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Causal inference with a continuous treatment is a relatively under-explored

problem. In this dissertation, we adopt the potential outcomes framework. Po-

tential outcomes are responses that would be seen for a unit under all possible

treatments. In an observational study where the treatment is continuous, the po-

tential outcomes are an uncountably infinite set indexed by treatment dose. We

parameterize this unobservable set as a linear combination of a finite number of ba-

sis functions whose coefficients vary across units. This leads to new techniques for

estimating the population average dose-response function (ADRF). Some techniques

require a model for the treatment assignment given covariates, some require a model



for predicting the potential outcomes from covariates, and some require both. We

develop these techniques using a framework of estimating functions, compare them

to existing methods for continuous treatments, and simulate their performance in

a population where the ADRF is linear and the models for the treatment and/or

outcomes may be misspecified. We also extend the comparisons to a data set of

lottery winners in Massachusetts. Next, we describe the methods and functions in

our R package causaldrf using data from the National Medical Expenditure Sur-

vey (NMES) and Infant Health and Development Program (IHDP) as examples.

Additionally, we analyze the National Growth and Health Study (NGHS) data set

and deal with the issue of missing data. Lastly, we discuss future research goals and

possible extensions.
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Chapter 1: A framework for causal inference when the treatment is

continuous

1.1 Introduction

Causal inference aims at the fundamental question of how changing the level

of a cause or treatment can affect a subsequent outcome. Whether data analysts

want to admit it or not, many analyses in behavioral, social, biomedical, and other

fields of science are aimed at understanding causal relationships, even when the data

or methods are not well suited to the task (Imbens and Rubin, 2015; Hernan and

Robins, 2016; VanderWeele, 2015; Shadish et al., 2002).

Randomized experiments have long been regarded as the gold standard for in-

ferring causal relationships. In many instances, however, conducting a randomized

experiment is not feasible for reasons of timeliness, cost, or ethical constraints. In

studying the health risks associated with tobacco use, for example, it is usually im-

practical to randomize cigarette smoking. For questions such as these, investigators

must make do with observational data. Observational data, sometimes called quasi-

experimental, or nonequivalent control group design data, arises when the treatment

was not randomly assigned under the control of the investigator. Observational data
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are available for many problems and sometimes are the only source of data for a

given problem. The difficulty in using them for causal inference derives from the

possibility of extraneous variables (confounders) that are correlated with both the

the treatment and outcome, distorting the relationship between them.

There are different ways to formulate and address the problem of causal infer-

ence with observational data. In this dissertation, we will adopt the framework of

potential outcomes (Neyman, 1923; Rubin, 1978). Thus far, most of the methods

developed for potential outcomes suppose that the treatment variable is binary. In

this dissertation, we focus on the relatively under-explored problem of estimating

causal effects when the treatment is real-valued and continuous.

1.2 Potential outcomes notation

1.2.1 History

Potential outcomes are the responses that would be realized if different treat-

ments were given to a unit. Some authors have called them counterfactuals (Green-

land et al., 1999). An explicit notation for potential outcomes was invented by

Neyman (1923) in the context of randomized experiments, but the idea seems to

have been forgotten for more than half a century. Rubin (1978) reinvented the

notation for observational studies and formulated causal inference as a problem of

missing data (Little and Rubin, 2000; Rubin, 2005). Over time, the potential out-

comes framework became known as the Rubin causal model or the Neyman-Rubin

causal model (Holland, 1986).
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Potential outcomes are not the only approach used in causal inference. Judea

Pearl and his colleagues have developed an alternative system based on directed

acyclic graphs (DAGs) and their notation called do-calculus. The do-calculus is a

formalization of causal models that uses a do-operator called do(x) which simulates

physical interventions by removing certain functions from the model and replacing

them with a constant, X = x (Pearl, 2012). However, recent work makes steps to

reconcile the different approaches (Richardson and Robins, 2013) and in some cases

show their logical equivalence (Pearl, 2011). Another system for causal inference

was suggested by Dawid (2000) but did not gain popularity.

1.2.2 Notation for a binary treatment

First we discuss the well studied problem of causal inference when the treat-

ment is binary. Let Ti represent the value of the treatment applied to unit i. For

example, Ti = 1 for the treatment group and Ti = 0 for control group. Let Yi(0)

and Yi(1) denote the potential outcomes for unit i under treatments 0 and 1, re-

spectively. The observed outcome for unit i is denoted by Yi = Yi(Ti), which can

also be written as TiYi(1) + (1 − Ti)Yi(0). The variable Ti can be thought of as a

missing data indicator that tells us which potential outcome is seen and which one

is hidden for the given unit.

In addition, let X i denote a p-dimensional vector of covariates associated with

unit i. We assume that the variables in X i were realized before the treatment and

are not causally affected by the treatment. These variables may be divided into four
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main types: confounding variables (confounders) related to both the treatment and

outcome, prognostic variables related only to the outcome, variables related only

to treatment, and nuisance covariates related to neither treatment nor outcome.

Confounders play a major role in causal inference and can have a large influence on

the estimates.

Since only one outcome is observed, estimating causal effects can be difficult.

Only the available observed outcomes are used in the estimation process. When

estimating causal effects, the estimands relate to a group of units and unit-level

estimates are unavailable. In this dissertation, the focus is on methods using the

potential outcomes framework applied to observational data containing groups of

units.

1.2.3 Causal effects

Rubin (1978) defines the causal effect of a treatment on unit i as Yi(1)−Yi(0).

In certain contexts, it may be useful to characterize the unit-level causal effect as

a ratio, Yi(1)/Yi(0), or some other measure of discrepancy between the potential

outcomes. Unfortunately, only one of the potential outcomes, Yi(1) or Yi(0), is seen

for unit i, so the individual-level causal effect is inherently unobservable. Holland

(1986) calls this “the fundamental problem of causal inference.” Although unit-level

causal effects are sometimes of interest, the target of statistical inference is usually

taken to be the average causal effect (ACE) for a given population,

ACE = µ(1)− µ(0) = E[Y (1)]− E[Y (0)]. (1.1)
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Note that the expectations in (1.1) are taken with respect to the distributions of

Yi(1) and Yi(0) over the same population of units. A key feature of causal inference is

that it compares outcomes for different treatments that are hypothetically applied to

the same units. The well known saying “correlation is not causation” is a necessary

qualification for analyses in which the groups receiving different treatments are

not directly comparable. In a randomized experiment, comparability is guaranteed

by the random assignment of treatments to units. In an observational study, the

groups may differ with respect to variables in X i or other characteristics that have

not been measured, and some method of statistical adjustment based on X i (along

with assumptions that cannot be verified) will be needed to consistently estimate

the ACE.

1.2.4 No causation without manipulation

In an observational study, the treatments are not assigned to units in a con-

trolled manner. Nevertheless, many authors have cautioned that causal effects

should not be estimated without first envisioning a hypothetical experiment in which

the treatments applied to units could be altered by an intervention. For example,

the effect of a new drug pill on blood pressure compared to the standard pill is well-

defined because each study participant could conceivably be induced to take either

one. In contrast, race or gender are not usually regarded as having causal effects

because it is difficult to imagine precise real-life interventions to change someone’s

race or gender (Imbens and Rubin, 2015).
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Another example discussed by Gelman and Hill (2006) (pp. 186-187) concerns

the effects of single motherhood on children’s well being. The treatment variable

can be defined as Ti = 1 if a mother is single and Ti = 0 if she is married. How-

ever, one can imagine various interventions that might alter values of Ti, such as

changes in tax laws, marriage encouragement programs for unwed parents, and so

on. These potential treatments would impact families in varying ways, and there

is no compelling reason to believe that their effects on well being of children would

be identical. Results from an observational study of the relationship between single

motherhood and children’s outcomes would need to be interpreted in light of the

possible ways that the treatment variable might be manipulated in real life.

1.2.5 The missing-data perspective

In any actual study, simultaneously observing the behavior of a particular unit

under different treatments is not possible. It is sometimes helpful to cast causal

inference as a problem of incomplete data, where one potential outcome is seen and

the other is missing for each unit.

A visual representation of the missing data perspective for the binary treat-

ment setting is shown in Figure 1.1. In this picture, the study units have been

ordered so that the top half of the data set represents units that received Ti = 1

and the bottom half represents units that received Ti = 0. If there were no missing
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Figure 1.1: Potential outcomes representation of the binary treatment setting. Shaded regions
are not observed.

values, the ACE could be consistently estimated under very general conditions by

ÂCE =
1

N

N∑
i=1

(Yi(1)− Yi(0)). (1.2)

Of course, because not all potential outcomes are observable, this quantity cannot

be computed in any actual study. However, it is sometimes illuminating to compare

the theoretical properties of an actual estimator to that of (1.2), because there may

be limiting conditions under which the method approaches the behavior of (1.2)

(Schafer and Kang, 2008).

The notation developed thus far can be easily extended to handle more than

two treatments. The situation with three treatment levels is shown in Figure 1.2.

In this setting, there are three potential outcomes for each unit, Yi(0), Yi(1), and

Yi(2), and three causal comparisons: Yi(1)− Yi(0), Yi(2)− Yi(0), and Yi(2)− Yi(1).

The observed outcome can be written as Yi = Yi(Ti) =
∑2

t=0 11(Ti = t) · Yi(t).
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Figure 1.2: Potential outcomes representation of the multiple treatment setting of three treat-
ment options. Shaded regions are not observed. One potential outcome is realized, but the others
can be regarded as missing.

1.2.6 Notation for the continuous treatment

From a notational standpoint, the framework of potential outcomes is easily

adapted to situations where the treatment variable is continuously distributed. Sup-

pose now that Ti takes values within a real interval T = [tmin, tmax]. The potential

outcomes are now an uncountably infinite set Yi = {Yi(t) : t ∈ T }. The observed

outcome can still be written as Yi = Yi(t), and the causal effect for unit i of moving

from treatment dose t to t∗ is Yi(t
∗) − Yi(t). This unit-level effect is unobservable,

but under certain conditions, we may be able to construct a reasonable estimate

of the population average effect of moving from t to t∗, E(Yi(t
∗)) − E(Yi(t)). All

such comparisons for t, t∗ ∈ T are contained in the average dose-response function

(ADRF), which we write as

µ(t) = E(Yi(t)). (1.3)
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In this thesis, we focus on methods for estimating µ(t) over the domain t ∈ T .

Other estimands that may be of interest are mentioned in the next section. Data

for the continuous treatment setting are shown in Figure 1.3.

Although the potential-outcomes notation extends easily to a continuous treat-

ment, methods for estimating the ACE in the binary case do not easily adapt to

estimation of µ(t) in the continuous case, for reasons that we describe later.

Figure 1.3: In the continuous treatment setting, only one of an uncountably infinite number of
potential outcomes is observed for each unit.

1.2.7 Causal inference versus regression for a continuous treatment

The potential-outcomes notation helps us to clarify the difference between

causal inference and regression analysis. Consider the dose-response behavior for a

sample of individual units as illustrated in Figure 1.4(a). This hypothetical example

shows each individual unit having its own potential-outcomes path describing the

response at every possible treatment level. If we look at the vertical strip at dose

level t1, we can approximate the ADRF at t1 with µ(t1) = E(Yi(t1)) by averag-
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(a)

µ(t)

t1 t2 t3 t4 t5

Dose

Response (b)

µ∗(t)

t1 t2 t3 t4 t5

Dose

Response

Figure 1.4: (a) Average dose-response function, µ(t) = E(Yi(t) ), and (b) regression relationship
between treatment and observed outcomes, µ∗(t) = E(Yi(t) | Ti = t).

ing the curves in the vertical strip. Computing these average values at different

dose levels t1, t2, t3, . . . traces out the ADRF. In contrast, fitting a curve to the

observed data points (Ti, Yi) will not necessarily approximate the ADRF. Figure

1.4(b) shows the observed data with a curve traced out by averaging at five example

points t1, t2, . . . , t5. Computing the observed averages at t1, t2, . . . , t5 traces out the

regression curve µ∗(t) = E(Yi(t)|Ti = t) = E(Yi|Ti = t). If Ti were independent of

Yi(t) at each t, such as in a randomized experiment, then the units at each vertical

strip tk would be a representative sample from the full population. In that case,

µ∗(t) and µ(t) would coincide. In nonrandomized or observational studies, however,

µ∗(t) may not equal µ(t). In general, a regression curve does not have a causal in-

terpretation. Causal effects are comparisons among potential outcomes in the same

population of units, but the regression curve may represent different populations at

different values of t.
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1.2.8 Contrasting causal inference and conventional dose-response

modeling

Dose-response modeling, also known as exposure-response modeling, is a gen-

eral term used in pharmacology, environmental health, and other areas of life science

(Wang, 2015; Dominici et al., 2002; Altshuler, 1981). It commonly refers to situa-

tions where the predictor is a continuously valued level of exposure (e.g., amount of

drug taken, concentration of potential harmful substance), and the response is an

outcome of interest that is thought to be causally related to the exposure (e.g. prob-

ability of a certain reaction, time to some event). Data for dose-response modeling

often come from experiments where the treatment or dose is under direct control

of the investigator. In some cases they can assign multiple doses to the same sub-

ject. In those contexts, dose-response modeling may be carried out using standard

linear or nonlinear regression, generalized linear modeling, survival analysis, and

longitudinal modeling.

This dissertation addresses the same general question as conventional dose-

response modeling: How does changing the level of a treatment variable causally

affect the mean of an outcome variable? However, causal inference with a continuous

treatment is different from conventional dose-response modeling in these ways:

1. It deals with non-experimental situations where the dose was not assigned by

the investigator, and thus confounders may be present.

2. It explicitly uses the framework of potential outcomes.
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3. It uses data that contains only one dose level for each subject.

4. It limits attention to situations where the response is numeric and continuous.

1.2.9 Causal estimands

Depending on the problem, different causal quantities may be of interest. As

mentioned, we will focus on the population ADRF, µ(t) = E[Yi(t)], but some

problems may suggest other estimands. Quantities such as E(Yi(t)) − E(Yi(s)),

(d/dt)(µ(t)), E[Yi(t)]/E[Yi(s)], and log (E[Yi(t)])− log (E[Yi(s)]) are all determined

by the ADRF, so if we estimate the ADRF we have estimated these as well.

In some studies, it is difficult to imagine a certain dosage being applied to

a whole population. In the binary-treatment setting, we are sometimes interested

in E[Yi(1)|Ti = 1] − E[Yi(0)|Ti = 1], the average causal effect among the treated

or E[Yi(1)|Ti = 0] − E[Yi(0)|Ti = 0], the average causal effect among the controls.

Likewise, in the continuous-treatment setting, we may wish to estimate {E[Yi(t +

δ)|Ti = t]− E[Yi(t)|Ti = t]} for various values of δ.

1.3 Common assumptions

1.3.1 The Stable Unit Treatment Value Assumption

To produce consistent estimates of causal quantities, we will make a few as-

sumptions throughout this thesis. First, we assume that treatments applied to one

unit will not affect the outcome for any other unit. For example, if you take a drug
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for lowering blood pressure, we assume that this will not affect the blood pressure

of anyone else. This assumption is called the Stable Unit Treatment Value Assump-

tion (SUTVA) (Rosenbaum and Rubin, 1983, 1984), which means that units do not

interact with each other, or that there is no interference between units. SUTVA

also includes the idea that there is only one version of each treatment value; for

example, taking a new drug for blood pressure means that the pills are identical in

dosage when making comparisons.

1.3.2 Positivity

Positivity is assumed for all units. This means each unit must have a chance

of receiving each treatment level. When the treatment variable is discrete,

P (Ti = t|X i) ∈ (0, 1) for t ∈ {t1, t2, . . . , tn} when Ti is binary or discrete; the

probability of receiving a particular treatment level cannot be 0 or 1. When the

treatment is continuous, we make the analogous assumption that each unit in the

population has some possibility of receiving any dose of the treatment. That is,

P (Ti ∈ Ti|X i) > 0 for every X i in the population and every set Ti ⊂ T with

positive measure. In other words, in any part of the covariate space, it must be

possible to receive every level of the treatment. Without this assumption, some

portions of the ADRF may become nonestimable.
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1.3.3 Unconfoundedness

Of utmost importance in causal inference is the treatment mechanism underly-

ing the data. In an observational study, the distribution of Ti is beyond the control

of the investigator and largely unknown. To make headway in estimating causal

effects, investigators will typically assume that any relationship between potential

outcomes and the treatment can be fully explained by measured covariates. For

binary treatments, it is often assumed that

Ti ⊥⊥ {Yi(0), Yi(1)}|X i (1.4)

for all i = 1, . . . , N, which is called strong ignorability (Rosenbaum and Rubin, 1983,

1984). For the continuous treatment setting, the analogous assumption is

Ti ⊥⊥ Yi|X i (1.5)

for all i = 1, . . . , N , Ti, where Yi = {Yi(t) : t ∈ T }. Some authors have made the

weaker assumption that Ti ⊥⊥ Yi(t)|X i for all t ∈ T (Hirano and Imbens, 2004). Both

of these assumptions are statements about the joint distribution of Yi, Ti, and X i

at the unit level. An alternative definition of confounding at the population level is

given by Greenland and Robins (1986).

Strong ignorability implies that all confounders have been measured and are

present in X i. In real-world applied problems, ignorability is often violated due to
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unmeasured confounders, but we will not consider that possibility here. As a way to

resolve this problem, sensitivity analyses can be conducted to understand the effect

of possible omitted covariates in the estimation process (Rosenbaum, 2002).

1.3.4 Other assumptions

For some of our techniques, we will suppose that Yi(t) is continuous in t. We

will also suppose that the triplets (X i, Ti,Yi) are independent and identically dis-

tributed for all units i = 1, . . . , N , in the population and in the sample. Many of the

methods in this thesis can be extended to complex sampling designs, but we defer

those extensions to future research. In some real world studies, treatments are not

applied to individual units but to clusters of units (e.g., students in a classroom).

Methods for cluster-level treatments are beyond the scope of this thesis. However,

in some studies, we can circumvent the problem of cluster-level treatments by ag-

gregating the responses and covariates to the cluster level, regarding the clusters as

the units of analysis.

1.3.5 The observed data

The observed data for each unit in the sample consist of the covariate vector Xi,

the treatment Ti, and the observed outcome Yi = Yi(Ti). We will investigate methods

for estimating the ADRF µ(t) = E(Yi(t)) from the observed data (X i, Ti, Yi), i =

1, . . . , N . In many real world applications, some portions of (X i, Ti, Yi) may be

missing for some units. We will not consider those types of missing data problems
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here.

1.3.6 Modeling assumptions

In addition to the assumptions already mentioned, causal inference will lever-

age the information in the covariatesX i by applying various types of models. Before

the 1980s, it was common for analysts to regress Yi on (Xi, Ti) and then use that

model to estimate treatment effects. For example, one might fit a linear regression

with main effects for X i and Ti, and interpret the coefficient for Ti as an estimated

causal effect. One drawback of this outcome model approach is that without the

rigor of potential outcomes, the estimated values are not necessarily causal quanti-

ties. The relationship between the estimated regression function E(Yi|Ti,X i) and

the ADRF is far from clear.

In the early 1980s, Rosenbaum and Rubin (1983, 1984) pioneered another ap-

proach to estimate causal effects by modeling the treatment mechanism. They model

the treatment Ti given the covariates Xi, which is now called a propensity model. In

the binary-treatment setting, the treatment assignment is typically described by a

binary (e.g. logistic) regression for predicting Ti given covariates obtained from X i.

In the continuous-treatment setting, various other models (e.g. linear regression)

could used. Models for Ti are an important building block for many types of causal

estimators.

Another strategy combines a propensity model with additional assumptions

about how Yi(t) may vary with X i. By combining models for the treatment and the
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potential outcomes, the hope is to take advantage of some of the positive aspects of

each one while mitigating the possible negative effects of model failure.

1.3.7 Why the continuous treatment setting is more complicated

than the binary case

From a notational standpoint, the extension of a pair of potential outcomes

Yi = {Yi(0), Yi(1)} to a set indexed by a continuous variable Yi = {Yi(t) : t ∈ T }

seems very straightforward. However, methods for estimating the average causal

effect E(Yi(1)) − E(Yi(0)) in the binary case (see, for example Schafer and Kang

(2008)) are more numerous and have received far more attention than methods for

estimating an ADRF µ(t) = E(Yi(t)) for a continuous treatment. The continuous-

treatment problem is relatively poorly studied and is significantly more complicated

than the binary one. The reasons for this will be made clear in the chapters ahead,

but here we provide a thumbnail sketch.

One common approach for the binary case is to weight the observed outcomes

to resemble a sample of potential outcomes from the full population. That is, we

can apply weights to the observed values of Yi(Ti) from the sample units having

Ti = 1 to estimate E(Yi(t)), and we can apply weights to the observed values of

Yi(0) from the sample units having Ti = 0 to estimate E(Yi(0)). These weights are

derived from a propensity model that predicts P (Ti = 1|X i) and P (Ti = 0|X i).

Another common approach is to predict the missing potential outcomes them-

selves with a pair of regression models. For example, we can regress the observed
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values of Yi(1) on X i for units with Ti = 1, and use the fitted model to predict the

unseen values of Yi(1) when Ti = 0. Similarly, we can regress the observed values of

Yi(0) on X i for units with Ti = 0, and use the fitted model to predict the unseen

values of Yi(0) when Ti = 1.

Neither of these simple strategies immediately generalizes to a continuous

treatment. Suppose we want to estimate µ(t) = E(Yi(t)) for a specific value of

t. Because Ti is a continuous random variable, there may be no units in the sample

with Ti = t, and thus no observed values of Yi(t) to reweight. Similarly, there may

be few or no observed values of Yi(t) to use in a regression model for predicting the

missing values of Yi(t) when Ti 6= t. To make headway using either of these ap-

proaches (weighting or prediction), we will have to somehow borrow strength from

units with values of Ti in the neighborhood of t, which may necessitate additional

assumptions (continuity, smoothness) about the ADRF or the unit-level stochastic

process Yi(t).

1.4 Motivating examples

1.4.1 A simulated example

1.4.1.1 Treatment and potential outcomes

This example, which will be used throughout Chapter 3, uses simulated data.

One advantage of simulated data is that the true causal quantity is observed; this

allows for a fair evaluation of the methods. The essential features of this example

18



are that the unit-level potential outcome paths are linear, where the treatment is

correlated with the slope and intercept, that the covariates are measured, but that

the relationships among the covariates, treatment, and potential outcomes could be

misspecified.

We now describe the example in more detail. The potential outcome paths

are linear, Yi(t) = θ>i b(t), with θi = (θi1, θi2)
> and b(t) = (1, t)>. The population

for (θi1, θi2, Ti)
> is multivariate normal with mean vector (ξ1, ξ2, κ)> = (50, 0, 12)>

and covariance matrix

Ω =


ω11 ω12 ω13

ω12 ω22 ω23

ω13 ω23 ω33

 =


51.0 3.80 5.92

3.80 0.55 0.51

5.92 0.51 2.02

 .

