The focus of this research was to demonstrate a four blade rotor trim in forward flight using integrated trailing edge flaps instead of using a swashplate controls. A compact brushless DC motor was evaluated as an on-blade actuator, with the possibility of achieving large trailing edge flap amplitudes. A control strategy to actuate the trailing edge flap at desired frequency and amplitude was developed and large trailing edge flap amplitudes from the motor (instead of rotational motion) were obtained. Once the actuator was tested on the bench-top, a lightweight mechanism was designed to incorporate the motor in the blade and actuate the trailing edge flaps. A six feet diameter, four bladed composite rotor with motor-flap system integrated into the NACA 0012 airfoil section was fabricated. Systematic testing was carried out for a range of load conditions, first in the vacuum chamber followed by hover tests. Large trailing edge flap deflections were observed during the hover testing, and a peak to peak trailing edge flap amplitude of 18 degree was achieved at 2000 rotor RPM with hover tip Mach number of 0.628. A closed loop controller
was designed to demonstrate trailing edge flap mean position and the peak to peak amplitude control. Further, a soft pitch link was designed and fabricated, to replace the stiff pitch link and thereby reduce the torsional stiffness of the blade to 2/rev. This soft pitch link allowed for blade root pitch motion in response to the trailing edge flap inputs. Blade pitch response due to both steady as well as sinusoidal flap deflections were demonstrated. Finally, tests were performed in Glenn L. Martin wind tunnel using a model rotor rig to assess the performance of motor-flap system in forward flight. A swashplateless trim using brushless DC motor actuated trailing edge flaps was achieved for a rotor operating at 1200 RPM and an advance ratio of 0.28. Also, preliminary exploration was carried out to test the scalability of the motor driven trailing edge flap concept. In conclusion, the concept of using brushless DC motors as on-blade actuators, actuating trailing edge flaps has the potential to replace the current mechanically complex swashplate with a hydraulic-free swashplateless system and thereby reduce overall weight and hub drag.
PRIMARY CONTROL OF A
MACH SCALE SWASHPLATELESS ROTOR USING
BRUSHLESS DC MOTOR ACTUATED TRAILING EDGE FLAPS

by

Anand Saxena

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
2015

Advisory Committee:
Dr. Inderjit Chopra, Chair & Advisor
Dr. Norman Wereley
Dr. James Baeder
Dr. Sung Lee
Dr. Amr Baz, Dean’s Representative
In fond memory of my Grandfather

Kailash Narayan Saxena

Thank you for holding my hands, walking me to and from the school each and every day, rain or shine.

You are greatly missed.
Acknowledgments

I would like to thank Dr. Inderjit Chopra for giving me the opportunity to work on such an interesting research project. The journey though tumultuous, has been very rewarding and it would not have been possible without the support, patience and guidance of Dr. Chopra.

I would also like to thank members of the committee, Dr. Norman Wereley, Dr. James Baeder, Dr. Sung Lee and Dr. Amr Baz, for reviewing my research as well as their guidance and support through the doctoral program. I would also like to acknowledge Dr. Michael Coplan for being an initial member on the committee and thank him for his continued interest in my research.

I am grateful to Peter Copp and Vikram Hrishikeshavan for helping me get started in the rotorcraft lab. Over the course of my PhD, a strong friendship has developed and discussing various ideas with them and seeking their advice has been very beneficial to me. I am also grateful to Abhishek for making my transition from India to USA smooth and fun filled. Although senior by a few years, he has always treated me as a friend. I wish all of them unabated success and great health.

I would like to specially acknowledge Dr. V.T. Nagaraj for his technical help, counsel and support. Interactions with Dr. Moble Benedict, Dr. Anubhav Datta and Dr. Jayant Sirohi have been rewarding as well. Their inputs in my research and guidance is greatly appreciated.

I had a wonderful experience being a teaching assistant for Dr. Robert Korkegi. He was the first professor at Maryland with whom I interacted at length. His
modesty and determination deeply touched me. I would like to specially acknowledge Dr. S.C. Sharma, my undergraduate professor and mentor for his continued encouragement and belief in me.

During my multiple entires at the Glenn L. Martin Wind Tunnel, Dr. Jewel Barlow, Hareen, Ahmed, Alex and the rest of the staff have been very accommodating and helpful. Watching Dr. Winkelmann work on the wind tunnels at the high bay engineering lab has been a constant source of motivation. He was easy to engage in discussion whenever I needed any fabrication or machining advice.

All my colleagues at the rotorcraft center have been a source of encouragement over the years. I would like specially mention Kumar, Ananth, Ben, Graham, Joe, Andrew, and Aaron for their assistance and discussions on various topics.

I am grateful to undergraduates: Attin Mitra, Colin Adamson, Deon Tran, Lyndon Baltazar, Luke Smith, Michelle Cady, Patrick Dunleavy, Peter Oas, and Wiam Attar for their assistance. Kevin Baeder helped us in the lab as well. I wish them all a bright future.

Interaction with research interns from France: Marc, Yoann, David, and France has been enriching as well. I have formed a friendship with Marc and I wish them all bonne chance!

This journey would not have been possible without the loving support of my friends: Sachit, Suba, Soma, Michael, Sachin, Mayank, Siddharth, and Harinder.

Finally, all that I am today and ever will be, is a testament of efforts and foresight of my father, Ajai Kumar Saxena and my mother, Aneeta Saxena. Their unconditional love and support and that of my grandparents and my brother, Ashish
Saxena is my biggest asset in any undertaking. The love and support from my girlfriend, Marti Gray was instrumental in finishing the project. At times when the going was really tough, she stood with me and helped me stay on track. I cannot imagine a life journey without her.

This project was partly funded by National Rotorcraft Technology Center.
Table of Contents

List of Tables x

List of Figures xi

List of Abbreviations xvii

1 Introduction 1
 1.1 Background 2
 1.2 Rotor Primary Control 6
 1.2.1 Swashplate Control 7
 1.2.2 Westland Spider Control 11
 1.2.3 Kaman Servo-Flap Control 13
 1.3 Helicopter Vibrations and Performance 16
 1.3.1 Pre-Flight Measures 17
 1.3.2 Passive Measures 19
 1.3.3 Active Measures 21
 1.3.3.1 Active Control of Structural Response 21
 1.3.3.2 Higher Harmonic Control 21
 1.3.3.3 Individual Blade Control 23
 1.4 Vibration Control using IBC Active Flaps 24
 1.5 Swashplateless Rotor Primary Control 28
 1.5.1 Analytical Studies 28
 1.5.2 Summary of Analytical Studies 35
 1.5.3 Sikorsky Active Flap Demonstration Rotor 36
 1.5.4 Pneumatic Artificial Muscle driven Flap 41
 1.5.5 Piezobender Driven Active Flap for Primary Control 44
 1.6 Model Scale Rotor Testing 49
 1.6.1 Rotor Scaling Parameters 49
 1.6.2 Scaling Parameters Considerations 51
 1.7 Selection of On-Blade Actuator 55
 1.8 Objective and Scope of Current Research 57
 1.9 Dissertation Outline 59
University of Maryland Rotor Test Facilities

2 Hover Test Stand

2.1 Hover Test Stand

2 Rotor Drive System

2.2 Rotor Drive System

2.2.1 Choice of Drive System: Hydraulic vs Electric

2.2.2 Hydraulic Motor

2.2.3 Hydraulic Pump

2.2.4 Flow Control Valve

2.2.5 Hydraulic Oil

2.2.6 Oil Filtration System

2.2.7 Oil Cooling System

2.2.8 Direction Control Valve with Relief Valve

2.2.9 Hydraulic Hoses

2.2.10 Electric Motor

2.2.11 Electric Power Panel

2 Rotor Hub

2.3 Rotor Hub

2.3.1 Swashplate Assembly

2.3.2 Swashplate Actuators

2.3.3 Rotor Drive Shaft

2.3.4 Blade Grip Assembly

2.3.5 Tension - Torsion Strap

2.3.5.1 Fabrication of Tension - Torsion Strap

2.3.5.2 Tensile Testing of Tension-Torsion Strap

2 Rotor Test Stand Instrumentation

2.4 Rotor Test Stand Instrumentation

2.4.1 Rotor Speed Measurement

2.4.2 Rotor Shaft Encoder

2.4.3 Blade Root Motion Measurement

2.4.4 Rotor Pitch Measurement

2.4.5 Rotor Torque Measurement

2.4.6 Fixed Frame Hub Balance

2.4.6.1 Steady loads calibration

2.4.6.2 Dynamic loads calibration

2.4.7 Miscellaneous

2 Rotor Control Console

2.5 Rotor Control Console

2 Rotor Tracking Procedure

2.6 Rotor Tracking Procedure

2 Rotor Trim Procedure

2.7 Rotor Trim Procedure

2 Data Acquisition System

2.8 Data Acquisition System

2.8.1 Slip rings

2.8.2 Data Acquisition Hardware

2.8.3 Data Acquisition Software

2 Vacuum Spin Chamber

2.9 Vacuum Spin Chamber

2 Glenn L. Marin Wind Tunnel

2.10 Glenn L. Marin Wind Tunnel

2 Other State-of-the-Art Rotor Test Facilities

2.11 Other State-of-the-Art Rotor Test Facilities

2.11.1 National Full-Scale Aerodynamics Complex (NFAC)

2.11.2 NASA Langley Transonic Dynamics Tunnel (TDT)

2.11.3 Co-axial Rotor Test Rig at University of Texas - Austin
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.11.4 Rotor Testing in DNW Wind Tunnel</td>
<td>153</td>
</tr>
<tr>
<td>2.11.5 Rotor Testing at JAXA</td>
<td>156</td>
</tr>
<tr>
<td>3 Bench Top Testing</td>
<td>158</td>
</tr>
<tr>
<td>3.1 Introduction to Brushless DC Motor and Controller</td>
<td>158</td>
</tr>
<tr>
<td>3.1.1 Operating Principle</td>
<td>159</td>
</tr>
<tr>
<td>3.1.2 Maxon Motor and Controller</td>
<td>161</td>
</tr>
<tr>
<td>3.1.3 Maxon EC-10 Motor Characterization</td>
<td>163</td>
</tr>
<tr>
<td>3.2 Actuator Control Strategy</td>
<td>167</td>
</tr>
<tr>
<td>3.3 Bench Top Testing</td>
<td>170</td>
</tr>
<tr>
<td>3.4 Effect of Temperature on Motor Performance</td>
<td>174</td>
</tr>
<tr>
<td>3.5 Comparison of Maxon EC-10 motor with PZT-5K4 Piezobender</td>
<td>176</td>
</tr>
<tr>
<td>4 Design of Motor - Flap System</td>
<td>178</td>
</tr>
<tr>
<td>4.1 Evolution of Motor - Flap System Design</td>
<td>178</td>
</tr>
<tr>
<td>4.2 Comparison of Flap Waveform with Analytical Results</td>
<td>185</td>
</tr>
<tr>
<td>4.3 Finite Element Analysis of the Motor - Flap System</td>
<td>187</td>
</tr>
<tr>
<td>5 Vacuum Chamber Testing</td>
<td>189</td>
</tr>
<tr>
<td>5.1 Motor-only under Centrifugal Load</td>
<td>190</td>
</tr>
<tr>
<td>5.2 Motor-Flap System under Centrifugal Load</td>
<td>192</td>
</tr>
<tr>
<td>6 Fabrication and Structural Testing of Active Blade</td>
<td>197</td>
</tr>
<tr>
<td>6.1 Composite Blade Fabrication</td>
<td>197</td>
</tr>
<tr>
<td>6.1.1 Composite spar</td>
<td>198</td>
</tr>
<tr>
<td>6.1.2 Leading edge weights</td>
<td>201</td>
</tr>
<tr>
<td>6.1.3 Foam core</td>
<td>201</td>
</tr>
<tr>
<td>6.1.4 Composite skin</td>
<td>202</td>
</tr>
<tr>
<td>6.2 Motor-flap System: Fabrication and Assembly</td>
<td>205</td>
</tr>
<tr>
<td>6.3 Mass Balancing and Inertia Matching</td>
<td>208</td>
</tr>
<tr>
<td>6.4 Structural Testing of Blades</td>
<td>212</td>
</tr>
<tr>
<td>6.4.1 Testing using mirror method</td>
<td>213</td>
</tr>
<tr>
<td>6.4.2 Testing using Vicon motion capture system</td>
<td>217</td>
</tr>
<tr>
<td>6.4.3 Comparison of mirror and Vicon based methods</td>
<td>224</td>
</tr>
<tr>
<td>7 Hover Tower Testing</td>
<td>225</td>
</tr>
<tr>
<td>7.1 Experiments with Stiff Pitch Link</td>
<td>225</td>
</tr>
<tr>
<td>7.1.1 Open Loop Trailing Edge Flap Control</td>
<td>227</td>
</tr>
<tr>
<td>7.1.1.1 Improvements in Motor-Flap System</td>
<td>231</td>
</tr>
<tr>
<td>7.1.2 Closed Loop Trailing Edge Flap Control</td>
<td>234</td>
</tr>
<tr>
<td>7.2 Experiments with Soft Pitch Link</td>
<td>238</td>
</tr>
<tr>
<td>7.2.1 Mechanism of Moment Trailing Edge Flap</td>
<td>238</td>
</tr>
<tr>
<td>7.2.2 Design and Calibration of Soft Pitch Link</td>
<td>238</td>
</tr>
<tr>
<td>7.2.3 Blade Root Pitch Response</td>
<td>241</td>
</tr>
</tbody>
</table>
Wind Tunnel Testing

- **Installation Procedure** ... 246
- **Rotor Track and Balance** ... 253
- **Active Rotor in Forward Flight with Stiff Pitch Link** 253
- **Rotor Trim Algorithm** ... 255
 - **Conventional Swashplate Rotor Trim** 255
 - **Swashplateless Rotor Trim** 256
 - **Bench-Top Proof of Concept for Swashplateless Trim** 258
- **Active Rotor Trim in Forward Flight** 260
- **Hub Loads Comparison - Swashplate v/s Swashplateless Trim** .. 265
- **Error Estimates in the Experimental Data** 275
- **Scalability Assessment for Full Scale Applications** 277

Summary and Conclusions

- **Summary** ... 280
- **Conclusions** .. 281
- **Recommendations for Future Work** 285

Technical Drawings

- **RPM Gear tooth** .. 288
- **Torque Membrane** .. 289
- **Fabricast manufactured Signal Slip Ring - 1** 290
- **Fabricast manufactured Signal Slip Ring - 2** 291
- **Fabricast manufactured Power Slip Ring** 292
- **Composite Blade with Trailing Edge Flap** 293
- **Top View of Blade Layout** .. 294
- **Spar Assembly** ... 295
- **Root Insert for Composite Spar** 296
- **Flap Anchor** ... 297
- **Flap Mount** ... 298
- **Flap Rod** .. 299
- **Shaft Attachments A** .. 300
- **Shaft Attachments B** .. 301
- **Soft Pitch Link** ... 302

Bibliography

- 303
List of Tables

1.1 Rotor phenomenon and associated load harmonics for a four bladed rotor. ... 5
1.2 Vibration control using active flaps. .. 26
1.3 Important parameters for MD 900 and BK 117 active rotors. 26
1.4 Comparison of vibration and primary control flap configurations. ... 47
1.5 Scaling parameters of small scale rotor. 50
1.6 Comparison of basic parameters of UH-60A and scaled research rotors. 54

2.1 Comparison of centrifugal load on tension-torsion strap. 98
2.2 Calibration co-efficients for rotor shaft encoder. 103
2.3 Calibration co-efficients for blade root flap angle. 104
2.4 Calibration co-efficients for blade root lag angle. 107
2.5 Calibration co-efficients for blade root pitch angle. 108
2.6 Calibration co-efficients for rotor swashplate pitch. 111
2.7 Calibration co-efficients for rotor torque transducer. 115
2.8 Calibration co-efficients for instrumented rotor drive shaft. 117
2.9 Calibration matrix for steady hub loads. 120
2.10 Summary of data acquisition system channel capability. 140

3.1 Comparison of piezobender and brushless DC motor operating at 40 Hz. ... 177

4.1 Weight breakdown of the motor-flap system. 183

6.1 Key parameters of the Mach scale rotor with trailing edge flaps. ... 204
6.2 Weight breakdown of various components of the composite active blade. 204
6.3 Blades weight, c.g. and inertia comparison. 211
6.4 Blade flap-wise, chord-wise and torsional stiffness. 223

7.1 Calibration co-efficients for trailing edge flaps. 226

8.1 Blades weight, c.g. and inertia comparison. 253
List of Figures

1.1 Parts of a typical helicopter (Bell 412) ... 3
1.2 Top view of airflow over a rotor disc in forward flight. 4
1.3 Schematic of a typical helicopter swashplate 7
1.4 Swashplate assembly in Agusta A109 helicopter 8
1.5 Close-up view of CH 53G fully-articulated rotor system 9
1.6 Close-up view of Bo 105 hingeless rotor system 10
1.7 Schematic of a Westland spider control system 12
1.8 Close-up view of Westland WG-13 Lynx hub 12
1.9 Servo and plain flaps .. 13
1.10 Schematic of Kaman SH 2F rotor blade with servo flap 14
1.11 Servo - flap on a Kaman K-MAX rotor ... 15
1.12 Close-up view of K-MAX rotor hub .. 16
1.13 Vibration absorbers - passive measures .. 20
1.14 Nomenclature for trailing edge flap rotor ... 25
1.15 MD 900 SMART rotor with active flaps ... 27
1.16 Flight testing of BK 117 with active flaps .. 27
1.17 Electro - magnetic actuator used in Sikorsky Active Rotor System 37
1.18 Actuator - flap mechanism installed in S-434 blade 39
1.19 Secondary cuff mounted between primary cuff and blade root 39
1.20 Pneumatic Artificial Muscle actuator for trailing edge flap 42
1.21 Schematic of PAM actuation system in a Bell 407 rotor blade 42
1.22 Outboard section of Bell 407 rotor blade with PAM actuated trailing edge flap ... 43
1.23 Piezobender driven active flap for primary control 46
1.24 Active rotor with inboard and outboard flap assemblies 47

2.1 Front view of hover test stand at University of Maryland 63
2.2 Layout of hover test stand at University of Maryland 64
2.3 Hover test stand at University of Maryland 65
2.4 Fixed displacement hydraulic motor .. 69
2.5 Variable displacement hydraulic pump ... 71
2.6 Hydraulic pump characteristics at operating speed 72
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7</td>
<td>Flow control valve operation diagram.</td>
<td>74</td>
</tr>
<tr>
<td>2.8</td>
<td>Viscosity - temperature characteristics of hydraulic oil.</td>
<td>76</td>
</tr>
<tr>
<td>2.9</td>
<td>Oil filter installed in the hydraulic circuit.</td>
<td>79</td>
</tr>
<tr>
<td>2.10</td>
<td>Water based heat exchanger for oil cooling.</td>
<td>80</td>
</tr>
<tr>
<td>2.11</td>
<td>AC Induction squirrel-cage motor - cutaway.</td>
<td>82</td>
</tr>
<tr>
<td>2.12</td>
<td>Electric power panel and soft starter for hydraulic system.</td>
<td>83</td>
</tr>
<tr>
<td>2.13</td>
<td>Hydraulic system layout.</td>
<td>84</td>
</tr>
<tr>
<td>2.14</td>
<td>Rotor test stand at University of Maryland.</td>
<td>85</td>
</tr>
<tr>
<td>2.15</td>
<td>Rotor hub assembly - side view.</td>
<td>86</td>
</tr>
<tr>
<td>2.16</td>
<td>Rotor hub assembly - isometric view.</td>
<td>86</td>
</tr>
<tr>
<td>2.17</td>
<td>Top retaining plate on the hub.</td>
<td>87</td>
</tr>
<tr>
<td>2.18</td>
<td>Various degree of freedom of an articulated hub.</td>
<td>87</td>
</tr>
<tr>
<td>2.19</td>
<td>Rotor hub with blade grips.</td>
<td>88</td>
</tr>
<tr>
<td>2.20</td>
<td>Rotor hub (upside down view).</td>
<td>89</td>
</tr>
<tr>
<td>2.21</td>
<td>Hub mounting location.</td>
<td>89</td>
</tr>
<tr>
<td>2.22</td>
<td>Rotor swashplate assembly.</td>
<td>90</td>
</tr>
<tr>
<td>2.23</td>
<td>Rotor drive shaft installed in the hub.</td>
<td>91</td>
</tr>
<tr>
<td>2.24</td>
<td>Swashplate actuators mountings.</td>
<td>92</td>
</tr>
<tr>
<td>2.25</td>
<td>Rotor drive shaft.</td>
<td>94</td>
</tr>
<tr>
<td>2.26</td>
<td>Components of an articulated rotor blade grip.</td>
<td>95</td>
</tr>
<tr>
<td>2.27</td>
<td>Assembled view of the blade grip.</td>
<td>95</td>
</tr>
<tr>
<td>2.28</td>
<td>Tension - torsion strap.</td>
<td>96</td>
</tr>
<tr>
<td>2.29</td>
<td>New tension - torsion strap.</td>
<td>99</td>
</tr>
<tr>
<td>2.30</td>
<td>New tension - torsion strap being tested on MTS machine.</td>
<td>100</td>
</tr>
<tr>
<td>2.31</td>
<td>Tensile strength of new tension - torsion strap.</td>
<td>100</td>
</tr>
<tr>
<td>2.32</td>
<td>Optical sensor for RPM measurement.</td>
<td>101</td>
</tr>
<tr>
<td>2.33</td>
<td>RPM measurement gear tooth.</td>
<td>102</td>
</tr>
<tr>
<td>2.34</td>
<td>Hall-effect based rotary sensor used as a shaft encoder.</td>
<td>103</td>
</tr>
<tr>
<td>2.35</td>
<td>Setup for blade root flap and pitch calibration.</td>
<td>104</td>
</tr>
<tr>
<td>2.36</td>
<td>Blade root flap calibration.</td>
<td>105</td>
</tr>
<tr>
<td>2.37</td>
<td>Setup for blade root lag calibration.</td>
<td>106</td>
</tr>
<tr>
<td>2.38</td>
<td>Blade root lag angle calibration.</td>
<td>107</td>
</tr>
<tr>
<td>2.39</td>
<td>Blade root pitch angle calibration.</td>
<td>108</td>
</tr>
<tr>
<td>2.40</td>
<td>Operating principle of LVDT.</td>
<td>109</td>
</tr>
<tr>
<td>2.41</td>
<td>Maurey Instruments LVDT used as pitch sensor.</td>
<td>110</td>
</tr>
<tr>
<td>2.42</td>
<td>Swashplate pitch calibration.</td>
<td>111</td>
</tr>
<tr>
<td>2.43</td>
<td>Torque disc instrumented with strain gages.</td>
<td>112</td>
</tr>
<tr>
<td>2.44</td>
<td>Torque transducer calibration bench-top setup.</td>
<td>113</td>
</tr>
<tr>
<td>2.45</td>
<td>Torque transducer calibration on bench-top.</td>
<td>114</td>
</tr>
<tr>
<td>2.46</td>
<td>Torque transducer calibration installed on rotor hub.</td>
<td>114</td>
</tr>
<tr>
<td>2.47</td>
<td>Torque transducer under side and bending load, no torque applied.</td>
<td>115</td>
</tr>
<tr>
<td>2.48</td>
<td>Torque measured due to side and bending load, no torque applied.</td>
<td>116</td>
</tr>
<tr>
<td>2.49</td>
<td>Torque calibration from strain gage installed on rotor drive shaft.</td>
<td>117</td>
</tr>
<tr>
<td>2.50</td>
<td>Rotor hub balance.</td>
<td>118</td>
</tr>
<tr>
<td>2.51</td>
<td>Setup for rotor hub balance calibration.</td>
<td>119</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>2.52</td>
<td>Rotor control console.</td>
<td></td>
</tr>
<tr>
<td>2.53</td>
<td>Schematic of rotor blade tracking.</td>
<td></td>
</tr>
<tr>
<td>2.54</td>
<td>Pre-flight rotor tracking setup.</td>
<td></td>
</tr>
<tr>
<td>2.55</td>
<td>Typical hardware used for helicopter rotor tracking application.</td>
<td></td>
</tr>
<tr>
<td>2.56</td>
<td>Universal Tracking Device mounted on rotor fuselage nose.</td>
<td></td>
</tr>
<tr>
<td>2.57</td>
<td>Trim tab on UH-60 rotor blades.</td>
<td></td>
</tr>
<tr>
<td>2.58</td>
<td>Pitch Control Rod (PCR) on a UH-60 rotor hub.</td>
<td></td>
</tr>
<tr>
<td>2.59</td>
<td>Reflective tapes on blade tips.</td>
<td></td>
</tr>
<tr>
<td>2.60</td>
<td>Rotor blade tracking setup for Mach scale rotor testing.</td>
<td></td>
</tr>
<tr>
<td>2.61</td>
<td>Schematic of rotor blade tracking.</td>
<td></td>
</tr>
<tr>
<td>2.62</td>
<td>Lissajous figure for wind tunnel trim.</td>
<td></td>
</tr>
<tr>
<td>2.63</td>
<td>Resolving time data into rotor azimuth.</td>
<td></td>
</tr>
<tr>
<td>2.64</td>
<td>Cyclic blade flapping angles for blade 1.</td>
<td></td>
</tr>
<tr>
<td>2.65</td>
<td>Cyclic blade flapping for all blades.</td>
<td></td>
</tr>
<tr>
<td>2.66</td>
<td>Components of a typical slip ring.</td>
<td></td>
</tr>
<tr>
<td>2.67</td>
<td>Fabricast manufactured 64-line slip ring.</td>
<td></td>
</tr>
<tr>
<td>2.68</td>
<td>Single and double piece flex coupling units.</td>
<td></td>
</tr>
<tr>
<td>2.69</td>
<td>NI SCXI Data acquisition hardware.</td>
<td></td>
</tr>
<tr>
<td>2.70</td>
<td>BNC Breakout panel.</td>
<td></td>
</tr>
<tr>
<td>2.71</td>
<td>LabVIEW front panel.</td>
<td></td>
</tr>
<tr>
<td>2.72</td>
<td>LabVIEW block diagram panel.</td>
<td></td>
</tr>
<tr>
<td>2.73</td>
<td>Vacuum chamber at University of Maryland.</td>
<td></td>
</tr>
<tr>
<td>2.74</td>
<td>Typical specimen testing in the Vacuum chamber.</td>
<td></td>
</tr>
<tr>
<td>2.75</td>
<td>Vacuum chamber drive motor and slip ring.</td>
<td></td>
</tr>
<tr>
<td>2.76</td>
<td>Slip ring used in vacuum chamber experiments.</td>
<td></td>
</tr>
<tr>
<td>2.77</td>
<td>Slip ring mounting structure at the Vacuum chamber.</td>
<td></td>
</tr>
<tr>
<td>2.78</td>
<td>Test section dimensions with rotor model installed.</td>
<td></td>
</tr>
<tr>
<td>2.79</td>
<td>Rotor test stand installed in Glenn L. Martin wind tunnel.</td>
<td></td>
</tr>
<tr>
<td>2.80</td>
<td>Schematic of Large Rotor Test Apparatus at NASA Ames Research Center.</td>
<td></td>
</tr>
<tr>
<td>2.81</td>
<td>Schematic of rotating hardware used with Large Rotor Test Apparatus at NASA Ames Research Center.</td>
<td></td>
</tr>
<tr>
<td>2.82</td>
<td>Schematic of Aeroelastic Rotor Experimental System at NASA Langley Transonic Dynamics Tunnel.</td>
<td></td>
</tr>
<tr>
<td>2.83</td>
<td>Co-axial rotor test facility at University of Texas Austin.</td>
<td></td>
</tr>
<tr>
<td>2.84</td>
<td>Rotor hub at DLR.</td>
<td></td>
</tr>
<tr>
<td>2.85</td>
<td>Schematic of rotor test stand at Japan Aerospace Exploration Agency.</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Components of a typical brushless DC motor.</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Transverse view of a typical brushless DC motor.</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Winding excitation based on back EMF monitoring for commutation.</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Maxon EC-10 motor with 4:1 gear-head and AECS 35/3 controller.</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Internal components of a Maxon EC-10 motor.</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Maxon EC-10 motor torque-current characteristics.</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>Maxon EC-10 motor speed-torque characteristics.</td>
<td></td>
</tr>
</tbody>
</table>
3.8 Maxon EC-10 motor efficiency characteristics. 165
3.9 Maxon EC-10 motor speed-torque characteristics. 166
3.10 Motor driven trailing edge flap control scheme. 169
3.11 Bench top motor test stand. ... 170
3.12 Detailed view of Bench top motor test stand. 171
3.13 Detailed view of actuator torsion loading apparatus. 171
3.14 Half peak-peak flap amplitude on bench top, 40 Hz flap frequency. 172
3.15 Flap mean position, 40 Hz flap frequency. 173
3.16 Motor casing temperature history for flap operating at peak amplitude.173
3.17 Time history of flap motion at 40 Hz flap frequency. 175

4.1 Motor-flap system - version 1. ... 179
4.2 Components of motor-flap system - version 1. 179
4.3 Motor-flap system - version 2. ... 180
4.4 Components of motor-flap system - version 2. 180
4.5 Anchor design details. .. 181
4.6 Motor-flap system - version 3. ... 182
4.7 Multiple views of the final motor-flap system. 182
4.8 Isometric view of motor-flap system in the blade. 184
4.9 Side view of the motor-flap system in the blade. ... 184
4.10 Four bar based analysis of motor - flap system. 185
4.11 Analysis of input and output of motor-flap system. 186
4.12 Comparison of output waveform from motor-flap system with sine wave. .. 186
4.13 Loads on the flap anchor. .. 187
4.14 Finite element analysis of the flap anchor. 188

5.1 10 feet diameter vacuum chamber at University of Maryland. 189
5.2 Variation of motor output at various input voltages operating under no centrifugal load. .. 190
5.3 EC-10 motor mounted on the rotating shaft in vacuum spin chamber. 191
5.4 Motor rpm versus input voltages under various centrifugal loads. 191
5.5 Motor-flap system mounted on rotating shaft in vacuum spin chamber.192
5.6 Close-up view of the motor-flap system in vacuum spin chamber. 193
5.7 Flap motion in vacuum spin chamber at 800 RPM. 193
5.8 Motor-flap system with flexure in vacuum spin chamber. 194
5.9 Torsional stiffness of the flexure element in the motor-flap system. .. 195
5.10 Peak-peak flap amplitude at 40 Hz actuation in vacuum. 196
5.11 Motor casing temperature at 1200 rotor rpm in vacuum. 196

