Human malaria is responsible for over 700,000 deaths a year. To stay abreast of the threat posed by the parasite, a constant stream of new drugs and vector control methods are required. This study focuses on a vaccine that has the potential to protect against parasite infection, but has been hindered by developmental challenges. In malaria prevention, live, attenuated, aseptic, *Plasmodium falciparum* sporozoites (PfSPZ) can be administered as a highly protective vaccine. PfSPZ are produced using adult female *Anopheles stephensi* mosquitoes as bioreactors. Production volume and cost of a PfSPZ
vaccine for malaria are expected to be directly correlated with *Plasmodium falciparum* infection intensity in the salivary glands. The sporogonic development of *Plasmodium falciparum* in *A. stephensi* to fully infected salivary gland stage sporozoites is dictated by the activities of several known components of the mosquito’s innate immune system. Here I report on the use of genetic technologies that have been rarely, if ever, used in *Anopheles stephensi* Sda500 to increase the yield of sporozoites per mosquito and enhance vaccine production. By combining the Gal4/UAS bipartite system with *in vivo* expression of shRNA gene silencing, activity of the IMD signaling pathway downstream effector LRIM1, an antagonist to *Plasmodium* development, was reduced in the midgut, fat body, and salivary glands of *A. stephensi*. In infection studies using *P. berghei* and *P. falciparum* these transgenic mosquitoes consistently produced significantly more salivary gland stage sporozoites than wildtype controls, with increases in *P. falciparum* ranging from 2.5 to 10 fold. Using *Plasmodium* infection assays and qRT-PCR, two novel findings were identified. First, it was shown that 14 days post *Plasmodium* infection, transcript abundance of the IMD immune effector genes LRIM1, TEP1 and APL1c are elevated, in the salivary glands of *A. stephensi*, suggesting the salivary glands may play a role in post midgut defense against the parasite. Second, a non-pathogenic IMD signaling pathway response was observed which could suggest an alternative pathway for IMD activation. The information gained from these studies has significantly increased our knowledge of *Plasmodium* defense in *A. stephensi* and moreover could significantly improve vaccine production.
GENETIC MANIPULATION OF ANOPHELES STEPHENSI IMMUNITY TO INCREASE PLASMODIUM FALCIPARUM SALIVARY GLAND SPOROZOITE INFECTION LEVELS

by

Kasim I. George

Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park, in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2016

Advisory Committee:
Dr. David A. O’Brochta, Chair
Dr. Utpal Pal
Dr. Raymond J. St. Leger
Dr. Louisa P. Wu
Dr Najib M. El Sayed, Dean’s Representative
Dedication

I would like to dedicate this dissertation to my wonderful parents, Lionel and Joycelyn, and to my siblings Darren and Kim, for their unconditional love, support and encouragement.
Acknowledgements

I would like to express my profound gratitude to my mentor Dr. David A. O’Brochta for his guidance, teachings, and encouraging advice. Your mentorship and support have been crucial to the advancement of my research throughout my time at The University of Maryland and for that, I will be forever grateful.

I would also like to thank all of my committee members: Dr. Louisa Wu, Dr. Utpal Pal, Dr. Najib El-Sayed, and Dr. Raymond St. Leger, for their support and valuable advice. I appreciate their time and efforts in reviewing and discussing my dissertation.

In addition, I would like to extend my gratitude to all past and present members of the O’Brochta laboratory: Kristina Pilitt, Robert Alford, Hanfu Xu, Noble Surendran Sinnathamby, William Reid, Frank Criscione and Valerie Saffer. Thank you all for the, support, help, and discussions throughout my graduate career, it is greatly appreciated.

I am also grateful to the University of Maryland Insect Transformation Facility: Robert Harrell, Channa Aluvihare, and Yonas Gebremicale for their expertise and assistance generating transgenic mosquitoes, and to our collaborator, Sanaria Inc. for their help with infection studies.

Special thanks go to my family, especially my parents, Lionel and Joycelyn, siblings Darren and Kim, and my aunt, Rose and uncle, Lenny. You have always been there for me and made this possible.

To every person who has offered their support, I am profoundly grateful.
Table of Contents

Dedication ... ii

Acknowledgements .. iii

List of Tables ... vi

List of Figures ... vii

Abbreviations .. 1

Chapter 1: Introduction & Literature Review ... 1
1.1 Statement of Purpose.. 1
1.2 The Global Impact of Human Malaria .. 3
1.3 Malaria Parasitology & Prevention ... 6
1.4 Developing Vaccines against Malaria .. 10
1.5 The *Anopheles* Mosquito: The Malaria Vector ... 16
1.6 Unravelling the Mosquito Immune System for Malaria Control 19
1.7 Mosquito Innate Immunity .. 22
1.8 Mosquito Immune Effectors .. 27
1.9 Summary and rationale of dissertation research ... 33

Chapter 2: Validation of *Anopheles stephensi* Sda 500 *LRIM1* as a viable target for immune system modification ... 35
2.1 Introduction .. 35
2.2 Materials and Methods ... 37
Chapter 3: Transgenic *Anopheles stephensi* bioreactors for increased *Plasmodium falciparum* salivary gland infection intensity ... 59

3.1 Introduction ... 59

3.2 Materials and Methods ... 61

3.3 Results .. 61

3.4 Discussion .. 96

Chapter 4: Effort to develop a *LRIM1* promoter regulated Gal4 driver line 100

4.1 Introduction ... 100

4.2 Materials and Methods ... 101

4.3 Results .. 101

4.4 Discussion .. 108

Chapter 5: Conclusion and Discussion .. 109

Chapter 6: Materials and Methods ... 111

Appendices .. 132

References ... 138
List of Tables

Table 3.1. Cytogenetic location of the LRIM1 silencing transgene in the *A. stephensi* genome... 66

Table 3.2. Summary statistics from *Plasmodium falciparum* infection assay in figure 3.20. .. 89

Table 3.3. Summary statistics from *Plasmodium berghei* infection assay in figure 3.22-3.23. ... 95

Table 4.1. Cytogenetic location of LRIMpGal4 transgene integration sites in the *A. stephensi* genome... 103
List of Figures

Figure 1.1. Global cases of human malaria ... 5
Figure 1.2. Life cycle of the malaria parasite .. 9
Figure 1.3. Geographic location of malaria vectors .. 18
Figure 1.4. Gal4/UAS bi-partite system .. 21
Figure 1.5. Mosquito humoral immune signaling pathways 26
Figure 1.6. Structure of LRIM family members ... 31
Figure 1.7. Crystal structure of the LRIM1/APL1C heterodimer 32
Figure 2.1. Anopheles stephensi Sda500 LRIM1 ... 39
Figure 2.2. Transcript levels of LRIM1, APL1C, TEP1 and Caspar in the carcass of A. stephensi females 24-26 hours post Plasmodium falciparum infection .. 42
Figure 2.3. Transcript levels of LRIM1, APL1C, TEP1 and Caspar in the carcass of A. stephensi females 48-50 hours post Plasmodium falciparum infection .. 43
Figure 2.4. Transcript levels of LRIM1, APL1C, TEP1 and Caspar in the carcass of A. stephensi females 72-74 hours post Plasmodium falciparum infection .. 44
Figure 2.5. Transcript levels of LRIM1, APL1C, TEP1 and Caspar in the midgut of A. stephensi females 24-26 hours post Plasmodium falciparum infection .. 46
Figure 2.6. Transcript levels of LRIM1, APL1C, TEP1 and Caspar in the midgut of A. stephensi females 48-50 hours post Plasmodium falciparum infection. ... 47

Figure 2.7. Transcript levels of LRIM1, APL1C, TEP1 and Caspar in the midgut of A. stephensi females 72-74 hours post Plasmodium falciparum infection. ... 48

Figure 2.8. Transcript levels of LRIM1, APL1C, TEP1 and Caspar in the salivary glands of A. stephensi females 14 days post Plasmodium falciparum infection. ... 50

Figure 2.9. Transcript levels of LRIM1, APL1C, TEP1 and Rel2 in the whole body of A. stephensi females 24 hours post E. coli infection. 52

Figure 2.10. LRIM1 transcript level in response to infection by gram-negative E. coli ... 53

Figure 3.1. Transcript levels of LRIM1 in the whole body of A. stephensi Sda500 females four days post dsRNA injection to silence LRIM1 expression ... 63

Figure 3.2. Survival of A. stephensi females after injection of dsRNA to silence LRIM1 expression ... 64

Figure 3.3. Silencer lines LRIM1-silencer F2, LRIM1-silencer M2 and LRIM1-silencer M7 expressing the nls eGFP marker gene................................. 67

Figure 3.4. Transcript abundance of LRIM1 in the midgut of GAL4::LRIM1-silencer F2 females 24-26 hours post blood meal compared to controls.. ... 69
Figure 3.5. Transcript abundance of *LRIM1* in the midgut of GAL4::LRIM1-silencer M2, 24-26 hours post blood meal................................. 70

Figure 3.6. Transcript abundance of *LRIM1* in the midgut of GAL4::LRIM1-silencer M7 females 24-26 hours post blood meal 71

Figure 3.7. Transcript abundance of *LRIM1* in the carcass of GAL4::LRIM1-silencer F2, 24-26 hours post blood meal .. 72

Figure 3.8. Transcript abundance of *LRIM1* in the carcass of GAL4::LRIM1-silencer M2, 24-26 hours post blood meal .. 73

Figure 3.9. Transcript abundance of *LRIM1* in the carcass of GAL4::LRIM1-silencer M7, 24-26 hours post blood meal .. 74

Figure 3.10. Transcript abundance of *LRIM1* in the salivary glands of GAL4::LRIM1-silencer F2, 14-15 days post blood meal 75

Figure 3.11. Transcript abundance of *LRIM1* in the salivary glands of GAL4::LRIM1-silencer M2, 14-15 days post blood meal 76

Figure 3.12. Transcript abundance of *LRIM1* in the salivary glands of GAL4::LRIM1-silencer M7, 14-15 days post blood meal 77

Figure 3.13. Comparison of *LRIM1* transcript abundance in the carcass of GAL4::LRIM1-silencer lines 24-26 hours post blood meal 78

Figure 3.14. Comparison of *LRIM1* transcript abundance in the midgut of GAL4::LRIM1-silencer lines 24-26 hours post blood meal 79

Figure 3.15. Comparison of *LRIM1* transcript abundance in the salivary glands of GAL4::LRIM1-silencer lines 14-15 days post blood meal 80
Figure 3.16. Survival comparison of the progeny from a cross of LRIM1-silencer F2 with the MLB24 Gal4 driver line.. 82

Figure 3.17. Survival comparison of the progeny from a cross of LRIM1-silencer M2 with the MLB24 Gal4 driver line.. 83

Figure 3.18. Survival comparison of the progeny from a cross of LRIM1-silencer M7 with the MLB24 Gal4 driver line.. 84

Figure 3.19. Midgut bacterial load among the progeny from a cross of LRIM1-silencer M7 with MLB24 Gal4 driver. ... 85

Figure 3.20. *Plasmodium falciparum* infection intensity in *A. stephensi* Sda500 seven days post infection... 87

Figure 3.21. *Plasmodium falciparum* infection intensity in *A. stephensi* Sda500 fourteen days post infection... 88

Figure 3.22. *Plasmodium berghei* infection intensity in *A. stephensi* Sda500 seven days post infection... 91

Figure 3.23. *Plasmodium berghei* infection intensity in *A. stephensi* Sda500 seven days post infection... 92

Figure 3.24. *Plasmodium berghei* infection intensity in *A. stephensi* Sda500 fourteen days post infection... 93

Figure 3.25. *Plasmodium berghei* infection intensity in *A. stephensi* Sda500 fourteen days post infection... 94

Figure 4.1. Transgenic lines LRIMpGal4 M2, LRIMpGal4 M4, and LRIMpGal4 expressing ECFP marker gene... 104
Figure 4.2. *A. stephensi* Sda500 with the LRIMpGal4 transgene and UAS::TdTomato transgene in the genome. 106

Figure 4.3. Expression profile of *LRIM1* post *P. berghei* infection.................... 107

Figure 6.1. Schematic for crossing Gal4 driver line with UAS responder line... 130
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFB</td>
<td>Artificial feeding buffer</td>
</tr>
<tr>
<td>AMA1</td>
<td>apical membrane antigen-1</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>AP-1</td>
<td>Activator Protein 1</td>
</tr>
<tr>
<td>APL1C</td>
<td>Anti-plasmodium response leucine rich repeat 1</td>
</tr>
<tr>
<td>APN1</td>
<td>Aminopeptidase</td>
</tr>
<tr>
<td>C3</td>
<td>Complement component 3</td>
</tr>
<tr>
<td>CDC</td>
<td>Center for Disease Control</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony forming unit</td>
</tr>
<tr>
<td>ChAds</td>
<td>Chimpanzee adenoviruses</td>
</tr>
<tr>
<td>CSP</td>
<td>Circumsporozoite protein</td>
</tr>
<tr>
<td>DALYs</td>
<td>Disability adjusted ife years</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxy-ribonucleic acid</td>
</tr>
<tr>
<td>dsAgLRIM1</td>
<td>double stranded Anopheles gambiae LRIM1</td>
</tr>
<tr>
<td>dsAsLRIM1</td>
<td>double stranded Anopheles stephensi LRIM1</td>
</tr>
<tr>
<td>dsEGFP</td>
<td>double stranded enhanced green fluorescent protein</td>
</tr>
<tr>
<td>dsRNA</td>
<td>double stranded ribonucleic acid</td>
</tr>
<tr>
<td>IMD</td>
<td>Immune deficiency</td>
</tr>
<tr>
<td>JAK</td>
<td>Janus Kinase</td>
</tr>
<tr>
<td>JNK</td>
<td>c-Jun N-terminal Kinase</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>kb</td>
<td>kilobases</td>
</tr>
<tr>
<td>LB</td>
<td>Luria-Bertani</td>
</tr>
<tr>
<td>LRIM1</td>
<td>Leucine rich immune molecule 1</td>
</tr>
<tr>
<td>LRR</td>
<td>Leucine rich repeat</td>
</tr>
<tr>
<td>MSP1</td>
<td>Merozoite surface protein-1</td>
</tr>
<tr>
<td>MVA</td>
<td>Modified vaccinia virus Ankara</td>
</tr>
<tr>
<td>NK-kB</td>
<td>nuclear factor kappa-light-chain-enhancer of activated B cells</td>
</tr>
<tr>
<td>NOD</td>
<td>Nucleotide-binding oligomerization domain receptors proteins</td>
</tr>
<tr>
<td>PAMP</td>
<td>Pathogen associated molecular patterns</td>
</tr>
<tr>
<td>PBF</td>
<td>Post blood feed</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PGRP-SA</td>
<td>Peptidoglycan recognition protein SA</td>
</tr>
<tr>
<td>PGRP-SD</td>
<td>Peptidoglycan recognition protein SD</td>
</tr>
<tr>
<td>PM</td>
<td>Peritrophic matrix</td>
</tr>
<tr>
<td>PRR</td>
<td>Pathogen Recognition Receptors</td>
</tr>
<tr>
<td>qRT-PCR</td>
<td>Quantitative real-time PCR</td>
</tr>
<tr>
<td>RA PfSPZ</td>
<td>Radiation attenuated Plasmodium falciparum sporozoites vaccine</td>
</tr>
<tr>
<td>RAS</td>
<td>Radiation attenuated sporozoites</td>
</tr>
<tr>
<td>Rel2-S</td>
<td>Reslish 2 shortened</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RNAi</td>
<td>Ribonucleic acid interference</td>
</tr>
<tr>
<td>RT</td>
<td>Room temperature</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse Transcriptase Polymerase Chain reaction</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>shRNA</td>
<td>Short hairpin RNA</td>
</tr>
<tr>
<td>SOCS</td>
<td>Suppressor of cytokine signaling</td>
</tr>
<tr>
<td>STAT</td>
<td>Signal Transducer and Activator of Transcription</td>
</tr>
<tr>
<td>TEP1</td>
<td>Thioester containing protein 1</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor necrosis factor</td>
</tr>
<tr>
<td>TRAP</td>
<td>Thrombospondin-related adhesion protein</td>
</tr>
<tr>
<td>UAS</td>
<td>Upstream activation sequences</td>
</tr>
<tr>
<td>UNWTO</td>
<td>United Nations World Tourism Organization</td>
</tr>
<tr>
<td>Upd</td>
<td>Unpaired</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
Chapter 1: Introduction & Literature Review

1.1 Statement of Purpose

Human malaria is responsible for over 700,000 deaths a year (WHO 2014). To stay abreast of the threat posed by the parasite, a constant stream of new drugs and vector control methods are required (WHO 2014). Vector control is one of the most effective strategies used for the suppression of mosquito-borne diseases (Rani et al. 2009). In areas where malaria is endemic, insecticide spraying and insecticide-treated bed nets have proven effective in reducing transmission (Christophides 2005). Advancements in mosquito molecular genetics have enabled researchers to target the mosquito immune system to deplete or incapacitate the disease transmitting population (Christophides 2005). Presently, one of the most promising methods of disease control, proposes the use of vaccines developed from live radiation attenuated sporozoites (RAS) (Hill 2011). In clinical studies, a live RAS vaccine developed by Sanaria Inc, a biotechnology company in Rockville Maryland conferred protection against the development of blood stage infection to 100 percent of the volunteers (Seder et al. 2013). However, vaccine production is limited in part by the number, also referred to as intensity, of sporozoites in the mosquito salivary glands. The effective immune system of the mosquito in particular the immune deficiency pathway (IMD), is able to kill the parasite, reducing the number of sporozoites reaching the salivary glands. We hypothesize that mosquitoes with modified innate immune systems can enhance the susceptibility to *Plasmodium falciparum* thereby increasing sporozoite intensity and subsequently improving vaccine production. Leucine-rich repeat (LRR) proteins play
a key role in anti-*Plasmodium* resistance in mosquitoes (Fraiture et al. 2009). Recent studies have shown that *leucine-rich repeat immune molecule 1* (*LRIM1*), an effector gene in the IMD pathway, functions in a complement-like mechanism leading to the targeting and destruction of *Plasmodium* parasites (Fraiture et al. 2009; Baxter et al. 2010; Povelones et al. 2011; Garver et al. 2012). In this study we will examine the current models of *LRIM1* anti-*Plasmodium* response and expression in *Anopheles stephensi* (*A. stephensi*), by employing techniques novel to the field of vector biology. We hope our findings will give us a better understanding of the biology of *LRIM1* in *A. stephensi* and ultimately lead to our ability to increase sporozoite infection intensity leading to increased vaccine production.
1.2 The Global Impact of Human Malaria

Human malaria, is a persistent global public health threat and the leading cause of death in many developing countries (WHO 2014). More than 3 billion individuals live in 106 malaria endemic countries (Figure 1.1), with 1.2 billion in areas where the chance of getting human malaria is greater than 1:1000 (WHO, 2014). In 2013 there were an estimated 283 million clinical cases and 755,000 deaths attributed to human malaria worldwide. Ninety percent of those deaths occurred in the African region, with an estimated 76% being children under the age of five (WHO 2014). The severity of the disease in the African region is a result of several factors. 1) A very efficient vector, *Anopheles gambiae*; 2) The parasite species predominantly found in the region, *Plasmodium falciparum*, is most likely to cause severe illness and death; 3) The climate is conducive to year round transmission and 4) economic instability in the region (WHO 2014).