A scatterplot of Yi = θi1 + θi2Ti versus Ti for a sample of N = 200 units is shown in

Figure 1.5, along with the Yi(t)’s and µ(t) = E(Yi(t)). The ADRF is constant, but

the nonzero values for ω13 and ω23 induce a strong positive correlation between Ti

and Yi.

Figure 1.5 also shows the population regression curve µ∗(t) = E(Yi | Ti = t).

By well known properties of the multivariate normal distribution, θi given Ti = t

is bivariate normal with E(θi1 | Ti = t) = ξ1 + (ω13/ω33)(t − κ), E(θi2 | Ti = t) =

ξ2+(ω23/ω33)(t−κ), V (θi1 | Ti = t) = ω11−ω2
13/ω33, V (θi2 | Ti = t) = ω22−ω2

23/ω33,

and Cov(θi1, θi2 | Ti = t) = ω12 − ω13ω23/ω33. It follows that Yi = θi1 + θi2Ti given
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µ∗(t)

µ(t)

Figure 1.5: Simulated sample of N = 200 observed points (Ti, Yi), with representative potential-
outcome paths (gray lines), average causal dose response function µ(t), and regression curve µ∗(t).

Ti = t is normal with

E(Yi | Ti = t) =

(
ξ1 +

ω13

ω33

κ

)
+

(
ξ2 +

ω13

ω33

− ω23

ω33

κ

)
t +

(
ω23

ω33

)
t2,

V (Yi | Ti = t) =

(
ω11 −

ω2
13

ω33

)
+ 2

(
ω12 −

ω13ω23

ω33

)
t +

(
ω22 −

ω2
23

ω33

)
t2.

The curvature in µ∗(t) would vanish if the treatment were uncorrelated with the

random slopes (ω23 = 0). Even in that case, however, the slopes of µ∗(t) and µ(t)

would differ unless the treatment were also uncorrelated with the random intercepts

(ω13 = 0).

1.4.1.2 Covariates

To create these data, we generated eight variables A∗i = (A∗i1, . . . , A
∗
i8)
> for

each unit from A∗i ∼ N(0, I), and then we generated θi and Ti independently given

20



A∗i from θi | A∗i ∼ N(ν+Γ>A∗i ,Σ) and Ti | A∗i ∼ N(τ+δ>A∗i , λ
2) with ν = (50, 0)>,

Γ =

 5 2 −1 1 2 3 −1 1

.4 .3 −.2 .1 .3 .2 .1 −.1


>

, Σ =

 5 −.1

−.1 .1

 ,

τ = 12, δ = (1, 1/2, 1/3, 1/4, 0, 0, 0, 0)> and λ2 = 0.6. This represents a situation

where the dose-response relationship is distorted by covariates whose associations

with the treatment and outcomes are strong. Variables A∗i1, . . . , A
∗
i4 are confounders,

associated with both θi and Ti, whereas A∗i5, . . . , A
∗
i8 are prognostic variables, asso-

ciated with θi but not Ti.

In a real application, it is unlikely that an analyst would have set of vari-

ables that fully account for the associations between the potential outcomes and the

treatment and whose relationships to θi and Ti are perfectly linear. To make this

example more realistic, we imagine that the A∗ij’s are hidden from view, and instead
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the analyst sees

Ai1 = −4.975 exp((A∗i1 + 1)/6) + 5.960,

Ai2 = 3 log(A∗i1/5 + exp(A∗i2)/10 + 2),

Ai3 = 4 log(A∗i1 + 8) + (A∗i3 + 6)1.8,

Ai4 = (A∗2i1 /(A
∗
i4 + 10))0.25,

Ai5 = Φ( (A∗i3 + A∗i4 + 2A∗i5)/
√

6 ),

Ai6 = A∗2i1 + A∗2i2 + A∗2i3 + A∗2i4 + A∗2i5 + A∗2i6 ,

Ai7 = 1 if (A∗i2 + A∗i7) > 1 and 0 otherwise,

Ai8 = 1 if (A∗i2 − A∗i7) ≤ −1 and 0 otherwise,

and where Φ(·) denotes the N(0, 1) cumulative distribution function. These trans-

formations were chosen rather arbitrarily, but we strove to create a realistic situation

where the predictors available to the analyst were non-normal, intercorrelated, and

related to Ti and Yi in a nonlinear fashion. The transformations produce skewed,

bounded and binary covariates whose relationships to θi1, θi2 and Ti are moderately

strong and mildly nonlinear. The best linear functions of the A∗ij’s explain 90% of

the variance in θi1, 82% of the variance in θi2, and 70% of the variance in Ti, whereas

the corresponding figures for the Aij’s are 68%, 66%, and 65%, respectively.

In Chapter 3, we present techniques to estimate the ADRF and simulate their

performance over random samples of N = 200 and N = 1, 000. The case N = 200

represents a condition where large-sample approximations may not be accurate,
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and where bias may be less important than variability; with N = 1, 000, asymptotic

arguments should work well, and the major concern becomes bias due to model

misspecification. In all of our analyses, we will suppose that the ADRF is linear,

µ(t) = ξ1 +ξ2t, and we will see how well the estimate of ξ2 reproduces the true value

of zero.

1.4.2 Lottery data

This data set, which was previously analyzed by Imbens et al. (2001) and

Hirano and Imbens (2004), contains information from a survey on a group of N =

237 Massachusetts lottery winners. Variables include information about their salary

before and after winning the lottery, winning prize amount, education, savings,

spending, gender, and age. In our analyses, we focus only on people who won the

lottery, and want to know how lottery prize amount affects their earned income six

years after winning. Hirano and Imbens (2004) analyzed the data and estimated

the derivative of the ADRF. In Chapter 4, we revisit the lottery data set and apply

a new set of techniques.

1.4.3 Simulation from Hirano and Imbens (2004) and Moodie and

Stephens (2012)

In this example, the covariates are exponentially distributed, the treatment

is an exponential RV that depends on the covariates, and the outcome is normally

distributed with a mean that depends on the covariates and has a standard deviation
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of one.

To be more precise, let Y1(t)|X1, X2 ∼ N (t+ (X1 +X2) exp[−t(X1 +X2)], 1),

let X1, X2 be unit exponentials, and let T1 ∼ exp(X1 + X2). The ADRF can

be calculated by integrating out the covariates analytically (Moodie and Stephens,

2012),

µ(t) = E(Yi(t)) = t+
2

(1 + t)3
. (1.6)

We can compare the performance of different estimators to this true ADRF. This

example is included in Chapter 5.

1.4.4 National Medical Expenditure Survey data

The National Medical Expenditure Survey (NMES) contains information about

smoking amount and the cost of medical care. The 1987 medical costs are verified

by multiple interviews and other data from clinicians and hospitals. From Johnson

et al. (2003):

The 1987 National Medical Expenditure Survey (NMES, US Depart-
ment of Health and Human Services, Public Health Service, 1987) pro-
vides data on annual medical expenditures and disease status for a repre-
sentative sample of the U.S. civilian, non-institutionalized populations.

In the early 2000s, the NMES data was important for the tobacco litigation cases on

the effect of cigarettes on medical expenditures. The R package causaldrf includes

these data. In Chapter 5, we briefly analyze the relationship of smoking amount on

medical expenditures.
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1.4.5 Infant Health and Development Program data

The last example in Chapter 5, the Infant Health and Development Program
(IHDP), is described by Gross (1992):

The Infant Health and Development Program was a collaborative,
randomized, longitudinal, multisite clinical trial designed to evaluate
the efficacy of comprehensive early intervention in reducing the develop-
mental and health problems of low birth weight, premature infants. An
intensive intervention extending from hospital discharge to 36 months
corrected age was administered between 1985 and 1988 at eight different
sites. The study sample of infants was stratified by birth weight (2,000
grams or less, 2,001-2,500 grams) and randomized to the Intervention
Group or the Follow-Up Group.

In this study, even though families are randomly selected for intervention, we

restrict our analysis to those selected for the treatment group. These families choose

the amount of days they attend the child development centers and this makes the

data set, for practical purposes, an observational data set. We apply our methods

to this subset of the data to estimate the relationship of days spent at the child

development centers on the cognitive benefit to children.

1.4.6 National Growth and Health Study data

In Chapter 6, we analyze the National Growth and Health Study (NGHS)

which is a multicenter, 10-year longitudinal study that covers 2379 girls from the

ages of 9-10 through 18-19. In addition to the activity measures, the NGHS data

set contains many other covariates: demographic, history, physical measurements,

biochemical determinations, diet, physical activity, and psychosocial. One goal is to

understand the role of changing physical activity from year 3 to year 7 in the study

and how this change affects body weight and activity at year 10.
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1.5 Looking ahead

This dissertation explores the understudied problem in causal inference of the

continuous treatment. Chapter 2 reviews the current available methods. These

include methods from Imai and van Dyk (2004), Hirano and Imbens (2004), Hill

(2011), Flores et al. (2012).

Chapter 3 introduces new ideas and methods addressing parametric dose re-

sponse functions when the true ADRF has a parametric form. The continuous

treatment problem can be approached by parameterizing the curve as a linear com-

bination of a finite number of basis functions whose coefficients vary across the units.

The ADRF is estimated by averaging over all the units.

Chapter 4 revisits the lottery data set, reanalyzes the data, performs diagnos-

tics, and applies a new set of techniques to estimate the ADRF. The results are

compared and contrasted with Hirano and Imbens (2004) and Bia et al. (2014).

Chapter 5 contains the causaldrf R package vignette (Galagate and Schafer,

2015b). Examples include simulated data from Hirano and Imbens (2004) and

Moodie and Stephens (2012), NMES data from Imai and van Dyk (2004), and

the IHDP data from Hill (2011). We illustrate different methods and demonstrate

the flexibility of the causaldrf R package.

Chapter 6 provides an in-depth example with the NGHS data set. The NGHS

has not yet been analyzed by using causal inference methods. This chapter performs

the analysis and provides step-by-step commentary and suggestions for how to apply

causal inference techniques to a real data set that includes missing data.

Chapter 7 wraps up with the conclusion and possible future work.
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Chapter 2: A review of existing causal inference methods with a con-

tinuous treatment

2.1 Defining the problem

To review our notation, let N be the number of sample units in the data

set. The treatment received by unit i is Ti, which takes values in a real interval

T = [tmin, tmax]. We imagine a set of potential outcomes for each unit, Yi = {Yi(t) :

t ∈ T }, and the observed outcome is Yi = Yi(Ti). We call Yi(t) the individual-

level dose response function. The variable Ti has a positive density with support

T = [tmin, tmax]

The target estimand is, µ(t) = E[Yi(t)], the average dose response function

(ADRF) for the population of interest. In some cases, the ADRF might refer to

a subset of the whole population. Another estimand of interest is mentioned by

Hill (2011), namely E[Yi(t) − Yi(t0)|Ti = t]. This quantity compares the observed

outcome in the population receiving dose t to what the outcome would have been

at another dose.

We also have available Xi, a vector of background covariates. The data avail-

able to us for estimating the ADRF are (Xi, Ti, Yi = Yi(Ti)) for i = 1, . . . , N . We

assume that (Xi, Ti, Yi) are defined in a common probability space, that Ti is contin-

uously distributed with respect to Lebesgue measure in T , and that Yi(Ti) is a well

defined random variable. No parametric assumptions are made on Xi. If modeling

of Xi is necessary, we use an empirical distribution.
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Statisticians have used three broad approaches for estimating causal effects:

strategies based on modeling the outcome, strategies based on modeling the treat-

ment, and dual modeling strategies (Schafer and Kang, 2008). These methods are

well understood in the binary treatment setting, but not when the treatment is

continuous. Some methods in the binary treatment setting can easily generalize to

the continuous setting, while others do not have obvious extensions. Because the

continuous treatment problem has not been well studied, it is helpful to review the

methods that have been applied to estimating the average causal effect (ACE) in

the binary treatment case.

When the treatment is binary (Ti = 1 or Ti = 0), the ACE is defined as

E(Yi(1) − Yi(0)). If the treatment takes a finite number of values 0, 1, 2, . . . , k, we

can define additional ACEs as pairwise comparisons, such as E(Yi(2) − Yi(0)) or

E(Yi(2)− Yi(1)). This multiple treatment problem has not received much attention

either, but it is not substantially more difficult than the binary situation.

The leap to continuous treatments is harder and has been discussed by only

a few authors (Moodie and Stephens, 2012; Kluve et al., 2012; Hirano and Imbens,

2004; Imai and van Dyk, 2004). Before describing that work, in the next section

we review methods for estimating causal effects when the treatment is binary. The

later sections of this chapter review methods for a continuous treatment.

2.2 Estimating an average causal effect when the treatment is binary

2.2.1 The prima facie estimator

In the binary treatment setting, the main estimand of interest is the average

causal effect (ACE),

ACE = µ(1)− µ(0) = E[Yi(1)]− E[Yi(0)], (2.1)
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which is the average of the unit-level causal effects Di = Yi(1)−Yi(0). If all potential

outcomes could be seen, the ACE could be estimated by

ÂCEGold =
1

N

N∑
i=1

Di =
1

N

N∑
i=1

Yi(1)− 1

N

N∑
i=1

Yi(0). (2.2)

Of course, this estimate of the ACE cannot be computed from the observed data,

because only one potential outcome is observed for each individual. Nevertheless,

the estimate in (2.2) can be regarded as a gold standard, because it provides a

consistent estimate of the ACE under very general conditions, and to the extent

that other estimates mimic the behavior of (2.2), they will also tend to perform well

(Schafer and Kang, 2008). An estimator that can always be computed is the average

response among units with Ti = 1 minus the average response when Ti = 0,

ÂCEPrima =

∑N
i=1 TiYi(1)∑N

i=1 Ti
−
∑N

i=1(1− Ti)Yi(0)∑N
i=1(1− Ti)

, (2.3)

which consistently estimates the prima facie effect, PFE = E(Yi(1)|Ti = 1) -

PFE = E(Yi(0)|Ti = 0) (Holland, 1986). If the treatment is independent of Yi(1)

and Yi(0), such as in a randomized study, then the prima facie effect coincides with

the ACE. If Ti is not independent of the potential outcomes, ÂCEPrima can be badly

biased.

2.2.2 Outcome-prediction methods

2.2.2.1 Regression and ANCOVA

The prima facie estimator ÂCEPrima is a naive method that does not take

covariates X i into account. If treatment is not randomly assigned, the treated and

untreated subgroups may not be representative of the overall population, and this

simple difference estimate may be biased. One simple way to take X i into account
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is commonly known as regression adjustment or analysis of covariance (ANCOVA),

a model-based technique that predicts what might have happened if the Ti = 1 and

Ti = 0 groups had no baseline differences in the covariates.

The simple version of ANCOVA supposes that E[Yi|Ti,Xi] = α+ Tiθ + XT
i β,

but more general version are possible with interactions, nonlinear relationships, and

heteroscedastic errors (Little et al., 2000; Schafer and Kang, 2008). The treatment

effect is associated with the parameter θ. This parameter coincides with the ACE

only under certain circumstances. ANCOVA was originally proposed by R.A. Fisher

to help reduce variance of the estimated treatment effects in randomized studies.

For nonrandomized studies, the rationale for adjusting for Xi is to reduce bias

attributable to the measured confounders (Schafer and Kang, 2008). ANCOVA

is easy to use, but requires that the model be correct in order for the parameter

estimate θ to correspond to the ACE. The critical assumptions being made are that

the potential-outcome regression surfaces E(Yi(1)|X i) and E(Yi(0)|X i) are both

linear functions of X i and that all of the slopes are equal. If the slopes are unequal,

the model can be corrected by including interactions between X i and Ti. Sensitivity

to model failure grows as the distance between E(Xi|Ti = 1) and E(Xi|Ti = 0)

increases (Schafer and Kang, 2008).

2.2.2.2 Regression estimation

Another way to use regression for estimating the ACE is to separately model

the response for the treatment and control groups and to use these models to predict

the unseen potential outcomes. Suppose the two models are E[Yi|Ti = 0,Xi] =

XT
i β0 and E[Yi|Ti = 1,Xi] = XT

i β1. After obtaining estimates of β1 and β0 from

their respective groups, we can predict the missing potential outcomes by taking

Ŷi(0) = XT
i β̂0 for every unit having Ti = 1 and Ŷi(1) = XT

i β̂1 for every unit having

Ti = 0. We can also replace the observed potential outcomes by their regression
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predictions with no ill effect, because standard methods for estimating regression

coefficients (e.g. ordinary least squares) yield residuals with mean zero over the

fitting sample. A regression-prediction estimator for the ACE is then

ÂCEReg =
1

N

N∑
i

(Ŷi(1)− Ŷi(0)). (2.4)

When the regression models are fit by ordinary least squares, the regression estima-

tion method for estimating the ACE gives a result that is numerically equal to the

ANCOVA parameter estimate under an ANCOVA model that includes the X iTi

interactions (Schafer and Kang, 2008).

In this binary setting, there will be multiple units with Ti = 1 and with

Ti = 0. In the continuous treatment setting, there is a lack of replication at each

particular treatment value t. If a unit has an observed value Ti = t in the continuous

treatment setting, then there is not likely to be another unit with that same t value.

This makes regression estimation difficult for the continuous treatment and requires

pooling units across t values, which is discussed in later chapters.

2.2.3 Introducing the propensity score

2.2.3.1 Definition

In the binary treatment setting, the propensity score (PS) is the probability

of receiving a treatment given a set of covariates, πi(x) = P (Ti = 1|Xi = x). The

realized propensity score for sample unit i will be written as πi = πi(X i). The

PS was defined by Rosenbaum and Rubin (1983, 1984) and has been used in many

studies (Guo and Fraser, 2014) to make causal inferences in observational studies.

The PS can balance covariates across the treatment groups, and it is the coars-

est function of covariates with the balancing property, which is: P (Xi = xi|πi =

c, Ti = 1) = P (Xi = xi|πi = c, Ti = 0). The PS distills the covariate information
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into a scalar value that can be used to estimate the ACE in a variety of ways.

Units with the same propensities have the same probability of treatment. This

means that units randomly received treatment or control and have the same distri-

bution of covariates (same distribution of Xi), on average (Rosenbaum and Rubin,

1983, 1984). Adjusting the sample by their PS values means that units with equal

propensities appear to be allocated to a treatment group randomly. If units receive

treatment levels randomly, then estimating causal effects becomes straightforward.

For example, if we could divide the sample units into groups in which the PSs are

homogeneous, then the prima facie estimator of the ACE within any group will

consistently estimate the ACE for the subpopulation represented by the group (i.e.

the population of units with the same PS).

2.2.3.2 Estimating the propensity score

In a nonrandomized study, the PS is unknown and must be estimated. The

most common way to model the PS is by logistic regression, although other methods

such as probit regression, boosted regression (McCaffrey et al., 2004; Zhu et al.,

2015), CART, and random forests have been used (Lee et al., 2010).

For the multiple treatment setting, Joffe and Rosenbaum (1999) described a

single variable balancing score that uniquely determines the distribution of doses

given Xi. McCullagh (1980) describes an ordinal logistic regression model that can

be used to describe the distribution of doses given Xi. The XT
i β component from

the ordinal logistic model would be the balancing score or propensity scalar quantity

for a multiple treatment setting.

2.2.3.3 Checking the propensity score

To check the fit of the PS model, the criterion traditionally applied is covariate

balance. Ideally, the PS balances the distribution of covariates across all treatment
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levels. For example, in the binary treatment setting, if we restrict our attention to

a set of units with similar propensity scores, we should find no major differences

between Ti = 1 and Ti = 0 on any component of X i or function of X i. Analysts

will typically divide the sample into subgroups (e.g. defined by the quantiles of

estimated propensities) and compute t-tests and standardized mean differences for

each covariate. Graphical representations of the covariate distributions (histograms,

boxplots, etc.) at different treatment levels within the propensity-defined classes is

another popular way to check covariate balance.

It is also important to check PS overlap to determine if estimating causal

effects is even feasible. Comparing histograms of the PS values of the treatment

group and control group is often used to evaluate the degree of overlap. If there

is an insufficient number of units with Ti = 1 in regions of low propensity, or an

insufficient number of units with Ti = 0 in regions of high propensity, then causal

inference in those regions is ill advised because it may require excessive amounts of

extrapolation (e.g., Gelman and Hill, 2006, Chap. 10).

Many authors have claimed that overfitting is not a serious problem when

estimating the PS, because the main goal is predicting the treatment probabilities.

In fact, overfitting the PS is not detrimental to the estimation of the ACE since

prediction and covariate balance are the main criteria for estimating the PS (Rubin,

2004; Brookhart et al., 2006).

2.2.4 Using propensity scores to estimate causal effects

2.2.4.1 Matching

Propensity-score matching, an intuitive solution to causal inference, constructs

treatment and control samples that have similar covariate distributions (Rubin and

Thomas, 2000; Stuart, 2010; Rubin and Thomas, 1996). With a binary treatment,
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matching is usually performed in this manner. For each unit in the smaller group

(Ti = 0 or Ti = 1), an algorithm is used to select a unit in the larger group with a

similar propensity score, and perhaps similar values of X i as well (as measured, for

example, by Mahalanobis distance). After matches have been found for all units in

the smaller group, the excess units in the larger group are discarded. This method

is called 1-to-1 matching. Because the pairs have similar covariates but different

treatments, this method can provide insight into the effect of a treatment on the

outcome while removing biases due to confounding that can be attributed to X i.

Matching is thoroughly reviewed in Stuart (2010) and in Rubin and Thomas (1996),

Rubin (2006), Ho et al. (2006), and Pattanayak et al. (2011).

There are different options for how to decide which matches to make. After fit-

ting the PS model, the estimated PS values are used to match units in the treatment

group with units in the control group. The idea is that units with similar PS values

should have similar distributions on their covariates, if the PS is modeled correctly.

After creating the matched dataset, the ACE can be calculated by comparing the

mean outcomes of each group. It is also possible to combine model-based regression

adjustments with matching (Rubin and Thomas, 2000).

One drawback to matching is that the covariate distributions in the resulting

matched samples may be atypical of the population from which the original full

sample was drawn. The causal effect estimated from the matched sample may

not generalize to the ACE for the whole population. This is not necessarily a

drawback; matching forces the analyst to be realistic about the limitations of the

data, which may not be amenable to estimating an overall population ACE. When

matching cannot estimate the ACE for the whole population, it may provide a

realistic estimate for a smaller subpopulation.

Matching does not easily extend to a continuous treatment, because of the

lack of replication at each particular t ∈ T . Lu et al. (2001) applied matching on
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doses, but they did so by dichotomizing the dose, estimating a quantity comparing

high and low doses rather than the ADRF.

2.2.4.2 Subclassification

Propensity-score subclassification was originally proposed by Rosenbaum and

Rubin (1983, 1984) to adjust for the selection bias. In this method, the PS is

estimated and then units are divided into groups with similar propensities, usually

based on quantiles of the estimated PS values. The number of classes may depend

on the size of the data set, but many analysts use five classes with quintiles of

the PS distribution as endpoints. Units within the same PS subclasses should be

similar in their covariate distributions. Within each subclass, the ACE is estimated

in a straightforward manner, such as the prima facie method, although regression

adjustments could also be used. To get the overall estimate of the ACE, the subgroup

estimates are combined by a weighted average depending on subclass size,

ÂCE =
∑
s

Ns

N
θ̂s, (2.5)

where s is subclass index, Ns is the number of units in subclass s, N is the total

sample size, and θ̂s is the ACE estimate within subclass s.