6.1 Components of a composite rotor blade with an active trailing edge flap. .. 197
6.2 Fabrication and testing of composite spar. 200
6.3 Extension test of composite spar. ... 200
6.4 Steps for composite blade construction. 203
7.16 Mechanism of blade pitching using a moment trailing edge flap. . . . 238
7.17 Stiff pitch link on an articulated rotor hub. 239
7.18 Soft pitch link with extension springs for frequency tuning. . . . 239
7.19 Soft pitch calibration setup on the hover stand. 240
7.20 Calibration curve for soft pitch links. 241
7.21 Time history of blade pitch response to trailing edge flap input at
1500 RPM, 25 Hz flap frequency, 1.55/rev pitch stiffness. 242
7.22 Blade root collective angle response to trailing edge flap collective,
pitch stiffness of 1.9/rev at 1200 RPM and 1.55/rev at 1500 RPM. . . 243
7.23 Blade root cyclic angle response to trailing edge flap cyclic, pitch
stiffness of 1.9/rev at 1200 RPM and 1.55/rev at 1500 RPM. . . . 244

8.1 Mounting structure for rotor test stand in the wind tunnel. 249
8.2 Rotor test stand mounted in the wind tunnel. 249
8.3 Rotor test stand installed in Glenn L. Martin wind tunnel. 250
8.4 View of the control room at Glenn L. Martin wind tunnel. 250
8.5 Channel labels of hub sensor connections for active rotor experiments. 251
8.6 Blade wire labeling convention. 251
8.7 Channel labels of on-blade connections for active rotor experiments. 252
8.8 Trailing edge flap amplitude at 40 Hz for various rotor speeds and
wind speed. 254
8.9 Trim procedure using swashplate controls. 255
8.10 Trim procedure using trailing edge flaps. 257
8.11 Bench top verification of TEF controller. 259
8.12 Phase shifted TEF waveforms. 260
8.13 TEF deflection for rotor trim at 900 RPM and 2/rev torsion stiffness. 261
8.14 TEF deflection for rotor trim at 900 RPM and 1.75/rev torsion stiffness. 262
8.15 TEF deflection for rotor trim at 1200 RPM and 2/rev torsion stiffness. 262
8.16 Blade root pitch for rotor trim at 900 RPM. 264
8.17 Blade root pitch for trimmed rotor at 900 and 1200 RPM. 264
8.18 Harmonic components of normal hub force at various advance ratios. 267
8.19 Harmonic components of axial hub force at various advance ratios. . 268
8.20 Harmonic components of side hub force at various advance ratios. . 269
8.21 Harmonic components of in-plane hub force at various advance ratios. 270
8.22 Harmonic components of rolling hub moment at various advance ratios. 271
8.23 Harmonic components of pitching hub moment at various advance
ratios. 272
8.24 Harmonic components of net hub moment at various advance ratios. 273
8.25 Harmonic components of shaft torque at various advance ratios. . . 274
8.26 Standard deviation in trailing edge flap deflection data. 276
8.27 Standard deviation in blade pitch data. 276
8.28 Comparison of g-loads. 277
8.29 Motor torque scaling with diameter. 278
8.30 Full-scale sectional model for trailing edge flap. 279
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternating Current</td>
</tr>
<tr>
<td>ACSR</td>
<td>Active Control of Structural Response</td>
</tr>
<tr>
<td>ACU</td>
<td>Actuator Control Unit</td>
</tr>
<tr>
<td>AECS</td>
<td>Analogue EC Controller Sensorless</td>
</tr>
<tr>
<td>AFDD</td>
<td>(US Army) Aero Flight Dynamics Directorate</td>
</tr>
<tr>
<td>AGRC</td>
<td>Alfred Gessow Rotorcraft Center</td>
</tr>
<tr>
<td>ARES</td>
<td>Aeroelastic Rotor Experimental Setup</td>
</tr>
<tr>
<td>BVI</td>
<td>Blade Vortex Interaction</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer Aided Drawing</td>
</tr>
<tr>
<td>CAMRAD</td>
<td>Comprehensive Analytical Model of Rotor Aerodynamics and Dynamics</td>
</tr>
<tr>
<td>CATIA</td>
<td>Computer Aided Three-dimensional Interactive Application</td>
</tr>
<tr>
<td>CFD</td>
<td>Computational Fluid Dynamics</td>
</tr>
<tr>
<td>CNC</td>
<td>Computer Numerical Control</td>
</tr>
<tr>
<td>CSD</td>
<td>Computational Structural Dynamics</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>DoF</td>
<td>Degree of Freedom</td>
</tr>
<tr>
<td>EC</td>
<td>Electronic Commutation</td>
</tr>
<tr>
<td>EMA</td>
<td>Electro Magnetic Actuator</td>
</tr>
<tr>
<td>EMF</td>
<td>Electro Motive Force</td>
</tr>
<tr>
<td>EMI</td>
<td>Electro Magnetic Interference</td>
</tr>
<tr>
<td>FEA</td>
<td>Finite Element Analysis</td>
</tr>
<tr>
<td>FEM</td>
<td>Finite Element Method</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier Transform</td>
</tr>
<tr>
<td>GLMWT</td>
<td>Glenn L. Martin Wind Tunnel</td>
</tr>
<tr>
<td>HART</td>
<td>Higher harmonic control Aeroacoustics Rotor Test</td>
</tr>
<tr>
<td>HHC</td>
<td>Higher Harmonic Control</td>
</tr>
<tr>
<td>IBC</td>
<td>Individual Blade Control</td>
</tr>
<tr>
<td>JAXA</td>
<td>Japan Aerospace eXploration Agency</td>
</tr>
<tr>
<td>JMRTS</td>
<td>JAXA Multi-purpose Rotor Test Stand</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>LabVIEW</td>
<td>Laboratory Virtual Instrument Engineering Workbench</td>
</tr>
<tr>
<td>LRTA</td>
<td>Large Rotor Test Apparatus</td>
</tr>
<tr>
<td>LVDT</td>
<td>Linear Variable Displacement Transducer</td>
</tr>
<tr>
<td>MAV</td>
<td>Micro Aerial Vehicle</td>
</tr>
<tr>
<td>MDART</td>
<td>McDonnell-Douglas Advance Rotor Technology</td>
</tr>
<tr>
<td>MOS-FET</td>
<td>Metal Oxide Semiconductor Field Effect Transistor</td>
</tr>
<tr>
<td>NACA</td>
<td>National Advisory Committee for Aeronautics</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NFAC</td>
<td>National Full-scale Aerodynamics Complex</td>
</tr>
<tr>
<td>ONERA</td>
<td>Office National d’Etudes et de Recherches Aerospatiale</td>
</tr>
<tr>
<td>PAM</td>
<td>Pneumatic Artificial Muscle</td>
</tr>
<tr>
<td>PCR</td>
<td>Pitch Control Rod</td>
</tr>
<tr>
<td>PID</td>
<td>Proportional Integral Derivative</td>
</tr>
<tr>
<td>PZT</td>
<td>Lead (Pb) Zirconate Titanate</td>
</tr>
<tr>
<td>RCAS</td>
<td>Rotorcraft Comprehensive Analysis System</td>
</tr>
<tr>
<td>RMDAS</td>
<td>Rotor Mounted Data Acquisition System</td>
</tr>
<tr>
<td>RPM</td>
<td>Rotations Per Minute</td>
</tr>
<tr>
<td>SMART</td>
<td>Smart Materials Actuated Rotor Technology</td>
</tr>
<tr>
<td>SPL</td>
<td>Soft Pitch Link</td>
</tr>
<tr>
<td>TDT</td>
<td>Transonic Dynamics Tunnel</td>
</tr>
<tr>
<td>TEF</td>
<td>Trailing Edge Flap</td>
</tr>
<tr>
<td>TT</td>
<td>Tension - Torsion</td>
</tr>
<tr>
<td>UAV</td>
<td>Unmanned Aerial Vehicle</td>
</tr>
<tr>
<td>UMARC</td>
<td>University of Maryland Advanced Rotorcraft Code</td>
</tr>
<tr>
<td>UMD</td>
<td>University of Maryland</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>UTD</td>
<td>Universal Tracking Device</td>
</tr>
<tr>
<td>UTRC</td>
<td>United Technology Research Center</td>
</tr>
<tr>
<td>VG</td>
<td>Viscosity Grade</td>
</tr>
<tr>
<td>VI</td>
<td>Virtual Instrument</td>
</tr>
</tbody>
</table>
UNITS:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ampere</td>
</tr>
<tr>
<td>C</td>
<td>Celsius</td>
</tr>
<tr>
<td>F</td>
<td>Fahrenheit</td>
</tr>
<tr>
<td>HP</td>
<td>Horse Power</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>N</td>
<td>Newton</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>W</td>
<td>Watt</td>
</tr>
<tr>
<td>dB</td>
<td>decibel</td>
</tr>
<tr>
<td>ft</td>
<td>feet</td>
</tr>
<tr>
<td>gpm</td>
<td>gallons per minute</td>
</tr>
<tr>
<td>in</td>
<td>inch</td>
</tr>
<tr>
<td>in Hg</td>
<td>inches of Mercury</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>kts</td>
<td>knots</td>
</tr>
<tr>
<td>lb</td>
<td>pounds</td>
</tr>
<tr>
<td>lbf</td>
<td>pound-force</td>
</tr>
<tr>
<td>m</td>
<td>meter</td>
</tr>
<tr>
<td>mph</td>
<td>miles per hour</td>
</tr>
<tr>
<td>m/s</td>
<td>meter per second</td>
</tr>
<tr>
<td>oz</td>
<td>ounce</td>
</tr>
<tr>
<td>psi</td>
<td>pounds per square inch</td>
</tr>
<tr>
<td>rad/s</td>
<td>radians per second</td>
</tr>
</tbody>
</table>
Chapter 1: **Introduction**

The ability to hover in-position, operate efficiently at low speeds, and take-off and land in constricted areas makes the helicopter a unique and versatile air vehicle. The rotor is the defining feature of the helicopter as it provides both the propulsive as well as the lift force for the vehicle. Helicopter control has been conventionally performed by the hydraulic actuated swashplate mechanism, which then controls the aerodynamic forces on the rotor. Over the years, the swashplate mechanism has proved highly reliable, in spite of its mechanical complexity and high maintenance costs. In addition, numerous exposed linkages, bearings, push rods and hinges contribute significantly both to the helicopter structural weight as well as parasite drag.

These limitations have motivated research into alternate ways of providing helicopter control. Eliminating the swashplate could possibly lead to reduced weight and drag resulting in improved mission performance. To address these limitations and to achieve a successful alternative to the swashplate, it is important to systematically understand the role of swashplate and outline the evolution of the current control system.

With this in mind, the following sections are laid out to first discuss various
rotor primary control mechanisms. Once the rotor primary control mechanism is understood, it may be logical to lay emphasis on reducing the helicopter vibrations, noise and improving its performance. To this end, passive and active approaches in both non-rotating frame as well as rotating frame are briefly discussed. Further, it will be shown that using trailing edge flaps as an active primary rotor control is the most attractive option and various previous research activities using trailing edge flaps are discussed. Finally, the objective and the scope of the current research is detailed.

1.1 Background

Cierva Autogyro C-4 [1], built in 1923 is the first successful rotary wing aircraft. Autogyros were primarily motivated by the need to safely operate at low speeds. It has a set of unpowered and uncontrolled blades that are free to rotate (auto-rotate) as the vehicle moves forward. It has all the typical control surfaces of a fixed wing airplane. The autogyro rotor blades are free to flap about the hinge at the center of rotation. The flapping motion compensates for angle of attack asymmetry. Thus, the rotor system is essentially a system in resonance with its rotational speed as the fundamental frequency.

Acknowledging the potential of such a vehicle, efforts were made to add a control system to use the rotor for controlling the flight path. This would allow to reduce aircraft drag by eliminating the fixed wing control surfaces. Such a system was implemented by Cierva in 1933 by directly tilting the rotor plane (hanging stick
mechanism). Leishman [2] presented a technical review outlining the early evolution of the autogyro and eventual convergence to helicopters.

![Figure 1.1: Parts of a typical helicopter (Bell 412) [3].](image)

Figure 1.1 shows a typical helicopter; it consists of a main rotor, a counter torque device usually tail rotor and an empennage with horizontal and vertical tail for stability augmentation. It is worth mentioning that helicopter configurations like co-axial, tandem and intermeshing rotors negate the need for a tail rotor as counter torque device. Many contemporary helicopter rotors have four aerodynamically shaped slender blades and the loads generated on these blades are controlled by commanding the relative incidence (pitch) of these blades to the airflow. It provides both the propulsive as well as the control forces for the helicopter.

In forward flight, the rotor operates in an asymmetric flow field due to difference in relative airspeed on two sides of the rotor disk, advancing side (into the flow) and retreating side (out of the flow). Figure 1.2 presents the complex airflow over
the rotor disc. Thus, in addition to a fixed change in blade pitch (collective pitch), a time varying pitch input (cyclic pitch) is also required to negotiate these flow field variations. Primary control mechanisms would have to provide the required pitch input for rotor control in hover as well as in forward flight.

Aeroelastic coupling due to slender flexible blades operating in unsteady aerodynamic environment makes them particularly susceptible to vibrations. On the advancing side, the larger relative airspeed near the tips can lead to locally transonic flow and associated sharp rise in drag. On the retreating side, the regions of reverse flow constantly grow as the forward flight speed increases. In addition, the front and the back portions of the rotor disk experience large radial flow components. Essentially, the advancing side is increasingly becoming less efficient in producing lift (rise in drag) and there is also an increasing region of reversed flow and blade
stall on the retreating side. This manifests in rise in the rotor power requirement, and thereby limiting the maximum forward flight speed. Thus, efforts were made to address helicopter vibration, and enhance its performance.

Table 1.1: Rotor phenomenon and associated load harmonics for a four bladed rotor.

<table>
<thead>
<tr>
<th>Objective</th>
<th>Load harmonics in rotating frame (/rev)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotor trim</td>
<td>1</td>
</tr>
<tr>
<td>Power reduction</td>
<td>2</td>
</tr>
<tr>
<td>Vibration reduction</td>
<td>3, 4, 5</td>
</tr>
<tr>
<td>Noise reduction</td>
<td>2, 3</td>
</tr>
</tbody>
</table>

As mentioned previously, the rotor system with zero flap hinge is a system in resonance with its rotational speed as the fundamental frequency. This frequency is non-dimensionally referred to as 1/rev. This representation helps in comparing aeromechanics of various rotor systems with different rotational speeds. Thus, the harmonic rotor hub loads are generally presented as an integral multiple of the rotational speed. For a tracked rotor (structurally, inertially and aerodynamics identical blades), hub loads are transferred to the fixed frame as integral multiples of number of rotor blades, referred to as blade passage frequency. Table 1.1 identifies prominent load harmonics in the rotating frame associated with various rotor aeromechanics phenomenon. Significant efforts with specific objectives have been made to passively or actively target these harmonics, and these are discussed next.
1.2 Rotor Primary Control

In helicopter flight, the rotor generates the vertical lift force to support the vehicle weight and the horizontal propulsion force for the vehicle. Controlling the rotor forces to achieve desired flight path is fundamental to the operation of the helicopter and is appropriately termed as primary control.

In theory, primary control of the rotor is achieved by controlling both the magnitude as well as the direction of the thrust from the rotor. The rotor thrust is an integrated effect of lift generated on individual rotor blades, which in turn depends on blade pitch angle distribution. Rotor thrust is defined as the resultant force normal to the plane formed by the tip of the rotating blades termed as tip path plane. In essence, changing the blade pitch uniformly over the entire rotor revolution controls the magnitude of the rotor thrust and is termed as collective pitch control. While changing the blade pitch cyclically over the rotor revolution controls the direction of rotor thrust and is termed as cyclic pitch control. A complete mathematical discussion of primary control is included in Refs. [4,5].

A mechanism to realize primary control was one of the toughest design challenges faced by the early helicopter pioneers. Hafner [6], in the late 1920s proposed and developed a swashplate mechanism that would change the pitch of the blade at the location where blades are connected to the hub. On the other hand, Pescara [7] favored use of control surfaces embedded in the rotor blade to produce the control loads needed for primary control. In the following sections, some of the prominent primary control methods are detailed, and their relative merits are discussed.
1.2.1 Swashplate Control

Swashplate is the most prevalent rotor control system in production helicopters. Operation of the swashplate can be understood with the help of schematic shown in Fig. 1.3. The swashplate consists of two main parts: a non-rotating (lower) swashplate and a rotating (upper) swashplate. The lower swashplate doesn’t rotate and is connected to the pitch servos. Both plates are mounted on a bearing to allow change in orientation and pitch scissors allow to orient the plate.

![Schematic of a typical helicopter swashplate](image)

Figure 1.3: Schematic of a typical helicopter swashplate [8].

To control the collective pitch of the rotor blades, the entire swashplate is moved up or down along the rotor shaft without changing the planer orientation of the plate. Thus, the entire swashplate is moved along the rotor mast by a collective pitch actuator. To control the blade cyclic pitch, the planer orientation of the plate
is changed. Three pitch actuators distributed azimuthally provide the lateral and longitudinal tilt of the plate. The rotor blades grips are connected to the swashplate via pitch control rods or pitch links, which transfer the swashplate motion to blade root pitch input. The inputs from the pilot controls the pitch actuators in the fixed frame, which in turn orient the swashplate assembly to achieve the desired pilot controls.

Figure 1.4: Swashplate assembly in Agusta A109 helicopter [9].

Figure 1.4 shows the swashplate assembly in Agusta A109 (1590 kg [3500 lb]) helicopter. The swashplates, pitch rods and pitch actuators are clearly visible. In most cases, hydraulic or hydro-electric actuators are used as pitch actuators that are sufficiently capable of providing the large control forces required to pitch the entire rotor blades. Generally, the pitch actuators and the lower pitch rods are
covered by fairing to streamline the flow around the rotor hub, in an effort to reduce the hub drag. Figures 1.5 and 1.6 show close-up view of swashplate assembly respectively on Sikorsky CH 53G (20865kg [46000 lb]) and MBB Bo 105 (2600 kg [5700 lb]) helicopters, with hub fairings installed. In spite of these efforts, by some estimates [5, 10], the swashplate assembly contributes about half of the total hub drag and about 35% of the helicopter parasite drag.

![Figure 1.5: Close-up view of CH 53G fully-articulated rotor system [11].](image)

It is important to note that although swashplate has remained relatively unaltered, the rotor design and fabrication technology has rapidly evolved. In general, out-of-plane (flap), in-plane (lag) and feathering (pitch) are the most important rigid degree of freedom for the rotor blade. Initially, mechanical hinges provided for all the degrees of freedom (fully articulated rotor system: Fig. 1.5). The rotor blades
were usually of metal construction. With the advances in composite manufacturing, rotor blades are now designed and fabricated using composites with tailored stiffness, thereby incorporating flap and lag degrees of freedom with flexible components near the blade root. No mechanical hinges are used for flap and lag, however feathering bearing is still utilized for pitch degree of freedom (hingeless rotor system: Fig. 1.6). Finally, elastomers were utilized to replace the feathering bearings in the hingeless design and most modern rotors are trending towards bearingless configuration (Fig. 1.4). A more detailed discussion about various rotor systems is in Refs. [13–16].
1.2.2 Westland Spider Control

As an alternative to using the swashplate for rotor controls, a spider system was developed and used by Westland company particularly in Lynx helicopters. It consists of a rotating ball joint to transfer the motion between stationary and rotating frames. Figure 1.7 shows a schematic of the Westland spider system.

The hub design is similar to a hingeless design with flexible elements made of titanium providing the required softness for flap and lag motion. A feathering bearing assembly permits the blade pitch motion. The pitch rods are connected to the blade root at one end and to the spider arms on the other end. The spider arm for each of the four blades are connected to the control spindle that runs through the rotor shaft. The control spindle can be moved up or down to change the blade collective pitch or can be moved side to side to change the blade cyclic pitches.

Figure 1.8 shows a close-up view of the Westland WG-13 Lynx (5125 kg [11300 lb]) hub. A summary of design and development of Westland Sea Lynx is presented in [17], 1/5th-scaled rotor testing details are in [18] and flight test description with performance analysis is in [19]. Significant reduction in maintenance time and service part count on the hub was recorded, however these benefit were attributed more to the hingeless rotor design rather than spider-linkage control system. Though this control system doesn’t use a swashplate it has similar drawbacks like exposed linkages and the associated drag and weight penalty. Nevertheless, it is a noteworthy and unique rotor primary control system.
Figure 1.7: Schematic of a Westland spider control system [20].

Figure 1.8: Close-up view of Westland WG-13 Lynx hub [21].
1.2.3 Kaman Servo-Flap Control

The concept of using trailing edge flaps for helicopter primary control was proposed early in the development of the helicopter [7,22]. However relative difficulty in installing and operating control surfaces on a rotating blade under significant centrifugal loads posed a challenge to practical realization of the concept. Today, Kaman [23,24] is the only helicopter manufacturer that uses servo-flaps for primary control in a production helicopter.

It is important to distinguish between plain flap and servo flap. A servo flap is a separate airfoil shaped auxiliary body situated aft of the trailing edge of the main rotor blade. In contrast, a plain flap is part of the main rotor blade, the support structure and actuation mechanism are integrated within the profile of the rotor body. For this reason, it is also referred to as integrated flap. Figure 1.9 shows a pictorial comparison of the servo and integrated flaps. Irrespective of the type, these flaps are placed in the outboard section (usually trailing edge flap mid-span around 75% rotor radius) of the blade, to take advantage of the higher local dynamic pressure.

Figure 1.9: Servo and plain flaps
Figure 1.10 shows the schematic of the Kaman SH 2F (3190 kg [7040 lb]) rotor blade with servo flaps. A swashplate like mechanism at the rotor hub is connected to the flap via control rod that is passed through a hollow cavity in the rotor blade. The pitch inputs from the pilot move the servo flap and the torsionally soft rotor blade pitches in response. This softness in pitch is often accommodated by using stiffness tailored tension-torsion straps at the blade retention grip. Wei et al. has presented several studies [25–34] detailing systematic design and development process of servo-flap rotors at Kaman Aerospace. Figure 1.11 shows the servo-flap in a production K-MAX (2300 kg [5100 lb]) helicopter. The servo flaps provide larger moment arm compared to plain flaps, thus lowering the required flap deflection and control moment for primary control. This also reduces the complexity in the rotor hub, as
seen in Fig. 1.12, reducing the part count and associated hub drag. However, due to additional body aft of the blade and linkages exposed in a high dynamic pressure flow, there is significant aerodynamic drag from the servo flaps.

![Figure 1.11: Servo-flap on a Kaman K-MAX rotor [35].](image)

To assess the benefit of the integrated flap over the original servo-flap design, two one-third scaled integrated and servo-flap sections were tested in a wind tunnel [36]. The new design integrated the servo-flap in the main blade section and compared it to the original servo-flap section. It was observed that the lift to drag ratio of the new configuration was as much as 13 times the original configuration for some test cases. It is to be kept in mind that the chord of the integrated servo-flap section was equal to the sum total of the original blade and servo-flap combined, essentially making it a wide chord blade.
Prouty [37] presented a summary of the various helicopter control systems.

1.3 Helicopter Vibrations and Performance

As mentioned before, the interaction of elastic rotor with unsteady and non-uniform aerodynamic environment is the prime cause of the rotor vibrations [38, 39]. The rotor in addition to having a steady and one per revolution loads, also encounters multiple harmonics loads. These rotor vibrations then transfer to the fuselage and passenger cabin through the rotor shaft and hub mounting. For a tracked rotor, only harmonics that are integral multiples of the number of main rotor blades are observed in the fixed frame, the rotor system can be thought of as a filter for all the other harmonics. This has been observed in several wind tunnel
and flight tests data over the years as well [40–43].

Sustained efforts [44] have been underway to understand and predict rotor steady and vibratory loads using comprehensive analyses. University of Maryland Advanced Rotorcraft Code (UMARC) [45] and Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics-II (CAMRAD-II) [46] are examples of such analyses. The accuracy of prediction, though has improved over the years, it is still not up to the acceptable accuracy for a wide range of flight conditions [47–49]. This can be attributed to difficulty in precise modeling of the complex aerodynamics and structural deformations. Recently it has been observed that coupling the Computational Fluid Dynamics (CFD) analysis with Computational Structural Dynamics (CSD) can better capture the aeroelastic nature of the rotor vibrations problem [50–54].

Helicopter vibration levels, if left unchecked, can significantly reduce the life of the components of the vehicle. In addition, these vibrations cause pilot and passenger discomfort and an increase in maintenance efforts and costs. Most production helicopters have some vibration attenuation device installed to address these concerns. Some of these concepts are described next.

1.3.1 Pre-Flight Measures

Because main rotor is the primary source of vibrations, it is pertinent that any dissimilarity between individual blades is minimized. Dissimilarity in inertial, structural and aerodynamic characteristics of individual blades leads to differences
between the motions of the blade and this shows up as large 1/rev rotor loads. After composite blade manufacturing process, each rotor blade undergoes strict similarity checks before they are selected to be installed on the vehicle. Blade mass balance in chordwise and spanwise direction, mass distribution and stiffness properties are some of the key parameters that are matched. These measures are generally referred to as rotor track and balance. References [55,56] present analytical modeling of rotor track and balance.

In practice, rotor tracking exercise is an effort to ensure that all blade tips trace the same trajectory, in other words, undergo identical tip path tracks. The blade tips trajectory are illuminated by optical means and are recorded. Tracking adjustments are made by adjusting pitch links as well as by adjusting trim tabs located at the trailing edge of the outboard section of the rotor blade. Rotor track procedure is discussed in detail in Section 2.6.

It was also observed in some cases that a perfectly tracked rotor could experience high levels of vibrations. This lead to development of advanced tuning systems, wherein several accelerometers were installed at key locations on fuselage and empennage. Computer codes guide the rotor smoothing exercise and several research studies have tried to optimize this process [57–59]. The rotor tuning includes reduction of the rotor out-of-track as well as the fuselage vibrations. This is also referred to as rotor smoothing.

In recent years, efforts have been made to reduce the time spent in manually adjusting track and automate the rotor smoothing process. Low bandwidth adjustments using either an active trim tab [60] or an active pitch link [61] have been
tested though not yet implemented in a production helicopter.

Traditionally rotor in-plane mass imbalance is generally corrected by bolt-on masses on the rotor hub arms. Automating mass balance has been tried by mounting small motor driven masses on a semicircular track beneath the rotorhead [61].

1.3.2 Passive Measures

In-flight vibration reduction using passive approaches specifically target 3, 4 and 5/rev vibratory loads in the rotating frame. These may be classified into categories based on their applications [62]:

(a) Fixed frame devices: *Cabin suppressors* increase apparent fuselage impedance or control the location of node of important modes. These are mounted on selected fuselage locations reducing local vibrations and improving pilot and passenger comfort. These suppressors are usually passive spring-mass system tuned to the blade passage frequency \(N_b/\text{rev}\), where \(N_b\) is number of blades). *Isolators* are also installed between fuselage and main rotor/transmission to isolate main rotor vibrations from fuselage. These fixed frame devices incur large weight penalty and have poor off-design performance (away from tuned frequency).

(b) Rotating frame devices: *Pendulum absorbers* are mounted on the rotor hub, which are tuned to cancel dominant source of 4/rev hub loads. They can be installed to absorb out-of-plane (pendulums) and in-plane (bifilar) vibrations. *Attenuators* are installed on the rotor blade to minimize vibratory loads in the
rotating frame. The goal is to reduce the blade root vibratory loads. These devices tend to be heavy and cause significant drag penalty when installed on the blade.

Figure 1.13 shows a few of the passive vibration absorbers used in production helicopters.

![Image of vibration absorbers](image)

Figure 1.13: Vibration absorbers - passive measures [63–65].

Several researchers have also explored potential benefits of composite tailored couplings for vibration reduction. Recently, Bao et al. [66–68] conducted coupled aeroelastic comprehensive analysis as well as fabricated a set of five high quality UH-60A type Mach scale rotors with segmented flap-bending/torsion couplings. Wind tunnel test of these Mach scale blades on an articulated rotor hub demonstrated that with proper design optimization, composite blade flap-bending/torsion coupling could reduce vibratory hub loads.
1.3.3 Active Measures

The passive vibration control devices add significant weight penalty to the helicopter and generally have a poor off-design performance from the tuned frequency. Active vibration control concepts could be adjusted based on the flight conditions allowing better effectiveness at various operational flight conditions.

1.3.3.1 Active Control of Structural Response

Active Control of Structural Response (ACSR) refers to vibration cancellation in the fuselage load paths (in fixed frame) using force actuators to counteract the structural response based on the flight conditions and minimize local vibration. These are an extension of cabin suppressors and isolators with an aim of improving their effectiveness over the operational envelope of the helicopter. References [69–74] detail development and testing of various methods used to control the structural response leading to vibration reduction.

1.3.3.2 Higher Harmonic Control

All the vibration control devices that either passively or actively target structural response only suppress vibration at few locations. They don’t impact the source of vibration, which is the aeroelastic interaction of rotor blades with airflow. To directly influence the source of rotor vibrations, Higher Harmonic Control (HHC) was proposed [75, 76]. For HHC, actuators are incorporated below the swashplate in the non-rotating frame. In addition to the 1/rev cyclic inputs by the swashplate,
higher harmonic inputs are superimposed on the pitch input. These were usually hydraulic actuators and had to be sized not only for primary control but as well as HHC. Several analytical [77–79] as well as experimental [80–83] studies have examined the potential of HHC. The effects of HHC on rotor vibrations and noise were also extensively explored in wind tunnel tests of a geometrically and dynamically scaled Bo 105 rotor. These constituted the two part Higher Harmonic Control Aeroacoustic Rotor Test (HART I & II) program [84–87]. HHC was shown effective in reducing vibration as well as noise, however often not simultaneously. If the control inputs were aimed at vibration reduction, noise was adversely affected and vice-versa. Generally, low actuation amplitudes were required, though large control loads were observed.