Human malaria has a substantial economic impact, costing more than US$ 12 billion per year with even more significant indirect costs. Infected individuals incur treatment related costs in addition to reduced income resulting from lost work days (WHO). Globally, human malaria infection is the 8th leading cause of Disability Adjusted Life Years (DALYs) and is the 2nd leading cause of DALYs in Africa (Snow et al., 2003). Governments also incur significant costs to purchase drugs, maintain health facilities and carry out public health interventions such as insecticide spraying and distribution of insecticide-treated bed nets (WHO 2014).
The United Nations World Tourism Organization (UNWTO) estimates that by 2020, 800 million travelers will visit a country at risk for human malaria transmission every year. Infected travelers or migrants who travel to countries that have eradicated malaria or have very low transmission can expose a very susceptible population to the disease. Even though malaria has been eliminated in the United States and some parts of Europe, there is still the possibility of outbreaks (WHO 2014). Since 1950, there have been 63 outbreaks in the U.S.A, (CDC) and malaria vectors, *A. quadrimaculatus*, *A. freeborni*, and *A. albimanus* are still widely prevalent in North America, making reemergence of the disease possible (Filler et al. 2006).
Figure 1.1- Global cases of human malaria in 2013. Human malaria is one of the world’s most severe public health problems. An estimated 3.3 billion individuals live in 106 human malaria endemic areas. 1.2 billion individuals live in areas where the chance of getting human malaria is greater than 1:1000. Ninety percent of all malaria deaths worldwide occur in the African region. (Adapted from National malaria control reports)
1.3 Malaria Parasitology & Prevention

The malaria parasite is a single cell protozoan of the genus Plasmodium with a complex life cycle that involves the Anopheles vector and a vertebrate host. There are five Plasmodium species that infect humans (P. falciparum, P. vivax, P. ovale, P. malariae and P. knowlesi) (White 2008) and all five exhibit a similar life cycle (Wiser 2009).

An individual develops malaria after being bitten by a female Anopheles mosquito infected with the Plasmodium parasite. When the female mosquito bites an individual, sporozoites in the mosquito saliva are injected into the human host during feeding (Hill 2011) (Figure 1.2). Sporozoites enter the blood stream from the avascular tissue and are carried by the circulatory system to the liver and invade hepatocytes (Vanderberg and Frevert 2004; Vaughan et al. 2008). The intracellular sporozoites undergo asexual reproduction known as exoerythrocytic schizogony that culminates in the production of merozoites that are later released from ruptured hepatocytes into the blood stream (Vaughan et al. 2008). Circulating merozoites invade erythrocytes and enter a trophic period where the parasite enlarges forming a ring structure (Bannister et al. 2000). The trophozoite enlargement is accompanied by active metabolism within the blood cell that involves ingestion of the host cytoplasm and proteolysis of hemoglobin into amino acids (Soulard et al. 2015). At the end of the trophic period there are rounds of nuclear division, without cytokinesis that results in a schizont. Merozoites bud from these mature schizonts and are released after rupture of the erythrocyte (Huff and Coulston 1944; Soulard et al. 2015). The invasion of the erythrocytes and subsequent release of merozoites trigger another round of the blood
stage replicative cycle (Rosenmund 1991; Cox 1991). Blood stage infection is responsible for the pathology associated with human malaria. (Suhrbier 1991; Rosenmund 1991; Cox 1991). Malaria patients suffer from intermittent fever paroxysm caused by the synchronous rupture of infected erythrocytes. Symptoms can last 48 to 72 hours depending on the Plasmodium species. In the case of Plasmodium falciparum fevers are persistent and result in higher morbidity and mortality (Rosenmund 1991). The increased virulence of P. falciparum is also due in part to the higher level of paracetemia. Also the sequestration of trophozoites and schizont-infected erythrocytes in deep tissue results in more complications (Suhrbier 1991; Cox 1991; Rosenmund 1991)

The parasite can develop into two sexual forms called microgametocytes and macrogametocytes. Gametocytes are large parasites that contain only one nucleus and fill up the erythrocytes (Ott 1967; Soulard et al. 2015). During a blood meal from a vertebrate host, the female Anopheles ingests gametocyte infected erythrocytes. The drop in temperature from the host to the mosquito, an increase in carbon dioxide and other mosquito metabolites induces gametogenesis and escape of microgametes and macrogametes from the erythrocytes (Soulard et al. 2015). Marcogametes are fertilized by microgametes to form a zygote. The zygote develops into a mobile okinete which is able to traverse the midgut epithelium and form a robust oocyst that undergoes multiple rounds of replication to produce sporozoites (Shahabuddin 1998). Rupture of the oocysts releases the sporozoites into the hemocoel of the mosquito. The sporozoites migrate to and invade the salivary glands to complete the cycle (Aly et al. 2009).
Historically, human malaria control has involved a combination of vector-based interventions and antimalarial drugs (WHO 2008). Traditional interventions included the use of insecticides, physical barriers such as bed nets and destruction of mosquito breeding sites (Walker 2002). Past eradication initiatives have been successful in parts of Europe and North America due in principle to control of the mosquito vector populations and access to effective medical treatment (Walker 2002). However new human malaria cases continue to arise in part due to insecticide-resistant vectors and drug-resistant parasites among other challenges (WHO 2008). These failures have stipulated the need for integrative malaria interventions that utilize innovative scientific research to interrupt transmission at all stages of the parasite life cycle (WHO 2008). Vaccines have the potential to interrupt the human malaria parasite at different stages in the life cycle, however low efficacy and coverage in vaccine trials, coupled with other developmental challenges has hindered progress (WHO 2006; WHO 2008).
Figure 1.2- Life cycle of the malaria parasite. Diagram depicts the mosquito vector stage of the life cycle on the left and the vertebrate host stage on the right. Generally, the life cycle for all *Plasmodium* species is the same. (Adapted from “Creative Commons Falciparum life cycle” by Le Roche Lab UC Riverside, used under CC BY 3.0 http://ucrtoday.ucr.edu/19520)
1.4 Developing Vaccines against Malaria

The challenge of developing a highly effective malaria vaccine has led to the design and assessment of a wide range of new approaches (Hill 2011). Early infection studies using radiated sporozoites in mice (Nussenzweig et al. 1967) and later in humans (Clyde et al. 1975), coupled with the analysis of the mechanism of immunity (Doolan and Hoffman 1997) have formed the basis for modern malaria vaccine development. The aforementioned studies by Clyde and colleagues demonstrated that a high level of protection to subsequent malaria infections could be induced in humans after being bitten by irradiated infectious mosquitoes.

Pre-erythrocytic Vaccines

Vaccines that aim to protect against development of the parasite in the hepatocytes are termed pre-erythrocytic vaccines (Chia et al. 2014). These vaccines stimulate an immune response to prevent infection of hepatocytes or attack already infected cells (Hill 2011). The Malaria Vaccine Institute categorizes these vaccines as such:

- Live, attenuated vaccines that contain of a weakened form of the whole parasite (the sporozoite) as the vaccine's main component.
- Vectored/Recombinant or genetically engineered antigens from the surface of the parasite or from the infected liver cell.
- DNA vaccines that contain the genetic information for antigen production in the vaccine recipient.
Whole Parasite Vaccines

The development of a whole parasite vaccine for human malaria had been considered clinically impractical (Hoffman et al. 2010). Studies with humans Clyde, Mccarthy, et al. (1973); Clyde, Most, et al. (1973) and Clyde et al. (1975; Hoffman et al. 2002) demonstrated that for high-level efficacy, individuals required approximately 1000 bites from infected mosquitoes, an impractical method for public administration of a vaccine. High efficacy also required the parasites be alive when administered, meaning the vaccine would have to be injectable. In addition, the vaccine would need to be stable, cryopreservable, aseptic and scalable for large quantity manufacturing. (Hoffman et al. 2010; Hill 2011). Despite the challenges facing this approach, a major effort has been made by a US biotech company, Sanaria, to develop a pre-erythrocytic vaccine comprising whole sporozoites (Hoffman et al. 2010). The catalyst behind this approach is the knowledge that irradiated sporozoites delivered by mosquito bites have induced very high levels of protective efficacy. In 2013, Sanaria reported the results of clinical trials which showed that a live radiation attenuated *Plasmodium falciparum* sporozoites vaccine (RA PfSPZ) conferred protection against the development of blood stage infections. Twelve of fifteen volunteers immunized using the live RA PfSPZ vaccine were protected against blood stage malaria including 100% protection for 6 volunteers who received higher doses (Seder et al. 2013). Live attenuated irradiated sporozoites are able to invade liver cells but develop into defective schizonts that cannot rupture the hepatocytes to release merozoites that would normally invade red blood cells resulting in blood stage malaria. These defective schizonts express antigens that can induce a protective immune response. In animal models, protection via the
whole parasite approach was likely achieved through the activity of induced CD8 T cells that clear infected human liver cells, but this remains to be demonstrated (Hill 2011). Even though high-level efficacy can be achieved using this approach, the challenge of manufacturing cost remains (Chia et al. 2014).

Efforts have also been made to eliminate the need for irradiating sporozoites. Genetically attenuated sporozoites that are incapable of developing beyond the liver-stage of the disease are being developed (Vaughan et al. 2010). Parasites engineered to progress to a later stage of development within the hepatocytes than irradiated parasites could present more antigens and possibly be more efficacious (Vaughan et al. 2010). With no radiation however, there are concerns about the safety and the possibility of break-through infections even if multiple mutations are introduced (Hill 2011).

In an extension to the whole parasite vaccines approach, researchers have investigated the possibility of using blood stage whole parasites to induce immunity (Hill 2011; Butler et al. 2012). In clinical trials it was demonstrated that very low, repeated doses of blood stage whole parasite could induce immunity to subsequent challenges in both animals and humans in the absence of induced antibodies. (McCarthy and Good 2010). However a major challenge to this approach is an acceptable method for growth of large enough numbers of parasites in blood or blood substitute (McCarthy and Good 2010).

Vectored/Recombinant Vaccines

These pre-erythrocytic vaccines are aimed mainly at inducing cellular immunity against the liver-stage of the parasite (Chia et al. 2014). These vaccines
mimic the mechanism of the immune response to irradiated sporozoites observed in animal models which is due to chiefly to CD8 T cells and appears to target multiple antigens (Doolan and Hoffman 1997). Several generations of vectored vaccines have been assessed clinically in attempts to induce comparable efficacy (Hill 2011). However, generating high-level efficacy with vectors encoding single antigens has proven to be difficult, in part because the levels of T cells required are exceptionally high (Reyes-sandoval et al. 2010) and also because of the large number of protein antigens (>5,000) expressed by the eukaryotic parasite and the complexity of the organism (Gardner et al. 2002; Butler et al. 2012). Eukaryotic parasites have complex multi-stage life cycles and at each stage there can be an enormous variation in the proteins expressed (>5,000) (Gardner et al. 2002; Butler et al. 2012). To increase T cell levels a “prime boost” approach (Ewer et al. 2013) has been developed that uses chimpanzee adenoviruses (ChAds) encoding a pre-erythrocytic antigen, thrombospondin-related adhesion protein (TRAP) and another viral vector, modified vaccinia virus Ankara (MVA) that encodes another copy of TRAP to prime an immune response (Hill et al. 2010; Reyes-sandoval et al. 2010). Other priming methods using a DNA priming vector and a human adenovirus Ad5 have also been developed (Chuang et al. 2013). To date further antigens including circumsporozoite protein (CSP) and the blood-stage antigens apical membrane antigen-1 (AMA1) and merozoite surface protein-1 (MSP1) have been assessed (Chia et al. 2014; Foquet et al. 2014).

Blood-stage Vaccines

Blood-stage vaccines target the most destructive stage of the parasite life cycle; rapid replication in the erythrocytes (Goodman and Draper 2010). Unlike pre-
erythrocytic vaccines, blood stage vaccines do not aim to block all infections but decrease the number of parasites in the blood, and in so doing, reduce the severity of disease (Goodman and Draper 2010). Evidence suggests that people who have survived regular exposure to malaria develop natural immunity over time. The goal of a vaccine that contains antigens or proteins from the surface of the blood-stage parasite (the merozoite) would be to allow the body to develop that natural immunity with less risk of getting ill (Osier et al. 2014).

Development of blood-stage vaccines has generally been slower compared to pre-erythrocytic vaccines (Goodman and Draper 2010). Blood stage vaccines that have progressed to clinical studies have not yet achieved good evidence of protective efficacy against clinical malaria. Many of these vaccine candidates are based on just a few antigens, MSP1 and AMA1 in particular, although there are hundreds or perhaps thousands of antigens expressed by blood-stage parasites that might be used in vaccine development (Chia et al. 2014; Osier et al. 2014). Majority of these candidate vaccines have been a protein-adjuvant combination designed to induce protective antibodies that impair parasite growth (Ellis et al. 2009; Druilhe et al. 2005). Three particular challenges for the development of blood-stage vaccines are 1) Large-scale production of conformationally correct large antigens, 2) weak antibody response (Ellis et al. 2009) and 3) the extensive polymorphism of many leading candidate blood-stage antigens (Takala et al. 2009).
Transmission-Blocking Vaccine (VIMTs)

Transmission-blocking vaccines work by inducing antibodies that interrupt development of the parasite in the mosquito after it takes a blood meal from a vaccinated person (Coutinho-Abreu and Ramalho-Ortigao 2010; Arévalo-Herrera et al. 2011; Nunes et al. 2014). Transmission-blocking vaccines would not prevent a person from getting malaria, nor lessen the symptoms of the disease but would limit the spread of infection by preventing mosquitoes that fed on an infected person from spreading malaria to new hosts (Hill 2011). Antigens from the gametocyte or sexual stage of the malaria parasite are used to immunize individuals (Rhoel R. Dinglasan and Marcelo Jacobs-Lorena 2008). The principle that immunization with gametocyte or ookinete antigens could reduce or ablate oocyst development in the mosquito was first reported by (Carter & Chen 1976). However, concern that utilization of such a transmission-blocking vaccine would be impractical because of the mass vaccination needed initially limited development. However, new findings such as the possible ookinete receptor, aminopeptidase (APN1), along with the potential cross species activity of transmission blocking vaccines, has rekindled interest (Dinglasan et al. 2007).

Sanaria’s Malaria Vaccine: RA-PfSPZ

Sanaria is a biotechnology company located in Rockville Maryland with a mission to develop and commercialize a whole-sporozoite vaccine that confers high-level, long-lasting protection against the malaria parasite *Plasmodium falciparum* (Sanaria Inc.). Results of a small human experiment reported in 2013 demonstrated 100% protection against blood stage infection for volunteers who received a high dose of Sanaria’s RAPfSPZ vaccine. Sanaria estimates that a successful malaria vaccine has
the potential to be the largest revenue producing vaccine in the world, generating $1-$3 billion annually with many potential markets that include military personnel, government officials, and tourists who travel to malaria endemic countries.

Manufacturing of the RAPfSPZ vaccine is an expensive and labor intensive process that involves manual dissection of the salivary glands of infected female *A. stephensi* Sda 500 mosquitoes followed by purification of sporozoites away from the mosquito tissue and cells (Hoffman et al. 2010). Sanaria calculates that the cost of their RAPfSPZ vaccine is directly related to the number of sporozoites that develop in each infected salivary gland. Therefore, any increase in manufacturing efficiency will have a direct impact on reducing the cost of production. To improve manufacturing efficiency Sanaria plans to adapt genetically modified *A. stephensi* Sda500 that regular yield more sporozoites than the wildtype mosquito to their manufacturing platform.

1.5 The *Anopheles* Mosquito: The Malaria Vector

The *Anopheles* genus of mosquitoes is comprised of almost 500 species of which only 8-10% are vectors of the human malaria parasite (Collins and Paskewitz 1995). *A. gambiae*, the primary vector in the African region is the most studied species. Other species, such as *A. stephensi*, and *A. darlingi* are important vectors in Southeast Asia and South America, respectively (Sinka et al. 2012). See Figure 1.3 for a map of global malaria vectors. Various *Anopheles* sub-species and reproductively isolated genetic forms also contribute to the complexity of the genus (Lee et al. 2013; Lefèvre et al. 2009). For instance, *A. gambiae* is a species complex comprised of many geographically overlapping cryptic sub-species yet remaining genetically distinct. It is
hypothesized that genetic adaptations to varying environments among other factors drive speciation within the *Anopheles* genus (Caputo et al. 2014). *Anopheles stephensi* Sda500 used in the vaccine manufacturing platform of Sanaria, is a laboratory strain that was obtained through genetic selection of female mosquitoes of the Sind strain that were exposed to highly infective in-vitro reared *P. falciparum* gametocytes (Feldmann and Ponnudurai, 1989). Feldman and Ponnudurai observed that Sda500 yielded twice as many oocyst in the midgut than the unselected Sind strain.

Regardless of environmental adaptive differences, *Anopheles* mosquitoes undergo a similar life cycle. Anautogenous adult females require a blood meal to produce eggs. Gravid females will oviposit approximately 50-200 eggs approximately 48-72hrs post blood-meal in a suitable, aqueous environment. Under optimal conditions most of the eggs will hatch within 3 days of oviposition, however temperature variability can result in hatch times 2-30 days or longer. Larvae cycle through 4 developmental stages (L1, L2, L3, L4) that can range from 5-14 days (Bray & Garnham 1982). After the L4 stage, larvae pupate and undergo metamorphosis into adults (Charlesworth 2014). After mating males typically die off whereas females go in search of a blood meal. *Anopheles* mosquitoes are anautogenous and the female mosquito requires a blood meal to produce eggs to continue the life cycle (Hillyer 2010). Females may take more than one blood meal during their life span, and these additional blood meals are responsible for transmission of malaria parasites (Elliott 1972).
Figure 1.3- Geographic location of malaria vectors. Distribution of mosquitoes of the *Anopheles* genus that are vectors of the malaria parasite. (From Kiszewski et al. 2004)
1.6 **Unravelling the Mosquito Immune System for Malaria Control**

The *Anopheles* genome contains many uncharacterized genes that are regulated by *Plasmodium* infection (Dong et al. 2006). Genome re-sequencing, high throughput transcriptomics analysis of malaria vectors, coupled with the advances in mosquito molecular genetics, have enabled researchers to identify genes potentially involved in insecticide resistance, host and mate seeking behaviors and refractoriness to *Plasmodium* (Lynd and Lycett 2012). Recent proposals aimed at preventing parasite transmission include creating *Plasmodium* resistant mosquitoes and introduction of transgenic mosquitoes into native mosquito habitats that will convert later generations of mosquitoes into non-vectors (Marshall and Taylor 2009).

