torsion moments show satisfactory trends

in the advancing blade but are somewhat less satisfactory in the retreating blade.

Higher harmonics (4/rev and higher) are not captured satisfactorily in magnitude

and phase. The lower harmonics (1-3/rev) which determine the peak to peak magni-

tude are captured. Prediction at 90% R show a significant under-prediction although
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the integrated effect on the pitch-link load shows the right magnitude. However,

there is an uncertainty in the measurements of torsion bending moment at 90% R.

The phase and magnitude of the pitch link load are well predicted. This shows that

the under-prediction of pitch link load as discussed in the introduction (figures 1.7

and 1.8) stem from inaccurate aerodynamics. Although the structural model has

deficiencies in capturing the accurate torsion loads, it is accurate enough to predict

the right peak to peak and lower harmonics given the correct air loads.

The harmonic content of the torsion moments are shown in in figure 2.13.

Accurate elastic torsion is crucial for accurate blade lift. Out of all the harmonics of

elastic torsion, 1-3/rev are most important for blade lift. 1/rev produces 2/rev lift

through the azimuthal velocity variation. 2/rev and 3/rev are the most significant

contributors to vibratory lift of which 2/rev is the largest. Prediction of 1-3/rev

elastic torsion shows satisfactory trends in magnitude and phase. Prediction of

4/rev phase is improved by the stiffer pitch-link. The stiffer pitch-link shifts the

4/rev phase by around 180 degrees because it increases the first torsion frequency

from below 4/rev (3.8/rev) to above 4/rev (4.2/rev). The shift is not exactly 180

degrees due to the pitch bearing damper. 5/rev prediction is poor and is a source

of the retreating blade error.

The effect of structural couplings on predicted torsion bending moments and

pitch-link load are now investigated. The couplings arise out of three mechanisms:

(i) second order non-linear couplings between flap, lag and torsion arising out of

geometric curvature, for example, the chord force at a section of an elastically flapped

blade and the normal force at a section of an elastically lagged blade create torsion
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moment in-board, (ii) flap torsion coupling via sectional center of gravity offsets and

(iii) flap torsion coupling due to tip sweep.

Figures 2.14(a) and 2.14(b) show the effect of non-linear structural couplings

on torsion moment at 30% R and pitch-link load. The effect is primarily in the

second quadrant and not significant. The center of gravity offsets on the other

hand, appears to significantly affect the waveform in the advancing blade as shown

in figures 2.14(c) and 2.14(d). Not modeling the center of gravity offsets, while

keeping the sectional moment of inertias about c.g. constant, decreases the mass

moment of inertia about the elastic axis and increases the first torsion frequency

from 3.8/rev closer to 4/rev. This increases the 4/rev response. The sensitivity of

the c.g. location is in part an artifact of the mechanical air loads problem with zero

damping. For comprehensive analysis the effect would be less pronounced due to

torsion damping from unsteady aerodynamics.

Figures 2.14(e) and 2.14(f) show the effect of tip sweep. Baseline results with

tip sweep are compared with those of a non-swept blade. The non-swept blade

ignores the sweep back of the local elastic axis at the tip. The effect of blade sweep

appears primarily to be in the retreating blade. Predictions from the baseline sweep

model are compared with the refined model in figure 2.15. Figure 2.15(a) shows

that even the simplified sweep model captures the correct peak to peak and basic

waveform of the pitch link load. The predicted harmonics from both models are

compared with test data in figure 2.15(b). The refined model appears to over-predict

all harmonics over 1/rev and does not in general provide improved predictions.

Predictions show the right trends apart from 5/rev phase and 2/rev magnitude.
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The error in 5/rev phase is the integrated effect of the 5/rev phase error in torsion

bending moments (figure 2.13).

In addition to air loads and structural properties of the blade, two specific

structural characteristics of the UH-60A affect the pitch link loads - pitch bearing

damper and non-linear lag damper force. The effect of pitch bearing damper on

the torsion loads is shown in figure 2.16. The bearing damper contributes a 1/rev

component to the pitch link load. This is because the pitch link forces against the

pitch bearing to implement the 1/rev rotor control angles. The feedback effect on

the blade loads, as shown in figure 2.16(a) is not significant. The measured pitch

bearing damper value is uncertain. In the present model this value is fixed at 30

ft-lbs/rad/sec based on this validation study.

The effect of the lag damper is shown in figure 2.17. The lag damper attaches

to the blade at 7% R. The pitch horn attaches to the blade at 4.66% R. The line of

action of the damper force changes with respect to the pitch horn as a function of

blade azimuth based on the measured damper attachment geometry and kinematics.

The lag damper force affects mostly the retreating blade (figure 2.17). The advancing

blade waveform and peak to peak variation is not affected by the lag damper.

In summary the lower harmonics of torsion are well predicted (1-3/rev) with

measured air loads. These govern the peak to peak torsion moments and pitch link

load as well as the advancing blade waveform. Higher harmonic predictions (4/rev

and higher) are less satisfactory.

Predicted torsion loads for Flight 8515 (low speed transition flight, µ = 0.110)

is shown in figure 2.18. The torsion loads are dominated by higher harmonics at
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this flight condition. As a result predictions are not as satisfactory as in high speed.

The peak to peak pitch link load and the general waveform is however satisfactorily

captured.

Chord Bending Moment

The predicted chord bending moment at high speed is shown in figure 2.19.

The root chord moment (11.3% R) is dominated by the non-linear lag damper force.

The sharp gradient at the junction of the third and fourth quadrant is a direct effect

of the lag damper. The force summation method better predicts the effect of this

concentrated loading near the root with eight modes. To capture this effect with

the modal curvature method more modes are necessary. In general, the predicted

chord moments capture the peak to peak loads satisfactorily.

Figure 2.20 shows the harmonics of predicted chord bending moment. The

damper acts at 7.6% R and has a significant effect on the moments up to 50% R.

The effect is dominant on the low frequency harmonics, 1-3/rev. The predicted

phase of all harmonics show satisfactory correlation with test data. Discrepancies

exist in the magnitude prediction. Out of the three vibratory harmonics, 3/rev

prediction is good, 4/rev is under-predicted and 5/rev is over-predicted. 1 and

2/rev harmonics show the right trends but are under-predicted at the mid-span

stations. The measured chord force, obtained from pressure data, contains only the

induced drag component. The effect of viscous drag can play a role in the prediction

of chord bending moments. Figure 2.21 shows the predicted lag bending moment

for low speed Flight 8515. The errors once again are mainly in 4/rev and 5/rev
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predictions. The peak to peak variations are well captured. The root lag bending

moment at 11.3% R is again dominated by the damper force and is picked up more

easily by a force summation method using only eight modes.

In conclusion, measured air loads, damper force and control angles are used

to satisfactorily validate the structural model. The structural model can therefore

be used to obtain a set of blade deformations which are close to the actual values

in high speed flight. In absence of measured deformations, this set can be used to

calculate air loads and validate the aerodynamic models.

2.5 Deformation set for air loads calculation

In addition to blade deformations, the rotor control angles are important for

air load calculations. The measured control angles show some uncertainty. Instead

of the measured control angles, a set of calculated control angles are used for air

load calculations. The control angles are calculated in the following manner. A

comprehensive coupled trim of the UH-60A is performed (to be discussed in detail

in Chapter 4) to obtain the control angles. During this trim procedure, measured

pitching moments from the flight test data are used instead of the calculated values.

The measured pitching moments produce accurate elastic torsion (the structural

model is validated) which produce a consistent set of control angles - collective,

lateral and longitudinal of (17.2, 3.4, -9.9). The flight test values are (13.21, 6.56

and -9.07). Note that the flight test collective is about 4 degrees lower than the

calculated collective. The flight test collective along with an elastic torsion peak
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value of -8 degrees near the tip in the advancing side stalls the blade in the pre-

scribed deformation air loads calculations (Chapter 3). The purpose of refining the

control angles using the coupled trim solution was to avoid this blade stall in lift

calculation. Without stall, in general, the vibratory harmonics of the blade lift are

not affected significantly by the control angles. The calculated collective is closer to

that corresponding to Blade 2 and 3 root pitch angle, figure 2.7(b).

The torsion deformations, crucial for air loads calculation, is obtained using

the stiff pitch link value. This is because the stiffer pitch link corresponds to the

experimentally measured value [161] and will be used in the comprehensive analyses

later (Chapter 4 and 5). While obtaining this set of torsion deformations, the lag

damper forcing is not used. This is because the measured damper forces will not

be used in the full aeroelastic computations performed in Chapter 4 (lifting-line

aerodynamics) and Chapter 5 (CFD aerodynamics). The damper force does not

effect the flap and lag deformations which therefore remain same as before - except

at 11.3% which however is within the root cut out of 20% R and therefore does

not play any role in air loads calculations. The flap and lag bending moments are

therefore nominally same as those shown in figures 2.9 and 2.19. The new torsion

loads, without lag damper and with stiff pitch link are shown in figure 2.22.

Figure 2.22 shows that the torsion bending moments, and therefore the elastic

torsion deformations, are accurate in the advancing blade. Thus the deformations

are satisfactory for accurate prediction of advancing blade air loads. The retreating

blade predictions are however unsatisfactory. This error is structural dynamic in

origin and cannot be resolved by accurate air loads prediction. The flap and elastic
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torsion deformations are shown in figure 2.23.

2.6 Concluding Remarks

A nonlinear structural dynamic model of helicopter rotor blades is described.

The governing equations of motion are solved using finite element in space and

time. Measured air loads, damper loads and control loads from the UH-60A level

flight tests (both high speed 158 kts and low speed 40 kts) are used to validate the

structural dynamic model. Based on this study the following conclusions are drawn.

1. Modern finite element structural dynamic models are capable of satisfactorily

predicting the blade loads given the correct air loads.

2. Predicted flap bending moments are accurate. They capture lower and higher

harmonics of blade loads (upto 5/rev shown in the present study) both in

magnitude and phase at all radial stations.

3. Predicted lag bending moments show the correct trends in magnitude and

phase, but correlation in general is not as satisfactory as the flap bending

moments. Although phase prediction is good, significant discrepancies (up

to 50%) in magnitude exists in 2/rev, 4/rev and 5/rev loads. The measured

chord forces contain only the induced component and this can explain a part

of the error.

4. The damper force has a significant effect on the lag bending moments. It
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affects primarily the lower harmonics, 1-3/rev, from the root to 50% of the

span.

5. The torsion bending moment predictions show the correct magnitudes for 1-

5/rev harmonics over the blade span, but a significant discrepancy exists in

phase prediction of the higher harmonics, 4 and 5/rev. This discrepancy ap-

pears as an error in the retreating blade waveform. The advancing blade

waveform and peak to peak magnitudes are accurately captured.

6. The pitch link load is well captured using measured air loads. However, like

the torsion bending moments, the higher harmonics are not well captured.

7. Because flap lag and elastic torsion are well predicted (all harmonics of flap,

lower harmonics for lag and at least 1-3/rev harmonics of elastic torsion) using

measured air loads, the deformation set obtained can be used with confidence

to validate aerodynamic models. In absence of measured deformations, this set

forms a basis for comparing the prediction capabilities of different aerodynamic

models.
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CW/σ = 0.0783, high-speed µ = 0.368

128



0 0.25 0.5 0.75 1
0

300

600
Magnitude, ft−lbs

0 0.25 0.5 0.75 1
−200

0

200
Phase, degs.

0 0.25 0.5 0.75 1
0

200

400

0 0.25 0.5 0.75 1
−200

0

200

0 0.25 0.5 0.75 1
0

200

400

0 0.25 0.5 0.75 1
−100

100

300

0 0.25 0.5 0.75 1
0

200

400

0 0.25 0.5 0.75 1
−200

0

200

0 0.25 0.5 0.75 1
0

200

400

Radial station, r/R
0 0.25 0.5 0.75 1

−100

100

300

Radial station, r/R

1/rev 

1/rev 

2/rev 2/rev 

3/rev 

3/rev 

4/rev 4/rev 

5/rev 5/rev 

Soft PL 

Stiff PL 

Figure 2.13: Predicted and measured torsion bending moment harmonics

for UH-60A Black Hawk using airloads measured in flight test; CW/σ =

0.0783, high-speed µ = 0.368

129



0 90 180 270 360
−1000

−500

0

500

Azimuth, degs.

T
or

si
on

 B
en

di
ng

 M
om

en
t, 

ft−
lb

s Flight Test 

Linear 

   Baseline  
(Non−linear) 

(a) Effect of nonlinear coupling

0 90 180 270 360
−1500

−500

500

1500

Azimuth, degs.

P
itc

h 
Li

nk
 L

oa
d,

 lb
s

Flight Test 

   Baseline  
(non−linear) 

 linear 

(b) Effect of nonlinear coupling

0 90 180 270 360
−1000

−500

0

500

Azimuth, degs.

T
or

si
on

 B
en

di
ng

 M
om

en
t, 

ft−
lb

s

Flight Test 

     Baseline    
(with cg offset) 

 Without  
cg offset 

(c) Effect of section cg offset

0 90 180 270 360
−1500

−500

500

1500

Azimuth, degs.

P
itc

h 
Li

nk
 L

oa
d,

 lb
s

Flight Test 

      Baseline    
(with cg offsets) 

 without   
cg offsets 

(d) Effect of section cg offset

0 90 180 270 360
−1000

−500

0

500

Azimuth, degs.

T
or

si
on

 B
en

di
ng

 M
om

en
t, 

ft−
lb

s

Flight Test 

    Baseline 
(with sweep) 

 Without
  sweep 

(e) Effect of blade sweep

0 90 180 270 360
−1500

−500

500

1500

Azimuth, degs.

P
itc

h 
Li

nk
 L

oa
d,

 lb
s

Flight Test 

    Baseline 
(with sweep) 

 Without
  sweep 

(f) Effect of blade sweep

Figure 2.14: Effect of structual couplings on predicted torsion bending

using measured air loads and damper loads; µ = 0.368, CW/σ = 0.0783
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using measured air loads and damper loads; µ = 0.368, CW/σ = 0.0783
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Figure 2.16: Effect of pitch bearing damping on torsion bending moment

and pitch link load; µ = 0.368, CW/σ = 0.0783
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Figure 2.21: Predicted and measured chord bending moments using air-

loads measured in flight test; UH-60A Black Hawk CW/σ = 0.0782, tran-

sition speed µ = 0.110

137



0 90 180 270 360
−1000

−600

−200

200

600

0 90 180 270 360
−800

−400

0

400

0 90 180 270 360
−800

−400

0

400

0 90 180 270 360
−1500

−500

500

1500

30% R 70% R 

90% R 

Pitch Link Load 

Prediction  
  Stiff PL  

Flight Test 

T
or

si
on

 B
en

di
ng

 M
om

en
t, 

ft−
lb

s

T
or

si
on

 B
en

di
ng

 M
om

en
t, 

ft−
lb

s

T
or

si
on

 B
en

di
ng

 M
om

en
t, 

ft−
lb

s

Azimuth, degs. Azimuth, degs.

Figure 2.22: Predicted and measured torsion bending moments and pitch

link load for UH-60A Black Hawk using airloads measured in flight test;

CW/σ = 0.0783, high-speed µ = 0.368, stiff pitch link, no damper force
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Chapter 3

Aerodynamic Model of Rotor Blades

This chapter describes and validates the aerodynamic model of UH-60A rotor

blades. Two types of models are evaluated - 1. A lifting-line model and 2. A

3-D CFD Navier Stokes model. For both models, the same set of prescribed blade

deformations are used. The prescribed blade deformations were obtained in Chapter

2 and represent a reasonably accurate set of blade deformations corresponding to

the high-speed flight condition.

The CFD analyses used in the present study, TURNS-3D, is described in Ref-

erences [116, 117]. It is used here as part of the collaborative effort with the CFD

group. In the present thesis, the focus is on a lifting-line model, its successive refine-

ments, and comparison with calculations from CFD. The goal is to gain fundamental
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understanding of the aerodynamic mechanisms behind the generation of vibratory

lift. For all comparisons between the CFD and lifting-line models two sets of in-

puts are common: (1) the prescribed blade deformations and which are held fixed

for all aerodynamic models and (2) the far wake strength and geometry. The CFD

calculations use a single blade simulation and therefore does not capture the far

wake. The far wake strength and geometry are obtained from the lifting-line model.

any refinements in the far wake included in the lifting-line model, corresponding

calculations using CFD are performed.