2.2.4.3 Weighting

Another method used to remove the bias attributable to covariate imbalance is

to apply weights derived from propensity scores to units (Robins et al., 2000). The

weighting procedure expands each treatment group (Ti = 0 or Ti = 1) in the sample

to a pseudo-population that mimics the properties of the overall population. The

weighting procedure starts by estimating the PS. Each unit in the Ti = 1 group is

assigned a weight proportional to 1/πi, and each unit in the Ti = 0 group is assigned
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a weight proportional to 1/(1−πi). This technique bears a strong resemblance to the

Horvitz-Thompson weighting method used in sample surveys (Horvitz and Thomp-

son, 1952). Units with lower probabilities of getting selected into their respective

treatment group will have more weight allocated to them, whereas units with higher

probabilities of selection will be assigned less weight. In other words, the weights

correct the distortions that arises from differential probabilities of selection. This

method implicitly assumes that the probability of treatment is modeled correctly,

and if so, then the weighting process will make the observational data appear to

come from a randomized trial (Hernan and Robins, 2016).

Let wi(1) = 1/πi = 1/P (Ti = 1|Xi) and wi(0) = 1/(1 − πi) = 1/P (Ti =

0|Xi), where wi(t) represents the weight of unit i at treatment level t. The inverse

probability of treatment weighting estimator for the ACE is

ÂCE =

∑
11(Ti = 1)Yiwi(1)∑
11(Ti = 1)wi(1)

−
∑

11(Ti = 0)Yiwi(0)∑
11(Ti = 0)wi(0)

, (2.6)

where summations are taken over the entire sample.

2.2.5 Dual-modeling techniques

2.2.5.1 Dual-modeling background

In the previous sections, we reviewed methods for estimating an ACE based on

models for the outcome (regression adjustment and ANCOVA) and methods based

on models for the treatment assignment mechanism (propensity-based matching,

subclassification, and weighting). In recent years, it has become increasingly popular

to combine the two types of models into a single estimator that protects against bias

due to model misspecification. These dual-modeling approaches have a property

known as double robustness, which means that they remain consistent if either

of the two models has been correctly specified (Van der Laan and Robins, 2003).
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Tsiatis (2007) provides theory for a wide range of semiparametric estimators, some of

which are doubly-robust, that are applicable to incomplete-data and causal inference

problems, based on the idea of influence functions.

2.2.5.2 Weighted residual bias correction

Weighted residual bias correction is a dual-modeling strategy that has two

components: an outcome regression component and a bias correction component.

The outcome regression component relates covariates and treatment to the outcome,

and the bias correction component relates covariates to treatment selection. The

resulting estimates are asymptotically unbiased if either of these two models are cor-

rectly specified. The general form of the weighted residual bias correction estimator

is

ÂCE =
1

N

∑
i

(Ŷi(1)− Ŷi(0)) +

∑
i Tiπ̂

−1
i ε̂i(1)∑

i Tiπ̂
−1
i

−
∑

i(1− Ti)(1− π̂i)−1ε̂i(0)∑
i(1− Ti)(1− π̂i)−1

, (2.7)

where Ŷi(t) is a regression prediction for Yi(t), t = {0, 1} based on an outcome

regression model, and ε̂i(t) = Ŷi(t)− Yi(t) is the residual for unit i under treatment

t. The first term in (2.7) is the standard regression estimate, the second term is the

bias correction for E(Yi(1)) and the third term is the bias correction for −E(Yi(0)).

If either the outcome model or the treatment allocation model are correctly specified,

then the estimates will be unbiased.

Weighted residual bias correction has strong connections to the generalized

regression (GREG) estimator in survey statistics literature (Deville and Särndal,

1992). In the survey context, weights come from the sample design. Tan (2010)

shows that doubly robust estimators have additional desirable properties, other

than consistency, if either the propensity score or outcome regression models are

correct.
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2.2.5.3 Weighted regression estimation

Weighted regression estimation is a doubly robust estimator that uses inverse

probability weights in a model for outcome prediction (Schafer and Kang, 2008).

This method is similar to regression estimation, but includes weights in the estima-

tion step to give consistent estimates of the regression coefficients that one would

get by fitting the outcome regression models to the full population. The weighted

estimate of the coefficients for the model predicting Yi(1) is

β̂1 wt =

(∑
i

Tiπ̂
−1
i X iX

T
i

)−1(∑
i

Tiπ̂
−1
i X iYi

)
, (2.8)

and the weighted estimate of the coefficients for the model predicting Yi(0) is

β̂0 wt =

(∑
i

(1− Ti)(1− π̂i)−1X iX
T
i

)−1(∑
i

(1− Ti)(1− π̂i)−1X iYi

)
(2.9)

Once the parameters are estimated for each of these potential outcome models, the

regression predictions for Yi(1) and Yi(0) are computed for each unit. The average

difference in these predictions estimates the ACE,

ÂCE =
1

N

N∑
i

(
XT

i β̂1 wt −XT
i β̂0 wt

)
. (2.10)

2.2.5.4 Regression estimation with propensity-related covariates

The regression models used for the estimator in (2.4) may have incorrectly

specified the relationship between the potential outcomes and the covariates, causing

the estimate of the ACE to be biased. Another way to remedy this problem is

by including propensity-related covariates (Little and An, 2004; Schafer and Kang,

2008). The outcome Yi is regressed on Ti,X i, and covariates related to the estimated
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PS. Little and An (2004) allow the mean response to vary with propensities in

a flexible way using cubic splines. Kang and Schafer (2007) recommend adding

dummy variables that identify propensity classes where units have homogeneous

propensities, which is equivalent to fitting a piecewise constant function (i.e. a

zero-order spline).

2.3 Estimating causal quantities when the treatment is continuous

2.3.1 Difficulties with the continuous treatment

As we have mentioned, when the setting changes from a binary treatment to

a continuous one, the number of potential outcomes for each unit becomes uncount-

ably infinite, and the data available at any particular treatment value t become

sparse. The strategy of matching units with similar covariates, but with different

treatment levels is more difficult in the continuous-treatment setting, because the

treatment values (doses) reflected in the matches would need to span the domain

T . Hypothetically, if the amount of data collected were very large, then for each

fixed level of covariates, it would be possible to find units with different treatment

levels and be able to trace out the unit-level dose-response function. With realistic

sample sizes, however, this is usually impossible. The sparsity of data at or near any

particular dose t also makes it difficult to extend methods based on regression pre-

diction, subclassification, or weighting, as we have previously mentioned. Moreover,

there is no single way to extend the propensity score to a continuous treatment; at

least two generalizations have been proposed (Hirano and Imbens, 2004; Imai and

van Dyk, 2004).

Thus far, most of the methods proposed for continuous treatments have not

assumed that the ADRF follows any particular parametric form. Parametric as-

sumptions can provide more structure and make the problem more tractable. If no
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parametric form is assumed, the space of possible answers becomes much larger and

the solution is more difficult to pinpoint.

2.3.2 Methods based on outcome prediction models

Hill (2011) proposed using Bayesian additive regression trees (BART) for

causal inference. BART is focused on predicting potential outcomes and does not

require fitting a model for the treatment mechanism. BART accommodates large

numbers of covariates, and can handle binary, categorical, and continuous treat-

ments. However, current implementations of BART require the outcome variable to

be continuous.

BART can be regarded as a Bayesian adaptation of a random forest (Chipman

et al., 2010). It averages the predictions over a space of regression trees, and the

influence of each tree is modified by a regularization prior so that each tree only

contributes a small amount to the overall fit. The priors are also designed to avoid

overfitting the data (Chipman et al., 2010).

In effect, BART fits a response surface to predict E(Yi(t)|X i = x) over the

space of t and x. The trees used to construct these predictions are simulated

from a posterior distribution of trees using an elaborate Markov chain Monte Carlo

(MCMC) procedure.

Although most applications of BART have been for the binary treatment set-

ting, Hill (2011) also mentions an extension to a continuous treatment. Instead of

estimating an ADRF, Hill (2011) compares the outcomes of units with treatment

level Ti = t to their outcomes had they received Ti = 0 (or some other meaningful

baseline). The actual comparison is between Yi(0)|(Ti = t) and Yi(t)|(Ti = t). In

other words, the causal comparison is the outcome for units that received a given

treatment dose with what their outcome would have been had they received no dose.

Hill (2011) reports that this method performs well in simulation studies. A
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major drawback of BART is the large amount of computing resources needed, espe-

cially as the number of covariates grows.

2.3.3 Methods based on treatment-focused models

2.3.3.1 Generalizing the propensity score to the continuous-treatment

setting

For the continuous-treatment setting, Hirano and Imbens (2004) defined the

generalized propensity score (GPS) as the treatment assignment density evaluated

at a particular treatment value and set of covariates. This requires a model for the

conditional distribution of Ti given X i. When evaluated at the realized X i and

any specific t, the GPS becomes a random variable that can be used to balance

covariates. The GPS is defined as r(t,x) = f(Ti = t|X i = x). In applications, the

GPS is applied in two stages. The first stage involves fitting a model to estimate

f(Ti|X i). The second stage uses that model to obtain an estimate of E(Yi(t)) as

we shall describe later.

Another generalization of the propensity score, called the propensity function

(PF), was proposed by Imai and van Dyk (2004). They suppose that the conditional

density of Ti given X i is indexed by a parameter ψ. If this density depends on X i

only through a finite-dimensional quantity π(X i,ψ), then π(X i,ψ) is a PF. Thus,

Imai and van Dyk (2004) make the extra assumption that the density of Ti given X i

is uniquely parametrized by π(X i,ψ), which uniquely identifies the PF, π(X i,ψ).

In other words, identifying π(X i,ψ) will specify the propensity function. In many

cases, the parameter π(X i,ψ) will be a scalar value which distills all the information

in Xi into a single number. For example, if f(Ti|X i) is modeled as a normal linear

regression with a constant variance, N (XT
i β, σ

2), then ψ = (β, σ2), and the linear

predictor becomes a scalar PF, π(X i,ψ) = XT
i β. This dimension reduction greatly
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simplifies the problem of estimating causal effects.

Imai and van Dyk (2004) show that, under strong ignorability, the PF has

two key properties. First, it is a balancing score, meaning that conditionally given

the PF, the treatment is independent of the covariates. Second, given the PF, the

treatment assignment is strongly ignorable, Ti ⊥⊥ Yi|π(X i,ψ). In other words,

the low-dimensional PF is capable of removing all the bias in a causal comparison

attributable to the higher dimensional X i. In actual applications, the PF is not

known and must be estimated by fitting a model P (Ti = t|X i;ψ) to sample data

(X i, Ti), i = 1, . . . , N and using a plug-in estimate of the parameter ψ̂. We will

denote the estimated PF by π(X i, ψ̂) = π̂i, or π̂i for a scalar.

When fitting the treatment model, there are many possible methods. To

evaluate the treatment model fit, covariate balance is a key criterion. There is no

clear consensus for checking covariate balance in the continuous treatment setting.

It is a topic of current research, but some different ways are described in Hirano and

Imbens (2004); Imai and van Dyk (2004); Flores et al. (2012).

2.3.3.2 Inverse probability of treatment weighting

For the binary treatment setting in section (2.2.4.3), we described a weighting

procedure that starts by estimating the propensity π(Xi) = P (Ti = 1|X i) of getting

the treatment, and then weighting the units that received the treatment by 1/πi and

weighting the units that did not receive the treatment by 1/(1−πi). This weighting

is similar to the Horvitz-Thompson weighting (Horvitz and Thompson, 1952) in

survey methodology. Units with lower probabilities of selection in the sample will

receive more weight because they are rare, whereas units that have high probability

of selection will be well represented in the sample and so will be assigned less weight.

This method assumes that the probability of treatment is modeled correctly.

42



Robins et al. (2000) take this idea of weighting and apply it to the continuous-

treatment setting under an assumed parametric form for the ADRF. For example,

if we suppose that the function is linear, µ(t) = θ0 + θ1t, the method estimates θ0

and θ1 by a least-squares calculation that minimizes

N∑
i

wi(Ti)(Yi − θ0 − θ1Ti)2, (2.11)

where wi(Ti) is a weight. This will lead to µ̂(t) = θ̂0 + θ̂1t. Alternatively, if we

suppose that µ(t) = θ0 + θ1t+ θ2t
2, we minimize

N∑
i

wi(Ti)(Yi − θ0 − θ1Ti − θ2T 2
i )2, (2.12)

which leads to µ̂(t) = θ̂0 + θ̂1t + θ̂2t
2. Models of this type are called marginal

structural models. If the form of µ(t) has been correctly specified, the parameters

can be consistently estimated by using weights wi(Ti) = 1/P (Ti|X i) from a correctly

specified treatment model.

One problem with using those weights is the possibility of highly variable val-

ues. Weighting by the reciprocals of treatment densities tends to be highly unstable,

and the method is especially sensitive to misspecification of P (Ti|X i) in the extreme

tails. For this reason, Robins et al. (2000) recommend using stabilized weights of

the form wi(t) = g(Ti)/P (Ti = t|X i), where g(Ti) is the marginal density for Ti. As

we will show in the next chapter, this weighting scheme bears a strong similarity

to the well known simulation method called importance sampling. The stabilized

weights are intended to adjust the fit to what it might have been had the treatment

been assigned independently of the covariates, that is, if it had been distributed

according to g(Ti) rather than P (Ti|X i).
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2.3.3.3 Method of Imai and van Dyk

After introducing the PF, Imai and van Dyk (2004) describe its use in causal

inference. They recommend subclassifying units based on the PF and estimat-

ing causal effects within these subclasses. If the PF model is correctly specified,

then within each subclass the covariates are distributed evenly across target groups.

Within each subclass, the outcome can be modeled as a function of treatment such

as Yi = α0 + α1Ti + α2T
2
i + ε. The final step is to combine the estimated function

across subclasses to get an overall estimate, using a weighting scheme based on the

number of observations in each subclass.

A modified version of this method, suggested by Zhao et al. (2014) fits a

smooth coefficient model of the form E[Yi|Ti, θ̂] = j(θ̂) + k(θ̂)Ti where j and k

are assumed to be smooth but are not otherwise specified, and θ̂i is an estimated

PF. This smooth-coefficient model is less rigid than subclassification. It allows the

estimates to change gradually as θ changes. In order to estimate the ADRF, the

predictions induced by the smooth-coefficient model are averaged over the empirical

distribution of X i. For example, the set of steps for estimation in this method are:

1. Fit a model to describe the treatment given the covariates, and extract the

propensity function θ̂ψ(Xi).

2. Fit an observable model Yi|(θ̂ψ(Xi), Ti) = f(θ̂ψ(Xi), Ti), and estimate the

model f̂(·)

3. Calculate the estimated ADRF as Ê[Yi(t)] = 1
n

∑n
i=1 f̂(θ̂ψ(Xi), t) at each par-

ticular t value of interest.

This method can be regarded as a hybrid of methods from Hirano and Imbens (2004)

(which we describe next) and Imai and van Dyk (2004). The outcome model used

in Step 2 can be a flexible model (e.g., a generalized additive model). It is also
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possible to include additional components or functions of X i in the outcome model

when modeling the relationship between Yi and Ti, which may increase efficiency.

2.3.3.4 Method of Hirano and Imbens, including modifications

Hirano and Imbens (2004) (HI) introduced an imputation-type method that

includes a GPS component. The idea is to fit a parametric model to the observed

outcomes, including the estimated GPS (a function of t) as a predictor, and use the

model to predict missing potential outcomes at specific values of t.

The method requires several steps. First, a model is used to relate treatment

to the recorded covariates. For example, Ti|Xi ∼ N (XT
i β, σ

2). We estimate the

parameters of this model. Next, the GPS for each unit is computed under the

model, for example,

R̂i(t) =
1√

2πσ̂2
e−

(t−XTi β̂)2

2σ̂2 , (2.13)

using the estimated parameters. These GPS estimates become predictors in the

outcome model. The outcome is modeled as a function of Ti and R̂i parametrically.

For example,

E[Yi|Ti, Ri] = α0 + α1Ti + α2T
2
i + α3R̂i + α4R̂

2
i + α5R̂iTi. (2.14)

After collecting the estimated parameters in the outcome and treatment models,

we plug in the treatment values into the model to predict the unknown potential

outcomes of each unit at a given treatment level. For example, if we plug Ti = t

into the estimated models, each unit will have a potential outcome estimated at

treatment level Ti = t,

Ŷi(t) = α̂0 + α̂1t+ α̂2t
2 + α̂3R̂i(t) + α̂4R̂

2
i (t) + α̂5R̂i(t)t. (2.15)
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The final step is to aggregate these estimated potential outcomes to get an average

treatment effect at dose level Ti = t. The mean outcome at dose level Ti = t is given

by

µ̂(t) =
1

N

N∑
i

α̂0 + α̂1t+ α̂2t
2 + α̂3R̂i(t) + α̂4R̂2

i(t) + α̂5R̂i(t)t. (2.16)

Different treatment levels t are plugged into (2.15) and (2.16) to trace out an esti-

mated ADRF. These models can be made more flexible by including more higher

order terms and interactions, or by fitting generalized additive models. The treat-

ment models may also be made more flexible.

Moodie and Stephens (2012) extended this method to the longitudinal setting

to estimate the direct effect of a continuous treatment on a longitudinal response.

They formulate a GPS approach that is suitable for the analysis of repeated mea-

sures response data with interval dependent treatments. Their example, which has

two time intervals, estimates the potential outcomes at the first time interval and

includes them as predictors for the second time interval.

2.3.3.5 Method of Flores et al.

Flores et al. (2012) observe that a Horvitz-Thompson style weighting scheme

can be applied to a continuous treatment by weighting units inversely proportional

to the GPS at any given dose level, and then smoothing over the dose levels with a

kernel-type method used in scatterplot smoothing.

Imagine a setting with three treatment values. The estimate for µ(1) is

∑
11(Ti = 1)Yiwi(1)∑
11(Ti = 1)wi(1)

, (2.17)
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when µ(2), use ∑
11(Ti = 2)Yiwi(2)∑
11(Ti = 2)wi(2)

, (2.18)

and when µ(3), use ∑
11(Ti = 3)Yiwi(3)∑
11(Ti = 3)wi(3)

(2.19)

with wi(t) = 1/P (Ti = t|Xi). If the treatment is truly continuous, then the proba-

bility of getting a particular treatment level is zero. The expressions with indicator

functions above will be zero almost surely. To get around this problem, a possible

option is to group units into bins based on treatment but then make the bins more

and more narrow to resemble the continuous treatment setting. Conceptually, when

there is a finite number of treatments such as t ∈ {1, 2, . . . , N}, we can imagine

a histogram with N bars with the area of each bar representing the probability of

getting a particular treatment level. We have
∑

j Pr(Ti = j) = 1 but for the con-

tinuous treatment setting,
∫
T f(t)dt = 1. An example of how to approximate the

histogram with the smooth curve is P (Ti ∈ ∆|X) ≈ 2hRt
i, where h is a sequence

of numbers tending to 0 as N → ∞ and ∆ = [t − h, t + h] describes the region of

interest around t. An estimator of the DRF is

µN(t) =
1

N

∑N
i=1 11(Ti ∈ ∆)Yi

2hR̂t
i

. (2.20)

As the number of subclasses increases, ∆ → 0, and an estimator of µ(t) that can

smooth out the relationship between t and Yi is

µ(t) =

∑N
i=1Kh(Ti − t)Yiwi(t)∑N
i=1Kh(Ti − t)wi(t)

, (2.21)

with Kh(Ti− t) being a kernel function such as a Gaussian kernel, triangular kernel

density, or other shape. Instead of only looking at each set of units that lie within

∆ for each t, a kernel function can be used to give more influence to units closer to
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t than farther away (the kernel function would give more weight to units closer to

the particular treatment level of interest).

In a slight variation, let K̃h(Ti − t) = Kh(Ti − t)/R̂T
i = Kh(Ti − t)ŵi(Ti = t),

then an estimate of µ(t) is

µ̂(t) =

∑N
i=1 K̃h(Ti − t)Yi∑N
i=1 K̃h(Ti − t)

. (2.22)

This method is an adaptation of the Nadaraya-Watson estimator (Nadaraya, 1964)

which is a local constant regression but weighted by the inverse of the GPS. Another

method described by Flores et al. (2012) is to use a local linear regression that takes

the form

µ̂(t)IW =
D0(t)S2(t)−D1(t)S1(t)

S0(t)S2(t)− S2
1(t)

, (2.23)

where Sj(t) =
∑N

i=1 K̃h,X(Ti − t)(Ti − t)j and Dj(t) =
∑N

i=1 K̃h,X(Ti − t)(Ti − t)jYi.

Flores et al. (2012) also suggests semiparametric or nonparametric outcome

models based on splines. These are also described in the Stata program in Bia et al.

(2014). These methods are an extension of the version in Hirano and Imbens (2004)

and allow for spline based terms of the GPS and t.

2.4 Discussion

The different estimators summarized in this chapter show the variety of options

currently available. In the next chapter, we present new methods for estimating an

ADRF that assumes the ADRF follows a parametric form.
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Chapter 3: Causal inference with a continuous treatment and out-

come: alternative estimators for parametric dose-response

functions

3.1 Introduction

3.1.1 Parameterizing the dose response function

Previous strategies for estimating an ADRF make minimal assumptions about

the shape of Yi(t). In contrast, we will suppose that Yi(t) =
∑k

j=1 θij bj(t) = θ>i b(t),

where b(t) = ( b1(t), . . . , bk(t) )> is a vector of known basis functions, and θi =

(θi1, . . . , θik)
> is a vector of real-valued coefficients specific to unit i. An important

special case is b(t) = (1, t)>, which specifies linear paths whose intercepts and slopes

may vary. Higher-order polynomial and spline (piecewise polynomial) models can

also be expressed in this form. The observed outcome is Yi = Yi(Ti) = θ>iBi, where

Bi = b(Ti) = (Bi1, . . . , Bik)
>. Letting ξ = E(θi), inference for µ(t) = ξ>b(t)

becomes a matter of estimating ξ = (ξ1, . . . , ξk)
>. When b(t) = (1, t)>, attention

is focused on ξ2, the increase in average response produced by increasing the dose

from t to t+ 1 for any t.

For a useful parallel to binary treatments, imagine Bi = (Ti, 1 − Ti)>, θi =

(Yi(1), Yi(0))>, and Yi = TiYi(1) + (1 − Ti)Yi(0). In that setting, Ti plays the role

of a missing-data indicator, exposing one of the potential outcomes and hiding the

other. With a continuous treatment, Ti filters Yi(t) to reveal a randomly selected
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linear combination of the components of θi. Inference about ξ is no longer a problem

of missing data per se, but an example of the more general concept of coarsened

data (Heitjan and Rubin, 1991).