HHC suffered from several limitations that made their practical implementation difficult. The control force needed to actuate the complete rotor system was large leading to heavy hydraulic actuators. Although these actuators would not be exposed to centrifugal loads, they were to be designed for both low frequency primary control as well as high frequency HHC, leading to increased wear and tear of primary control system. For a four bladed rotor, higher harmonic control inputs to the swashplate in the fixed frame is 4/rev which in turn results in 3, 4, and 5/rev pitch inputs to the blade in the rotating frame. Thus, 2/rev control input as needed for performance enhancement was not available using HHC for a four bladed rotor and as a result, no significant performance enhancements were noticed. Kessler [65] presented a comprehensive survey of the various HHC systems.

Recently, concept of using multiple swashplates to increase the number of
control degrees of freedom has been tested. Although feasible, multiple swashplates further increase the design complexity, hub drag and weight penalty [88].

1.3.3.3 Individual Blade Control

To address the bandwidth limitation of HHC, it was proposed to move the control to the rotating frame via Individual Blade Control (IBC) [89,90]. This would separate the primary control system from IBC, reduce the control force required from the actuators thus bringing down system weight [89]. Compared to HHC, IBC systems have actuators in the rotating frame; this necessitates hydraulic or electrical slip rings to operate these actuators.

Over the years, several potential concepts have been explored. These include blade camber control [91, 92], blade twist control [93–99], active tips [100, 101], blade root pitch control [102–110], active servo flaps [24,25,111–116], active micro-flaps [117] and active integrated trailing edge flaps. Kessler et al. [118,119] presented a detailed review of the various IBC systems.

For a four bladed rotor system, IBC allows introducing all harmonics (2 - 5/rev) and other non integral multiple frequencies in the rotating to directly counter vibration and noise at its source. In addition to 3, 4 & 5/rev control for vibration alleviation, harmonics such as 1/rev to counter loads due to rotor dissymmetry [120, 121], 2/rev for performance enhancement [122,123] and stall delay [124,125] and mixture of 2/rev and 3/rev for noise reduction [126,127] could be implemented. Often simultaneous vibration reduction and noise alleviation could be achieved using
Friedmann et al. [128,129] assessed various approaches for helicopter vibration reduction and concluded that actively controlled flaps were most effective IBC system with practical deflection angles. They could achieve similar vibration reduction as achieved by HHC at an order of magnitude less actuation power requirement.

1.4 Vibration Control using IBC Active Flaps

The advent of smart materials with high bandwidth and compact size, IBC actuators could be incorporated in the rotor blades. These actuators then drive discrete control surfaces like trailing edge flap placed in high dynamic pressure locations of the blade. Chopra [130,131] presented a review of the smart materials, Giurgiuțiu [132] assessed the suitability of smart materials for rotorcraft applications. Sirohi et al. [133] analyzed the fundamental behavior of individual piezoceramic plates operating under simulated centrifugal loads. Based on the strain effects, two types of piezo based actuators have been developed namely, Piezostack (d_{33}) and Piezobender (d_{31}).

To minimize the drag and weight penalty associated with servo flaps, piezo actuator driven integrated flaps were considered. Figure 1.14 presents the nomenclature used for an integrated flap in a rotor blade. A trailing edge flap location (mid-span as %R), flap length (as %R) and flap chord (as %c) are most critical flap parameters. In addition, flap overhang and gap between flap element and main blade body in chordwise and spanwise direction are also important to consider.
Several experimental studies have explored vibration reduction using piezo actuated flaps, culminating in successful wind tunnel demonstration of SMART rotor [134] and flight test demonstration of BK 117 helicopter [74]. Table 1.2 summarizes some of these experiments. Important parameters of MD 900 SMART rotor and BK 117 rotor are listed in Table 1.3. Results from SMART rotor tests conclusively show reductions in blade-vortex interaction (BVI) and in-plane noise as well as vibratory hub loads. Noise reductions up to 6dB, as well as vibratory hub load reductions of about 80% were measured. However, flap deflections at 1/rev were limited from primary control perspective.
Table 1.2: Vibration control using active flaps.

<table>
<thead>
<tr>
<th>Study</th>
<th>Actuator</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee et al. [135,136]</td>
<td>Piezostack, L-L mech</td>
<td>2-D section, open jet 150 ft/s</td>
</tr>
<tr>
<td>Prechtl et al. [137]</td>
<td>Piezostack, X-frame</td>
<td>1/6 CH 47-D Mach scale, hover</td>
</tr>
<tr>
<td>Spangler et al. [138]</td>
<td>Piezobender, PZT-5A</td>
<td>bench-top</td>
</tr>
<tr>
<td>Fulton et al. [139–142]</td>
<td>Bimorph, 2 PZT-5A</td>
<td>3.75 ft dia, Froude-scale, hover</td>
</tr>
<tr>
<td>Koratkar et al. [143–146]</td>
<td>Piezobender, PZT-5H</td>
<td>5-ft dia, Mach scale, µ 0.3</td>
</tr>
<tr>
<td>Roget et al. [147]</td>
<td>Piezobender, PZT-5H</td>
<td>5-ft dia, Mach scale, µ 0.25</td>
</tr>
<tr>
<td>Straub et al. [134,148–152]</td>
<td>Piezostack, 2 X-frame</td>
<td>MD 900 full scale, µ 0.375</td>
</tr>
<tr>
<td>Konstanzer et al. [74]</td>
<td>Piezostack</td>
<td>BK 117 flight test, µ 0.257</td>
</tr>
</tbody>
</table>

Table 1.3: Important parameters for MD 900 and BK 117 active rotors.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MD 900 rotor</th>
<th>BK 117 rotor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotor radius (R)</td>
<td>5.2 m [17 ft]</td>
<td>5.5 m [18 ft]</td>
</tr>
<tr>
<td>Rotor chord (c)</td>
<td>0.25 m [10 in]</td>
<td>0.32 m [12.6 in]</td>
</tr>
<tr>
<td>Max. wind speed</td>
<td>80 m/s [155 kts]</td>
<td>57 m/s [110 kts]</td>
</tr>
<tr>
<td>Rotor speed (RPM)</td>
<td>392</td>
<td>383</td>
</tr>
<tr>
<td>Number of blades</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Flap midspan (%R)</td>
<td>83</td>
<td>75</td>
</tr>
<tr>
<td>Flap length (%R)</td>
<td>18</td>
<td>10.9</td>
</tr>
<tr>
<td>Flap chord (%c)</td>
<td>25</td>
<td>15.6</td>
</tr>
<tr>
<td>Tor. freq. (/rev)</td>
<td>5.8</td>
<td>3.5</td>
</tr>
</tbody>
</table>
Figure 1.15: MD 900 SMART rotor with active flaps.

Figure 1.16: Flight testing of BK 117 with active flaps.
1.5 Swashplateless Rotor Primary Control

Based on the understanding that any substantial success in rotor smoothing and quieting can only be achieved by active control in rotating frame, the focus shifts to using on-blade control surfaces to achieve primary control as well. Further, successful vibration reduction demonstrations by Boeing (MD-900 rotor in NFAC [134]) and Eurocopter (BK-117 in flight tests [74]) using trailing edge flaps as on-blade control surfaces. This provided renewed impetus to assess if rotor primary control, in addition to vibration reduction, could be achieved using trailing edge flaps. Analytical studies examining capabilities and challenges arising from using these flaps for rotor primary control are reviewed next.

1.5.1 Analytical Studies

Ormiston [153] initiated a feasibility study of flaps (referred to as elevons in his study) for primary control using a simple aeroelastic analysis. The blades were assumed to be rigid and quasi-steady thin airfoil two dimensional theory with uniform rotor inflow was used. The study found that primary control of the rotor (rotor trim) could be achieved using trailing edge flaps, provided the torsion frequency of the blade is significantly reduced from about 5/rev for conventional rotor to about 2/rev for swashplateless rotor. This was modeled in the analysis by treating the blade as torsionally rigid, with a soft pitch link at the root. The pitching moment created by the trailing edge flap would result in blade pitch response at the root, which in turn twists the blade. Also, flap (elevon) reversal was observed when the
lift contribution from the flap was greater than the opposing lift from the induced blade twist. Thus, using moment flap with low blade torsional frequency was recommended to maximize blade pitch response and operate beyond flap reversal speed. Finally, in order to operate the airfoil sections with flap with minimum actuation force, blade indexing was recommended. Blade indexing refers to setting the blades at a high pre-collective pitch angles prior to operating the rotor. As the rotor spins up, the blade pitching moment would bring the rotor pitch to the desired pitch angle. This would greatly reduce the steady trailing edge flap deflections required for trim.

Shen et al. [154–160] carried out a series of numerical studies to investigate use of trailing edge flaps for swashplateless rotors using comprehensive analysis code, UMARC. The aerodynamic model was based on thin airfoil theory with unsteady model for flap lift and drag. A multi-cyclic controller was implemented for actuating trailing edge flap for simultaneous primary control as well as vibration reduction. Also, eigenvalue analysis was used to study active rotor stability. The analysis was validated by comparing the baseline conventional rotor results with results from CAMRAD-II and wind tunnel data [154,155].

The studies were carried out for various weight class helicopters such as an ultralight ASI 496 (512 kg [1130 lb]) teetering rotor helicopter, bearingless MD 900 (1361 kg [3000 lb]) rotor and a typical utility UH-60A (8610 kg [19000 lb]) helicopter. Blade index angle and torsional frequency were found to be primary design parameters for swashplateless rotors. For the ultralight helicopter, optimal flap system design consists of an 18%R plain flap with 25%c flap chord located at
82%R. The blade torsional frequency was kept same as the baseline swashplate rotor at 2.2/rev. Both flap collective and cyclic deflections were calculated to be below 4 degrees to trim the rotor in the complete range of flight speeds [156].

For the McDonnell-Douglas Advance Rotor Technology (MDART) rotor, a multi-cyclic controller was used. It was shown that the trailing edge flap could simultaneously trim swashplateless rotor and achieve 99% reduction in baseline rotor vibration at an advance ratio of 0.25. A steady flap angle of 5 degree with half peak to peak cyclic flap angles of less than 6 degree were required. An optimal blade index angle of 18 degree was also needed. When the rotor was trimmed, first using swashplate for baseline case and then using trailing edge flaps, similar collective and cyclic blade pitch angles were observed. In both cases, the torsional frequency was maintained at 2.1/rev [157].

Next, parametric studies of flap configuration examined flap overhang, chord, flap length, spanwise location and blade index angle in order to minimize flap control angle and hinge moment at high speed rotor flight. This parametric study showed that blade index angle, flap length and torsional frequency mostly influence the required flap deflection whereas optimizing flap overhang was critical in reducing the flap hinge moment requirement. Overall, these parameters were important for design of swashplateless rotor irrespective of the weight class or rotor type [159].

Another important observation from the analytical studies was that actuator dynamics can not be neglected. Inclusion of actuator dynamics results in larger flap control angles as well as more power for various flap spanwise placements [158].

Finally, analysis of UH-60 rotor demonstrated the capability of performing
both primary flight control and active vibration control functions using trailing-edge flaps. At a high advance ratio of 0.32, the 4/rev vertical force and roll and pitch moments at hub were successfully eliminated (by 90%), and the 4/rev in-plane hub forces are reduced by more than 40%. The half peak-to-peak value of the trailing-edge flap deflection for primary flight control is 7.1 degree, and an additional 4.7 degree is required for active vibration control [160]. The observed trends were similar for all the rotor types considered, with highest flap deflection requirements for trim was calculated for UH-60A.

Falls et al. [161–165] extended the comprehensive code to include better wake model and lift-drag calculations for flapped airfoils. In addition to using free wake for rotor, additional wake trailers were added to the ends of the trailing edge flap element. The aerodynamic model included either using a quasi-steady thin airfoil theory or an unsteady lifting line model with airfoil table lookup. The table lookup was based on wind tunnel test data and CFD allowing accurate calculation of rotor power. The baseline rotor performance predictions from the UMARC analysis were validated against flight test data [166,167]. Similar to previous analyses, for the swashplateless rotor configuration, the rotor blade was left unaltered and torsional frequency was modeled using as a soft pitch link at the root. For most cases, the torsional frequency was kept at 2/rev and the rotor was trimmed up to an advance ratio of 0.3.

It was shown that blade index angle was strongly dependent on blade torsional stiffness, softer the blade in torsion, higher is the pitch response and higher blade index angle is desired to keep steady flap deflections low. In addition, higher the rotor
operating thrust, higher is the blade index angle required. It is worth mentioning
that the blade index angle was optimized based on the extreme operating condition
of high rotor thrust and high advance ratio, and for all other flight conditions, it
was left unaltered. Based on an extensive parametric study, the optimum trailing
edge flap geometry was shown to be with 15%c chord, 0.33% flap chord overhang,
39%R length, centered at 75%R span. A blade index angle of 20 degree was found
to minimize the flap deflections and hinge moments at a high advance ratio of 0.368.
Mean flap deflections of -3 to -9 degrees and half peak to peak deflections of 4 to 11
degree were found sufficient to trim the rotor over the entire flight envelope (steady
flight up to advance ratio of 0.368) [164].

From performance perspective, the swashplateless rotor was found to consume
less power than baseline rotor in hover and at low flight speeds. This could be due
to redistribution of blade airloads in presence of the trailing edge flap deflections. At
advance ratios above 0.25, the swashplateless configuration consumed more power.
The analysis did not account for any reduction in the flat plate area for helicopter
drag calculations in case of a swashplateless configuration, which could alter the
comparison at high advance ratios. In addition to analyzing the integrated flap
configuration, trailing edge flap with servotabs were also studied. It was found that
that tab actuated flaps could also trim the rotor with smaller tab deflections and
hinge moments. However, the performance falls sharply as the actuation frequency
is increased implying that they may not have the required bandwidth to perform
vibration control applications [165].

Coupled CFD-CSD analysis done by Jose et al. [168–171] focussed primarily
on understanding the aerodynamics of the integrated flap rotors. Based on the two
dimensional airfoil studies, it was shown that the use of the effective angle of attack
concept could be used for modeling lift and drag of flapped airfoil sections. Also, in
un-stalled conditions, flap overhang has a relatively small effect on lift and pitching
moment. Based on three dimensional CFD simulations, it was concluded that the
gaps between the trailing edge flap and the rotor blade main body adversely affect
the rotor performance. These gaps also reduce the effectiveness of the trailing edge
flap in trimming the rotor. Quantitatively the effect of spanwise gaps was found to
be lower compared to chordwise gaps.

Survivability is a key consideration when designing a flightworthy vehicle. To
this objective, Ganguli et al. [172] studied the possibility of trimming a swashplate-
less rotor with one or more damaged blades. The analysis was carried out on a
Bo 105 (2600 kg [5700 lb]) rotor using UMARC and the on-blade actuator on the
damaged blade was assumed to be non functional by suppressing the collective and
cyclic pitch on the damaged blade. It was shown that the remaining blades with
trailing edge flaps could allow for trimming the rotor but required higher trailing
flap deflections. This translates to greater survivability of swashplateless helicopters.
However, increased root flap motion of the damaged blade and increased 1/rev and
2/rev loads due to reconfigured hub pose significant increase in rotor loads and vi-
brations and it became progressively difficult to trim damaged rotor as the advance
ratio increased.

In another study, Ganguli et al. [173] explored the possibility of reconfiguring
the fuselage cg to reduce the cyclic flap deflections required. It was shown that
optimizing cg location and proper choice of blade indexing could reduce the peak to peak flap deflection requirements by as much as 50%. In addition, for smaller scale vehicles (UAVs and MAVs), active control of cg position could also be employed to completely eliminate cyclic pitch requirements for a large range of flight conditions.

Before summarizing these analytical studies, a couple of pertinent observations are necessary. For the future analytical studies, the effect of change in blade moment of inertia due to presence of integrated flaps and associated mechanisms needs to be included. Presence of on-blade components significantly increases the blade weight and alters the mass distribution. Since this inertia is an important factor in blade torsional stiffness calculations, it might be beneficial to include this change in the analysis. Second, a dedicated study is needed to explore the effect of variable blade index angle. At present the index angle is set based on one flight condition, thus operating sub optimally at all the other conditions. An understanding of the penalty due to a fixed blade index angle is desired. Lastly, further analysis is required into understanding swashplateless rotors with soft in torsion elastic blades. Though the swashplateless feasibility has been established by modeling reduced torsional stiffness using a soft pitch link, production units would necessitate removing linkages and mounting on the hub. The reduced torsional stiffness would then have to be structurally included in the design of the composite rotor blades, changing the dynamics of the system. An understanding of effects of such an alteration would be critically important.
1.5.2 Summary of Analytical Studies

From the various parametric and optimization studies it appears that an integrated trailing edge flap could successfully trim a swashplateless rotor provided a few key design criterion are kept in mind.

(a) The torsional stiffness of the rotor has to be reduced to around 2/rev from 4 - 5/rev of conventional rotor to obtain sufficient blade pitch response as needed for trim.

(b) Blade indexing is critical in lowering the steady flap deflection requirements and ensuring that the flapped airfoil sections operate in low drag regions. Improper blade index angle may result in large rotor power as well as actuation power penalty.

(c) Optimizing flap geometry and spanwise location is essential for minimizing the actuation requirements.

(d) Minimizing gaps between the flap and main body is desired as they adversely affect trailing edge flap effectiveness.

(e) Keeping the rotor blade unaltered and introducing soft pitch links seems to be most straightforward way of lowering the rotor torsional stiffness.

In summary, based on UH-60A type swashplateless rotor analysis, a 15%c flap chord, 40%R flap length, located with flap midspan at 75%R is an optimum
flap geometry. Also, index angles in excess of 15 degree would be required and minimizing gaps is highly desired.

1.5.3 Sikorsky Active Flap Demonstration Rotor

Active rotor research using trailing edge flaps at Sikorsky were made with goals to demonstrate technologies that could reduce vibration by at least 20%, acoustic detection by at least 6 dB, and increase maximum blade loading by at least 16% on a full-scale rotor system. In addition, demonstration of primary control capability was also desired.

Most of the prior effort focussed on optimizing the piezoelectric based actuators for driving trailing edge flaps. Due to their excellent bandwidth, piezo-based actuators have proven to be successful for HHC devices. However, at lower frequencies which correspond to 1/rev for primary control, large amplitudes are required. Typically amplification mechanisms used traded force for displacement and thus there has been no successful demonstration of primary control using piezo-driven trailing edge flaps thus far.

With this background, efforts were focussed on assessing use of electro-magnetic actuators. In 2005, high authority actuator development begun as a joint effort between United Technology Research Center (UTRC), Sikorsky Aircraft Corporation and Hamilton, Sundstrand and Calverham. Focus was on developing actuator capable of delivering high amplitudes at 0 to 2/rev frequencies and perform higher harmonic input at frequencies up to 5/rev.
Systematic actuator design and testing resulted in development of high power Electro-Magnetic Actuator (EMA). These EMAs consist of a planetary roller-screw and a permanent magnet brushless motor. A Linear Variable Displacement Transducer (LVDT) is used for position feedback [174,175]. Figure 1.17 shows a schematic of the actuator and an assembled unit. The design process also optimized EMAs to minimize weight, maximize dynamic performance, maximize endurance under high centrifugal loading (up to 750g) and actuator thermal management. Bench top and vacuum chamber testing under simulated loads was carried out and the actuator was operated at a range of frequencies. Actuator response, power, current and temperature were recorded. Endurance testing was also carried out.

Once a satisfactory actuator was developed, efforts were made to ensure re-
peatable performance and reduce any variability from one unit to another. Although the actuator was sized based on load requirements of a UH-60 rotor (16.36 m [53.67 ft]), the whirl and wind tunnel testing was tested on a smaller diameter S-434 rotor (8.53 m [28 ft]). The trailing edge flap on each blade was centered at 72%R with dimensions of 24%c flap-chord and 12%R flap-length. Figure 1.18 shows the actuator installed in the rotor blade, close to the quarter chord. The trailing edge flap was driven by the EMA using a bell-crank mechanism with a travel range of ±15 degree. Pre-existing S-434 blades were modified to accommodate the on-blade actuator and the flap mechanism. Additional leading edge weights were added to ensure proper chordwise cg positioning from stability perspective. The blades were also instrumented with surface strain gages and calibrated for blade loads measurement. Finite element structural analysis was conducted to ensure structural integrity of the modified blade. In addition, Rotorcraft Comprehensive Analysis System (RCAS) [177] was used to predict active rotor stability.

The first hover tests were conducted from June - Sep 2009 followed by additional tests from Apr - Jun 2010. The rotor was spun at 475 RPM using a 3000 HP drive system at Sikorsky Engineering Main Rotor Whirl Stand. The Actuator Control Units (ACUs) used to control the actuators were mounted on the rotor hub and connected to on-blade actuators via power slip rings. A protective dome was used to house the ACUs on the rotor hub. The torsional stiffness was reduced by using a secondary pitch cuff developed by Sikorsky, UTRC, and Eagle Applied Technologies.

The cuff system (Fig. 1.19) was tailored to provide ±10 degree of pitch range
Figure 1.18: Actuator - flap mechanism installed in S-434 blade [176].

Figure 1.19: Secondary cuff mounted between primary cuff and blade root [176].

and low frictional damping. It was installed between blade root and primary blade
cuff resulting in an increase of rotor radius. The rotor speed was appropriately
reduced to maintain tip speed. The objectives of the whirl tests were to verify actuator performance and flap effectiveness under rotating environment at various frequencies and operating loads. In addition, the dynamic stability of the active rotor and closed loop actuator control system were tested as well.

The hover tests successfully demonstrated active flaps performing steady motion, collective, cyclic, and individual mode to simulate system failures. The maximum amplitude for steady and 1/rev motion was ±10 degree, and the maximum flap frequency was limited to 5/rev. The secondary cuff system with active flap actuated at 2/rev frequency, showed a pitch response ratio of 0.8 degree per every degree of trailing edge flap amplitude and was deemed satisfactory per design requirements. Frequency chirps were also used for active rotor system identification purposes.

Following the hover tests, wind tunnel tests were conducted in the 40 x 80 feet test section at NASA Full Scale Aerodynamics facility (NFAC). Preliminary hover runs with the aim of checking the installation and operation were carried out in Nov-Dec 2010 followed by forward flight runs in Jan-Feb 2011. The active rotor system was tested at various wind speeds up to a maximum of 150 knots. Acoustic, stability and control effectiveness measurements were made in the tunnel. It was found that 2/rev excitation had strong influence on 4/rev edgewise blade loads and flap actuation phase was critical in minimizing these loads. Also, a large component of 4/rev fixed frame vibration was the 3/rev vibratory force on the rotor blade. This 3/rev component was targeted by actuating flaps at that frequency and the closed-loop controller was able to achieve a 75% reduction in 4/rev vertical vibrations in the fixed frame [176]. Significant noise reduction was also achieved [178].
Although excellent flap performance was demonstrated at higher harmonics, primary control, i.e., rotor trim using these active flaps were not demonstrated in forward flight. This was due to stability concern when the secondary cuff was introduced and the trailing edge flaps were excited at 1/rev frequency. Nevertheless, it was concluded that electromagnetic actuators seemed capable of delivering the authority needed for primary and secondary flight control. References [176,178,179] detail the design, pretest setup and results from whirl tests and the wind tunnel tests.

1.5.4 Pneumatic Artificial Muscle driven Flap

Trailing edge flap actuation using pneumatic based actuator was explored by Woods et al. [180–183]. A Pneumatic Artificial Muscle (PAM) is composed of an elastomeric bladder enclosed in a helically braided sleeve clamped by end fittings. PAM is a unidirectional actuator which means that it can only contract when inflated by pressurized air. For this reason, a pair of PAMs were used for actuating trailing edge flap as shown in Fig. 1.20.

These PAMs were sized for a full scale rotor application. To test these actuators, an experimental setup was designed (Fig. 1.21). A pair of PAMs (referred to as PAM cartridge) was installed at the root of the blade. A bell crank mechanism converts the motion from the actuator into push-pull motion. These linkages run through the length of the rotor blade and a second bell crank mechanism converts the spanwise motion into chordwise motion providing the necessary hinge moment
In order to meet these design goals, a combined analytical and experimental approach was taken. The trailing edge flap was chosen to be a 16% span (0.86 m), 15% chord (3.8 cm) plain flap centered at 0.83 R, which is generally consistent with other active flap systems (Straub et al. 2004; Fulton 2000). The actuation system was designed for the full scale Bell 407, and then retrofitted into a modified Bell 407 blade tip section for testing in the Glenn L. Martin Wind Tunnel.

The basic configuration of the actuation system, shown schematically in Figure 4.2, has an antagonistic pair of PAMs mounted in an actuator cartridge at the root end of the rotor blade (Kothera, Woods and Wereley, 2010).

PAMs use pressurized air as their operating fluid, which offers several distinct advantages over hydraulics, such as the ability to eliminate the return circuit, a significantly lower fluid density (air vs. oil), and no risk of fire or explosion. Also, because air can be distributed to PAMS via flexible, lightweight, low pressure tubing, PAMs are highly amenable to distributed actuation concepts. Figure 4.1 shows a PAM in both the relaxed (upper) and inflated (lower) stages.

PAM Catridge
Inboard Bellcrank
Linkages
Outboard Bellcrank
Torsion
Rod Flexure
Flap

Figure 1.20: Pneumatic Artificial Muscle actuator for trailing edge flap [181].

PAMs
Inboard Bellcrank
Linkages
Outboard Bellcrank
Flap

Figure 1.21: Schematic of PAM actuation system in a Bell 407 rotor blade [181].

to actuate the flap. The trailing edge flap was sized to have 16%R flap length, 15%c flap chord centered at 83%R span location.

This non-rotating model was assembled by modifying outboard section of a Bell 407 blade and tested in the Glenn L. Martin wind tunnel (Fig. 1.22). It was tested at number of wind speeds up to a maximum Mach number of 0.3. At 30%
Figure 4.5. Wind tunnel test article, design model and as built.

4.3.1. BLADE MODIFICATIONS

Significant modifications were made to the blade to allow for integration of the

Figure 1.22: Outboard section of Bell 407 rotor blade with PAM actuated trailing
dge flap [181].

of full-scale loading, system provided about 19 degree of half peak to peak flap
deflection at 1/rev (7 Hz). In addition, half peak to peak flap amplitude of 17
degree at higher frequency of 5/rev shows excellent bandwidth capability of these
actuators [180]. These wind tunnel tests examined PAM actuated flaps under limited
eaerodynamic loading and no centrifugal loads. A torsion rod flexure simulated the
hinge moment loading on the trailing edge flap.

A separate experiment was carried out where the PAMs were tested under
centrifugal load only in a vacuum chamber. The centrifugal load on the flap was
matched to what it would experience at nominal RPM on the Bell 407 full-scale
blade. The actuators with the bell crank mechanism were mounted on a rotating
beam and a flexure was used to simulate torsional load at flap hinge. The rotating beam was mass balanced using counter weights. The PAMs were supplied pressured air using a pneumatic slip ring. At 80% of the full scale load, half peak to peak trailing edge flap deflection of 17 degree at 1/rev and 8 degree at 5/rev were recorded [181].

The centrifugal load does seem to lower the actuator performance at higher frequencies. However, large flap deflections at 1/rev frequency using PAMs seems sufficient for primary control. An inner loop feedback controller was also developed that commanded the flap to track the complex waveforms. Satisfactory controller performance was also demonstrated [182,183].

1.5.5 Piezobender Driven Active Flap for Primary Control

Copp et al [184–186] optimized a piezobender for actuating a trailing edge flap on a Mach scale rotor with the aim of achieving primary control. As will be discussed in Section 1.6.1, Mach scaling requires matching the rotor tip speed with the representative full scale rotor. This significantly increases the centrifugal load on the on-blade components. The geometric scaling down reduces the internal volume available in the blade. All these factors add integration and structural challenges to Mach scale active rotor testing.

As discussed previously, all the full-scale smart rotors used piezostacks. Piezostacks utilize d_{33} strain effect and thus have large block force. However, the output stroke is quite low. Amplification mechanisms like X-frame were utilized to provide twenty
times stroke magnification. These mechanisms tend to be rather bulky. The support arms have to be designed to ensure stiff boundary conditions else the mechanism efficiency would be adversely affected. In addition, it was recorded that the amplitude needed at 1/rev frequency for rotor primary control was limited using piezostack actuators. Limited stroke at primary control frequency, and the competing requirements of the weight of the stroke amplification mechanism and limited internal volume of the Mach scale rotor blades, make these piezostack actuators impractical for sub-scale rotor application [185].

To achieve higher output stroke without needing significant lever amplifications, piezobender actuators were developed. These consist of layers of piezoceramic sheets that were bonded together to achieve larger output strokes. The sheets above and below the neutral axis were energized respectively with opposite fields to induce bending strains. This resulted in a net bending moment, causing motion of the tip of the cantilevered actuator. The positive-negative field was oscillated at desired frequency to achieve flap deflection at required frequency at the actuator tip. Since the piezobender used d_{31} strain effect, their energy density was less than quarter of the piezostack actuators.

Figure 1.23 presents an optimized piezobender and a rod-cusp mechanism was used to achieve flap deflection from actuator tip translation motion. A finite element model of the piezobender using Euler - Bernoulli beam formulation with induced strain was used to optimize the piezobender. The constraints on design were placed by the geometric considerations of the available space as well as individual piezoceramic sheets. The design variables included bender length, number of layers
Figure 1.23: Piezobender driven active flap for primary control [186].

and taper. A survey of the available piezoceramic materials available was also conducted and comparisons were made based on the strain energy capacity. The optimized piezobender configuration consisted of eight layers of PZT-5k4 sheets, each layer being 10 mil (0.25 mm) thick. These are arranged in a tapered fashion, and the total weight of the optimized actuator came out to be 18 g. Reference [186] details the optimization considerations, choice of material, fabrication process of the bender and effect of temperature, high actuation fields and actuation field bias on the piezobender output.

Next, significant efforts were made to design a flap mechanism that would be incorporated in the scaled rotor blade. The final mechanism is shown in Fig. 1.23 and Table 1.4 presents comparison between vibration and primary control active flap
Table 1.4: Comparison of vibration and primary control flap configurations [186].