This study establishes, along with Chapter 2, that the technical barriers de-

scribed in Chapter 1, namely, the advancing blade lift phase, vibratory lift, aero-

dynamic pitching moments and torsion loads, stem from inaccurate aerodynamics,

not structural dynamics. In addition to this conclusion, the significant outcomes of

this exercise are - to understand the limitations of the lifting-line model in a com-

prehensive rotor analysis (Chapter 4); to understand the benefits of a CFD model

and anticipate the improved prediction capabilities of a CFD coupled comprehensive

rotor analysis (Chapter 5); and to devise CFD based generic corrections to improve

lifting-line aerodynamics (Chapter 5).

The structure of this Chapter is slightly different from Chapter 2. The theory

and the results are in general discussed together and are not separated into distinct

groups. This is because the focus is on modeling refinements and fundamental

understanding. The lifting-surface model is first described, along with successive

refinements and their impact on air loads predictions. Next, the CFD model is

briefly described. Calculations from CFD are then compared with the lifting-surface
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model.

3.1 Lifting-Line Model

The lifting-surface model described in this section combines the following - 1.

sectional angle of attack calculation using blade deformations, 2. a Weissinger-L (W-

L) type lifting-line near wake model, 3. a refined Bagai-Leishman pseudo-implicit

far wake model [49, 162], 4. 2D airfoil property tables and 5. a Leishman-Beddoes

2D unsteady model for attached flow [67, 68]. The attached flow formulation is used

because there is no evidence of dynamic stall at high speed level flight condition [163].

For a prescribed set of blade deformations (and control angles), the airloads

are calculated using the following three steps. In the first step, the deformations and

a uniform inflow based on the measured thrust are used to calculate the sectional

angle of attack. The sectional angle of attack and the incident normal Mach number

are used to calculate sectional lift and pitching moment coefficients using the 2D

airfoil tables. From the lift, the bound circulation strengths are calculated using 2D

Kutta-Joukowski theorem.

In the second step, the bound circulation strengths are used to calculate the

rotor far wake (free or prescribed). The baseline wake model is a single fully rolled-

up free tip vortex model. The far wake generates a refined non-uniform inflow

distribution. Using the non-uniform inflow, the sectional angles of attack are re-

calculated.

In the third step, the new angles of attack are used as input to the W-L near
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wake model to re-calculate the bound circulation strengths. An iterative procedure is

now performed between the near wake and far wake models. Iterations are required

because the bound circulation strengths calculated by the near wake model changes

the far wake inflow which changes the input angle of attack distribution of the near

wake model. The end result of the iterative procedure is to have a converged set

of bound circulation strengths that are consistent with near wake and far wake. In

addition, the bound circulation strengths are also consistent with air-foil tables and

a modified Kutta-Joukowski theorem that accounts for three dimensional effects.

The procedure is described in detail in the section on Weissinger-L model.

3.1.1 Section Angle of Attack

The angle of attack of a blade section consists of two components; the wind

velocity and the blade velocity. The general expression for the resultant velocity at

a radial station x in the rotating undeformed frame is

V̄ = −V̄w + V̄b (3.1)

where V̄w is the wind velocity with contributions from the vehicle forward speed and

the rotor inflow and V̄b is the blade velocity relative to the hub fixed frame resulting

from blade rotation and blade motion. The expression for the wind velocity is given
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by

V̄w =

[
µΩR 0 −λΩR

]



ÎH

ĴH

K̂H




=

[
µΩR 0 −λΩR

]
TRH

T TUR
T




î

ĵ

k̂




=

[
Vwx Vwy Vwz

]



î

ĵ

k̂




(3.2)

where

Vwx
ΩR

= µ cosψ cosβp − λ sin βp (3.3)

Vwy
ΩR

= −µ sinψ (3.4)

Vwz
ΩR

= −µ cosψ sin βp − λ cosβp (3.5)

µ = V cosαs/ΩR is the rotor advance ratio; V is the vehicle forward speed; αs is

the rotor shaft tilt, positive forward; λ is the rotor non-dimensional inflow; and ΩR

is the rotor tip speed. The blade velocities Vbx, Vby and Vbz are given in equations

(2.74),(2.75) and (2.76). The angle of attack is calculated at the three-quarter chord

location (η = ηr and ζ = 0). Using equations (2.84) and (2.69) in Vbx, Vby and Vbz
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we have the following.

Vbx = u̇− λT
˙̂ ′
φ− (v̇′ + w′θ̇1)ηrcosθ1 − (ẇ′ − v′θ̇1)ηrsinθ1 − (v + ηrcosθ1)

Vby = v̇ − ˙theta1ηrsinθ1 + x+ u− v′ηrcosθ1 − w′ηrsinθ1 − βp(w + ηrsinθ1)

Vbz = ẇ + ˙theta1ηrcosθ1 + βp(v + ηrcosθ1)



(3.6)

The resultant blade velocity at a radial station x can be written in rotating unde-

formed coordinate system as

V̄ = Uxî+ Uy ĵ + Uzk̂

= (Vbx − Vwx)̂i+ (Vby − Vwy)ĵ + (Vbz − Vwz)k̂

(3.7)

The blade section loads are calculated using the resultant velocity and aerodynamic

angle of attack in the deformed blade.


UR

UT

UP




= TDU




Ux

Uy

Uz




(3.8)

Finally, we have

V̄ = URîξ + UT ĵη + UP k̂ζ (3.9)

where

UR
ΩR

= −̇v + v′(x+ µsinψ) − µcosψ(1 − βpw
′) + λ(βp + w′)

− ηrcosθ0(1 + v̇′) + ηrsinθ0(φ̂− ẇ′)

+ v′v̇ + w′ẇ +
1

2
µcosψ(v′2 + w′2)

(3.10)
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UT
ΩR

= [v̇ + u− wβp + φ̂(λ+ ẇ) + v′v + (x+ µsinψ)(1 − v′2

2
)

+ µcosψv′ + φ̂(βp + w′)]cosθ0+

[ẇ + λ+ v(βp + w′) − φ̂v̇ − (x+ µsinψ)(v′w′ + φ̂)

µcosψ(w′ + βp − φ̂v′)]sinθ0

(3.11)

UP
ΩR

= [ẇ + λ+ βpv + vw′ + µcosψ(βp + w′ − φ̂v′)

− (x+ µsinψ)(v′w′ + φ̂)]cosθ0

[−−̇u− vv′ + wβp − φ̂(ẇ + λ) − µcosψ(v′ + φ̂(βp + w′))

− (x+ µsinψ)(1 − v′2

2
)]sinθ0

ηr(θ̇0 +
˙̂
φ+ w′ + βp)

(3.12)

The angle of attack α, yaw angle Γ and incident Mach number M are given by

α ≈ −UP

UT

Γ ≈ UR

UT

M = Mtip

√
U2
P + U2

T




(3.13)

For a given angle of attack and Mach number, the airfoil properties are read

from the tables. The normal force, chord force and quarter chord pitching moment

(which are in the same frame as the flight test data) and the axial force in the

non-dimensional form are given by

L̄w = γV̄ 2

6a
(Clcosα + Cdsinα)

L̄v = γV̄ 2

6a
(Clsinα− Cdcosα)

M̄φ̂ = γV̄ 2

6a
c
R
Cm

L̄u = −γV̄ 2

6a
CdsinΓ




(3.14)
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where Lw, Lv, Lu are non-dimensionalized with respect to m0Ω
2R and Mφ̂ with re-

spect to m0Ω
2R2. V̄ is the resultant velocity

√
U2
P + U2

T nondimensionalized with

respect to ΩR. γ is the Lock Number, γ = ρacR4

Ib
, and flap inertia, Ib = m0R3

3
.

For comprehensive analysis (Chapter 4) the air load expressions are further

manipulated for convenience as follows. First the aerodynamic coefficients are ex-

pressed in the following form.

Cl = c0 + c1α (3.15)

Cd = d0 + d1α + d2α
2 (3.16)

Cm = f0 + f1α = cmac + f1α (3.17)

Then using equations (3.13) and (3.14) the following expressions are obtained.

L̄w =
γ

6a
(c0UT

2 − (c1 + d0)UTUP + d1|UP |UP ) (3.18)

L̄v =
γ

6a
(−d0UT

2 − (c0UP − d1|UP |)UT + (c1 − d2UP
2) (3.19)

L̄u =
γ

6a
(−d0URUT ) (3.20)

M̄φ̂ =
γ

6a
(
c

R
(cmac(UT

2 + UP
2) − f1UTUP )) (3.21)

The aerodynamic forces in the undeformed frame are obtained by


LAU

LAV

LAW




= TDU
T




L̄U

L̄V

L̄W




(3.22)

MA
φ̂
≈ M̄φ̂ (3.23)

The above expressions show the circulatory air loads. The non-circulatory loads are

incorporated using impulsive terms of the unsteady model discussed later.
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3.1.2 Weissinger-L model

The Weissinger-L (W-L) near wake model [164] is used at each azimuth lo-

cation. For a given radial distribution of angle of attack (input angle of attack) it

calculates the radial distribution of bound circulation strengths.

The W-L model is essentially a lifting-surface model with only one chord-

wise element. It has been shown to give equally good predictions compared to panel

methods with several chord-wise elements [44, 165]. The W-L model represents blade

lift using a series of spanwise horseshoe vortex elements. The bound circulation is

located at the 1/4-chord point. The flow tangency condition is imposed at the 3/4-

chord point. This is consistent with the unsteady thin airfoil model [66]. The W-L

model predicts improved loading for fixed wings with arbitrary planforms [166]. It

is equivalent to a non-linear lifting-line theory as discussed in Ref [167].

The blade surface is divided into N aerodynamic segments. In the present

calculations N of 26 is used. For the i − th segment the flow tangency can be

written as

Vbi = V∞i
αei

= V∞i
(αi − φNWi

)

= V∞i
αi − VNWi

(3.24)

where Vbi is the bound vortex induced velocity at the i− th control point and V∞i

is the incident free stream velocity at the control point. αei
is the effective angle of

attack at the section. The effective angle of attack is obtained by subtracting the

near wake induced angle of attack from the input angle of attack. The later includes
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the effect of blade deformation and far wake inflow. VNWi
is the velocity induced by

the nearwake at the i− th control point.

The velocities Vbi and VNWi
are related to the strength of the bound vortices,

Γi through influence coefficient matrices. These matrices depend both on the blade

deformations and on the blade geometry e.g., rigid twist, control angles, planform,

sweep etc.

Vbi =
N∑
j=1

Ibi,jΓj (3.25)

VNWi
=

N∑
j=1

INWi,j
Γj (3.26)

The linear algebraic governing equations for bound circulation (N equations, N

unknowns) are thus obtained as

N∑
j=1

{
Ibi,j + INWi,j

}
Γj = V∞i

αi (3.27)

Once the bound circulation strengths, Γj are known they are used to calculate αei

using equations (3.26) and (3.24). Assuming thin airfoil theory, i.e., with a lift curve

slope of 2π, the local lift coefficient simply becomes

Cl = 2παei

=
2π

V∞i

N∑
j=1

Ibi,j

(3.28)

using equations (3.24) and (3.25). This is the effective angle of attack approach and

is consistent with K-J theorem for 3D wings which gives [165]

Cl =
2π

V∞i

N∑
j=1

Ibi,j (3.29)

In the present analysis, the effective angle of attack approach is used.
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The radial distribution of input angle of attack is influenced by the far wake (ro-

tor inflow) which in turn is governed by the bound circulation strengths. Therefore,

iterations are performed between far wake and near wake until bound circulation

strengths are converged. The iterations are started with a uniform inflow far wake

(based on helicopter gross weight) which is subsequently replaced with non-uniform

inflow.

Within the W-L near wake model, the airfoil property tables are included using

the following method. The input angle of attack is scaled to an equivalent flat plate

angle of attack using the lift coefficients obtained from the airfoil tables. This scaled

angle of attack is used by the W-L model to calculate bound circulation strengths

at 1/4-chord locations. The bound circulation strengths are then used to calculate

the circulation strengths of near wake trailers. The near wake trailers are used to

estimate the induced angle of attack at 3/4-chord locations. This induced angle of

attack is subtracted from the input angle of attack and the resulting effective angle

of attack is used to obtain lift (also pitching moment and drag) from the airfoil

tables.

3.1.3 2D unsteady model

The 2D unsteady model is the Leishman-Beddoes [67, 68] attached flow for-

mulation. The attached flow formulation is used because test data at the present

flight condition show no evidence of dynamic stall [163]. In this formulation, the

angle of attack variation over time is discretized as a series of step inputs. The air-
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load response to each step input is calculated using semi-empirical indicial response

functions. The response depends on the pitch and pitch rate of each step input.

The angle of attack contributions from inflow and flap velocities are included in

the form of equivalent pitch angles. The resultant unsteady airload at a particular

azimuth is calculated using superposition of individual contributions from all step

inputs prior to that particular azimuth. The indicial response functions used in

the Leishman-Beddoes model have been validated for 2D subsonic flows using ex-

perimental data from symmetric airfoils - NACA 0012, Boeing-Vertol V23010-1.58

and NACA 64A010 [67]. In the present study, these indicial models are refined

specifically for the two UH-60A cambered airfoils - SC1095 and SC1095 R8.

In-house compressible CFD calculations [116] are used to validate and refine

the indicial functions. The refined model is same as the Leishman-Beddoes model, in

that the airload response to each step input is assumed to consist of an exponentially

decaying impulsive part and an asymptotically increasing circulatory part. For

example, the indicial lift response for a step change in angle of attack α and a step

change in pitch rate q are described as

CNα(S) =

[
4

M
φIα(S) + CNα φ

C
α (S)

]
α (3.30)

CNq(S) =

[
1

M
φIq(S) +

1

2
CNαφ

C
q (S)

]
q (3.31)

where, M is the section Mach number, S is the distance traveled by the airfoil in

semi-chords following the step input, CNα is the local lift curve slope (from airfoil

table) and, φIα, φ
C
α , φIq and φCq are the indicial functions. The superscripts C and I

refer to circulatory and non-circulatory components of the airloads. The circulatory
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part is defined as

φCα (S) = 1 − A1exp(−b1β2S) − A2exp(−b2β2S) (3.32)

with φCq = φCα . A1, A2, b1, b2 are constants independent of Mach number and β is

the compressibility factor (β =
√

1 −M2). The impulsive part is a exponentially

decaying part governed by a time constant. Depending on the coefficients chosen to

represent the circulatory component, the time constant can be adjusted to match

the gradient of the total lift at S = 0 with Lomax theory [168]. In the Leishman-

Beddoes model, the coefficients of circulatory lift were chosen from low frequency

unsteady transonic calculations for the 64A006 airfoil [169]. The time constants

were subsequently revised and the indicial functions validated with test data for

symmetric airfoils [67].

Figure 3.1(a) shows the indicial lift (normal force) response of SC1095 airfoil

to a step change in angle of attack. The original coefficients (Leishman-Beddoes)

of circulatory lift, when applied to SC1095 response, predicts a faster growth com-

pared to CFD calculations. In general both sets of coefficients (Leishman-Beddoes

and refined) show the same trends as CFD with no significant phenomenological

difference. The refined coefficients however, better capture the growth rate.

The indicial functions for lift response are converted to frequency domain

using Laplace transforms. This produces explicit frequency response solutions for

harmonic pitch oscillations. Both circulatory and impulsive contributions from pitch

and pitch rate oscillations are used to calculate the frequency response. The results

are shown for two Mach numbers, 0.4 and 0.7 in figure 3.2(a). The refined model
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shows improved correlation with CFD results below a reduced frequency of 0.4.

Reduced frequencies of interest for airloads calculation lies mostly within this range.

For example, the reduced frequency corresponding to a 4/rev torsion oscillation at

the blade tip in hover is 0.13. The lift and pitching moment responses of an airfoil

undergoing pitch oscillations at such a reduced frequency are shown in figure 3.3.

CFD results and the present indicial model are in good agreement up to Mach

number 0.6. Mild flow separation predicted by CFD degrades correlation at Mach

number 0.7. The separation disappears at a higher Mach number. For a blade

section at 77.5% R the high-frequency variation of angle of attack is much lower

than the magnitude of pitch oscillations considered here and the flow is expected

to remain attached. Flow separation is therefore not a cause of concern and the

agreement between 2D CFD and the present indicial model is satisfactory.

3.1.4 Far wake model

The far wake induced inflow is calculated using a refined Bagai-Leishman

pseudo-implicit free wake model [162]. Four different far wake models are inves-

tigated - (i) Single peak free tip vortex, (ii) Single peak free moving vortex, (iii)

Dual peak free wake and (iv) full span free and prescribed wakes. All wakes use 15

degrees discretization angle and 2 turns. Increasing the number of turns or refining

the wake discretization angle does not produce any significant change in air loads

at the high-speed flight condition.

A single peak free tip vortex model is used as the baseline model. The tip
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vortex is assumed to be fully rolled up. The strength of the tip vortex is equal to

the maximum bound circulation occurring outboard of 50% span. The tip vortex is

considered to originate at the tip of the swept elastic axis.

