Climate Change and Agriculture: How is USDA Helping Agriculture Respond

Jan Lewandrowski (USDA)

2016 Crop Insurance Workshop

Annapolis, MD

September 13, 2016
Today’s Roadmap

• The last 3 years – moving quickly
• Climate Change Program Office
• USDA Climate Hubs
• USDA Building Blocks for Climate Smart Agriculture and Forestry
• USDA GHG Inventory
• The Agencies
Moving Quickly: We are seeing climate change

- Increased drought /flooding
- Reduction in water tables
- Longer wildfire seasons, more intense fires
- Increasing pests and diseases
Moving Quickly: Climate Policy

• In February 2014, Secretary Vilsack announced the establishment of a network of 10 USDA Climate Hubs and Sub Hubs

• On March 31, 2015 the U.S. submitted its target of reducing U.S. GHG emissions by 26-28% below 2005 levels by 2025

• On April 23, 2015 Secretary Vilsack outlined the building blocks and established a goal of reducing emissions by 120 MMTCO$_2$e per year by 2025.

• The 2016 Conference of Parties to the U.N Framework Convention on Climate Change (UNFCCC) resulted in a new international framework for reducing global GHG emissions. As a Party to the agreement the U.S. formally committed to its 2015 target
Roles of the Climate Change Program Office

- Serves as the USDA-wide coordinator of global change program and policy issues related to agriculture, rural and forestry,

- Ensures that USDA is a source of objective, analytical assessments of climate change impacts and proposed response strategies,

- Serves as USDA focal point for climate change issues:
 - responsible for coordinating activities with other Federal agencies,
 - interacting with the legislative branch on climate change issues affecting agriculture and forestry,
 - represents USDA on U.S. delegations to international climate change discussions.

- Coordinate synthesis reports, projections, and analysis
A network of 10 Regional Hubs and Sub Hubs

http://www.usda.gov/climatehubs
Vision: Agricultural production and natural resources maintained and strengthened under increasing climate variability and environmental change

Mission:
1. Develop and deliver science-based, region-specific information and technologies to agricultural and natural resource managers; to enable climate-informed decision-making; and
2. Direct land managers to USDA agency programs and regional partners to build resilience to climate
3. Coordinate USDA research with other Federal Climate networks (CSCs, RISA, LCCs).
4. Coordinate USDA “climate” activities within each Hub region.
The Hubs use existing networks to reach our stakeholders

- County Extension Agent or extension network
- Certified Crop Consultant or Forestry Consultant
- Friends or Family
- Seed Dealer or Fertilizer Salesperson
- College Professor
- USDA Service Centers and Agencies (FSA / NRCS/RD)
- State Climatologist

Stakeholders
- USDA Service Agencies
- Cooperative Extension
- Land Grant Universities
- Farmers
- Ranchers
- Forest land owners
USDA Climate Hubs: Recent Accomplishments

Regional Vulnerability Assessments completed for all regions
The recently launched Climate Hubs Tool Shed is an online, searchable database of tools (data-driven, interactive websites and mobile apps) that can assist land managers, land owners, and extension professionals in adapting working lands to the impacts of climate change.

http://climatehubs.oce.usda.gov/content/tools-and-data
USDA Climate Hubs: Find out more at:

www.usda.gov/climatehubs
USDA Building Blocks for Climate Smart Agriculture and Forestry
What is Climate-Smart Agriculture and Forestry?

- Promotes increases in agricultural and forest productivity and farm and forest incomes;
- Builds greater resilience to climate change for forest and agricultural systems;
- Reduces and removes greenhouse gas emissions associated with agriculture, forests, and land use change; and
- Increases renewable energy production from farms and forest biomass.
Principles of the USDA Building Blocks

- **Voluntary and incentive-based** – Building on existing legislation and our history of “cooperative conservation.”
- **Focused on multiple economic and environmental benefits** – Through efficiency improvements, improved yields, or reduced risks.
- **Meet the needs of producers** – By focusing on working farms, ranches, forests, and production systems.
- **Assess progress and measure success** – Through quantitative goals and objectives.
- **Cooperative and focused on building partnerships** – With industry, farm groups, and conservation organizations.
The Ten Building Blocks