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Roget [147]</th>
<th>Copp [186]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
<td>Hingeless</td>
<td>Articulated</td>
</tr>
<tr>
<td>Rotor diameter (R)</td>
<td>1.52 m [5.00 ft]</td>
<td>1.66 m [5.46 ft]</td>
</tr>
<tr>
<td>Rotor chord (c)</td>
<td>0.076 m [3.00 in]</td>
<td>0.080 m [3.15 in]</td>
</tr>
<tr>
<td>Rotor speed (RPM)</td>
<td>1800 [30 Hz]</td>
<td>2400 [40 Hz]</td>
</tr>
<tr>
<td>Tip Mach Number</td>
<td>0.42</td>
<td>0.61</td>
</tr>
<tr>
<td>Flap midspan (%R)</td>
<td>75</td>
<td>82</td>
</tr>
<tr>
<td>Flap length (%R)</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Flap chord (%c)</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Tor. Freq. (/rev)</td>
<td>> 4</td>
<td>1.53</td>
</tr>
</tbody>
</table>

Figure 1.24: Active rotor with inboard and outboard flap assemblies [186].
configuration. It is clear from the table that, compared to vibration control, larger flap and lower torsional stiffness are required for primary control. In addition, two such piezobender-flap mechanism were installed, the inboard flap centered at 75% and outboard at 82% span locations (Fig. 1.24). This piezobender-flap mechanism was incorporated in a composite Mach scale blade and a two bladed rotor was systematically tested on the bench top, followed by vacuum chamber testing and finally hover testing.

On the bench-top, a maximum half peak to peak flap deflection of 15 degree was achieved with the piezobender driven at -90V/+270V excitation field. When the rotor was spun at 900 RPM on the hover tower, the flap amplitude at 15 Hz (1/rev) fell to 12.7 degree half peak to peak deflection. At higher rotor speeds, the fall in flap deflection was even steeper. This could have been due to loads on the mechanism or inability of the piezobender actuator to meet the required hinge moments to produce flap deflections. In either case, the hover testing was limited to a maximum rotor speed of 900 RPM. Closed loop flap deflection control was also implemented using a proportional feedback controller.

Finally, the torsional stiffness of the rotor was reduced by replacing the stiff pitch link with a soft pitch link. The stiffness was tuned to reduce the torsional frequency at 900 RPM to 1.53/rev. Up to 1 degree half peak to peak blade root pitch with both the trailing edge flaps operating at maximum deflections was demonstrated. Oscillations in hub loads in response to flap deflections were also recorded, and trailing edge flap effectiveness was also assessed. Due to limited control authority, no wind tunnel investigations were carried out.
1.6 Model Scale Rotor Testing

Rotor testing is a critical phase in rotorcraft design, development and certification. The operational requirements of a rotorcraft to perform increasingly complex and demanding mission profiles has led the design to the edge of operational capability of these vehicles. The performance and operational benefits that were once achieved with blade geometry tailoring and airfoil design are no longer sufficient by themselves. Instead a fundamentally different approach is required to meet the design objectives. Swashplateless rotor control using active trailing edge flaps is one of such approaches.

Model scale rotor tests are desirable to verify the candidate design before committing large amount of resources to full scale design and testing. Model scale tests are cost effective and allow easier and swifter parameter changes for design and optimization studies. However, to achieve representative measurements from the model scale tests, geometric and dynamic scaling laws have to be carefully applied to ensure representative results from these model tests. These are called scaling parameters and are discussed next.

1.6.1 Rotor Scaling Parameters

Generally, there are three types of scaled rotor models: rigid models, Froude scale models and Mach scale models. Rigid models simulate only the aerodynamic profile of the full scale blade and are used to study the basic aerodynamic characteristics under ideal conditions. These models incorporate geometric details and are
less expensive to fabricate than dynamically scaled models. Froude scale models simulate the blade static deflection and are used for aero-mechanical stability testing of rotors. Scaled structural and inertial characteristics are simulated in Froude scale models. Mach scale models are designed to match the tip Mach number of full scale rotors. These models simulate compressibility effects in addition to scaled structural and inertial characteristics and are used to study rotor vibratory response, loads, and basic performance. References [187–191] discuss in detail these similarity parameters.

Small scale rotor models are unable to simultaneously satisfy multiple scaling parameters (such as Mach number, Froude number and Reynolds number) in air. A comparison of some of the parameters is presented in Table 1.5. It is also seen that the model Reynolds number is lower than that of the full scale rotor by the geometric scale factor, in order to match the Mach number.

<table>
<thead>
<tr>
<th>Ratio of model to full scale</th>
<th>Mach scale</th>
<th>Froude scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length parameter</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Rotor radius</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Rotor speed</td>
<td>1/S</td>
<td>1/S^{\frac{1}{2}}</td>
</tr>
<tr>
<td>Mach number</td>
<td>1</td>
<td>S^{\frac{1}{2}}</td>
</tr>
<tr>
<td>Froude number</td>
<td>1/S</td>
<td>1</td>
</tr>
<tr>
<td>Reynolds number</td>
<td>S</td>
<td>S^{\frac{2}{3}}</td>
</tr>
</tbody>
</table>
1.6.2 Scaling Parameters Considerations

Generally, it is not possible to meet all the scaling requirements and some hierarchy in similarity parameters is practiced based on the requirements. The model-scale test rotors can be broadly classified as:

(a) Research Models: These models are aero-elastically matched and are not based on a specific rotor but are broadly representative of a full-scale design. These models are used for gaining insight into novel or unusual design configurations, generating data for benchmarking various codes or testing implementation of high risk advanced technologies. The important scaling requirement is to ensure similar aerodynamic environment by matching the tip Mach number, and if possible matching the Reynolds number. It is often not possible to simultaneously match Mach number and Reynolds number, unless the density of test medium can be controlled. For example, the use of Freon gas in NASA Transonic Dynamics Tunnel allows to match both tip Mach and Froude numbers. In all other test facilities, matching Mach number takes precedence over Froude number.

Structurally it is important to ensure representative blade stiffness and elasticity properties. Model blades must have similar bending stiffness and torsion stiffness. When designing the blades, it is essential to ensure structural frequencies are well separated to avoid any unintended resonance conditions. Inertially, blade mass moment of inertia and Lock number must be similar to
full-scale blade to ensure similar blade flap response.

Finally, the scaling constraints on geometry are less restrictive, the blades must be of similar aspect ratio. Blade airfoils need not be as sophisticated as actual rotor blades and features such as twist, taper and sweep are generally omitted for simplicity in design and fabrication.

(b) Simulation Model: These models have a stringent requirement to be as close to the candidate full-scale rotor as possible. This includes precisely modeling geometric features like airfoil shape, twist, taper and sweep. In order to accurately predict the full-scale performance, tip Mach number must be matched. Reynolds number matching is also essential to accurately account for profile power measurements, especially for complex planform rotors with taper and rotors in forward flight. Correct aeroelastic response can only be achieved by matching the torsional stiffness and mode shapes. Coupling effects require matching flap and chord elastic characteristics and to capture coupling of higher blade flap and torsional motions. These prediction models are highly specific to a unique full-scale rotor and are generally used to study a design change or to understand any peculiar phenomenon observed in flight testing. Though, these can be used for research, generally the complex nature of these blades and a number of coupled aero-structural responses limits their use to very specific cases. Data generated by these models can be used as test case for validation of advanced codes, only after basic validation has been obtained using research models.
For the current research, the emphasis is to test an on-blade actuator and thus a research model rotor blade is suitable. It provides for simple geometry aiding in repeatable fabrication. Constraints are placed on the scaling dimensions of the rotor based on the test hardware available especially the Glenn L. Martin wind tunnel. The wind tunnel test section is 7.75 ft wide and 11 ft high. To avoid wall interference, the model rotor diameter must not exceed 55% of the test section width. This limits the rotor radius to about 6 ft. Also, the articulated rotor hub has a hinge offset of 2.125 in and the maximum RPM the hub can spin up to is 2400. Table 1.6 shows the comparison of properties for scaled research rotor and UH-60A rotor blade. The non-dimensional parameters are expressed mathematically in Eqs. 1.1.

\[
\begin{align*}
\text{Rotor Solidity, } \sigma &= \frac{N_b c}{\pi R} \\
\text{Lock Number, } \gamma &= \frac{\rho acR^4}{I_b} \\
\text{Reynolds Number, } Re &= \frac{\rho V c}{\mu} \\
\text{Froude Number, } Fr &= \frac{V^2}{g R}
\end{align*}
\] (1.1)

where \(N_b \) is the number of blades, \(c \) is the blade chord, \(R \) is the rotor radius, \(\rho \) is the air density, \(\mu \) is the dynamic viscosity of air, \(I_b \) is the blade mass moment of inertia, \(V \) is the rotor tip speed, and \(g \) is the acceleration due to gravity.
Table 1.6: Comparison of basic parameters of UH-60A and scaled research rotors.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>UH-60A Rotor</th>
<th>Research rotor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hover tip Mach number (M_{tip})</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>Hover tip speed (V)</td>
<td>221 m/s [725 ft/s]</td>
<td></td>
</tr>
<tr>
<td>Number of blades (N_b)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Nominal RPM (\Omega)</td>
<td>258</td>
<td>2400</td>
</tr>
<tr>
<td>Blade chord (c)</td>
<td>0.53 m [20.76 in]</td>
<td>0.08 m [3.15 in]</td>
</tr>
<tr>
<td>Rotor diameter (D)</td>
<td>16.36 m [53.67 ft]</td>
<td>1.68 m [5.5 ft]</td>
</tr>
<tr>
<td>Aspect ratio (AR)</td>
<td>15.5</td>
<td>10.5</td>
</tr>
<tr>
<td>Rotor solidity (\sigma)</td>
<td>0.0826</td>
<td>0.1197</td>
</tr>
<tr>
<td>Lock number (\gamma)</td>
<td>8.12</td>
<td>5.12</td>
</tr>
<tr>
<td>Reynolds number (\times 10^6) (Re)</td>
<td>7.75</td>
<td>1.17</td>
</tr>
<tr>
<td>Froude number (Fr)</td>
<td>608</td>
<td>5927</td>
</tr>
<tr>
<td>Twist (deg.) (\theta_{tw})</td>
<td>-16</td>
<td>zero</td>
</tr>
<tr>
<td>Hinge offset (e/R)</td>
<td>4.7 %</td>
<td>6.3 %</td>
</tr>
<tr>
<td>First flap frequency (/rev) (\nu_\beta)</td>
<td>1.035</td>
<td>1.046</td>
</tr>
<tr>
<td>Blade airfoil</td>
<td>SC 1095/(R8)</td>
<td>NACA 0012</td>
</tr>
</tbody>
</table>
1.7 Selection of On-Blade Actuator

A suitable actuator is central to a successful implementation of swashplateless rotor control. It is to be kept in mind that in a Mach scale rotor, the centrifugal loading cannot be simulated, and as a result, the actuation authority requirement for primary control far exceeds the actuation requirement in a full-scale system. To maximize the control effectiveness, the active trailing edge flaps have to operate in the outboard span location of the blade. This necessitates the on-blade actuators to perform in a challenging operating environment. A suitable actuation system must have following characteristics:

(a) It must be of lightweight construction. Any additional structural weight takes away from the payload capability of the helicopter. A heavier on-blade actuator would necessitate bulkier support structure, driving the weight of the blades up, thus increasing the overall weight the vehicle.

(b) It must be of compact form factor. The space in the rotor blade is limited. A compact and self-contained actuator would make it easier to accommodate it in the blade profile.

(c) It must be capable of operating under high g-loads. The flaps are located on relatively outboard section of the blade. Any actuator placed at such radial locations would be under tremendous centrifugal loads. The on-blade actuator must operate satisfactorily under such high load environment.

(d) It must have a large output stroke. From primary control perspective, larger
flap amplitudes are required to trim the helicopter.

(e) It must have a low power requirement. A high efficiency, low input power requirement actuator would be suited for on blade application.

(f) It must have a wide operation bandwidth, and therefore the trailing edge flap could accomplish multiple roles of primary flight control, performance improvement, and vibration and acoustic noise reduction. This imposes a diverse frequency operation envelope for the actuator.

(g) It must be easy to operate and incorporate in linear control systems.

Thus, an ideal on-blade actuator for trailing edge flap control must be lightweight, compact, linear, energy efficient, sturdy, provides large flap amplitudes and has wide operational bandwidth. Over the years, multi-layer piezoelectric sheet benders have been extensively employed both at model scale as well as full scale rotors as on-blade actuators. They have proven effective for rotor active vibration control. However, a limited stroke from these piezo actuated trailing edge flaps has been a major impediment in achieving rotor primary control. Pneumatic actuators have demonstrated large deflections and a wide operational bandwidth when designed for full-scale applications. However, they are not easy to scale down and as such no small scale PAM actuators exist. Electric motors have matured over the years and with the use of high density ferroelectric materials, their energy density has increased as well. Sikorsky active flap demonstration rotor uses an electromechanical actuator as well. Thus, in this study a compact brushless dc motor would be evaluated as a potential on-blade actuator capable of achieving swashplateless rotor primary control.
1.8 Objective and Scope of Current Research

This dissertation focuses on demonstrating a Mach scale swashplateless rotor control by using a trailing edge flap. All the previous research at Mach scale performed at University of Maryland has utilized piezo-based actuators for active flaps. They have been successful at vibration reduction, but their limited authority at primary control has been a major limitation. It has been clearly realized that a different actuator needs to be utilized if primary control using these flaps is desired.

To this end, compact brushless DC motors are assessed as on-blade actuators for driving the trailing edge flaps. They are systematically tested on the bench top with simulated loading and then gradually under centrifugal loads. A control strategy is devised to actuate the flaps at desired amplitudes and frequency and demonstrate complete control of the actuator. Large output flap deflections at 40 Hz actuation frequency are demonstrated on the bench top under simulated torsional loading. Then, a mechanism is designed and fabricated to actuate the trailing edge flaps using compact DC motors. The design challenges due to large centrifugal load and restricted blade volume are important considerations, and several iterations are made to refine the structural design and fabrication process. A Mach scale composite rotor with four blades is also fabricated and special emphasis is laid on ensuring proper spanwise and chordwise weight balance.

The assembled active rotor is tested in hover at various rotor speeds. In addition to existing loads and torque measurements, the hover stand is extensively instrumented to record blade root flap, and pitch angles. The active blades are
first tested with stiff pitch links and actuator performance is analyzed at a range of operational frequencies. A closed loop control of flap amplitude is implemented. Then, the torsional frequency is gradually lowered by replacing the stiff pitch link with a custom designed soft pitch link. The torsion frequency is tuned to be 2/rev and the blade pitch response to trailing edge flap inputs is demonstrated. The trailing edge flap frequency and phase is synced to the rotor shaft azimuth and all the four active blades are actuated to control the blade tip path plane.

Finally, forward flight testing in Glenn L. Martin wind tunnel is carried out. In the first phase, the motor-flap performance is evaluated keeping the rotor stiff in torsion. The rotor is operated at a number of RPM and wind speed combinations and flaps performance operating at 1/rev frequency is recorded. In the second phase, the torsion stiffness is reduced to around 2/rev and wind tunnel trim is attempted. At 1200 RPM, wind speed up to 50 mph and 2 degree blade collective, wind tunnel trim of the Mach scale rotor using motor actuated trailing edge flaps is successfully demonstrated.
1.9 Dissertation Outline

Chapter 1 introduces the concept of rotor primary control and explores the possibility of achieving it without using a swashplate. It also outlines, in rough chronological order, the path leading to active flaps on a rotor blade, first as a better alternative to HHC for vibration control and then with a greater objective of primary control. Analytical work exploring swashplateless rotor feasibility and requirements is also discussed in detail. Finally, Mach scale testing of the rotor is introduced and pertinent design challenges are discussed.

Chapter 2 details the rotor test facility at the University of Maryland. A detailed description is provided, and an expansive discussion on various component is included. Rotor fabrication, track, trim and measurements related to testing are presented as well. Vacuum chamber test facility and Glenn L. Martin wind tunnel are also described. A few state-of-the-art rotor test facilities around the world are also briefly included.

Chapter 3 introduces brushless DC motor and controller technology, its operational principles followed by bench top testing of the selected motor under simulated torsional load. The actuator control strategy is described and the effect of temperature on the actuator is also studied. A comparison on brushless dc motor and piezobender in terms of relative power density is also included.

Chapter 4 details the design and fabrication of the motor-flap system, the evolution of the design and FEM analysis of the mechanism. Comparison of the system output waveform with four-bar analytical expectation is also included.
Chapter 5 includes motor-only and motor-flap system testing under centrifugal loads in vacuum chamber.

Chapter 6 presents the fabrication of composite rotor blade, assembling the flap mechanism in the blade and structural testing of the active blade. It is followed by careful description of component-wise weight breakdown and cg balancing of the blades.

Chapter 7 details hover testing first with stiff pitch link and then soft pitch link. The design and calibration of the soft pitch link is also included here. Blade pitch response to trailing edge flap inputs at various rotor speeds is demonstrated and implementation of a closed loop controller of flap amplitude is also described.

Chapter 8 details wind tunnel testing of the active rotor blade. The motor-flap performance evaluated with rotor stiff in torsion and operating at a number of RPM and wind speed combinations is presented. Next, the torsion stiffness is reduced to around 2/rev and wind tunnel trim is discussed. At 1200 RPM, wind speed up to 50 mph and 2 degree blade collective, wind tunnel trim of the Mach scale rotor using motor actuated trailing edge flaps is successfully demonstrated.

Chapter 9 presents summary of the research effort and lists a number of conclusions from the current work. A few recommendations for the future research are also included.

Technical drawings are included at the end followed by bibliography.
Chapter 2: University of Maryland Rotor Test Facilities

The rotor test facilities at the University of Maryland include a hover tower for scaled rotor hover testing, a 10-ft diameter vacuum chamber for testing under centrifugal loads only, and Glenn L. Martin low speed wind tunnel for rotor forward flight testing. First the hover test stand, rotor drive system, rotor hub, control and instrumentation are extensively discussed. Rotor blade design and fabrication considerations are also included. Next, the vacuum chamber and the wind tunnel are detailed. Finally, a select state-of-the-art rotor test facilities around the world are briefly presented.

2.1 Hover Test Stand

The main application of the hover test stand is to examine the aeromechanics of the rotor in hover. In addition, it enables testing structural and functional integrity of the rotor as well as embedded components such as actuators, strain gages, accelerometers, etc in a rotating environment. It also serves as a test bench for evaluating various hub instrumentations, rotor control and data acquisition systems, as a precursor to forward flight testing in the wind tunnel.

The hover test stand at Alfred Gessow Rotorcraft Center is one of the rotor
test facilities in the country. It is mounted on a tall column such that the rotor plane is separated by about two rotor diameters from both the ground as well as the ceiling (Fig. 2.1). This is to ensure unobstructed inflow conditions and out-of-ground effect operation in hover. The column is installed roughly in the center of a nylon netting curtained space to keep personnel out while rotor is in operation. In addition, one feet above and below the rotor plane is bounded using torpedo grade braided steel wires netting (Fig. 2.2). The hydraulic unit is kept outside the test parameter and is controlled remotely from the adjacent control room. The rotor rig is operated by a hydraulic system, which allows for operating the rotor at various rotational speeds and torque requirements.

Figure 2.3 shows the rotor hover test rig. The rotor rig features an adaptable hub which can be used to test either an articulated or bearing-less rotor system. The hub is instrumented to monitor the blade flap, lag and torsion motions, control pitch inputs, the rotor azimuth position, and rotor speed (RPM). In addition, the drive shaft is instrumented using strain gages to measure rotor torque, and a six degree of freedom balance is mounted in fixed frame to measure rotor hub loads. It is a very versatile test facility and has been in use since 1985 when its key components were donated by Boeing-Philadelphia Company and subsequently refurbished in-house.

In the following sections the hydraulic system which runs and controls rotor system is discussed. Then the hub system is detailed followed by various instrumentation both in rotating and non-rotating frames.
Figure 2.1: Front view of hover test stand at University of Maryland.
Figure 2.2: Layout of hover test stand at University of Maryland.
Figure 2.3: Hover test stand at University of Maryland.
2.2 Rotor Drive System

The rotor can be operated either by an electric motor or a hydraulic motor. In principle, both are equally capable of providing the required drive capabilities, however the choice of the prime mover depends on a number of factors like maximum required power, torque, range of operational rotor RPM, ease of maintenance, ease of use and control, reliability and portability of the unit, among other factors.

2.2.1 Choice of Drive System: Hydraulic vs Electric

The rotor drive system is required to operate the rotor at desired rotor speed (RPM) and provide the necessary torque required to support the rotor loads at the operating flight conditions. An electric drive system would typically consist of an electric motor operated by a motor controller. The motor is usually a high speed, high voltage three phase AC induction motor. The motor controller is essentially a solid-state power electronics conversion system termed as variable frequency drive. It is used to control AC motor speed and torque by varying input AC frequency and voltage. Generally these AC motors are high speed drivers and a gear-down transmission is required to meet the RPM requirements at the rotor drive shaft. Also, some water or oil based cooling around the motor may also be required to prevent heating damage from extended motor operation.

A hydraulic system would be composed of a pump circulating a suitable fluid from a reservoir to a motor. To operate a hydraulic unit, the energy to drive the pump to supply the hydraulic fluid has to be provided either by an electric motor or
a gasoline engine. In a test facility, invariably an electric motor is used to drive the hydraulic pump. In addition, some electrically controlled valves would be required to control the speed and torque at the rotor drive shaft. Generally a cooling system may be required to maintain the fluid within the required temperature limits.

In broad terms, the electric motor directly converts electric power into rotational torque whereas hydraulic motor converts hydrostatic energy into rotational torque, the fluid energy being generated by an electric motor. Thus, the hydraulic system has an additional energy conversion step that adds some additional losses to the system.

Challenges associated with electric drives include operating at high voltage AC transmission and design of water based cooling for the motor as any water leakages could present serious operational hazards. These motors tend to be heavy, and are high speed drives requiring a high gear-down transmission adding weight and limiting portability of the system. However, the AC motor and control technology is very mature and no excessive maintenance is required. In contrast, the hydraulic motors are compact and reliable, with easy serviceability. The hydraulic pump driven by an electric motor can be located away from the test section supplying fluid to the motor via hydraulic lines. A compact hydraulic motor driving the rotor shaft minimizes the blockage in the test section. Another advantage is that the oil cooling system can run in a separate circuit and thus is uncoupled from the hydraulic system. However, in general a hydraulic system needs regular maintenance compared to an electric system and special attention has to be given to the filtration of the hydraulic fluid and general cleanliness of the operational environment. High
pressure, high temperature hydraulic oil lines can also add additional safety and operational concerns.

Another important consideration for choosing appropriate drive system for the rotor test stand is the proximity of the motor to the slip rings or data acquisition systems. The slip rings help in communicating with the actuators, sensors and instrumentation in the rotating frame and are essential to the rotor testing and data acquisition. The objective is to minimize the Electro Magnetic Interference (EMI) thus, enhancing the signal-to-noise ratio.

The rotor test facility at NASA TDT uses an electric motor to drive the rotor. For their test setup, the data acquisition unit is located on the top of the rotor hub whereas the electric motor rests in the fuselage nacelle. This separation ensures a low level of interference between data acquisition lines and the electric motor. At University of Maryland the data slip rings are in close proximity with the motor. Due to smaller scale and compact design, any electric motor would induce a substantial EMI, leading to noisy data. The presence of slip ring based data acquisition also adds about 50-ft of cable between the transducers on the blade (or hub) and the Analog-to-Digital (A/D) conversion at the Data Acquisition System in the control room. Every effort needs to be made to ensure as low a noise profile as possible to obtain a high signal-to-noise ratio. This was the main reason, for choosing a hydraulic motor to drive the rotor at the test facility.

The hydraulic drive system that operates the rotor test stand at UMD is detailed next.
2.2.2 Hydraulic Motor

A fixed displacement axial piston hydraulic motor (Rexroth AA2FM32/61W) [192] is used to power the rotor at the University of Maryland. The motor produces torque as a result of pressure differential between the input and output hydraulic lines. Consider the components of the motor shown in Fig. 2.4.

![Fixed displacement hydraulic motor](image)

Figure 2.4: Fixed displacement hydraulic motor.

The drive shaft is supported on radial bearings and is attached to a cylindrical plate referred to as a swivel plate or swashplate (not to be confused with rotor swashplate, henceforth hydraulic motor/pump swashplate is referred to as swivel plate). The swivel plate is connected to a number of tapered pistons, aligned axially to the motor and distributed azimuthally on the swashplate. Usually odd number of pistons (seven or nine) are used. In addition, a central pin aligns the swivel plate...
to the cylinder and takes any radial load on the cylinder. The hydraulic ports are installed on the control plate which has two kidney-shaped slots to distribute the hydraulic fluid selectively to the piston-cylinders. At any given instance, three to three and half cylinder bores are open to the pressure side and remaining are open to the outlet side (low pressure or exhaust port). The oil pressure is forced into the cylinder bores and the resulting piston motions produce rotation of the swivel plate. In this motor, the swivel plate inclination is fixed, thus limiting the displacement of the pistons to preset geometric constraints (fixed displacement). The main body of the motor is inclined at 40 degree to minimize the axial load on the swivel plate. The radial load develops a torque on the splined drive shaft which is connected to the rotor shaft via a belt-pulley transmission. The space between the cylinder and housing is constantly supplied by a leakage fluid, which ensures a thin film between the moving surfaces.

For a fixed displacement motor design, the volume per revolution is fixed. In this case, the output speed at the drive shaft depends on the flow rate of the fluid supplied to the motor. The torque output depends only on the pressure differential between the high pressure input port and the low pressure return port. A distinct advantage of this motor is a simple construction and high mechanical efficiency. The motor can operate at various speeds and torque levels for an extended period of time.

The two main requirements for the rotor test rig are to control the rotor speed (RPM) and meet the necessary torque requirements. The torque requirement is meet by the hydraulic pump which supplies the oil at pressure to the motor and the
rotor speed is controlled by flow control valve which dictates the flow rate to the motor. Each of these components are discussed next.

2.2.3 Hydraulic Pump

![Variable displacement hydraulic pump diagram](image)

Figure 2.5: Variable displacement hydraulic pump.

A variable displacement pump (Rexroth AA10VSO100DR/31R) [193] is used to supply the hydraulic fluid at pressure to the motor. The construction of a typical hydraulic pump is shown in Fig. 2.5. The operating principles are very similar to the motor described in the section 2.2.2, except the mechanical motion of the pump shaft is used to force the fluid at pressure to the motor. In contrast to the fixed displacement design, here a hydraulic feedback circuit can change the swivel plate inclination (or swivel) angle based on the load requirement. Changing the swivel
angle changes the piston stroke, thus allowing variable displacement.

Refer to the Fig. 2.6, a pressure compensated variable displacement pump supplies near constant flow rate at all load pressure below the compensator or peak pressure. As the load increases the pressure compensator unit senses the change and appropriately adjusts the swivel to meet the required load at near constant flow rate. If the load pressure builds above peak pressure, the pump will de-stroke to level needed to maintain peak pressure setting. A relief valve set at a safety pressure above the peak pressure is also installed to relieve any sudden increase in pressure above and beyond the peak pressure. This gives enough time for the swivel plate to adjust and bleed fluid to reduce dangerous pressure buildup.

![Figure 2.6: Hydraulic pump characteristics at operating speed.](image)

In the current setup, the hydraulic pump is driven by a constant speed electric
motor. The compensator is set at a peak pressure of 4000 psi and the relief valve is set at 4200 psi. When operating in loads such that the pressure at the pump is less than the peak pressure, the pump operates near constant flow rate (about 50 gallons per minute). Once the pressure exceeds 4000 psi, the flow rate sharply reduces to maintain pump operation at peak pressure albeit with significantly lower flow rate. The relief valve set at 4200 psi is a safety feature to allow for time for the compensator to adjust the swashplate swivel in case of a sudden uptake in the load pressure. This way, a variable displacement pump allows to operate the rotor at various torque loads at any given rotor speed. However to control the flow rate, an additional flow control valve is required and is discussed next.

Nominally, the current system is rated at about 50 gallon per minute peak flow rate and about 100 HP at the pump shaft. The power available at the rotor drive shaft is significantly lower to account for additional losses such as pumping the fluid from reservoir to the motor situated at height above the ground level, pressure losses in fittings and other inefficiencies. Also, the electric motor that drives the hydraulic pump is rated at 75 HP. Technically, the hydraulic motor is rated for in excess of 100 HP, but being run by an electric motor rated at 75 HP and thus in practice the peak power available at the rotor shaft will not exceed 60 HP.

2.2.4 Flow Control Valve

The flow control valve [194] allows to remotely modulate the amount of fluid sent to the hydraulic motor, thereby controlling the rotor speed. It is installed at
the outlet of the hydraulic pump. As stated in section 2.2.3, the pump delivers near constant flow rate as long as pressure doesn’t exceed the peak setting. The flow control valve allows to control what fraction of the output from the pump goes to the hydraulic motor running the rotor system and rest is bypass to the reservoir. To achieve this goal, the valve unit performs dual functions of setting the flow rate at desired level remotely and at a given flow rate, ensure delivery is unaffected by the variation in the pressure at inlet and/or outlet.

The design is based on the principle that for a short orifice of a given area, a flow rate can be maintained as long as the pressure differential across it is maintained. Thus, some means of sensing a change in upstream and downstream pressure is needed and then compensated to maintain same pressure drop across inlet and outlet, thereby ensuring desired flow rate.

![Flow control valve operation diagram.](image)

Figure 2.7: Flow control valve operation diagram.
Consider the Fig. 2.7, the flapper - nozzle assembly is an electrically controlled unit. It consists of a square piece referred to as flapper, set in close proximity to the nozzle, which senses the pressure at the outlet. The opening of the nozzle can be adjusted by applying current to the coil, which creates a magnetic field attracting the flapper and partially choking the nozzle. This leads to pressure buildup under the throttle spool resulting in the spool pushing up. The spool is connected to the flapper via a feedback spring. In response to spool moving up, the spring pushes the flapper away from the nozzle relieving the pressure. Once the forces on either side of the throttle spool are at equilibrium, the flapper will stay to maintain the throttle setting. This sets the flow rate at the outlet, deciding how much flow goes to the motor and remaining goes to the reservoir.

Once the flow rate is set, a compensator circuit is introduced. This ensures that the pressure drop between the inlet and the outlet is kept same. In case the load changes, the control hydro-stat controls the orifice to maintain the pressure drop. This way the flow control valve maintains the desired oil flow rate and the rotor can operate at a desired rotational speed.