In the single peak free moving vortex model, the vortex is not trailed from

the tip at all azimuths. The vortex is assumed to move inboard in the regions of

negative lift. The span location from which it is trailed in the azimuths of negative

lift, is the zero bound circulation cross-over point. This is the spanwise location

where the circulation changes from a positive value to a negative value. The vortex

is trailed from inboard because the largest radial gradient of circulation occurs near

this point. The strength of the vortex remains same as that of the previous tip

vortex model.

In the dual peak free wake model, a vortex of negative strength is trailed from

the tip when the lift at the blade tip is negative [52]. The possibility of a negative

vortex in the tip region was suggested by Ref. [120] and the intention here is to study

its influence on predicted airloads in presence of accurate deformations. In the dual

peak model, the strength of the negative vortex is equal to the maximum negative

circulation attained near the blade tip. The positive vortex continues trailing from

an inboard radial station. Like the moving vortex model, this station is taken at

the zero bound circulation cross-over point. The strength of the positive vortex is

equal to the sum of the maximum bound circulation occurring outboard of 50%

blade radius and the maximum negative circulation occurring near the blade tip.

The later is non-zero only in the azimuths of negative lift.

The full span wake (free and prescribed) models consist of a set of 26 trailers
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uniformly trailed across the blade span. The strength of the trailers are compatible

with the bound circulation strengths. The contribution of the far wake is considered

from behind the near wake region.

3.2 3D CFD model

The 3D CFD model is a viscous, compressible, unsteady Navier-Stokes model.

The CFD computations are performed using an in-house modified version of the

TURNS research code developed by Sitaraman and Baeder [170, 171]. TURNS

uses a finite difference numerical algorithm that evaluates the inviscid fluxes using an

upwind-biased flux-difference scheme [172, 173]. The van Leer monotone upstream-

centered scheme for conservation laws (MUSCL) approach is used to obtain second

and third order accuracy with flux limiters to be Total Variation Diminishing (TVD).

The Lower-Upper-Symmetric Gauss-Seidel (LU-SGS) scheme [174] is used as the

implicit operator. Though the LU-SGS implicit operator increases the stability and

robustness of the scheme, the use of a spectral radius approximation renders the

method only first order accurate in time. Therefore, a second order backwards

differencing in time is used, along with Newton-type sub-iterations to restore formal

second order time accuracy.

A single block mesh approach is used to make the calculations computationally

viable. Complete wake capturing from CFD techniques requires a multi-block or

over-set mesh based approach. In this study, only one blade of the rotor is modeled

and the effects of other blades are included using an induced inflow distribution. The
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effects of the near shed wake, near tip vortex and bound vortices are captured fairly

well in the CFD computations. Hence, only the induced inflow caused by the far-

wake tip vortex need to be included to model the returning wake effects. The induced

inflow is computed at each grid point using the Bagai-Leishman free wake model.

The induced inflow is incorporated into the flow solution using the Field Velocity

Approach, which is a way of modeling unsteady flows via grid movement [106, 175].

The induced inflow model used is the baseline single free tip vortex model discussed

in the previous section.

The present numerical scheme employs a modified finite volume method for

calculating the grid and time metrics. The modified finite volume formulation has

the advantage that both the space and time metrics can be formed accurately and

free stream is captured accurately [105]. The aeroelastic deformations are included

into the flow solutions by moving the mesh points to conform to the surface geom-

etry of the deformed blade in a consistent manner. The use of such dynamically

deforming mesh geometry mandates the recomputation of space and time metrics at

each time step. These quantities are computed in a manner which satisfies the Geo-

metric Conservation Law (GCL) [175]. The GCL is used to satisfy the conservative

relations of the surfaces and volumes of the control cells in moving meshes.

Body conforming curvilinear meshes which follow both C-H and C-O grid

topologies are constructed around the UH-60A rotor blade. The C-H grid topol-

ogy approximates the tip of the blade to a bevel tip, whereas the C-O mesh could

provides a better tip definition. The computations were performed for the same

deflections sets using different grid topologies to understand the impact of tip mod-
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eling present in the air load prediction. Also, coarse and refined meshes are used to

quantify grid dependence of the flow simulation. The refined meshes used 217 points

in the wrap around direction of which 145 are on the airfoil surface, 71 points in

the normal direction and 61 points in the span-wise direction. The coarse meshes in

contrast used 133 points in the wrap around direction of which 99 are on the airfoil

surface, 43 points in the normal direction and 43 points in the span-wise direction.

Representative C-H and C-O meshes are shown in Fig 3.4. The spacing a the blade

surface in the normal direction is 5X10−5 chords for viscous computations and the

outer boundaries are 10 chords away from the blade surface. The details of grid

and time independence studies are described in reference [116]. The results were

found to show good grid and time step independence. Hence, to facilitate faster

turn around time for the CFD coupling process, a coarse mesh with azimuthal step

of 0.5 degree is used for all the computations presented in this paper.

The structural dynamic analysis provides deformations as functions of radius

and azimuth of form [u(r, ψ), v(r, ψ), w(r, ψ), v′(r, ψ), w′(r, ψ), φ(r, ψ)]T , where u, v,

w are the linear deformations in axial, lag and flap directions, v′, w′ are the radial

derivatives of flap and lag degrees and φ is the elastic torsional deformation. The

given rotor geometry is dynamically deformed in accordance with these blade mo-

tions. At any section, one could define a rotation matrix TDU which is a function of

the rotation angles v′, w′ and φ. Then the deformed mesh coordinates in the blade

fixed frame are given by the following equation
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+ �xlin (3.33)

The vector �xlin represents the linear deflections given by {u, v, w}T . Once the

deformed mesh is obtained in the blade fixed frame, it is rotated about the z-axis to

the appropriate azimuthal location. A cosine decay is applied to both the rotations

and linear deflections such that the outer boundary of the mesh remains stationary.

Characteristic boundary condition are used at the outer boundaries to im-

prove the accuracy of the CFD algorithm. Riemann invariants from the theory of

characteristics are satisfied to determine the flow variables and speed of sound at

the boundaries. The boundary condition adjusts itself depending on the direction

of the flow (into or out of the boundary).

3.3 Validation of aerodynamic models

The deformation set and trim angles obtained in Section 2.5, Chapter 2 are now

used to calculate air loads. Figure 3.5 shows the calculated blade lift (1-10/rev) at six

radial stations using the baseline lifting-line model. The baseline lifting-line model

incorporates - 2D test airfoil tables, Leishman-Beddoes 2D unsteady aerodynamics

and a Single free tip vortex model. In the following section, the aerodynamic model

is refined in a step-wise fashion to assess the impact of CFD airfoils, a refined

unsteady model and various wake models. All calculations incorporate the W-L
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model. The blade deformations and control angles are held fixed. Thus, the errors

and differences in prediction originate entirely from aerodynamic modeling.

For the various modeling refinements, the rotor is not re-trimmed for control

angles. Therefore, the 1/rev component of lift is henceforth removed for comparison

with flight test data. For example figure 3.6 shows the same plots as in figure 3.5

except that the 1/rev component has been removed. The qualitative nature of the

lift curves remain the same.

3.3.1 Prediction of Lift

The prescribed deformation set obtained in Section 2.5 includes a 4% structural

damping in the first flap mode. This is required to prevent errors in 1/rev flapping

response, as shown before in figures 2.4(a) and 2.5. Figure 3.7 shows lift prediction

with and without the 4% critical damping in first flap mode. The 1/rev flap response

affects the 2/rev lift via the azimuthal velocity variation. The deformation set

without the damping (i.e., with 0% damping) shows a better lift phase correlation

in the advancing blade (67.5% R to 96.5% R) as shown in figure 3.7. However this

corresponds to an incorrect deformation set. The deformation set obtained with the

4% damping is the correct deformation set. The correct deformation set produces

a worse correlation of advancing blade lift phase.

Effect of 2D CFD tables

The 2D test airfoil properties are replaced with 2D CFD calculated airfoil
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tables. Figure 3.8 shows that the predicted lift from the two sets of airfoil tables are

almost identical. There is a marginal improvement in the prediction of vibratory

lift (3-10/rev) magnitude near the tip at 96.5% R. This stems from differences in

lift coefficients at Mach number 0.8 and above.

Compared to the comprehensive analysis predictions, shown in figure 1.4, fig-

ure 3.8 shows accurate advancing blade lift phase and vibratory lift near the tip.

This is due to accurate 1/rev and 2/rev elastic torsion affecting 2/rev and 3/rev

blade lift via the azimuthal velocity variation. The dominant 3/rev character of the

vibratory lift is captured both in magnitude and phase.

Prediction of vibratory lift and lift phase inboard, at 77.5%R, remains unsat-

isfactory. Unlike the outboard stations where it it dominantly 3/rev, the vibratory

lift inboard shows an impulsive behavior in the advancing blade. This phenomenon

is not captured even with accurate elastic torsion.

Effect of unsteady aerodynamic models

The effect of 2D high subsonic unsteady models are studied in figure 3.9 Com-

pared to a quasi-steady model, the 2D unsteady models show a marginal improve-

ment in advancing blade lift phase and a slight attenuation of peak magnitude as

expected. None of the models, original Leishman-Beddoes or the refined, show any

significant improvement in the prediction of vibratory lift at the inboard stations.

The refined model shows no improvement over the original model. Hence for all sub-

sequent lifting-line calculations, the original Leishman-Beddoes model is retained.

The effect of 3D compressible unsteady flow is studied by comparing the lifting-

160



line predictions of figure 3.9 with 3D CFD predictions in figure 3.10. The far wake

inflow and blade deformations (and control angles) are common to both sets of

calculations. Three sets of results are presented, 2-10/rev, 3-10/rev and 4-10/rev

lift. In general, the 3D CFD calculations show the same trends as lifting-line results,

particularly in phase. The phasing of the advancing blade lift at the inboard stations

(67.5% R and 77.5% R) remain unchanged, although the vibratory harmonics (3-

10/rev and 4-10/rev) are marginally improved. Toward the tip (92% R and 96.5%

R) the CFD calculations show greater 4/rev harmonics. The lifting-line results show

improved predictions for reasons not clearly understood.

Effect of far wake models

The baseline far wake uses a single peak free tip vortex model. It is now

progressively replaced with refined wake models. The wake geometry (top view

and side view) of the baseline single peak tip vortex model is shown in figure 3.11.

The wake geometry of the single peak moving vortex model is shown in figure 3.12.

In general, the wake from all four blades are moved downstream quickly within

two rotor revolutions. Although, the two wake geometries appear similar there are

significant differences in the advancing side. The wake geometries (top view) of the

baseline tip vortex model and the moving vortex model are compared in figure 3.13.

Figures 3.13(a) and 3.13(b) show the advancing blade interactions of the wake

trailed from the two preceding blades 3 and 4 (B3 and B4). Both remain below

and close to the rotor plane, as can be seen from the side view figures 3.11(b) and

3.12(b). The trailers from blade 1 and 2 do not interact on the advancing side. The
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radial location of the vortex interactions from Blade 3 and 4 on the advancing side

depends on the wake model and appears to play a key role in the advancing blade

lift waveform.

Figure 3.14 shows the effect of the moving vortex model on lift prediction.

Significant improvement is obtained in the advancing blade at the inboard stations.

The basic characteristic of the vibratory lift appears to be in place at 77.5% R.

Predictions are in general improved both inboard and outboard. Out of the two

possible wake interactions, one from Blade 3 and one from Blade 4, the interaction

with the wake from Blade 3 appears to play a key role. This is because, from

figure 3.13(b), the radial location of wake interaction from Blade 4 onto Blade 1 is

not significantly altered by the moving vortex model. Only the wake from Blade 3

appears to interact with Blade 1 at a significantly altered radial location.

The dual peak wake geometry is shown in figure 3.15. Figure 3.15(a) shows the

wake geometry from Blade 3. Figure 3.15(b) shows the wake geometry from Blade

4. Lift prediction using the dual peak model, figure 3.16 show only a marginal

improvement compared to the moving vortex model. Therefore, it appears that the

key phenomenon behind the generation of vibratory lift at the inboard stations is

the positive trailed vortex moving inboard, not the negative vortex trailed from the

tip. Out of the two possible wake interactions, one from Blade 3 and second from

Blade 4, the interaction with the wake from Blade 3 appears to play a key role.

This is because, from figure 3.13(b), the radial location of wake interaction from

blade 4 on blade 1 in the advancing side not significantly altered by the moving

vortex model. Only the wake from Blade 3 appears to interact with Blade 1 at a
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significantly altered radial location.

The full span free wake model (figure 3.4) shows a similar inboard lift predic-

tion as the dual peak model (figure 3.18). This suggests that the details of the roll

up process is not important at high-speed flight. Moreover, the free wake trailers

do not show significant distortion in the first turn where the key interactions occur.

Therefore a full span prescribed wake model (figure 3.4) shows same lift prediction

as the free wake model (figure 3.19).

Figure 3.20 shows predictions using a 3D CFD Navier-Stokes analyses. Pre-

dictions using the baseline tip vortex are compared with the refined moving vortex

model. The trends are similar to that observed using the lifting-line model. The

inboard vibratory impulse at 67.5% R and 77.5% R is well captured using the mov-

ing vortex model. As a result, the phase of the 3-10/rev and 4-10/rev components

are accurately picked up. Although the impulse is predicted more accurately by the

CFD analysis, the 2-10/rev waveform in the first quadrant is better predicted by the

lifting-line model (figure 3.16). Predictions near the tip, as in the case of lifting-line

model show marginal improvements. The inboard impulse is captured equally well

by both Navier-stokes and Euler analyses as shown in figure 3.21.

To summarize, the advancing blade lift phase and vibratory lift predictions

are accurate in figure 3.16 (lifting-line) and figure 3.20 (CFD) because of - accurate

elastic torsion and accurate rotor wake. Accurate torsion has been obtained by the

use of measured pitching moments. In comprehensive analysis the pitching moments

must be predicted. The following section investigates pitching moment predictions

by 3D CFD and lifting-line models. Again, the same set of prescribed deformations
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and far wake inflow are used.

3.3.2 Prediction of Pitching Moments

Figure 3.22 shows predicted quarter-chord pitching moments from the baseline

lifting-line model using test airfoil tables and a refined model using 2D CFD tables.

Except for the peak magnitude at 77.5% R, both show similar predictions with no

change in waveform. A possible source of error at 77.5% R is the unknown trim tab

setting angle used during flight 85. Apart from 77.5% R, the largest discrepancy is

at the outboard stations (92% R and 96.5% R).

Unlike lift prediction, the effect of unsteady model has a significant effect on

pitching moment predictions. Compared to a quasi-steady model the Leishman-

Beddoes unsteady model, figure 3.23, provide improved predictions inboard (67.5%

R). However, the improvement is marginal towards the tip and the waveforms re-

main poor. The refined unsteady model shows no improvement over the original

Leishman-Beddoes model.

The 3D CFD predictions offer significant improvement compared to the lifting-

line models. Figure 3.24 compares lifting-line and 3D CFD predictions. Inboard,

up to 67.5% R, predictions are similar to lifting-line model and both are accurate.

Lifting-line predictions on the advancing blade gradually deteriorate towards the

outboard stations. Although not accurate, the CFD model shows improved predic-

tions of the unsteady waveform on the advancing blade at the outboard stations.

Lifting-line and CFD predictions using the refined moving vortex free wake model
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is compared in figure 3.25. Again, predictions are similar up to 67.5% R. For the

CFD predictions, the moving vortex wake model shows significantly improved cor-

relation in the second quadrant compared to the baseline wake model (figure 3.24).

Like in lift, the impulsive airloads at the junction of the first and second quadrants

are well captured by the refined wake model. The peak to peak remain slightly

over-predicted at 77.5% R although the waveform is improved.

The accuracy of the CFD predictions does not depend on the near wall viscous

effects. Figure 3.26 shows that predictions from an Euler analysis show the same

trends as Navier-Stokes. There are marginal differences in higher harmonics at the

inboard stations, but near the tip, predictions are same.