Soil Health
Goal: Increase soil carbon through healthy soil management practice
2025 Mitigation Target: 4.0 – 18.0 MMT CO$_2$e

Nitrogen Stewardship
• Goal: 64M acres under nutrient management to reduce N$_2$O emissions
• 2025 Mitigation Target: 7 MMT CO$_2$e

Livestock Partnerships
• Goal: 500 new digesters, cover 10% of anaerobic lagoons (dairy and swine)
• 2025 Mitigation Target: 21.2 MMT CO$_2$e
The Ten Building Blocks

Conservation of Sensitive Lands
- Goal: 400,000 acres in CRP with high GHG benefits, protect 40,000 acres with easements, transfer expiring CRP acres to permanent easements
- 2025 Mitigation Target: 0.8 MMT CO$_2$e

Grazing and Pasture lands
- Goal: Establish grazing management plans on additional 9 million acres
- 2025 Mitigation Target: 1.6 MMT CO$_2$e

Stewardship of Federal Forests
- Goal: Reforest 32,000 acres in National Forests
- 2025 Mitigation Target: 2.5 MMTCO$_2$e
The Ten Building Blocks

Private Forest Growth and Retention
- Through FLP and CFP, protect almost 1 M acres of working landscapes, and establish trees and shrubs on an additional 1 million acres through NRCS programs
- 2025 Mitigation Target: 4.8 MMT CO$_2$e

Promotion of Wood Products
- Goal: Increase medium rise buildings made with wood annually from 440 in 2015 to 900 in 2025
- 2025 Mitigation Target: 19.5 MMT CO$_2$e

Urban Forests
- Goal: Plant 100,000 additional trees in urban areas
- 2025 Mitigation Target: 0.1 MMTCO$_2$e
The Ten Building Blocks

Energy Generation and Efficiency

- Goal: Promote renewable energy technologies and improved energy efficiency through Rural Development energy programs
- 2025 Mitigation Target: 60.2 MMT CO$_2$e
Improving Agriculture and Forestry GHG Inventories

Every 2 years (about) USDA publishes a GHG Inventory covering source and sink categories in the U.S. agriculture and forestry sector

The inventory is consistent with:

1. The national GHG inventory published annually by U.S. EPA
2. The guidelines, methods, and reporting requirements of the UNFCCC
Agriculture and Forestry processes captured by inventory

• Agriculture
 – Enteric fermentation (CH$_4$)
 – Manure mgmt. (CH$_4$ and N$_2$O)
 – Fertilizers and manure applied to soils (N$_2$O)
 – Lime and urea applied to soils (CO$_2$)
 – Rice (CH$_4$)
 – Field burning of agricultural residues (CH$_4$ and N$_2$O)

• Land Use, Land Use Change, and Forestry
 – Above/below-ground biomass
 – Dead wood and litter
 – Soil organic matter
 – Non-CO$_2$ emissions from land use/land use change
UNFCCC reporting requirements

• US GHG Inventory covers 1990 to two years before present
• Inventory must be:
 – Transparent
 – Consistent
 – Complete
 – Comparable
 – Accurate
• Review: peer review and expert review
• Inventory methods should improve and uncertainties reduced over time
USDA has formed a Building Blocks Metrics Team

• The team is assessing data and analytic needs to enable the Department to track progress in implementing the building blocks
• We have identified specific “conservation indicators,” e.g. acres no-till, manure mgmt for each building block
• Assessing current data availability
• Developing links between this data and US GHG Inventory methods and calculations
• This will inform agency performance metrics and national GHG inventory
USDA Agencies and Offices Helping Agriculture Respond to Climate Change
USDA Climate Change (CC) Programs (in $1,000s)