2.2.5 Hydraulic Oil

Choice of hydraulic fluid has a direct impact on the efficiency and service life of the equipment. Since the viscosity of the oil changes with operating temperature, a suitable viscosity grade oil is required. The viscous behavior of the oil changes from the cold start to continuous operation at hotter temperatures. There are some
limits that need to be observed to ensure efficient and safe operation of the system. Typically the recommended fluid is a mineral oil, though other fluids could also be used.

![Viscosity - temperature characteristics of hydraulic oil.](image)

Figure 2.8: Viscosity - temperature characteristics of hydraulic oil.

It is recommended that oil steady state temperature must not exceed 90 degree Celsius under any load condition and the oil viscosity at peak temperature must not fall below 16 \(\text{mm}^2/\text{s} \) (Fig. 2.8) [192]. Depending on the application, a number of viscosity grade oils are commercially available to choose from. For current application, Mobil DTE-24 oil is used, It is a 32 grade oil which means the oil temperature is to be constantly monitored to not let it rise above 55 degree Celsius. Above this temperature, the oil viscosity for this particular grade oil falls below the lower limit. This grade is suitable in colder test environments. During hotter climates,
DTE-26 [195] is recommended as the system runs at higher temperature in general and can be operated up to an oil temperature of 75 degree Celsius. In general, a higher viscosity oil is preferable as all the hydraulic components depend on a thin layer of oil to lubricate the moving parts and a higher viscosity oil offers a greater temperature operation range.

2.2.6 Oil Filtration System

Clean fluid is essential for functioning of the hydraulic system. Majority of operational problems and failures in the system are due to contamination of the fluid. There are four primary sources of fluid contamination [196]:

(a) Contaminated New Oil: Although utmost care is taken in refining and packaging oil, fluid travels in various lines and hoses picking up silica dirt and other items. Prominent contagions are metal shavings, rubber particles, sand, rust from containers, and other atmospheric dirts.

(b) Built-in Contamination: Any new or re-built hydraulic unit has contaminants like burrs, chips, flash, dirt, dust, fiber, sand, moisture, sealant, weld spatter, paint among other things. A high viscosity, high turbulence pressure fluid flush is recommended, even before the unit is installed. Further, a no or low load initial run with full filtration system in-loop is recommended as well.

(c) Ingressed Contamination: Immediate surroundings have large effect on the kind of contaminants. The most common points of ingress are reservoir ports, seals, mating joints, system access ports and panels, or during maintenance
and transport of mobile units. Lint free rags and absorbent material in socks must be used to clean and maintain the equipment. Also, care must be taken to keep the operational environment clean and dust free.

(d) Generated Contamination: In general operation all components generate a small amount of particles, due to nominal wear and tear. The contamination are produced due to abrasive wear between moving surfaces, adhesive wear due to loss of oil film leading to metal on metal contact, fatigue wear, erosion wear, cavitation wear due to constrained inlets, aeration wear due to air bubbles in the unit and corrosive wear. The best way to prevent a buildup of contamination is to start with a fully flushed clean system and keep the system fluid clean.

An inadequate filtration would lead to system damage or degradation. The damage can range from intermittent, unpredictable performance to degraded performance creeping onto catastrophic failure. A gradual buildup of erosion or wear can cause increased leakages, loss of efficiency and eventually catastrophic failure. Typically the hydraulic systems have very tight tolerances up to 5 micron for high pressure systems and up to 20 micron for low pressure system. These clearances dictate the size of filter elements required to clean the fluid. Surfaces within the components are designed to operate with a thin layer of oil, whose thickness changes with temperature and viscosity. Presence of contaminants can bridge these clearances and cause excessive wear, producing more particles. An excessive build up in the pump and the motor can lead to seizure of the unit as well. The contaminants
can also block the orifices and control nozzles in the flow control valves leading to intermittent and eventually complete failure of the flow control.

![Moog A31255 High Pressure Filter](image1.png) ![Vickers 941107 Low Pressure Filter](image2.png)

Figure 2.9: Oil filter installed in the hydraulic circuit.

In the current application (Fig. 2.9), a high pressure 25 micron size filter (Moog A31255, 3000 psi filter) is used with fiber glass filter elements at the inlet to the flow control valve. Also a low pressure 10 micron cellulose filter element (Vickers 941107, 150 psi, spin on filter) is installed on the return line before the fluid enters the reservoir.

2.2.7 Oil Cooling System

Water-type oil cooler (Fig. 2.10) [197] is used for the current system. It has a fixed tube bundle construction with an internal multiple fin arrangement. Hydraulic
fluid circulates through the cooler and around copper tubes containing the water. The water carries the heat away from the hydraulic fluid and can be regulated thermostatically to maintain a desired temperature. In addition, a large air circulator is also used to cool the oil in the reservoir.

![Diagram of heat exchanger](image)

Figure 2.10: Water based heat exchanger for oil cooling.

2.2.8 Direction Control Valve with Relief Valve

The solenoid operated directional control valves [198,199] are used for directing and stopping flow at any point in a hydraulic system. Pressure relief valves mount between the pump and valve system to protect against overloads. These units allow for safe startup of the hydraulic system at low pressure.
2.2.9 Hydraulic Hoses

The hoses need to be MIL-DTL-8795G compliant, must be able to operate at a nominal pressure of 3000 psi and have burst pressure of at-least twice that pressure. They are rated for the required flow rate, operating pressure and temperature.

2.2.10 Electric Motor

The hydraulic pump is run by Baldor manufactured CM4316T motor [200], rated at 75 HP at 1775 RPM. It is a constant speed, three phase squirrel cage type AC induction motor. The induction motor has two main parts, a stator and a rotor sitting inside the stator with a few millimeter air gap (Fig. 2.11). The stator is made by stacking thin-slotted highly permeable steel laminations inside a steel or cast iron frame. Winding passes through slots of the stator. The rotor is shaped like a squirrel cage, horizontal bars shorted by end rings. The bars of a squirrel cage are inclined or skewed to the axis of rotation. This is to prevent torque fluctuation. To aid such electromagnetic induction, insulated iron core lamina are packed inside the rotor.

When a three phase AC current passes through the stator windings, it produces a rotating magnetic field which induces EMF in the rotor. This EMF produce a current through the rotor and this current carrying conductor in magnetic field experiences force, producing torque. That’s why the name induction motor is used, electricity is induced in rotor by magnetic induction rather than direct electric connection.
The rotor will never be able to catch up with the speed of the magnetic field. It rotates at a specific speed which is slightly less than AC frequency. Various losses associated with these motors are friction loss, copper loss, eddy current and hysteresis loss. Such energy loss during the motor operation is dissipated as heat, so a fan at the other end helps in cooling down the motor. The rotational mechanical power obtained from the rotor is transferred through a power shaft to the hydraulic pump, which provides hydraulic oil to motor at pressure, meeting rotor torque requirements.
2.2.11 Electric Power Panel

The electric power panel houses AC motor starter. It is intended to start and accelerate motors to normal speed, to ensure continuous operation of motors, to switch off the supply from the motor and to provide means for the protection of motors and associated circuits against operating overloads.

It also houses the soft-starter circuit for the motor (Fig. 2.12). The soft starter temporarily reduces the load and torque in the power train and electrical current surge of the motor during start-up. This reduces the mechanical stress on the motor and shaft, as well as the electrodynamic stresses on the attached power cables and electrical distribution network, extending the lifespan of the system.

![480 V Panel and Soft Starter](image)

Figure 2.12: Electric power panel and soft starter for hydraulic system.

The complete rotor drive system components and their operation is summarized in the Fig. 2.13.
Figure 2.13: Hydraulic system layout.
2.3 Rotor Hub

The rotor test stand at the Alfred Gessow Rotor Center can provide support platform for Mach-scale testing of both bearingless hub and articulated hub with either two or four blades. For the current research, a four bladed articulated rotor hub was used (Fig. 2.14). A 2:1 reduction belt and pulley arrangement is incorporated to transfer torque from the hydraulic motor spindle to the main rotor shaft.

![Articulated Rotor Hub]

Figure 2.14: Rotor test stand at University of Maryland.

The rotor hub supports four articulated blade grips held between a set of plates. The swashplate is connected to pitch horns on the blade grips by pitch links. The rotor drive shaft has a through bore to accommodate slip ring wires. Figures 2.15 and 2.16 shows two different views of the assembled articulated hub. Figures 2.17, 2.18, and 2.19 show some of sub-assemblies of the rotor hub.
Figure 2.15: Rotor hub assembly - side view.

Figure 2.16: Rotor hub assembly - isometric view.
Figure 2.17: Top retaining plate on the hub.

Figure 2.18: Various degree of freedom of an articulated hub.
Figure 2.19: Rotor hub with blade grips.

The rotor hub is mounted on a six component strain gage based balance and is driven by the hydraulic motor via a belt-pulley arrangement. The details of the hub mounting are shown in Figs. 2.20 and 2.21.

Major components of the articulated rotor hub are explained next.
Figure 2.20: Rotor hub (upside down view).

Figure 2.21: Hub mounting location.
2.3.1 Swashplate Assembly

The swashplate allows to control the blade pitch thus controlling the rotor thrust as well as rotor disc orientation in pitch and roll.

The swashplate consists of two main parts: a non-rotating (lower) swashplate and a rotating (upper) swashplate (Fig. 2.22). The lower swashplate doesn’t rotate and is connected to the pitch servos. It is mounted on a spherical bearing to allow change in orientation and pitch scissors allow to orient the plate.

To control the collective pitch of the rotor blades, the entire swashplate is moved up or down along its axis without changing the planer orientation of the plate. Thus, the entire swashplate is moved along the main shaft by a collective pitch actuator. To control the blade cyclic pitch, the planer orientation of the plate
is changed. Two pitch actuators separated by 90 degree azimuthally provide the lateral and longitudinal tilt of the plate.

Figure 2.23: Rotor drive shaft installed in the hub.

Ball bearings between the upper and lower swashplate allows the upper plate to spin freely on top of the lower plate. The pitch inputs to the lower swashplate are then transferred to the upper swashplate and thus, both swashplate orient as one unit. The upper swashplate connects to the rotor shaft via a torque disc, which may be instrumented for torque measurement (Fig. 2.23). As the rotor shaft is driven, it also turns the upper swashplate and the rotor blade system. This system includes blade grips, which connect the blades to a hub. The rotating swashplate is connected to the pitch horns using the pitch links, which transfers the swashplate motion to the rotor blade pitch.
2.3.2 Swashplate Actuators

There are generally three fixed frame actuators, one each for collective, lateral and longitudinal pitch inputs. Since the bandwidth requirement for primary rotor control is relatively low, the choice of actuators can include using either an electric or a hydraulic actuator. Although, hydraulic actuators provide high torque, they can be bulky in size and are generally used for full-scale rotors. For the actuation power required at model scale rotor testing, invariably electric motors with high gear ratios are used. These motors are DC electric motors with a large gear ratio to reduce the output speed and augment the torque.

Figure 2.24: Swashplate actuators mountings.

Figure 2.24 shows the actuator mounting locations for the model scale rotor hub used at UMD. Globe motors manufactured (Model: 43A108-5) [201] high torque,
low bandwidth DC servomotors are used as actuators. These servos operate at 27 V DC, can provide a maximum output torque of 0.5 Nm (70 oz.-in.) and are controlled by the pitch controllers in the rotor control console (Sec. 2.5).

The swashplate actuators change the orientation of the rotor disc, by controlling blade flap response. For articulated rotor hub with small hinge offset, the phase delay between the pitch input and blade flap response in hover is about 90 degree. So, a pitch input given at zero rotor azimuth would cause the blade to flap around 90 degree azimuth. The collective servo actuates the swashplate vertically up and down, about the rotor shaft. The longitudinal servo is mounted at 180 degree azimuth location and it tilts the rotor hub back and front, controlling the longitudinal blade flap response. The lateral servo is mounted at 90 degree azimuth and tilts the hub side to side, controlling the lateral blade flap response.

2.3.3 Rotor Drive Shaft

The rotor drive shaft transfers the torque from the belt transmission to rotor. At the driven end, it has a splined geometry that allows to mate with the transmission pulley. This design allows to transfer torque at the same time allow unrestricted vertical motion of the shaft. The drive shaft is connected to the top of hub via a torque disc. It is a thin membrane shear plate that is instrumented for torque measurement. The shaft has through bore to pass the slip rings wires to the top of rotor hub.
2.3.4 Blade Grip Assembly

The articulated rotor blade grip holds the rotor blade and allows for flap, lag and torsion degrees of freedom at blade root. The various components of the blade grip are shown in Fig. 2.26.

The end block is held between the top and bottom retaining plates. The inner tube is connected to the outer tube via a tension-torsion strap which takes all the centrifugal loads on the blade while allowing smooth torsion motion. Set of radial bearings keep the two tubes aligned, negating any flat-wise bending in the tension-torsion strap and reduce any friction in the torsion motion. This blade grip ensures co-incident flap and lag hinges. Also, the pitch link attachment point of the pitch horn is coincident with flap hinge as well. Thus, there are no kinematic couplings.
Figure 2.26: Components of an articulated rotor blade grip.

Figure 2.27: Assembled view of the blade grip.
in this hub design.

Figure 2.27 shows assembled blade grip with a Hall sensor mounted for flap angle measurement and a soft pitch link. Conventionally, a stiff pitch link as shown in Fig. 2.18 is used to connect the swashplate to the pitch horn.

2.3.5 Tension - Torsion Strap

The rotor system is designed with the use of a tension-torsion straps for blades retention. This strap needs to withstand tensile load due to centrifugal force and twisting due to blade pitch inputs. This requires that the tension-torsion strap must have a high ultimate tensile strength and a low torsion stiffness. Moreover, the component must not undergo plastic deformation under dynamic loading, and the tensile yield strength limits the maximum load on this component. This is one of the primary centrifugal load carrying structural component of the hub and thus limits the maximum blade weight that can be tested on the stand.

Figure 2.28: Tension - torsion strap.

The design of the tension-torsion (TT) strap is made up of two grooved bushings separated by a specific distance, wound with a stainless steel fiber and wrap with resin (Fig. 2.28). The resin protects the fiber and helps in uniformly distributing
the loads on the strap. The slot in the middle of the component allows a better
twist motion when the strap receives a torsion load. These straps were designed to
handle a maximum tensile load of 6672 N (1500 lbf) without plastic deformation,
and to allow a 20 degree twist around their axis.

However, with the need for testing active rotor blades for primary rotor control
and/or rotor vibration reduction, the blade weight has gone up. The presence of on-
blade actuators and supporting structure can as much as double the blade weight,
severely limiting the top rotational speed that these active blades could be operated.
Consider the loads comparison presented in Table 2.1. The blade weight is assumed
to double for an active blade compared to the original blades. Since most active
components are located on the outboard radial location (to take advantage of higher
dynamic pressure), the span-wise c.g. of the blade will also shift from 50% to 55%
location. It can be seen that to operate the active rotor at the peak rotor speed
(2400 RPM), there is a significant increase in the load on the tension-torsion strap.
As such the current strap is not rated for higher loads. To account for these elevated
load requirements, new straps were manufactured in house and tested under tensile
load to certify for higher centrifugal loads.

2.3.5.1 Fabrication of Tension - Torsion Strap

The two main components of the tension-torsion strap are the fibers and the
enclosing resin. The resin has two goals. The first one is to shield the fibers and
prevent damage from air, dust, humidity and friction. The second goal is to make the
Table 2.1: Comparison of centrifugal load on tension-torsion strap.

<table>
<thead>
<tr>
<th>Blade Parameter</th>
<th>Original Blade</th>
<th>Active Blades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass, m</td>
<td>0.2 kg 0.4 kg</td>
<td>0.4 kg 0.88 lb</td>
</tr>
<tr>
<td>Radius, R</td>
<td>1.83 m 3.0 ft</td>
<td></td>
</tr>
<tr>
<td>C.G. (%R)</td>
<td>0.5 0.55</td>
<td></td>
</tr>
<tr>
<td>C.G., x</td>
<td>0.92 m 1.50 ft</td>
<td>1.02 m 1.65 ft</td>
</tr>
<tr>
<td>RPM, Ω</td>
<td>2400 251 rad/s</td>
<td></td>
</tr>
<tr>
<td>Load, mxΩ²</td>
<td>5776 N 1300 lbf</td>
<td>12700 N 2855 lbf</td>
</tr>
</tbody>
</table>

strap stiffer for a compression load and to avoid flat-wise deformation. In addition, the resin has to be sufficiently flexible to allow the twist of the strap and sufficiently strong to resist damages.

The characteristic of the resin used in the original strap were given by Bendix company. This resin was a mix between a urethane elastomer named Adiprene L100 and a delayed-action diamine curative named Caytur 31 DA. After a number of iterations, the mix mass proportion was chosen to be 80% Adiprene L100 and 20% Caytur 31 DA. The mixing temperature was 65°C and the cure temperature fixed at 120°C during 2 hours.

Several fibers were also tested to find a stronger alternative than the stainless steel wires used in original strap. After testing several straps with three kinds of fibers (stainless steel, Spectra and Kevlar) and different numbers of winding turns, the chosen configuration was Kevlar fibers with 120 winding turns. The details of
resin preparation, fiber winding and curing are in Ref. [202]. Figure 2.29 shows the new strap manufactured using this process.

![Image of original and new tension-torsion straps](image)

Figure 2.29: New tension - torsion strap.

2.3.5.2 Tensile Testing of Tension-Torsion Strap

Once the strap is fabricated to required geometric dimensions, tensile testing is performed to test the load bearing capabilities of the new tension-torsion strap. The behavior of the strap configuration has to be tested in the worst operating conditions, which is centrifugal loads while operating at a high twist angle. Therefore the tension tests were done on a MTS machine (Fig. 2.30) with a 20 degree pre-twist angle. The test showed a peak tensile load of around 14234 N (3200 lbf) and no plastic deformation. Moreover the repeatability was good as showed in the graph (Fig. 2.31) representing tension test on three samples. Dynamic loading testing was also carried out, with the samples loaded from zero to 6672 N (1500 lbf) tensile load in 30 seconds and then relaxed to zero load in 5 seconds. Three samples were tested with 20 degree pre-twist angle using this load profile. They operated satisfactorily
for in excess of 2000 load cycles.

A complete discussion of design, optimization and analysis of composite tension-torsion strap is included in Ref. [203].
2.4 Rotor Test Stand Instrumentation

Various sensors are installed on the blades, hub and rotor shaft to monitor and record parameters during testing. Rotor speed, pitch setting and blade root motion are some of the prominent parameters to be recorded and are discussed next.

2.4.1 Rotor Speed Measurement

![Diagram of optical sensor for RPM measurement]

Figure 2.32: Optical sensor for RPM measurement.

Rotor speed measurement is one of the key parameter to be measured and monitored during rotor operation. A photodiode opto-isolator with a 60-tooth gear tooth wheel is used to measure the rotor speed. The optical sensor is a slotted design with light emitting diode on the top arm and a light receiver on the bottom. The photo-diode converts the input voltage into an infrared light and the photon
receiver in the bottom generates electric current on detecting the light (Fig. 2.32). A gear-tooth as shown in Fig. 2.33, is operating in the slot, leading to a switching output signal from the sensor, signaling ON when the gap is unobstructed and OFF when obstructed. A counter is used at the rotor control console to convert the switching signal into rotor RPM measurement. In addition to 60 shallow teeth (6 degree azimuth resolution), a single deep tooth is used to mark the zero azimuth position on the rotor, which is the reference blade (blade one) aligned with fuselage tail.

![RPM measurement gear tooth](image)

Figure 2.33: RPM measurement gear tooth.
2.4.2 Rotor Shaft Encoder

A Hall-effect based rotary position sensor is used to precisely measure the rotor azimuth. Melexis MLX90316 [204] is a non-contact rotary position integrated chip sensor capable of decoding the absolute rotary (angular) position from 0 to 360 degree. It has a 12-bit accuracy and produces a ratio-metric analog output corresponding to angular position of a diametrical polarized magnet. A ramp signal is produced and rotor azimuth location can be precisely recorded (Fig. 2.34). Table 2.2 shows the calibration co-efficients for the shaft encoder.

![Diagram of Hall-effect based rotary sensor](image)

Table 2.2: Calibration co-efficients for rotor shaft encoder.

<table>
<thead>
<tr>
<th>Azimuth (deg.)</th>
<th>Slope</th>
<th>Intercept</th>
<th>R^2 value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shaft Encoder</td>
<td>90.393</td>
<td>-44.311</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 2.34: Hall-effect based rotary sensor used as a shaft encoder.
2.4.3 Blade Root Motion Measurement

![Figure 2.35: Setup for blade root flap and pitch calibration.](image)

Table 2.3: Calibration co-efficients for blade root flap angle.

<table>
<thead>
<tr>
<th>Flap Angle (deg.)</th>
<th>Slope</th>
<th>Intercept</th>
<th>R^2 value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade 1</td>
<td>-93.882</td>
<td>320.870</td>
<td>1.000</td>
</tr>
<tr>
<td>Blade 2</td>
<td>-91.488</td>
<td>240.977</td>
<td>0.999</td>
</tr>
<tr>
<td>Blade 3</td>
<td>-88.029</td>
<td>268.282</td>
<td>0.999</td>
</tr>
<tr>
<td>Blade 4</td>
<td>-93.164</td>
<td>323.275</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Blade root motion measurement is critical to monitor blade root deflections on an articulated hub as well to measure trim of the rotor. The flap and lag hinges
on each of the four blades are instrumented with a rotary position sensor. These are the same sensors as used for shaft encoder and are described in the section 2.4.2. The blade root flap is calibrated by fixing the blade pitch to be zero and measuring blade flap for a range of flap positions. A gravity based inclinometer is used to directly measure the root flap angle. Figure 2.35 shows the setup for calibration using two orthogonal inclinometers. If there is any shaft tilt, it has to be included appropriately as well. Flap up is considered as positive flap direction. The total flap travel ranges from -10 deg. to +14 deg. but only a subset of the calibration is shown in Fig. 2.36. Each blade flap sensor is calibrated at zero blade pitch, zero blade lag and at zero azimuth location. Table 2.3 presents the calibration co-efficients for each blade root flap angle.
In addition to these sensors rotary potentiometers could also be used. The flap angle would then be calibrated against a voltage drop which changes with flap angle. However these sensors present friction due to physical contact and thus non-contact Hall-effect sensors are preferred.

\[\Delta d = d - d_1 \]
\[\sin(\zeta) = \frac{\Delta d}{l} \]

Figure 2.37: Setup for blade root lag calibration.

Blade root lag is an in-plane motion and calibration is more involved as no gravity sensor can be used. For calibrating the lag sensor, a vertical wall at a known distance is used as reference. The blade grip is moved from zero lag position to lead-most and then the lag-most position. The distance of the tip of the blade grip form the reference wall is noted. Using the geometrical relationship shown in Fig. 2.37, the lag angle is calculated. It is then plotted again the hall sensor voltage (Fig. 2.38) and calibration co-efficients are found using least-square linear fit. These co-efficients are in Table 2.4.

In addition, each of the blade attachments are instrumented using linear hall effect sensors (Allegro A1324LAU-T) [205] to measure the individual blade pitch as well. Blade pitch sensor is calibrated at zero lag and zero flap angle, using a gravity
Figure 2.38: Blade root lag angle calibration.

Table 2.4: Calibration co-efficients for blade root lag angle.

<table>
<thead>
<tr>
<th>Lag Angle (deg.)</th>
<th>Slope</th>
<th>Intercept</th>
<th>R^2 value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade 1</td>
<td>-91.16</td>
<td>367.06</td>
<td>1.00</td>
</tr>
<tr>
<td>Blade 2</td>
<td>-78.93</td>
<td>67.55</td>
<td>1.00</td>
</tr>
<tr>
<td>Blade 3</td>
<td>-71.84</td>
<td>242.20</td>
<td>1.00</td>
</tr>
<tr>
<td>Blade 4</td>
<td>-96.06</td>
<td>365.93</td>
<td>1.00</td>
</tr>
</tbody>
</table>

The calibration setup is shown in Fig. 2.35. The total range of the pitch motion is from -10 degree to 20 degree but only a subset of the calibration is presented in Fig. 2.39. Since the pitch motion is rotational, the output from the linear hall sensor is not linear. A second order least square fit is used $(Ax^2 + Bx + C)$
Figure 2.39: Blade root pitch angle calibration.

Table 2.5: Calibration co-efficients for blade root pitch angle.

<table>
<thead>
<tr>
<th>Pitch Angle (deg.)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>R^2 value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade 1</td>
<td>-49.031</td>
<td>168.341</td>
<td>-132.626</td>
<td>0.999</td>
</tr>
<tr>
<td>Blade 2</td>
<td>-18.071</td>
<td>46.007</td>
<td>-18.727</td>
<td>0.998</td>
</tr>
<tr>
<td>Blade 3</td>
<td>-27.497</td>
<td>81.896</td>
<td>-50.592</td>
<td>0.998</td>
</tr>
<tr>
<td>Blade 4</td>
<td>-132.540</td>
<td>542.421</td>
<td>-506.160</td>
<td>1.000</td>
</tr>
</tbody>
</table>

and Table 2.5 contains the calibration co-efficients for each blade root pitch motion.
2.4.4 Rotor Pitch Measurement

In addition to individual blade pitch sensors, pitch sensors are also mounted in the non-rotating frame. Each of the swashplate actuators are complimented with a Linear Variable Differential Transformer (LVDT). The LVDT consists of three solenoidal coils, the center primary coil is sandwiched between two secondary coils (Fig. 2.40). A ferromagnetic cylinder is axially located in the coils. The excited primary coil induces voltage on the secondary coils depending on the location of the ferromagnetic rod.

![Operating principle of LVDT](image)

Figure 2.40: Operating principle of LVDT.

Even if the power is switched off, on restarting it, the LVDT shows the same measurement, and no positional information is lost. The rotation of the ferromagnetic cylinder doesn’t change the output from the sensors either. In addition, their
operation does not require an electrical contact between the moving part and the
coil assembly, but instead relies on electromagnetic coupling. Thus, these sensors
are robust, absolute position and frictionless linear motion potentiometer. They
have low hysteresis and excellent repeatability, making them suitable for current
application.

Linear potentiometers could also be used instead of LVDT, however lower fric-
tion and excellent repeatability from LVDTs makes them a superior sensor compared
to linear potentiometers.

Maurey Instruments M1326-1-103 B [206] units with about an inch of travel
and a resistance 10,000 ohms with threaded shaft are used in the hub (Fig. 2.41).
These LVDTs are robust, absolute position and frictionless linear motion poten-
tiometer. The motion from the servomotors actuators is calibrated for collective
and cyclic pitch of the reference blade, usually blade one. The remaining blades are
adjusted to have the same pitch as reference blade at zero azimuth location. Fig-

Figure 2.41: Maurey Instruments LVDT used as pitch sensor.
Figure 2.42 shows the LVDT voltage output for various rotor pitch angles. Table 2.6 shows the calibration co-efficients for swashplate pitch angles.

![Swashplate pitch calibration](image)

Figure 2.42: Swashplate pitch calibration.

<table>
<thead>
<tr>
<th>Pitch Angle (deg.)</th>
<th>Slope</th>
<th>Intercept</th>
<th>R^2 value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collective</td>
<td>9.706</td>
<td>-13.767</td>
<td>0.999</td>
</tr>
<tr>
<td>Longitudinal</td>
<td>16.541</td>
<td>-40.627</td>
<td>0.999</td>
</tr>
<tr>
<td>Lateral</td>
<td>-13.468</td>
<td>-43.385</td>
<td>0.996</td>
</tr>
</tbody>
</table>

Table 2.6: Calibration co-efficients for rotor swashplate pitch.
2.4.5 Rotor Torque Measurement

Rotor torque is measured by sensing the strain caused in a shear membrane held between the rotor hub and the drive shaft (Fig. 2.25). The torque disc shown in Fig. 2.43 highlights the thin shear membrane in the cut section view and the full-bridge strain gage network installed on it.

Figure 2.43: Torque disc instrumented with strain gages.

Initially only the bottom surface was instrumented. However, it was noticed that the strain-gage network was sensitive to out-of-plane deformations. Torque measurements were being recorded not only in response to torque but also warping in the disc plane, even in absence of any torque loading. To remedy this error, a new torque disc was machined with tight tolerances. Both the top and bottom surface of the shear membrane were instrumented with identical full-bridge strain
gage network to neutralize the warping effect. This was tested on the bench top by applying torque using a pulley-weight arrangement as shown in Fig. 2.44.

Figure 2.44: Torque transducer calibration bench-top setup.

A linear calibration was observed on the bench top (Fig. 2.45). On the bench top, no effect of out-of-plane deformations were noticed on the torque measurement with the new torque disc. Further, the torque disc was installed in the hub, and calibrated to a much larger torque loading. Again, a linear calibration was obtained (Fig. 2.46) and the torque transducer performance was comparable to that on bench-top (Table 2.7).
Figure 2.45: Torque transducer calibration on bench-top.

Figure 2.46: Torque transducer calibration installed on rotor hub.
Table 2.7: Calibration co-efficients for rotor torque transducer.

<table>
<thead>
<tr>
<th>Torque (lb-in)</th>
<th>Slope</th>
<th>Intercept</th>
<th>R^2 value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bench-top</td>
<td>191714</td>
<td>0</td>
<td>0.995</td>
</tr>
<tr>
<td>Rotor hub</td>
<td>183717</td>
<td>0</td>
<td>0.999</td>
</tr>
</tbody>
</table>

Further the effect of bending load on the torque disc was evaluated. The disc was loaded as shown in Fig. 2.47. Theoretically, no torque measurement is expected, however, there was a small but non-negligible effect of this loading and torque measurements were recorded (Fig. 2.48).

Figure 2.47: Torque transducer under side and bending load, no torque applied.

This discrepancy may not be as prominent at high torque rotor conditions, but would be critical when low torque measurements are desired, for instance when testing a slowed rotor. This error could be due to misalignment in the rotor drive shaft due to a structural damage. Multiple efforts were made to accurately access
Figure 2.48: Torque measured due to side and bending load, no torque applied.

the cause and it was concluded that a complete re-fabrication of drive shaft would be needed. To mitigate this error, the drive shaft itself was instrumented with torsion gage as well. It was found to be significantly more immune to non-torque loading (Fig. 2.48). Figure 2.49 presents the torque measured with a full-bridge strain gage installed on the rotor drive shaft. Table 2.8 compares the sensitivity of the two torque transducers. Instrumented rotor shaft was used as primary torque transducer for the current research.
Figure 2.49: Torque calibration from strain gage installed on rotor drive shaft.