Anopheles gene function has been primarily characterized through the use of transient RNA interference (RNAi) (Shin, V.A. Kokoza, et al. 2003). Although functional characterization of genes using transient RNAi is possible in adult mosquitoes (Catteruccia and Levashina 2009) this method is limited not least by the non-systemic nature of gene silencing in mosquitoes (Lycett et al. 2006). The Gal4/UAS bi-partite system (Figure 1.4) is a powerful functional genomics tool that has been routinely used with great success in *Drosophila* and has been more recently adapted for use in *Anopheles* (Lynd & Lycett 2012; O’Brochta et al. 2012). The system can be used in a wide variety of applications such as generating phenotypes through transgene mis- or over-expression, enhancer detection and stable gene knockdown through RNAi and refined mosaic analyses (Duffy 2002).
The bi-partite system uses a transgenic “driver” line with the yeast transactivator, Gal4, under the transcriptional control of a specific regulatory region; and a transgenic “responder” line that contains a candidate gene under the transcriptional control of an upstream activation sequences (UAS) containing multiple Gal4 binding sites (Fischer et al. 1988; Ornitz et al. 1991; Brand and Perrimon 1993). Since most species, do not contain Gal4 equivalents, the candidate gene is only expressed in the progeny of crosses between driver and responder lines, when Gal4 and UAS transgenes are brought together in the same genome (Lynd and Lycett 2012). The expression of the candidate gene is dictated by the temporal and spatial pattern of the promoter or enhancer driving Gal4 expression (Lynd and Lycett 2012). Analysis of genes whose expression may exert a high fitness cost or dominant lethal or sterile phenotypes is also possible, since activation only occurs after crossing. Thus the effects of mis-expression can be studied even if they are somewhat deleterious (Brand and Perrimon 1994).
Figure 1.4- Gal4/UAS bi-partite system. The Gal4/UAS system utilizes a transgenic “driver” line with the yeast transactivator, Gal4, under the transcriptional control of a specific regulatory region; and a transgenic “responder” line that contains a candidate gene under the transcriptional control of the upstream activation sequences (UAS) also known as Gal4 binding sites. The system can be used to control the spatial and temporal pattern of a candidate gene expression and to analyze gene that may have a high fitness cost or lethal phenotype. (Adapted from Lynd & Lycett 2012)
1.7 Mosquito Innate Immunity

Mosquitoes like other organisms are exposed to the constant threat of infection and are specifically susceptible to infection by blood-borne pathogens such as *Plasmodium* during a blood meal (Hillyer 2010). Invertebrates including mosquitoes lack an adaptive immune system but utilize a highly effective innate immune system for their defense (Osta, Christophides, Vlachou, et al. 2004), (Dimopoulos 1997). During *Plasmodium* infection the innate immune system in combination with physical barriers such as the peritrophic matrix (PM) can reduce parasitemia 10^7 fold (Alavi et al. 2003; Hillyer 2010). Three major immune signaling pathways that have been demonstrated to protect the mosquito from pathogens are; the Toll pathway, the Jak/Stat pathway and the IMD pathway (figure 1.5) (Dimopoulos 1997; Christophides, Zdobnov, Barillas-Mury, Birney, Blandin, Blass, Brey, Collins, Danielli, Dimopoulos, Hetru, Hoa, J. a Hoffmann, et al. 2002; Shin, V. Kokoza, et al. 2003; Osta, Christophides, Vlachou, et al. 2004; Cirimotich et al. 2010; Yassine and M. a Osta 2010; Hillyer 2010; Pike et al. 2014)

Toll Pathway

The Toll pathway is activated during invasion by gram positive bacteria or fungi (Cirimotich et al. 2010). It has also been implicated in defense against viruses in mosquitoes (Xi et al. 2008) and fruit flies (Zambon et al. 2005). In the *Anopheles* malaria vector the Toll pathway has been demonstrated to respond to rodent malaria, *Plasmodium berghei* infection (Frolet et al. 2006). Pathogen associated molecular patterns (PAMP) are recognized by pathogen recognition receptors (PRR) such as PGRP-SA and -SD that trigger proteolytic cleavage of the cytokine Spätzle, that binds

JAK-STAT Pathway

The JAK-STAT pathway named for the Jak kinase and STAT transcription factor has been demonstrated to play a role in the immune response against pathogenic bacterial infections in the gut of *Drosophila* (Buchon et al. 2009; Cronin et al. 2009) and against viral activity in *Drosophila* (Dostert et al. 2005) and *Aedes aegypti* (Souza-Neto et al. 2009). Gupta et al. 2009 demonstrated that the JAK-STAT pathway plays a role in *P. falciparum* and *P. berghei* infections post midgut stage infection however the mechanism by which this is done is less understood (Cirimotich et al. 2010). Activation of the JAK-STAT pathway is triggered by Unpaired (Upd) binding to the receptor Dome, activating the receptor-associated Hop Janus kinases, which phosphorylate each other and recruit and phosphorylate STAT. STAT undergoes dimerization and translocates to the nucleus to activate transcription of target genes (Agaisse and Perrimon 2004). Two transcription factors STAT A and STAT B have been identified in *A. gambiae*. Depletion of STAT A has been demonstrated to increase oocysts levels
of *P. berghei* while depletion of the JAK/STAT negative regulator, SOCS, decreased infection (Gupta et al. 2009).

Immune Deficiency (IMD) Pathway

The IMD pathway in *Anopheles*, has been shown to play a major role in the mosquito refractory response to bacteria (Meister et al. 2005) and *Plasmodium* (Richman et al. 1997; Osta, Christophides & Kafatos 2004; Meister et al. 2005; Garver et al. 2009; Garver et al. 2012; Meister et al. 2009; Pike et al. 2014; Cirimotich et al. 2010; Yassine & M. a Osta 2010). The IMD pathway, can be compared to the tumor necrosis factor (TNF) signaling pathway in mammals (Kaneko and Silverman 2005; Aggarwal and Silverman 2008). Pathogens detected by peptidoglycan recognition proteins (PGRPs) initiate intracellular signaling through the adaptor IMD protein and various caspase-like proteins and kinases, leading to a functional split in the pathway (Rutschmann et al. 2000; Georgel et al. 2001; Choe et al. 2002; Leulier et al. 2002; Leulier et al. 2003; Choe et al. 2005; Kleino et al. 2005; Tanji and Ip 2005). One branch is similar to the c-Jun N-terminal Kinase (JNK) pathway of mammals and uses JNK to activate the transcription factor AP-1, while the other branch, an NF-kappaB activating branch, culminates in the processing of the transcription factor Rel2 (Tanji & Ip 2005b; Gupta et al. 2009; Meister et al. 2005; Stoven et al. 2003; Hedengren et al. 1999; Dushay et al. 1996; Kallio et al. 2005; Silverman et al. 2000; Stoven et al. 2000; Sluss et al. 1996; Hoa & Zheng 2007). The REl2 transcription factor exists as two splice variants (Meister et al. 2005; Luna et al. 2006). The constitutively active form Rel2-S is a shortened form that lacks the ankyrin inhibitory domain and is responsible for basal immune response whereas Rel2-F, the full length form of the transcription factor
remains inactive until there is immune signaling (Meister et al. 2005; Luna et al. 2006). Activation of the IMD pathway leads to cleavage of the carboxyl terminal end of Rel2-F and exposes the nuclear localization signal (Meister et al. 2005; Luna et al. 2006). Cleaved Rel2-F translocates to the nucleus to initiate transcription of immune factors such as leucine rich immune molecule 1 (LRIM1), Anopheles Plasmodium responsive leucine rich repeat 1 (APL1) and thioester containing protein 1 (TEP1) (Cirimotich et al. 2010).
Figure 1.5- Mosquito humoral immune signaling pathways. In Toll pathway signaling, detection of pathogen-derived ligands by PRRs results in Rel1 translocation to the nucleus and activate transcription of Toll-pathway regulated genes. The IMD pathway is activated by ligand binding to PGRP-LCs and -LEs. This triggers signaling through IMD and various caspases and kinases, leading to a functional split in the pathway. One branch triggers JNK signaling to activate the transcription factor AP1, while the other results in the phosphorylation of transcription factor Rel2. Activated Rel2 translocates to the nucleus to activate IMD-regulated transcription. The JAK-STAT pathway is triggered by Unpaired (Upd) binding to the receptor Dome, activating the receptor-associated Hop Janus kinases, which phosphorylate each other and subsequently recruit and phosphorylate the STAT transcription factor. Phosphorylated STATs dimerize and translocate to the nucleus to activate JAK-STAT-regulated transcription (Adapted from Sim et al. 2014)
1.8 Mosquito Immune Effectors

Analysis of the transcriptional profile of mosquitoes at different stages of the *Plasmodium* infection, especially in the midgut during ookinete invasion has identified anti-*Plasmodium* effector molecules. These effector molecules have mainly been characterized through RNAi-based transcript depletion that results in increased levels of *Plasmodium* infection. Further characterization has associated some of these effector molecules with specific immune pathways and processes (Cirimotich et al. 2010). Although there are a number of anti-*Plasmodium* effector molecules, only the most pertinent ones are covered here.

Thioester-containing protein 1

Thioester-containing protein 1 (TEP1) is an anti-*Plasmodium* effector molecule and one of the most well studied. TEP1 is involved in range of immune responses including phagocytosis, parasite lysis, and melanization (Blandin et al. 2004; Yassine & M. A. Osta 2010; Garver et al. 2012; Yassine et al. 2012). Studies have shown that it controls both *P. berghei* and *P. falciparum* infection in the mosquito midgut (Garver et al. 2013; Garver et al. 2009). Blandin et al., 2004 identified TEP1 as the mosquito orthologue of complement component 3 (C3) in the human complement system. Recent studies have established the role of TEP1 in a highly regulated complement-like process in the mosquito, in which TEP1 is deposited on the surface of pathogens (Yassine et al. 2014). TEP1 expression is strongly regulated by the IMD pathway (Garver et al. 2009). Although there are other Tep molecules in the mosquito, their role in anti-*Plasmodium* defense is not yet known.
Leucine-Rich Immune Molecule 1

Another important anti-Plasmodium effector molecule is leucine-rich immune molecule 1 (LRIM1) that has been shown to control P. berghei (Meister et al. 2005) and P. falciparum infections (Garver et al. 2012). Research has shown that TEP1 forms complexes with leucine-rich proteins on the surface of parasites, indicating these molecules may be involved in the complement-like process (Fraiture et al. 2009; Povelones and Waterhouse 2009; Baxter et al. 2010; Povelones et al. 2011). However, the principal mechanism behind this finding is not well understood and there are possibly many more interacting partners of leucine-rich proteins.

Leucine-rich repeat (LRR) containing proteins are found in various organisms and have been shown to have multiple functions (Povelones and Waterhouse 2009). Insects and mammals contain Toll-like receptors involved in initiating an innate immune response to pathogens (Vasselon and Detmers 2002). Nucleotide-binding oligomerization domain receptors proteins (NOD) in mammals and plants contain LRR structures and are involved in immunity and host-defense responses (Loimaranta et al. 2009). The LRR superfamily is composed of LRR proteins with various domain architectures such as Toll receptors with intracellular Toll-interleukin receptor domains (Waterhouse et al. 2010). Proteomic analysis of the Anopheles mosquito has identified over 180 LRR superfamily members, 24 belonging to the LRIM family which has only been identified in mosquitoes (Waterhouse et al. 2010). LRIM family members are composed of an N-terminal signal peptide, repeated LRRs that form a horseshoe-like structure, a pattern of cysteine residues and a coiled coil domain (Waterhouse et al.
LRIM family members that contain all these sequence patterns are grouped into the Long LRIM subfamily (Waterhouse et al. 2010). Further LRIM subfamilies identified by Waterhouse and colleagues include a short LRIM subfamily that contain 6-7 repeated LRR, and Transmembrane LRIM subfamily which have predicted C-terminal transmembrane domains. Leucine rich immune molecule 1 is a LRR protein found in mosquitoes. LRIM 1 is a member of the Long LRIM subfamily in mosquitoes. It has been shown to be an effector molecule in the IMD pathway of Anopheles mosquitoes and a strong suppressor of parasite development, during low to medium infection intensities (Garver et al. 2012) playing a role in both melanization (Warr et al. 2006), and lysis (Jaramillo-Gutierrez et al. 2009), (Habtewold et al. 2008) of the parasite. *LRIM1* expression in *A. gambiae* has been demonstrated to be regulated by *Plasmodium* infection with maximum expression coinciding with the movement of *Plasmodium* ookinetes across the basal gut epithelium (Han et al. 2000; Osta, Christophides & Kafatos 2004; Marinotti et al. 2005). RNAi studies have demonstrated that silencing of *LRIM1* expression with dsRNA increased the intensity of *Plasmodium berghei* oocysts infection 3 - 4.5 fold in *A. gambiae* (Osta, Christophides, and Kafatos 2004). In similar studies, (O’Brochta et al. unpublished) demonstrated that silencing *LRIM1* expression in *A. stephensi* using dsRNA transcribed *in vitro* using *A. gambiae* as a template increased the number of sporozoites in the salivary glands 2.5 fold.

The present model suggests that LRIM1 functions in a complement-like pathway leading to the activation of a C3-like protein, TEP1, that localize to the surface of the pathogen, targeting it for destruction (Fraiture et al. 2009), (Povelones and Waterhouse 2009), (Baxter et al. 2010). LRIM1 covalently binds intracellularly to
APL1 forming a heterodimer (Figure 1.7) that is secreted into the hemolymph. The LRIM1/APL1 complex then binds to a mature cleaved TEP1 molecule stabilizing it and promoting binding to the pathogen surface (Fraiture et al. 2009; Waterhouse et al. 2010; Baxter et al. 2010; Povelones et al. 2011).
Members of the LRIM family are characterized by four structural patterns. An N-terminal signal peptide; repeated LRR which form a horseshoe like structure; a pattern of cysteine residues, and a coiled coil domain region. Further sub-families includes Transmembrane LRIMs which have predicted C-terminal transmembrane domains and Coil-less LRIMs with all the characteristic structures except the coiled coil domain. (Adapted from Waterhouse et al. 2010)
Figure 1.7- Crystal structure of the LRIM1/APL1C heterodimer. The LRIM1/APL1C heterodimer is secreted into the hemolymph where it bind to a cleaved TEP1 molecule stabilizing it. The TEP1/LRIM1/APL1C complex bind to the surface of foreign bodies or pathogens targeting them for destruction by the immune system. (Adapted from PDB ID: 30JA, Baxter et al. 2010)
1.9 Summary and rationale of dissertation research

In the first part of this work I investigate the immune response of *Plasmodium* susceptible *Anopheles stephensi* Sda500 to infection by *Plasmodium falciparum* NF54. The mosquito immune response to *Plasmodium* has been demonstrated to be dominated by IMD pathway effector molecules in *Plasmodium* refractory strains of *A. gambiae* and *A. stephensi*. Sanaria’s vaccine manufacturing platform utilizes the laboratory derived strain of *A. stephensi* which was selected for its susceptibility to *Plasmodium* infection. Since the aim of the project is to attenuate the immune response to increase sporozoite infection in the salivary glands, the immune response and specifically the IMD pathway response in *A. stephensi* Sda500 is assessed during *Plasmodium* and bacterial infection. After identifying homologs of IMD effector genes in *A. stephensi* I used real-time quantitative PCR to assess gene expression during infection. The unique findings demonstrate an IMD immune response to *Plasmodium* infection and may indicate the regulation of IMD effector genes by different pathways.

In the second part of this work I explore the use of the Gal4/UAS bi-partite system for stable gene knockdown using shRNA. Due to strict manufacturing protocols, injecting mosquitoes with dsRNA is not feasible, therefore a stable transgenic mosquito line with regulated silencing cassettes is developed. The Gal4/UAS system is commonly used in *Drosophila* and has been recently adapted for use in mosquito. However work to date has not used the system for gene knockdown in mosquitoes. I designed a plasmid containing an inverted repeat of a region of *LRIM1* under the regulatory control of UAS and inserted it into the genome of *A. stephensi* Sda500 using transposon-based gene vectors. The unique findings demonstrate the
adaptation of the Gal4/UAS system for spatial and temporal gene silencing in mosquitoes. Infection studies of transgenic mosquitoes demonstrated that silencing of *LRIM1* can increase sporozoite infection in the salivary glands and therefore these transgenic mosquitoes are excellent candidates for being incorporated into the sporozoite and vaccine production process at Sanaria Inc.

In the third part of this work I identify and clone the *LRIM1* promoter region to identify the tissues where *LRIM1* is expressed. This could allow for targeted knockdown of *LRIM1* expression to increase sporozoite infection in the salivary glands. The current model of *LRIM1* function proposes that *LRIM1* is expressed in the fat body, midgut and hemocytes of *A. gambiae*. However, microarray experiments of *A. gambiae* have shown evidence of *LRIM1* expression in the head, salivary glands, ovaries and malpighian tubules of adult females. It is therefore unclear exactly where and when *LRIM1* is expressed and how this relates to its purported function. Here, I attempt to determine the spatial and temporal pattern of *LRIM1* expression by creating transgenic mosquitoes that will make use of the bi-partite Gal4::UAS system to control the expression of a fluorescent gene.
Chapter 2: Validation of *Anopheles stephensi* LRIM1 as a viable target for immune system modification in Sda500

2.1 Introduction

Development of a live-attenuated *Plasmodium falciparum* sporozoites vaccine for malaria was thought to be clinically impractical for three primary reasons: (1) Sporozoites would need to be delivered alive to be effective; (2) the vaccine would need to be stable, aseptic and cryopreservable, and (3) the difficulty of efficiently generating sufficient sporozoites for vaccine manufacturing (Hoffman et al. 2010). Presently, Sanaria Inc. has addressed the challenge of vaccine delivery by developing a clinically accepted intravenous route for vaccine administration, and they have also developed a proprietary method for rearing aseptic mosquitoes to produce stable, aseptic sporozoites that are cryopreservable. However vaccine production still remains an expensive, labor intensive process and is expected to directly impact vaccine cost (Sanaria Inc.). To produce the vaccine, sporozoites are taken directly from the salivary glands of infected female mosquitoes, therefore directly linking vaccine production to salivary gland infection intensity and prevalence (Sanaria Inc.). The mosquito’s immune system plays a major role in limiting the parasite’s development and the infection intensity of sporozoites. (Cirimotich et al. 2010; Hillyer 2010). Therefore, we hypothesized that modifying the immune system of the mosquito to increase salivary gland infection intensity would increase vaccine production and lower its cost.

The Immune Deficiency (IMD) pathway in *Anopheles*, has been shown to play a major role in the mosquito’s immune response to *Plasmodium falciparum* (Cirimotich et al. 2010; Hillyer 2010). Female *Anopheles* are exposed to *Plasmodium* during a
blood meal. During development in the mosquito, the number of parasites can be reduced by as much as 10^7 fold by the innate immune system (Alavi et al. 2003; Hillyer 2010).

LRIM 1 is an effector molecule in the IMD pathway of *Anopheles* mosquitoes and has been shown to be a strong antagonist of parasite development during low to medium infection intensity (Garver et al. 2012) and plays a role in both melanization (Warr et al. 2006), and lysis (Jaramillo-Gutierrez et al. 2009; Habtewold et al. 2008) of the parasite. RNA interference (RNAi) studies have demonstrated that silencing *LRIM1* expression with dsRNA increased the intensity of *Plasmodium berghei* infection 3 - 4.5-fold in *A. gambiae* as reflected in the number of oocysts (Osta, Christophides, and Kafatos 2004). In similar studies, O’Brochta et al. (unpublished) demonstrated that silencing *LRIM1* expression in *A. stephensi* using dsRNA transcribed *in vitro* using *A. gambiae* *LRIM1* increased the number of sporozoites in the salivary glands 2.5-fold.