Some may question the value of modeling Yi(t) when we observe this function

only at a single t. This is similar to positing a joint distribution for Yi(1) and Yi(0)

in the binary case. By restricting Yi(t) to lie within M = {θ>b(t) : θ ∈ Rk}, we

reduce the infinite-dimensional Yi(t) to a k-dimensional vector, simplifying the task

of modeling it. Although Yi(t) ∈ M cannot be refuted, we may test µ(t) ∈ M

against a more general alternative by adding basis functions and testing the new

components of ξ to see if they are nonzero. For example, if b(t) = (1, t)> does not fit,

we might switch to b(t) = (1, t, t2)>, or we might apply a monotonic transformation

to the dose and/or response to straighten the relationship. Our assumption Yi(t) =

θ>i b(t) implies Cov(Yi(ti), Yi(t2)) = b(t1)
>V (θi)b(t2), but the estimators we propose

will not require this covariance function to be correct. We could have expanded the

model to Yi(t) = θ>i b(t) + εi(t), where εi(t) is a mean zero process unrelated to

θi, Ti, or X i, and our key results would still hold; this expansion would only add

covariance parameters about which the data provide little or no information. We

assume that all of the unit-level response curves have the same functional form.

Relaxing this assumption is a topic of future research.

Although we have described the dose as continuous, the assumption Yi(t) =

θ>i b(t) also applies when the treatment is multivalued and discrete. If the possible

values of Ti are t1, . . . , tk, then we may use basis functions bj(t) = I(t = tj) for

j = 1, . . . , k, and the parameter of interest becomes ξ = (µ(t1), . . . , µ(tk))
>.

3.2 Simulated example

The simulation described in Chapter 1 will be used for the remainder of this

chapter to evaluate different estimation strategies. The data set contains eight true
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Ai covariates, eight transformed versions of Ai denoted A∗i , Ti, Yi, and the true

individual parameters, θi1 and θi2. The main goal is to estimate the ADRF, which

is θi2, in this parametric example. For details of the simulation, see Section 4.1 in

Chapter 1.

3.2.1 The propensity function

Let P (Ti = t | X i;ψ) denote the probability density for the treatment given

the covariates, indexed by a parameter ψ. If this density depends on X i only

through a finite-dimensional quantity π(X i,ψ), then π(X i,ψ) is called a propensity

function (PF) (Imai and van Dyk, 2004). The PF usually has fewer dimensions than

X i or ψ, and in many cases it will be a scalar. (When the PF is a scalar, we will omit

the boldface and write it as π(X i,ψ).) For example, if the treatment is modeled

by normal linear regression with homoscedastic errors, Ti |X i ∼ N(X>iβ, σ
2), then

ψ = (β, σ2), and the linear predictor π(X i,ψ) = X>iβ or any one-to-one function

of it is a PF.

Under strong ignorability, the PF has two key properties. First, it is a bal-

ancing score; conditionally given the PF, the treatment is independent of the co-

variates. Second, given the PF, the treatment assignment is strongly ignorable,

Ti ⊥⊥ Yi | π(X i,ψ). In typical applications, the PF is unknown and must be esti-

mated by fitting a model P (Ti = t | X i;ψ) to sample data (X i, Ti), i = 1, . . . , N

and plugging in the estimated parameter ψ̂. We denote the estimated PF by

π(X i, ψ̂) = π̂i, or π̂i if it is a scalar.

Imai and van Dyk (2004) estimate causal effects by subclassification of the

PF. After fitting a treatment model, they divide the sample into groups where

the π̂i’s are roughly constant; they estimate the effects independently within each

group and average the effects across groups. They also describe a flexible smooth

coefficient model that parameterizes the causal effects and allows them to vary
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Table 3.1: Classification of N = 200 sample observations by quantiles of the
estimated propensity function π̂i and realized dose Ti.

Percentiles of Ti

Percentiles of π̂i 0–20 20–40 40–60 60–80 80–100

0–20 25 11 4 0 0
20–40 11 15 11 3 0
40–60 4 6 16 10 4
60–80 0 7 8 13 12

80–100 0 1 1 14 24

smoothly with the π̂i’s. That method is similar in spirit to a technique that we

describe in Section 3.3.8.

The π̂i’s are also useful for exploratory work. They help us to diagnose situa-

tions where causal inference requires extrapolation to regions of the covariate space

where data are sparse. The balancing-score property implies that, in any group

where the PF is constant, the treatment is unrelated to any covariate. Testing for

associations between Ti and functions of X i within subclasses of π̂i is useful for

checking the adequacy of a treatment model.

In our simulated example, E(Ti | A∗i ) = 12 +A∗i1 +A∗i2/2 +A∗i3/3 +A∗i4/4 is a

true PF. Because the A∗ij’s are hidden from view, we imagine that an analyst would

estimate the PF by regressing Ti on Ai1 . . . , Ai8 and use the fitted values as π̂i’s. We

did this for the sample of N = 200 shown in Figure 5 of Chapter 1, and then we

assigned the units to categories defined by the sample quintiles of the π̂i’s and the

Ti’s. Frequencies for this cross-classification are shown in Table 3.1. The proportion

of variance in Ti’s explained by this model is moderately high (R2 = 0.66), leading

to a high concentration in cells near the main diagonal. If we were to estimate the

ADRF within subclasses of the PF, this table reveals that no data are available

for directly estimating E(Yi(t) | π̂i) for low values of π̂i and high values of t, and

vice-versa; casual inference in those regions requires extrapolation. Within each π̂i-
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class, however, there is adequate information to estimate a linear trend over regions

of dose where the Ti’s are seen. If those trends look similar across π̂i classes, then

it seems reasonable to pool across classes to estimate a common dose effect, and

extrapolation becomes less worrisome.

To investigate this, we regressed Yi on Ti, dummy indicators for the π̂i classes,

and the products of Ti with the dummy indicators. A test for equality of slopes

gave an F -statistic of 1.45 with (4, 190) degrees of freedom (p = 0.22). Evidence

against equality is weak, and we will proceed to fit one ADRF for the population.

If the variation across classes of π̂i were significant, an analysis that estimated a

single ADRF would not be invalidated, because our model does not suppose that

treatment effects are homogeneous. However, there may be situations where varia-

tion in treatment effects across subclasses is so large that an aggregate ADRF could

be misleading. The methods we will describe for estimating an ADRF may be ex-

tended to allow the dose-response relationship to vary in relation to the PF or other

moderator variables, but those extensions are beyond the scope of this chapter.

3.3 Estimation

3.3.1 The prima facie estimator

A naive approach to estimating ξ is to ignore the covariates and regress Yi on

Bi = b(Ti). Using ordinary least squares (OLS), this estimator is

ξ̂ =

(
N∑
i=1

BiB
>
i

)−1( N∑
i=1

BiYi

)
. (3.1)

Adapting terminology from Holland (1986), we call (3.1) the prima facie estimator;

it would be consistent if Ti and θi were independent.

The performance of (3.1) over 1,000 samples from our artificial population is
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Table 3.2: Performance of the prima facie estimator for ξ2 over 1,000 samples from
the artificial population.

Sample size Bias Var. % Bias RMSE MAE

N = 200 7.05 0.350 1,190 7.08 7.06
N = 1, 000 7.06 0.063 2,820 7.07 7.05

summarized in Table 3.2. “Bias” is the average difference between the estimated

slope parameter ξ̂2 and the true value ξ2 = 0; “Var.” is the variance of ξ̂2;

“% Bias” is the bias expressed as a percentage of ξ̂2’s standard deviation; “RMSE”

is the square root of the average value of the squared error (ξ̂2−ξ2)2; and MAE is the

median value of the absolute error |ξ̂2−ξ2|. Percent bias gives some indication of how

badly the bias affects inferences about ξ; a useful rule-of-thumb is that confidence

intervals and hypothesis tests are seriously impaired when % Bias exceeds 50. MAE

is a robust measure of precision unaffected by gross errors that occur in estimation

procedures that occasionally go haywire. The prima facie estimator is badly biased

whether N = 200 or N = 1, 000 and its use is not recommended. We present these

results mainly as a benchmark to assess the improvement of alternative methods.

Despite its poor performance, the prima facie method has one important

virtue: it does not obscure the dose-response relationship by fixing covariates. Many

data analysts adjust for confounders by including them on the right-hand side of

a regression formula for predicting Yi. That method creates a conceptual problem.

The population ADRF describes the marginal distribution of Yi(t), which requires

averaging over covariates, not conditioning on them. In special cases, averaging and

conditioning lead to the same answer, but conceptually they are very different, and

this difference often goes unappreciated. To avoid this confusion, we will not modify

the prima facie estimator by merely adding covariates to the regression formula.
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3.3.2 Estimating functions

The prima facie estimator (3.1) is the solution to U(ξ) =
∑N

i=1U i = 0, where

U i = U i(ξ) = Bi(Yi − B>i ξ) = BiB
>
i (θi − ξ) is a vector of estimating func-

tions. Estimators of this type, which are called generalized method-of-moments or

Z-estimators, are
√
N -consistent and asymptotically normal if the components ofU i

have expected values of zero when evaluated at the true ξ (Newey and McFadden,

1994; Van der Vaart, 2000) . In some cases, the mean-zero property requires know-

ing another finite-dimensional parameter φ, and the estimating function becomes

U i = U i(ξ, φ̂), where φ̂ is a
√
N -consistent estimate of φ. For our purposes, we

will assume that the regularity conditions for consistency (e.g., Jesus and Chandler

(2011)) are satisfied, and we will not compute variance estimates. Variances are not

difficult to derive, but in this chapter, performance of point estimates is our main

concern.

Because Bi is a function of Ti, it is easy to see that the prima facie estimating

function has mean zero if Ti and θi are independent. Under the weaker condition

Ti ⊥⊥ θi |X i, there are multiple ways to modify the estimating function to give it a

zero mean.

3.3.3 Importance weighting

For a related class of problems called marginal structural models, Robins et al.

(2000) applied a modified estimating function of the form

U i =
P (Ti)

P (Ti |X i)
Bi(Yi − B>i ξ), (3.2)

where P (Ti |X i) is the conditional density for Ti givenX i, and P (Ti) is the marginal

density for Ti. The solution to
∑N

i=1U i = 0 is the vector of coefficients from the

weighted least-squares (WLS) regression of Yi on Bi, with weights
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P (Ti)/P (Ti |X i). RHB call these the stabilized weights, claiming that they improve

upon the unstabilized versions 1/P (Ti |X i). Zhu et al. (2015) used (3.2) to estimate

an ADRF by combining a spline basis in Bi with a generalized boosting algorithm

for estimating P (Ti |X i).

This technique is related to importance sampling (Hammersley, 2013). The

goal of importance sampling is to approximate Ep(f(Z)), where f is a function

and Z is a random vector with density p. One simulates a sample Z1, . . . ,ZN

from another density q, and by the law of large numbers, the weighted average

N−1
∑N

i=1wif(Zi) approaches Ep(f(Z)) as N → ∞, where wi = p(Zi)/q(Zi) is

the ratio of the target density to the actual density. For importance sampling to

work, the support of q needs to cover that of p, and the method is efficient when q

resembles p over the high-density regions. Applying this idea to (3.2), we see that

the weights adjust the expectation of the prima facie estimating function to what it

would be if the triplet (X i, Ti, Yi) had been sampled from a target population where

Ti is independent of X i — which, by strong ignorability, makes it independent of

θi as well. The non-stabilized weights use a uniform density for Ti as the target,

whereas the stabilized weights use P (Ti), which should be closer to P (Ti |X i) and

therefore more efficient.

In our example, a reasonable way to apply (3.2) is to estimate P (Ti) by

the density of a normal variate with mean T̄ = N−1
∑N

i=1 Ti and variance (N −

1)−1
∑N

i=1(Ti − (̄T ))2, and to estimate P (Ti |X i) by the normal density with mean

T̂i and variance (N − 9)−1
∑N

i=1(Ti− T̂ )2, where T̂i is the fitted value from the OLS

regression of Ti on covariates. We tried a condition where the treatment or T -model

is correct, regressing Ti on A∗i1, . . . ,A
∗
i8, and a condition where the T -model is incor-

rect, regressing Ti on Ai1, . . . ,Ai8. Performance measures for these conditions are

shown in Table 3.3. Comparing these results to those of the prima facie estimator,

we see that the bias has been reduced by more than half. Unfortunately, these bias
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Table 3.3: Performance of the importance-weighted estimator for ξ2 over 1,000
samples from the artificial population.

Sample size T -model Bias Var. % Bias RMSE MAE

N = 200 Correct 3.29 4.61 153 3.93 3.72
Incorrect 3.41 4.07 169 3.96 3.69

N = 1, 000 Correct 2.37 2.71 144 2.89 2.76
Incorrect 2.68 3.88 136 3.32 2.97

reductions are accompanied by huge increases in variance. These variances do not

drop as much as we would ordinarily expect as N increases from 200 to 1,000.

This is a classic case where importance sampling fails, because the target

density P (Ti) is more diffuse than the actual density P (Ti |X i), causing the weights

to be highly variable. The efficiency of importance sampling, relative to sampling

N observations directly from the target, is 1/(1 + CV(w)2), where CV(w) is the

coefficient of variation of the weights (Kong et al., 1994). Efficiency drops rapidly

as the fit of the T -model improves. When R2 from the T -model is 0.2, the relative

efficiency is approximately 0.6, and when R2 = 0.4, it is about 0.1, but in our

example, R2 exceeds 0.6, making the procedure very inefficient. Even when R2 is

low, the weights are sensitive to misspecification of the tails of P (Ti |X i). For these

reasons, we do not recommend importance weighting for a continuous treatment.

3.3.4 Inverse second-moment weighting

Fortunately, there is another weighting scheme that is more stable than im-

portance weighting and does not rely on a full density P (Ti | X i). Consider the

observable random vector BiYi = BiB
>
i θi. Under strong ignorability, the mean

of BiYi is E[E(BiYi|X i) ] = E[E(BiB
>
i |X i)E(θi|X i) ]. If we premultiply by the

matrix Wi = [E(BiB
>
i |X i) ]−1, which is a function of X i but not Ti or θi, we get
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a new random vector WiBiYi whose mean is

E[WiE(BiB
>
i |X i)E(θi|X i) ] = E[E(θi|X i) ] = ξ. (3.3)

Defining a new estimating function U i = (WiBiYi − ξ) and solving
∑N

i=1U i = 0

gives

ξ̂ =
1

N

(
N∑
i=1

WiBiYi

)
. (3.4)

This method, which we call inverse second-moment weighting, is a natural extension

of inverse probability of treatment weighting (IPTW) for a binary Ti (Hirano and

Imbens, 2001). (Replacing Bi with (Ti, 1− Ti)> and Yi with TiYi(1) + (1− Ti)Yi(0)

gives the usual IPTW estimator.) A modified version of (3.4) that normalizes the

weights is

ξ̂ =

(
N∑
i=1

WiBiB
>
i

)−1( N∑
i=1

WiBiYi

)
, (3.5)

which can be regarded as the solution to
∑N

i=1U i = 0 for Ui = WiBi(Yi −B>i ξ).

Note that (3.5) is not a typical WLS regression; the weight applied to unit i is not

a scalar but a matrix, and the “information”
∑

iWiBiB
>
i is asymmetric.

To use (3.4) or (3.5), we need to supply expected values forBiB
>
i , i = 1, . . . , N

by fitting a model to predict Ti from X i. For example, if Bi = (1, Ti)
>, the T -

model would have to consistently estimate E(Ti|X i) and E(T 2
i |X i) = Var(Ti|X i) +

[E(Ti|X i)]
2. If the T -model is a linear regression with homoscedastic errors, we

may set E(Ti|X i) to the ith fitted value and Var(Ti|X i) to the estimated residual

variance.

We applied inverse second-moment weighting to our simulated example using a

correct T -model (regressing Ti on A∗i1, . . . , A
∗
i8) and an incorrect T -model (regressing

Ti on Ai1, . . . , Ai8). The performance of the normalized estimator (3.5) is summa-

rized in Table 3.4; results for the non-normalized version (3.4) were very similar and
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Table 3.4: Performance of the inverse second-moment weighted estimator for ξ2
over 1,000 samples from the artificial population.

Sample size T -model Bias Var. % Bias RMSE MAE

N = 200 Correct −0.007 0.164 −1 0.405 0.274
Incorrect 0.691 0.480 100 0.978 0.706

N = 1, 000 Correct −0.001 0.029 −0 0.171 0.112
Incorrect 0.714 0.091 236 0.775 0.711

are not shown. When the T -model is correct, the estimator is unbiased and has

smaller variance than the prima facie method. When the T -model is wrong, bias

appears and variance increases. Even with an incorrect T -model, the bias relative

to the prima facie method has dropped by about 90%, but for both sample sizes

N = 200 and N = 1, 000, the bias that remains is still large enough to impair

confidence intervals and tests. Nevertheless, even with a misspecified T -model, this

method is far superior to the prima facie estimator and to importance weighting.

Previous work has shown that IPTW for a binary treatment can be unstable;

propensities close to zero or one produce weights that are large and error prone

(Kang and Schafer, 2007). Inverse second-moment weighting for a continuous treat-

ment fares better. To see why, note that in the linear case Bi = (1, Ti)
>, the

determinant of W−1
i = E(BiB

T
i |X i) is Var(Ti|X i). If the T -model is a standard

linear regression, W i will inflate only if R2 → 1, a scenario where causal inference

should not even be attempted.

As basis functions are added to b(t), inverse second-moment weighting becomes

less attractive, because it relies on higher moments of Ti. For the quadratic situation

b(t) = (1, t, t2)>, we would need the T -model to correctly describe E(Tmi | X i) for

m = 1, . . . , 4, which is almost as restrictive as requiring correct specification of the

full density P (Ti |X i).
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3.3.5 Regression prediction

Estimators (3.4)–(3.5) rely on the random vectorWiBiYi whose mean under a

correct T -model is ξ. Alternatively, if we had a model for θi givenX i, we could build

an estimator from θ̂i = E(θi|X i), another function of observed data whose mean is

ξ. Taking U i = (θ̂i − ξ) and solving
∑N

i=1U i = 0 gives ξ̂ = N−1
∑N

i=1 θ̂i. Because

of the one-to-one correspondence between θi and Yi(t), the model for predicting

θi from X i will be called a Y -model. The estimator is consistent if the Y -model

correctly describes E(θi |X i).

To use this regression-prediction method, the parameters of the Y -model must

be estimated. A reasonable starting point for a Y -model is the standard mul-

tivariate regression θi|X i ∼ N(ν + Γ>X i,Σ), where ν (k × 1) and Γ (p × k)

are the parameters of interest, and Σ (k × k) is a nuisance. (The assumptions

of normality and constant covariance are not essential, and we include them only

for illustration.) We can rewrite this model as θi | X i ∼ N(Γ∗>X∗i ,Σ), where

Γ∗> = [ν,Γ>] and X∗>i = (1,X>i ). Under strong ignorability, conditioning on

Ti does not change the model, θi | Ti,X i ∼ N(Γ∗>X∗i ,Σ), which implies that

Yi | Ti,X i ∼ N(B>i Γ∗>X∗i , B
>
i ΣBi ). We can write B>i Γ∗>X∗i = Z>i vec(Γ∗),

where Z>i = (Bi ⊗X∗i )> = (Bi1X
∗>
i , . . . , BikX

∗>
i ), and where vec(·) vectorizes a

matrix by stacking its columns. Therefore, we can estimate Γ∗ by ordinary least

squares,

vec (Γ̂
∗
) =

(
N∑
i=1

ZiZ
>
i

)−1( N∑
i=1

ZiYi

)
, (3.6)

which gives the regression predictions θ̂i = ν̂ + Γ̂
>
X i, i = 1, . . . , N . If the assump-

tions of normality and constant covariance hold, a more efficient estimator than (3.6)

would come from maximizing the joint likelihood for Γ∗ and Σ, which we will not

pursue in this chapter. In this model, each covariate in X i predicts every element of

θi. Simpler models that remove some of the terms from Zi are worth considering,
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Table 3.5: Performance of the regression-prediction estimator for ξ2 over 1,000
samples from the artificial population.

Sample size Y -model Bias Var. % Bias RMSE MAE

N = 200 Correct −0.005 0.157 −1 0.397 0.268
Incorrect 0.616 0.500 87 0.938 0.654

N = 1, 000 Correct 0.000 0.028 0 0.167 0.117
Incorrect 0.660 0.089 221 0.725 0.661

along with strategies for variable selection when the pool of available covariates is

large.

We applied this method to our example using a correct Y -model with X i =

(A∗i1, . . . , A
∗
i8)
> and an incorrect Y -model with X i = (Ai1, . . . , Ai8)

>. Results are

shown in Table 3.5. These results are similar to those in Table 3.4. When the Y -

model is correct, the estimator is unbiased. When the Y -model is wrong, the biases

are similar to those of inverse second-moment weighting under the wrong T -model,

and the variances are also comparable.

3.3.6 Prediction with a residual bias correction

It may be advantageous to build an estimator that combines features of a T -

model and a Y -model. Adapting a strategy from Robins and Rotnitzky (1995), we

may start with an estimating function based on weighting and augment it with a

term that involves prediction,

U i = WiBi(Yi −B>i ξ) + (I −WiBiB
>
i ) (θ̂i − ξ).

Solving
∑N

i=1U i = 0 gives

ξ̂ =
1

N

N∑
i=1

θ̂i +
1

N

N∑
i=1

WiBi(Yi − Ŷi), (3.7)
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Table 3.6: Performance of prediction with residual bias correction estimator for ξ2
over 1,000 samples from the artificial population.

Sample size T -model Y -model Bias Var. % Bias RMSE MAE

N = 200 Correct Correct −0.005 0.157 −1 0.397 0.268
Correct Incorrect 0.043 0.247 9 0.499 0.343
Incorrect Correct −0.003 0.166 −1 0.407 0.268
Incorrect Incorrect 0.616 0.500 87 0.938 0.654

N = 1, 000 Correct Correct 0.000 0.028 0 0.167 0.117
Correct Incorrect 0.009 0.041 4 0.203 0.145
Incorrect Correct 0.000 0.030 0 0.174 0.117
Incorrect Incorrect 0.660 0.089 221 0.725 0.661

where Ŷi = B>i θ̂i. This estimator bears a strong resemblance to general regression

estimators in the survey literature, part of a more general class of calibration es-

timators (Deville and Särndal, 1992). It is doubly robust, which means that it is

consistent if either of the models is true (Scharfstein et al., 1999). If the Y-model

is correct, then the first term in (3.7) is unbiased for ξ and the second term has

mean zero even if the T-model is wrong. If the Y -model is incorrect, the first term

is biased, but the second term gives a consistent estimate of (minus one times) the

bias from the Y -model if the T -model is correct.