The largest discrepancy of the lifting-line predictions are seen at the outboard

stations, in the first and second quadrants. The lifting-line predictions show a sharp

drop in the first quadrant and an under-prediction of the peak in the second. The

sharp drop in the first quadrant are associated with steady transonic effects. The

coefficients obtained from 2D airfoil tables show the effect of aerodynamic center

movement in transonic flow. In the regions of positive angle of attack (around 45

degree azimuth location) high incident Mach number shifts the aerodynamic center

behind quarter chord. This generates a high nose down pitching moment. As the

angle of attack drops from positive to negative, the normal force, now negative,

generates a nose up pitching moment. Unlike a 2D airfoil, a section near the tip of a

3D wing does not undergo the same aerodynamic center movement. The compress-

ibility effects are delayed to a higher Mach number due to a shock relief effect. The

tip effect is discussed in more detail in Chapter 5.
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3.4 Concluding Remarks

Using a prescribed set of blade deformations a progressively refined set of

aerodynamic models are evaluated for high speed forward flight. The prescribed

deformation set was obtained in Chapter 2 using measured air loads on a validated

structural model. In absence of measured deformations it forms the closest approxi-

mation to flight test data. The lifting-line model incorporates 2D airfoil properties, a

W-L type near wake model, Leishman-Beddoes unsteady model and Bagai-Leishman

free wake. The unsteady model, originally formulated and validated for symmet-

ric air foils, is refined specifically for the two UH-60A airfoils, SC1095 and SC1094

R8. The 2D test airfoil properties are replaced with 2D CFD generated airfoil ta-

bles. Finally, a 3D compressible unsteady CFD calculation is performed using the

TURNS-3D code, which accounts for flexible blade deformations and incorporates

Bagai-Leishman free wake. Both Navier-Stokes and Euler solutions are studied.

Based on this study, the following conclusions are drawn.

1. Error in the advancing blade lift phase can be resolved with - 1. accurate

elastic torsion deformation and 2. accurate wake model.

2. Vibratory lift (3/rev and higher) at the outboard stations, 86.5% R to 99%

R are well predicted in magnitude and phase with accurate elastic torsion.

Vibratory lift at these stations are dominantly 3/rev and arise from 2/rev

elastic torsion.

3. Vibratory lift at the relatively inboard stations, 67.5% R and 77.5% R, are
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impulsive in nature. The vibratory lift impulses at these stations are not

captured by accurate elastic torsion alone. An accurate rotor wake model is

necessary along with the correct elastic torsion.

4. A dual peak free wake model captures the vibratory lift impulses inboard

when accurate torsion is prescribed. The dominant phenomenon is not the

negative vortex near the tip, but the stronger positive vortex moving inboard.

Predictions with a single moving vortex model, without the negative vortex

at the tip, shows similar results as the dual peak free wake model.

5. The impulse appears to be generated by advancing blade interactions of the

wake trailed by the blade immediately ahead. The radial location of this

interaction depends on the wake model. A moving vortex model, dual peak

model and full span set of trailers (26 prescribed or free) all appear to capture

the advancing blade lift phase and vibratory impulse accurately at the inboard

stations. Predictions are, in general, improved at all radial stations.

6. The Leishman-Beddoes unsteady aerodynamic model is accurate enough for

the UH-60A air foils. Refinements performed on the indicial model specifically

for the UH-60A airfoils, SC1095, SC1095 R8 do not show any improvement

on lift prediction. In general the effect of unsteady aerodynamics (shed wake)

does not have a dominant effect on lift prediction at this flight condition.

7. Lifting-line predictions of lift show same trends as 3D CFD predictions with

same deformations and free wake model.
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8. Leishman-Beddoes unsteady model has a more significant effect on the lifting-

line pitching moments. Using the unsteady model the inboard pitching mo-

ments, up to 67.5% R are reasonably well captured. Significant discrepancy

in magnitude and waveform exist near the tip. The 3D CFD predictions, with

same blade deformations and far wake inflow, show significantly improved pre-

diction at the outboard stations. Predictions are similar, but improved, at the

inboard stations.

9. For a given set of prescribed blade deformations and far wake inflow, both

Navier-Stokes and Euler analyses show similar predictions of lift and pitching

moments.
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(a) C-H mesh (b) C-O mesh

Figure 3.4: Near body C-H and C-O meshes at the blade tip used for

UH-60A air loads calculations
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Figure 3.11: Fully rolled up Single peak tip vortex free wake geometry;

CW/σ = 0.0783, high-speed µ = 0.368; prescribed deformations
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Figure 3.12: Fully rolled up Single peak moving vortex free wake geometry;

CW/σ = 0.0783, high-speed µ = 0.368; prescribed deformations
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Figure 3.13: Top View of tip and moving trailed vortex free wake geome-

tries; CW/σ = 0.0783, high-speed µ = 0.368; prescribed deformations
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Figure 3.14: Effect of moving vortex free wake model on W-L Lifting line

predictions of lift; prescribed deformations ; CW/σ = 0.0783, high-speed

µ = 0.368
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Figure 3.15: Top View of Dual peak free wake trailed vortex geometries;

CW/σ = 0.0783, high-speed µ = 0.368; prescribed deformations
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Figure 3.16: Effect of dual peak free wake model on W-L Lifting line pre-

dictions of lift; prescribed deformations; CW/σ = 0.0783, high-speed µ =

0.368
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Figure 3.17: Comparison of full span free and prescribed trailed vortex ge-

ometries; CW/σ = 0.0783, high-speed µ = 0.368; prescribed deformations
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Figure 3.18: Effect of full span free wake on W-L Lifting line predictions

of lift; prescribed deformations; CW/σ = 0.0783, high-speed µ = 0.368
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Figure 3.19: Effect of full span prescribed wake on W-L Lifting line pre-

dictions of lift; prescribed deformations; CW/σ = 0.0783, high-speed µ =

0.368
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Figure 3.20: 3D CFD predictions with single peak tip vortex and moving

vortex free wake models; same prescribed deformations; CW/σ = 0.0783,

high-speed µ = 0.368
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Figure 3.21: 3D CFD predictions with Navier-Stokes and Euler Analyses;
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Figure 3.22: Lifting line predictions of quarter-chord pitching moment us-

ing prescribed deformations, 2D unsteady aerodynamics and free wake;

CW/σ = 0.0783, high-speed µ = 0.368
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Figure 3.23: Quasi-steady predictions compared with Leishman-Beddoes

2D unsteady model using prescribed deformations, 2D unsteady aerody-

namics and free wake; CW/σ = 0.0783, high-speed µ = 0.368
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Figure 3.24: Lifting line predictions of quarter-chord pitching moment

compared with 3D CFD predictions using same prescribed deformations

and single peak tip vortex free wake; CW/σ = 0.0783, high-speed µ =

0.368
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Figure 3.25: Lifting line predictions of quarter-chord pitching moment

compared with 3D CFD predictions using same prescribed deformations

and single peak moving vortex free wake; CW/σ = 0.0783, high-speed µ
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Figure 3.26: Lifting line predictions of quarter-chord pitching moment

compared with 3D CFD predictions using same prescribed deformations

and single peak moving vortex free wake; CW/σ = 0.0783, high-speed µ
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Chapter 4

Lifting-Line Comprehensive Analysis

This chapter presents prediction and validation of basic performance, air loads

and blade loads of a the UH-60A Black Hawk helicopter in steady level flight. The

focus is on high-speed flight. Blade air loads and deformations are not measured

or prescribed as in chapter 2 and 3 - they are calculated, along with rotor trim

angles and aircraft trim attitudes, using a comprehensive rotor aeroelastic analysis.

The comprehensive analysis described in this chapter uses a W-L type lifting-line

aerodynamic model. Basic performance, trim, airloads and blade loads calculations

in steady level flight are systematically validated with flight test data to gain insights

into the fundamental mechanisms of rotor vibration and understand the limitations

of prediction capabilities.

The goal is to study the consistency of air load prediction in high-speed flight
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by step-wise modeling refinements. None of the modeling refinements, as will be

shown, accurately predicts the phase of advancing blade lift. Harmonic analyses

of flight test lift and comparison with prediction reveal that the phase prediction

problem is a manifestation of inaccurate vibratory lift prediction. Between 60%-90%

span location, the phase of the advancing blade lift is dominated by vibratory lift.

Near the tip, the phase of the negative lift is dominated by non-vibratory compo-

nents. None of the modeling refinements of blade flexibility, unsteady aerodynamics

and free wake models can fully capture the basic physics of vibratory lift at high

speed. At high speed, the advancing blade lift is shown to be dominated by elastic

twist. Section pitching moments show significant prediction errors inboard and close

to the tip.

The physics of vibratory loading is also examined from the perspective of rotor

structural response. Predicted flap and lag bending moments and pitch link loads

are compared with flight test data. Oscillatory and vibratory load patterns that are

common to rotors of all configurations are used to assess the validity of the present

analysis.

This study, along with the conclusions of chapter 2 and 3, demonstrates that

both rotor wake and aerodynamic pitching moments are essential for advancing blade

lift phase prediction. Accurate aerodynamic pitching moments produce accurate

elastic torsion. Accurate torsion, in presence of wake effects (e.g., moving vortex

free wake as shown in chapter 3) predict accurate lift phase. Without the correct

elastic torsion, wake effects alone, do not improve lift phase prediction. Without

wake effects, elastic torsion alone, does not completely resolve the lift phase problem
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at the inboard stations (e.g., 67.5%, 77.5% R).

4.1 Comprehensive Analysis Methodology

Comprehensive Analysis involves calculation of the rotor control angles, vehi-

cle orientation, tail rotor collective and blade response such that the vehicle trim

equations and the blade periodic response equations are simultaneously satisfied.

Satisfaction of the vehicle trim equations implies that the resultant forces and mo-

ments on the vehicle, averaged over one rotor revolution, become zero. There are

many forms of trim equations. Broadly they can be classified into two categories;

free flight and wind tunnel trim. The experimental data of interest in the present

study is from flight tests, therefore a free flight trim procedure is used. In this trim

procedure, it is assumed that the engine can supply all the power needed to maintain

the flight condition - hence referred to as propulsive trim.

4.1.1 Free Flight Propulsive Trim

A free flight propulsive trim solution in steady level flight is obtained by solving

the three force (vertical, longitudinal and lateral) and three moment (pitch, roll and

yaw) vehicle equilibrium equations, for a specified gross weight, flight speed, flight

path angle and structural and aerodynamic properties of the rotor, fuselage and tail

rotor. The expressions for the vehicle equilibrium condition can be expressed as

F̄ = 0 (4.1)
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where the exact form of F̄T = [F1, ..., Fn] depends on the trim condition considered.

In steady level flight they are

F1 = Dfcosθfp +Hcosαs − Tsinαs (4.2)

F2 = Yf + Y cosφs + Tsinφs + Ttr (4.3)

F3 = Tcosαscosφs −Dfsinθfp +Hsinαs − Y sinφs −W (4.4)

F4 =Mxr +Mxf + Yf(h̄cosφs + ycgsinφs)

W (h̄sinφs − ycgcosφs) + Ttr(h̄− ztr)

(4.5)

F5 =Myr +Myf +W (h̄sinαs − xcgcosαs)

−Df h̄cos(θfp + αs) + xcgsin(θfp + alphas)

(4.6)

F6 = Mzr +Mzf + Ttr(xtr − xcg) −Dfycgcosαs − Y xcgcosφs (4.7)

where F1, F2, F3 and F4, F5, F6 are the vehicle force and moment (about vehicle

center of gravity) residuals in the fuselage X (from hub towards tail), Y (from hub

towards starboard) and Z (from hub away from fuselage, i.e. upward for level flight)

directions. The fuselage fixed coordinate system XF , YF , ZF are same as the hub

fixed coordinate system, XH , YH , ZH , described in section 2.1.1 (Chapter 2) except

that they are fixed to the fuselage center of gravity instead of at the hub. H, Y, T are

rotor drag, side force and thrust; Df , Yf ,W are fuselage drag, side force and gross

weight; similarly Mxr..., Mxf ... denote the rotor and fuselage moments; Ttr, xtr, ztr

are tail rotor thrust, distance of tail rotor hub behind vehicle c.g., and distance of

the tail rotor hub above the vehicle c.g.; xcg, ycg, h̄ are the relative location of the

rotor hub center with respect to the vehicle c.g. in the XF , YF , ZF directions. αs
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(positive nose down) and φs (positive advancing side down) are the longitudinal and

lateral shaft tilts, respectively, and θfp is the flight path angle relative to an axis

perpendicular to the gravity vector.

The fuselage forces and moments can be obtained using tables (in the present

case from 1/4 scale wind tunnel data, as discussed later) as functions of fuselage

attitude angles. The rotor forces and moments are obtained from equations (2.154).

The rotor forces and moments depend on the rotor structural response to air loads.

4.1.2 Blade Response to Air Loads

Structural response is calculated by solving equations (2.101) to (2.104) using

finite element method, as described in section 2.2. The treatment of the aerodynamic

forcing terms occurring in the right hand side of these equations is as follows. The

aerodynamic forcing terms are obtained from equations (3.22) and (3.23). Defining

the following vector notations

LA = [LA
u LA

v LA
wLA

φ̂
]T (4.8)

u = [uvwφ̂]T (4.9)

the aerodynamic forces can be expressed as

LA = (LA)0 + (LA)q + (LA)q2 (4.10)

where the subscripts 0, q, q2 refer to constant, linear and non-linear terms with re-

spect to blade deformations. The linear terms are written as

(LA)q = Auu + Au′u′ + Au̇u̇ + Aüü (4.11)
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The displacement vector, u is discretized in terms of spatial shape functions, Hs

and nodal degrees of freedom, q. This discretization yields

u = Hsq

u′ = H′
sq

u̇ = Hsq̇

ü = Hsq̈




(4.12)

where Hs is defined in equation (2.106) and q is defined in equation (2.123). The

nonlinear terms, (LA)q2 , are linearized as given in equation (2.112). The total

aerodynamic forces are the summation of the constant, linear and nonlinear (with

respect to blade deformations) forces.

LA =(LA)0 + (LA)q + (LA)q2

= (LA)0 + (LA)q|0

= AuHs + Au′H′
s + (Au)NLHs + (Au′)NLH

′
sq

= Au̇Hs + (Au̇)NLHsq̇

= AüHsq̈

(4.13)

Using equation (4.13) in the virtual work expression given in equation (2.98), the

aerodynamic mass, stiffness and damping matrices, (MA
b )i, (K

A
b )i, (C

A
b )i are ob-

tained. These aerodynamic matrices are then added to the structural matrices

in equation (2.111). Note that, for subsequent natural mode calculation, the aero-

dynamic mass and stiffness matrices are not used. The aerodynamic mass matrices

arise out of unsteady, noncirculatory forces. In the present formulation, they are in-

corporated through impulsive terms in the unsteady aerodynamic model. Therefore
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the aerodynamic mass matrix is zero.

4.1.3 Solution Procedure

A comprehensive analysis solution is obtained when the trim angles and vehicle

attitudes, blade response and rotor wake converge. The blade response requires trim

angles and wake (inflow) as input. The wake model require prior knowledge of the

circulation and blade motion and, therefore, cannot be used in the first iteration.

The trim angles require rotor forces and moments as input which depend on blade

response. Clearly, an iterative procedure is necessary.

The comprehensive analysis solution involves three steps - 1. Initial control

angle estimate, 2. Vehicle Jacobian calculation and 3. Coupled trim. The third

step involves blade response, air loads and vehicle trim iterations. The solution

procedure involving the three steps are described below. Step 1 and 2 describe the

initial control estimate and Jacobian calculation. Step 3 describes the coupled trim

iterations.

1. Because of the non-linear nature of the trim analysis, it is important to have

a reasonably accurate first guess for the trim angles. An analysis based on

flap dynamics of a rigid blade, uniform (or linear) inflow and linearized (with

small angle assumption) vehicle trim equations provides this initial guess. The

fuselage air loads are obtained using the vehicle attitude angle and fuselage

property tables. The tail rotor thrust is related to the tail rotor collective

using a simple momentum theory.
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2. The vehicle Jacobian matrix is calculated about the control angles obtained

in Step 1. In general, it can be calculated about any set of user input control

angles. For a given set of control angles, the blade air loads, full structural

response (flap, lag and torsion) and hub loads are calculated. The steady

component of the hub loads (that is 0p harmonics) are the rotor forces and

moments. Using these rotor forces and moments, the vehicle residuals are

calculated using equations (4.2) to (4.7). These non-linear vehicle equilib-

rium equations are linearized about the initial controls using a Taylor’s series

expansion,

F (θi + ∆θi) = F (θi) +
∂F

∂θ
|θ=θi

∆θi = 0 (4.14)

Equation (4.14) can be re-arranged to give

[
∂F

∂θ

]
θ=θi

∆θi = F (θi) (4.15)

Equation (4.15) is used in Step 3 to take the control angles from the initial

estimate to a final converged solution. For a converged solution, ∆θ and F (θi)

are zero. In this step, the goal is to find the trim Jacobian, ∂F/∂θ. The trim

Jacobian is calculated using a forward difference approximation at θ = θ0,

where θ0 are the initial control estimates, and it is generally held constant

throughout the analysis to computation time. To compute the Jacobian, the

controls are perturbed individually and structural response and hub loads are

calculated. The loads are then input to the vehicle trim equations (4.2) to

(4.7) and the change in residuals, F , are computed using

∂F

∂θ
≈=

F (θ + ∆θ) − F (θ)

∆θ
(4.16)
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where ∆θ are small control perturbations. These are taken as 5% of the initial

control estimates.