The laboratory strain *Anopheles stephensi* Sda500 is the mosquito used as Sanaria Inc’s manufacturing platform due to its high susceptibility to *Plasmodium* infection, consistently having 2-fold higher infection intensity, compared to *Sind* strains (Feldmann et al. 1990). The mechanism for its increased susceptibility is presently unknown, but could be a result of mis-regulation of the IMD pathway which could make the IMD pathway a poor target for genetic modification in this strain. Furthermore, previous studies looking at the effects of *LRIM1* on parasite survival have concentrated on *Anopheles gambiae* and other *Plasmodium falciparum* resistant
Anopheles species. Therefore it is unclear whether LRIM1 would be a good target for increasing the susceptibility of A. stephensi to Plasmodium falciparum.

The aim of this project was to test the validity of A. stephensi LRIM1 as a viable candidate for immune modification by identification and cloning of A. stephensi LRIM1 and examining the expression pattern of A. stephensi LRIM1 under challenge with Plasmodium falciparum and E. coli.

2.2 Materials and Methods
Materials and Methods can be found on page 111

2.3 Results

Cloning of Anopheles stephensi Sda500 Leucine Rich Immune Molecule 1

Anopheles stephensi Sda500 cDNA was generated by in vitro reverse transcription of A. stephensi Sda500 RNA was used as the template in a polymerase chain reaction (PCR) using primers AsLRIM1fw (5’- CCC GCC GGT ATA GCT TAT CAG – 3’) and AsLRIM1rv (5’- CAA ATA GTG CTC GTC TGC GC - 3’) that were designed based on a known A. gambiae LRIM1 sequence aligned to an assembled draft genome sequence of A. stephensi created by Dr. Zhijian Tu at Virginia Polytechnic Institute and State University, Blacksburg VA 24061. Polymerase chain reaction generated a 1.8 kilobase fragment. Nucleotide pairwise sequence alignment to the known A. gambiae LRIM1 sequence showed 58 percent sequence identity. Amino acid pairwise alignment (Clustal Omega) showed 60 percent amino acid identity of A. stephensi LRIM1 to A. gambiae LRIM1. Further sequence analysis using LRR finder (Bej et al. 2014) identified 9 Leucine-rich repeat domains consisting of 19 to 41 amino
acid residues (Figure 2.1). Marcoil analysis (Delorenzi and Speed 2002) with a 99\% threshold identified two coiled coil domains in the region of amino acid residues 318 to 366 and 424 to 459 (Figure 2.1). SignalP-4.0 (Petersen et al. 2011) identified a signal peptide region from residue 1 to 19 (Figure 2.1). Further analysis using the most current A. stephensi genome release, VB-2015-10, AsteS1 (Jiang et al. 2014) identified our predicted LRIM1 gene as long leucine rich immune protein LRIM1 (ASTE000814).
Figure 2.1- *Anopheles stephensi* Sda500 LRIM1. Amino acid sequence of LRIM1 isolated and cloned from *Anopheles stephensi* Sda500. Characteristic feature of the leucine rich immune molecule family are shown. Signal peptide region-grey; leucine rich repeats-red; pattern of cysteine residues- blue and the coiled coil region- green.
Immune Response of *A. stephensi* Sda500 to *Plasmodium falciparum* infection

The carcass (all tissue remaining after removal of the midgut) and midgut of female *A. stephensi* were assessed for IMD pathway immune response at 24-26; 48-50; and 72-74 hours post blood feed infection. Using qRT-PCR, transcript levels of IMD effector genes *LRIM1*, *APLIC* and *TEP1* and also IMD pathway negative regulator *Caspar* were assessed in mosquitoes provided a *Plasmodium falciparum* infected blood meal, or a non-infected blood meal. Naïve mosquitoes maintained on 10% sucrose were used as controls. (Here, changes referred to as “modest” are significant but lower than 2 fold)

IMD Pathway Immune Response in Carcass

Between 24 to 26 hours post blood feed the transcript levels of *LRIM1*, *APLIC* and *TEP1* were specifically up-regulated in mosquitoes provided infected blood and non-infected blood compared to control mosquitoes maintained on sucrose. Average *LRIM1* expression in infected blood and non-infected blood-fed mosquitoes were respectively 5 and 2-fold greater than controls. *APLIC* and *TEP1* had average increases greater than 3-fold in *Plasmodium* infected mosquitoes compared to control mosquitoes, while there were modest increases in *APLIC* and *TEP1* in non-infected blood fed mosquitoes. Average *Caspar* transcript levels were lower in both infected and non-infected blood fed mosquitoes compared to control naïve mosquito (Figure 2.2).

In mosquitoes assessed 48 to 50 hours post blood feed, transcript levels of *LRIM1*, *APLIC* and *TEP1* decreased and were now lower in infected and non-infected
blood fed females compared to controls. However Caspar transcript levels in both infected and non-infected blood fed females were on average more than 4-fold higher than in comparable naïve sucrose maintained females (Figure 2.3).

Assessment of mosquitoes 72 to 74 hours post blood feed showed that transcript levels of Caspar decreased in both infected and non-infected blood fed mosquitoes but remained over 2 folds higher than controls. LRIM1 transcript levels in both blood fed groups remained lower than in controls. APL1C and TEP1 transcript levels were also lower in infected blood fed females compared to controls, however in females fed non-infected blood both APL1C and TEP1 had modestly higher transcript levels (Figure 2.4).
Figure 2.2 Transcript levels of *LRIM1, APL1C, TEP1* and *Caspar* in the carcass of *A. stephensi* females 24-26 hours post *Plasmodium falciparum* infection. The carcass of 10 individual females were pooled and RNA extracted. Gene expression was measured as described in Materials and Methods. Transcript levels are reported as a fold expression compared to naïve non-blood fed females. Error bars indicate standard error of the mean of three independent replicates.
Figure 2.3- Transcript levels of LRIM1, APL1C, TEP1 and Caspar in the carcass of A. stephensi females 48-50 hours post *Plasmodium falciparum* infection. The carcass of 10 individual females were pooled and RNA extracted. Gene expression was measured as described in Materials and Methods. Transcript levels are reported as a fold expression compared to naïve non-blood fed females. Error bars indicate standard error of the mean of three independent replicates.
Figure 2.4- Transcript levels of LRIM1, APL1C, TEP1 and Caspar in the carcass of A. stephensi females 72-74 hours post Plasmodium falciparum infection. The carcass of 10 individual females were pooled and RNA extracted. Gene expression was measured as described in Materials and Methods. Transcript levels are reported as a fold expression compared to naïve non-blood fed females. Error bars indicate standard error of the mean of three independent replicates.
IMD Pathway Immune Response in Midgut

Similar to transcript levels observed in the carcass, midgut transcript levels of \textit{LRIM1}, \textit{APLIC} and \textit{TEP1} were higher in infected and non-infected blood-fed females compared to controls. However the fold increase observed in the midgut was lower than the upregulation observed in carcass 24 -26 hours post blood feed (Figure 2.6). Both blood fed groups had elevated \textit{Caspar} transcript levels when compared to the controls, with the transcript abundance in infected blood fed females trending lower.

Between 48 to 50 hours the expression pattern in the midgut paralleled the expression observed in the carcass with increased \textit{Caspar} and lower \textit{LRIM1}, and \textit{APLIC} transcripts compared to controls. \textit{TEP1} transcript levels were marginally but not significantly higher in both blood fed groups compared to controls. \textit{Caspar} transcript levels in infected and non-infected blood females were more than 3 and 2-fold higher respectively (Figure 2.7).

Between 72 to 74 hours post blood feed \textit{Caspar} transcript levels fell in both blood fed groups but was still more than 2-fold higher than observed in controls. \textit{TEP1} transcript levels in both blood fed groups were modestly higher than the controls, while transcript levels of \textit{LRIM1} and \textit{APLIC} in both blood fed groups were lower than the controls (Figure 2.8).
Figure 2.5- Transcript levels of *LRIM1*, *APL1C*, *TEP1* and *Caspar* in the midgut of *A. stephensi* females 24-26 hours post *Plasmodium falciparum* infection. The midgut of 10 individual females were pooled and RNA extracted. Gene expression was measured as described in Materials and Methods. Transcript levels are reported as a fold expression compared to naïve non-blood fed females. Error bars indicate standard error of the mean of three independent replicates.
Figure 2.6- Transcript levels of LRIM1, APL1C, TEP1 and Caspar in the midgut of A. stephensi females 48-50 hours post Plasmodium falciparum infection. The midgut of 10 individual females were pooled and RNA extracted. Gene expression was measured as described in Materials and Methods. Transcript levels are reported as a fold expression compared to naïve non-blood fed females. Error bars indicate standard error of the mean of three independent replicates.
Figure 2.7- Transcript levels of LRIM1, APL1C, TEP1 and Caspar in the midgut of A. stephensi females 72-74 hours post Plasmodium falciparum infection. The midgut of 10 individual females were pooled and RNA extracted. Gene expression was measured as described in Materials and Methods. Transcript levels are reported as a fold expression compared to naïve non-blood fed females. Error bars indicate standard error of the mean of three independent replicates.
Immune Response 14 days post infection in salivary glands

The salivary glands of infected females were assessed for IMD pathway response fourteen days post *Plasmodium* infection. This time point in the parasite life cycle, corresponds to salivary gland invasion by sporozoites. Both *APLIC* and *TEPI* showed greater than 2-fold increase in average transcript levels when compared to mosquitoes that fed on non-infected blood while *LRIM1* showed a 1.8-fold increase when compared to controls. There was also a modest but significant 1.3-fold increase in *Caspar* transcript levels when compared to non-infected blood fed females.
Figure 2.8- Transcript levels of *LRIM1*, *APL1C*, *TEP1* and *Caspar* in the salivary glands of *A. stephensi* females 14 days post *Plasmodium falciparum* infection. The salivary glands of 30 individual females were pooled and RNA extracted. Gene expression was measured as described in Materials and Methods. Transcript levels are reported as a fold expression compared to non-infected blood fed females. Error bars indicate standard error of the mean of three independent replicates.
Response of *Anopheles stephensi* Sda500 IMD pathway to *Escherichia coli* infection

To assess the role of the IMD pathway in response to infection by gram negative bacteria, four days old females were treated with *E. coli* via injections or through feeding. Transcript levels of *LRIM1, APL1C, TEP1* and IMD pathway transcription factor Rel2 were assessed in the whole body of *E.coli* or PBS treated mosquitoes 24 hours post infection (Figure 2.9). All the genes assessed showed no upregulation in response to *E. coli* infection. Similar results were observed when *LRIM1* transcript levels were assessed 24 hours after mosquitoes were provided an artificial feeding buffer (AFB) that contained 100 CFU/mL of *E. coli* (Figure 2.10).
Figure 2.9- Transcript level of IMD pathway effector molecules and IMD pathway transcription factor Rel2 in the whole body of *A. stephensi* females 24 hours post *E. coli* infection. The carcass of 10 individual females were pooled and RNA extracted. Gene expression was measured as described in Materials and Methods. Transcript levels are reported as a fold expression compared to naïve non-infected females. Error bars indicate standard error of the mean of three independent replicates.
Figure 2.10 - *LRIM1* transcript level in response to infection by gram-negative *E. coli* (100 CFU/ml) in sterilized artificial feeding buffer 24 hours post infection. The whole body of 10 individual females were pooled and RNA extracted. Gene expression was measured as described in Materials and Methods. Transcript levels are reported as a fold expression compared to naïve non-injected females. Error bars indicate standard error of the mean of three independent replicates.
2.4 Discussion

Anopheles stephensi LRIM1 is a member of the long LRIM sub-family

Analysis of the LRIM1 homolog isolated from A. stephensi identified it as member of the LRIM family. Like LRIM1 previously described in A. gambiae, A. stephensi A. stephensi Sda500 LRIM1 exhibited the conserved double coiled coil C-terminal domain (Waterhouse et al. 2010). These coiled coil domains are thought to facilitate the protein/protein interactions of LRIM1 and APL1 which form a heterodimer complex within the complement-like immune response (Povelones and Waterhouse 2009). Mosquito LRIMs are characterized by a variable number of 6 to 14 leucine-rich repeats, which distinguishes the short and long subfamily of LRIMs (Waterhouse et al. 2010). The short LRIM subfamily contains 6 to 7 leucine-rich repeats while the long LRIM subfamily contains 10 or more leucine-rich repeats (Waterhouse et al. 2010). The previously identified A. gambiae LRIM1 is characterized as a long LRIM with 10 LRRs. The LRIM1 gene isolated from A. stephensi had 9 LRRs predicted using LRRfinder and therefore also a long LRIM.

An N-terminal signal peptide was predicted in LRIM1 isolated from A. gambiae and A. stephensi. This would suggest that LRIM1 is secreted from cells. However previous studies by (Povelones and Waterhouse 2009; Povelones et al. 2011) suggest that the Anopheles gambiae LRIM1 monomer is only secreted into the hemolymph, after the formation of the LRIM1/APL1 complex. In both AsLRIM1 and AgLRIM1 between the C-terminal coiled coil domain and the leucine-rich repeats is a conserved double cysteine motif. This motif has been implicated in the formation of the disulfide bond between LRIM1 and APL1 (Waterhouse et al. 2010; Povelones et al. 2011).
Plasmodium falciparum infection regulates LRIM1 expression in female Anopheles stephensi

It has been previously reported that LRIM1 in A. gambiae functions as a strong suppressor to Plasmodium berghei development, (Warr et al. 2006; Habtewold et al. 2008; Gutierrez et al. 2009). Post blood meal or P. berghei infection the expression of LRIM1 in A. gambiae significantly increases (Marinotti et al. 2006) with highest expression levels observed 24 hours after infection when ookinetes are traveling across the basal lamina of the mosquito midgut (Osta, Christophides, and Kafatos 2004). Later studies by Mendes et al. (2011) demonstrated that the midgut immune response, specifically the IMD pathway response, during A. gambiae infection by P. falciparum was infection intensity dependent with 972 genes regulated during low infection intensity (<15 oocysts in midgut) compared to 557 during high infection intensity (>15 oocyst in the midgut). This observation was later supported by (Garver et al. 2012) who reported on the novel intensity dependent role of LRIM1 during P. falciparum infections in A. gambiae.

Our studies demonstrated that A. stephensi Sda500 that were provided a P. falciparum infected blood meal had significant increases in IMD effector molecules expression 24 -26 hours post infection compared to controls. However, the relatively small increase in transcript abundance in the midgut may support previous observations by Mendes et al. (2011) and Garver et al. (2012) of infection intensity dependent IMD pathway signaling in the midgut. Our observation of maximum LRIM1 expression 24 hours post Plasmodium infection followed by downregulation 48 hours post infection
also paralleled previous studies by Osta et al. (2004) and Marinotti et al. (2005) studying \textit{A. gambiae} response to \textit{P. berghei} infection. The relationship shown here between \textit{A. stephensi} IMD pathway and \textit{Caspar} expression corresponded to previous observations (Garver et al. 2012) in their study of the relationship between the negative regulator \textit{Caspar} and the IMD pathway response to \textit{Plasmodium}. These observations along with the IMD pathway response to \textit{P. falciparum} infection indicates that the IMD signaling pathway in \textit{A. stephensi} Sda500 is induced in response to parasites.

\textbf{Role of the \textit{A. stephensi} salivary glands in \textit{Plasmodium} defense}

The novel observation of a statistically significant increase in expression of IMD effector genes in the salivary glands fourteen days post \textit{P. falciparum} infection could provide significant insight into the mosquito’s defense against the parasite. It is the prevailing thought that the humoral response against the parasite is concentrated in the midgut, but this new observation may suggest other tissues invaded by the parasite also mount an immune response. Unpublished studies by O’Brochta and colleagues where they observed that silencing \textit{LRIM1} had no effect on \textit{P. falciparum} oocyst intensity but increase sporozoite intensity 2.5 fold compared to control mosquitoes could support a post midgut immune response by IMD pathway immune effectors to \textit{Plasmodium}. Future studies to elucidate the role of specific tissues in parasite defense should be performed and these answers could provide better targets for immune modification.
IMD pathway in *Anopheles stephensi* Sda500 was not regulated by *E. coli* infection

Previous studies have demonstrated the role of the IMD pathway (Dimopoulos et al. 1997; Dimopoulos et al in 2002) and specifically the role of TEP1 (Waterhouse et al. 2010; Yassine et al. 2014) in defense against *E. coli* in *A. gambiae*. In our attempt to upregulate the IMD pathway by injection of *E. coli* directly into the body cavity of the mosquito or introduction through feeding, there was no significant difference observed in the expression of genes involved in the mosquito complement like immune system. Further analysis of the IMD pathway transcription regulator *Rel2* also showed no significant difference in its level of expression following injection or feeding on *E. coli* compared to the control. Further studies using a wide range of bacteria should be performed to determine the role of the IMD pathway in bacterial pathogen defense in *A. stephensi*.

Feeding mechanism can increase LRIM1 expression in *A. stephensi*

Studies by Marinotti et al. (2005) and results presented here demonstrated that female *Anopheles* mosquitoes provided with a non-infected blood meal had elevated *LRIM1* expression compared to non-fed controls. Our studies also demonstrated that the upregulation of *LRIM1* could be induced by feeding on a solution that did not contain blood. Mosquitoes that were provided a sterilized artificial feeding solution (Galun 1967) demonstrated modest increase in *LRIM1* transcripts compared to sucrose fed control. One hypothesis is that this observed response could be an evolutionary...
conserved mechanism to protect the mosquito from possible harmful pathogens ingested during a blood meal similar to the formation the peritrophic membrane in *Anopheles* mosquitoes after a blood meal (Terra 2001).

The results presented here demonstrate that *A. stephani* Sda500 can mount an IMD pathway immune response to *Plasmodium falciparum* infection. Taken together these results show that *LRIM1* is a suitable candidate for modification of the innate immune system in *Anopheles stephani* Sda500 to increase *Plasmodium falciparum* sporozoite intensity in the salivary glands.
Chapter 3: Transgenic *Anopheles stephensi* Sda500 bioreactors for increased *Plasmodium falciparum* salivary gland infection intensity

3.1 Introduction

Production volume and cost of a live attenuated vaccine for malaria is expected to be directly correlated with infection intensity of *Plasmodium falciparum* sporozoites in the salivary glands (Sanaria Inc.) Numerous studies (Pike et al., 2014; Garver et al., 2012; Meister et al., 2005; Osta et al., 2004) have shown that the IMD pathway plays a major role in reducing *Plasmodium* infection intensity in *Anopheles* mosquitoes. In studies aimed at increasing infection intensity in the salivary glands of *A. stephensi* Sda500 and ultimately improving vaccine production, O’Brochta et al. (unpublished) demonstrated that silencing expression of the IMD pathway effector gene *LRIM1* increased the infection intensity of sporozoites 2.5 fold. In those studies, *LRIM1* gene expression in *A. stephensi* was reduced by RNAi using *A. gambiae* LRIM1 dsRNA. However given the high sequence variation observed among the LRR and coiled coil domains of LRIM1 among *Anopheles* species (Waterhouse et al. 2010), it was hypothesized that more effective silencing could be achieved using dsRNA identical to *A. stephensi* LRIM1 and therefore increase sporozoite infection intensity.