Table 2.8: Calibration co-efficients for instrumented rotor drive shaft.

<table>
<thead>
<tr>
<th>Torque (lb-in)</th>
<th>Slope</th>
<th>Intercept</th>
<th>R^2 value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shear Membrane</td>
<td>183717</td>
<td>0</td>
<td>0.999</td>
</tr>
<tr>
<td>Drive Shaft</td>
<td>171478</td>
<td>0</td>
<td>0.999</td>
</tr>
</tbody>
</table>
2.4.6 Fixed Frame Hub Balance

A six component strain gage based fixed frame balance (Fig. 2.50) is used to measure hub forces and moments. The balance consists of precisely machined flexures which were gaged and calibrated to measure forces and moments in all three directions. One end of the balance was fixed to the rotor stand, while the rotor hub was mounted on the other end. This was to ensure all the rotor hub loads passed through the balance. A calibration matrix relates the six output voltage signals to the measured forces and moments. The calibration process for the hub balance is discussed next.

Figure 2.50: Rotor hub balance.
2.4.6.1 Steady loads calibration

For static calibration, a loading rig (Fig. 2.51) was constructed out of 80-20 frames. It allowed to apply loads in all axes. A load cell was placed in-line between the pulley and load application point, to precisely measure the applied load. The calibration was performed with rotor hub center as the origin. The loading fixture along with pulley arrangement allowed application of various loads and moments. However, due to offset of the application point from the hub center, pure loads were difficult to apply. Generally, force application in a planer direction was also accompanied with moments.

![Diagram](image)

Figure 2.51: Setup for rotor hub balance calibration.
The output voltage from all the six components along with applied loads and moments were recorded for various loading configurations. Since the fixed frame yaw moment only accounts for drive system friction and not rotor loads, it was not applied. However, the voltage output was recorded due to coupled nature of the calibration matrix. A least square solution was found considering all the loading configurations and a calibration matrix was obtained. Table 2.9 contains the calibration matrix for steady hub loads.

Table 2.9: Calibration matrix for steady hub loads.

<table>
<thead>
<tr>
<th></th>
<th>F_x</th>
<th>F_y</th>
<th>F_z</th>
<th>M_x</th>
<th>M_y</th>
<th>M_z</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_x</td>
<td>94937</td>
<td>5629</td>
<td>-3112</td>
<td>-19236</td>
<td>-563393</td>
<td>0</td>
</tr>
<tr>
<td>F_y</td>
<td>104320</td>
<td>479853</td>
<td>780361</td>
<td>-6383880</td>
<td>-7433310</td>
<td>0</td>
</tr>
<tr>
<td>F_z</td>
<td>-435</td>
<td>15154</td>
<td>416635</td>
<td>-84959</td>
<td>-1733376</td>
<td>0</td>
</tr>
<tr>
<td>M_x</td>
<td>14158</td>
<td>51235</td>
<td>69982</td>
<td>915913</td>
<td>-751575</td>
<td>0</td>
</tr>
<tr>
<td>M_y</td>
<td>-18060</td>
<td>-19</td>
<td>54250</td>
<td>-97290</td>
<td>1408120</td>
<td>0</td>
</tr>
<tr>
<td>M_z</td>
<td>86342</td>
<td>735405</td>
<td>616114</td>
<td>-7550196</td>
<td>-5919961</td>
<td>0</td>
</tr>
</tbody>
</table>
2.4.6.2 Dynamic loads calibration

A dynamic calibration was essential to account for structural dynamics such that these effects could be removed from hub balance measurements. This would allow precise measurement of rotor vibratory loads, removing any contamination from structural spectral response. The same rig as used for static calibration was used, however vibratory loads of known amplitude and frequency were required to be applied instead of steady loads. A shaker (B&K model LDS V408) with an in-line load cell (Transducer Techniques model MDB-75) was used for applying vibratory loads. To capture a large frequency range, the data was acquired at a very high sampling rate (5 kHz).

Once the shaker and load cell were setup for load application, a frequency sweep load input was performed. Based on the static calibration, the output from the hub balance was converted to loads. These loads could then be compared to the known applied loads as recorded by the in-line load cell. This data was then converted to frequency domain representation so that amplitude and phase at discrete frequencies could be compared and corrections calculated. This was represented as transfer functions, thus providing correction to vibratory loads specific to applied loads and frequency.

2.4.7 Miscellaneous

A three component accelerometer is mounted in the fixed frame under the rotor hub to monitor test stand vibrations. Since the rotor is mounted on top of a tall
column, the accelerometer helps in monitoring and avoiding any support structural resonance.

In addition, a thermocouple is installed on the hydraulic oil line to monitor fluid temperature and keep it within the specified range. Exceeding the temperature limits can cause the hydraulic motor to fail, leading in loss of rotor torque and possible damage to the hub and the blades.

As a planned upgrade, the hydraulic lines to the motor will be fitted with flow rate and fluid pressure sensors to provide an additional source of measurement of rotor torque. The calculation would be based on the input power to the hydraulic motor and then would be compared to the torque measured by instrumented rotor shaft.
2.5 Rotor Control Console

The rotor speed and swashplate actuators are controlled from the console in the control room. It is shown in Fig. 2.52.

![Rotor control console](image)

Figure 2.52: Rotor control console.

The pitch servomotors in the swashplate are supplied by a constant 27 Volt DC input. The servos move the swashplate by a lead screw arrangement. The pitch can be altered by controlling ON duration and direction of rotation of the dc servomotors. These servomotors are controlled by joystick on the rotor control console. Moving the stick up increases and moving it down decreases the blade pitch. Pitch adjustments as fine as quarter of a degree can be made using these control joysticks.

The rotor rpm is adjusted by a control dial on the rotor control console. The
control dial adjusts the current input to the flow control valve, which then controls the amount of fluid supplied to the hydraulic motor, thus changing the rotor speed. Once the dial is set at a flow rate, the flow control valve maintains the desired rotor rpm.

2.6 Rotor Tracking Procedure

Rotor tracking is an important pre-flight operation. It can be understood as the process of determining the positions of the tips of the rotating blade relative to each other, and of determining the corrections necessary to hold these positions within certain tolerances. The blades should all track one another as closely as possible. The purpose of blade tracking is to bring the tips of all blades into the same tip path throughout their entire cycle of rotation. Figure 2.53 shows a schematic representation of rotor blade tracking.

![Blade Tip Path Plane](image)

Figure 2.53: Schematic of rotor blade tracking.

Although initially the objective of rotor tracking was identified as maintaining the blade tips within certain tolerance, the larger objective is to reduce the vibrations associated with the unequal lift on out of track rotor blades. Usually accelerometers
mounted at key locations on the rotorcraft are also monitored while the rotor tracking process is underway. This process is sometimes also termed as helicopter rotor smoothing. It is accomplished in a sequence of four separate steps: ground tracking, hover verification, forward flight tracking, and auto rotation rpm adjustment. In addition to main rotor blades tracking, tail rotor blades are tracked as well. The procedure for tracking is discussed next.

Over the years various methods of blade tracking have been experimented with. The most primitive method was to mark the tips of the blades with different color paint and have the rotor tips rub against a flag on a pole to show the relative positions of the rotor blades. With advances in technology, an electro-optical method is current industry standard for tracking [207]. This system uses a highly concentrated light beam flashing in sequence with the rotation of the main rotor blades so that a fixed target at the blade tips will appear to be stopped. Each blade is identified by an elongated retro-reflective number taped or attached to the underside of the blade in a uniform location. When viewed at an angle from inside the helicopter, the taped numbers will appear normal. Figure 2.54 shows a schematic of pre-flight tracking setup using an electro-optical system. Figure 2.55 shows the typical hardware used for rotor tracking by this method.

The hardware includes an optical source and receiver referred to as Universal Tracing Device (UTD). It is usually mounted on the nose of the fuselage (Fig. 2.56) roughly at an angle of 75 degree, focussed at outboard location of rotor blade. It may be used with a glare reduction unit. In addition a data acquisition system is also used to record the rotor azimuth location and sync the universal tracking
device with rotor speed. A control and display unit aids in visualizing the rotor blades location.

There are two ways to adjust the tracking of the rotor blade. Conventionally trim tabs (Fig. 2.57) located at the trailing edge of the rotor blades on outboard locations are adjusted to change the blade camber and achieve rotor track. Recently, adjustable pitch links are also used to change the angle of attack of the blade by adjusting the length of the pitch link. Figure 2.58 shows adjustable pitch link on a UH-60 rotor hub. While pitch link adjustments change the angle of attack of the entire blade, trim tab adjustments only affect the camber of the blade over the length of the trim tab. In addition, pitch link adjustment offers a much finer control of blade tracking compared to trim tabs.
The tracking process is a time consuming, manual and on-ground process. Rotor tracking can degrade in flight due to various conditions such as blade icing, abrasion due to sand or damage due to debris. This loss of track and rotor balance
has negative effect of the helicopter handling, flight comfort and structural loads on the rotor blade and hub.

For model scale rotors, a trim tab is not included. Instead the blade root pitch is adjusted to counter blade-to-blade differences. Reflective adhesive tapes at the blade tips (Fig. 2.59) are used and illuminated by a high intensity strobe. Fig-
Figure 2.59: Reflective tapes on blade tips.

Figure 2.60 shows the schematic of tracking setup for model scale rotors at UMD. The strobe frequency is synced with rotor speed, and set at four times the rotor RPM. This creates a visual impression that all the blade tips are frozen at same azimuth location. In addition, the phase is also synced with rotor azimuth to illuminate the blades between 180 and 270 degree rotor azimuth.

Figure 2.60: Rotor blade tracking setup for Mach scale rotor testing.
As seen in Fig. 2.61, blade one is treated as the reference blade. In an untracked rotor, the remaining blades can be above or below the reference blade plane. To trim the blades, the corresponding blade root pitch is appropriately adjusted to increase or decrease the blade lift. The blade pitch adjustment is made by precisely changing the length of the pitch link. This adjustment moves the blade tip to bring it in line with the reference blade. Tracking is an iterative process with small adjustments being made in each attempt. The rotor is considered tracked with all the blade tips are in a plane within half blade thickness.

2.7 Rotor Trim Procedure

In general, trimming an helicopter means maintaining equilibrium in space. The steady forces and moments generated by the rotor should be equal and opposite to those generated by the other parts of the helicopter, e.g. the tail rotor, the fuselage, the horizontal stabilizer etc. The steady forces and moments generated by the rotor should remain the same from one rotor revolution to another. A trimmed flight can be achieved under any steady flight condition.

For most hover tower and wind tunnel experiments, isolated rotors are tested.
For an isolated rotor trim, the three rotor control angles are determined based on three specified trim targets. One of these targets is rotor thrust. For moment trim, target rotor pitch and roll moments are zero. Alternatively, in addition to the specified thrust target, zero first harmonic flapping is imposed. Generally, wind tunnel trim is used widely for articulated rotors and zero moment trim for hingeless rotor systems. Isolated rotor trim is used in wind-tunnels to achieve specific flight conditions in a controlled environment. The procedure to achieve wind tunnel trim is explained next.

![Lissajous figure for wind tunnel trim.](image)

For swashplate rotors, the trim is achieved by adjusting the cyclic blade pitch inputs to the rotor. A popular means of visualizing trim is by use of Lissajous figures. The time history of blade flap data from two orthogonal blades is plotted against each other. Usually only the first harmonic is plotted, the resultant figure
being a circle (Fig. 2.62). Visually trim target is to shrink the size of the circle and trim is said to be achieved when the lateral and longitudinal pitches are so adjusted to reduce blade cyclic flapping below a threshold value (a tenth of a degree).

A more mathematical approach to achieve wind tunnel trim is by calculating lateral and longitudinal blade flap in real time. Consider only the first harmonic of the blade root flap motion, the harmonic variation of blade flap with rotor azimuth can be described as:

$$\beta(\psi) = \beta_0 + \beta_{1c} \cos(\psi) + \beta_{1s} \sin(\psi)$$ \hspace{1cm} (2.1)

where β_0 is conning angle, β_{1c} is lateral flap angle and β_{1s} is longitudinal flap angle.

The blade flap time history (Fig. 2.63 (a)) and shaft encoder data (Fig. 2.63 (b)) is used to resolve the flap motion in terms of rotor azimuth (Fig. 2.63 (c)). In each data acquisition cycle, a number of rotor revolutions were captured. These multiple revolution data was then averaged to generated a phase resolved blade flap motion (Fig. 2.64). The blade flap angle at 0, 90, 180 and 270 degree azimuth are extracted and β_0, β_{1c} and β_{1s} for one blade are calculated as per Eqs. 2.2.

$$\beta_1 = \beta(0) = \beta_0 + \beta_{1c};$$

$$\beta_2 = \beta(90) = \beta_0 + \beta_{1s};$$

$$\beta_3 = \beta(180) = \beta_0 - \beta_{1c};$$

$$\beta_4 = \beta(270) = \beta_0 - \beta_{1s};$$

$$\beta_0 = \frac{1}{4} [\beta_1 + \beta_2 + \beta_3 + \beta_4];$$

$$\beta_{1c} = \frac{1}{2} [\beta_1 - \beta_3];$$

$$\beta_{1s} = \frac{1}{2} [\beta_2 - \beta_4];$$ \hspace{1cm} (2.2)
(a) Time history of root flap for blade 1.

(b) Time history of rotor shaft encoder.

(c) Blade 1 flap motion resolved in multiple rotor revolutions.

Figure 2.63: Resolving time data into rotor azimuth.
From all the four blades, averaged flap angles are calculated (Eqs. 2.3).

\[
\beta_{0}^{(\text{rotor})} = \frac{1}{4} \left[\beta_{0}^{(1)} + \beta_{0}^{(2)} + \beta_{0}^{(3)} + \beta_{0}^{(4)} \right];
\]

\[
\beta_{1c}^{(\text{rotor})} = \frac{1}{4} \left[\beta_{1c}^{(1)} + \beta_{1c}^{(2)} + \beta_{1c}^{(3)} + \beta_{1c}^{(4)} \right];
\]

\[
\beta_{1s}^{(\text{rotor})} = \frac{1}{4} \left[\beta_{1s}^{(1)} + \beta_{1s}^{(2)} + \beta_{1s}^{(3)} + \beta_{1s}^{(4)} \right]; \quad (2.3)
\]

Figure 2.64: Cyclic blade flapping angles for blade 1.

Figure 2.65: Cyclic blade flapping for all blades.
The mean flap angle is removed from the data and cyclic pitch inputs are then chosen to reduce cyclic flap angles (Fig. 2.65). The iterative process is carried out until lateral and longitudinal flapping is negotiated to be below a tolerance value (a tenth of a degree). For an articulated rotor with small hinge offsets, the blade flap response lags pitch input by about quarter rotor revolution. To accommodate this phase delay, cyclic pitch servos are installed 90 degree offset from rotor axes.

Generally, only considering the first harmonic in flapping is sufficient for trimming rotor up to a moderate advance ratio. However for slowed rotors with operating advance ratios of one and above, there could be significant higher harmonic components in the blade motion. In such operating conditions, only one per rev control input (using swashplate) to target one per rev blade root flapping might not be sufficient and higher harmonic control inputs could be necessary for even trimming the rotor.
2.8 Data Acquisition System

Data acquisition is the process of acquiring signals that measure physical phenomena and converting the analog information into digital data for storage and further analysis. Physical parameters like flap, lag, pitch angles and rotor loads are first converted into electrical signals using sensors and transducers. Section 2.4 details various instrumentation on the hover test stand. The analog data from the rotating frame is transferred to control room using slip rings. The control room houses the data acquisition hardware. This hardware conditions the raw data to improve signal to noise ratio. Finally, the system carries out an Analog-to-Digital conversion. A data acquisition software is used to control the hardware as well as process the data for review and storage.

2.8.1 Slip rings

Data transfer between the rotating frame and the fixed frame is done via a slip-ring. Typically, it consists of a stationary graphite or metal contact (brush) which rubs on the outside diameter of a rotating metal ring. As the metal ring turns, the electrical current or signal is conducted through the stationary brush to the metal ring making the connection. Additional ring/brush assemblies are stacked along the rotating axis for multiple lines. The choice of material for the brushes and rings is dependent on the rated rotational speed as well as the maximum voltage-current transmitted through the unit. The life of the unit is specified as number of linear miles of operation at the rated speed. Radial bearings are used to ensure
rotor alignment and minimize friction. Figure 2.66 shows various components of a typical slip ring.

![Figure 2.66: Components of a typical slip ring.](image)

For the test setup at UMD, Fabricast manufactured unit (Fig. 2.67) was custom designed to accommodate in the test setup. Each unit is capable of 64-wires,
two such units are currently in use. They are rated at 5 A and 1 A continuous current respectively with 0.01 ohm line resistance for stain gage type application.

In addition, a 16 channel power slip ring is also available. This could be installed for applications where high electrical power inputs are required to on-bade actuators, such as for powering piezo-bender actuators. It is rated for 0.5 A continuous current at 250 VAC excitation voltage.

Figure 2.68: Single and double piece flex coupling units.

These slip rings are mated to the shaft below the drive pulley using flex couplings. Flex coupling is a lightweight element that absorbs torsional vibration and shock loading. They are generally composed of elastomeric material or precisely machined flexures on a cylinder. They are not designed for taking large steady loads, rather they facilitate mating concentric rotating shafts within 5 degree of angular misalignment. Figure 2.68 shows two such couplings. The one on left is a Rocom manufactured single piece unit, while one on the right is a TB Woods manufactured elastomeric unit, available as two half pieces, to be secured on to a hub. The elastomeric flex coupling are easy to install and replace and two such units are currently in use at the rotor test stand.
2.8.2 Data Acquisition Hardware

National Instruments SCXI system (Fig. 2.69) is used for signal conditioning and data acquisition. It consists of a 12 slot SCXI - 1001 chassis capable of housing various modules. These modules are selected for specific uses. SCXI - 1102C is used to acquire analog input voltages, SCXI - 1112 for thermocouple inputs and SCXI - 1520 for strain gage inputs. NI USB 6251 is used for Analog-to-digital conversion and NI PCI 6713 is used for analog voltage output.

![Figure 2.69: NI SCXI Data acquisition hardware.](image)

The slip rings lines are connected to the BNC breakout panel (Fig. 2.70), which is in turn wired to various modules. Depending on the type of sensor or measurement, the data lines are connected to appropriate modules. A PC running LabVIEW programming environment is used to interface with the hardware and process the data for review and storage. Table 2.10 summaries the capability of the current data acquisition setup.
Figure 2.70: BNC Breakout panel.

Table 2.10: Summary of data acquisition system channel capability.

<table>
<thead>
<tr>
<th>Module</th>
<th>Channels</th>
<th>Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB - 6251</td>
<td>80</td>
<td>ADC, 16 bits, 1.25 Million Samples/s</td>
</tr>
<tr>
<td>SCXI - 1520</td>
<td>40</td>
<td>Strain, load, torque, and pressure sensors</td>
</tr>
<tr>
<td>SCXI - 1102C</td>
<td>32</td>
<td>Analog input voltages</td>
</tr>
<tr>
<td>SCXI - 1112</td>
<td>8</td>
<td>Thermocouples</td>
</tr>
<tr>
<td>PCI - 6713</td>
<td>8</td>
<td>Analog output voltages</td>
</tr>
<tr>
<td>SCXI - 1001</td>
<td>chassis</td>
<td>12 slot housing SCXI modules</td>
</tr>
</tbody>
</table>
2.8.3 Data Acquisition Software

LabVIEW (Laboratory Virtual Instrument Engineering Workbench), a visual programming language from National Instruments is used for controlling the data acquisition hardware. It includes extensive support for interfacing various data acquisition hardwares over USB or Serial ports. The programming in LabVIEW has a graphical front panel, that allows to drag and drop various functions and display panels. The back panel is a block diagram where the programmer connects different function-nodes by drawing wires. These wires propagate variables and any node can execute as soon as all its input data become available. The code execution is determined by the structure of a block diagram and it is inherently capable of parallel execution. Multi-processing and multi-threading hardware is automatically exploited by the built-in scheduler. Figure 2.71 and 2.72 present an example of LabVIEW front panel and block diagram.

Figure 2.71: LabVIEW front panel.
2.9 Vacuum Spin Chamber

It is essential to test a new design concept, or an on-blade component in rotational environment, under similar centrifugal loads as would be expected on the hover stand. A vacuum chamber allows an enclosed space to carry out such an examination, by subjecting the test specimen under inertial loads only. Figure 2.73 shows the vacuum chamber at UMD. It is a 1-in thick cast iron cylinder, with an internal dimensions of 10-ft diameter and 3-ft height. It is mounted 6 ft above the ground and has two 6-in diameter observation windows. Figure 2.74 shows a typical specimen being examined in the vacuum chamber. It is installed on a rotating beam with a balancing weight. The beam can be spun up to a maximum speed of 1800 RPM. The vacuum environment allows using a low power motor to spin the beam, as only inertial acceleration and frictional loads were to be negotiated.

The vacuum is created by pumping out all the air in the chamber using an electric air pump and a gage pressure of 29.5 in Hg (99% vacuum) can be maintained.
An Omega PXI-139 pressure transducer is installed in the chamber to monitor the pressure, in addition to an analog pressure gage mounted on the outside of the chamber.

Figure 2.75 shows the drive system for the vacuum chamber. An electric motor is used to spin the rotating beam in the chamber. It can be remotely controlled using a motor controller in the control room. A 60-line Moog manufactured slip ring is also installed to communicate with test specimen (Fig. 2.76). A flex coupling is used to permit up to 5 degree of misalignment in the shaft and the slip ring. A gear-tooth wheel similar to one installed in the hover test stand is also included to measure the rotational RPM. Proper care is taken to ensure that any gaps are vacuum sealed (Fig. 2.77).
Figure 2.74: Typical specimen testing in the Vacuum chamber.

Figure 2.75: Vacuum chamber drive motor and slip ring.
Figure 2.76: Slip ring used in vacuum chamber experiments.

Figure 2.77: Slip ring mounting structure at the Vacuum chamber.
2.10 Glenn L. Marin Wind Tunnel

The Glenn L. Martin Wind Tunnel at the University of Maryland is used to test the Mach-scaled rotor in forward flight conditions. It is a closed circuit tunnel with a rectangular test section 11 ft (3.35 m) wide and 7.75 ft (2.36 m) tall (Fig. 2.78), capable to operating at wind speeds of up to 230 miles per hour.

![Figure 2.78: Test section dimensions with rotor model installed.](image)

In the wind tunnel, the rotor stand is installed on a tiltable platform, that allows for adjusting the shaft tilt. There manual adjustments can only be made when the test rig is not operating as there is no actuator for making these adjustments during flight. In larger wind tunnels, usually a hydraulic actuator can adjust the shaft tilt. In addition, the wind tunnel balance is locked in order to avoid any softness in the support structure as it can lead to ground resonance like instability.
All the loads measurements are done by the six component hub balance and the torque cell. Figure 2.79 shows the four bladed rotor installed in the wind tunnel.

![Figure 2.79: Rotor test stand installed in Glenn L. Martin wind tunnel.](image)

2.11 Other State-of-the-Art Rotor Test Facilities

2.11.1 National Full-Scale Aerodynamics Complex (NFAC)

NASA Ames Research Center houses two of the largest wind tunnels in the world. Largest is an open circuit wind tunnel with a 80- by 120-ft test section [208]. The maximum test section wind speed is about 100 knots. The other is a closed-circuit wind tunnel with a 40- by 80-ft test section, with a peak wind speed capability of 300 knots. Over the years, several rotor aeromechanics testing have been carried out in these tunnels. Both of these facilities employ a common rotor test stand
referred to as Large Rotor Test Apparatus (LRTA) [209, 210].

Figure 2.80: Schematic of Large Rotor Test Apparatus at NASA Ames Research Center.

The LRTA (Fig. 2.80) is a multi-purpose special drive and support system designed to test a number of configurations like isolated rotor, conventional helicopter, tilt rotors, tandem rotors, at thrust levels of up to 52,000 lbs. The rotors are powered by two 3000 HP electric drive motors, capable of counter-clockwise or clockwise rotor drive. The drive power is transferred to the rotor shaft by a two stage transmission limiting the maximum rotor speed to 320 RPM and 6000 HP peak shaft power. The LRTA is instrumented with a five component hub balance to measure steady and dynamic rotor loads as well as an instrumented flex-coupling to measure rotor torque. In addition, the fuselage is installed with a six-component load cell system to measure steady fuselage loads. The rotor control system is swashplate
based and can provide primary control using linear high authority low-speed electric actuators as well as higher harmonic control (0 - 25 Hz) using a limited authority high bandwidth rotary-hydraulic actuators. Finally, the output shaft assembly has a replaceable mating arrangement to accommodate a number of rotor systems like articulated, bearing-less or hingeless rotors. The LRTA is mounted on three adjustable struts from the wind tunnel floor, allowing to set the model at desired pitch or roll orientation.

Figure 2.81: Schematic of rotating hardware used with Large Rotor Test Apparatus at NASA Ames Research Center.

A Rotor Mounted Data Acquisition System (RMDAS) [211] is used to acquire, digitize, and store rotor based rotating frame measurements (Fig. 2.81). The proximity of the data acquisition system to the on-blade sensors and transducers ensures high signal - noise ratio for the data. The RMDAS consists of two concentric mod-
ules, each capable of supporting 64 transducers, by providing excitation, filtering, amplification, signal offset and digitization. The data is stored on the unit and is transmitted wirelessly to the control station at a preset bandwidth. The tunnel specific data, rotor data and other safety parameters are all monitored in-real time to ensure that the rotor is operating at the desired test condition.

2.11.2 NASA Langley Transonic Dynamics Tunnel (TDT)

Although full-scale testing of rotor models is the closest approximation to flight tests, the cost and effort to operate these full-scale facilities is phenomenal. In such a situation, it is justified to test a properly scaled down model of the actual rotor, and carryout aeroelastic examination. The choice of scaling is based on similarity parameters and test objectives, which are discussed in detail in following sections.

The Transonic Dynamics Tunnel is a closed-loop, continuous-flow tunnel with a 16- by 16-ft test section, capable of operating at a range of Mach number, from near zero to Mach 1.2. Rotor models with up to 10-ft diameter rotors can be tested in this test section. Typically, the tunnel is used to test roughly 1/5th scaled rotor models. In general, either the tip Mach number or the Froude number of the scaled rotor can be matched to the full-scale rotor. However, a unique capability of the TDT is the ability to control the density of the test medium using heavy gas (R-134a). This allows to match simultaneously the tip Mach number as well as the Froude number of the scaled model to the full-scale rotor.

The rotor test rig used at this facility is referred to as Aeroelastic Rotor Ex-
A REVIEW OF RECENT ROTORCRAFT INVESTIGATIONS IN THE LANGLEY TRANSONIC DYNAMICS TUNNEL

William T. Yeager, Jr., Matthew L. Wilbur, and Mark W. Nixon

Vehicle Technology Directorate
U. S. Army Research Laboratory
NASA Langley Research Center
Hampton, VA 23681

ABSTRACT

A review of recent rotorcraft investigations conducted in the NASA Langley Transonic Dynamics Tunnel (TDT) is presented. The paper begins with a brief description of the TDT and the rotorcraft testbeds used at the facility. A unique characteristic of the TDT is the use of a heavy gas test medium, so a brief discussion of the beneficial effects of this test medium for model-scale rotorcraft testing is presented. The paper concludes with a discussion of results obtained during recent TDT tests of an active twist helicopter rotor, and stiff- and soft-inplane tiltrotor configurations.

INTRODUCTION

The Langley Transonic Dynamics Tunnel (fig. 1) has a long and substantive history of experimental aeroelastic research, which has made credible contributions to rotorcraft technology and development. The efforts conducted at the TDT, extending from shortly after the tunnel’s inception to the present, have included a wide range of experimental investigations using a variety of scale models and testbeds. TDT research results have made substantial contributions to the technology base needed by industry to design and build advanced rotorcraft systems. This body of work has contributed to supporting rotorcraft research and development programs through the fundamental understanding of phenomena involved, and the introduction of new concepts. For convenience of discussion, the rotorcraft research conducted at the TDT may be divided into two general categories: helicopter research and tiltrotor research.

Helicopter testing has been conducted in the TDT almost since the inception of the facility in 1960, and has generally taken the form of research testing as compared to testing in support of any particular aircraft. Several testbeds have been used for helicopter testing in the TDT and the current testbed, referred to as the Aeroelastic Rotor Experimental System or ARES (figs. 2 - 3), has been in use since 1977. The ARES testbed has been used for investigations involving rotor performance, loads, stability and acoustics. Examples of these investigations are documented in references 1 – 11.

In recent testing, the ARES testbed has been used to evaluate rotors incorporating technologies that may be utilized to meet future needs for increased rotorcraft mission effectiveness. A model rotor system utilizing piezoelectric active fiber composite actuators to produce controlled, strain-induced blade twisting (refs. 12 - 13) has been tested open loop to determine the effect of the active blade twist on rotor-produced vibratory loads and noise. This concept is attractive because it offers an efficient way to achieve rotor individual blade control without the need for hydraulic power in the rotating system. The results of these tests (refs. 14-19) have been encouraging, and have demonstrated that active twist rotor (ATR) designs offer the potential for significant load and noise reduction.

Figure 1. The Langley Transonic Dynamics Tunnel (TDT).

Figure 2. Schematic of the Aeroelastic Rotor Experimental System (ARES) (Fig. 2.82). It is powered by a water-cooled variable frequency synchronous electric motor rated at 47 HP at 12,000 RPM. A two-stage, belt-driven transmission system is used to drive the rotor shaft to boast the available shaft power, and reduce the rotor speed. The rotor is control by a swashplate actuated by three independent hydraulic actuators. In addition, a single hydraulic actuator controls the shaft-tilt of the rotor. The main shaft is so designed to easily accommodate three available rotor hub types: teetering, articulated or hingeless.