The performance of this estimator is shown in Table 3.6 for various combina-

tions of T and Y -models. As predicted by double robustness, the bias vanishes if

either model is correct, but some bias remains if both models are wrong. Comparing

Table 3.6 to Table 3.4, we see the effect of adding a Y -model to a method that relies

on a T -model. If the T -model is correct, we see a small improvement in precision

if the Y -model is correct and a small deterioration in precision if the Y -model is

wrong. If the T -model is wrong, adding a correct Y -model wipes out the bias and

drastically improves the precision. Adding a wrong Y -model to a wrong T -model

gives a slight reduction in bias with little or no increase in variance. Similarly, if we

compare these results to those in Table 3.5, we see the effect of adding a T -model to
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a method that relies on a Y -model. The story is similar; there is a potential for gain

and little risk. The combination of inverse second-moment weighting and regression

prediction does no worse than either method alone, and sometimes it does much

better. In the unfortunate but realistic situation where both models are wrong, a

pernicious bias remains.

3.3.7 Prediction from a weighted regression

For each of our estimators (except for the prima facie method), the estimating

function depends on a T -model and/or a Y -model whose parameters must them-

selves be estimated by another set of equations. For regression prediction, we esti-

mated Γ∗ by regressing Yi on Zi = (Bi ⊗X∗i ), using the estimating function

Si = Zi(Yi −B>i Γ∗>X∗i )

= (Bi ⊗X∗i )(Yi − (Bi ⊗X∗i )>vec(Γ∗) ).

The solution to
∑N

i=1 Si = 0 given by (3.6) may also be written as

vec(Γ̂
∗
) =

(
N∑
i=1

[
(BiB

>
i )⊗ (X∗iX

∗>
i )
])−1 ( N∑

i=1

(Bi ⊗X∗i )Yi

)
.

Suppose we perturb Γ̂
∗

by applying a different fitting criterion so that the new Ŷi’s

cause the second term on the right-hand side of (3.7) to vanish. This is another

way to use a T -model to calibrate a faulty Y -model. The estimating function that

accomplishes this is

Si = Wi(Bi ⊗X∗i )(Yi − (Bi ⊗X∗i )>vec(Γ∗) ),

63



Table 3.7: Performance of prediction from weighted regression estimator for ξ2 over
1,000 samples from the artificial population.

Sample size T -model Y -model Bias Var. % Bias RMSE MAE

N = 200 Correct Correct 0.010 0.212 2 0.461 0.299
Correct Incorrect −0.040 1.472 −3 1.213 0.449
Incorrect Correct −0.025 0.449 −4 0.670 0.351
Incorrect Incorrect 0.767 3.533 41 2.029 0.803

N = 1, 000 Correct Correct −0.000 0.028 −0 0.169 0.115
Correct Incorrect −0.008 0.046 −3 0.215 0.149
Incorrect Correct −0.001 0.042 −0 0.205 0.137
Incorrect Incorrect 0.743 0.093 243 0.803 0.742

and the new solution to
∑N

i=1 Si = 0 is

vec(Γ̂
∗
) =

(
N∑
i=1

[
(WiBiB

>
i )⊗ (X∗iX

∗>
i )
])−1 ( N∑

i=1

[ (WiBi)⊗X∗i ] Yi

)
. (3.8)

To compute (3.8), we first estimate a T -model to obtain the inverse second-moment

weights. After getting (3.8), we obtain regression predictions θ̂i = ν̂ + Γ̂
>
X i for

i = 1, . . . , N , and the resulting estimator ξ̂ = N−1
∑N

i=1 θ̂i is doubly robust. We

applied this method to our example with T and Y -models that are correct and

incorrect (Table 3.7). The pattern of bias is similar to that in Table 3.6, but the

new method is less efficient, especially when N = 200.

3.3.8 Propensity-spline prediction

Little and An (2004) proposed an imputation method that allows the mean of

an incomplete variable to vary as a flexible function of an estimated propensity score.

The method, which they call propensity-spline prediction, produces an estimate of

a population mean that is doubly robust. Schafer and Kang (2008) applied this to

causal inference with a binary treatment, and a similar method can be used with a

continuous treatment.
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The regression prediction method of Section 3.3.5 capitalized on

P (θi | Ti,X i) = P (θi | X i), which follows from strong ignorability. If πi =

π(X i,ψ) is a propensity function as defined in Section 3.2.1, then the same property

holds conditionally on πi, P (θi | Ti,πi) = P (θi | πi). It is possible to construct a

prediction estimator based on a Y -model that allows E(θi | πi) to vary with πi in

a flexible manner. For example, we may create basis functions that span a space of

splines in π̂i, and use this basis instead of X i to predict θi. The resulting estimator

will have low bias if the propensity model is correct, but it may be inefficient, because

X i may carry information about θi beyond π̂i that should not be ignored. A better

strategy is to add π̂i-basis predictors to a Y -model that already contains X i and

proceed with the method of Section 3.3.5 (If the basis includes a term that is linear

in X i, then that term or an element of X i will need to be removed to prevent

collinearity.) If the Y -model is correctly specified before the π̂i-basis is added, no

bias is incurred by the extra terms. If the Y -model is wrong, the extra terms will

reduce the bias if the T -model model is correct.

We applied this method to our example by estimating πi = E(Ti | X i) un-

der a correct T -model (based on A∗i1, . . . , A
∗
i8) and an incorrect T -model (based on

Ai1, . . . , Ai8). For each, we used a natural cubic spline basis with interior knots

at the quintiles of π̂i and boundary knots at the minimum and maximum. We

added the basis functions as predictors to a Y -model that was correct (based on

A∗i1, . . . , A
∗
i8) and a Y -model that was wrong (based on Ai1, . . . , Ai8), removing a

predictor when necessary to prevent collinearity. Results are shown in Table 3.8.

Performance is very similar to regression estimation with a residual bias correction

(Table 3.6). The method is essentially unbiased when the T -model or Y -model is

correct, but harmful bias remains when both models are wrong.

Without explicitly modeling Yi(t), Imai and van Dyk (2004) estimated the

ADRF within subclasses of π̂i and pooled the results across the subclasses. They
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Table 3.8: Performance of the propensity-spline prediction estimator for ξ2 over
1,000 samples from the artificial population.

Sample size T -model Y -model Bias Var. % Bias RMSE MAE

N = 200 Correct Correct −0.010 0.165 −3 0.406 0.282
Correct Incorrect −0.011 0.269 −2 0.518 0.352
Incorrect Correct −0.011 0.169 −3 0.411 0.273
Incorrect Incorrect 0.609 0.544 83 0.956 0.664

N = 1, 000 Correct Correct 0.000 0.028 0 0.167 0.117
Correct Incorrect −0.005 0.036 −2 0.189 0.133
Incorrect Correct −0.000 0.028 −0 0.168 0.117
Incorrect Incorrect 0.646 0.089 217 0.711 0.641

Table 3.9: Performance of the propensity-spline prediction estimator for ξ2 in the
spirit of Imai and van Dyk (2004) over 1,000 samples from the artificial population.

Sample size T -model Bias Var. % Bias RMSE MAE

N = 200 Correct −0.014 0.204 −3 0.452 0.302
Incorrect 0.679 0.532 93 0.996 0.713

N = 1, 000 Correct −0.001 0.028 −0 0.168 0.114
Incorrect 0.707 0.089 236 0.765 0.700

also applied a varying-coefficient model that describes E(Yi(t) | π̂i) as a smooth

function of π̂i and t. Those methods resemble prediction based on a π̂i-spline with

no additional covariates. The performance of prediction from a π̂i-spline alone under

correct and incorrect T -models is shown in Table 3.9. Comparing these results to

Table 3.8, we see that addingX i to propensity-spline prediction can reduce bias and

increase efficiency if the additional predictors are the correct ones (corresponding to

a correct Y -model) but reduce efficiency if they are not. This suggests it may be

fruitful to try an intermediate strategy, beginning with the π̂i basis as the minimal

set of predictors, and adding components of X i only if they substantially improve

the fit.
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3.3.9 Strategies for additional bias reduction

With the exception of importance weighting, all of the methods we tried elim-

inated bias when the crucial modeling assumptions were met. Under more realistic

conditions where the T - and Y -models were misspecified, any of the methods could

remove about 90% of the bias of the prima facie estimator, but the last 10% was still

enough to seriously impair inferences about the parameter of interest. Fortunately,

more strategies for reducing bias are available. For example, when fitting a T -model,

we might search for nonlinear effects and interactions among covariates. Propen-

sity scores for binary treatments have been estimated by neural networks (King and

Zeng, 2001), boosted regression trees (McCaffrey et al., 2004), and machine learning

(Lee et al., 2010), and Zhu et al. (2015) applied boosted regression to a continuous

treatment.

To see if similar strategies could work for our example, we revisited the con-

dition where the T -model (and, where applicable, the Y -model) was incorrect, but

for N = 200, we enriched the T -model by including all two-way interactions among

Ai1, . . . , Ai8; and for N = 1, 000, we included two- and three-way interactions. Re-

sults are shown in Table 3.10. Importance weighting is still unstable, but the bias

of the other methods has been drastically reduced, and in many cases it has fallen

below the threshold (% Bias ≈ 50) where confidence intervals and hypothesis tests

are no longer seriously impaired. Inverse second-moment weighting has the best

RMSE for N = 200, and propensity-spline prediction is best for N = 1, 000. Predic-

tion with residual bias correction performs well at both sample sizes, and prediction

from weighted regression is effective for N = 1, 000 but unstable for N = 200.
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Table 3.10: Performance of estimators for ξ2 over 1,000 samples from the artificial
population using incorrect Y -models (where applicable) and misspecified but rich
T -models.

Sample size Method Bias Var. % Bias RMSE MAE

N = 200 Importance weighting 3.87 2.54 243 4.19 4.10
Inverse second-moment wt. 0.225 0.504 32 0.745 0.491
Pred. + resid. bias correction 0.268 0.496 38 0.753 0.493
Pred. from weighted reg. 0.249 14.9 6 3.87 0.570
Propensity-spline pred. 0.166 0.585 22 0.783 0.531

N = 1, 000 Importance weighting 2.75 1.89 200 3.07 3.07
Inverse second-moment wt. 0.144 0.083 50 0.322 0.215
Pred. + resid. bias correction 0.158 0.082 55 0.327 0.225
Pred. from weighted reg. 0.133 0.087 45 0.324 0.219
Propensity-spline pred. 0.106 0.084 36 0.308 0.204

3.4 Discussion

It has become common practice, especially in epidemiology, to avoid assump-

tions about unit-level causal effects and define the parameters of interest as con-

trasts among average potential outcomes in a population (Maldonado and Green-

land, 2002). In contrast, we mapped the Yi(t)’s to random vectors in Rk and then

averaged these vectors to obtain population-level marginal effects. This mapping

leads to a new method of inverse second-moment weighting that improves upon the

importance weights of Robins et al. (2000) when the treatment variable is contin-

uous. The mapping also facilitates prediction-based and dual-modeling approaches

that are described here for the first time.

Because this work is still at an early stage, we have eschewed applications with

real data and focused on one simulated population where the ADRF is linear. In our

simulations, all of the techniques from Sections 3.3.4–3.3.8 performed well when their

assumed models were correct. When the models were misspecified, best performance

came from methods that relied on incorrect but rich T -models (Table 3.10). In
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another simulation study, Zhu et al. (2015) used a population of linear curves with

varying intercepts and a common slope for all units. They fit marginal structural

models to samples of N = 500, estimating the importance-weight denominators

P (Ti | X i) by boosted regression. We replicated some of their simulations and

found that our methods from Sections 3.3.4–3.3.8 outperformed theirs. In their

Scenario (A) of Table 2, where the treatment model had R2 ≈ 0.4, propensity-

spline prediction with a rich T -model achieved an MSE about 50% lower than their

best method. In Scenarios (B) and (C), where the treatment models were weaker

(R2 ≈ 0.2 or less), efficiency gains were less dramatic but still substantial.

We noted in Section 3.3.4 that, if we add basis functions to b(t) to fit a non-

linear ADRF, inverse second-moment weighting becomes less attractive, because it

requires the treatment model to correctly describe higher moments of Ti. Propensity-

spline prediction is more promising, because it depends on P (Ti |X i) only through

the estimated propensity functions π̂i. However, as the number of basis functions

and the pool of available covariates grows, prediction-based estimators may become

unstable unless the Y -model is trimmed. Instead of using the full set of predictors

Zi = (Bi ⊗X∗i ), we may need to simplify the model by omitting some of the in-

teractions between X i and the higher-order terms in Bi. Strategies for choosing

a suitable parsimonious Y -model for estimating nonlinear ADRF’s is an important

topic for future research.

Throughout this chapter, we have supposed the response variable is continu-

ous. To adapt our approach to a discrete response, one could assume g(E(Yi(t) |

θi) ) = θ>i b(t), where g is a monotonic link function (e.g. logistic for a binary out-

come). The population ADRF will no longer be determined solely by E(θi), but

will require averaging g−1(θ>i b(t)) over the distribution of θi. After averaging, the

ADRF will not necessarily follow g(µ(t)) = ξ>b(t) for some ξ ∈ Rk. Prediction

estimators that apply the same link function at the unit and population levels will
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have a built-in incoherence that should not matter much in practice (in a real ap-

plication, the assumed link function will not exactly hold at either level) but this

discrepancy does require us to be careful about how we define the inferential target.

3.5 Appendix A

This section provides more detail to the main example in Chapter 3 and pro-

vides steps to derive the equations for the conditional mean and variance of the out-

come given treatment. The goal is to find the conditional distribution of (θi2|Ti, Yi)

and of (θi1|θi2, Ti, Yi) which are the random coefficients that describe Yi = θi1+θi2Ti.

To derive these conditional distributions, start with the distribution of


θi1

θi2

Ti

 ∼ N


ξ2

ξ2

κ

 ,


ω11 ω12 ω13

ω12 ω22 ω23

ω13 ω23 ω33


 . (3.9)

The potential outcome path for unit i is Yi(t) = θi1 + θi2t, with

θi1
θi2

 ∼ N

ξ2
ξ2

 ,

 ω11 ω12

ω12 ω22




which means that E[Yi(t)] = ξ1 + ξ2t, where ξ2 is the population average treatment

effect and θi2 is the unit-level treatment effect for unit i.

The conditional distribution of

θi1
θi2

 given (Ti, Yi) is a degenerate (singu-

lar) bivariate normal, which can be written as P (θi2|Ti, Yi)× P (θi1|θi2, Ti, Yi) where

P (θi1|θi2, Ti, Yi) is a point mass at θi1 = Yi − θi2Ti and P (θi2|Ti, Yi) is normally

distributed. The distribution of P (θi2|Ti, Yi) follows below.
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1. The distribution of θi1
θi2

 |Ti
is given by

θi1
θi2

 |Ti ∼ N

ξ2 + ω13

ω33
(T − κ)

ξ2 + ω23

ω33
(T − κ)

 ,

 ω11 − ω2
13

ω33
ω12 − ω13ω23

ω33

ω12 − ω13ω23

ω33
ω22 − ω2

23

ω33


 .

2. Transform the previous step to the distribution of

θi2
Yi

 |Ti
by taking θi2

Yi

 |Ti =

 0 1

1 Ti


θi1
θi2

 ,

θi2
Yi

 |Ti ∼ N

ξ2 + ω23

ω33
(T − κ)

E[Y |T ]

 ,

 Cov(θi2, θi2|T ) Cov(θi2, Y |T )

Cov(θi2, Y |T ) Cov(Y, Y |T )


 ,

E[Y |T ] = E[θi1 + θi2T |T ]

= E[θi1|T ] + TE[θi2|T ]

= ξ2 +
ω13

ω33

(T − κ) + T (ξ2 +
ω23

ω33

(T − κ)),

Cov(θi2, θi2|T ) = ω22 −
ω2
23

ω33

,

71



Cov(θi2, Y |T ) = Cov(θi2, θi1 + θi2T |T )

= Cov(θi2, θi1|T ) + T Cov(θi2, θi2|T )

= ω12 −
ω13ω23

ω33

+ T (ω22 −
ω2
23

ω33

),

and

Cov(Y, Y |T ) = Cov(θi1 + θi2T, θi1 + θi2T |T )

= Cov(θi1, θi1|T ) + 2TCov(θi1, θi2|T ) + T 2Cov(θi2, θi2|T )

= ω11 −
ω2
13

ω33

+ 2T (ω12 −
ω13ω23

ω33

) + T 2(ω22 −
ω2
23

ω33

).

3. Find the distribution of θi2|Ti, Yi by using the previous step and conditioning

on Yi. In other words, the previous step conditioned on Ti, and this step

conditions on Yi in addition to Ti. The result is

θi2|Ti, Yi ∼ N (E(θi2|Ti, Yi),Var(θi2|Ti, Yi)) ,

where

E(θi2|Ti, Yi) = E[θi2|T ] +
Cov(θi2, Y |T )

Cov(Y, Y |T )
(Y − µY ),

Var(θi2|Ti, Yi) = Cov(θi2, θi2|T )− Cov(θi2, Y |T )Cov(Y, Y |T )Cov(Y, θi2|T ),

E[θi2|T ] +
Cov(θi2, Y |T )

Cov(Y, Y |T )
(Y − µY ) =

(
ξ2 +

ω23

ω33

(T − κ)

)
+(

ω12 − ω13ω23

ω33
+ T (ω22 − ω2

23

ω33
)

ω11 − ω2
13

ω33
+ 2T (ω12 − ω13ω23

ω33
) + T 2(ω22 − ω2

23

ω33
)

)
(T − κ),
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and

Cov(θi2, θi2|T )− Cov(θi2, Y |T )Cov(Y, Y |T )−1Cov(Y, θi2|T ) =

(
ω22 −

ω2
23

ω33

)
−


(
ω12 − ω13ω23

ω33
+ T

(
ω22 − ω2

23

ω33

))2(
ω11 − ω2

13

ω33

)
+ 2T

(
ω12 − ω13ω23

ω33

)
+ T 2

(
ω22 − ω2

23

ω33

)
 .

4. θi1|θi2, Ti, Yi = (Yi − θi2Ti)|θi2, Ti, Yi which is a point mass at Yi − θi2Ti.

A special case occurs when all units have the same treatment effect. Under

this homogeneous treatment-effect condition, ω22 = 0 =⇒ ω12 = 0. In the set-up

above, this can be visualized as each unit having a DRF with parallel lines but

random intercepts. Suppose


θi1

θi2

Ti

 ∼ N


ξ1

ξ2

Ti

 ,


ω11 ω12 ω13

ω12 ω22 ω23

ω13 ω23 ω33


 .

With homogeneous treatment effects, we have


θi1

θi2

Ti

 ∼ N


ξ1

ξ2

Ti

 ,


ω11 0 ω13

0 0 0

ω13 0 ω33


 .

Also, Yi(t)
Ti

 ∼ N

ξ1 + ξ2t

κ

 ,

 σ2
Y σY T

σY T ω33


 ,
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where

σ2
Y = Var(θi1 + θi2t)

= Var(θi1) + t2Var(θi2) + 2Cov(θi1, θi2t)

= ω11 + t2ω22 + 2tω12

and

σY T = Cov(Yi(t), Ti)

= Cov(θi1 + θi2t, Ti)

= Cov(θi1, Ti) + tCov(θi2, Ti)

= σθi1,T + tσθi2,T

This implies that for any t ∈ T, the distribution of Yi(t)|Ti is normal with

E[Yi(t)|Ti] = ξ1 + ξ2t+
ω13 + tω23

ω33

(Ti − κ)

and

Var(Yi(t)|Ti) = (ω11 + ω22 + 2ω2
12)−

(ω13 + tω23)
2

ω33

,

which follows from well-known properties of bivariate normal distributions.

In the special case of Ti = t, this becomes

E(Yi(t)|Ti = t) = (ξ1 + ξ2 t) +

(
ω13 + ω23 t

ω33

)
(t− κ)

=

(
ξ1 −

ω13

ω33

κ

)
+

(
ξ2 +

ω13

ω33

− ω23

ω33

κ

)
t+

(
ω22

ω33

)
t2,

Var[Yi(t)|Ti = t] = ω11 + 2ω12 t+ ω22 t
2 − (ω13 + ω23 t)

2

ω33

=

(
ω11 −

ω2
13

ω33

)
+ 2

(
ω12 −

ω13ω23

ω33

)
t +

(
ω22 −

ω2
23

ω33

)
t2,
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which implies that the joint distribution of (Yi, Ti) is

P (Ti, Yi) = P (Ti)× P (Yi|Ti)

= N (κ, ω33)×N (E(Yi|Ti),Var(Yi|Ti))

The joint distribution will not necessarily be bivariate normal, because E(Yi|Ti) and

Var(Yi|Ti) are each quadratic in Ti.

The prima facie estimate or the regression of Yi on Ti estimates E(Yi|Ti). If

we happen to have a homogeneous treatment effect, then

E[Yi(t)|Ti = t] =

(
ξ1 −

κω13

ω33

)
+

(
ξ2 +

ω13

ω33

)
t,

which is not the same as

E[Yi(t)] = ξ1 + ξ2 t,

which means the slope of the prima facie regression line is biased by
(
ω13

ω33

)
.

3.6 Appendix B

The following shows that inverse second moment weighting estimator is a

generalization of the IPTW estimator. Suppose Ti ∈ {0, 1}. Recall that U(ξ) =

Bi (Yi − B>i ξ) = BiB
>
i (θi − ξ). Suppose the estimating equation is modified to

Umod(ξ) = wiBi (Yi −B>i ξ), where
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wi = E


 Ti 0

0 1− Ti

∣∣∣∣Xi


−1

=

 P (Ti|Xi) 0

0 1− P (Ti|Xi)


−1

=

 1
P (Ti|Xi) 0

0 1
1−P (Ti|Xi)

 .
Solving this set of estimating equations gives the same estimates as the IPTW

method. To see this, note that

Umod(ξ) =

 1
P (Ti|Xi) 0

0 1
1−P (Ti|Xi)


 Ti

1− Ti

 (Yi − (TiE(Yi(1)) + (1− Ti)E(Yi(0)))

=

 Ti
P (Ti|Xi)

1−Ti
1−P (Ti|Xi)

 (Yi − (TiE(Yi(1)) + (1− Ti)E(Yi(0)))

=

 TiYi
P (Ti|Xi) −

T 2
i E(Yi(1))

P (Ti|Xi) −
Ti (1−Ti)E(Yi(0)))

P (Ti|Xi)

(1−Ti)Yi
1−P (Ti|Xi) −

(1−Ti)Ti E(Yi(1))
1−P (Ti|Xi) − (1−Ti)2 E(Yi(0)))

1−P (Ti|Xi)

 .
Setting Umod(ξ) to 0 and summing over the dataset gives

 ∑N
i=1

TiYi
P (Ti|Xi)∑N

i=1
(1−Ti)Yi

1−P (Ti|Xi)

 =

 ∑N
i=1

T 2
i E(Yi(1))

P (Ti|Xi) +
∑N

i=1
Ti (1−Ti)E(Yi(0)))

P (Ti|Xi)∑N
i=1

(1−Ti)Ti E(Yi(1))
1−P (Ti|Xi) +

∑N
i=1

(1−Ti)2 E(Yi(0)))
1−P (Ti|Xi)

 .
Because Ti either takes a value of zero or one, we have the identities that T 2

i = Ti

and (1 − Ti)
2 = 1 − Ti and (1 − Ti)Ti = 0 for each i. This means the previous
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equation can simplify to

 ∑N
i=1

TiYi
P (Ti|Xi)∑N

i=1
(1−Ti)Yi

1−P (Ti|Xi)

 =

 ∑N
i=1

Ti E(Yi(1))
P (Ti|Xi)∑N

i=1
(1−Ti)E(Yi(0)))

1−P (Ti|Xi)


=

 E(Yi(1))
∑N

i=1
Ti

P (Ti|Xi)

E(Yi(0))
∑N

i=1
1−Ti

1−P (Ti|Xi)

 ,
which leads to

 ̂E(Yi(1))

̂E(Yi(0))

 =


(∑N

i=1
TiYi

P (Ti|Xi)

)
/(∑N

i=1
Ti

P (Ti|Xi)

)
(∑N

i=1
(1−Ti)Yi

1−P (Ti|Xi)

)
/(∑N

i=1
1−Ti

1−P (Ti|Xi)

)

 ,
which is the standard IPTW estimator. This shows that the inverse second-moment

weighting estimator is analogous to IPTW when using the estimating equations in

the binary treatment setting.