Although those studies demonstrated that sporozoite intensity in the salivary glands could be increased by reducing *LRIM1* expression with dsRNA, introducing additional steps into the vaccine manufacturing protocol while maintaining strict
aseptic conditions would have the unwanted effect of increasing cost. It was therefore proposed that stable transgenic *A. stephensi* with a heritable *LRIM1* gene silencing transgene expressing LRIM1 dsRNA could be used as bioreactors for sporozoite production. *A. stephensi* is amenable to genetic manipulation and numerous examples of transgenic *A. stephensi* being created using *piggyBac* transposon-based vectors have been reported. (Brown et al. 2003; Catteruccia et al. 2000; Ito et al. 2002; Lycett 2004; Nolan et al. 2002; Yoshida & Watanabe 2006; Kim et al. 2004; O’Brochta et al. 2012). Furthermore, stable and heritable gene silencing using *in vivo*-expressed dsRNA has been demonstrated in *An. stephensi* (Brown et al. 2003). A *piggyBac* transformation vector containing the *LRIM1* target sequence cloned in an inverted repeat orientation, separated by a functional intron can be injected into preblastoderm embryos and screened for transgenics. Transcription of this cassette containing an inverted repeat fragment of *LRIM1* would result in DICER mediated post-transcriptional silencing.

Here I propose to use genetic technologies that have rarely if ever been used in *A. stephensi* to create a line of *A. stephensi* Sda500 with a partially dysfunctional immune system. I will combine *in vivo* expressed shRNA gene silencing with the Gal4/UAS binary transcription regulatory system, so that gene silencing can be regulated spatially and temporally (Elliott and Brand 2008). This approach will enable us to direct silencing of *LRIM1* to specific tissues such as the midgut, fat body and salivary glands that have been indicated in *LRIM1* expression throughout the vector stage of the parasite life cycle, thereby eliminating the temporal and spatial limitations reported with dsRNA injections. Unlike, previous studies (Osta et al. 2004; Jaramillo-
Gutierrez et al. 2009; Garver et al. 2012) where dsRNA was used to assess the role of LRIM1 in the anti-Plasmodium response over a relatively small window of time, our approach will help to parse out the role of LRIM1 during the entire vector parasite interaction.

This chapter focuses on the creation and characterization of transgenic A. stephensi lines that express stable hairpin RNA from transgenes integrated into the genome targeting LRIM1 and the analysis of these lines for the increased susceptibility to Plasmodium.

3.2 Materials and Methods

Materials and Methods can be found on page 102

3.3 Results

Transient silencing of A. stephensi LRIM1 with dsRNA

Silencing of LRIM1 expression in the whole body of A. stephensi Sda500 females was assessed 4 days post dsRNA injection by quantitative reverse transcription polymerase chain reaction (qRTPCR) (Figure 3.1). Compared to control mosquitoes injected with dsEGFP, mosquitoes injected with dsAgLRIM1 and dsAsLRIM1 had average transcript abundance of 78.8% ± 7.1% and 53.5% ± 12.1% respectively.

Transient silencing of A. stephensi LRIM1 with dsAsLRIM1 reduces lifespan.

Adult female A. stephensi Sda500 injected with dsAsLRIM1 RNA showed a reduction in their life-span compared to dsEGFP and dsAgLRIM1, injected controls
(figure 3.2). On average 100 percent of dsAsLRIM1 injected females were dead 10 days post injection, compared to only 66 and 68 percent fatality in dsEGFP and dsAgLRIM1 injected females respectively. In all injected groups there was approximately 40 percent fatality 24 hours post injection.
Figure 3.1- Transcript levels of *LRIM1* in the whole body of *A. stephensi* Sda500 females four days post dsRNA injection to silence *LRIM1* expression. The whole body of five females from each injection were pooled and RNA extracted. Gene expression was measured as described in Materials and Methods. Average transcript abundance is shown relative to control dsEGFP-injected mosquitoes. Transcript levels of ribosomal S7 gene were used as a calibrator. Bars indicate standard error of the mean of three independent experiments.
Figure 3.2- Survival of *A. stephensi* females after injection of dsRNA to silence *LRIM1* expression. *A. stephensi* Sda500 females injected with dsAsLRIM1 had 100 percent fatality 10 days post injection compared to 66 percent and 68 percent fatality of dsEGFP and dsAgLRIM1 injected controls respectively. 50 female mosquitoes were used for each treatment. Bars indicate standard error of the mean of three independent experiments.
Characterization of LRIM1-silencer lines

Transgene insertion site

Three *LRIM1* silencer lines; LRIM1-silencer F2, LRIM1-silencer M2 and LRIM1-silencer M7 (Figure 3.3), were created as described in the Material and Methods. Here we refer to lines LRIM1-silencer F2, LRIM1-silencer M2 and LRIM1-silencer M7 as F2, M2 and M7 respectively. Cytogenetic location of the transgene insertion site was determined using Splinkerette PCR and chromosomal location data of *A. stephensi* scaffolds provided by Igor Sharakov of Virginia Polytechnic Institute and State University. Integration site for F2 was determined to be in the intergenic region of scaffold KB664543 on Chromosome 3R. For M2 the transgene was found in the intergenic region of scaffold KB664524 located on Chromosome 2R while the M7 transgene was located in the intergenic region of scaffold KB664832 located on Chromosome 3L. For summary of results see Table 1.
Table 3.1- Cytogenetic location of the *LRIM1* silencing transgene in the *A. stephensi* genome.

<table>
<thead>
<tr>
<th>Silencer line</th>
<th>Insertion site</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Scaffold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRIM1-silencer F2</td>
<td>KB664543</td>
<td>3R</td>
<td></td>
</tr>
<tr>
<td>LRIM1-silencer M2</td>
<td>KB664524</td>
<td>2R</td>
<td></td>
</tr>
<tr>
<td>LRIM1-silencer M7</td>
<td>KB664832</td>
<td>3L</td>
<td></td>
</tr>
</tbody>
</table>
Figure 3.3- Silencer lines LRIM1-silencer F2, LRIM1-silencer M2 and LRIM1-silencer M7. (A) Dorsal view of whole third-instar larva showing nlsEGFP marker gene expression. (B) Ventral view of whole third-instar larva showing nlsEGFP marker gene expression. (C) Magnification of head showing nuclear localized expression.
in vivo dsRNA silencing LRIM1 in transgenic Anopheles stephani

The progeny of the UAS:LRIM1-silencer lines were crossed with the MB24 Gal4 driver line (O’Brochta et al 2012) which expresses Gal4 in the midgut, fat body and salivary gland (see appendix). Progeny containing a copy of UAS::LRIM1-silencer and Gal4 were used to test for tissue specific silencing of LRIM1 expression using qRTPCR. The abundance of LRIM1 transcript in each genotype was compared to transcript abundance in the wildtype. Progeny that contained a single transgene element showed no statistically significant difference in LRIM1 transcript abundance in tissues examined compared to wildtype. Progeny of the three silencer lines (F2, M2 and M7) that contained both the Gal4 and UAS::LRIM1-silencer elements showed reduction of LRIM1 transcript abundance in the midgut, salivary gland and carcass (midgut and salivary glands removed) compared to wild type. In the midgut the average transcript abundance was reduced to $72\% \pm 6.0\%$, $65\% \pm 9.6\%$ and $52\% \pm 6.2\%$ (Figure 3.4 – 3.6) for lines F2, M2 and M7 respectively. Meanwhile the average carcass transcript levels in F2, M2 and M7 were reduced to $64\% \pm 13.2\%$, $65\% \pm 7.4\%$ and $63\% \pm 10.8\%$ respectively (Figure 3.7 – 3.9)

Comparison among the 3 lines showed there was no statistical difference in LRIM1 expression in the carcass (Figure 3.13), however analysis of the midgut and salivary gland showed that the transcript reduction in M7 was statistically significant compared to the other lines (Figures 3.14 & 3.15). For both the M2 and M7 lines transcript reduction was greater in the salivary glands with average transcript abundance of $56\% \pm 8.3\%$ and $38\% \pm 4.1\%$ respectively. Average transcript abundance in the salivary glands of the F2 line was $78.2\% \pm 10.2\%$ (Figures 3.10 – 3.12)
Figure 3.4- Transcript abundance of *LRIM1* in the midgut of GAL4::LRIM1-silencer F2 females 24-26 hours post blood meal compared to controls. For each genotype the midgut of 10 individual females were pooled and RNA extracted. Gene expression was measured as described in Materials and Methods. Average transcript abundance is shown relative to wild type mosquitoes. Transcript levels of ribosomal S7 gene were used as a calibrator. Bars indicate standard error of the mean of three independent experiments.
Figure 3.5- Transcript abundance of *LRIM1* in the midgut of GAL4::LRIM1-silencer M2, 24-26 hours post blood meal compared to controls. For each genotype the carcass of 10 individual females were pooled and RNA extracted. Gene expression was measured as described in Materials and Methods. Average transcript abundance is shown relative to wild type. Transcript levels of ribosomal S7 gene were used as a calibrator. Bars indicate standard error of the mean of three independent experiments.
Figure 3.6- Transcript abundance of LRIM1 in the midgut of GAL4::LRIM1-silencer M7 females 24-26 hours post blood meal compared to controls. For each genotype the midgut of 10 individual females were pooled and RNA extracted. Gene expression was measured as described in Materials and Methods. Average transcript abundance is shown relative to wild type. Transcript levels of ribosomal S7 gene were used as a calibrator. Bars indicate standard error of the mean of three independent experiments.
Figure 3.7- Transcript abundance of LRIM1 in the carcass of GAL4::LRIM1-silencer F2, 24 -26 hours post blood meal compared to controls. For each genotype the carcass of 10 individual females were pooled and RNA extracted. Gene expression was measured as described in Materials and Methods. Average transcript abundance is shown relative to wild type. Transcript levels of ribosomal S7 gene were used as a calibrator. Bars indicate standard error of the mean of three independent experiments.
Figure 3.8- Transcript abundance of *LRIM1* in the carcass of GAL4::LRIM1-silencer M2, 24-26 hours post blood meal compared to controls. For each genotype the carcass of 10 individual females were pooled and RNA extracted. Gene expression was measured as described in Materials and Methods. Average transcript abundance is shown relative to wild type. Transcript levels of ribosomal S7 gene were used as a calibrator. Bars indicate standard error of the mean of three independent experiments.
Figure 3.9- Transcript abundance of *LRIM1* in the carcass of GAL4::LRIM1-silencer M7, 24 -26 hours post blood meal compared to controls. For each genotype the carcass of 10 individual females were pooled and RNA extracted. Gene expression was measured as described in Materials and Methods. Average transcript abundance is shown relative to wild type. Transcript levels of ribosomal S7 gene were used as a calibrator. Bars indicate standard error of the mean of three independent experiments.
Figure 3.10- Transcript abundance of *LRIM1* in the salivary glands of GAL4::LRIM1-silencer F2, 14-15 days post blood meal compared to controls. For each genotype the carcass of 10 individual females were pooled and RNA extracted. Gene expression was measured as described in Materials and Methods. Average transcript abundance is shown relative to wild type. Transcript levels of ribosomal S7 gene were used as a calibrator. Bars indicate standard error of the mean of three independent experiments.
Figure 3.11- Transcript abundance of LRIM1 in the salivary glands of GAL4::LRIM1-silencer M2, 14 -15 days post blood meal compared to controls. For each genotype the carcass of 10 individual females were pooled and RNA extracted. Gene expression was measured as described in Materials and Methods. Average transcript abundance is shown relative to wild type. Transcript levels of ribosomal $S7$ gene were used as a calibrator. Bars indicate standard error of the mean of three independent experiments.
Figure 3.12- Transcript abundance of *LRIM1* in the salivary glands of GAL4::LRIM1-silencer M7, 14-15 days post blood meal compared to controls. For each genotype the carcass of 10 individual females were pooled and RNA extracted. Gene expression was measured as described in Materials and Methods. Average transcript abundance is shown relative to wild type. Transcript levels of ribosomal S7 gene were used as a calibrator. Bars indicate standard error of the mean of three independent experiments.
Figure 3.13- Comparison of LRIM1 transcript abundance in the carcass of GAL4::LRIM1-silencer lines 24-26 hours post blood meal. For each line the carcass of 10 individual females were pooled and RNA extracted. Gene expression was measured as described in Materials and Methods. Average transcript abundance is shown relative to wild type. Transcript levels of ribosomal S7 gene were used as a calibrator. Bars indicate standard error of the mean of three independent experiments.
Figure 3.14- Comparison of LRIM1 transcript abundance in the midgut of GAL4::LRIM1-silencer lines 24-26 hours post blood meal. For each line the carcass of 10 individual females were pooled and RNA extracted. Gene expression was measured as described in Materials and Methods. Average transcript abundance is shown relative to wild type. Transcript levels of ribosomal S7 gene were used as a calibrator. Bars indicate standard error of the mean of three independent experiments.
Figure 3.15- Comparison of LRIM1 transcript abundance in the salivary glands of GAL4::LRIM1-silencer lines 14-15 days post blood meal. For each line the carcass of 10 individual females were pooled and RNA extracted. Gene expression was measured as described in Materials and Methods. Average transcript abundance is shown relative to wild type. Transcript levels of ribosomal S7 gene were used as a calibrator. Bars indicate standard error of the mean of three independent experiments.
in vivo dsRNA silencing of **LRIM1** in *A. stephensi* Sda500 does not reduce lifespan

In our previous experiments it was shown that dsAsRNA injected into adult *A. stephensi* Sda500 females reduced their lifespan. To determine if **in vivo** shRNA silencing with a smaller and more specific target site would have a similar phenotype as injecting dsRNA, the life span of the progeny generated from crossing LRIM1-silencer/- lines with the MB24 Gal4/- driver line was assessed. No statistical difference was observed in the life span of the progeny when any of the three silencer lines were crossed with Gal4 driver line (Figure 3.16 – 3.18).

in vivo dsRNA silencing of *A. stephensi* LRIM1 in females showed no difference in midgut bacterial load.

To study the response of the gut microbiota to **LRIM1** silencing the bacterial load in the midgut of progeny from the cross of LRIM1silencer M7 with MLB24-Gal4 driver were determined (Figure 3.19) The M7 line was used in this experiment because earlier experiments demonstrated greater reduction in midgut expression of **LRIM1** compared to the F2 and M2 lines. No statistical difference was observed in bacterial load of the genotypes examined. The average Colony Forming Unit (CFU) in the female midgut range from 1.8×10^6 CFU/ml to 2.3×10^6 CFU/ml.
Figure 3.16- Survival comparison of the progeny from a cross of LRIM1-silencer F2 with the MLB24 Gal4 driver line. Fifty female pupae from each genotype were pooled in a cage and observed for 21 days post emergence. The cage was examined daily and dead individuals were removed and the genotype determined. No statistical difference was observed among the genotypes examined.
Figure 3.17- Survival comparison of the progeny from a cross of LRIM1-silencer M2 with the MLB24 Gal4 driver line. Fifty female pupae from each genotype were pooled in a cage and observed for 21 days post emergence. The cage was examined daily and dead individuals were removed and the genotype determined. No statistical difference was observed among the genotypes examined.
Figure 3.18- Survival comparison of the progeny from a cross of LRIM1-silencer M7 with the MLB24 Gal4 driver line. Fifty female pupae from each genotype were pooled in a cage and observed for 21 days post emergence. The cage was examined daily and dead individuals were removed and the genotype determined. No statistical difference was observed among the genotypes examined.
Figure 3.19 - Midgut bacterial load among the progeny from a cross of LRIM1-silencer M7 with MLB24 Gal4 driver. Serial dilutions of midgut homogenate of 10 individual females of each genotype were plated on LB agar. CFU was calculated after 48 hour incubation at 27°C. Error bars indicate the standard error of the mean of three independent experiments.
Plasmodium falciparum infections

Plasmodium falciparum Infection experiments were performed using the LRIM1-silencer M7 line. Heterozygous LRIM1-silencer M7 females were crossed with heterozygous MBL24/Gal4 driver males. The progeny were fed with Plasmodium falciparum infected blood and each genotype was assessed for prevalence, oocyst and sporozoite infection, in three replicate experiments (See table 2 for summary of results). Seven days post blood feed the mosquitoes were assessed for oocyst infection.

MBL24Gal4/UAS::LRIM1-silencer mosquitoes expressing the hairpin silencing construct had a geomean number of oocyst of 51.3 ± 77.5, 117.8 ± 65 and 37.5 ± 97.3 for the three respective experiments. Corresponding geomean number of oocysts in wildtype individuals were 4.6 – 13 fold lower with counts of 7.1 ± 63.5, 9.0 ± 66.6 and 8.0 ± 37.3. Transgenic mosquitoes with only the GAL4 element or UAS LRIM1 silencer element had mean oocyst counts of 49.5 ± 68.2, 26.7 ± 66.3, 30.8 ± 49.7 and 28 ± 90.5, 23.8 ± 54.2 and 24.5 ± 52.5 respectively. (Figure 3.20) shows the pooled data from the three independent experiments.

Fourteen days PBF the salivary glands of infected mosquitoes were assessed for sporozoite infection (Figure 3.21). Mosquitoes expressing the LRIM1 silencer construct consistently had 2.5-10 fold higher number of sporozoites in infected salivary glands compared to infected wild type salivary gland. Transgenic control, insects with only the MBL24 Gal4 transgene or the UAS::LRIM1 transgene consistently had lower sporozoite counts than Gal4::LRIM1-silencer but consistently higher than the wildtype control.
Figure 3.20- *Plasmodium falciparum* infection intensity in *A. stephensi* Sda500 seven days post infection. Circles represent the number of oocysts on a single midgut; horizontal black bars represent the median oocysts in each genotype. Three independent biological replicates were pooled, and significance was determined by a Kruskal-Wallis test followed by Dunn’s post-test in the case of multiple comparisons.
Figure 3.21- *Plasmodium falciparum* infection intensity in *A. stephensi* Sda500 fourteen days post infection. Circles represent the average number of sporozoites from a single mosquito; horizontal black bars represent the mean sporozoites in each genotype. Salivary glands of 21-25 mosquitoes were dissected and pooled and sporozoites intensity assessed.
Table 3.2 - Summary statistics from *Plasmodium falciparum* infection assay in figure 3.