3. Step 3 involves the iterative convergence of blade response, vehicle trim and

rotor wake solution using the vehicle Jacobian computed in Step 2. Starting

from the initial controls estimate, the control angles are updated using

θi+1 = θi + ∆θi (4.17)

where ∆θi is obtained from equation (4.15). The blade response is considered

converged, when the current response is within one percent of the previous

response. The vehicle trim is considered converged when the trim convergence

function reaches a value of 0.001. The trim convergence function is defined as

ε =

√√√√ 6∑
i=1

F 2
i (4.18)

For example, if only the thrust equation is considered

ε ≈ T −W

m0Ω2R2
(4.19)

The value 0.001 was found satisfactory in that the control angles and steady

hub loads converged to within 1 to 2% of their previous values. The first 20

iterations use a linear inflow model, then the inflow is calculated using a free

or prescribed wake model. This is to let the blade response converge to a

reasonable extent before a refined inflow model is used. The wake model and

the unsteady model are both activated at the same time for consistency. The

wake model accounts for the trailed wake, the unsteady model accounts for

the shed wake.
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In high-speed flight, 30 − 35 coupled trim iterations are necessary for con-

vergence. In transition flight, about 18 − 22 iterations are required. The

non-uniform wake models and the unsteady model are activated after 12 iter-

ations in this case. Note that the first 7 iterations involve the vehicle Jacobian

calculation. The non-uniform inflow (and air foil tables) are not used during

the Jacobian calculation.

4.2 UH-60A Baseline Model

The UH-60A helicopter is modeled in UMARC (University of Maryland Ad-

vanced Rotorcraft Code) as an aircraft with a single main rotor and a tail rotor.

The structural model of the rotor blades is same as that discussed in Chapter 2.

The aerodynamic model of the rotor blades is same as that discussed in Chapter 3.

The main rotor has a 3 degrees of forward shaft tilt angle. Fuselage aerody-

namic properties, obtained from 1/4-scale wind tunnel experimental data are shown

in Fig. 4.1. Fuselage ’tail on’ aerodynamics are used in the present analysis. ’Tail on’

aerodynamics include the effect of the horizontal tail. For example, from Fig. 4.1,

fuselage lift at a positive angle of attack (nose down) is more negative with ’tail

on’, while the pitching moment is positive (nose up). The zero-angle fuselage flat

plate area of a UH-60A ranges from 25.69 to 26.2 ft2. The UH-60A of the Airloads

Program contained additional components that increased the flat plate area to 36.34

ft2 at zero angle of attack [176]. This drag curve is plotted in bold in Fig. 4.1. It is
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obtained by fitting a parabola to the ’tail on’ drag curve between -10 to 10 degrees

and then shifting it up. Fuselage side slip angle is assumed to be zero. All airfoil and

fuselage aerodynamic properties are obtained from the master database. Fuselage

dynamics are neglected in this study.

The tail rotor has a −18 degrees of twist and a cant angle of 20 degrees to

the port side (i.e. towards the retreating blade). The tail rotor thrust is calculated

using uniform inflow and a 2D strip theory.

The main rotor radius is 26.83 ft with an aerodynamic root cut out of 20%.

The nominal chord is 1.73 ft. The rotor RPM is 258. All blades are identical. For the

baseline comprehensive analysis, a fully rolled-up single tip vortex free wake model is

used. As in Chapter 3, unsteady aerodynamics is modeled using Leishman-Beddoes

attached flow formulation [67, 68]. In this formulation the angle of attack variation

over time is discretized as a consecutive series of step inputs. The airload response

to each step input is calculated using semi-empirical indicial response functions

depending on contributions of plunge, pitch and inflow to each step input. The lift

response to each step input assymptotes to the airfoil table supplied steady state

lift value. The total response is then calculated using Duhamel’s integral based

superposition principle. The attached flow formulation is used because flight test

data show no evidence of dynamic stall at high-speed flight below a vehicle weight

coefficient of CW/σ = 0.12 [163]. The W-L type lifting-line model is used to

calculate air loads.

Aerodynamic blade sweep is accounted for by a swept bound vortex line in

the free wake and W-L models. The airfoil table look up in the swept region is
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based on effective normal Mach number correction. In the swept region, the SC1095

airfoil is oriented normal to the local leading edge. The pressure taps for air load

measurements are however normal to the unswept blade leading edge. The airfoil

property tables are read on the basis of local angle of attack and effective normal

Mach number. The properties are then reduced to the pressure tap axis by dividing

them by the square of the cosine of the sweep angle.

Aerodynamic interactions between main rotor, fuselage and tail rotor is ne-

glected in this study.

4.3 Trim Solution

In order to validate overall aerodynamics, basic performance calculations at

steady level flight are compared with flight test data. Main rotor power predictions

are plotted in Fig. 4.2 for two different vehicle weight coefficients. Satisfactory

predictions are obtained at all flight speeds. Next, main rotor control angles, fuselage

attitudes and tail rotor collective angle are compared with flight test data. Figure 4.3

shows these angles corresponding to CW/σ = 0.08, for a range of forward speeds. In

general, prediction of longitudinal trim angles are good at high speed. Prediction

of lateral trim angles does not show the correct trends compared to flight test data.

A fuselage lateral center of gravity offset of 4% rotor radius to the starboard side

affects the lateral cyclic, but does not produce the right trends.
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4.4 Lift Prediction

Lift variation near the blade tip is calculated over a range of forward speeds

and is shown in Fig. 4.4. At the low speed transition regime (µ = 0.110), high lift

gradients occur in the first and fourth quadrants. At high speed (µ = 0.368), a large

region of negative lift occurs in the first and second quadrants. These are the two

vibration critical regimes in steady level flight. In the following section, the airloads

at these two speeds are studied in details.

Calculated lift at transition speed is compared with flight test data at six ra-

dial stations in Fig. 4.5. The strong lift gradients occurring in the first and fourth

quadrants are the primary source of rotor vibration at this speed. This can be

demonstrated by extracting the lift harmonics and then adding three to ten har-

monics at all radial stations to generate a surface plot, Fig. 4.6(a). The surface

plot shows that the addition of three to ten harmonics cancel out at all radii and

azimuths and only result in two impulsive loadings outboard of 60% radius. Thus,

these two impulsive loadings are the source of all vibratory harmonics.

The predicted vibratory lift, Fig. 4.6(b), shows similar impulsive airloads near

the blade tip. In the computation, they arise from the free wake model, due to

the intertwining of tip vortices whose effect is felt near the outer edges of the rotor

disk [3]. In the case of prescribed wake, the trajectories of the tip vortices from

the four blades form a prescribed sequence of epicycloids. These epicycloids overlap

in radial direction in the first and fourth quadrants as they convect sequentially

below the rotor plane. In the case of free wake, they do not convect sequentially
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below the rotor plane. The older tip vortices from the blades ahead convect above

the rotor plane. As they gradually descend towards the rotor plane they start

wrapping around the newer tip vortices because of their mutual interactions. This

intertwining happens only in the transition speed and occurs twice in the two regions

of radial overlap, once in the first and then in the fourth quadrant. This effect is

experimentally observed in Refs. [149, 150]. The effect of this phenomenon on blade

loads calculations have also been shown in Ref. [99].

The impulsive airloads remain strong as far inboard as 55% radius. Although,

the analysis captures the basic physics of vibratory lift at the transition speed, it

under-predicts the radial extent of the first impulse. This error leads to significant

under-prediction of vibratory blade bending moments at this speed. A possible

source of this discrepancy is discussed later in the study of section angle of attack.

The measured vibratory lift (3-10/rev) at high speed is plotted in Fig. 4.7(a).

The reverse flow regions in the retreating blade have no contribution to vibratory

lift. The vibratory lift starts appearing in the advancing blade outboard of 40%

radius increasing towards the blade tip. It appears in the form of a strong up-down

impulse at the junction between first and second quadrant, followed by a second

impulse in the second quadrant. The first impulse occurs earlier in azimuth from

the tip inboard. It then occurs progressively later in azimuth with decreasing radius.

The second impulse occurs at a relatively constant azimuth irrespective of the radial

station. Both the impulsive ridges remain strong from tip to 50% radius. Very

similar high-speed vibratory lift was reported in Ref. [120] for the H-34 rotor (wind

tunnel and flight test), which is also an articulated rotor. However, for the H-34

208



rotor these extended from the tip to only 80% radius inboard. Unlike at transition

speed, the analysis at high speed, Fig. 4.7(b), does not appear to pick up all the

basic physics of vibratory loading. The strong impulse in the advancing blade is

not correctly predicted. This deficiency in prediction appears as a phase error in

section lift. The section lift at different stations is compared with flight test data

in Fig. 4.8. The error in lift phase is conspicuous inboard (67.5%, 77.5% radius),

where the effect of the up-down impulse is clearly visible. It occurs in the flight test

lift near the 90 degree azimuth causing an up-down bump at 67.5% R and a plateau

at 77.5% R. The impulse delays the drop in lift by 35 degrees.

One of the possible reasons of the first up-down impulse was indicated in

Ref. [120] to be the presence of a negative tip vortex, shed from the blade tip in the

regions of negative lift. Such a model will be investigated in the next two sections

to study its effect on lift prediction.

4.5 Effects of Modeling Refinements on High-Speed

Lift

One of the goals of the present work is to examine the sensitivity of lift predic-

tion to various modeling assumptions. Starting from a simplified model, progressive

modeling refinements are incorporated one at a time. The simplified model assumes

that the rotor is represented by one flap and one lag mode and aerodynamics is

represented by linear wake and quasi-steady flow. The model is then refined in a
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step-wise manner to study the effects of (i) blade flexibility, (ii) prescribed wake

models, (iii) free wake models and (iv) linear unsteady aerodynamics. The 77.5%

radial station is chosen for this study.

Figure 4.9(a) shows that even with the simplified model, the basic 2/rev nature

of the lift appears to be in place. This implies that proper vehicle trim is the first

step for accurate lift prediction. Addition of flexible flap and lag modes improve

lift prediction in the first and second quadrant. The most significant improvement

is noticed with the addition of a torsion mode. It improves lift prediction both in

magnitude and phase at all rotor azimuths. Therefore the torsion mode is important

for lift prediction. Considerable lift fluctuations occur in the first quadrant and in

the beginning of the second quadrant. The most conspicuous of them occur as

a sharp up-down impulse near 75 degree azimuth. None of these fluctuations are

captured by changes in blade flexibility.

Prescribed and free wake models are investigated next. All wake models use 4

turns of the wake and a wake discretization angle of 15 degrees. Figure 4.9(b) shows

the result of replacing the linear inflow model with two prescribed wake models.

The first prescribed wake model is a single peak model. Here, the wake consists

of a single rolled up tip vortex trailed from the blade tip. The strength of the tip

vortex trailed from each azimuth location is equal to the value of maximum bound

circulation occurring outboard of 50% blade radius. The second model consists

of nine prescribed trailers trailing from nine equally-spaced span locations, with

strengths compatible with blade bound circulation. This model predicts highly

distorted lift on the advancing blade. The single peak model is qualitatively closer
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to flight test data. This suggests that the trailed vortices quickly roll up into a

strong tip vortex very near the blade. The single peak prescribed wake model is

then replaced with a single peak free wake model , Fig. 4.9(c). There is no significant

difference between a single peak free wake and a single peak prescribed wake model.

Next, several refinements are performed on the free wake model. Figure 4.9(d)

shows the effect of three free wake models on lift prediction at 77.5% radius : a

single peak model, a dual peak model and a dual peak with prescribed inboard

trailers. In the dual peak free wake model, a vortex of negative strength is trailed

from the tip when the lift at the blade tip is negative [52]. The possibility of a

negative vortex in the tip region was suggested by Ref. [120] and the intention

here is to study its influence on predicted airloads. In the dual peak model, the

strength of the negative vortex is equal to the maximum negative circulation attained

near the blade tip. The positive vortex continues trailing from an inboard radial

station. This station is taken where the circulation changes from a positive value

to a negative value. The strength of the positive vortex is equal to the sum of

the maximum bound circulation occurring outboard of 50% blade radius and the

maximum negative circulation occurring near the blade tip. The later is non-zero

only in the azimuths of negative lift. The dual peak model deteriorates lift prediction

in the advancing blade at this radius station. A set of five prescribed trailers are

then added to the dual peak model. These trailers trail the inboard 50% of the blade

bound circulation from equally spaced span locations and include a root vortex. The

presence of these trailers deteriorates lift prediction further.

The next modeling complexity incorporated is unsteady aerodynamics in form
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of Leishman Beddoes attached flow formulation [67, 68]. Figures 4.9(e) and 4.9(f)

show the effect of this refinement. The effect of unsteady aerodynamics is a slight

attenuation in lift magnitude and a small lag in phase. Although the change is fa-

vorable, there is no significant improvement in lift prediction at 77.5% radial station

with unsteady aerodynamics. The single tip vortex model with unsteady aerody-

namics , Fig. 4.9(e), in general shows improved prediction than the dual peak model,

Fig. 4.9(f) at this radial station.

Next, lift prediction near the blade tip is investigated using two free wake

models : a single peak free wake model and a dual peak free wake model. The single

peak free wake model is used both with quasi-steady and unsteady aerodynamic

models. Figure 4.10 shows lift prediction near the blade tip at 92% and 96.5%

radius. The unsteady aerodynamic model improves lift prediction at the tip by

improving the lift phase. The dual peak model appears to further refine the lift

prediction in the advancing blade.

In conclusion, none of the modeling refinements captures the lift phase delay

in the advancing blade lift. The dual peak free wake model marginally improves

lift prediction near the blade tip. However, it deteriorates prediction inboard. In

order to better understand the problem of this phase delay, the high-speed lift at

four radial stations are broken up into their harmonic contents. This diagnostic

approach is presented in the following section.
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4.6 Diagnosis of High-Speed Lift

An approach similar to Hooper [120] is adopted to understand the source of lift

phase error at high speed. The flight test lift is separated into 0-24 harmonics. The

first 10 harmonics form the subject of study. They are divided into two groups: (i)

non-vibratory group involving 0 (steady), 1 and 2/rev harmonics and (ii) vibratory

group involving 3-10/rev harmonics. The non-vibratory and vibratory lift groups

are studied at four radial stations.

The first station is at 67.5% radius. Figure 4.11 describes the lift diagnosis at

this station. In Fig. 4.11(a), the total flight test lift is broken into its non-vibratory

and vibratory components. The vibratory component is plotted with the steady

lift for ease of illustration. The vibratory lift appears to dominate the phase of the

total lift in the advancing blade. This is further verified in Figs. 4.11(b) and 4.11(c).

In Fig. 4.11(b), the flight test data is compared with two plots. The first plot is

predicted lift (all harmonics). Next, from this predicted lift the non-vibratory part

(0,1,2/rev) is removed and replaced with the non-vibratory part of flight test lift.

This is the second plot. The phase prediction does not improve. In Fig. 4.11(c),

the vibratory part (3-10/rev) of the predicted lift is removed and replaced with the

vibratory part of flight test lift. In this case, the phase problem appears resolved.

Therefore, in order to predict the correct lift phase, it is necessary to predict the

correct vibratory lift. Figure 4.11(d) compares predictions with measurements for

the vibratory lift harmonics with two free wake models : single peak and dual peak.

Large phase and magnitude deviations occur in the advancing blade. The impulsive
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loading at the junction of the first and second quadrant is not captured at all. The

dual peak model deteriorates the predicted phase at this station.

The same diagnosis is performed at the 77.5% radial station, Fig. 4.12. From

Fig. 4.12(a), it is seen that the phase delay and the sharp up-down impulse near

75 degree azimuth is clearly the effect of vibratory lift. As a result, replacing the

non-vibratory part of the predicted lift with flight test data does not bring the lift

phase any closer in the advancing blade, Fig. 4.12(b). But replacing the vibratory

part does, Fig. 4.12(c). Comparison between calculated and measured vibratory

lift harmonics is performed in Fig. 4.12(d). The effect of the dual peak model at

this station is similar to 67.5% Radius. It produces a deterioration in the phase of

vibratory lift. Vibratory lift predictions show very large phase errors with both the

free wake models. This error dominates the overall lift prediction and produces the

error in phase of the advancing blade.

Next, the diagnosis is performed at two outboard stations. Figure 4.13 shows

the analysis at 92% radial station. At this radial station, the lift phase is dominated

by the non-vibratory lift harmonics, Fig. 4.13(a). As a result, improvements are no-

ticed in the first quadrant by replacing the 0,1,2/rev of analysis with flight test data,

Fig. 4.13(b). The vibratory components still continue to play a part in the gentle

undulations of lift before its final plunge into the peak negative value, Fig. 4.13(c).