3.7 Appendix C

3.7.1 Standard errors for the regression prediction with propensity-

spline method

We derive standard errors and tests by using a sandwich estimator. We start

with an estimating function that is a stacked function with two subcomponents, Si

and U i,

Ψi = Ψi(Γ
∗, ξ) =

 Si

U i

 =

 Si(Γ
∗)

U i(Γ
∗, ξ)

 ,
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where

Γ = [γ1,γ2, . . . ,γk] ,

ν = (ν1, ν2, . . . , νk)
> ,

Si = Zi(Yi −B>i Γ∗>X∗i )

= (Bi ⊗X∗i )(Yi − (Bi ⊗X∗i )>vec(Γ∗)),

U i = E(θi|X i; Γ
∗)− ξ,

(Γ∗)>X∗i = ν + Γ>X i

=


ν1 + γ>1X i

...

νk + γ>kX i

 ,

Bi =
(
1, Ti, T

2
i , . . . , T

k
i

)>
, and length(Bi) = k. Let length(X∗i ) = r. To obtain the

parameter estimates, solve
∑N

i=1 Ψi = 0. This is a two-step process:

1. Solve
∑N

i=1 Si(Γ
∗) = 0 to obtain Γ̂

∗
.

2. Plug Γ∗ = Γ̂
∗

into the set of equations
∑N

i=1U i(ξ, Γ̂
∗
) to get ξ̂.

3.7.2 Background on sandwich estimator

Taylor series are used to derive the standard error of the parameters. A first-

order approximation to the estimating equations is

N∑
i=1

Ψi(Γ̂
∗
, ξ̂) ≈

N∑
i=1

Ψi(Γ
∗
0, ξ0) +

N∑
i=1

∂Ψi(Γ
∗
∗, ξ∗)

∂φ>

(
φ̂− φ

)
= 0,
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where

φ =

 vec(Γ∗)

ξ

 .
Rearranging some terms and using the law of large numbers gives

√
N
(
φ̂− φ

)
≈ −

(
1

N

N∑
i=1

∂Ψi(Γ
∗
∗, ξ∗)

∂φ>

)−1
1√
N

N∑
i=1

Ψi(Γ
∗
0, ξ0)

≈ A−1 1√
N

N∑
i=1

Ψi(Γ
∗
0, ξ0)

≈ A−1N (0,B)

D
≈ N (0,A−1B(A−1)>),

where

A = −E
(
∂Ψi(Γ

∗, ξ)

∂φ>

)
,

B = E
(
Ψi(Γ

∗
0, ξ0)(Ψi(Γ

∗
0, ξ0))

>) .
To get the standard errors, we approximate A and B using the law of large numbers

and plug in the estimated parameters in (3.10) and (3.11),

Â = − 1

N

N∑
i=1

(
∂Ψi(Γ̂

∗
, ξ̂)

∂φ>

)
, (3.10)

B̂ =
1

N

N∑
i=1

(
Ψi(Γ̂

∗
, ξ̂)(Ψi(Γ̂

∗
, ξ̂))>

)
. (3.11)
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To calculate Â, use

(
∂Ψi(Γ̂

∗
, ξ̂)

∂φ>

)
=


∂Si

∂(vec(
ˆΓ
∗
))>

∂Si

∂ξ>

∂U i

∂(vec(
ˆΓ
∗
))>

∂U i

∂ξ>



=


∂Si

∂(vec(
ˆΓ
∗
))>

0

∂U i

∂(vec(
ˆΓ
∗
))>

∂U i

∂ξ>



=


∂(Bi⊗X

∗
i )(Yi−(Bi⊗X

∗
i )
>vec(Γ∗))

∂(vec(
ˆΓ
∗
))>

0

∂U i

∂(vec(
ˆΓ
∗
))>

∂U i

∂ξ>



=

 − (Bi ⊗X∗i ) (Bi ⊗X∗i )
> I(k∗r)×(k∗r) 0

∂U i

∂(vec(
ˆΓ
∗
))>

Ik×k



=

 − (Bi ⊗X∗i ) (Bi ⊗X∗i )
> 0

∂U i

∂(vec(
ˆΓ
∗
))>

Ik×k

 ,
where

∂U i

∂(vec(Γ̂
∗
))>

=



(X∗i )
> 0 · · · 0

0 (X∗i )
> · · · 0

...
...

...
...

0 0 · · · (X∗i )
>


.

To calculate B̂, plug in the parameter estimates. The sandwich estimator
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becomes

1

N
Â
−1
B̂
(
Â
−1)>

≈ V

 vec(Γ̂
∗
)

ξ̂


=

 V (vec(Γ̂
∗
)) Cov(vec(Γ̂

∗
), ξ̂)

Cov(ξ̂, vec(Γ̂
∗
)) V (ξ̂)

 .
After the estimated covariance matrix is calculated, it is possible to test hy-

potheses about single parameters by using the Wald test. For example, to test if

ξ̂j = 0, calculate the test statistic ξ̂j/se(ξ̂j) and compare it to a standard normal

distribution. If the magnitude of the estimate is much bigger than the standard

error, then it is unlikely that the null hypothesis is true.

We can also test hypotheses about multiple parameters simultaneously. For

example, to test the null hypothesis

Aξ = c,

use

(Aξ − c)>(AΣA>)−1(Aξ − c) ∼ χ2
r,

where r is the number of degrees of freedom or the number of parameters being

tested.
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Chapter 4: Comparing propensity score methods with a continuous

treatment: revisiting the lottery example

4.1 Introduction

Winning the lottery is a life-changing experience and can affect work habits,

spending, relationships, and other aspects of life. Economists are interested in learn-

ing more about various aspects of this phenomenon, including how the amount of

winnings affects future earned income. By studying lottery winners in this way,

economists hope to understand how the amount of unearned income affects earned

income not just for this lottery example, but for other types of unearned income

such as gifts, inheritance, unemployment benefits, and other sources.

Imbens et al. (2001) obtained data from winners and players of the Mas-

sachusetts Megabucks lottery between 1984 and 1988 to study the long-term (5+

years) effects of winning the lottery. They concluded that unearned income reduces

labor earning. The data included information about lottery winners such as their

salaries before and after winning the lottery, their winning prize amount, education,

savings, spending, and demographic variables including gender and age.

In this analysis, we focus only on people who won the lottery, and we consider

how lottery prize amount affect their earned income six years after winning. We

are interested in seeing whether the conclusions by Hirano and Imbens (2004) can

be replicated using different methods. Hirano and Imbens (2004) found that those

with lower earnings were much more sensitive to income changes than those with
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higher earnings.

4.2 Goal of this analysis

The problem of estimating the average dose response function (ADRF) relies

on novel causal inference methods because the amount of unearned income (lottery

prize) is a continuous variable. Recently, there has been more interest in estimating

causal effects when the treatment takes on continuous values (Flores et al., 2012;

Kluve et al., 2012).

In this analysis, our goal is to estimate the ADRF of lottery winnings on

earned salary. The ADRF is µ(t) = E[Yi(t)], where Yi(t) is the salary obtained

by winner i after winning prize amount t. The size of the lottery prize is strongly

correlated with some background covariates. There is a high amount of unit and item

nonresponse in the original survey, and it was shown that higher prize amounts are

linked to lower probabilities of responding (Hirano and Imbens, 2004). Prize amount

is related to some background covariates and the potential outcomes which means

that adjustments need to be made in order to decrease confounding bias.

4.3 Data background

Our data set has 237 observations and is restricted to winners of the lottery.

Table 4.1 gives summary statistics for the covariates. We removed observations with

missing outcomes or in the upper 2% of the treatment value distribution (to avoid

results driven by outliers) to retain 197 observations.
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Table 4.1: Summary statistics and parameter estimates of generalized propensity
score of lottery data set with 197 observations. Labor earnings are in thousands.

Mean S.D. Corr t-stat GPS GPS
w/Prize (ρ = 0) Est. SE

Intercept 2.21 0.52
Age of winner 47.14 14.00 0.15 2.11 0.01 0.01
Years of high school 3.59 1.09 0.00 0.00 0.04 0.06
Years of college 1.36 1.58 0.05 0.75 0.03 0.04
Male 0.58 0.49 0.25 3.53 0.37 0.14
Tickets bought 4.60 3.28 0.00 0.06 -0.02 0.02
Working at time of win 0.79 0.41 0.04 0.51 -0.01 0.18
Year won after 1980 6.08 1.29 -0.07 -0.97 0.01 0.05
Earnings 1 yr. before win 14.67 13.81 0.16 2.33 0.00 0.01
Earnings 2 yrs. before win 13.45 13.03 0.19 2.75 -0.01 0.02
Earnings 3 yrs. before win 12.75 12.85 0.23 3.29 0.01 0.02
Earnings 4 yrs. before win 11.92 11.97 0.23 3.36 0.03 0.02
Earnings 5 yrs. before win 11.92 12.43 0.15 2.12 -0.02 0.02
Earnings 6 yrs. before win 11.70 12.41 0.14 1.95 -0.00 0.01

Table 4.2: Summary statistics with means and standard errors of complete cases
with 197 observations. Prize and earnings are in thousands. The variable log(prize)
is the natural log of prize.

mean std. error

Earnings 6 yrs. after win 11.68 14.42
Prize amount 50.46 46.99
log(prize) 3.54 0.89
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4.4 Model background

4.4.1 Potential outcomes and notation

The potential outcomes framework takes ideas from randomized experiments

and applies them to observational data (see Chapter 2 for more details). In the

continuous treatment setting, the goal is to understand the behavior of the same

set of units under different treatment levels. Let the units in our sample be indexed

by i = 1, . . . , N . Let Yi(t) be the potential outcome for unit i for t ∈ T where T

is the domain of possible treatments. Our goal is to estimate the ADRF which is

defined as µ(t) = E[Yi(t)]. Let Yi = Yi(Ti) denote the observed outcome, Ti denote

the observed treatment, and X i denote the covariates.

4.4.2 Assumptions

To make sure that estimates of causal effects are estimable, three standard

assumptions are made: the stable unit treatment value assumption (SUTVA), no

unmeasured confounding (which means that the observed covariates contain all in-

formation that is necessary to remove the confounding bias), and that each unit has

a positive probability of receiving each treatment with probability P (Ti = t|X i) > 0

for every x ∈X i in the population and all t with positive measure.

The weak unconfoundedness assumption means that adjusting for differences

in pretreatment covariates will remove biases in units with different treatment values.

It can be expressed as

Yi(t) ⊥⊥ Ti|X i. (4.1)

This assumption states that the conditional distribution of the potential outcomes

are independent of the observed treatment given the covariates. The assumption

is not directly testable, but including a rich set of covariates X i makes it more
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plausible.

4.4.3 Propensity score methodology

Two quantities used to adjust for the confounding bias in the continuous treat-

ment setting are the generalized propensity score (GPS) (Hirano and Imbens, 2004)

and the propensity function (PF) component (Imai and van Dyk, 2004). The GPS

is a conditional density,

r(t,x) = f
T |X (t|X = x). (4.2)

Let Ri = r(Ti,X i), be the conditional density at the treatment actually received,

and let Rt
i = r(t,X i) denote the family of random variables indexed by t. For units

with Ti = t, we have Ri = Rt
i. The PF component is a function of the covariates

that uniquely parameterizes the GPS. For example, if g(T )|X ∼ N (XTβ, σ2), then

the PF component would be XTβ, if σ2 is known. In some applications, the PF is

estimated by the predicted treatment value conditioned on X. On the other hand,

methods that rely on the GPS include weighting methods which are analogous to

using the propensity score in the binary treatment setting. Other examples that

use the GPS are the partial mean approach (Hirano and Imbens, 2004; Flores et al.,

2012; Bia et al., 2014).

The top row of Figure 4.1 shows the distribution of the lottery prize and the

natural log-transformed version. The bottom row of Figure 4.1 shows the QQ-plot

of residuals after regressing log(prize) on X, and a plot of the residuals versus fitted

values, respectively.

The treatment model is fit using a linear regression with log(treatment) re-

gressed on main effects (no interactions) of all covariates. The QQ plot and residual

plot show that a linear regression is an adequate fit.



Figure 4.1: Histogram of lottery prizes, histogram of log(prize), QQ plot of residuals after
regressing log(prize) on X, and residuals of log(prize) versus fitted values for the lottery dataset
with 197 observations.

87



4.4.4 Common support and covariate balance

The treatment model regresses the log of the prize amount on the covariates.

We assess the overlap of the support for units with different treatment levels to

minimize the amount of extrapolation and interpolation. A main goal of adjusting

for the GPS is to remove confounding bias between different groups such as winners

of small prizes versus big prizes. For example, in the binary treatment setting,

big winners vs. small winners may have different distributions of their covariates.

This lack of balance of covariates may bias the treatment-effect estimate. The GPS

and propensity function (PF) are used to adjust the differences in covariates among

different treatment levels. When adjusting for the GPS, the relevant balancing

property is

[X i ⊥⊥ 1(Ti = t)] |r(t,X i), (4.3)

which means that, conditioning on the GPS at a fixed treatment value, the distribu-

tion of the covariates is identical for those who received treatment level t and those

who did not.

To enforce a common support in the continuous treatment setting, the treat-

ment levels are first binned, and then GPS values are checked for each treatment

level (Bia et al., 2014). For example, if the treatment is binned into K classes (based

on treatment level), then for the first treatment class (the bin with the smallest treat-

ments) we plug the median treatment value of the first bin into the treatment model

to get predicted GPS values for each unit. The predicted GPS values of units in the

first bin are compared with the predicted GPS values of units not in the first bin.

Units that fall in the overlapping region are kept and the others are discarded. This

process is repeated for each treatment class and the units that are not discarded are

in the common support and are used for the analysis. More treatment classes tends

to leave fewer units in the common support region.
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We make the weak unconfoundedness assumption in Equation 4.1. The out-

come is the earned income six years after winning the lottery and the pre-treatment

variables are the following: age, gender, years in high school, years in college, win-

ning year, number of tickets bought, working status at the time of winning, and

earnings before winning the lottery for one year before through six years before.

From Bia et al. (2014), we use the formula

CS = ∩Kq=1{i : R̂q
i ∈ [ max{ min

{j:Qj=q}
R̂q
j , min
{j:Qj 6=q}

R̂q
j},

min{ max
{j:Qj=q}

R̂q
j , max
{j:Qj 6=q}

R̂q
j}]}

(4.4)

to get the common support. The sample is split into K intervals based on the dis-

tribution of the treatment variable, cutting equally at the quantiles of the observed

distribution of treatments. The intervals are denoted by qi and let Qi denote the

interval unit i belongs to: Ti ∈ Qi. For each interval qi, let R̂k
i be the GPS evalu-

ated at the median level of the treatment in that particular interval for unit i; R̂k
i is

calculated for all units. The common support region is calculated by comparing the

support of the distribution of R̂k
i for the units with Qi = qk to the R̂k

i values of units

with Qi 6= qk. The common support subsample is CS and given in Equation 4.4.

For three subclasses, the sample is reduced to 185 winners in the common support.

Figure 4.2 shows the GPS values before and after applying the common sup-

port restriction. We split the data into terciles based on treatment value and eval-

uate the units at the median value of the chosen tercile. For example, (a) compares

the GPS values for units in the first tercile versus the units in the other terciles. The

shaded bars represent units not in the chosen tercile while the white bars represent

units in the chosen tercile. In histogram (a), we see that there are some units in

the second and third tercile that have low GPS values that do not overlap with

units in the first tercile. After restricting the sample to the common support region,
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we see in (b) that the overlap of the GPS values is more in sync. The histograms

on the left side of Figure 4.2 show the probabilities before applying the common

support restriction and the ones on the right side show the histograms after the

common support restriction. Histograms (c) and (d) compare units in the second

tercile versus those in other terciles, and histgrams (e) and (f) compare units in the

third terciles versus those in the first two terciles. The common support restriction

removes non-overlapping units, which can be observed in Figure 4.2.

4.4.5 Checking covariate balance

To check the balancing property of the GPS there are four main methods. Flo-

res et al. (2012) compare restricted and unrestricted models by using likelihood ratio

tests. Imai and van Dyk (2004) compare regression coefficients before and after con-

ditioning on the PF. Kluve et al. (2012) compare regression coefficients before and

after conditioning on the GPS. Hirano and Imbens (2004) block on treatment and

GPS values and compare mean differences for each covariate in blocked subgroups.

For the method of Flores et al. (2012), the unrestricted model fits treatment

on the covariates and functions of the GPS values (GPS, GPS2, GPS3) and the

restricted models sets either the covariates to zero or functions of the GPS values

to zero. Comparing the unrestricted model with a restricted model that sets the

covariates to zero shows that we cannot reject the null hypothesis that coefficients

of the covariates in the treatment model are zero when conditioning on the GPS.

This suggests that conditioning on the GPS adequately balances the covariates.

Imai and van Dyk (2004) compare coefficients with and without conditioning

on the PF. Table 4.3 shows the coefficient estimates of each covariate x when regress-

ing log(prize) on x (for units in the common support) with and without adjusting

for E[log(prize)|X i]. The predictors age of winner, male, earnings 2 yrs. before

win, and earnings 4 yrs. before win are significant in the unconditional regressions,
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Figure 4.2: Common support restriction. Shaded bars represent units not in tercile, while white
bars represent units in the tercile. (a) compares group 1 vs others before deleting non-overlapping
units. (b) compares group 1 vs others after deleting non-overlapping units. (c) compares group
2 vs others before deleting non-overlapping units. (d) compares group 2 vs others after deleting
non-overlapping units. (e) compares group 3 vs others before deleting non-overlapping units. (f)
compares group 3 vs others after deleting non-overlapping units.

but when conditioning on E[log(prize)|X i], the coefficients for age of winner and

male are not significant. This indicates that the covariates are more balanced given

E[log(prize)|X i].

Kluve et al. (2012) compare coefficients with and without conditioning on the
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GPS with the GPS evaluated at various potential values of the treatment level. In

our case, we condition on ĝps which is the estimated GPS at the observed treatment

value and gpsmed which is the GPS evaluated at the median treatment value. Table

4.4 shows the coefficient estimates of each covariate x when regressing prize on x

(for units in the common support) with and without adjusting for ĝps and gpsmed.

Variables age of winner, male, and earnings before the win are either significant or

close to significant in the unconditional regressions, but when conditioning on ĝps

and gpsmed, none of the coefficients are significant. Conditioning on ĝps and gpsmed

makes the covariates more balanced.

4.5 Estimating the ADRF

When estimating the ADRF, we use polynomial-based methods from Chapter

3 and other methods described in Bia et al. (2014), Flores et al. (2012), Imai and van

Dyk (2004), and Hirano and Imbens (2004). We calculate 95% pointwise standard

errors using bootstrapping with 1000 samples. The bootstrapping takes into account

the whole estimation process from estimating the GPS to estimating the ADRF.

For all methods, the problem of variable selection arises. For the treatment

model, all covariates are used as main effects with no interactions. The treatment

model produces residuals that appear normally distributed and diagnostics confirm

an adequate fit.

4.5.1 Polynomial-based methods

The polynomial-based class of estimators consist of the prima facie, inverse

probability of treatment weighting, inverse second moment weighting, regression,

augmented inverse probability weighted estimating equations (aipwee), weighted

regression, scalar weighted regression, propensity-spline prediction, and Imai-van-
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Dyk methods. See Chapter 3 for more details.

Table 4.5 summarizes the regressions of the outcome on differing functions of

treatment values using polynomial functions of treatment with and without other

covariates. The marginal effect shows a negative slope for prize. After controlling

for covariates, the R2 values are much higher.

Table 4.6 contains estimated slopes and standard errors when using linear

polynomial based models. The estimated slopes are all negative. This can be

interpreted as higher lottery winnings lead to less earned income in year 6.

Table 4.7 gives quadratic polynomial-based estimates of the slope, intercept,

and quadratic coefficient. We also see Figures 4.3 and 4.4 show a negative trend as

prize amount increases. This is in line with the first-degree estimators that suggest

that earned income in year 6 decreases as lottery prize winnings increases.
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Figure 4.3: Estimated dose-response functions using 3 quadratic and 1 linear polynomial-based
methods with 95% pointwise standard errors. The standard errors are estimated by bootstrapping
the entire estimation process.
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Figure 4.4: Estimated dose-response functions using 4 different quadratic polynomial-based
methods with 95% pointwise standard errors. The standard errors are estimated by bootstrapping
the entire estimation process.
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Table 4.5: Effect of prize on earned income in year 6 - estimates from linear regression
model.

Variable (1) marginal (2) marginal (3) marginal (4) marginal
effect effect effect effect
(SE) (SE) (SE) (SE)

(a) Only control
for prize

Prize -0.0491 -0.146 -0.132 -0.453
(0.0226) (0.0719) (0.166) (0.32)

Prize2/1000 0.548 0.367 7.662
(0.3863) (1.925) (6.51)

Prize3/10003 0.578 -54.797
(6.008) (47.604)

Prize4/10004 129.740
(110.63)

R2 0.0251 0.0358 0.0359 0.0432
Adjusted R2 0.0198 0.0252 0.0199 0.0219

Number of obs. 185 185 185 185

(b) Control for prize
and other variables

Prize -0.0757 -0.176 -0.0918 -0.524
(0.0182) (0.0561) (0.128) (0.244)

Prize2/1000 0.573 -0.4962 9.403
(0.3028) (1.487) (5.011)

Prize3/10003 3.4060 -72.223
(4.637) (36.880)

Prize4/10004 177.914
(86.083)

R2 0.501 0.511 0.513 0.525
Adjusted R2 0.459 0.468 0.466 0.476

Number of obs. 185 185 185 185
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Table 4.6: Estimated slopes from linear polynomial-based model. All numbers are
multiplied by 10.

mean se

prima facie -0.70 0.24
importance sampling -0.77 0.24
inverse second moment weighting -0.88 0.29
regression -0.84 0.26
aipwee -0.87 0.27
weighted reg. -0.97 0.38
scalar weighted reg. -0.81 0.25
propensity spline -0.85 0.36
Imai van Dyk -0.81 0.37

Table 4.7: Estimated coefficients from the quadratic polynomial-based models with
means and standard errors.