<table>
<thead>
<tr>
<th>Feed</th>
<th>Gametocytemia</th>
<th>Prevalence (%) N= 21-25</th>
<th>Mean oocyst/mosquito (Geomean)</th>
<th>sporozoites/mosquito</th>
<th>Prevalence (% head squash; N= 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.5</td>
<td>79.2</td>
<td>51.3</td>
<td>274,890</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>88</td>
<td>49.5</td>
<td>191,889</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>77.2</td>
<td>28</td>
<td>207,117</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>64</td>
<td>7.1</td>
<td>26,270</td>
<td>44</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>96</td>
<td>117.8</td>
<td>275,438</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>70.8</td>
<td>26.7</td>
<td>223,483</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>78.3</td>
<td>23.8</td>
<td>162,060</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>65</td>
<td>9</td>
<td>96,365</td>
<td>60</td>
</tr>
<tr>
<td>C</td>
<td>0.5</td>
<td>70.8</td>
<td>37.5</td>
<td>269,733</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>84</td>
<td>30.8</td>
<td>98,980</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>82.6</td>
<td>24.5</td>
<td>135,800</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>62.5</td>
<td>8</td>
<td>106,210</td>
<td>40</td>
</tr>
</tbody>
</table>
Plasmodium berghei infections

Plasmodium berghei infection experiments were performed using the LRIM1-silencer M7 line. LRIM1-silencer M7 females were crossed with heterozygous MBL24/Gal4 driver males. The progeny was provided Plasmodium berghei infected mice and each genotype was assessed for prevalence, oocyst and sporozoite infection, in two separate experiments (See table 3 for summary of results). Seven days post blood feed the mosquitoes were assessed for oocyst infection.

Gal4::LRIM1-silencer mosquitoes expressing the hairpin silencing construct had mean oocyst counts of 60.5 and 17.9 for the two respective experiments (Figure 3.22-23). Corresponding counts for wildtype individuals were 41.1 and 12.3. Transgenic mosquitoes with only the GaL4 transgene or UAS::LRIM1 silencer transgene had mean oocyst counts of 44.2, and 13.5 and 36.7 and 12.9 respectively. At lower Plasmodium berghei infection intensity indicated by lower oocysts in the midgut, transgenic mosquitoes with the MBL24 Gal4 transgene and UAS::LRIM1-silencer transgene in their genome had statistically higher Plasmodium infection based on Kruskal-Wallis analysis.

Fourteen days PBF mosquitoes were assessed for sporozoite infection (Figure 3.24-25). In two independent experiments mosquitoes expressing LRIM1 silencer construct consistently had increased sporozoite infection compared to wildtype with mean sporozoite counts 1.5 to 2 fold higher. Both transgenic controls (Gal4/+ and LRIM1silencer/+) consistently had lower sporozoite counts than Gal4::LRIM1-silencer but not significantly different to wildtype control based on Kruskal-Wallis analysis.
Figure 3.22- *Plasmodium berghei* infection intensity in *A. stephensi* Sda500 seven days post infection. Circles represent the number of oocysts from a single midgut; horizontal black bars represent the median oocysts in each genotype. Data represent a single experiment. Significance was determined by a Kruskal-Wallis test followed by Dunn’s post-test in the case of multiple comparisons.
Figure 3.23- *Plasmodium berghei* infection intensity in *A. stephensi* Sda500 seven days post infection. Circles represent the number of oocysts from a single midgut; horizontal black bars represent the median oocysts in each genotype. Data represent a single experiment. Significance was determined by a Kruskal-Wallis test followed by Dunn’s post-test in the case of multiple comparisons.
Figure 3.24- *Plasmodium berghei* infection intensity in *A. stephensi* Sda500 fourteen days post infection. Bars represent the average number of sporozoites from a single mosquito. Salivary glands of 25-30 mosquitoes were dissected and pooled and the sporozoite intensity assessed.
Figure 3.25- *Plasmodium berghei* infection intensity in *A. stephensi* Sda500 fourteen days post infection. Bars represent the average number of sporozoites from a single mosquito. Salivary glands of 25-30 mosquitoes were dissected and pooled and the sporozoite intensity assessed.
Table 3.3- Summary statistics from *Plasmodium berghei* infection assay in figure 3.22-3.23.

<table>
<thead>
<tr>
<th>P. berghei infection</th>
<th>wild type</th>
<th>LRIM1silencer</th>
<th>GAL4 driver</th>
<th>GAL4::LRIM1silencer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gametocytemia</td>
<td>20-24%</td>
<td>20-24%</td>
<td>20-24%</td>
<td>20-24%</td>
</tr>
<tr>
<td>Prevalence (%) N= 33</td>
<td>93.9</td>
<td>100</td>
<td>100</td>
<td>96.9</td>
</tr>
<tr>
<td>Mean oocyst/mosquito (Geomean)</td>
<td>41.09</td>
<td>36.73</td>
<td>44.22</td>
<td>60.51</td>
</tr>
<tr>
<td>sporozoites/mosquito</td>
<td>6,695</td>
<td>4,759</td>
<td>7,133</td>
<td>13,688</td>
</tr>
<tr>
<td>Exp.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gametocytemia</td>
<td>20-24%</td>
<td>20-24%</td>
<td>20-24%</td>
<td>20-24%</td>
</tr>
<tr>
<td>Prevalence (%) N= 28</td>
<td>92.8</td>
<td>96.4</td>
<td>96.4</td>
<td>96.4</td>
</tr>
<tr>
<td>Mean oocyst/mosquito (Geomean)</td>
<td>12.27</td>
<td>12.95</td>
<td>13.55</td>
<td>17.90</td>
</tr>
<tr>
<td>sporozoites/mosquito</td>
<td>4,000</td>
<td>3,133</td>
<td>3,833</td>
<td>6,000</td>
</tr>
</tbody>
</table>
3.4 Discussion

Tissue specific silencing using Gal4/UAS to control in vivo dsRNA expression

Reverse genetics approaches and its adaptation to mosquito biology has proven to be a crucial tool for dissecting aspects of mosquito biology and the vector parasite interaction (Blandin et al. 2002; Catteruccia & Levashina 2009). Transient gene silencing by direct injection of dsRNA and stable expression of hairpin RNAs from transgenes integrated into the genome are two approaches of RNAi silencing that have been established in mosquitoes (Catteruccia & Levashina 2009). However, experimental evidence suggests that the efficiency of direct injection of RNAi is limited in space and time (Kennerdell and Carthew 1998; Misquitta and Paterson 1999; Brown et al. 2003). Constitutive in vivo expression of hairpin RNAs has its own limitations, one being the analysis of genes with high fitness costs. In this study we demonstrated the adaptation of the bi-partite Gal4/UAS system for control of tissue specific in vivo expression of hairpin RNAs in A. stephensi. Using this approach we showed we were able to silence LRIM1 expression in the midgut, fat body and salivary glands of A. stephensi throughout the entire vector parasite interaction, thereby eliminating the temporal and spatial limitations reported with the use of dsRNA injections. Unlike, previous studies (Osta, Christophides, & Kafatos, 2004; Jaramillo-Gutierrez et al., 2009; Garver et al., 2012) where dsRNA was used to assess the role of LRIM1 in the anti-Plasmodium response over a relatively small window of time, here we were able to study the role of LRIM1 during the entire vector parasite interaction.
Although silencing efficiency using dsRNA to target *LRIM1* has been reported to be upward of 80% (Osta, Christophides, & Kafatos, 2004; Jaramillo-Gutierrez et al., 2009) in this study we observed an average silencing efficiency of only 40% among the different tissues analyzed using three separate *LRIM1* silencing lines. In an attempt to repeat studies by (Osta, Christophides, & Kafatos, 2004; Jaramillo-Gutierrez et al., 2009) female mosquitoes injected with dsRNA against *A. stephensi* *LRIM1* and *A. gambiae LRIM1* had average silencing efficiencies of 46.5% and 21.2% respectively. It was also observed that *A. stephensi* injected with dsRNA against *A. stephensi* Sda500 *LRIM1* had reduced life span. This phenotype was not observed in mosquitoes expressing *in vivo* shRNA targeting *LRIM1*. Possible hypotheses for this observations are off target effects of the 500bp dsRNA or an increase in pathogenic microbiota in the mosquito in response to *LRIM1* silencing.

LRIM1 silencing did not regulate bacterial load in gut of A. stephensi Sda500

Previous studies have demonstrated the role of the IMD pathway (Dimopoulos et al. 1997; Dimopoulos et al in 2002) and specifically the role of TEP1 (Waterhouse et al. 2010; Yassine et al. 2014) in the mosquito defense against bacteria. In our studies silencing *LRIM1* did not change the bacterial load in the midgut. This observation coupled with earlier experiments looking at *LRIM1* expression in response to *E. coli* infection could suggest that LRIM1 in *A. stephensi* does not play a role in the immune response to bacterial pathogens. However further analysis of the *A. stephensi* microbiome is needed.
Sporozoite infection intensity is increased in transgenic A. stephensi

LRIM1 was originally identified as a strong antagonist of Plasmodium infection in a rodent malaria model but was subsequently shown to have little observable effect on the number P. falciparum oocyst developing on the basal surface of the midgut (Osta, Christophides, and Kafatos 2004; Cohuet et al. 2006). Later work revealed that LRIM1 does in fact contribute to the mosquito’s anti-P. falciparum response, but only at medium levels of oocyst intensities with little observable effect at low intensities (Garver et al. 2012). In our study, transgenic A. stephensi expressing a transgene whose transcript formed a short hairpin RNA that lead to the silencing of LRIM1 showed a statistically significant increase in oocysts intensity compared to wildtype. Further analysis also showed that sporozoite infection intensity was also higher in these mosquitoes compared to wildtype. Our data shows that transgenic mosquitoes with reduced LRIM1 expression had more oocysts on the basal surface of the midgut seven days post infection with Plasmodium falciparum. Similar results were observed with lower infection levels of Plasmodium berghei suggesting an infection intensity dependent function of LRIM1. In both P. berghei and P. falciparum infections mosquitoes with reduced LRIM1 expression consistently had higher sporozoite intensities in the salivary glands fourteen days post infection when compared to infected controls. Our data shows that transgenic mosquitoes with reduced LRIM1 expression are excellent candidates for being incorporated into the sporozoite and vaccine production process at Sanaria Inc.
However, while results here are consistent with earlier findings that reduced LRIM1 expression results in increased infection intensity some uncertainty remains with regards to the mechanism of increased intensity. Infection data also indicated that transgenic mosquitoes that contained only the Gal4 transgene or LRIM1 silencer transgene had statistically significant increases in both oocyst and sporozoite intensity compared to wild type. Therefore, increases observed in mosquitoes with both transgenes in their genome could be interpreted as an additive effect of the transgenes and not LRIM1 silencing. If increase in sporozoite intensity is in response to LRIM1 silencing we believe the difference observed in our data and previous studies is due to the approach used for silencing that allowed targeting of LRIM1 in organs directly involved in the parasite development cycle in the mosquito.

Overproduction of Gal4 in our MBL24 driver line (Kramer and Staveley 2003; Lynd and Lycett 2012; Balciuniene et al. 2013) or transgene position (Clark et al. 1994; Feng et al. 2001) could affect mosquito fitness and compromise the anti-Plasmodium response. On the other hand, leaky expression of the hairpin RNA could reduce LRIM1 transcripts enhancing Plasmodium susceptibility.

Further analysis on the effects transgene integration might exert on the immune response is needed before we can attribute increased salivary gland sporozoite intensity to LRIM1 silencing. However, average increase in sporozoite intensity (>5 fold) compared to wildtype Sda500 can significantly impact Sanaria’s manufacturing platform, increasing manufacturing efficiency and ultimately reducing vaccine cost.
Chapter 4: Effort to develop a *LRIM1* promoter regulated Gal4 driver line

4.1 Introduction

The current model of LRIM1 function proposes that *LRIM1* is expressed in the fat body, midgut and hemocytes (Yassine and Osta 2010). However, microarray experiments of *A. gambiae* have shown evidence of *LRIM1* expression in the head, salivary glands, ovaries and malpighian tubules of adult females (Pinto et al. 2009; Baker et al. 2011). Previous microarray methods used to determine the spatial and temporal pattern of *LRIM1* expression were limited in their resolution and were dependent on the quality of tissue collection (Groen 2001). Here, we aim to determine the spatial and temporal pattern of *LRIM1* expression by creating transgenic *A. stephensi* Sda500 that will make use of the bi-partite GaL4::UAS system to control a fluorescent marker gene. Use of an *A. stephensi* Gal4 line with Gal4 ORF under regulatory control of the *LRIM1* promoter, can allow for the spatial, and temporal pattern of *LRIM1* expression to be assessed visually during pathogenic, non-pathogenic, and other developmental conditions, when crossed with a responder line, containing a fluorescence gene such as TdTomato (Shaner et al. 2004) under regulatory control of UAS.

Furthermore a transgenic *LRIM1* regulated Gal4 line when crossed with an *in vivo* shRNA silencer line like the LRIM1-silencer created here, would target all tissues where *LRIM1* is expressed. This could significantly reduce the level of *LRIM1* transcript reduction currently observed and further increase *Plasmodium* infection intensity.
4.2 Materials and Methods

For Materials and Methods see page 111.

4.3 Results

Cloning LRIM1 promoter

Based on an assembled draft genome of *A. stephensi* sequence (created and made available by Dr. Zhijian Tu at Virginia Polytechnic Institute and State University, Blacksburg, VA 24061) a 3.2 kilobase fragment upstream of the predicted LRIM1 ORF was amplified using *A. stephensi* genomic DNA as template and primers LRIM1fw 835 (5’- GCG AGG ATG ACC CAC TAG AG-3’) and LRIMrv (5’-ATA GGA TCC TAG GCG CGC CCC TCC TGA -3’)

Characterization of LRIM1pGal4 lines

Transgene insertion site

Three LRIM1pGal4 lines; LRIMpGal4 M2, LRIMpGal4 M4, and LRIMpGal4 (Figure 4.1), were created as described in the Material and Methods. (Here we refers to lines LRIMpGal4 M2, LRIMpGal4 M4, and LRIMpGal4 as GM2, GM4 and GM8 respectively). Cytogenetic location of the transgene insertion site was determined using Splinkerette PCR and chromosomal location data of *A. stephensi* scaffolds provided by Igor Sharakov of Virginia Polytechnic Institute and State University. Integration site for GM2 was determined to be in the intergenic region of scaffold KB665354 on chromosome 2L. For GM4 the transgene was found in the intergenic region of scaffold
KB665343 located on chromosome 3R while the GM8 transgene was located in the intergenic region of KB664529. (scaffold location of M8 was undertermined) For summary of results see Table 4.
Table 4.1- Cytogenetic location of LRIMpGal4 transgene integration sites in the *A. stephensi* genome.

<table>
<thead>
<tr>
<th>Silencer line</th>
<th>Insertion site</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Scaffold</td>
</tr>
<tr>
<td>LRIMpGal4 M2</td>
<td>KB665354</td>
</tr>
<tr>
<td>LRIMpGal4 M4</td>
<td>KB665343</td>
</tr>
<tr>
<td>LRIMpGal4 M8</td>
<td>KB664529</td>
</tr>
</tbody>
</table>
Figure 4.1- Transgenic lines LRIMpGal4 M2, LRIMpGal4 M4, and LRIMpGal4. (A) Dorsal view of whole third-instar larva showing ECFP expression. (B) Ventral view of whole third-instar larva showing ECFP marker gene expression. (C) Magnification of head showing nuclear localized expression.
Assessment of functional promoter

Crossing of the LRIM1pGal4 line with a UAS::TdTomato responder line (O’Brochta et al. 2012) generated no visible fluorescence response in tissues observed. (Figure 4.2)

*P. berghei*ii infected *A. stephensi* Sda500 containing the LRIMpGal4 transgene and the UAS::TdTomato transgene where analyzed using qRT-PCR 24 and 72 hours post infection to assess native *LRIM1* promoter function and transgenic LRIM1 promoter function. Gal4 expression was used as a proxy for transgenic promoter function. 24 hours post infection expression of *LRIM1* increased on average 4 fold and expression of the transgenic Gal4 increase an average of 3-fold. The expression of LRIM1 and the transgenic Gal4 were significantly reduced 72 hours post infection (Figure 4.3)
Figure 4.2- *A. stephensi* Sda500 with the LRIMpGal4 transgene and UAS::TdTomato transgene in the genome. A - Brightfield image; B- DAPI stain showing cell nuclei; C- ET-DsRed filter for TdTomato visualization; D- GFP filter (negative control).
Figure 4.3- Expression profile of LRIM1 post P. berghei infection showing maximum expression 24 hours post infection. Expression is significantly lower 72 hours post infection. The activity of the transgenic LRIM1 promoter parallels the endogenous LRIM1 promoter and shown by the Gal4 expression. Gene expression was measured as described in Materials and Methods. Average transcript abundance is shown relative to non-infected transgenic mosquitoes. Transcript levels of ribosomal S7 gene were used as a calibrator. Bars indicate standard error of the mean of three independent experiments.
4.4 Discussion

O’Brochta et al. (2012) showed that the expression of TdTomato in transgenic *A. stephensi* with a gene encoding TdTomato under the control of UAS could be regulated using Gal4 driver lines. In my experiments, an *LRIM1* regulated Gal4 driver line when crossed with a UAS::TdTomato transgenic line did not generate any visible TdTomato response. However, qRT-PCR data indicated that we were successful in cloning a 3.2 kilobases fragment upstream of the ORF of *LRIM1* that contains the promoter. One hypothesis for no visual TdTomato response being observed is that the threshold of TdTomato translated protein needed for it to be visualized under fluorescence microscopy is not being achieved. Another hypothesis purports a possible conformational change in the Gal4 protein thereby reducing efficient binding to the UAS sequence. Lynd and Lycett (2012) have also reported on minimum activity of the native Gal4 used in my experiments in mosquito species. Future experiments using variants of the Gal4 trans-activator, and assessing threshold activity required for visual TdTomato response in *A. stephensi* Sda500 are required.
Chapter 5: Conclusion and Discussion

In the preceding work, I sought to increase the *Plasmodium* sporozoite intensity in the salivary glands in order to enhance vaccine production. Using molecular tools rarely, if ever used in *A. stephensi* Sda500 the overarching goal of the project was successfully achieved.

In chapter 2 *Plasmodium* infections assays and qRT-PCR were used to characterize the response of the IMD pathway effector gene *LRIM1* in response to parasite infection. These findings lead to the validation of *LRIM1* as a suitable target for immune modification. However many questions remain. What is the role of the salivary gland in response to *Plasmodium* infection? Are there other pathways for IMD signaling and what is the transcription factor? Aside from these remaining questions, future directions should include a rigorous biochemical characterization of leucine rich repeat proteins. There are also other regulated gene transcripts in the non-pathogenic gene response transcriptome awaiting characterization. These studies could provide additional targets genes for function studies and translational applications utilizing transgenic mosquitoes.