Figure 4.13(d) shows the comparison of predicted and measured vibratory lift har-

monics. The vibratory lift harmonics show improved prediction at this station. The

dual peak model provides further refinement in the advancing blade capturing the

peak loading in the first quadrant. However, predictions in the second quadrant are
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deteriorated.

Diagnosis of lift at 96.5% radial station (Fig. 4.14) reveals a similar trend as

at the 92% station. Once again the negative lift phase is dominated by the non-

vibratory lift, Figs. 4.14(a), 4.14(b) and 4.14(c). But the vibratory lift continues to

contribute to the undulations before the final lift drop (Fig. 4.14(d)) in the advancing

side. Figure 4.14(d) compares vibratory lift of flight test data with analysis. As in

the case of 92% radius station, the vibratory lift harmonics show improved prediction

at this station. Again, the dual peak model provides significant improvement in

capturing the peak loading in the first quadrant. Predictions in the second quadrant

are deteriorated. The effect of improved vibratory lift prediction in the first quadrant

near the blade tip is seen later on the prediction of flap bending moments.
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4.7 Study of Section Angle of Attack

To gain insight into the mechanism of lift generation, the azimuthal variation

of angle of attack is calculated. The net angle of attack at a section consists of a

combination of four factors : (i) collective and cyclic controls added to the rigid

pretwist, (ii) inflow distribution, (iii) blade flap and lag motion, and (iv) elastic

torsion. The study is performed first at transition flight and then at high-speed

flight.

Figure 4.15(a) shows the detailed angle of attack distribution at transition

speed for a station at 77.5% radius. The angle of attack distribution multiplied by

the square of section Mach number shows the qualitative nature of lift contributed

by these effects, as shown in Fig. 4.15(b). (The lift coefficient depends both on angle

of attack and incident Mach number but the variation with respect to incident Mach

number is being neglected here as a first order approximation). In the transition

speed, the shape of both the angle of attack and the lift are dominated by the inflow

component. The inflow contribution to the section lift clearly generates the impul-

sive lifts in the first and second quadrant. But the accuracy of the first impulse is

affected by torsion response which shows a noticeable impact only on the advancing

blade, Fig. 4.15(b). An error in torsion response can significantly contribute to the

error in the prediction of the first impulse, Fig. 4.5.

Figure 4.16(a) shows the detailed angle of attack distribution at high speed

for a station at 77.5% radius. Figure 4.16(b) shows the qualitative lift contribution

from each component. The sinusoidal increase of the retreating blade angle of attack
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above the advancing blade angle of attack, Fig. 4.16(a) shows the dominating effect

of cyclic pitch variation. Effects of wake (inflow) and blade flap and lag motions

are secondary. The drop in angle of attack in the advancing side is due to cyclic

pitch effect. The section lift, however, depends on both the angle of attack variation

and the relative velocity variation. This effect is significant in high speed. When

relative velocity variation is taken into account, Fig. 4.16(b), elastic torsion is seen

to dominate the lift curve shape in the advancing side. In the retreating side, cyclic

pitch, wake and blade motions have an equally significant influence. In conclusion,

although the angle of attack on the advancing blade is dominated by cyclic pitch,

the drop in lift is most strongly influenced by the elastic torsion. This is due to

the relative phasing of velocity variation, elastic torsion deformation and the cyclic

pitch angles.

Figure 4.3 showed that there is a significant discrepancy in the prediction of

lateral cyclic angle. An increased lateral cyclic like the test data would shift the

phase of the cyclic pitch input. It is now investigated whether this effect can be

carried to the advancing blade lift phase. Sensitivity of section angle of attack to

an increase in lateral cyclic pitch is shown in Figs. 4.17(a) and 4.17(b) (values

corresponding to increased cyclic are plotted in bold). A higher lateral cyclic of 8

degrees is obtained by shifting the vehicle center of gravity by 4% of rotor radius

to the starboard side. Increase in lateral cyclic shifts the phase of the cyclic pitch

favorably by around 35 degrees, Fig. 4.17(a). But this phase shift is not transmitted

to the final angle of attack distribution. The increased lateral cyclic produces a

flapping motion which reduces the retreating side angle of attack distribution and
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generates a roll moment to the left. The angle of attack distribution on the advancing

side is not influenced. The lift in the advancing blade therefore remains dominated

by the torsion response, Fig. 4.17(b), which is affected marginally by the increase

in lateral cyclic.

4.8 Pitching Moment Prediction

In the preceding sections, it is observed that the lift on the advancing blade

in high-speed flight is dominated by elastic torsion. Elastic torsion also appears to

affect the accuracy of advancing blade lift in transition flight. Prediction of elastic

torsion depends on the prediction of section pitching moments.

Figure 4.18 compares the predicted pitching moments with flight test data at

low speed (µ = 0.110). The qualitative trends in predicted values compare well

with flight test data from 77.5% to 96.5% radius. However, except 86.5% and 92%

radius location, all other stations show a significant deviation in the steady value.

The inboard sections at 55% and 67.5% radius show significant error both in steady

value and in the 1/rev waveform.

Figure 4.19 shows comparison of calculated pitching moments with flight test

data at high speed (µ = 0.368). Pitching moment predictions in the advancing blade

are in general less satisfactory in the high-speed case compared to the low speed case.

Like the low speed case, predictions at the inboard stations and near the tip show

a significant deviation in the steady value. At 77.5% radius, the predicted pitching

moment drops about 45 degrees earlier in phase than flight test data. The prediction
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is poor at all rotor azimuths at this station although the oscillatory amplitude is

satisfactorily predicted. The premature drop in predicted pitching moment at this

station at high-speed can be a possible cause of the premature drop in predicted lift.

The pitching moment determines elastic torsion which is the dominant contributer

to the advancing blade lift at high-speed lift. However, at 96.5% span there is a

lag in predicted pitching moment drop, which does not appear to get translated

into a phase lag as needed in lift prediction. Although the peak to peak variations

are well captured at 86.5% and 92% radius stations, significant errors occur in the

prediction of phase and higher harmonics. In general, except near the blade tip at

96.5% radius station, the magnitude of oscillatory pitching moments are similar to

flight test values at all radial stations. Significant deviations occur in waveform.

This is reflected in the pitch-link loads.

4.9 Blade Structural Loads

The problem of vibratory loading is now examined from the perspective of ro-

tor structural response. Bousman [121], examined and compared structural response

of eight full-scale rotors at high-speed level flight conditions in absence of dynamic

stall. Consistent oscillatory and vibratory load patterns were observed which were

largely independent of rotor configurations. These behavioral similarities in vibra-

tory loading were identified as appropriate tests for evaluation of a comprehensive

analysis. In this section, predicted vibratory loads are compared with UH-60A

flight test data. Prediction of load patterns common to all rotor configurations are
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investigated.

First, the predicted flap bending moment variations at high speed are com-

pared with flight test data, Fig. 4.20(a). The predicted values show the right trends

in the first and fourth quadrants but show large deviations at the junction between

the second and third quadrants. The predicted lag bending moments, Fig. 4.20(b),

show similar 4/rev and 5/rev qualitative behavior as flight test.

The dominant flap vibratory response of helicopter rotors occur at 3/rev, inde-

pendent of rotor type or blade number [121]. This is due to the proximity, in general,

of the second flap frequency to 3/rev. Also, the phase of the 3/rev response is seen to

remain largely constant with increase in forward speed. These trends are correctly

predicted by the present analysis. Figure 4.21(a) shows the radial distribution of

predicted vibratory flap bending moment at high speed. The primary response is

clearly at 3/rev with the second flap bending mode playing a dominant role. The

vibratory moment at 50% radius is then plotted for a range of advance ratios (0.110

- 0.368). The predicted values, as shown in Fig. 4.21(b), capture the qualitative

behavior of magnitude and phase variation as seen in flight tests [121]. An initial

peak in the transition regime is followed by gradual reduction. Above advance ratio

0.25, the bending moment starts increasing again. The phase of the dominant 3/rev

component, on the other hand, does not alter with increase in forward speed.

The 3/rev and 4/rev components of the vibratory flap bending moment are

now extracted and compared with flight test data in Figs. 4.22 and 4.23 respectively.

Predictions are compared with both Flight 85 and Flight 9 data. The Flight 85 data

are available only at two flight speeds. Flight 9 data, produced from Ref. [99] are
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the closest data available in the published literature for validating bending moment

predictions at progressively increasing forward speeds. They are used here to obtain

a general understanding of the characteristic values of magnitude and phase. The

3/rev moment is at 50% span. The 4/rev moment is at 70% span. Predictions are

performed with the following wake models - (i) linear wake, (ii) prescribed wake

with a single tip vortex, (iii) free wake with a single tip vortex (baseline analysis)

and (iv) dual peak free wake.

Figure 4.22 shows the 3/rev flap bending moments. A large part of the 3/rev

moment at high speed arises directly from azimuthal velocity variation. Hence

predictions from linear inflow model are close in magnitude to predictions from

prescribed and free wake models, Fig. 4.22(a). However the prescribed and free wake

models improve the phase prediction, Fig. 4.22(b). The free wake model significantly

under-predicts the 3/rev flap bending moment at transition speed. This is because

of the significant under-prediction of the impulsive lift in the first quadrant at the

inboard stations (Fig. 4.5). The analysis captures the rapid increase from moderate

to high speeds. The dual peak model has an influence on the calculations only above

advance ratio 0.2 because the negative tip vortex starts forming above that speed.

The dual peak free wake model improves 3/rev flap bending moment prediction at

high speed, both in magnitude and in phase.

For 4/rev flap bending moment calculation, nine flap modes are used in the

analysis. The accuracy of the bending moment predictions are assessed by com-

paring predictions by two methods: (i) force summation (integration of spanwise

aerodynamic and inertial force distributions) and (ii) modal method (direct calcu-
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lation from beam curvature). When both the methods converge exactly to the same

solution, it is considered accurate. For this purpose, nine flap modes are neces-

sary for 4/rev moment. However, with five flap modes, force summation method

generates a closer approximation to the nine mode converged solution.

Figure 4.23 shows the 4/rev flap bending moments. Predictions show a sub-

stantial contribution of wake modeling at high-speed. Unlike the prediction of 3/rev

moment, the prescribed and free wakes differ in the prediction of 4/rev magni-

tude. The baseline analysis (single peak free wake model) shows a significant over-

prediction for 4/rev at high speed. Prediction of 4/rev phase is not as satisfactory

as the 3/rev phase. The test data for 4/rev flap bending moment show a sudden

drop in magnitude above advance ratio 0.2 (Fig. 4.23(a)). This behavior is not

predicted by the baseline analysis. However, as the negative vortex starts forming

above advance ratio 0.2, the dual peak model appears to move towards the correct

trend.

The predicted torsion bending moments at three radial stations and the pitch

link load at high speed is shown in figure 4.24. There is a measurement uncertainty

at 90% R. The peak magnitudes are under-predicted at 30% R and 70% R. The

waveforms are unsatisfactory. The integrated effect of the errors in torsion bending

moments is seen in the pitch link load. Although the peak to peak magnitude

is reasonably predicted, the predicted waveform is erroneous. This is because of

inaccurate pitching moment predictions.
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4.10 Concluding Remarks

Based on the lifting-line comprehensive analysis described in this chapter, the

following conclusions can be drawn :

1. The lift phase error in high-speed flight is not limited to negative lift at the

outer portions of the rotor blade. The problem extends as far inboard as

67.5% span. The lift phase error is a manifestation of inaccurate prediction

of vibratory lift. Between 60%-90% span location, the phase of the advancing

blade lift is dominated by vibratory lift. Therefore, for accurate prediction of

blade lift at these locations, it is necessary to predict the vibratory component

accurately. Near the tip, outboard of 90% radius, the phase of the negative

lift is dominated by non-vibratory components involving 0, 1 and 2/rev. A

satisfactory prediction of 1 and 2/rev phase, therefore, can provide a good

phase prediction of negative lift. The undulating delay in the decay of lift is

still a contribution of vibratory lift.

2. High-speed vibratory lift in Black Hawk is very similar to the ’up-down impulse

and ridge’ phenomenon noted by Hooper for H-34 test data. However, in the

case of H-34 rotor, this phenomenon appears only near the outer 20% of the

blade. For the Black Hawk, this phenomenon is observed to take place as

inboard as 40% span. As a result, modeling a negative tip vortex (dual peak

free wake) shows no improvement in lift prediction at the inboard stations.

Near the tip, the dual peak model improves prediction of vibratory lift in the

first quadrant but deteriorates in the second.
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3. Error in lateral cyclic prediction does not appear to be the cause of the lift

phase error. Elastic torsion is the most significant contributer to the advancing

blade lift in high-speed forward flight.

4. At transition speed, the far wake generated rotor inflow is the most signif-

icant contributer to blade lift. While a free wake model captures the basic

phenomenon of vibratory airloads at this speed, the accuracy of prediction is

also affected by elastic torsion.

5. Section pitching moment predictions are unsatisfactory at high-speed. How-

ever, errors in predicted pitching moments at high-speed are not consistent

with errors in predicted lift phase at all radial stations.

6. The predicted 3/rev flap bending moments show the correct trends as in flight

test. The magnitude is under-predicted by 50% at all flight speeds. At transi-

tion speed, the under-prediction is due to the under-prediction of the impulsive

airload in the first quadrant. At high-speed, improved prediction of 3/rev flap

bending moment is obtained with the dual peak free wake model. 4/rev flap

bending moment predictions are less satisfactory with the dual peak free wake

model producing marginal improvements.

7. Errors in predicted pitching moments are reflected in torsion bending moment

and pitch link load. Although the peak to peak magnitude of the pitch link

loads shows reasonable agreement with test data at high speed, the predicted

waveform is unsatisfactory.
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Figure 4.9: Effect of modeling refinements on high-speed lift prediction at

77.5% Radius; µ = 0.368, CW/σ = 0.0783
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Figure 4.11: Diagnosis of blade lift at 67.5% R; µ = 0.368, CW/σ = 0.0783
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Figure 4.12: Diagnosis of blade lift at 77.5% R ; µ = 0.368, CW/σ = 0.0783
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Figure 4.13: Diagnosis of blade lift at 92% R; µ = 0.368, CW/σ = 0.0783
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Figure 4.14: Diagnosis of blade lift at 96.5% R; µ = 0.368, CW/σ = 0.0783
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(b) Qualitative lift trends at transition speed

Figure 4.15: Study of angle of attack distribution at transition speed; µ =

0.110, CW/σ = 0.0783, 77.5% R
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(b) Qualitative lift trends at high speed

Figure 4.16: Study of angle of attack distribution at high speed; µ = 0.368,

CW/σ = 0.0783, 77.5% R
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Figure 4.17: Study of angle of attack distribution at high speed with in-

creased lateral cyclic; µ = 0.368, CW/σ = 0.0783, 77.5% R
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Figure 4.18: Predicted and measured quarter-chord pitching moment vari-

ation at transition speed; µ = 0.110, CW/σ = 0.0783
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Figure 4.19: Predicted and measured quarter-chord pitching moment vari-

ation at high speed; µ = 0.368, CW/σ = 0.0783
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(b) Predicted and measured lag bending moment at

high-speed

Figure 4.20: Flap and Lag bending moments at high speed: Comparison

between prediction and flight test ; µ = 0.368, CW/σ = 0.0783
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Figure 4.21: Qualitative trends of vibratory flap bending moment predic-

tions Steady level flight; CW/σ = 0.0783
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Figure 4.22: 3/rev flap bending moment at 50% Radius: Comparison be-

tween prediction and flight test 9 ; CW/σ = 0.0783
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Figure 4.23: 4/rev flap bending moment at 70% Radius: Comparison be-

tween prediction and flight test 9 ; CW/σ = 0.0783
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Chapter 5

CFD-Comprehensive Analysis

In this chapter, a 3D Navier-Stokes CFD analysis is coupled with the Com-

prehensive Analysis UMARC to improve prediction of high speed rotor vibration.