<table>
<thead>
<tr>
<th>Category</th>
<th>2015 (Actual)</th>
<th>2016 (Enact)</th>
<th>2017 (Budget)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Global CC Research</td>
<td>$87,784</td>
<td>$83,540</td>
<td>$108,435</td>
</tr>
<tr>
<td>Agric Res Service</td>
<td>40,720</td>
<td>39,530</td>
<td>59,369</td>
</tr>
<tr>
<td>National Inst of Food and Agric</td>
<td>20,405</td>
<td>15,339</td>
<td>19,369</td>
</tr>
<tr>
<td>Forest Service</td>
<td>23,747</td>
<td>24,736</td>
<td>24,736</td>
</tr>
<tr>
<td>Other (ERS, NASS, NRCS)</td>
<td>2912</td>
<td>3,935</td>
<td>4,952</td>
</tr>
<tr>
<td>CC Adapt, Prepar & Resilience</td>
<td>$1,245,705</td>
<td>$1,218,626</td>
<td>$1,247,998</td>
</tr>
<tr>
<td>Agric Res Service</td>
<td>3,470</td>
<td>5,470</td>
<td>5,470</td>
</tr>
<tr>
<td>Natural Res Cons Service</td>
<td>76,354</td>
<td>4,170</td>
<td>18,470</td>
</tr>
<tr>
<td>Forest Service</td>
<td>1,163,216</td>
<td>1,205,164</td>
<td>1,219,625</td>
</tr>
<tr>
<td>Office of the Chief Econ</td>
<td>2,665</td>
<td>2,551</td>
<td>3,015</td>
</tr>
<tr>
<td>Other (APHIS, RMA, FSA)</td>
<td>0</td>
<td>1,271</td>
<td>1,418</td>
</tr>
<tr>
<td>International Assist (all FS)</td>
<td>$3,000</td>
<td>$3,000</td>
<td>$3,000</td>
</tr>
</tbody>
</table>

Source: Our Changing Planet (2016)
Climate Adaptation and Mitigation for Wheat Production Systems of the Inland Pacific Northwest

Objectives

- Identify and implement management approaches and technology that
 - impart resilience to climate change
 - reduce GHG emissions
- Extend project information to producers and others
- Educate next generations: K-20

Approach

- Integrated effort involving biologists, agronomists, climate modelers, economists, entomologists, sociologists, educators, extension educators
- Regional, with 3 universities, ARS, >200 participants (PIs, students, others)
- Stakeholder input from inception
- 75:12:13, Research:Education:Extension

Impact

- Prepared farmers and stakeholders capable of managing climate/agriculture issues
- Climate resilient, sustainable wheat production in the PNW
- Physical and cyberinfrastructure to support continued integration across disciplines and institutions in the PNW

Project Director: Sanford Eigenbrode, University of Idaho

NIFA award #: 2011-68002-30191
Objective:
To assess productive corn-based cropping systems to find those with a lighter environmental footprint under changing climate conditions that farmers will adopt and policy makers will support.

Approach:
Evaluate novel and widely utilized farmer practices across the CSCAP research network; apply models to integrate and synthesize field, climate and social-economic data to assess cropping system vitality; interactively connect research to stakeholders via extension programs; and develop education curricula targeting high school teachers.

Impact:
Heighten system capacity to: (1) retain and enhance soil organic matter nutrient carbon stocks (2) reduce field nitrogen losses that contribute to GHG emissions and water pollution, (3) better withstand droughts and floods, and (4) ensure productivity under different climatic conditions. Analyses and recommendations will equip farmers and policy makers in addition to simultaneously training the next generation of scientists and citizens.
ARS Research in Natural Resources & Sustainable Agricultural Systems

- 450 Scientists
- 139 Research Projects
- 62 Locations

- Water Availability & Watershed Management
- Climate Change, Soils, and Emissions
- Bioenergy and Energy Alternatives
- Agricultural and Industrial Byproducts
- Pasture, Forage, and Rangeland Systems
- Agricultural System Competitiveness and Sustainability
Greenhouse gas Reduction through Agricultural Carbon Enhancement network GRACEnet

GOAL
Identify and develop agricultural strategies to enhance soil carbon sequestration and reduce greenhouse gas emission and to provide a scientific basis for carbon credit programs, to reduce net emission of greenhouse gas and improve environmental quality.

OBJECTIVES
1. Evaluate status and direction of change in soil carbon for typical and alternative agricultural systems.
2. Determine net greenhouse gas emission (carbon dioxide, methane and nitrous oxide) of current agricultural systems for typical and alternative agricultural systems.
3. Determine the environmental effects (water, air and soil quality) of agricultural systems developed to reduce greenhouse gas emission and increase soil carbon storage.