A six-component strain-gage based fixed frame balance is placed under the rotor to measure the hub loads and moments. In addition to the tunnel parameters, rotor azimuth position, rotor speed, blade motions, fixed frame accelerations and
pitch link loads are continuously monitored and recorded. A 30-channel slip ring is used to transfer all rotating-system data to the fixed system. An additional high-voltage slip ring is also available to power any rotating frame actuators. Finally, the rotor controls and drive system are enclosed in a streamlined fuselage, and care is taken to structurally isolate it from the rotor system to ensure that body loads are not registered by the hub balance.

Further details about NASA TDT and ARES testbed are included in [212–215].

2.11.3 Co-axial Rotor Test Rig at University of Texas - Austin

Recently, a Mach scale co-axial rotor test rig has been operationalized at University of Texas - Austin [216,217]. The coaxial transmission consists of synchronous serpentine belts and toothed pulleys driven by a 100 HP hydraulic motor. The transmission is mounted on a support column such that the lower rotor plane is 4.32 m above ground. The rotors have a diameter of 2.032 m, and consist of four, constant chord, untwisted blades with a VR12 airfoil profile. Each rotor hub is mounted on a modified ATI Omega 160 6-axis, strain-gage based load cell, enabling measurement of individual rotor loads in the rotating frame. The load cell signals are conditioned and amplified in the rotating frame before passing through slip rings, enhancing the signal to noise ratio.

Additional measurements include fixed-frame accelerations motor torque and power, 1/rev trigger signal and a 60 per revolution optical encoder. Hub loads and accelerations are acquired.
2.11.4 Rotor Testing in DNW Wind Tunnel

Higher harmonic control Aero-acoustics Rotor Test (HART) has been a prominent model scale testing activity in Europe. It has been a large collaborative between German DLR, French ONERA, NASA Langley, and the US Army Aeroflightdynamics Directorate (AFDD). The testing was carried out at with a 40%-geometrically and aero-elastically scaled model of a Bo-105 main rotor in the open-jet anechoic test section of the German-Dutch Wind-tunnel (DNW).

The DNW is the world’s largest acoustic wind tunnel and has outstanding aerodynamic and acoustic properties with low background noise. It has a 6.0 by 8.0 m open-jet configuration test section, where flow velocities of up to 80 m/s (262.5 ft/sec or 155 knots) can be reached. The tunnel also has excellent flow qualities,
since the flow uniformity is quite high and the unsteady disturbance amplitude is quite low over the total testing velocity range.

Figure 2.84: Rotor hub at DLR.

The rotor test stand [218] referred to as ROTEST (Fig. 2.84) is designed for model rotors with a maximum diameter of 4 m to provide good correlation with the corresponding full-scale rotor. The test facility consists of the drive system, the rotor balance, the control system, and the measuring system. The rotor is powered by an axial hydraulic motor connected by hydraulic lines to a remotely located electric drive pump. The hydraulic motor drives the rotor shaft by a tooth belt and has a performance of 130 kW at a maximum rotational speed of 1050 RPM. ROTEST is able to support different hubs for hingeless rotors like the Bo-105 as well as for articulated rotors. The rotor hub is mounted on a five-component
rotor balance, that measures the pitching and rolling moments of the rotor and the horizontal, lateral, and vertical forces. For a separate measurement of static and dynamic load components, the balance contains load cells and piezo-resistive transducers connected to the transmission rods in a serial arrangement. The rotor power is measured by a torque tube mounted between the upper and lower part of the rotor shaft.

The rotor control is realized by a swashplate system consisting of three electrodynamic actuators attached to the fixed system, the swashplate, and the rotating blade pitch rods. The computer controlled actuators provide collective and cyclic blade pitch control by adjusting the non-rotating part of the swashplate. Potentiometers at the blade roots measure the actual incidence angles of all rotor blades during rotation. The actuators for the swashplate control can be exchanged for electro-hydraulic HHC (Higher Harmonic Control) actuators to give the corresponding HHC inputs to the rotor blades. The measuring system provides data from both the body fixed sensors and the instrumentation in the rotating system of the rotor. It consists of miniaturized amplifiers in the rotating frame and a 256-channel slip ring system with a maximum frequency of 10 kHz. It allows to pre-amplify a large number of low-level sensor signals such as bending, torsion and in particular pressure distributions at the rotor blade with high resolution, before transmitting them as analogue signals to the fixed system.
Figure 2.85: Schematic of rotor test stand at Japan Aerospace Exploration Agency.

2.11.5 Rotor Testing at JAXA

Model scale rotor tests are carried out at Japan Aerospace Exploration Agency (JAXA) [219] Low-speed Wind Tunnel. It is a closed circuit tunnel with a 6.5- by 5.5-m test section and a maximum wind velocity of 70 m/s (157 mph, 136 kts). The rotor test rig is referred to as JAXA Multi-purpose Rotor Test Stand (JMRTS) (Fig. 2.85). This rotor test stand was designed to drive different types of rotors in the wind tunnel for measuring aerodynamic and acoustic characteristics of the rotors. A typical configuration is a rotor with four 1.021 m radius, rectangular blades connected to the rotor head by hinges to allow flapping, lead-lagging and feathering motions. The wing section of the blade is NACA0012 with a chord length of 6.5 cm. The linear twist angle for the blades is -8 degree/m. The rotor shaft angle can only be changed together with the fuselage attitude. Rotor is driven with a water-cooled electric motor with a maximum output of 37 hp. Hall-sensors are placed at
the hinges to directly measure the flapping, lead-lagging and feathering angles. A six-component balance is used to measure hub forces and moments. The shaft angle can be adjusted by an attitude control actuator. The rotor system is mounted with a strut to place the rotor in the centre of the test section.
3.1 Introduction to Brushless DC Motor and Controller

Brushless DC motors are electromagnetic actuators, producing mechanical torque in response to electrical current. Figure 3.1 shows various components of a typical brushless DC motor. The copper winding stator encloses a permanent magnet shaft. This shaft is held in-place by a set of low friction radial bearings. A compact planetary gear-head is also installed on the output end of the motor shaft to mechanically augment the torque output from the motor. The stator-rotor assembly is protected by a stainless steel casing. Figure 3.2 presents the transverse view off the brushless DC motor, showing the relative position of each component.

One of the primary difference between the brushed and brushless DC motor is the means by which the motor windings are energized. In conventional DC motors, a ring and brush assembly is used to power the rotating copper winding ensuring continuous rotation of the shaft. This process is termed as commutation. In contrast, there is no commutation hardware in the brushless DC motors, instead they are electronically commutated using a motor controller. The controller energizes the copper windings based on the position of the magnetic rotor in relation to the stator windings. The operating principle of brushless commutation is discussed next.
3.1.1 Operating Principle

For brushless DC motors, the magnetic field generated by the stator and the permanent magnet shaft rotate at the same frequency. Torque is produced because of the interaction between the magnetic fields generated by the stator coils and the permanent magnets. Ideally, the peak torque occurs when these two fields
Figure 3.3: Winding excitation based on back EMF monitoring for commutation.

are at 90 degree to each other and falls off as the fields move together in phase. In order to keep the motor running, the magnetic field produced by the windings need to shift position, as the shaft moves to catch up with the stator field. The sequence of energizing the windings so as to keep the motor in motion is often
termed as commutation. For controlling the brushless DC motors, the knowledge of the position of the motor shaft is required. It can be achieved either by using Hall sensors or by monitoring the back-emf in the motor windings.

For the present application, sensor-less commutation was performed by the motor controller. Consider the sequence in Fig. 3.3. For the motor shaft motion from zero to 60 degree, one of the windings (U) is energized to positive power, the second winding (V) is powered negatively and the third (W) is in a non-energized condition. The rotor position is determined using the progression of the back-EMF in the unpowered winding (W). The controller evaluate the zero crossing of the back-EMF and commute the motor current after a speed dependent pause (30 degree after EMF zero crossing). Back EMF is proportional to the speed of rotation. When stalled or at low speed, the voltage signal is too small and the zero crossing cannot be detected precisely and special algorithms are required to run the motor [220].

3.1.2 Maxon Motor and Controller

Maxon EC-10 [221] precision brushless DC motor was evaluated as an on-blade actuator. It was 10 mm (0.394 in) in diameter, 26 mm (1 in) long and capable of providing 1.5 N-mm (13.27 lb-mil) of continuous torque. It was rated at 8 W and weighed 15 g (0.53 oz). A 4:1 planetary gear-head [222] was installed on the motor, weighing an additional 6.7 g (0.24 oz). A sensor-less commutation controller AECS 35/3 was used to drive the motor. Figure 3.4 shows brushless DC motor and motor controller. Fig. 3.5 shows the internal components of the EC-10 motor.
Figure 3.4: Maxon EC-10 motor with 4:1 gear-head and AECS 35/3 controller.

Figure 3.5: Internal components of a Maxon EC-10 motor.

The AECS (Analogue EC Controller Sensorless) [223] is a 1-quadrant EC amplifier for controlling electronically commutated brushless DC motors. Motor shaft position sensors were not required, rather the back-EMF was monitored for commutation. These controllers could be used for a wide range of input DC voltage range (8-35 V). The maximum continuous current was limited to 5 A. Motor speed could be set to predetermined value, or regulated using a built-in potentiometer. A
speed monitoring output could also be used to read motor speed. It also provides for logic based controls namely: Brake input allows the motor shaft to slow down to a halt, the Direction input adjusts motor direction, and the Disable input can interrupt the power supply to the motor. These controls were used to precisely manipulate the motor output to obtain desired flap amplitudes as will be discussed in Section 3.2. The winding excitation is controlled by integrated power MOS-FET power stages which provide for a high efficiency controller performance.

3.1.3 Maxon EC-10 Motor Characterization

![Figure 3.6: Maxon EC-10 motor torque-current characteristics.](image)

A Magtrol MicroDyne hysteresis dynamometer and Yokogawa WT3000 power analyzer were used to characterize the EC-10 brushless DC motor. A full rpm
a ramp, from free-run to locked rotor, was conducted for various motor input voltages. Motor torque, shaft rpm and winding currents were precisely recorded. Details of the experimental setup and procedure are included in [224].

At a given input voltage, the motor shaft rotates at the rated speed. The potential difference between the back EMF and the supply voltage is sufficient for the motor to draw the rated current and deliver the rated torque (Fig. 3.6). As the motor is driven beyond the rated speed, back EMF increases, which decreases the potential difference across the winding, thereby reducing the current drawn. This, in turn results in a drooping torque. At maximum shaft speed, the supply voltage is equal to the sum of the back EMF and the losses in the motor, and both the current and torque are equal to zero.
Figure 3.8: Maxon EC-10 motor efficiency characteristics.

Figure 3.6 is also referred to as motor torque characteristic and the slope of this plot is termed as torque constant (mNm/A). Figure 3.7 shows the mechanical behavior of the EC-10 motor at two input voltages, and the slope of this plot is termed as speed - torque gradient (rpm/mNm). Both the no-load speed and stall speed increase with increasing input voltage. For a given load torque, higher the input voltage, higher is the output speed (RPM). Finally, Figure 3.8 plots the motor efficiency at various input voltages. The peak motor efficiency was observed only when it was operated at rated speed and voltage, all other operating conditions had a lower efficiency.

To get a better understanding of the brushless dc motor, an electro-mechanical simulation model of the motor was developed [225-230]. Each stator winding con-
Figure 3.9: Maxon EC-10 motor speed-torque characteristics.

sisted of a series connection of a resistor and an inductor with a voltage source representing back EMF. The electrical characteristics of the motor were represented by Eqs. 3.1 and mechanical characteristic by Eq. 3.2.

\[
\begin{align*}
v_{ab} &= R(i_a - i_b) + L \frac{d}{dt}(i_a - i_b) + e_a - e_b \\
v_{bc} &= R(i_b - i_c) + L \frac{d}{dt}(i_b - i_c) + e_b - e_c \\
v_{ca} &= R(i_c - i_a) + L \frac{d}{dt}(i_c - i_a) + e_c - e_a \\
T_e &= k_f \omega_m + J \frac{d}{dt} \omega_m + T_L
\end{align*}
\]

(3.1)

(3.2)

where \(v \) is the phase-to-phase voltages, \(i \) is the phase current, and \(e \) is the phase back-EMFs in the three phases \(a, b \) and \(c \). Also, \(R \) is the phase resistance, \(L \) is the phase inductance, \(T_e \) is the electrical torque, \(T_L \) is the load torque, \(J \) is the
motor shaft rotational inertia, k_f is the friction constant and ω_m is the motor speed (RPM). The back EMF was assumed to be trapezoidal as well [227].

Figure 3.9 shows the comparison of the analysis with the measured data for Maxon EC 10 motor operating under no-load. The motor startup region at low voltage was not modeled in the analysis, good correlation was obtained at voltages above 5 V.

Brushless DC motors are compact, have high torque output, high efficiency, and long operating life [231], and demonstrate superior dynamic response and noiseless operation, making them highly suited for use as on-blade actuator applications where space and weight are critical factors.

3.2 Actuator Control Strategy

Brushless DC motors have been typically used to deliver continuous shaft rotations in response to the input voltages. However, to use these motors as on-blade actuators for rotor primary control, it is required to switch the direction of motor shaft rotation at frequency corresponding to 1/rev (up to 40 Hz) on the Mach scale rotor. Four-bar mechanisms have been traditionally used for converting the rotational motion to oscillatory (flap up-down) motion, but their output is limited to a pre-determined constant amplitude.

For the current research, a control strategy to actuate the flap at any desired frequency and amplitude was developed. Both the frequency and the amplitude of the flap motion were electronically controlled. The AECS motor controller was
capable of controlling both the motor speed as well as the direction of the motor shaft rotation. The direction of the motor shaft rotation was based on the logic level at the direction input terminal. The frequency of the direction logic input controlled the flap frequency and the flap amplitude was controlled by motor input voltage.

In addition to commanding the direction of the motor shaft rotation, the motor input power was disabled (turned off) for a part of the flap cycle. Using the scheme shown in Fig. 3.10, the motor was enabled when the flap deflects away from the mean position (O to A and O to B) and disabled for the rest of the cycle. The aerodynamic restoring moment would passively bring the flap back to the mean position (A to O and B to O). Further, by controlling the motor off-time (duty cycle of the disable logic signal), the amount of energy input to the motor was controlled. Controlling the input voltage and the input power to the actuator allowed for a precise control of the flap amplitude, and helped in lowering the operating motor temperature especially under high load conditions.

An on-blade actuator would operate under high centrifugal loads. Further, testing of a Mach scale rotor, imposes additional demands of scaled up centrifugal loads. To ensure its use as an on-blade actuator, the motor was systematically evaluated to ascertain its structural integrity, performance and repeatability for a range of test conditions.
Figure 3.10: Motor driven trailing edge flap control scheme.
3.3 Bench Top Testing

A motor test stand (Fig. 3.11) was designed to evaluate the actuator and the control scheme on the bench top. Motor response to switching direction at 40 Hz (1/rev for the Mach scale rotor) was observed. The aerodynamic loading was simulated using a set of pre-strained torsion springs (Fig. 3.12). The brushless DC motor was mounted on a reaction torque cell to measure the torque output from the motor.

Torsion springs provided a simulated aerodynamic torsion stiffness of 5.11 N-mm/deg (45 lb-mil/deg). Melexis rotary position Hall sensor was used to record the angular deflection. It is a contact-less rotary position sensor and detects the absolute angular position of a small diametrically polarized magnet attached coaxial with the shaft of the motor. The motor casing temperature and the electrical
Figure 3.12: Detailed view of Bench top motor test stand.

Figure 3.13: Detailed view of actuator torsion loading apparatus.
power consumed by the motor were also monitored.

Figure 3.14: Half peak-peak flap amplitude on bench top, 40 Hz flap frequency.

Figure 3.14 shows the flap amplitudes obtained on bench top at 40 Hz actuation frequency. A range of flap amplitudes was obtained by varying the input voltage field. A 30 degree peak-to-peak amplitude was obtained and repeatability was established. Further, a steady flap mean position (Fig. 3.15) was maintained at various flap amplitudes. Figure 3.16 shows the temperature history for motor operating at peak amplitude and 40 Hz actuation frequency. The motor operated for extended time with no observable degradation in performance. Figure 3.17 shows smooth and consistent flap motion at 40 Hz flap frequency. Bench top tests clearly showed that the maxon EC-10 motor had enough control authority to actuate the flap and provided large amplitudes at the required flap frequency.
Figure 3.15: Flap mean position, 40 Hz flap frequency.

Figure 3.16: Motor casing temperature history for flap operating at peak amplitude.
3.4 Effect of Temperature on Motor Performance

The motor temperature is one of the most critical parameters affecting the motor performance. As the temperature increases, the winding resistance will increase based on the temperature coefficient of the copper winding. Also, the magnetic flux density of the permanent magnet rotor decreases with increase in temperature. These are the two major parameters that dictate the motor performance at elevated temperatures.

The motor characteristics as provided by manufacturer or obtained experimentally are constant strictly only at the ambient temperature the motor was evaluated. As the load on the motor increases, the stator windings consume more current, which heats the copper windings increasing the the coil resistance. An increase in the winding temperature from 25 degree C to 75 degree C causes the winding resistance to increase by nearly 20% [232]. Mathematically, this manifests as decrease in torque and voltage constants. Physically, increase in operating temperature leads to an increase in the no-load motor speed and decrease in the motor output torque.

Additionally, the permanent magnet becomes weaker at higher temperatures (up to 10% decrease at 75 degree C depending on the material properties of the magnet). This effect is reversible, if maximum temperature ratings are not exceeded. However, higher resistance in stator coils and lower magnetic strength in the rotor, reduces the torque output of the motor.

Overall, a decrease of up to 30% in motor output power could be expected from a motor operating at 125 degree C compared to baseline performance.
degree C ambient temperature [233].

![Figure 3.17: Time history of flap motion at 40 Hz flap frequency.](image)

The maximum operational temperature is about 125 degree C for the motors used. If the winding temperature exceeds this limit, winding leakage current may cause a winding breakdown resulting in irreversible damage to the motor. To prevent any irreversible damage, the casing temperature was constantly monitored and kept below 100 degree C.
3.5 Comparison of Maxon EC-10 motor with PZT-5K4 Piezobender

A bench-top experiment was setup to compare the performance of the two actuators namely, 8-layer PZT-5k4 piezo-bender and Maxon EC-10 brushless motor with 4:1 gear-head. The piezo-bender actuator was assembled in-house. The number of layers, width of each layer, size of each layer among other parameters were optimized to ensure maximum d_{31} performance from the piezo-bender. The details of the piezo-bender optimization, assembly and performance are available in [186].

Both the piezo-bender and the brushless DC motor were used to actuate a flap at 40 Hz and were loaded under the same torsional stiffness of 45 mil-lb/deg (5 mNm/deg) using spring loads. The actuators can be compared on the basis of output energy per unit weight. The results are in Table 3.1.

It was observed that the brushless DC motor produced about six times more energy output per unit weight compared to the piezo-bender. This is directly an indication of the torque capability of the actuators; larger the torque output greater would be the capacity to negotiate the aerodynamic and inertial load moments on the trailing edge flap. The piezo and motor driven flaps have different mechanisms to transfer the output to the flap from the actuator. It is to be noted that this test doesn’t include the inefficiencies due to respective mechanisms. Also, at model scale rotors, although both the actuators weigh about the same, the center of mass of piezo actuator is further aft of quarter chord compared to that DC motor. This leads to a heavier rotor with piezo actuated flaps as compared to a rotor with motor actuated flaps.
Table 3.1: Comparison of piezobender and brushless DC motor operating at 40 Hz.

<table>
<thead>
<tr>
<th></th>
<th>Piezobender PZT-5k4</th>
<th>Maxon EC-10 motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load torque</td>
<td>45 mil-lb/deg.</td>
<td>45 mil-lb/deg.</td>
</tr>
<tr>
<td>Max. half peak-peak amplitude</td>
<td>6°</td>
<td>15°</td>
</tr>
<tr>
<td>Output power</td>
<td>120.8 mil-lb/s</td>
<td>740.2 mil-lb/s</td>
</tr>
<tr>
<td>Actuator weight</td>
<td>16.6 g</td>
<td>17 g</td>
</tr>
<tr>
<td>Output energy/weight</td>
<td>0.45 W/kg</td>
<td>2.68 W/kg</td>
</tr>
<tr>
<td>Ratio</td>
<td>1.0</td>
<td>6.0</td>
</tr>
</tbody>
</table>
Chapter 4: Design of Motor - Flap System

A well designed mechanism to transfer the motion from the actuator to trailing edge flap was central to the success of a swashplateless rotor. The on-blade components on a sub-scale rotor were under large g-loads due to scaled up rotational speeds. In addition, the internal volume in the blade was limited. The challenge was to design a compact, lightweight and sturdy mechanism capable of operating under high g-loads, while resulting in minimum drag penalty from exposed parts. The design process was iterative, and major design milestones are discussed next.

4.1 Evolution of Motor - Flap System Design

Figure 4.1 presents the first generation of the motor-flap system design. The main purpose of the mechanism was to transfer the motion from the motor gearhead to the flap and incorporate about a 3:1 gear reduction. The oscillatory motion from the motor shaft was converted to push-pull motion of the flap rod by means of a shaft attachment. The shaft attachment connected to the motor at one end and has an eccentric hole on the other end, causing flap rod to push-pull on the flap mount in response to the back and forth motion of the motor shaft. The flap mount pivots about the hinge axis, producing the flap motion. Figure 4.2 shows the major
components of the first version of the motor-flap system.

Upon testing it was realized that one of the critical areas was the alignment between the motor mount and the anchor. In addition to possibility of misalignment during assembly, the centrifugal force acting on the motor has the tendency to exaggerate this flaw. This was detrimental to smooth operation of the system.
Figure 4.3: Motor-flap system - version 2.

Figure 4.4: Components of motor-flap system - version 2.

The second iteration of the motor-flap system (Fig. 4.3) attempted to remedy the misalignment issue, by manufacturing the anchor and motor mount out of a single stock of metal. This eliminated possibility of misalignment while being assembled. In addition, the motor mount was designed with a cusp to better accommodate
the motor, as well as use the aluminum anchor as heat shield for the motor. A brass collar was also used to retain the motor in place while under centrifugal loads. This significantly reduced any misalignments under rotation. Figure 4.4 shows the major components of the second version of the motor-flap system.

Figure 4.5: Anchor design details.

A lightweight aluminum anchor was designed to bond to the blade spar (Fig. 4.5). The anchor had a cusp to closely conform to the motor profile. The motor was screwed into the anchor and a thin layer of thermal paste was applied between the motor and the anchor cusp to ensure thermal conductivity at all times. This ensured that the whole aluminum anchor (an excellent heat conductor) acted as a heat sink for the motor. A thin brass shim supported the motor at the rear end, and kept the motor from misaligning under the centrifugal loads.

Figure 4.6 shows the final motor-flap system. A thrust bearings was placed in-line with the motor shaft to offload the centrifugal load on the permanent magnet rotor. Additional radial bearings were placed co-axial with the motor shaft to ensure low friction operation and alignment of the motor shaft and flap rod. Figure 4.7
Figure 4.6: Motor-flap system - version 3.

Figure 4.7: Multiple views of the final motor-flap system.

shows multiple views of the system and the complete weight breakdown of the motor-flap system is in Table 4.1.

Figure 4.8 shows conceptually the motor-flap system incorporated in the composite rotor blade and Fig. 4.9 shows the side view of the motor-flap system in the rotor blade. For the most part the system is well within the profile of the blade. At
Table 4.1: Weight breakdown of the motor-flap system.

<table>
<thead>
<tr>
<th>Components</th>
<th>Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuator</td>
<td>17</td>
</tr>
<tr>
<td>Flap anchor</td>
<td>6.8</td>
</tr>
<tr>
<td>Flap</td>
<td>3.2</td>
</tr>
<tr>
<td>Flap rod</td>
<td>1.2</td>
</tr>
<tr>
<td>Radial Bearings</td>
<td>1.1</td>
</tr>
<tr>
<td>Thrust Bearings</td>
<td>1.0</td>
</tr>
<tr>
<td>Flap mount</td>
<td>0.8</td>
</tr>
<tr>
<td>Shaft attachment B</td>
<td>0.7</td>
</tr>
<tr>
<td>Shaft attachment A</td>
<td>0.6</td>
</tr>
<tr>
<td>Brass shim</td>
<td>0.3</td>
</tr>
<tr>
<td>Hall magnet</td>
<td>0.2</td>
</tr>
<tr>
<td>Micro-washers</td>
<td>0.1</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>0.7</td>
</tr>
<tr>
<td>Total</td>
<td>34</td>
</tr>
<tr>
<td>% of Blade Weight</td>
<td>11.2%</td>
</tr>
</tbody>
</table>
the trailing edge, the space is especially limited and the flap mount extrudes outside the blade profile. Also, the frequency and the amplitude of the flap motion were electronically controlled by commanding the motor controller and were not limited by the design of the mechanism.

This system was next evaluated in the rotating frame, first in the vacuum chamber and then on the hover tower. The design of the motor-flap system was carried out iteratively. Several design changes were implemented as a result of testing under various loading conditions. The aim of these iterations was to achieve an optimum configuration, with minimal weight and enough strength to maintain the alignment of various components under centrifugal and aerodynamic loading.
4.2 Comparison of Flap Waveform with Analytical Results

The waveform output from the motor-flap system was analyzed using four-bar analysis. Figure 4.10 is the pictorial representation of the system. The vector equation of motion shown in Eq. 4.1 and the component equations shown in Eqs. 4.2 were used for the mathematical formulation.

\[R_2 \left(\cos \theta_2 \hat{i} + \sin \theta_2 \hat{j} \right) + R_3 \left(\cos \theta_3 \hat{i} + \sin \theta_3 \hat{j} \right) = R_1 \hat{i} + R_4 \left(\cos \theta_4 \hat{i} + \sin \theta_4 \hat{j} \right) \]

\[R_2 \cos \theta_2 + R_3 \cos \theta_3 = R_1 + R_4 \cos \theta_4 \]

\[R_2 \sin \theta_2 + R_3 \sin \theta_3 = R_4 \sin \theta_4 \]

Figure 4.11 shows the input - output response of the four bar system. The input is delivered as a oscillating input from the brushless DC motor and the output is the oscillatory motion observed at the trailing edge flap. As discussed before, the mechanism incorporates about 3:1 reduction gear ratio. This was also observed in Fig. 4.11. Figure 4.12 compares the output from the mechanism to ideal sine wave. Although not identical, the trailing edge flap motion is close to a sinusoidal motion.
Figure 4.11: Analysis of input and output of motor-flap system.

Figure 4.12: Comparison of output waveform from motor-flap system with sine wave.
4.3 Finite Element Analysis of the Motor - Flap System

The flap anchor was the most complicated part of the motor-flap system. It was designed to sustain multiple number of loads. A finite element analysis of the anchor was carried out in CATIA. The 3D CAD model was imported in the structural analysis workbench and the anchor was subjected to loads (Fig. 4.13) calculated at maximum load condition at 2400 rotor RPM.

![Figure 4.13: Loads on the flap anchor.](image)

(a) The centrifugal load was applied as an acceleration field at the center of gravity of the anchor.

(b) The centrifugal force on the flap mount and trailing edge flap applied loads and moments at the flap mount points.

(c) The lift force on the trailing edge flap applied load on the flap mount point.

(d) The centrifugal load due to the motor was applied on the motor attachment point.
(e) The motor output torque was applied at the attachment point as well.

(f) The hinge moment from the trailing edge flap and moment due to lift on the flap were relieved by the bearings and hence not applied on the anchor.

(g) The pitching moment produced due to trailing edge flap deflection was reacted at blade root, about the soft pitch link, and was not applied at the anchor.

The entire geometry was discretized in 8566 elements and 16214 nodes, using parabolic structural elements. Figure 4.14 shows the mesh on the anchor as well as deformation under applied load. The maximum in-plane deformation was observed to under 10 mils (0.25 mm) and maximum out of place deformation was less than 2 mils (0.05 mm).

Figure 4.14: Finite element analysis of the flap anchor.
Chapter 5: **Vacuum Chamber Testing**

Once the suitability of the actuator was established on the bench top, evaluation under centrifugal load was systematically performed in the ten feet diameter vacuum chamber (Fig. 5.1). Testing in a vacuum spin chamber allowed to isolate the aerodynamic and inertial forces on the actuator. As a precursor to evaluating the motor as an actuator, the structural integrity of motor-only and then the motor-flap system under centrifugal load was evaluated. Once the structural integrity was established, the actuator control scheme was tested with motor-flap system operating under centrifugal load.

![Vacuum Chamber at University of Maryland](image)

Figure 5.1: 10 feet diameter vacuum chamber at University of Maryland.
5.1 Motor-only under Centrifugal Load

Figure 5.2 shows the characteristic curve for the Maxon EC-10 motor. This curve was obtained by measuring the motor output rpm at various input voltages with no load on it. The linear region of the characteristic curve was used to compare the performance of the motor at various loads. The motor-gear-head combination was mounted on a rotating arm, 30 in from the rotation center (85% span location on the Mach scale rotor) in the vacuum chamber (Fig. 5.3). A motor input voltage sweep was performed at various centrifugal loads, and the motor shaft rpm and casing temperature were recorded.

Figure 5.2: Variation of motor output at various input voltages operating under no centrifugal load.
Figure 5.3: EC-10 motor mounted on the rotating shaft in vacuum spin chamber.

Figure 5.4: Motor rpm versus input voltages under various centrifugal loads.

Figure 5.4 shows motor performance at various centrifugal loads (vacuum chamber RPMs). Motor rpm increases linearly with input motor voltage and is consistent for various centrifugal loads. Also, it was observed that as the centrifugal load increases, the motor rpm falls slightly. The permanent magnet shaft in the brushless dc motor was supported in position by a set of radial bearings. This could be due to friction in the radial bearings operating under high axial loads. Overall, the motor operated smoothly under centrifugal loads.
5.2 Motor-Flap System under Centrifugal Load

![Motor-Flap System Diagram](image)

Figure 5.5: Motor-flap system mounted on rotating shaft in vacuum spin chamber.