Chapter 2 validated the UMARC structural model. It was shown that given accurate

air loads (measured flight test air loads) the structural model satisfactorily predicts

blade dynamic response. Chapter 3 validated lifting-line and 3D CFD models. It was

shown that given the correct deformations and same far wake, a 3D CFD model bet-

ter captured the aerodynamic pitching moments at the outboard stations. Chapter

3, along with chapter 4 established that the vibratory lift in high-speed is dominated

by elastic torsion - and that accurate prediction of vibratory lift would resolve the

advancing blade lift phase problem. The goal of the present CFD-comprehensive

coupling is to improve pitching moment prediction, which would improve elastic
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torsion prediction, which would generate improved vibratory lift and resolve the lift

phase problem. In addition, it was established in Chapter 3 that the rotor far wake

plays a key role in the generation of vibratory lift at the mid span stations (67%

R, 77.5% R). This effect was captured by a moving vortex or a dual peak wake

but not by a single peak tip vortex wake. The moving vortex wake showed similar

predictions as a dual peak wake. In the present CFD coupling study, the effects of

both single peak tip vortex wake (baseline) and moving vortex wake are studied.

In Chapter 3 air load calculations were performed with a prescribed set of accurate

deformations. This chapter presents a fully coupled, comprehensive trim, air loads

and blade loads predictions from first principles.

First the role of comprehensive analysis, within the CFD coupling methodol-

ogy is discussed. Then, the coupling methodology between comprehensive analysis

UMARC and CFD analysis TURNS-3D is described. Finally, prediction, conver-

gence and validation of air loads and blade loads are presented.

5.1 Role of Comprehensive Analysis

The CFD loose coupling presented in this study is a coupling between CFD

and comprehensive analysis - not a pure structural analysis. The loose coupling

methodology involves the transfer of information between an aerodynamic analysis

(CFD in this case) and a structural analysis, once for every rotor revolution. Thus,

the periodic air loads obtained from the aerodynamic model are imposed on the
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structural model to calculate the periodic structural response. The calculation of

the structural response is therefore identical to the mechanical air loads problem as

discussed in Chapter 2. As the structural response equations are solved, the air loads

are held constant and do not change with change in blade deformations. This is an

ill-posed problem because of the lack of aerodynamic damping. For example, for a

teetering rotor with a flap frequency of 1/rev, the 1/rev aerodynamic hinge moment

will be identically zero and therefore the 1/rev response of the rotor will be unde-

fined. In practise, numerical errors will give rise to small 1/rev aerodynamic hinge

moment which will then drive the response to infinity. In general all conventional

rotor systems have some of the natural frequencies close to excitation harmonics

- the response solutions of the modes corresponding to these natural frequencies

would be inaccurate.

The loose coupling problem becomes well-posed during coupling with a com-

prehensive analysis. This is because, within the comprehensive analysis, the aerody-

namic model supplies the aerodynamic damping terms as discussed in Section 4.1.2,

(Chapter 4). These terms are retained. Thus the problem is well-posed. The CFD

air loads are incorporated into the coupling iterations as corrections or deltas over

the air loads calculated by the comprehensive analysis aerodynamic model. The pro-

cess is described in detail in the next section. The final converged blade response

depends entirely on the CFD air loads. They are independant of and unrelated

to the aerodynamic model of the comprehensive analysis. The aerodynamic model

of the comprehensive analysis only helps to make the methodology well-posed and

robust but does not affect the final converged solution. Therefore, a very simple
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aerodynamic model can be used, for example, 2D strip theory and uniform inflow,

as long as it supplies the air load sensitivity to blade deformations.

In the case of a loose coupling procedure, the steady state periodic airloads

are used to calculate the steady state periodic blade response. This is a frequency

domain approach. In a tight coupling scheme, on the other hand, air loads calculated

at an azimuth location are used to calculated the blade response at the next azimuth

location. The response at this azimuth location is then used to calculate air loads

at the next azimuth location. Therefore the air loads at one azimuth location are

affected by the response at the previous azimuth. Thus aerodynamic damping is

accounted for in such a scheme.

In addition to air load sensitivities to blade response, i.e., aerodynamic damp-

ing, the UMARC comprehensive analysis provides the following - the structural

model, far wake inflow and vehicle trim.

The structural model is identical to that used in Chapter 4 and validated in

Chapter 2. As in the case of lifting-line comprehensive analysis used in Chapter 4,

a stiff pitch link stiffness of 1090 ft-lbs/deg is used. The measured non-linear lag

damper force is not considered. The far wake inflow is calculated using the refined

Leishman-Bagai free wake as in Chapter 4. It is incorporated into CFD using the

Field Velocity Approach as discussed in Chapter 3. The vehicle trim procedure

within the CFD coupling is described in the next section. The trim procedure is a

free flight propulsive trim which solves for the three rotor control angles - collective,

longitudinal and lateral cyclics, the two vehicle attitudes - longitudinal and lateral

fuselage tilts and tail rotor collective based on six force and moment balance about
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the vehicle center of gravity.

5.2 CFD coupling methodology

The coupling method adopted, referred to as loose coupling, is the method used

by Tung and Johnson [110]. References [111, 113, 178, 177] have also studied loose

coupling schemes. In general, significant convergence problems were noted during

pitching moment coupling. A possible source of this problem could be that only

the outboard CFD air loads were transfered. A tight coupling, though numerically

expensive, is a more rigorous approach where the structural and fluid equations are

integrated simultaneously at every time step. Reference [108] showed tight coupling

results for the UH-60A rotor using measured trim angles. Results showed discrepan-

cies in the high frequency components. Reference [95] shows tight coupling results

for the PUMA helicopter. Initial calculations for the UH-60A were unstable due to

inaccurate pitching moments. Reference [179] have used tight coupling to produce

good correlation of chord-wise pressure data for the ONERA 7A model rotor. Ref-

erence [109] studied tight coupling, but the calculations were again performed at

prescribed control angles and hence did not ensure the simultaneous convergence of

trim and response equations.

In the present study CFD generated normal force, pitching moments and chord

force are consistently coupled at all radial stations to obtain stable high-speed solu-

tions for the UH-60A helicopter. The control angles are calculated simultaneously
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using the full CFD air loads thereby demonstrating the simultaneous convergence of

trim, structural dynamics, fluid dynamics and free wake equations. Loose coupling

is employed because of its non-prohibitive computational cost and as a first step for

performing coupled rotor aeroelastic analysis.

The coupling methodology is described below. The UMARC comprehensive

analysis solution is henceforth referred to as the lifting-line analysis. The UMARC-

CFD coupled analysis is referred to as the CFD analysis. The steps are as follows.

1. A lifting-line analysis solution is obtained providing blade deformations, trim

angles, free wake and lifting-line air loads.

2. Using the above deformations, free wake and trim angles, 3D CFD air loads

are calculated. These air loads are different from and in general improved,

compared to the lifting-line air loads.

3. The difference between the CFD air loads obtained in step 2 and lifting-line air

loads are the delta air loads. The lifting-line comprehensive analysis solution is

now re-run with the delta air loads imposed in addition to the intrinsic lifting-

line air loads. The delta air loads are held fixed over the trim iterations. The

lifting-line air loads change from one coupled trim iteration to another and

provide the air load sensitivities required to trim the rotor. In addition, the

lifting-line air loads provide aerodynamic damping which makes the procedure

stable.

4. Step 2 to Step 3 is one UMARC-TURNS iteration. The UMARC-TURNS
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iterations are performed until the delta air loads converge, i.e., become a

constant at every radial and azimuthal station.

The final air loads are 3D CFD air loads and equal the lifting-line air loads plus

the converged delta air loads. The delta air loads depend on the starting lifting-line

air loads and would be different for a different set of starting lifting-line solution.

But the sum of the two is equal to the converged CFD air loads and is independent

of the starting lifting-line solution.

5.3 Trim solution

The converged trim angles and hub reactions for the lifting-line comprehensive

analysis and the CFD comprehensive analysis are shown in Table 5.1. For both

analyses, a single tip vortex free wake is used (baseline far wake, as discussed in

Chapter 3). The hub roll moment is defined positive to the left. The hub pitch

moment is positive nose up. α is the longitudinal shaft tilt angle which includes

the 3 degrees of pre-shaft tilt. α is positive nose down. There is no significant

difference between the two sets of trim results. This is because the 1/rev normal

force distribution is not significantly altered. The higher harmonic normal force

predictions show significant differences leading to significant differences in blade

loads. Lift is used interchangeably with normal force from now on.
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Table 5.1: Coupled Trim Values

Flight LL CFD

Thrust (lbs) 17364 17046 17241

Hub Roll (ft-lbs) 6884 7047 7099

Hub Pitch (ft-lbs) -2583 -6560 -5623

Coll. (degs.) 13.21 16.16 16.38

Lat. (degs.) 6.56 3.5 2.9

Long. (degs.) -9.07 -9.7 -9.9

α (degs.) 6.98 8.2 7.67

φ (degs.) 0.20 -2.51 -2.25

Tail Coll. (degs.) 8.7 7.22 7.31

5.4 Air Loads

The predicted and measured normal forces are shown in Figure 5.1. Both

the lifting-line and CFD analyses use a single tip vortex free wake model (baseline

far wake model). Compared to a lifting-line analysis, the CFD analysis shows a

marginal improvement in the advancing blade lift phase in the mid-span stations

(67.5% R, 77.5% R). As expected, the impulsive behavior at the junction of the first

and second quadrant is not captured. This impulse is a dominant source of vibratory

harmonics at these radial stations. At the outboard stations (86.5% R - 99% R),

the CFD predictions show a significant improvement in the advancing blade. This is

due to the accurate prediction of vibratory harmonics at these stations, Figure 5.2.
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In general, the vibratory harmonics are improved all across the blade span from 55%

R to 99% R.

The evolution of the vibratory harmonics at 92% R is shown in Figure 5.3.

The gradual improvement in prediction over UMARC-TURNS iterations is driven

by a gradual change in elastic torsion. The evolution of elastic torsion is shown in

Figure 5.4. The flap deformations, on the other hand, converge quickly as seen in

Figure 5.5. The 1/rev flap, coming from the first flap mode, is relatively unchanged

because the trim conditions do not vary significantly with CFD iterations iterations.

The 3/rev normal force improves significantly (Figure 5.2) and the effect is seen in

increased second mode contribution to the total flap deflection.

The 3/rev lift is the dominant vibratory harmonic at high speed (figure 5.2)

and generate the fixed frame (4/rev) hub pitch and roll vibrations. The vertical

vibration at the hub depends on the 4/rev air loads. Figure 5.6 shows the 4-10/rev

air loads. Once again, lack of the vibratory normal force impulse at the mid-span

stations produces an unsatisfactory prediction at 67.5% R and 77.5% R. Near the

tip predictions are satisfactory and significantly improved from the lifting-line com-

prehensive analysis.

Improved elastic torsion results are due to improved pitching moment predic-

tions, Figure 5.7. The advancing blade waveform and peak to peak magnitudes show

significant improvements with the CFD analysis. The problem of over-prediction at

77.5% R remains. The peak magnitude is also over-predicted at 92% R (by 30%).

In general, there is a phase error between the drop of predicted pitching moments in

the advancing blade and the test data. The integrated effect of this phase error will
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be seen in torsion bending and pitch link load. The phase error in the pitching mo-

ments appears to drive the residual lift phase error of about 15 degrees (figure 5.1)

in the advancing blade, via elastic torsion. The vibratory harmonics of the pitching

moments are shown in figure 5.8. The blade root shows a large magnitude (20%

R), dropping off sharply over the mid span (40% R and 55% R) and then increases

uniformly towards the blade tip. This trend is picked up by both the lifting line and

CFD analyses. The phase of the vibratory harmonics are significantly improved by

CFD.

5.5 CFD vs. Lifting-Line Air loads

Figure 5.1 compared air loads between a lifting-line comprehensive analysis and

a CFD comprehensive analysis. The differences in air loads were due to differences

in the flow model as well as blade deformations, trim angles and wake.

Blade deformations, control angles and wake from the CFD comprehensive

analysis solution are now used to re-calculate air loads using the lifting-line model.

Differences in calculated air loads would arise entirely from differences in the flow

models. Figure 5.9 compares the lifting-line and CFD normal force predictions.

There is no phenomenological difference between the two models. Both models

capture the phase of the negative normal force satisfactorily at the outboard stations.

Both models consistently miss the phase and normal force impulse at the inboard

stations. This is expected as both model use a single tip vortex free wake model.
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The greatest discrepancy between the lifting-line and CFD model lies in the

pitching moment predictions near the blade tip, figure 5.10. This shows again, that

improved lift obtained using CFD analyses is due of improved pitching moment

prediction.

5.6 Blade Loads

The predicted torsion bending moments and pitch link load are shown in fig-

ures 5.11 (stiff pitch link) and 5.12 (soft pitch link). The torsion loads are not

significantly affected by the pitch link stiffness as shown in Figure 5.13. As in the

case of measured air loads, predictions in the retreating blade are not satisfactory.

The retreating blade waveform of pitch link load and torsion bending moments is

affected by the lag damper force. Figure 5.14 shows the effect of using the measured

damper force in the UMARC-TURNS analysis. The advancing blade predictions

are not affected. However for the stiff pitch link, the damper loads do not show any

significant improvement in the retreating blade waveform. The stiff pitch link value

is the experimentally measured value and is more reliable. The retreating blade dis-

crepancy in the torsion bending loads is a fundamental discrepancy in the structural

model. The peak to peak magnitude and advancing blade waveform of the torsion

bending moment and pitch link load is determined by the aerodynamic pitching

moments. Improved pitching moment prediction by the CFD analysis therefore

improves the torsion loads significantly.
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Unlike torsion loads, predicted flap bending moments do not show any im-

provement over lifting-line comprehensive analysis, Figure 5.15. The possible source

of this discrepancy is traced in the following section.

5.7 Flap Bending Moment Investigation

The CFD analysis shows a significant improvement in vibratory normal force

prediction (Figures 5.2 and 5.6). Predicted flap bending moments however are

not improved (Figure 5.15). Figure 5.16 shows that the flap bending moment is

dominated by 1-3/rev harmonics. The 1-3/rev harmonics of predicted normal force

show significant discrepancies for both lifting-line and CFD analysis, Figure 5.17.

This discrepancy is largest at the mid-span stations (67.5% R and 77.5% R) where

neither of the two analyses, captures the vibratory normal force impulse.

The importance of the normal force waveforms at 67.5% R and 77.5% R, on the

flap bending moment predictions, can be established by stepwise calculation of flap

bending moments using a combination of flight test and CFD normal force. Starting

from CFD predicted normal force at all radial stations, flap bending moments are

calculated by progressively replacing CFD normal force with flight test measured

normal force, from tip inboard - 99%R, 96.5% R to 40% R. Figure 5.18 shows the

results from the step wise calculation. The most significant change in the bending

moment waveform appears to stem from normal force at 67.5% R and 77.5% R. 8

uncoupled flap modes have been used to calculate the flap bending moments in the
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present study, so that the bending moments errors are generated entirely from errors

in blade normal force. Clearly, the error in blade normal force prediction at 67.5%

R and 77.5% R are significant contributors to error in the flap bending moment

waveform.

5.8 Effect of Refined Wake

The baseline single peak free tip vortex wake model is now replaced with a

single peak free moving vortex model. The moving vortex model is described in

Chapter 3. The free vortex is trailed from the tip at all azimuths except in the

regions of negative lift where it moves inboard to the zero circulation cross-over

point. The moving vortex model, in presence of accurate blade elastic torsion, was

seen to generate the advancing blade lift impulse at the inboard stations.

The dual peak model, which produced a similar effect, is not used in the

present study and the CFD analysis at present can incorporate only one free trailer.

Figure 5.19 compares CFD air load predictions with the baseline wake and a mov-

ing vortex wake. In the outboard stations (86.5% R to 99% R) there is a marginal

improvement in blade lift. Predictions at the two inboard stations (67.5% R and

77.5% R) show significant improvement. This is due to improved vibratory harmon-

ics at these two two stations, as shown in figure 5.20. In general, the moving vortex

model shows an improvement of the vibratory harmonics at all radial stations. The

4-10/rev harmonics also show improved predictions at the inboard stations with
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similar trends outboard.

The improved vibratory harmonics at the two inboard stations (67.5% R and

77.5% R) is a direct effect of the rotor wake. The torsion deformations do not change

significantly between the two models because the pitching moment predictions re-

main the same. Figure 5.22 compare the pitching moments between the two wake

models. The moving vortex model shows marginal improvements near the tip (92%

R, 96.5% R and 99% R), on the advancing side. This is reflected in the vibratory

harmonics as shown in figure 5.23. The phase error inboard (67.5% R and 77.5%

R) remain.

Because the inboard lift impulse is better captured, the flap bending moment

waveforms show significant improvement as shown in figure 5.24. Both the peak

to peak magnitude and the higher harmonic waveform show similar trend as the

test data. However, compared to the test data, the predictions appear to show a

constant phase shift of 20 to 25 degrees at all radial stations. This is due to the

residual phase error in lift prediction coming from phase error in pitching moments.

The torsion bending moments and pitch link load are compared in figure 5.25. Both

predictions are similar with the refined wake model showing marginal improvements

arising from marginal improvement in pitching moments.