From the GRACEnet brochure at: http://www.ars.usda.gov/research/programs/programs.htm?np_code=212&docid=21223
From its list of approved conservation practices, NRCS has identified those with GHG benefits:

<table>
<thead>
<tr>
<th>Soil Health</th>
<th>Conservation Practice Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>327 Conservation Cover (ac)</td>
<td></td>
</tr>
<tr>
<td>328 Conservation Crop Rotation (ac)</td>
<td></td>
</tr>
<tr>
<td>329 Residue and Tillage Management, No Till (ac)</td>
<td></td>
</tr>
<tr>
<td>329A Strip Till (ac)</td>
<td></td>
</tr>
<tr>
<td>329B Mulch Till (ac)</td>
<td></td>
</tr>
<tr>
<td>330 Contour Farming (ac)</td>
<td></td>
</tr>
<tr>
<td>332 Contour Buffer Strips (ac)</td>
<td></td>
</tr>
<tr>
<td>340 Cover Crop (ac)</td>
<td></td>
</tr>
<tr>
<td>345 Residue and Tillage Management, Reduced Till (ac)</td>
<td></td>
</tr>
<tr>
<td>385 Field Border (ac)</td>
<td></td>
</tr>
<tr>
<td>393 Filter Strips (ac)</td>
<td></td>
</tr>
<tr>
<td>412 Grassed Waterways (ac)</td>
<td></td>
</tr>
<tr>
<td>585 Stripcropping (ac)</td>
<td></td>
</tr>
<tr>
<td>601 Vegetative Barriers (ft)</td>
<td></td>
</tr>
<tr>
<td>603 Herbaceous Wind Barriers (ft)</td>
<td></td>
</tr>
</tbody>
</table>

| Nitrogen Management | |
| 590 Nutrient Management (ac) | |

| Livestock Partnership | |
| 366 Anaerobic Digester | |

Grazing and Pasture	
512 Forage and Biomass Planting (ac)	
528 Prescribed Grazing	
528A Prescribed Grazing	
550 Range Planting	

Agroforestry (not an official Building Block but benefits present)	
380 Windbreaks and Shelterbelts (ft)	
381 Silvopasture Establishment (ac)	
390 Riparian Herbaceous Buffer (ac)	
391 Riparian Forest Buffer (ac)	
612 Tree and Shrub Establishment (ac)	
645 Upland Wildlife Habitat (ac)	
650 Windbreak Renovation (ft)	

Rice (not an official Building Block but benefits present)	
436 Irrigation Reservoir (ac-ft)	
447 Irrigation Tailwater Recovery (no.)	
Get Started with NRCS

Steps to Assistance
How to Get Assistance from NRCS for Farms, Ranches and Forests

1. **Planning**
 Visit your local NRCS field office to discuss your goals and work with staff on a conservation plan.

2. **Application**
 With the help of NRCS, complete an application for financial assistance programs.

3. **Eligibility**
 As part of applying, we’ll file paperwork to ensure you’re eligible for assistance.

4. **Ranking**
 NRCS ranks applications according to local resource concerns.

5. **Implementing**
 Put conservation to work by signing a contract and implementing conservation practices.

Do you farm or ranch and want to make improvements to the land that you own or lease? NRCS offers technical and financial assistance to help farmers, ranchers and forest managers. Here’s how you can get started with NRCS:

Planning
To get started with NRCS, we recommend you stop by your local NRCS field office. We’ll discuss your vision for your land.
Environmental Defense Fund CIG Projects

Water and Residue Management

CIG Team Members

EDF
Winrock International
White River Irrigation District
DNDC-AR
pibo

Methane and Nitrous Oxide Emission Reductions

Quantification and Aggregation

SALE

One of the Eligible Practices in CA: Dry Seeding

$$$ Return to Producer for Avoided Emissions

California's Regulatory Market (AB32)
Synthesis Reports: Global Food Security

Conclusions

Climate change is very likely to affect food security.

Risks are greatest for the poor and in the tropics.

Risks are magnified as the rate and magnitude of climate change increase.

Climate change risks to food security extend beyond agricultural production, and include all elements of the food system, such as production, storage, processing, transportation, and consumption.
Mitigation: GHG Mitigation Supply Curve for U.S. Agriculture