In Chapter 3, it was confirmed that sporozoite intensity in the salivary glands can be increased by using transgenic mosquitoes with modified immune systems. While our result are consistent with earlier studies that showed that reducing *LRIM1* expression increased infection intensity some uncertainty remains. These questions must be answered to understand the role of *LRIM* in *Plasmodium* defense. In the future the use of Gal4 driver lines that regulate expression in a single tissue will allow the role
of different tissues in the response to pathogens to be determined. Also an active
A. stephensi line with the Gal4 ORF under the regulatory control of the LRIM1
promoter can provide important answers about the biology of LRIM1.
Chapter 6: Materials and Methods

Mosquito strain

Anopheles stephensi Sda 500 is a laboratory strain of *A. stephensi*, which was first isolated in Pakistan and selected in the laboratory for susceptibility to *Plasmodium falciparum* infection (Feldman *et al.* 1990)

Mosquito rearing

Anopheles stephensi Sda500 mosquitoes were grown in a Conviron environmental chamber at 28°C, with 80% relative humidity under a 12-hour light/dark cycle. Larvae were fed pulverized fish food (TetraMin Tropical Flakes) *ad libitum* while adults were provided 10% sucrose continuously. Seven day old adult females were provided a blood meal of bovine whole blood in acid citrate dextrose (Lampire Biological Laboratories, Pipersville, PA) at 37°C through a parafilm membrane on a Mosquito Feeder (Chemglass Life Sciences, Vineland, N.J.) for reproduction. Eggs were collected in 50 mL of deionized water in a 250 mL Biostor multipurpose container (Fisher Scientific), lined with Whatman filter paper (Cat No. 1001 090).

Artificial feeding buffer

Artificial feeding buffer composed of 150 mM NaCl; 10 mM NaHCO₃; 1mM Adenosine -5-triphosphate (ATP) (Galun 1967) was substituted for blood in experiments were blood could not be used. The solution was fed through a parafilm membrane on a Mosquito Feeder (Chemglass Life Sciences, Vineland, N.J.) at 37°C
Experimental infection of *A. stephensi* with *P. falciparum*

A. stephensi Sda 500 female mosquitoes were infected with *P. falciparum* NF54 by feeding mosquitoes *P. falciparum* gametocytes in transfusion-quality human erythrocytes and serum. Fresh transfusion quality human blood and serum were incubated at 37°C. Using aseptic techniques, 1 mL of warm blood was aliquotted into an Eppendorf tube and centrifuged for 5 minutes at 2200 RPM. The clear serum was discarded and the pelleted erythrocytes were washed with an equal volume of new serum three times to obtain the whole blood for the gametocytes.

Sixteen day old gametocyte culture in RPMI media was removed from the CO2 incubator and the gametocytemia percent was determined by making a smear on a glass slide with one drop of blood. The smear was stained with Giemsa stain (Sigma Aldrich 48900). The number of gametes in a field of parasite culture was determined, and the volume of whole blood needed for a final percent gametocytemia of 0.5 percent was calculated.

Without disturbing the parasite most of the RPMI media was removed from the gametocyte culture using a pipette (parasites appear black and media light red/pink). The remaining gametocyte culture was transferred to a 15 mL falcon tube (Thermo Fisher Scientific Inc. Rockville MD, USA) and centrifuged for five minutes at 2200 RPM. The supernatant was discarded without disturbing the pelleted gametocytes and erythrocytes. The gametocytes were then combined with the required volume of whole blood for a final gametocytemia of 0.5 percent. The gametocytes were re-suspended in the whole blood and incubated at 37°C.
Three separate cohorts of approximately 400 female wild-type *A. stephani*
were fed *Plasmodium falciparum* infected blood. Females observed not feeding were
removed from the cage. Twenty four hours post feeding, 20 mosquitoes with visual
signs of blood in the midgut were removed from each cohort and anesthetized in cold
phosphate buffered saline (PBS). The mosquitoes were dissected and the midguts and
carcasses of the separate mosquito cohorts were immediately flash frozen in RNase
free tubes on dry ice and pooled for subsequent RNA extraction and real-time PCR.
This process was repeated 48 and 72 hours post infection. Seven days post infection,
the midguts of 30 mosquitoes from each cohort were dissected and the oocyst intensity
determined using *Giemsa* staining. Fourteen days after blood feeding the salivary
glands of approximately 20 mosquitoes were dissected and immediately flash frozen
on dry ice for subsequent RNA extraction. The salivary glands of approximately 30
mosquitoes were dissected and sporozoite intensity and prevalence determined

Salivary glands were dissected and kept on ice in 30 µL of RPMI media until
the dissections were complete. After dissections, the sporozoites were released from
the salivary glands by aspirating the media containing the salivary glands, five times
with a 26 gauge, 2 inch point style 3 Hamilton syringe (Reno Nevada, USA). 10 µL of
the media with sporozoites was transferred to a Bright-Line hemocytometer (Hausser
Scientific, Horsham Pennsylvania, USA). The hemocytometer was then placed on a
wet Kimwipe (Kimberly-Clark, Irving Texas, USA) in a petri dish and covered.
Sporozoites were allowed to settle for 10 to 15 minutes. The number of sporozoites in
two of the four quadrants were then counted. The total number of sporozoites was then
calculated.
Genomic DNA extraction and quantification

The following method is a modification of the Ashburner’s method for genomic DNA extraction (Ashburner 1989). Mosquito tissue was homogenized in 50 μL of homogenization buffer (10 mM Tris-HCL pH 7.5, 10 mM EDTA, 5% sucrose [w/v], 0.15 mM spermine, 0.15 mM spermidine) and kept on ice. 50 μL of lysis buffer (300 mM Tris-HCL pH 9.0, 100 mM EDTA, 0.625% SDS [w/v], 5% sucrose [w/v] was added to the homogenized mixture, properly mixed and incubated at 70°C for 15 minutes. The mixture was then cooled to room temperature and 15μL of 8M potassium acetate was added and mixed thoroughly. The mixture was then placed on ice for 30 minutes after which it was centrifuged at 14,000 RPM for 10 minutes at RT. The supernatant was transferred to a fresh tube and 90 μL of phenol/chloroform/isoamylic alcohol was added and mixed. The mixture was centrifuged at 14,000 RPM at 4°C. The supernatant was transferred to a new tube and two volumes of absolute ethanol was used to precipitate DNA. The mixture was centrifuged at 14,000 RPM for 5 minutes at RT. The supernatant was discarded and the pellet was washed in 70 % ethanol. After centrifuging for 10 minutes at 14,000 RPM the supernatant was discarded and the DNA pellet was vacuum dried and suspended in 1× TE buffer pH 7.4. The concentration of nucleic acids was determined spectrophotometrically using the NanoDrop ND-1000 spectrophotometer (NanoDrop, Wilmington, USA) by measuring light absorption at 260 nm. Nucleic acid purity was checked by determining the absorption at a wavelength of 230 and 280 nm, respectively.
Cloning of Anopheles stephensi Sda 500 Leucine Rich Immune Molecule 1

Leucine rich immune molecule 1 (LRIM1) was cloned from A. stephensi cDNA using Polymerase chain reaction (PCR). LRIM1 was amplified using primers AsLRIM1fw (5’ - CCC GCC GGT ATA GCT TAT CAG – 3’) and AsLRIM1rv (5’- CAA ATA GTG CTC GTC TGC GC - 3’). To design primers, a known A. gambiae LRIM1 sequence (AGAP0006348) was aligned using ApE-A plasmid Editor to an assembled draft genome sequence of A. stephensi created and made available by Dr. Zhijian Tu at Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, and now publicly available on VectorBase (Lawson et al. 2007). Conserved regions in A. gambiae LRIM1 and A. stephensi LRIM1 reported by Jaramillo-Gutierrez et al. (2009) were identified. The Open reading frame (ORF) was identified using ORF Finder (Wheeler et al. 2003). Primers were designed upstream of the ORF and downstream of the stop codon. Phusion High-Fidelity polymerase (New England Biolabs (NEB) Ipswich, Mass.) was employed for PCR. LRIM1 PCR product was purified by gel electrophoresis and gel extraction (QIAquick gel extraction kit). Purified PCR product was inserted into Zero Blunt TOPO PCR Cloning vector (Thermo Fisher Scientific Inc., Rockville, MD) according to the manufacturer’s instructions and transformed into E. coli DH10B (Gibco-BRL). Colonies were screened for insertion. Positive colonies were digested with EcoRI and agarose gel electrophoresis was used to identify insertion of LRIM1 PCR product. Sequence identity was then confirmed with DNA sequencing (Macrogen Inc, Rockville MD).
Total RNA extraction and quantification

To isolate total RNA from mosquito tissue, Ambion Trizol Reagent was used according to the manufacturer’s instructions. To avoid RNase activity, RNase-free water and RNase-free reaction tubes were used during the procedure. Briefly, total RNA was extracted by homogenizing the tissue in 1 mL of Trizol. The homogenized sample was incubated for 5 minutes at room temperature (RT) to allow for complete dissociation of the nucleoprotein complex. 0.2 mL of chloroform:isoamyl (49:1) was then added to the homogenized sample. The mixture was shaken vigorously by hand for 15 seconds and incubated at RT for 3 minutes before centrifugation at 12,000 × g for 15 minutes at 4°C. The aqueous phase containing RNA was transferred to a new tube. RNA was precipitated with 0.5 ml of 100% isopropanol. The mixture was left at RT for 10 minutes before centrifuging at 12,000 × g for 10 minutes at 4°C. The RNA pellet was washed with 1 mL of 75% ethanol. After centrifuging at 7,500 × g for 5 minutes, the wash was discarded and the RNA pellet vacuum dried and suspended in RNase-free water. DNase I (RQ1 RNase free DNase – Promega, Cat. No. M610A) treatment was done at 37°C for 20 minutes to eliminate any DNA contamination. After inactivating the DNase I, the volume of the reaction mix is made up to 50 μL. The concentration of nucleic acids was determined spectrophotometrically using the NanoDrop ND-1000 spectrophotometer (NanoDrop, Wilmington, USA) by measuring light absorption at 260 nm. Nucleic acid purity was checked by determining the absorption at a wavelength of 230 and 280 nm, respectively.
Reverse Transcription PCR (cDNA synthesis)

To generate a representative cDNA pool from RNA templates, 1-5 µg of total RNA were mixed with 1 µL of oligo(dT)20 primer (50 µM), 10 mM dNTP mix and RNase free water to a total volume of 10 µL. To facilitate hybrid formation of the oligo dT-primers with polyA-tails of mRNA, the mixture was heated to 65°C for 5 minutes and then quickly chilled on ice. A master mix containing 2 µL of 10X Reverse transcriptase (RT) buffer; 4 µL of 25 mM MgCl₂; 2 µL of 0.1 M DTT; 1 µL of RNase OUT (40 U/µL); 1 µL of Superscript III Reverse transcriptase (RT) (200 U/µL), was added to the mixture:

The content of the tube was gently mixed and incubated at 50°C for 50 minutes for first strand cDNA synthesis. The reaction was then inactivated by incubating the mixture at 85°C for 5 minutes and then chilled on ice. After brief centrifugation, 1 µL of RNase H was added to the mixture and incubated at 37°C for 20 minutes. The cDNA sample was then used for PCR reactions.

Real-time polymerase chain reaction

Template for the Real-time PCR from cDNA synthesis was diluted to 200 ng. All the samples to be compared were processed in parallel and 3 independent experiments were performed. PCR reaction was done with 96 well plates (MicroAmp; Applied Biosystems; Cat No. N801-0560) covered with optical adhesive covers (Applied Biosystems; Cat No. 4313663). The instrument used was an ABI PRISM 7000 Sequence Detection System (Applied Biosystems). Reaction conditions were as follows: one step of 95°C for 3 minutes, 40 cycles of 95°C for 30 s denaturation and
52°C for 30 s annealing and 72°C for 15 s extension. Fluorescence readings were taken at 72°C after each cycle. A final extension of 72°C for 5 minutes was completed before deriving a melting curve. Reaction master mix was made with GoTaq colorless master mix (Promega, Fitchburg, WI). Primers and templates were added according the manufacturer’s instructions. Gene expression was assessed with SYBR green (Life Technologies). The reference gene used for the experiments was the ribosomal S7 gene.

Synthesis of dsRNA for LRIM1 silencing

A cDNA fragment of 500 bp of LRIM1 was amplified using the following primers, LRIM1 dsRNAfw (5’- TAA TAC GAC TCA CTA TAG GGA GAC GAC TGT ATC TGG CCA ACA ATA - 3’) and LRIM1 dsRNArv (5’- TAA TAC GAC TCA CTA TAG GGA GAT CGG TGT CCG TGC ACG CCT CCT - 3’) with T7 sites flanking the 5 prime ends and cDNA template from one week old A. stephensi females as template. The resulting PCR fragment was cloned into the pCR II-TOPO vector (Invitrogen, Carlsbad, CA) and transformed in E. coli DH10B (Gibco-BRL). Colonies were screened for insertion using restriction enzyme digestion with EcoRI and gel electrophoresis. High yield plasmid DNA was isolated using QUIAGEN Plasmid Maxi Kit. The T7 flank fragment used for dsRNA synthesized was removed from the plasmid by digestion with EcoRI. Double stranded RNA was generated and purified using the MEGAscript kit (Ambion, Austin, TX).
Silencing *Anopheles stephensi* *LRIM1* and bacterial infection

Four days old *Anopheles stephensi* females were anesthetized on ice for 5 minutes and transferred to a 4°C injection plate. Approximately 100 nL of *LRIM1* dsRNA (3ng/nL) or EGFP dsRNA control was injected into the thorax of the mosquitoes using a Pneumatic PicoPump PV820 (World Precision Instrument Inc., Sarasota, FL.). After injection the mosquitoes were allowed to recover at RT for one hour before being transferred to an environmental chamber (28°C, 80% humidity, and 12 hour light/dark cycle) (Conviron, Winnipeg, Manitoba) and provided 10% sucrose. *LRIM1* silencing was confirmed 4 days post dsRNA injection by real-time quantitative PCR. For bacterial infections the needle was dipped in a pellet of *E. coli* (DH10B) OD600 of 0.1 and injected into the thorax of the mosquito. For bacterial infections by feeding, artificial feeding buffer was inoculated with *E. coli* to a final CFU of 100 CFU/ml.

Mosquito survival post dsRNA injection

Three cohorts of 50 four day old adult *Anopheles stephensi* females were obtained. *A. stephensi* females were anesthetized on ice for 5 minutes and transferred to a 4°C injection plate. Approximately 100 nL of *LRIM1* dsRNA (3ng/nL) or EGFP dsRNA control was injected into the thorax of the mosquitoes using a Pneumatic PicoPump PV820 (World Precision Instrument Inc., Sarasota, FL.). After injection the mosquitoes were allowed to recover at room temperature (RT) for one hour before being transferred to an environmental chamber (28°C, 80% humidity, and 12 hour light/dark cycle) (Conviron, Winnipeg, Manitoba) and provided 10% sucrose.
Mosquitoes were observed over the following days and the number of dead mosquitoes were recorded. A cohort of 50 un-injected adults *A. stephensi* females was simultaneously observed under the conditions mentioned above.

Survival comparison of transgenic mosquitoes.

LRIM1-silencer/- lines were crossed with the MB24 Gal4/- driver line. From the progeny of the cross, 100 female pupae of each genotype were screened for using the fluorescence marker gene. The pupae were pooled, and placed in a one gallon mosquito cage. After emergence, the mosquitoes were maintained on a 10 percent sucrose solution. The cage was examined each day for dead mosquitoes. The dead mosquitoes were screened and scored.

Isolation of midgut microbiota for microbial load assessment.

Individual *A. stephensi* Sda500 were surface-sterilized by washing three times with alternating 70% ethanol and sterile phosphate-buffered saline (PBS) washes. The midguts were then dissected in PBS using flame-sterilized forceps and homogenized in 200µl of PBS using a sterilized pestle. Each midgut homogenate was then serially diluted and inoculated on Luria-Bertani (LB) agar and incubated at 27°C for 48 hours. After 48 hours the culture plates were removed from the incubator and individual colonies counted.
Vectors

LRIM1-Gal4

This is a piggyBac vector with 672 bases of 5’ terminal and 675 bases of 3’ terminal sequences of piggyBac containing the Gal4 ORF under the regulatory control of the LRIM1 promoter in addition to a marker gene encoding enhanced cyan fluorescent protein (ECFP) under the regulatory control of the 3xP3 promoter (Berghammer et al. 1999). This vector was constructed using Gateway recombination cloning technology (Invitrogen, Grand Island, NY), in which 4 recombination modules were simultaneously recombined into a destination plasmid. The first module consisted of the piggyBac left terminal with gateway recombination site (Invitrogen, Grand Island, NY). The second module contained Gal4 ORF under control of the LRIM1 promoter, the third module consisted of the ECFP marker gene under the regulatory control of 3xP3 (Berghammer et al. 1999) and module four contained the piggyBac right terminal. Modules 1, 3 and 4 were present in-house. To make the second module a 3.0 kilobase fragment upstream of the LRIM1 ORF was amplified using primers LRIM1fw 835 (5’- GCG AGG ATG ACC CAC TAG AG-3’) and LRIMrvAscBam (5’-ATA GGA TCC TAG GCG CGC CCC TCC TGA TAA GCT ATA CCG GC -3’) with AscI and BamHI restriction sites and inserted into a PCR4-TOPO vector (Thermo Fisher Scientific Inc., Rockville, MD). A 3.0 kilobase fragment of Gal4hsp3 was amplified from plasmid PB-Gal4 (O’Brochta et al. 2012) using primers AscI-GAL4fw (5’-ATA GGC GCG CCA GCG CAG CTG AAC AAG CT-3’) and GAL4rv-BamHI (5’-ATA GGC GCG CCG TAA TAC GAC TCA CTA TAG GGC-3’) and inserted into a PCR Blunt II TOPO vector (Thermo Fisher Scientific Inc., Rockville, MD). The
cloning vectors were digested with AscI and BamHI (New England Biolabs (NEB) Ipswich, Mass.) and ligated with T4 DNA ligase (New England Biolabs (NEB) Ipswich, Mass.). Ligated product was transformed into *E. coli* DH10B (Gibco-BRL).

Colonies were screened for insertion. Positive colonies were cultured and plasmid DNA extracted. The LRIM::Gal4 region was amplified from the plasmid using primers attB5-LRIMPromoter835 (5’- GGG GAC AAC TTT GTA TAC AAA AGT TGG GGC GAGGATGACCCACTAGAG-3’) and attB4-SV40Rv (5’- GGGGACAACTTTGTATAGAAAAGTTGGGTGGGTTAAGATACATTGATGAG TTTGGAC-3’) that contained with gateway attachment sites. All the modules were brought together during site specific recombination.

LRIM1-silencer

This is a *piggyBac* vector with 1.7 kilobases of 5’ terminal and 675 bases of 3’ terminal sequences of *piggBac* containing an inverted repeat of LRIM1 Gal4 under the regulatory control of the UAS enhancer in addition to a marker gene encoding nuclear localized enhanced green fluorescent protein (nls EGFP) under the regulatory control of the 3xP3 promoter (Berghammer et al. 1999). This vector was constructed using Gateway recombination cloning technology (Invitrogen, Grand Island, NY), in which 4 recombination modules were simultaneously recombined into a destination plasmid. The first module consisted of the *piggyBac* left terminal and a nuclear localized EGFP (Addgene, Cambridge MA, USA) marker gene under the regulatory control of the 3xP3 promoter (Berghammer et al. 1999). The second module contained a 202 base pair region of *LRIM1* juxtaposed to a seventy base pair functional intron and under the
regulatory control of the UAS enhancer. The third module contained the inverted repeat of the 200 base pair LRIM1 region of the second module juxtaposed to SV40. The fourth module contained the piggyBac right terminal. Recombination between modules two and three joined the LRIM1 regions such that transcription resulted in generation of a short hairpin RNA.