Intercept slope (quad coef) × 1000
(SE) (SE) (SE)

prima facie
16.68 -0.16 0.53
2.19 0.08 0.44

importance sampling
17.03 -0.17 0.56
2.51 0.09 0.48

inverse second moment weighting
18.34 -0.21 0.82
3.47 0.13 0.78

regression
16.99 -0.15 0.41
2.03 0.07 0.39

aipwee
17.06 -0.16 0.43
1.95 0.07 0.39

scalar weighted reg.
16.83 -0.15 0.39
2.18 0.08 0.43

propensity spline
17.39 -0.18 0.79
2.46 0.10 0.91

Imai van Dyk
18.26 -0.24 1.27
2.40 0.11 1.03
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4.5.2 Other methods

The other estimators of the ADRF consist of the additive spline-based semi-

parametric, BART, generalized additive model, Hirano-Imbens, inverse weighting

kernel, and Nadaraya-Watson methods.

The Nadaraya-Watson estimate is given by

µ̂(t)NW =

∑N
i=1 K̃h,X (Ti − t)Yi∑N
i=1 K̃h,X (Ti − t)

, (4.5)

where
∑N

i=1 K̃h,X = Kh(Ti − t)/R̂t
i. This is a locally constant regression, but with

each unit’s kernel weight divided by the GPS at treatment level t. The kernel Kh(t)

is chosen to be Gaussian with the bandwidth selected by using the Sheather-Jones

bandwidth selection method (Sheather and Jones, 1991).

The inverse weighting kernel estimate is

µ̂(t)IW =
D0(t)S2(t)−D1(t)S1(t)

S0(t)S2(t)− S2
1(t)

, (4.6)

where Sj(t) =
∑N

i=1 K̃h,X (Ti− t)(Ti− t)j and Dj(t) =
∑N

i=1 K̃h,X (Ti− t)(Ti− t)jYi.

For more details, see Flores et al. (2012).

The Hirano-Imbens method uses the following steps (Graham et al., 2014):

1. Estimate a model for the treatment model Ti|X i.

2. Use the estimated parameters from from Step 1, with the assumed density

function to calculate R̂i = fTi|bXi(Ti|X i = xi) and R̂i = fTi|bXi(t|X i = xi) for

all t of interest.

3. Use R̂i to find a region of common support and check covariate balance.

4. Estimate the parameters from the conditional outcome given the treatment
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and the estimated GPS values by

E[Yi|Ti, R̂i] = α0 + α1Ti + α2T
2
i + α3R̂i + α4R̂

2
i + α5TiR̂i. (4.7)

5. Estimate the ADRF over grid points t by averaging over the distribution of

R̂t
i to obtain

µ̂HI(t) =
1

N

N∑
i=1

[
α̂0 + α̂1t+ α̂2t

2 + α̂3R̂
t
i + α̂4R̂

t2
i + α̂5tR̂

t
i

]
. (4.8)

6. Use a bootstrap resampling scheme for the previous steps to estimate the

variance.

We restrict our fit to quadratic terms, but higher order terms can also be included.

The generalized additive model method is analogous to the Hirano-Imbens

method, but fits a generalized additive model instead of the flexible polynomial

regression given in Equation 4.7. The generalized additive model fits the outcome

on the treatment and GPS using Yi ∼ s(Ti) + s(gpsi) and then averages over the

grid points t analogous to Equation 4.8.

The additive spline-based semi-parametric method is also analogous to the

Hirano-Imbens method, but uses additive splines to fit the outcome model in Equa-

tion 4.7 and average the estimates over all the units analogous to Equation 4.8.

The method using Bayesian additive regression trees (BART) is described by

Hill (2011). This method fits a response surface to the data nonparametrically

and makes few assumptions. It does not model the treatment, but only focuses

on optimal prediction of the outcome surface. To predict the ADRF, first fit the

response surface, then predict the potential outcome of each unit at a specified

treatment value (using the fitted response surface), then find the average outcome

at the specified treatment value by averaging over all the units, and finally repeat
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this process over many grid values. In our example, we fit 10 treatment values for

t ∈ {10, 20, . . . , 100}.

These methods also show a similar downward trend as those in the polyno-

mial methods. Table 4.8 gives parameter estimates and standard errors for the HI

method. The different methods in Figure 4.5 show that higher lottery winnings

leads to lower earned income in year six.

Table 4.8: Parameter estimates of conditional distribution of prize given covariates
for overlapping data with 185 observations.

Estimate Std. Error

(Intercept) 11.07 5.62
prize -0.08 0.08

prize2/1000 1.05 0.52
log(gps) -5.09 5.00

log(gps)2 -0.36 0.72
log(gps) ∗ prize 0.08 0.04

4.6 Results

Results are shown in Figures 4.3, 4.4, 4.5, which display the estimated ADRFs

and their bootstrap standard errors. The figures display a general trend of decreasing

future income as prize amount increases from $10, 000 to $100, 000. The generalized

additive model method in Figure 4.5 shows some oscillations in its standard error of

the future income as the prize amount increases, but the overall decreasing trend is

preserved. In Table 4.6, the slopes are significant and negative. In Table 4.7, almost

all the methods show the slope is significant, while the quadratic coefficient is not

significant.
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Figure 4.5: Estimated dose-response functions using six different methods with 95% pointwise
standard errors.
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4.7 Discussion

In this study, we have demonstrated that different statistical methods provide

evidence that lottery winners decrease their earned income six years after winning

the prize as the prize amount increases, similar to the trend described in Hirano and

Imbens (2004) and Bia et al. (2014).

Estimating the ADRF using causal inference methods is an underdeveloped

topic and one that needs more attention. Imai and van Dyk (2004) and Hirano

and Imbens (2004) have introduced techniques to estimate the ADRF, and newer

modifications such as Flores et al. (2012), Zhao et al. (2014), and we introduced

other estimators in Chapter 3.

In the next chapter, we provide a new R package causaldrf that implements

the different statistical methods for the continuous treatment setting. Bia et al.

(2014) provide software in Stata for estimating average dose response functions, but

there is not an R statistical language package that provides these methods. The R

package causaldrf contains functions and data for estimating causal dose response

functions to illustrate methods discussed in Chapter 3 and by Bia et al. (2014).
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Chapter 5: Estimating average dose response functions using

the R package causaldrf

5.1 Introduction

In this chapter, we provide examples to illustrate the flexibility and the ease of

use of the causaldrf R package, which estimates the average dose response function

(ADRF) when the treatment is continuous. The causaldrf R package also provides

methods for estimating average potential outcomes when the treatment is binary or

multi-valued. The user can compare different methods to understand the sensitivity

of the estimates and a way to check robustness. The package contains new estimators

based on a linear combination of a finite number of basis functions (Chapter 3). In

addition, causaldrf includes functions useful for model diagnostics such as assessing

common support and for checking covariate balance. This package fills a gap in the

R package space and offers a range of existing and new estimators described in the

statistics literature by Bia et al. (2014), Flores et al. (2012), Imai and van Dyk

(2004), Hirano and Imbens (2004), and Robins et al. (2000).

The causaldrf R package is currently available on the Comprehensive R

Archive Network (CRAN). The R package contains twelve functions for estimating

the ADRF which are explained in more detail in Chapters 2, 3, and in the doc-

umentation files for the package (https://cran.r-project.org/web/packages/

causaldrf/index.html). Users can choose which estimator to apply based on their

particular problems and goals.
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This chapter is organized as follows. In Section 5.2, we introduce a simulated

dataset from Hirano and Imbens (2004) and Moodie and Stephens (2012) and ap-

ply functions from causaldrf to estimate the ADRF. In Section 5.3, we use data

from the National Medical Expenditures Survey (NMES) to show the capabilities

of causaldrf in analyzing a data set containing weights. Section 5.4 contains data

from the Infant Health and Development Program (IHDP) and applies methods

from causaldrf to the data. Conclusions are presented in Section 5.5.

5.2 An example based on simulated data

This section demonstrates the use of the causaldrf package by using simu-

lated data from Hirano and Imbens (2004) and Moodie and Stephens (2012). This

simulation constructs an ADRF with an easy to interpret functional form, and a

means to clearly compare the performance of different estimation methods.

Let Y1(t)|X1, X2 ∼ N
(
t+ (X1 +X2)e

−t(X1+X2), 1
)

and let X1, X2 be unit ex-

ponentials, T1 ∼ exp(X1 + X2). The ADRF can be calculated by integrating out

the covariates analytically (Moodie and Stephens, 2012),

µ(t) = E(Yi(t)) = t+
2

(1 + t)3
. (5.1)

This example provides a setting to compare ADRF estimates with the true ADRF

given in Equation 5.1. In this simulation, our goal is to demonstrate how to use the

functions. We introduce a few of the estimators and show their plots.

To use the functions, first, install causaldrf and then load the package:

library (causaldrf)

The data are generated from:
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set.seed(301)

hi_sample <- function(N){
X1 <- rexp(N)

X2 <- rexp(N)

T <- rexp(N, X1 + X2)

gps <- (X1 + X2) * exp(-(X1 + X2) * T)

Y <- T + gps + rnorm(N)

hi_data <- data.frame(cbind(X1, X2, T, gps, Y))

return(hi_data)

}

hi_sim_data <- hi_sample(1000)

head(hi_sim_data)

## X1 X2 T gps Y

## 1 0.1942127 0.18045487 4.718463128 0.06395528 4.1426651

## 2 1.4441432 0.60652576 0.168123100 1.45266708 0.9888306

## 3 5.6393370 0.17758343 0.005784747 5.62444109 5.2284042

## 4 0.5079408 0.45976378 0.350261484 0.68950725 -0.3301777

## 5 0.2282938 0.71565806 0.431730712 0.62800127 1.8360819

## 6 1.1539278 0.09854209 0.786804283 0.46751158 1.4745739

Below is code for a few different estimators of the ADRF. The first is the ad-

ditive spline estimator from Bia et al. (2014). This estimator fits a treatment model

to estimate the GPS. Next, additive spline bases values are created for both the

treatment and the GPS. The outcome is regressed on the treatment, GPS, treat-

ment bases, and GPS bases. After the outcome model is estimated, each treatment

grid value and set of covariates is plugged into the model which corresponds to im-

puted values for each unit at that particular treatment value. The imputed values

are averaged to get the estimated ADRF at that treatment value. Repeating this

process for many treatment values, grid val, traces out the estimated ADRF.

The arguments are: Y for the name of the outcome variable, treat for the name

of the treatment variable, treat formula for the formula used to fit the treatment

model, data for the name of the data set, grid val for a vector in the domain of the

treatment for where the outcome is estimated, knot num for the number of knots for
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the spline fit, and treat mod for the treatment model that relates treatment with

the covariates.

In this example we fit the correct treatment model so that the GPS is correctly

specified with a gamma distribution.

add_spl_estimate <- add_spl_est(Y = Y,

treat = T,

treat_formula = T ~ X1 + X2,

data = hi_sim_data,

grid_val = quantile(hi_sim_data$T,

probs = seq(0, .95, by = 0.01)),

knot_num = 3,

treat_mod = "Gamma",

link_function = "inverse")

The next estimator is based on the generalized additive model. This method

requires a treatment formula and model to estimate the GPS. The estimated GPS

values are used to fit an outcome regression. The outcome, Y, is regressed on two

quantities: the treatment, T, and spline basis terms from the GPS fit.

gam_estimate <- gam_est(Y = Y,

treat = T,

treat_formula = T ~ X1 + X2,

data = hi_sim_data,

grid_val = quantile(hi_sim_data$T,

probs = seq(0, .95, by = 0.01)),

treat_mod = "Gamma",

link_function = "inverse")

The Hirano-Imbens estimator also requires two models. The first model re-

gresses the treatment, T, on a set of covariates to estimate the GPS values. The

second step requires fitting the outcome, Y, on the observed treatment and fitted

GPS values. The summary above shows the fit of both the treatment model and out-

come model. Also shown is the estimated outcome values on the grid of treatment

values, quantile grid.
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hi_estimate <- hi_est(Y = Y,

treat = T,

treat_formula = T ~ X1 + X2,

outcome_formula = Y ~ T + I(T^2) +

gps + I(gps^2) + T * gps,

data = hi_sim_data,

grid_val = quantile(hi_sim_data$T,

probs = seq(0, .95, by = 0.01)),

treat_mod = "Gamma",

link_function = "inverse")

This last method, importance sampling, fits the treatment as a function of the

covariates, then calculates GPS values. The GPS values are then used as inverse-

probability weights in the regression of Y on T (Robins et al., 2000). The estimated

parameters correspond to coefficients for a quadratic model of the form µ̂(t) =

α̂0 + α̂1t+ α̂2t
2. In this example, the estimator is restricted to a quadratic fit.

iptw_estimate <- iptw_est(Y = Y,

treat = T,

treat_formula = T ~ X1 + X2,

numerator_formula = T ~ 1,

data = hi_sim_data,

degree = 2,

treat_mod = "Gamma",

link_function = "inverse")

The true ADRF and 4 estimates are plotted in Figure 5.1.
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Figure 5.1: True ADRF along with estimated curves.
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5.3 Analysis of the National Medical Expenditures Survey

5.3.1 Introduction

The 1987 National Medical Expenditures Survey (NMES) provides information

about health status, behaviors, and medical expenditures for a representative sample

of the U.S. civilian, non-institutionalized population (U.S. Department of Health and

Human Services, Public Health service, 1987). The 1987 medical costs were verified

by multiple interviews and other data from clinicians and hospitals.

Johnson et al. (2003) analyzed the NMES to estimate the fraction of disease

cases and the fraction of the total medical expenditures attributable to smoking for

two disease groups. Imai and van Dyk (2004) emulate the setting of Johnson et al.

(2003) but estimated the effect of smoking amount on medical expenditures. John-

son et al. (2003) and Imai and van Dyk (2004) conducted a complete-case analysis

by removing units containing missing values. Johnson et al. (2003) used multiple

imputation techniques to deal with the missing values, but did not find significant

differences between that analysis and the complete case analysis. Complete case

analysis with propensity scores will lead to biased causal inference unless the data

are missing completely at random (D’Agostino Jr and Rubin, 2000). Regardless of

this drawback, the analysis in this section uses the complete-case data to illustrate

the different statistical methods available for estimating the ADRF relating smoking

amount and medical expenditures.

This example is analyzed in this section because the treatment variable, smok-

ing amount, is a continuous variable. The data is restricted to that used in Imai

and van Dyk (2004) with 9708 observations and 12 variables. For each person in-

terviewed, the survey collected information on age at the time of the survey, age

when the person started smoking, gender, race (white, black, other), marital sta-

tus (married, widowed, divorced, separated, never married), education level (college
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graduate, some college, high school graduate, other), census region (Northeast, Mid-

west, South, or West), poverty status (poor, near poor, low income, middle income,

high income), and seat belt usage (rarely, sometimes, always/almost always) (Imai

and van Dyk, 2004). The data are available in the causaldrf package.

Our goal is to understand how the amount of smoking affects the amount of

medical expenditures. Johnson et al. (2003) use a measure of cumulative exposure

to smoking that combines self-reported information about frequency and duration

of smoking into a variable called packyear, defined as

packyear =
number of cigarettes per day

20
× (number of years smoked). (5.2)

One can also define packyear as the number of packs smoked per day multiplied by

the number of years the person was a smoker. The total number of cigarettes per

pack is normally 20.

The NMES oversampled subgroups of the population in order to reduce vari-

ances of the estimates. Oversampling reduces the variances of the estimates by

increasing the sample size of the target sub-population disproportionately (Singh

et al., 1994). The U.S. Department of Health and Human Services oversampled

Blacks, Hispanics, the poor and near poor, and the elderly and persons with func-

tional limitations (Cohen, 2000).

5.3.2 Data description

Load nmes data into the workspace with

data("nmes_data")

dim (nmes_data)

## [1] 9708 12

summary(nmes_data)
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## packyears AGESMOKE LASTAGE MALE

## Min. : 0.05 Min. : 9.00 Min. :19.0 Min. :0.0000

## 1st Qu.: 6.60 1st Qu.:16.00 1st Qu.:32.0 1st Qu.:0.0000

## Median : 17.25 Median :18.00 Median :45.0 Median :1.0000

## Mean : 24.48 Mean :18.39 Mean :47.1 Mean :0.5159

## 3rd Qu.: 34.50 3rd Qu.:20.00 3rd Qu.:62.0 3rd Qu.:1.0000

## Max. :216.00 Max. :70.00 Max. :94.0 Max. :1.0000

## RACE3 beltuse educate marital SREGION POVSTALB

## 1: 633 1:2613 1:2047 1:6188 1:2047 1:1034

## 2:1496 2:2175 2:2451 2: 771 2:2451 2: 470

## 3:7579 3:4920 3:3386 3:1076 3:3386 3:1443

## 4:1824 4: 333 4:1824 4:3273

## 5:1340 5:3488

##

## HSQACCWT TOTALEXP

## Min. : 908 Min. : 0.0

## 1st Qu.: 4975 1st Qu.: 90.0

## Median : 7075 Median : 406.1

## Mean : 8072 Mean : 2042.0

## 3rd Qu.:10980 3rd Qu.: 1350.3

## Max. :35172 Max. :175096.0

The dataset nmes data is a data frame with 9708 rows and 12 variables with

summaries of the variables given above. Six of the variables are numeric and the

other six are categorical. The outcome variable is the total amount of medical

expenditures, TOTALEXP and the treatment is the amount of smoking, packyears.

The data set contains weights, HSQACCWT, that can be used to upweight estimates to

the population of interest which is the set of people who smoke and are above the

age of 18. This analysis demonstrates the capability of causaldrf by estimating

the ADRF with and without weights. In Figure 5.3, we plot the estimated ADRFs,

their 95% confidence bands, and the 95% confidence bands without weigths.

5.3.3 Common support

The data set is restricted to observations that overlap and have a common

support. Units outside of the common support are removed. See Figure 5.2. The
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preliminary steps of analysis are omitted such as cleaning and making sure the data

overlap.

From Bia et al. (2014), we use the formula

CS = ∩Kq=1{i : R̂q
i ∈ [ max{ min

{j:Qj=q}
R̂q
j , min
{j:Qj 6=q}

R̂q
j},

min{ max
{j:Qj=q}

R̂q
j , max
{j:Qj 6=q}

R̂q
j}]}

(5.3)

to get the common support. For 3 subclasses, the sample is reduced to 8732 units

in the common support.

5.3.4 Checking covariate balance

One of the main goals of fitting a treatment model is to balance the covariates.

The GPS or the PF provides a way to balance the covariates. Comparisons of the

balance of the covariates before and after adjusting for the GPS or the PF are shown

in the following results:

t(p_val_bal_cond)

## Estimate Std. Error t value Pr(>|t|)

## AGESMOKE 0.002649140 0.052968507 0.05001349 0.9601128

## LASTAGE 0.156568519 0.119806490 1.30684505 0.1912998

## MALE 0.006755654 0.005139165 1.31454310 0.1886980

t(p_val_bal_no_cond)

## Estimate Std. Error t value Pr(>|t|)

## AGESMOKE -0.64598664 0.047692883 -13.54472 2.225653e-41

## LASTAGE 5.11758526 0.140218443 36.49723 1.483453e-271

## MALE 0.05582729 0.004566978 12.22412 4.385267e-34

The last column displays the p-value of regressing each of the continuous co-

variates on the outcome variable, packyears, before and after conditioning on the

PF. The first three rows show the p-values after conditioning on the PF, while the
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Figure 5.2: Common support restriction. Shaded bars represent units not in tercile, while white
bars represent units in the tercile. (a) Compares group 1 vs others before deleting non-overlapping
units. (b) Compares group 1 vs others after deleting non-overlapping units. (c) Compares group
2 vs others before deleting non-overlapping units. (d) Compares group 2 vs others after deleting
non-overlapping units. (e) Compares group 3 vs others before deleting non-overlapping units. (f)
Compares group 3 vs others after deleting non-overlapping units.
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last three rows show the p-values when there is no conditioning.

5.3.5 Estimating the ADRF

The causaldrf R package contains a variety of estimators. Below is code for

four other estimators that can account for weights. Although the true ADRF is not

a polynomial, we will illustrate methods that are restricted to polynomial form of

up to degree 2.

The prima facie estimator is a basic estimator that regresses the outcome Y on

the treatment T without taking covariates into account. The prima facie estimator

is unbiased if the data comes from a simple random sample; otherwise it will likely

be biased. The model fit is Y ∼ α0 + α1t+ α2t
2.

pf_estimate <- reg_est(Y = TOTALEXP,

treat = packyears,

covar_formula = ~ 1,

data = full_data_orig,

degree = 2,

wt = full_data_orig$HSQACCWT,

method = "same")

pf_estimate

##

## Estimated values:

## [1] 1128.5947250 36.8409486 -0.1348346

The regression prediction method generalizes the prima facie estimator and

takes the covariates into account (Galagate and Schafer, 2015a).

reg_estimate <- reg_est(Y = TOTALEXP,

treat = packyears,

covar_formula = ~ LASTAGE + LASTAGE2 +

AGESMOKE + AGESMOKE2 + MALE + beltuse +

educate + marital + POVSTALB + RACE3,

covar_lin_formula = ~ 1,

covar_sq_formula = ~ 1,

116



data = full_data_orig,

degree = 2,

wt = full_data_orig$HSQACCWT,

method = "different")

reg_estimate

##

## Estimated values:

## [1] 1619.329529 23.260395 -0.109507

The propensity spline prediction method adds spline basis terms to the regres-

sion prediction method. This method is similar to that of Little and An (2004) and

Schafer and Kang (2008), but for the continuous treatment setting (Galagate and

Schafer, 2015a).

spline_estimate <- prop_spline_est(Y = TOTALEXP,

treat = packyears,

covar_formula = ~ LASTAGE + LASTAGE2 +

AGESMOKE + AGESMOKE2 + MALE + beltuse +

educate + marital + POVSTALB + RACE3,

covar_lin_formula = ~ 1,

covar_sq_formula = ~ 1,

data = full_data_orig,

e_treat_1 = full_data_orig$est_treat,

degree = 2,

wt = full_data_orig$HSQACCWT,

method = "different",

spline_df = 5,

spline_const = 4,

spline_linear = 4,

spline_quad = 4)

spline_estimate

##

## Estimated values:

## [1] 1583.0374335 30.5793023 -0.1980041

This last method fits a spline basis to the estimated PF values and then

regresses the outcome on both the basis terms and the treatment to estimate the

ADRF. This is described in Imai and van Dyk (2004) and Galagate and Schafer
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(2015a). The estimated parameters correspond to coefficients for a quadratic model

of the form µ̂(t) = α̂0 + α̂1t+ α̂2t
2.

ivd_estimate <- prop_spline_est(Y = TOTALEXP,

treat = packyears,

covar_formula = ~ 1,

covar_lin_formula = ~ 1,

covar_sq_formula = ~ 1,

data = full_data_orig,

e_treat_1 = full_data_orig$est_treat,

degree = 2,

wt = full_data_orig$HSQACCWT,

method = "different",

spline_df = 5,

spline_const = 4,

spline_linear = 4,

spline_quad = 4)

ivd_estimate

##

## Estimated values:

## [1] 1487.99099309 24.89207005 -0.05530696
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Figure 5.3: Estimated dose-response functions using 4 different methods with 95% pointwise
standard errors. The standard errors are estimated by bootstrapping the entire estimation process
from the beginning.
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5.3.6 Discussion

These four methods estimate the ADRF in a structured way and assume the

true ADRF is a linear combination of a finite number of basis functions. Figure 5.3

shows an overall rising amount of TOTALEXP as packyear increases. Recall that in

this example, the four estimators are restricted to fitting the ADRF as a polynomial

of up to degree 2. Fitting more flexible models may give slightly different curves.