To summarize, figure 5.26 compares the CFD analyses flap bending moments

with those obtained with measured air loads. The residual error in phase is due to

the residual error in lift phase. The residual error in lift phase is due to errors in

the pitching moment phase as reflected in the torsion bending plots of figure 5.27.

262



5.9 Transonic Tip Relief

The greatest discrepancy between the lifting-line and CFD model lies in the

pitching moment predictions near the blade tip (Figures 5.9 and 5.10).

Figure 5.28 shows the incident Mach number, angle of attack and pitching

moment coefficient distributions at 96.5% R. The pitching moment coefficients are

obtained from airfoil tables using the Mach number and angle of attack values. The

coefficients obtained from 2D test airfoil tables show the effect of aerodynamic cen-

ter movement in transonic flow. In the regions of positive angle of attack (around 45

degree azimuth location) high incident Mach number shifts the aerodynamic center

behind quarter chord. This generates a high nose down pitching moment. As the

angle of attack drops from positive to negative, the normal force, now negative, gen-

erates a nose up pitching moment. Unlike a 2D airfoil, a section near the tip of a 3D

wing does not undergo the same aerodynamic center movement. The compressibility

effects are delayed to a higher Mach number due to a shock relief effect.

To capture the shock relief effect the 2D test airfoil tables are replaced with

CFD airfoil tables generated at a section near the blade tip. Fixed wing CFD

calculations are performed on a UH-60A blade without twist and sweep. For a

set of geometric wing angles of attack (-8,-6 to 10 degrees), airfoil properties are

extracted at 97% R.

The 3D wing airfoil characteristics obtained at 97% R (with respect to the

geometric angle of attack) are different from 2D airfoil characteristics. In addition

to tip effects, the 3D wing airfoil characteristics include the effect of near wake.
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Figure 5.29 shows the variation of lift coefficient over wing span for a set of geo-

metric angles of attack. The drop near the tip is due to a reduced effective angle of

attack. This reduction is calculated using a lifting-line model (Weissinger-L type)

and subtracted from the geometric wing angle. The resulting airfoil characteristics

with respect to effective angle of attack do not contain the effect of near wake.

The pitching moment properties read from such a tip airfoil table do not show the

aerodynamic center movement in the first quadrant (Figure 5.28).

The accuracy of the tip airfoil tables depends on the agreement between CFD

and lifting-line fixed-wing near wake. This agreement is not satisfactory for all

angles of attack, Figure 5.29. Figure 5.30 shows the calculated pitching moments

at 96.5% R. The blade deformations, control angles and wake correspond to the

CFD comprehensive analysis. The difference in the steady value is an error in the

test data. The tip airfoil extracted with respect to effective angle of attack is used.

Compared to the 2D test airfoil table calculations, the waveform in the advancing

blade is marginally improved. However there is no change in the peak to peak

magnitude.

5.10 Concluding Remarks

Based on the CFD (TURNS-3D) - comprehensive analysis (UMARC) coupling

performed in this chapter the following conclusions can be drawn.

1. A CFD-comprehensive analysis coupling improves vibratory lift prediction via
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significant improvements in section pitching moments. Improved pitching mo-

ment predictions improve torsion bending loads and elastic torsion deforma-

tions. Improved elastic torsion deformations improve vibratory normal force

prediction at all radial stations. Pitching moment predictions are accurate

near the tip (96.5% R) and at the inboard stations (40% - 67.5% R). From

77.5% R to 92% R they are over-predicted in magnitude and shifted in phase

in the advancing blade.

2. Improved vibratory normal force prediction, improves the advancing blade

waveform and normal force phase at all radial stations. A residual lift phase

error at all radial stations stem from phase error in pitching moments.

3. The vibratory normal force impulses at 67.5% R and 77.5% R are captured

using a moving vortex model. using a moving vortex model the CFD analyses

accurately captures the basic physics of vibratory loading at high speed.

4. The vibratory normal force impulses are important for accurate prediction of

flap bending moment waveform. The residual phase error in lift translates to

a phase error in the flap bending moment waveform.

5. Pitching moments near the blade tip appear to be affected by steady and

unsteady effect of transonic shock relief. They are accurately captured by

CFD. CFD based tip airfoil tables can be used to capture the steady transonic

effect within a lifting-line model. Improvement in pitching moment waveform

is however marginal. The peak magnitudes are not affected.
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Figure 5.1: Predicted and measured normal force 0-10/rev; CW/σ = 0.0783,

high-speed µ = 0.368
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Figure 5.2: Predicted and measured vibratory normal force 3-10/rev; CW/σ

= 0.0783, high-speed µ = 0.368
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Figure 5.3: Evolution of predicted vibratory normal force 3-10/rev over

UMARC-TURNS coupling iterations; CW/σ = 0.0783, high-speed µ =

0.368
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Figure 5.4: Evolution of predicted elastic torsion over UMARC-TURNS

coupling iterations; CW/σ = 0.0783, high-speed µ = 0.368
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Figure 5.5: Evolution of predicted flapping over UMARC-TURNS coupling

iterations; CW/σ = 0.0783, high-speed µ = 0.368
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Figure 5.6: Predicted and measured vibratory normal force 4-10/rev; CW/σ

= 0.0783, high-speed µ = 0.368
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Figure 5.7: Predicted and measured oscillatory pitching moments (1-

10/rev); CW/σ = 0.0783, high-speed µ = 0.368
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Figure 5.8: Predicted and measured vibratory (3-10p) pitching moments;

CW/σ = 0.0783, high-speed µ = 0.368
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Figure 5.9: Lifting-line and 3D CFD predicted normal force using same

blade deformations, trim angles and inflow; CW/σ = 0.0783, high-speed

µ = 0.368
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Figure 5.10: Lifting-line and 3D CFD predicted quarter chord pitching

moments using same blade deformations trim angles and inflow; CW/σ =

0.0783, high-speed µ = 0.368
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Figure 5.11: Predicted and Measured Torsion Bending Moments; Stiff

Pitch Link, no lag damper; CW/σ = 0.0783, high-speed µ = 0.368
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Figure 5.12: Predicted and Measured Torsion Bending Moments; Soft

Pitch Link, no lag damper; CW/σ = 0.0783, high-speed µ = 0.368

276



0 90 180 270 360
−1000

−500

0

500

Soft PL 
Stiff PL
Test    

0 90 180 270 360
−800

−400

0

400

0 90 180 270 360
−800

−400

0

400

Azimuth, degrees
0 90 180 270 360

−1500

0

1500

Azimuth, degrees

30% R 70% R 

90% R 

T
or

si
on

 B
en

di
ng

 M
om

en
t, 

ft−
lb

s
T

or
si

on
 B

en
di

ng
 M

om
en

t, 
ft−

lb
s

Pitch Link Load, Lbs 

Figure 5.13: Predicted and Measured Torsion Bending Moments; Effect

of Pitch Link Stiffness, no lag damper; CW/σ = 0.0783, high-speed µ =

0.368
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Figure 5.14: Predicted and Measured Torsion Bending Moments; Soft

Pitch Link, measured damper force; CW/σ = 0.0783, high-speed µ =

0.368
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Figure 5.15: Predicted and Measured Flap Bending Moment; Stiff Pitch

Link, no lag damper; CW/σ = 0.0783, high-speed µ = 0.368
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Figure 5.16: 1-3 harmonics of measured flap bending moment at 50% R;

CW/σ = 0.0783, high-speed µ = 0.368
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Figure 5.18: Flap Bending Moment investigation using calculated and mea-
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Figure 5.19: Predicted and measured normal force 0-10/rev; CW/σ =

0.0783, high-speed µ = 0.368
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Figure 5.20: Predicted and measured vibratory normal force 3-10/rev;

CW/σ = 0.0783, high-speed µ = 0.368
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Figure 5.21: Predicted and measured vibratory normal force 4-10/rev;

CW/σ = 0.0783, high-speed µ = 0.368
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Figure 5.22: Predicted and measured oscillatory pitching moments (1-

10/rev); CW/σ = 0.0783, high-speed µ = 0.368
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Figure 5.23: Predicted and measured vibratory pitching moments (3-

10/rev); CW/σ = 0.0783, high-speed µ = 0.368
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Figure 5.24: Predicted and Measured Flap Bending Moment; Stiff Pitch

Link, no lag damper; CW/σ = 0.0783, high-speed µ = 0.368
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Figure 5.25: Predicted and Measured Torsion Bending Moment; Stiff Pitch

Link, no lag damper; CW/σ = 0.0783, high-speed µ = 0.368
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Figure 5.26: Flap Bending Moment with measured air loads and UMARC-

TURNS analysis; CW/σ = 0.0783, high-speed µ = 0.368
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Figure 5.27: Torsion Bending Moment with measured air loads and

UMARC-TURNS analysis; Stiff Pitch Link, no lag damper; CW/σ =

0.0783, high-speed µ = 0.368
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Chapter 6

Concluding Remarks

This chapter summarizes the key conclusions of this research work. This re-

search work focussed on the analysis, prediction and validation of high speed rotor

vibration. The objective was to understand the fundamental mechanisms behind

rotor vibration at high speed and develop a analysis methodology to accurately

capture them. The UH-60A Black Hawk was taken as the test bed for prediction

and validation of analysis methodology. The UH-60A represents a modern heli-

copter rotor with high non-linear blade twist ( -16 degrees in linear range ), tip

sweep, sectional center of gravity offsets and large blade deformations in flap, lag

and elastic torsion with significant non-linear couplings between the elastic motions.

It represented an ideal test case at high speed flight to investigate the consistency

of rotor modeling in a systematic manner. Current state of the art analyses meth-
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ods showed significant discrepancies in prediction at this flight condition for this

helicopter (50% - 100% in magnitude and phase). The prediction deficiency is in

general common to all modern rotor systems at high speed. The extensive UH-60A

flight test data, repeatable and accurate, ranging from blade loads to air loads to

control loads and extensive documentation of the blade and aircraft properties, for

the first time opened opportunity for such an investigative work.

This work focussed on the decoupling of the high-speed aeroelastic rotor loads

and vibration problem into structural dynamics and aerodynamics. They were stud-

ied separately using the UH-60A flight test data. Measured air loads were used to

validate, refine and understand the accuracy and limitations of a finite element struc-

tural model. Using a reasonably accurate set of blade deformations generated from

this study, aerodynamic models were validated and refined. A table look up based

unsteady lifting line model was compared with a compressible unsteady Navier-

Stokes CFD model. The accuracy and limitations of the lifting-line model and the

improvements provided by CFD were understood. The lifting-line model and the

CFD model were then coupled to the structural model to obtain comprehensive

aeroelastic analysis solutions from first principles.

6.1 Key Conclusions

The detailed conclusions of each segment of the research work have been dis-

cussed in detail at the end of each chapter. Here the key ideas are brought together

to summarize the end result of the the present research effort.
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1. High-speed rotor vibration of the UH-60A at steady level flight (advance ratio

µ = 0.368, Ct/σ = 0.0783) is caused by two phenomenon - 1. large elastic

torsion deformations (around -8 to -10 degrees near the tip) driven by blade

pitching moments and 2. wake interaction in the advancing blade. The domi-

nant phenomenon at the outboard stations (86.5% R to 99% R) is the elastic

torsion. At the inboard stations (67.5% R and 77.5% R) both elastic torsion

and wake interactions play key roles.

2. The advancing blade lift phase problem is a manifestation of inaccurate vi-

bratory lift. For accurate lift phase, the vibratory lift must be predicted

accurately. For accurate vibratory lift, both elastic torsion and rotor wake

interactions must be predicted correctly.

3. Prediction inaccuracy in vibratory lift stem from aerodynamic modeling, not

structural dynamic modeling. Trim solution is the not source of error. Com-

prehensive analyses, in general, predict basic performance and trim accurately

at the high speed flight condition. For the UH-60A there is a discrepancy in

lateral cyclic ( and hub pitch moment ) correlation, but this error is not the

source of the problem.

4. Error in aerodynamic modeling lies in inaccurate pitching moments. Lifting-

line models, with airfoil tables, unsteady aerodynamics, near wake and far

wake do not capture the unsteady transonic pitching moments at the outboard

stations (86.5% R to 99% R). Without accurate pitching moments, elastic

torsion predictions are not accurate and without correct elastic torsion refining
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the wake model to capture the wake interactions deteriorates lift prediction,

instead of improving it.

5. A CFD analysis captures the pitching moments significantly well. The CFD

analysis has to be a 3D analysis which accounts for blade elastic deformations

and far wake inflow. Viscosity or turbulence modeling do not appear to be

important at this flight condition for lift or pitching moments. It is important

for chord forces.

6. Given correct air loads, modern finite element based structural dynamic meth-

ods accurately capture the lower harmonics of blade loads. Flap bending mo-

ment predictions are accurate, chord bending predictions and torsion loads

show significant discrepancies at higher harmonics (4/rev and higher). The

lower harmonics, which are well predicted, are the significant contributers to

air loads. Therefore predicting the lower harmonics (1 to 3/rev) of the blade

deformations are enough to predict the vibratory air loads ( up to 5/rev ).

However, predicting the lower harmonics of structural loads are not enough

in terms of vibratory blade loads. Vibratory blade load predictions are not

satisfactory for torsion moments and control loads.

7. The dominant behavior of the pitch link load, magnitude and phase of peak to

peak up to 3/rev is well predicted using accurate air loads. Prediction errors

occur at higher harmonics (4/rev and higher) which lead to a deficiency in the

retreating blade prediction. This is an error in the structural model. Possible

causes of this error lie in inaccurate details in blade boundary condition and
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control system modeling.

8. A lifting-line comprehensive analysis at high speed shows good predictions in

performance, satisfactory prediction of peak to peak loads but poor predic-

tions in phase of air loads and blade loads. A CFD comprehensive analysis

significantly improves the prediction of phase. The driver behind this improve-

ment is improved pitching moments generating improved elastic torsion via a

well developed, accurate structural model.

9. CFD loose coupling with comprehensive analysis is a robust, reliable and fast

technique without any convergence problem. The comprehensive analysis pro-

vides the structural model, trim model and air loads sensitivity to blade loads

during convergence. The final solution depends entirely on the CFD air loads.

6.2 Future Work

In this section future directions of research endeavors are suggested. The

causes of rotor vibration at the two vibration critical regimes in steady level flight

is now understood. At low speed it is inter-twinning of tip vortices, at high speed

it is pitching moment driven elastic torsion and wake. The wake effects and the

transonic effects play key roles respectively at these flight conditions.

There is an intermediate flight condition around advance ratio µ = 0.25. This

is just high enough to reasonably wash away the low speed wake inter-twinning, but

low enough to prevent onset of transonic pitching moments. A high trust condi-
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tion at this flight regime is ideal for isolating the effects of dynamic stall induced

vibration. The phenomenon of dynamic stall is well understood but prediction ca-

pabilities are inaccurate.

Once dynamic stall effects are captured with confidence, the next step is loads

and vibration in maneuvers, where all three effects, wake, dynamics stall and tran-

sonic flow are important. Beginning with steady maneuvers, the objective would be

to move to unsteady maneuvers. Accurately capturing rotor vibration at these level

and maneuvering flight conditions will result in aeromechanical analyses being a re-

liable and well-validated tool for the design of advanced rotor system. It would then

adequately compliment, though not entirely replace the need for expensive wind

tunnel and flight tests. Some of the broader research areas toward this objective are

summarized below.

1. Higher harmonics of blade torsion loads are poor, even with measured air loads.

Dynamic stall induced torsion loads are necessarily higher harmonics there-

fore refinement of structural model will be key to capturing the blade loads.

Multi-body formulations of detailed boundary condition and control linkage

modeling need to be investigated for possible discrepancies in physics. Multi-

body simulations provide the flexibility necessary for full fuselage, tail boom,

tail rotor modeling and detailed modeling in general of difficult components

required to accurately predict pilot seat and fuselage vibrations.

2. Semi empirical dynamic stall models are well-developed. They are not reliably

captured by CFD methods. High fidelity CFD modeling, with detailed vortex
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models and Large Eddy Simulations are required. Large Eddy Simulations

provide the ability to analyze the effects of large structural motions within

turbulence flow. They seek to predict the motion of the larger and most im-

portant eddies by isolating them from the smaller ones. They would gradually

become essential for a range of aerodynamic problems - from CFD analyses

of rotorcraft maneuvering flights to tiny swirls of air shed from micro flapping

air vehicles.

3. Rotor fuselage structural and aerodynamic interactions can be handled as

a separate and focussed research thrust, leveraging upon the the above two

areas. Wake impingement from the main rotor on to the fuselage tail boom is

a significant source of 4/rev (for a four bladed rotor) fuselage vibration.
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