To create module one a 300 base pair (bp) region of 3xP3 (Berghammer et al. 1999) was amplified using primers NotI-Fse 3xP3fw (5’-GCG GCCGCGGCCGCGC GTTCCCACAATGTTAATTCCG-3’) and PacI-AscI 3xP3rv (5’-GCGCGCGCCT TAATTAAGGTACCAGCTCTCAGC from plasmid attL5-3xP3-EGFP-SV40-attL4. The resulting fragment with NotI/FseI and PacI/AscI restriction sites was inserted into a pCR4 Blunt-TOPO vector (Thermo Fisher Scientific Rockville MD, USA) to create plasmid 3xP3-pCR4. A 1.7 kilobase (kb) region of piggyBac left end from an in-house piggyBac vector was amplified using primers NotI-PBLef fw (5’-GCGGCCGCTACATAC TCGCTCTG C-3’) and FseI-PBLeftrv. The resulting amplified fragment with NotI and FseI restriction sites was inserted into a pCR4 Blunt-TOPO vector (Thermo Fisher Scientific Rockville MD, USA) to create plasmid piggBacL-pCR4. A 1.1 kb region of nuclear localized eGFP (nls eGFP) from an in-house plasmid pUAS-Stringer GFP was amplified using primers PacI-nlseGFPfw (5’-TTAATTAAGATCCACCAGTCGCCAC-3’) and AscI-SV40rv (GGCG-CGCCTTAAAGATACATTGAGTTTGAGACAAACC-3’). The resulting PCR product with PacI and AscI restriction sites was inserted into a pCR4 Blunt-TOPO vector (Thermo Fisher Scientific Rockville MD, USA) to generate the nlseGFP-pCR4 plasmid. Restriction digest using NotI (NEB) and FseI (NEB) was performed on both
the piggyBacL-pCR4 and 3xP3-pCR4 plasmids. The 1.7 kb piggyBac left fragment that was generated, was collected and then ligated into a linearized 3xP3-pCR4 blunt plasmid using T4 DNA ligase (NEB) to generate a piggyBacL-3xP3-pCR4 plasmid. Restriction digest using PacI (NEB) Ascl (NEB) was performed on both the nlseGFP-pCR4 and piggyBacL-3xP3-pCR4 plasmids. The 1.1 kb nlseGFP fragment that was generated, was collected and then ligated into a linearized piggyBacL-3xP3 pCR4 plasmid using T4 DNA ligase (NEB). The 3.0 kb piggyBacL-3xP3-nlseGFP cassette was amplified using primers attB1-PBleftfw (5’-GGGGACAAGTTTGTA CAA AAA AGC AGG CTG GTA CAT ACC TCG CTC TGC-3’) and attB5r-SV40 RV (5’- GGG GAC AAC TTT TGT ATA CAA AGTTGT TTAAGATACATTGATGAG TTT GGAC-3’) The amplified fragment with gateway tails was used for a BP reaction with a pDONOR to generate module 1.

Plasmid pSLfa1180 i-CARB-SV40 (Kim, Koo, Richman, Seeley, Vizioli, et al. 2004) was digested with SacI (NEB) and ApaI (NEB) to remove a 1.4 kb region that contained a NotI restriction enzyme site. The overhang ends of the 3.0 kb backbone were blunted using T4 DNA polymerase (NEB) and then re-circularized using T4 DNA ligase (NEB) to form plasmid pSLfa1180 delta. A 202 bp region of A. stephensi LRIM1 was amplified using primers NheI-NotI-LRIM1fw (5’-GCAGCTAGCGGC GCCGC CGACTGTATC TGGCCAACAATAA-3’) and Xba-LRIM1 RV (5’- CAG TCT AGA GCG GCC GCC TAC GTT CCG CTG GTT CTT-3’) to introduce NheI, NotI and XbaI restriction sites. The amplified fragment was inserted into a pCR4 pCR4 Blunt-TOPO vector (Thermo Fisher Scientific Rockville MD, USA). Plasmid pSL1180 delta and NheI-NotI-LRIM1-XbaI pCR4 were digested with XbaI (NEB) and NheI (NEB). The
200 bp fragment from the digest of NheI-NotI-LRIM1-XbaI pCR4 was inserted into the linearized pSL1180 delta backbone using T4 DNA ligase to make plasmid pSL1180 delta-LRIM1.

A 255 bp region of tdTomato, was amplified and inserted into a pCR4 TOPO Blunt vector. To amplify tdTomato and introduce NheI and NotI restriction sites, primers NheI-tdTfw (5’-GCAGCTAGCGCGGCGGCGACTGTATCTGGCGCA ACAATAAA-3’) and NotI tdTrv (5’-ATAGCGGCCGCTACTTGTAC-3’) were used. The amplified fragment was inserted into a pCR4 Blunt-TOPO vector (Thermo Fisher Scientific Rockville MD, USA). The NheI-tdTomato-NotI pCR4 plasmid and plasmid pSL1180 delta-LRIM1 were both digested with NheI (NEB) and NotI (NEB). The 255 bp fragment of tdTomato released from the NheI-tdTomato-NotI pCR4 plasmid was inserted into a linearized pSL1180 delta-LRIM1 plasmid using T4 DNA ligase (NEB) to form plasmid pSL1180 delta-LRIM1-tdT.

To make module two a 767 bp region of plasmid pSL1180 delta-LRIM1-tdT was amplified using primers attB4-intron-SV40- attB5fw (5’-GGGACAAATTTGTATACAAAGTTGCCTAC CACATTGTAGAGTTTTCTTGC-3’) and attB4_intron_SV40_attB5r (5’-GGGACAACTTTGTATAGAAAAGTTGGGTGAGGTGAGCACCACATCATCAG-3’). The amplified fragment with gateway tails was used for a BP reaction with a pDONOR (Gateway, Thermo Fisher Rockville MD, USA) to generate module two.

To generate module three a 457 bp region of plasmid pSL1180 delta-LRIM1-tdT was amplified using primers attB3r-LRIM-tdTomato-attB4rfw (5’- GGGGAC AACTTTATTATACAAAGTTGTGCACTCTGGCCAACA ATAAGAT CG-3’).
and attB3r-LRIM_tdTomato-attB4rrv (5’-GGGGACAACCTTTCTATACAAAGTT
GGGGCACGCTGATCTACAAGGTG-3’). The amplified fragment with gateway
tails was used for a BP reaction with a pDONOR (Gateway, Thermo Fisher Rockville
MD, USA). To generate module 4 a 2210 bp region of an in-house plasmid ECFP-643
was amplified using primers attB3-UAS-PiggBacR-attB2fw (5’-GGGGA
CAACTTTGTATAATAAAGTTGCCTATTCTCCTTCTTGATTT-3’)
and attB3-UAS-PiggBacR-attB2rv (5’- GGGGACCACCTTT GTACAAGAAAGCT
GGTATGTTGATGACGGTGAAAC
CTCACTT-3’). The amplified fragment
with gateway tails was used for a BP reaction with a pDONOR (Gateway, Thermo
Fisher Rockville MD, USA). The four modules where then recombined in a LR
recombination reaction (Gateway, Thermo Fisher Rockville MD, USA).

Mosquito Transformation

Transgenic A. stephensi were created in the University of Maryland, College
Park, Institute for Bioscience and Biotechnology Research’s Insect Transformation
Facility. Preblastoderm embryos of A. stephensi Sda 500 were injected with vector-
containing plasmids and plasmids expressing piggyBac transposase (Handler and
Harrell 1999). The concentration of vectors and transposase-expressing plasmids were
each 50 ng/microliter in injection buffer (5mM KCl, 0.1mM NaPO4; pH 6.8). Insects
that developed from injected embryos and survived to adulthood were pooled according
to sex and mated to non-injected Sda 500 adults of the opposite sex. The progeny were
screened as larvae for the expression of ECFP or nls-EGFP, and transgenic individuals
were used to establish lines. The *piggyBac* insertion sites were determined using splinkerette-PCR (Devon et al. 1995; Potter and Luo 2010) after lines were established.

Splinkerette-PCR

Genomic DNA was extracted from mosquito as described earlier and suspended in 25µL of deionized H₂O. 5µL of extracted DNA was digested with BstYI for 2 hours at 60°C in a final reaction volume of 35 µL. Digestion was then heat inactivated at 80°C for 20 mins. 50µL of SPLINK-BOT and SPLINK-GATC-TOP oligonucleotides were annealed in a NEB Buffer 2 solution of final volume 1000µL by heating at 95°C for 3 minutes then cooled to room temperature. Annealed Spinkerette oligonucleotides are then ligated to digested genomic DNA using T4 DNA Ligase 400U/µL (New England Biolabs (NEB) Ipswich, Mass.) for 2 hours at room temperature. Round one of Splinkerette PCR was carried out using Phusion High-Fidelity polymerase (New England Biolabs (NEB) Ipswich, Mass.) with SPLNK#1 and 3’SPLNK-PB#1 or 5’SPLNK-PB#1 primers.

The PCR reaction was assembled as followed:

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5x HF Buffer</td>
<td>5.0µL</td>
</tr>
<tr>
<td>10mM dNTPs</td>
<td>0.5µL</td>
</tr>
<tr>
<td>10µM SPLNK#1 primer</td>
<td>0.5µL</td>
</tr>
<tr>
<td>10µM 5’ or 3’ SPLNK#1 primer</td>
<td>0.5µL</td>
</tr>
<tr>
<td>diH₂O</td>
<td>8.25µL</td>
</tr>
<tr>
<td>DNA</td>
<td>10µL</td>
</tr>
</tbody>
</table>
Phusion Polymerase 0.25µL

PCR conditions

1 cycle

Denaturation 75 sec 98°C

2 cycles

Denaturation 20 sec 98°C
Anneal 15 sec 64°C

30 cycles

Denaturation 20 sec 98°C
Anneal 15 sec 58°C or 64°C
Elongation 2 min 72°C

1 cycle

Elongation 7 min 72°C

For the second round of amplification 1µL of the first PCR reaction was carried out using the secondary Splinkerette primers SPLNK#2 and 3’SPLNK-PB#2 or 5’SPLNK-PB#2 under the following conditions:

1 cycle

Denaturation 75 sec 98°C

30 cycles

Denaturation 20 sec 98°C
Anneal 15 sec 59°C or 66°C
Elongation 90 sec 72°C

1 cycle
Elongation 7 min 72°C

The PCR product obtained was purified by gel electrophoresis on a 1.25% agarose gel then extracted using Quiagen, QIAquick gel extraction kit and sequenced using 5’PB sequence primer or 3’PB-sequence primer at Macrogen Inc, Rockville MD.

Crossing Lines with Gal4 transgene with UAS-silencer lines

For all experiments that required analysis of mosquitoes with both the Gal4 transgene and UAS::LRIM1silencer transgene in their genome, Heterozygous individuals of the UAS::LRIM1silencer and MBL24 GAL4 line were mated to produce progeny with all four genotypes: wild type; MBL24-Gal4/+ ; UAS::LRIM1silener/+ and MBL24-Gal4/UAS::LRIM1silencer. MBL24-Gal4/+ ; UAS::LRIM1silener/+ and wild type mosquitoes were used as controls.
Figure 6.1: Schematic for crossing Gal4 driver line with UAS responder line.
Microscopy

To screen for transgenic mosquitoes by microscopic observation of larvae, pupae, and adults an Olympus MVX10 fluorescent dissecting microscope equipped with Chroma filters (Chroma Technology Corporation, Bellows Falls, VT) 49001 ET-CFP (excitation, 436/20; emission, 480/40; dichroic, 455), 49002 ET-GFP (excitation, 470/40; emission, 525/50; dichroic, 495), 49003 ET-EYFP (excitation, 500/20; emission, 535/30; dichroic, 515), 49005 ET-DsRed (excitation, 545/30; emission, 620/60; dichroic, 570) was used.

For tissue imaging a Zeiss Axiom Imager A1 fluorescent compound microscope equipped with Zeiss filter set 20 (excitation, 546/12; emission, 575–640; dichroic, 560) and filter set 38HE (excitation, 470/40; emission, 525/50; dichroic, 495) was used.
Appendices

Appendix 1. Primers used for quantitative real-time polymerase chain reaction

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>AsLRIM1-F</td>
<td>GAG GAA AAT GCT CGG ATG AA</td>
</tr>
<tr>
<td>AsLRIM1-R</td>
<td>CGA CGG CTG AAC CTT ACT GA</td>
</tr>
<tr>
<td>AsAPL1-F</td>
<td>CTA CAG AGC GAA ATA CAG CA</td>
</tr>
<tr>
<td>AsAPL1-R</td>
<td>CAG ATG TGC TAT CAC CTT GT</td>
</tr>
<tr>
<td>AsTEP1-F</td>
<td>TTG CTG TCG TTC GTG ATA</td>
</tr>
<tr>
<td>AsTEP1-R</td>
<td>AGC GTG ATG GTG TAG TCG</td>
</tr>
<tr>
<td>AsCaspar-F</td>
<td>TGA CAT CTT CAC CGA AAC GCC</td>
</tr>
<tr>
<td>AsCaspar-R</td>
<td>AAC TGG ATG CTG CCA ATC GTC T</td>
</tr>
<tr>
<td>AsRel2-F</td>
<td>GTT CCG CTT CCG CTA TCA GT</td>
</tr>
<tr>
<td>AsRel2-R</td>
<td>CGC AAC TCT ACC GTG GGG AA</td>
</tr>
<tr>
<td>tdTomato RT fw</td>
<td>GCG TGA TGA ACT TCG AGG</td>
</tr>
<tr>
<td>tdTomato RT rv</td>
<td>CCT TGT AGA TCA GCG TGC C</td>
</tr>
<tr>
<td>GAL1-fw</td>
<td>CCA AAG AAA AAC CGA AGT GC</td>
</tr>
<tr>
<td>GAL1-Rv</td>
<td>CCC TAG TCA GCG GAG ACC TT</td>
</tr>
<tr>
<td>AsS7r</td>
<td>TTC GTT GTG AAC CCA AAT AAA AAT C</td>
</tr>
<tr>
<td>AsS7f</td>
<td>TGC GGC TTC AGA TCC GAG TTC</td>
</tr>
</tbody>
</table>
Appendix 2. Primers used to construct LRIM1-silencer vector

<table>
<thead>
<tr>
<th>Names</th>
<th>sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>attB4_intron rv</td>
<td>5’-CCCCTGGTTGAAACATATCTTTTTCACCCACTCCACTC CTGGGTAGTAGTC -3’</td>
</tr>
<tr>
<td>attB5-SV40for</td>
<td>5’-GGGGACAACTTTGTATAACAAAAAGTTGCCATGGTGA AACATCTCCAAAATGAACG -3’</td>
</tr>
<tr>
<td>attB3r_LRIM_tdTomato_attB4r fw</td>
<td>CCCCTGGTTGAAAGATATGTGTTTCAACCCCCGTGCGA CTGATGGTCCAC</td>
</tr>
<tr>
<td>attB3r_LRIM_tdTomato_attB4r rv</td>
<td>GGGGACAACTTTATTATAACAAAAAGTTGTGCTGACATA GACCGGTGGTTATTCTAGC</td>
</tr>
<tr>
<td>attB3_UAS_PiggBacR_attB2 fw</td>
<td>GGGGACAACTTTGTATAAAGTTGCTATTACAGA GTTCTCTTCTTGTTAC</td>
</tr>
<tr>
<td>attB3_UAS_PiggBacR_attB2 rv</td>
<td>CCCCTGGTTGAAACATGGTTTTCACCCATTTAACCCTAGAAAGATAATCATATTGTGACG</td>
</tr>
</tbody>
</table>
Appendix 3. Primers used for Splinkerette PCR

<table>
<thead>
<tr>
<th>Names</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>5'SPNLK-PB-SEQ</td>
<td>CGA CTG AGA TGT CCT AAA TGC</td>
</tr>
<tr>
<td>5'SPLNK-PB#1</td>
<td>ACC GCA TTG ACA AGC ACG</td>
</tr>
<tr>
<td>5'SPLNK-PB#2</td>
<td>CTC CAA GCG GCG ACT GAG</td>
</tr>
<tr>
<td>3'SPLNK-PB-SEQ</td>
<td>ACG CAT GAT TAT CTT TAA C</td>
</tr>
<tr>
<td>3'SPLNK-PB#1</td>
<td>GTT TGT TGA ATT TAT TAT TAG TAT GTA AG</td>
</tr>
<tr>
<td>3'SPLNK-PB#2</td>
<td>CGA TAA AAC ACA TGC GTC</td>
</tr>
<tr>
<td>SPLNK#1</td>
<td>CGA AGA GTA ACC GTT GCT AGG AGA GAC C</td>
</tr>
<tr>
<td>SPLNK#2</td>
<td>GTG GCT GAA TGA GAC TGG TGT CGA C</td>
</tr>
<tr>
<td>SPLNK-GATC-TOP</td>
<td>GAT CCC ACT AGT GTC GAC ACC AGT CTC TAA TTT TTT TCA AAA AAA</td>
</tr>
<tr>
<td>SPLNK-BOT</td>
<td>CGA AGA GTA ACC GTT GCT AGG AGA GAC CGT GGC TGA ATG AGA CTG GTG TCG ACA CTA GTG G</td>
</tr>
<tr>
<td>SPLNK-Blunt-TOP</td>
<td>CC ACT AGT GTC GAC ACC AGT CTC TAA TTT TTT TTA AAA AAA</td>
</tr>
</tbody>
</table>
Appendix 4. Splinkerette sequence data from transgenic lines

<table>
<thead>
<tr>
<th>Transgenic Line</th>
<th>3’ Splinkerette sequence data</th>
<th>5’ Splinkerette sequence data</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRIM1 silencer F2</td>
<td>NA</td>
<td>TTAACGGGTGAGTCGCAACTTCTTTGAGATGGGAGGCTGCTTTGATGCAACCGGGCGCGCAACATTA CATAGGGGTGCTCTCCCTCCCGAACCAGTAGA</td>
</tr>
<tr>
<td>LRIM1 silencer M2</td>
<td>NA</td>
<td>TTAAGGAGCTCAATGAGCAATTTTGGGAAACTTTGCAATCAAAGTGATGTTTGTGTATCGAATC AGCAGCAATATGCAAGATA</td>
</tr>
<tr>
<td>LRIM1 silencer M7</td>
<td>NA</td>
<td>TTAATAGCTGCACAGGCATGAGATGTGGGTTAAAGGATGGCCAGCGCTTTATTTGCTATACATTTTCAATTAATGGAAGAAATCGATCCGTATAAAGATCTTAACCAACAAAATCGATCCGTATAAAGATC</td>
</tr>
</tbody>
</table>
Appendix 5. MBL24 Gal4 driver lines used to drive *LRIM1* silencer expression
Appendix 6. LRIM1-silencer vector and LRIM1pGal4 vector
References