The next section analyzes a different data set and will fit other flexible estimators

such as BART, which allows for flexible response surfaces to estimate the ADRF.

5.4 Analysis of the Infant Health and Development Program

5.4.1 Introduction

The next example from the Infant Health and Development Program is de-

scribed by Gross (1992):

The Infant Health and Development Program (IHDP) was a col-

laborative, randomized, longitudinal, multisite clinical trial designed to

evaluate the efficacy of comprehensive early intervention in reducing the

developmental and health problems of low birth weight, premature in-

fants. An intensive intervention extending from hospital discharge to

36 months corrected age was administered between 1985 and 1988 at

eight different sites. The study sample of infants was stratified by birth

weight (2,000 grams or less, 2,001-2,500 grams) and randomized to the

Intervention Group or the Follow-Up Group.

The intervention (treatment) group received more support than the control group.

In addition to the standard pediatric follow-up, the treatment group also received

home visits and attendance at a special child development center. Although the

120



treatment was assigned randomly, families chosen for the intervention self-selected

into different participation levels (Hill, 2011). Therefore, restricting our analysis to

families in the intervention group and their participation levels leads to an observa-

tional setting.

In this section, even though families are randomly selected for intervention, we

restrict our analysis to those selected for the treatment. These families choose the

amount of days they attend the child development centers and this makes the data

set, for practical purposes, an observational data set. We apply our methods on this

subset of the data to estimate the ADRF for those who received the treatment.

We analyze this data set because the treatment variable, number of child

development center days, is analyzed as a continuous variable. The data set we use

was provided by Hill (2011).

5.4.2 Data description

Part of this data set is included in the supplement in Hill (2011), but does not

include all the needed variables. The continuous treatment is available through the

data repository at icpsr.umich.edu. To get the data, go to http://www.icpsr.

umich.edu/icpsrweb/HMCA/studies/9795?paging.startRow=51 and download

DS141: Transport Format SAS Library Containing the 59 Evaluation Data Files

- Download All Files (27.9 MB). After downloading the .zip file, extract the data

file named “09795-0141-Data-card image.xpt” to a folder and set the R working

directory to this folder. The following instructions describe how to extract the

continuous treatment variable.

Making sure the working directory contains “09795-0141-Data-card image.xpt”,

the next step is to load the Hmisc package to read sas export files.
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library(Hmisc)

mydata <- sasxport.get("09795-0141-Data-card_image.xpt")

data_58 <- mydata[[58]]

ihdp_raw <- data_58

# restricts data to treated cases

treated_raw <- ihdp_raw[which(ihdp_raw$tg == "I"),]

# continuous treatment variable

treat_value <- treated$cdays.t

The continuous treatment variable is merged with the data given in the sup-

plement by Hill (2011) to create the data set for this section.

A few more steps are needed to clean and recode the data. We collect a subset

of families eligible for the intervention and restrict the data set to families that

use the child development centers at least once. The data set contains the outcome

variable, iqsb.36, which is the measured iq of the child at 36 months. The treatment

variable is the number of days the child attended the child development center

divided by 100, ncdctt (i.e. ncdctt = 1.5 means 150 days in the child developement

center). We select the covariates using a stepwise procedure to simplify the analysis.

5.4.3 Common support

overlap_temp <- overlap_fun(Y = iqsb.36,

treat = ncdctt,

treat_formula = t_formula,

data = data_set,

n_class = 3,

treat_mod = "Normal")

median_list <- overlap_temp[[2]]

overlap_orig <- overlap_temp[[1]]

overlap_3 <- overlap_temp[[3]]

fitted_values_overlap <- overlap_3$fitted.values
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5.4.4 Estimating the ADRF

The BART estimator fits a rich outcome model on the treatment and covari-

ates to create a flexible response surface (Hill, 2011). The flexible response surface

imputes the missing potential outcomes. The estimated potential outcomes are

averaged to get the estimated ADRF over a grid of treatment values.

bart_estimate <- bart_est(Y = iqsb.36,

treat = ncdctt,

outcome_formula = iqsb.36 ~ ncdctt +

bw + female + mom.lths +

site1 + site7 + momblack +

workdur.imp,

data = full_data_orig,

grid_val = grid_treat)

The next method is described in Flores et al. (2012) and uses inverse weights

to adjust for the covariates. First a treatment model is fit and GPS values are

estimated. This is a method that uses weights to locally regress the outcome on

nearby points. This is a local linear regression of the outcome, iqsb.36, on the

treatment, ncdctt, with a weighted kernel. The weighted kernel is weighted by the

reciprocal of the GPS values.

iw_estimate <- iw_est(Y = iqsb.36,

treat = ncdctt,

treat_formula = ncdctt ~ bw + female +

mom.lths + site1 + site7 +

momblack + workdur.imp,

data = full_data_orig,

grid_val = grid_treat,

bandw = 2 * bw.SJ(full_data_orig$ncdctt),

treat_mod = "Normal")

This next method, the Nadaraya-Watson based estimator, is similar to the

inverse weighting method in the previous code chunk, but uses a locally constant

regression.
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Figure 5.4: Estimated dose-response functions using four different methods with 95% pointwise
standard errors. The standard errors are estimated by bootstrapping the entire estimation process
from the beginning.
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nw_estimate <- nw_est(Y = iqsb.36,

treat = ncdctt,

treat_formula = ncdctt ~ bw + female +

mom.lths + site1 + site7 + momblack +

workdur.imp,

data = full_data_orig,

grid_val = grid_treat,

bandw = 2 * bw.SJ(full_data_orig$ncdctt),

treat_mod = "Normal")

The propensity spline estimator is a generalization of the prima facie and re-

gression prediction method in Chapter 3. In this example, the estimator is restricted

to a polynomial of up to degree 2 of the form µ̂(t) = α̂0 + α̂1t+ α̂2t
2.

spline_estimate <- prop_spline_est(Y = iqsb.36,

treat = ncdctt,

covar_formula = ~ bw + female +

mom.lths + site1 + site7 +

momblack + workdur.imp,

covar_lin_formula = ~ 1,

covar_sq_formula = ~ 1,

data = full_data_orig,

e_treat_1 = full_data_orig$est_treat,

degree = 2,

wt = NULL,

method = "different",

spline_df = 5,

spline_const = 2,

spline_linear = 2,

spline_quad = 2)

5.4.5 Discussion

The plots in Figure 5.4 show the estimated relationship of IQ at 36 months,

iqsb.36, on number of days in the child development care center, ncdctt. The in-

verse weighting and Nadaraya-Watson show a decreasing trend for ncdctt ∈ (0, 0.8),

but an increasing trend for ncdctt > 0.8. These estimators are jagged because of the
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bandwidth selection. In this example, we use twice the Sheather-Jones bandwidth

estimate to select the bandwidth. Picking a larger bandwidth will give smoother

estimates. The BART and propensity spline estimators have a generally increasing

trend.

5.5 Conclusion

In this chapter, we have demonstrated how to estimate ADRFs using differ-

ent statistical techniques using the R package causaldrf, both for simulated and

real data, by correcting for confounding variables. causaldrf can accommodate

a wide array of treatment models, is user friendly, and does not require extensive

programming. This contribution of the R package causaldrf will make ADRF es-

timation more accessible to applied researchers. In future updates of the package,

the functions will be adapted to an even wider range of problems.
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Chapter 6: Missing data and causal inference with a continuous out-

come: an application to the National Growth and Health

Study

6.1 Introduction

6.1.1 Problem setting

Obesity is currently a major health issue in the U.S. that is related to problems

such as diabetes, cardiovascular disease, and other ailments (Mokdad et al., 2003;

Hubert et al., 1983). Possible solutions for lowering the rate of obesity in the U.S.

include encouraging people to increase their physical activity, to eat fewer calories,

to watch less television, or to decrease the amount of sedentary activities (Sallis

and Glanz, 2009). This paper applies causal inference methods to observational

data from the National Growth and Health Survey (NGHS) to explore the effect of

different levels of physical activity, diet and the amount of TV watched on obesity

in adolescent girls (obesity is defined as a measure of body mass index (BMI)).

Our primary analysis deals with physical activity and BMI. Additional analyses are

included in the Appendix.

6.1.2 National Growth and Health Study data

The NGHS was a multicenter, 10-year longitudinal study of 2379 girls from

the ages of 9-10 through 18-19. Data were collected yearly and includes variables
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Table 6.1: Correlates of physical activity.

Category of Determinant Determinants

Demographic and biological age, BMI, skinfolds, single parent
Race white, black

Psychological self-efficacy, self-perception, enjoyment
Behavioral watching TV, smoking

Social and Cultural parent activity, parent support
Physical Environment access to facilities

related to obesity development, but not all variables were collected each year. Year

1 of the NGHS refers to when the girls are 9-10 years old and year 10 when they

are 18-19 years old. The purpose of the NGHS was to explore racial differences

in diet, physical activity, demographic, psychological, and social factors associated

with obesity development in young girls. The retention rate was 0.88 on average

over the 10 year period and 58% completed all 10 annual visits. Black and white

girls were almost equally split (51% to 49%). More details are given in Kimm et al.

(2001).

In addition to the activity measures, the NGHS data set contains many other

covariates: demographic, personal history, physical measurements, biochemical de-

terminations, diet, physical activity, and psychosocial characteristics. Some exam-

ples of covariates are given in Table 6.1 (Van der Horst et al. (2007); Sallis et al.

(2000)). Table 6.2 contains summary statistics on the households. Figures 6.1 and

6.2 display some longitudinal characteristics about the girls in the study.

6.2 Methods

6.2.1 Missing data

To deal with missing data, we use multiple imputation. We assume the data

are missing at random. There are three main steps when conducting data analysis

when using multiple imputation. First, multiple imputation is used to fill in missing
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Figure 6.1: Median values of activity levels, body fat percentage, BMI, and TV viewing at
different years.
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Figure 6.2: Median values of total calories, protein, fat, and carbohydrates at different years.
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Table 6.2: Summary statistics by race in year 3.

Black Girls White Girls
(N = 1155) (N = 1073)

Education (%)

High School or Less 31.1 19.5
Some College 47.7 30.3
≥ 4 yr college 21.2 50.2

Income (%)

< $20, 000 46.4 16.3
$20, 000− $39, 999 29.9 33.2

≥ $40, 000 23.7 50.5

No. of parents in HH (%)

1 43.5 18.2
2 56.5 81.8

Figure 6.3: Scatterplots with overlapped smoothers for ∆PA7,3 vs. BMI. Plot representing black
girls are on the left column and white girls on the right.
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data by creating imputed datasets. Second, the m imputed datasets are created

and analyzed individually. Third, the estimated parameters and their variances are

pooled according to the rules for combining the results of multiply imputed datasets

(Schafer, 1997; Little and Rubin, 2002).

We use the R package Amelia (Honaker et al., 2011) to implement the multiple

imputation procedure. We impute m = 5 data sets, analyze each imputed data set

separately, and then combine the estimated parameters and standard errors.

Table 6.3: Summary statistics of categorical variables in year 3. These come from a
multiply imputed dataset.

Black White

Variable Levels n %
∑

% n %
∑

%

Max parental 1 264 28.8 28.8 146 17.9 17.9
education (grouped) 2 438 47.8 76.5 257 31.5 49.3

3 215 23.4 100.0 414 50.7 100.0

all 917 100.0 817 100.0

Household income 1 231 25.2 25.2 56 6.8 6.8
(grouped) 2 179 19.5 44.7 74 9.1 15.9

3 280 30.5 75.2 266 32.6 48.5
4 227 24.8 100.0 421 51.5 100.0

all 917 100.0 817 100.0

Happy with 1 300 32.7 32.7 119 14.6 14.6
body looks 2 434 47.3 80.0 499 61.1 75.7

3 142 15.5 95.5 158 19.3 95.0
4 41 4.5 100.0 41 5.0 100.0

all 917 100.0 817 100.0

6.2.2 Estimating the ADRF

In order to adjust for confounding bias, we fit a treatment model for the

propensity function (PF) or generalized propensity score (GPS). We assume strong

ignorability defined in Chapter 2. We use the candidate variables associated with

physical activity that have been identified by Van der Horst et al. (2007), Biddle
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et al. (2005), and Sallis et al. (2000). These candidate variables are described in

Tables 6.3 and 6.4 and include a spectrum of candidate covariates is rich and includes

physical measurements, physical activity, socioeconomic status, family beliefs and

attitudes, diet and many others. The treatment variable is the change in physical

activity from year 3 to year 7 (∆PA7,3), and the pool of candidate pre-treatment

covariates come from year 3.

The ADRF is fit using different methods. We explore linear fits, quadratic fits,

and non-parametric fits (Schafer and Kang, 2008). These different estimators are

described in Chapters 2 and 3. Plots and tables are included in the later sections.

We use the R package causaldrf from Chapter 5 to estimate the ADRFs. Table

6.6 shows results for estimating a linear fits for the NGHS data.

6.3 Results

The following plots show the estimated dose response functions using different

methods. Figure 6.4 shows the ADRF estimates using semiparametric fits. A set

of gridpoints are placed along the domain of ∆PA7,3 and 95% pointwise standard

errors are calculated using 1000 bootstrap samples.

Table 6.6 shows negative slope estimates for black girls for all methods except

for the prima facie estimate, but the slope estimate is not significant. The slope for

white girls is negative for all methods, but are also not significant.

6.4 Discussion

We see that the prima facie estimator may show significant relationships be-

tween obesity and other factors, but adjusting for possible confounders attenuates

the relationships. More study is needed to understand these relationships and either

experiments or quasi-experiments can provide more evidence.
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Table 6.4: Summary of continuous variables in year 3. Results come from a multiply
imputed data set of black and white girls. Correlation with ∆PA7,3 is listed.

Black Girls White Girls

Mean S.D. Corr T Mean S.D. Corr T

BMI 21.46 4.97 0.04 1.19 19.56 3.94 -0.04 -1.23

overall PA 22.29 14.00 -0.83 -45.47 25.18 14.88 -0.66 -24.82

TV amt. 94.53 39.96 -0.12 -3.68 55.14 33.15 -0.06 -1.58

PA diary 498.86 415.17 -0.18 -5.64 494.85 335.47 -0.15 -4.36

PA oth. 21.18 45.34 0.00 0.04 34.33 53.70 -0.09 -2.44

Cal avg. 275.45 180.58 -0.02 -0.71 303.22 155.30 -0.06 -1.86

schol.cmp. 2.97 0.66 -0.03 -0.78 3.01 0.66 0.00 0.09

ath.cmp. 2.77 0.68 -0.13 -3.83 2.77 0.74 -0.04 -1.18

self-worth 3.21 0.61 -0.05 -1.64 3.17 0.61 0.04 1.19

schol.imp. 3.45 0.71 -0.04 -1.18 3.38 0.68 -0.06 -1.80

ath.imp. 2.45 0.85 -0.04 -1.10 2.61 0.84 -0.07 -1.97

anxiety 11.11 6.16 -0.00 -0.03 10.75 6.63 -0.02 -0.58

calories 2054.86 794.64 -0.03 -0.81 1881.17 548.39 -0.02 -0.44

chol. 126.21 59.87 0.01 0.32 113.19 51.27 -0.07 -1.89

sucrose 57.12 38.96 -0.05 -1.47 49.94 29.60 0.01 0.34

sugars 130.25 63.47 -0.02 -0.47 122.76 50.99 0.03 0.79
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Table 6.5: Summary statistics for outcome and treatment variables. BMI and overall
PA are measured in year 10. These results are from a multiply imputed dataset.

Variable n Min q1 x̃ x̄ q3 Max s IQR

Black
BMI 917 13.1 17.8 20.1 21.5 24.0 40.7 5.0 6.2
PA 917 0.0 11.9 19.2 22.3 30.2 76.0 14.0 18.3
∆PA7,3 917 -57.1 -25.9 -14.9 -16.6 -6.5 22.2 14.7 19.4

White
BMI 817 12.9 16.6 18.8 19.6 21.5 39.3 3.9 4.9
PA 817 0.0 14.2 22.2 25.2 33.2 100.6 14.9 19.0
∆PA7,3 817 -55.6 -21.2 -11.3 -12.2 -1.1 21.1 15.4 20.1

Table 6.6: Slope estimates and standard errors using different methods when using
multiple imputation. All values are multiplied by 100.

black white

Slope (SE) Slope (SE)

prima facie 0.55 (2.64) -2.01 (1.42)
importance weighting -8.88 (5.04) -5.19 (9.88)
inverse second moment weighting -1.76 (3.07) -1.15 (1.38)
regression prediction -1.76 (2.16) -1.15 (1.20)
aipwee -1.76 (2.23) -1.13 (1.35)
scalar weighted regression -0.60 (2.46) -0.51 (1.60)
propensity spline -1.73 (2.16) -1.18 (1.20)
imai van dyk -1.61 (3.53) -0.34 (1.48)
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Figure 6.4: Estimated dose-response functions using 6 different methods with 95% pointwise
standard errors using the multiply imputed data. Black girls are on the left and white girls are on
the right. The standard errors are estimated by combining multiple imputation bootstrap standard
errors.
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Figure 6.5: Estimated dose-response functions using 3 different methods with 95% pointwise
standard errors using the multiply imputed data. Black girls are on the left and white girls are on
the right. The standard errors are estimated by combining multiple imputation bootstrap standard
errors.

137



Table 6.7: Slope estimates and standard errors using different methods when using
multiple imputation. TV year 3. All values are multiplied by 100.

black white

Slope (SE) Slope (SE)

prima facie 0.81 (0.62) 2.71 (0.66)
importance weighting -0.26 (0.54) 0.11 (0.93)
inverse second moment weighting -1.58 (0.71) -1.08 (0.83)
regression prediction -0.23 (0.39) 0.64 (0.46)
aipwee -0.40 (0.40) 0.25 (0.49)
weighted regression -0.16 (0.41) 0.79 (0.50)
scalar weighted regression -0.19 (0.40) 0.59 (0.56)
propensity spline -0.24 (0.39) 0.62 (0.46)
imai van dyk -0.13 (0.50) 1.46 (0.59)

6.5 Appendix

We perform additional analyses to understand how other factors may affect

BMI at year 10. The two factors we explore include the amount of TV viewed in

year 3 and the percentage of protein consumed in their diets.

Table 6.7 shows estimated slopes for BMI at year 10 on TV units viewed in

year 3. For black girls, the slopes are estimated negative for all methods except

for the prima facie. For the white girls, the prima facie estimate is positive and

significant, but all other methods except for the method by Imai and van Dyk are

not significant.

Table 6.8 shows the estimated slopes of BMI at year 10 on % calories consumed

from protein. The prima facie estimate is positive and significant, but after adjusting

for possible confounders, the relationship is not significant.

The amount of TV viewed and percentage of protein consumed affect black

and white girls differently, after adjusting for possible confounders.
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Figure 6.6: Scatterplots with overlapped smoothers for TV units and protein (% Kcal) vs. BMI.
Plot representing black girls are on the left column and white girls on the right.
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Figure 6.7: Estimated dose-response functions using 3 different methods with 95% pointwise
standard errors using the multiply imputed data. Black girls are on the left and white girls are
on the right. TV in year 3. The standard errors are estimated by combining multiple imputation
bootstrap standard errors.
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Figure 6.8: Estimated dose-response functions using 3 different methods with 95% pointwise
standard errors using the multiply imputed data. Black girls are on the left and white girls are on
the right. Protein in year 7. The standard errors are estimated by combining multiple imputation
bootstrap standard errors.

141



Table 6.8: Slope estimates and standard errors using different methods when using
multiple imputation. Protein (% Kcal) in year 7. All values are multiplied by 100.

black white

Slope (SE) Slope (SE)

prima facie 7.06 (8.04) 12.98 (6.61)
importance weighting -17.48 (36.69) 24.34 (23.39)
inverse second moment weighting -0.93 (6.76) 7.18 (4.84)
regression prediction -1.00 (4.33) 6.62 (4.17)
aipwee -0.87 (6.87) 7.32 (5.14)
weighted regression -2.22 (5.09) 8.13 (4.83)
scalar weighted regression 1.47 (7.69) 3.66 (7.06)
propensity spline -1.47 (4.69) 6.55 (4.03)
imai van dyk 0.46 (8.74) 6.57 (4.66)
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Chapter 7: Discussion and future work

7.1 Conclusions

This dissertation focused on the problem of estimating potential outcomes

when the treatment and outcome are both continuous. The methods developed in

Chapters 3 through 6 will help researchers analyze data with continuous treatments

and outcomes to understand ADRFs.

The main findings of this dissertation include a set of new estimators by mod-

ifying estimating functions with weighting (Chapter 3). Our methods assume the

true ADRF is represented by a linear combination of a finite set of basis functions.

We modified some existing estimators in Chapters 4 through 6 (Flores et al., 2012),

(Hirano and Imbens, 2004), (Imai and van Dyk, 2004), Hill (2011), and (Robins

et al., 2000). In Chapter 5, we describe the R package causaldrf which contains a

set of functions to estimate the ADRF in different settings (Galagate and Schafer,

2015b). We hope that these new methods and the software make causal inference

with a continuous treatment more applicable to a broad group of researchers.

7.2 Future extensions

Some of the issues in this dissertation were motivated by U.S. Census Bureau

applications, but have not been carried out due to the complexity of the prob-

lems. At the U.S. Census Bureau, causal inference methods can be applied to the

challenges of reduced response rates and diminishing resources. The operational
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questions of “what mode of data collection produces the highest response rates at

the lowest cost?” or “what would happen to the accuracy of the unemployment rate

if a modification is made on the data collection process?” are questions to which

causal inference methods may be applied in the future.

The methods developed in this dissertation can be extended in a few gen-

eral ways. Extensions include: allowing estimators to encompass longitudinal data,

creating estimators that incorporate complex survey designs, and understanding

missing data in this setting.

In this dissertation, the outcomes are assumed to be continuous, but more flex-

ible outcome models are needed. Extensions to binary, discrete, and other outcomes

is a future research topic. Some of the estimators require a parametric model for

fitting the treatment. A potential future topic of research is to make the treatment

model more flexible by allowing for empirical densities or nonparametric densities

for the treatment model. Testing and loosening the common assumptions such as

interference is an interesting topic for future work.

Variable selection is a general research topic in statistics and also applies to

this setting. Deciding which variables to include in the treatment model, especially

for methods presented in Chapter 3, should be explored.
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