Figure 5.5 shows the motor-flap system mounted in the vacuum spin chamber. Two Hall sensors were used to measure the angular position of the flap at both near and far end of the flap mount as shown in Fig. 5.6. Initially, the motor was operated continuously in one direction (with no oscillations), and the motion from the flap mechanism was observed. Figure 5.7 shows flap motion under centrifugal load, the rotational motion from the motor is converted to flap motion by the flap mechanism. The motor-flap mechanism performed very well. Both the near and far Hall sensors showed similar flap motion. This proved that the trailing edge flap was torsionally stiff and the flap motion was consistent along the flap span. Henceforth, only one Hall sensor was used to measure the flap motion.
Figure 5.6: Close-up view of the motor-flap system in vacuum spin chamber.

Figure 5.7: Flap motion in vacuum spin chamber at 800 RPM.
Next, the actuator control strategy discussed in Section 3.2 was implemented with motor-flap system in the vacuum spin chamber. Figure 5.8 shows the system mounted on a rotating beam in the vacuum chamber. Torsion stiffness (0.90 N-mm/deg (8 lb-mil/deg)) was provided by a flexure to simulate the aerodynamic loading. Figure 5.9 shows the experimental evaluation of the torsional stiffness of the flexure element.

Figure 5.10 show the flap amplitude obtained at 40 Hz actuation frequency at zero and 1200 rotor rpm. Consistent operation was observed, however due to the enclosed environment in a vacuum chamber, there was inadequate cooling of dc motor and sharp temperature rise with increasing input voltage was also observed (Fig. 5.11). The motor heating became an issue, especially under high loading.
conditions (high vacuum chamber rpm) and input voltages. This imposed an upper bound on the flap amplitude obtained at 1200 rpm. This may not be an issue when testing on the hover tower as better motor cooling is possible. The mechanism operated satisfactorily in the rotating environment under high g-loads and motor actuation was successfully accomplished for different rotational speeds.
Figure 5.10: Peak-peak flap amplitude at 40 Hz actuation in vacuum.

Figure 5.11: Motor casing temperature at 1200 rotor rpm in vacuum.
Chapter 6: Fabrication and Structural Testing of Active Blade

6.1 Composite Blade Fabrication

A composite rotor with NACA 0012 profile and a no twist, no taper, rectangular planform was manufactured. The components of a composite rotor blade are presented in Fig. 6.1. The blade was designed to take centrifugal load due to rotation, bending and torsion loading due to airloads. Design on each component is discussed next.

Figure 6.1: Components of a composite rotor blade with an active trailing edge flap.
6.1.1 Composite spar

Spar was a primary load carrying member, it was designed to be the primary member for carrying centrifugal and bending loads. The spar could either be made as a D-spar closed section member or a flat open section design. The D-spar provides better leading edge shape and can take larger loads. However, its complicated to layup and to simplify fabrication, a flat spar design was chosen. Once manufactured it was tested to ensure safe operation under centrifugal loads.

The composite spar was composed of 16 layers of IM8 unidirectional graphite-epoxy fibers, wrapped around an aluminum root insert with attachment holes for blade grip. The fabrication process is listed below:

1. Machine the aluminum root insert with the attachment holes.

2. Cut 8 strips of unidirectional Graphite-Epoxy (0.32 in x 58 in) using a 0.32 in wide aluminum stencil.

3. Use Frekote [234] to coat the mold at least four times, allowing the coat to dry between consecutive applications.

4. Wrap the root insert in film adhesive (FM300 [235]) such that the tips of the adhesive strip come together at the tip of the insert.

5. Using the mold to keep the graphite-epoxy strips lined up, wrap the strips around the root insert and form the spar. Make sure the strips are pulled tightly around the root insert.
6. Once all the eight straps are finished, trim off excess material such that the spar fits within the mold. The length should be slightly longer than 28 in, but not too long. Excessive length could lead to bowed spar once cured.

7. Place spar in mold and close at multiple points using C-clamps.

8. Cure it in the oven at 350 F (177 C) for 60 minutes. The cure cycle is based on FM300 cure cycle.

9. Once cured, clean up the spar and sand down to 28 inches length and 0.32 in wide.

10. Wrap a 1.5 in wide piece of graphite epoxy perpendicularly around the spar where the strips come together at the tip of the aluminum. This is to eliminate de-lamination near the insert tip.

11. Repeat the curing process and this concludes the spar fabrication.

The spar provides for a stiff mounting location for motor-flap system components. A specimen was fabricated and tested in the MTS material testing machine (Fig. 6.2) under tensile loading. Figure 6.3 presents the results from the spar extension testing. Some initial fiber re-adjustment was observed followed by failure of the cross-strap at the neck of the root insert at about 18500 N (4150 lbf) load. A complete failure of the composite spar was observed at about 20000 N (4250 lbf) load.
Figure 6.2: Fabrication and testing of composite spar.

Figure 6.3: Extension test of composite spar.
6.1.2 Leading edge weights

Leading edge weights were required to place the chordwise c.g. at the quarter chord location. Since the space was limited in the nose of the blade, a high density material weights were required. Discrete Tungsten-Carbide rods were used as leading edge weights. These rods were commercially available in two, four and six inches pieces and could be secured better in the blade. Using multiple rods rather than a single unit leading edge weight helped in better integration of these weights in the blade structure.

6.1.3 Foam core

Rohacell [236] foam was used to form the core of the blade. The core needed to be lightweight at the same time be dense enough to provide shape and hold internal components such as leading edge weights. Medium density Rohocell-51 was chosen as core material for the blades fabricated. Following procedure was followed to prepare the foam core:

1. Cut out rectangular piece of foam with sides of blade radius and chord length.

2. Roughly sand the foam in the shape of the blade and cut a half inch slot, 0.1 in deep to accommodate the wires (Fig. 6.4a).

3. Place a 12-wire ribbon in the foam cavity and secure the foam piece in the blade mold (Fig. 6.4b).
4. Cure in oven at 350 F (177 C) for 60 minutes and obtain foam matching blade profile (Fig. 6.4c,d).

5. Cut the foam core along the quarter chord, separating into leading edge piece and trailing edge piece. Carefully sand to accommodate the spar between the two foam core parts (Fig. 6.4e).

6. Cut slots in leading edge foam where the tungsten-carbide weights will fit. Wrap the rods in film adhesive and place them snugly within slot (Fig. 6.4f).

7. Wrap Teflon tape around the motor-flap system slot to prevent it from bonding to the skin. Finally wrap foam pieces and spar in film adhesive (Fig. 6.4g).

6.1.4 Composite skin

IM7/8552 [237] plain weave ± 45 degree carbon-epoxy skin was used to provide the blade shape and torsional stiffness. A quarter chord skin wrap was closed around the leading edge foam and spar, making it a closed box design. Then a single layer of composite skin was wrapped out (Fig. 6.4h) and the whole assembly was fit inside the blade mold and oven cured at 350 F (177 C) for 60 minutes. Once the blade was cured, an outboard section was cut out (Fig. 6.4i), aft of the spar and the motor-flap system was bonded to the spar. The details of system fabrication and assembly are discussed in next section.

Key parameters of the rotor are included in Table 6.1 and component-wise weight breakdown of the composite blade is listed in Table 6.2.
Figure 6.4: Steps for composite blade construction.
Table 6.1: Key parameters of the Mach scale rotor with trailing edge flaps.

<table>
<thead>
<tr>
<th>Airfoil section</th>
<th>NACA 0012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotor radius</td>
<td>33.5 in</td>
</tr>
<tr>
<td>Rotor chord</td>
<td>3.15 in</td>
</tr>
<tr>
<td>Flap chord</td>
<td>0.47 in (0.15 R)</td>
</tr>
<tr>
<td>Flap length</td>
<td>4.5 in (0.14 c)</td>
</tr>
<tr>
<td>Flap location</td>
<td>0.75 - 0.89 R</td>
</tr>
</tbody>
</table>

Table 6.2: Weight breakdown of various components of the composite active blade.

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight (g)</th>
<th>C.G. (%c)</th>
<th>Weight fraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon-epoxy skin</td>
<td>65.7</td>
<td>39.68</td>
<td>22.5</td>
</tr>
<tr>
<td>Uni-graphite composite spar</td>
<td>40.1</td>
<td>25.00</td>
<td>13.7</td>
</tr>
<tr>
<td>Motor-flap system</td>
<td>34.0</td>
<td>44.50</td>
<td>11.6</td>
</tr>
<tr>
<td>Leading edge skin wrap</td>
<td>16.4</td>
<td>16.67</td>
<td>5.6</td>
</tr>
<tr>
<td>Trailing edge foam core</td>
<td>14.2</td>
<td>48.70</td>
<td>4.9</td>
</tr>
<tr>
<td>Leading edge foam core</td>
<td>5.1</td>
<td>16.67</td>
<td>1.7</td>
</tr>
<tr>
<td>Weight (No LE weight)</td>
<td>175.5</td>
<td>35.17</td>
<td>60.0</td>
</tr>
<tr>
<td>Leading edge weights</td>
<td>117.0</td>
<td>5.40</td>
<td>40.0</td>
</tr>
<tr>
<td>Total design weight</td>
<td>292.5</td>
<td>23.26</td>
<td>100</td>
</tr>
</tbody>
</table>
6.2 Motor-flap System: Fabrication and Assembly

The components of the motor-flap system were designed in house using CATIA computer aided design software. It was also used to assess the structural strength of the system using a FEM analysis. Once the design was completed, the parts were also machined in house using a CNC milling machine.

Visual Mill was used to generate the CNC codes required to automate the milling process. Aluminum 6061 was used as stock. The machine process involved facing down the stock to dimensions, milling in the CNC machine, manual drilling and threading operations, followed by finishing cuts. Anchor took the most time to machine as it was the most intricate and critical of all the components. Figure 6.5 shows stepwise design and fabrication of flap anchor.

Once machining was completed, steel rods and radial bearings were installed in the components. The anchor was bonded to the spar of the rotor blade using a high strength high temperature film adhesive. Also, flap mount was bonded to trailing edge flap using same high strength film adhesive. Once the anchor was attached to the spar, flap mount with the flap was installed, followed by shaft attachments and flap rod. A thin shim was bonded between the flap element and the main blade body to minimize air gap. Finally, the brushless DC motor was installed by screwing it into the motor mount. A brass collar was used to further brace the motor to the anchor.

Figure 6.6 shows motor-flap system being integrated into the composite blade. A thermocouple was bonded to motor casing for temperature monitoring and a Hall
sensor was installed on the flap mount to record trailing edge flap deflections. Covers were then taped on to top and bottom surfaces to close off the cavity. A wood putty
was used to smooth out any rough surfaces, improving blade finish and reducing skin drag. The final blades are presented in Fig. 6.7.

Figure 6.6: Integrating motor-flap system in the blade.

Figure 6.7: Completed composite blades active rotor.
6.3 Mass Balancing and Inertia Matching

It was essential to precisely locate the chordwise and spanwise center of gravity (c.g.) of the blades. In general, the chordwise c.g. of each blade was required to be at or slightly ahead of the aerodynamic center of the blade (quarter chord location). This was to avoid any aeroelastic instability that might occur during wind tunnel tests, especially when the torsional stiffness of the rotor was reduced. Figure 6.8 shows the setup to measure the chordwise c.g. location of the blade. The blade was balanced on a smooth steel rod, and the c.g. location was precisely measured using calipers (±0.001 in accuracy). This chordwise c.g. was also tested with blade rotated about its spar, flipping the top and bottom surface, and an average value was used.

![Figure 6.8: Setup for chordwise c.g. measurement.](image-url)
For the spanwise balance, sets of opposing blades (1 & 3 and 2 & 4) were balanced on a see-saw teeter to ensure that the center of gravity is at the center of rotation. Usually a piece of tape was sufficient to correct for any imbalances. Spanwise balancing reduces rotor vibrations and also makes them less susceptible to any structural excitations during rotor spin up. Once they were spanwise balanced, spanwise c.g. location was found for each of the blade. Figure 6.10 shows the setup for measuring the spanwise c.g. of a blade. The spanwise c.g. location was found to be within ± 0.5%R for each of the blades.

In addition, an effort was made to match the flap inertia of the blades as well. The blade with grip was suspended on a set of low friction radial bearings in a support structure. The blade was then swung and the oscillations were recorded using a hall sensor at the hinge. Based on the time period of the oscillations, mass and spanwise c.g. of the blade, blade inertia was experimentally obtained. This method was first checked using a uniform aluminum beam with known properties.
The experimental results obtained were within 3% of the theoretical calculations. For each blade, small weights were embedded ahead of the spar to match the moment of inertia. Table 6.3 lists the measured properties for all the blades. The finished blade weight was within 5% and chordwise c.g. was within 0.5% of the design values. This highlights the tight tolerances and repeatability in the fabrication and integration process.
Figure 6.11: Setup for blade flap-wise inertia measurement.

Table 6.3: Blades weight, c.g. and inertia comparison.

<table>
<thead>
<tr>
<th></th>
<th>Weight (g)</th>
<th>Chordwise C.G. (%c)</th>
<th>Spanwise C.G. (%R)</th>
<th>Flap Inertia (kg \cdot m^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>292.5</td>
<td>23.3</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Blade 1</td>
<td>304.3</td>
<td>23.7</td>
<td>50</td>
<td>0.0642</td>
</tr>
<tr>
<td>Blade 2</td>
<td>304.7</td>
<td>23.2</td>
<td>52</td>
<td>0.0641</td>
</tr>
<tr>
<td>Blade 3</td>
<td>304.2</td>
<td>23.7</td>
<td>51</td>
<td>0.0641</td>
</tr>
<tr>
<td>Blade 4</td>
<td>304.5</td>
<td>23.4</td>
<td>50</td>
<td>0.0643</td>
</tr>
</tbody>
</table>
6.4 Structural Testing of Blades

Experiments were carried out to measure the bending and torsional stiffness of the blades. A rotor blade was considered as a beam in bending (Fig. 6.12) and as a rod in torsion (Fig. 6.13) and analyzed as shown in Eqs. 6.1, 6.2 and 6.3.

Figure 6.12: Blade as a beam in bending.

\[
\frac{d^2 w}{dx^2} = \frac{M}{EI} = \frac{P(l - x)}{EI} \quad (6.1)
\]

\[
\theta_b = \frac{dw}{dx} = \frac{P}{EI} \left[lx - \frac{x^2}{2} \right]
\]

\[
\Rightarrow EI = \frac{P}{\theta_b} \left[lx - \frac{x^2}{2} \right] \quad (6.2)
\]

Figure 6.13: Blade as a rod in torsion.

Torque(\(Pe\)) = \(GJ \frac{d\phi}{dx}\) \(\Rightarrow GJ = \frac{P}{\phi ex} \quad (6.3)\)
6.4.1 Testing using mirror method

A loading setup (Fig. 6.14) was designed and fabricated to load the blade in bending and accurately record the force applied.

![Diagram of loading structure for blade testing](image)

Figure 6.14: Drawing of the loading structure for blade testing.

To obtain the bending slope \(\frac{dw}{dx} \), three mirrors, one close to root, second near the mid-span and third close to blade tip, were placed on the spar of the blade. Laser light was pointed at the mirror and the reflection from the mirrors was recorded on a screen. The motion of the reflected dots with various bending loads was traced on a screen. The screen was placed at least 20 feet from the blade to magnify the small bending slope angles (Fig. 6.15). Additional mirrors were placed along the chord of the blade to measure the blade twist angle. Figure 6.16 shows the loading setup as well as an output trace on the screen.
Figure 6.15: Drawing of the loading structure for blade testing.

As shown in Fig. 6.17, for pure bending the reflected light marker on the screen moves in a vertical direction and for pure torsion, along a horizontal line. Further details about the method are included in [238].
Figure 6.17: Sample output from the mirror-laser method.

Figures 6.18 and 6.19 present the bending slope at various loads. The bending stiffness of the blade was calculated to be $32 \pm 0.5 \, Nm^2$. Figure 6.20 presents the torsion angle for load applied at leading and trailing edge of the blade tip. Torsional stiffness of the blade was calculated to be $34 \, Nm^2/rad$ and shear center at 24.9%c chord location.

Figure 6.18: Beam bending at two station under various loads.
Figure 6.19: Beam bending at three spanwise location under various loads.

Figure 6.20: Blade under torsion load.
6.4.2 Testing using Vicon motion capture system

A major drawback of the mirror method was that only a limited number of mirrors could be tracked. To get a distribution of the properties, closely placed mirrors would be required. Manual simultaneous tracking of mirrors would be cumbersome. Vicon motion capture system eliminates the need for manually tracking the markers.

![Blade with Vicon markers](image1)

Figure 6.21: Blade with Vicon markers.

![Vicon camera setup with calibration wand](image2)

Figure 6.22: Vicon camera setup with calibration wand.
A number of reflective markers were placed on the blade surface (Fig. 6.21) and multiple specialized cameras extract markers localization by triangulation (Fig. 6.22). Figure 6.23 shows various spanwise and chordwise markers tracked by the system.

![Marker placement on blade as measured by Vicon.](image)

The blade was cantilevered at root and a reference marker was placed at the root as well to monitor cantilever root deflections. The deflections along the spar under various tip bending loads is presented in Fig. 6.24. These deflections were then used to calculate bending slope (Fig. 6.25) and curvature (Fig. 6.26), using a central difference formulation. Finally, bending stiffness distribution (Fig. 6.27) could be calculated (Eq. 6.1). This process was repeated for each of the four blades and bending stiffness distribution was calculated (Fig. 6.28).

Further, torsion loads were applied at the blade tip and chordwise deflections were used to calculate the twist angle, twist rate and shear center. The cut-out in the blade to accommodate the motor-flap system primarily affected the torsion stiffness at the sections outboard of the cut location.
Figure 6.24: Blade bending deflection.

Figure 6.25: Blade bending deflection slope.
Figure 6.26: Blade bending curvature.

Figure 6.27: Blade bending stiffness at various loads.
Figure 6.28: Blade bending stiffness at various loads for all blades.

Figure 6.29: Blade torsion angle.
Figure 6.30: Blade torsion twist rate.

Figure 6.31: Blade torsion shear center.
Finally, chordwise bending loads were applied and in-plane deflections were recorded. Blades were found to be an order of magnitude stiffer in-plane compared to out-of-plane bending loads. Table 6.4 summaries the stiffness properties of all the four blades.

![Markers along Spar](image)

Figure 6.32: Blade chordwise bending deflection.

<table>
<thead>
<tr>
<th>Stiffness</th>
<th>Blade 1</th>
<th>Blade 2</th>
<th>Blade 3</th>
<th>Blade 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>EI - flap-wise (Nm²)</td>
<td>35</td>
<td>32</td>
<td>32</td>
<td>36</td>
</tr>
<tr>
<td>EI - chord-wise (Nm²)</td>
<td>690</td>
<td>725</td>
<td>721</td>
<td>689</td>
</tr>
<tr>
<td>GJ - torsional (Nm²/rad)</td>
<td>38/24</td>
<td>38/24</td>
<td>38/24</td>
<td>38/24</td>
</tr>
</tbody>
</table>

Table 6.4: Blade flap-wise, chord-wise and torsional stiffness.
6.4.3 Comparison of mirror and Vicon based methods

A number of studies [239, 240] were conducted at the rotorcraft lab with an aim to access the repeatability and accuracy of measuring stiffness properties using Vicon motion capture system. These also attempted comparison of Vicon method with mirror method as well.

The choice between these two methods was based on speed of implementation and accuracy of measurements. Mirror method proved to be more accurate of the two and its accuracy could be further improved by using higher intensity lasers and increasing the separation between the test article and screen. However, the implementation and data collection process was cumbersome and time consuming. With increasing numbers of mirrors, manual tracking becomes time prohibitive.

For the Vicon method, the speed of implementation and data acquisition from tracking a large number of markers was swift and convenient. As long as good baseline calibrations of the camera system and blade deflections greater than one mm could be achieved, the error in stiffness measurements was limited to 5%. Also, repeatable results were easily achieved using Vicon method.
Chapter 7: Hover Tower Testing

Once operation of the motor-flap system was demonstrated under rotation in the vacuum chamber, hover testing was carried out next to evaluate the system under both aerodynamic and inertial loading. A Mach scale composite rotor, with motor-flap system incorporated, was fabricated and tested in hover.

7.1 Experiments with Stiff Pitch Link

For initial experiments in hover, the blade pitch was constrained, as the objective was to establish adequate trailing edge flap operation. The actuator was operated at various input voltages and the flap amplitude output was observed. The flap frequency was fixed at 40 Hz, to test for the highest 1/rev frequency the flaps would need to operate at. Further, a feedback system was implemented to command the flap at desired operation amplitude. Before spinning the blades in hover, it was ensured that the chord-wise c.g. of the blade was slightly ahead of the quarter chord and that the span-wise c.g. of the two-bladed rotor was at the center of rotation. The trailing edge flaps Hall sensors were calibrated. Figure 7.1 shows the calibration setup using a laser based deflection measurement sensor. Figure 7.2 and Table 7.1 present the calibration for all the four trailing edge flaps.
Figure 7.1: Trailing edge flap deflection calibration setup.

![Laser Triangulation System Clamp Flap](image)

Figure 7.2: Trailing edge flap deflection calibration.

Table 7.1: Calibration co-efficients for trailing edge flaps.

<table>
<thead>
<tr>
<th>Deflection (deg.)</th>
<th>Slope</th>
<th>Intercept</th>
<th>R^2 value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEF 1</td>
<td>76.989</td>
<td>-254.08</td>
<td>0.999</td>
</tr>
<tr>
<td>TEF 2</td>
<td>84.824</td>
<td>-135.24</td>
<td>0.999</td>
</tr>
<tr>
<td>TEF 3</td>
<td>113.830</td>
<td>-240.25</td>
<td>0.991</td>
</tr>
<tr>
<td>TEF 4</td>
<td>93.860</td>
<td>-201.53</td>
<td>0.989</td>
</tr>
</tbody>
</table>
7.1.1 Open Loop Trailing Edge Flap Control

For the open loop tests, the trailing edge flap amplitude at a fixed rotor rpm was recorded. The rotor collective was set at 4 degree for these hover experiments. An input voltage sweep was carried out and flap frequency was fixed at 40 Hz. The motor casing temperature was constantly monitored to ensure actuator operation didn’t exceed desired temperature range.

Figure 7.3: Peak-peak trailing edge flap deflections at 1900 RPM in hover at 40 Hz.

Figure 7.3 presents the peak-to-peak flap amplitude at 40 Hz obtained for various motor input voltages at 1900 rotor rpm. Large flap amplitudes were observed with flap operating under centrifugal, inertial and aerodynamic loads. Repeatability was demonstrated with increasing and decreasing input voltages (Fig. 7.4) at 1800
Figure 7.4: Repeatability in trailing edge flap operation at 40 Hz.

and 2000 rotor RPM. The motor casing temperature stayed within the allowable limits.

Figure 7.5 shows the trailing edge flap motion observed from the motor-flap system integrated in the blade in hover at 2000 rotor rpm, with flap operating at 40 Hz. The motion was smooth and a peak-to-peak amplitude of 15 degree was observed. Also, the trailing edge flap waveform was close to the ideal sinusoidal shape.

Figure 7.6 shows the effect of blade root collective on the trailing edge flap deflection from motor-flap system. Consistent operation was observed and for the blade collectives tested, negligible effect on trailing edge flap deflections were observed.
Figure 7.5: Time history of flap motion at 2000 RPM in hover.

Next, the effect of centrifugal load was studied. Figure 7.7 presents trailing edge flap deflections obtained at a number of rotor speeds. The motor-flap system configuration and blade root collective were kept unchanged, to highlight the effect of centrifugal loads. Centrifugal force is the major load on motor flap system, for a given motor input voltage, the flap deflection obtained decrease with increasing rotor speeds.
Figure 7.6: Effect of rotor collective on trailing edge flap deflections.

Figure 7.7: Effect of rotor speed on motor-flap system output.
7.1.1.1 Improvements in Motor-Flap System

During the development and testing process, several updates to the motor-flap mechanism were made with the aim of improving the output flap amplitude for given input power. The design of various iterations was discussed in detail in Section 4.1 and Fig. 7.8 summarizes the major versions of the motor flap system.

![Version 1](image1)
- Actuate flap using motor
- Introduce a 3:1 gear ratio

![Version 2](image2)
- Reduce misalignment under CF
- Single piece anchor & motor mount
- Retaining collar for motor

![Version 3](image3)
- Thrust bearing for reducing friction
- Cusped motor mount for better heat dissipation

Figure 7.8: Evolution of motor-flap system design.

Aside from the effect of centrifugal load on the motor itself, the various other moving parts in the motor-flap system experienced high load too. This resulted
in increased frictional losses and wear and tear in the parts. As the operational rotor speed envelope of the system was expanded, several modifications were made to the motor-flap system to ensure consistent operation, starting with increasing the alignment of various parts. A small misalignment in the system would magnify under centrifugal loads leading to large losses. To remedy this issue, the motor holder and flap anchor were machined from single stock. These improvements are presented in Fig. 7.9. Better alignment lead to lower frictional losses, and for same rotor speed and input voltage, a higher trailing edge flap deflection was obtained. Repeatability in operation was also established (Fig. 7.10), which was essential for on-blade actuator performance.

![Figure 7.9: Comparison of motor-flap system versions 1 and 2.](image)

As the motor-flap system operational envelope was expanded to higher rotor
RPMs, it was observed that centrifugal loading had strong effect on trailing edge flap deflections obtained. This observation motivated in adding a thrust bearing to the motor-flap system. Additional radial bearings were placed to better negotiate the loads and thrust bearing was added to reduce the friction between the motor output and the flap rod. These changes greatly contributed in improving the system as shown in fig. 7.11.

At this point, the composite rotor blade with motor-flap system has been tested at rotor speeds of up to 2000 RPM. These tests establish that the motor-flap system could provide large flap amplitudes operating under high g-loads. This would be critical for achieving rotor trim using trailing edge flaps.

Figure 7.10: Repeatability in trailing edge flap operation version 2.
7.1.2 Closed Loop Trailing Edge Flap Control

For the open loop tests, the emphasis was placed on achieving repeatable large peak-peak flap amplitudes. Once the open loop flap operation on the hover tower was established, a single-input-single-output PID based controller for the flap amplitude was implemented. Instantaneous flap position from the Hall sensor was fed to the controller and that commanded the motor input voltage. Figure 7.12 is the pictorial representation of the controller.

Figure 7.13 shows the controller maintaining a desired peak-peak flap amplitude of 3 degree at 40 Hz flap frequency. The rotor was spun to 1200 RPM and certain open-loop flap amplitude from the system was obtained. At this point, the
Figure 7.12: Closed loop PID controller.

Figure 7.13: Closed loop controller performance at various rotor speeds.
PID feedback controller was switched on, which adjusted the input voltage to produce the desired flap amplitude. Further, as the rotor speed was increased from 1200 to 1500 RPM, the controller was able to steadily hold the flap amplitude at the desired level. To further examine the performance of the controller, another experiment was conducted, where the rotor speed was held steady at 1200 RPM and the controller was required to operate the flap at various desired flap amplitudes (Fig. 7.14). These experiments demonstrated consistent and repeatable controller operation.

![Figure 7.14: Closed loop controller performance at 1200 rotor RPM.](image)

In addition to commanding the peak-to-peak flap amplitude, it was desired to control the mean position of the trailing edge flap as well. Figure 7.15 shows the flap mean position control being implemented. The peak-peak amplitude was
maintained at 8 degree, the rotor speed was held at 1500 RPM and the flap was operated at 40 Hz. By changing the duty cycle of the direction signal, the flap output was biased. Thus, changing the duty cycle from 50% (balanced/equal flap up and down) to 40% and lower, the flap mean position is changed. The closed loop on amplitude ensures that the peak-peak value remains unchanged. A limited mean position control was demonstrated by this experiment.
7.2 Experiments with Soft Pitch Link

7.2.1 Mechanism of Moment Trailing Edge Flap

Consider an active blade at a pitch setting (θ) with no trailing edge flap deflection (Fig. 7.16). An upward trailing edge flap deflection reduces the effective local camber, reducing local lift ($-\Delta L_1$) but producing a nose up pitching moment ($+\Delta M_1$). The blade pitch increases in response to this moment to reach a new pitch angle ($\theta + \Delta \theta$) until moment equilibrium is established. This pitch change produces an additional lift (ΔL_2) increasing the overall lift on the blade. Thus the immediate response of an upward trailing edge flap deflection is a decrease in local lift, but the response of the blade is to pitch nose up, causing an increase in the overall blade lift.

![Figure 7.16: Mechanism of blade pitching using a moment trailing edge flap.](image)

7.2.2 Design and Calibration of Soft Pitch Link

The aim of swashplateless rotor experiments was to demonstrate blade pitching in response to the moments created by deflecting trailing edge flaps. For these experiments, the blade was assumed to be rigid in torsion, instead the softness in
pitch was provided by replacing the stiff pitch links in the hub (Fig. 7.17) with a new unit whose stiffness could be tuned to a value as desired (Fig. 7.18). A set of radial pitch bearings in the blade grips allowed for low-friction motion of the blade about the pitch axis.

![Figure 7.17: Stiff pitch link on an articulated rotor hub.](image)

The soft pitch link consisted of sets of extension springs mounted on a frictionless linear slider. The spring stiffness were chosen to obtain the desired pitch

![Figure 7.18: Soft pitch link with extension springs for frequency tuning.](image)
stiffness. The travel of the pitch link is calibrated for blade root pitch angle using a Hall sensor. Figure 7.19 shows the calibration setup on the hover stand. A moment arm was used to torque the rotor blade at root. The blade angular motion was measured using inclinometer as well as the blade root pitch sensor. The extension springs used in the slip ring were carefully calibrated independently on the bench top as well.

![Figure 7.19: Soft pitch calibration setup on the hover stand.](image)

Figure 7.20 shows the soft pitch link response to load torque. All the pitch links were demonstrated to have similar torsional stiffness. For different operational conditions, extension springs were replaced to achieve the desired torsional stiffness.
7.2.3 Blade Root Pitch Response

To achieve a desired pitch setting for the rotor at operational rpm, the blade pitch had to be preset before rotation, termed as blade indexing. This essentially required setting the blade root pitch at a high positive angle, the nose down pitching moment from the rotating blade reduces this angle. The index angle depends on blade properties, operation rpm and the pitch spring stiffness. For these experiments, the index angle was set so as to achieve a blade pitch of about 4 degree at 1200 rotor rpm with a pitch spring stiffness of 1.9/rev.

Figure 7.21 shows the time history of the blade root pitching motion in response to trailing edge flap inputs at 1/rev (25 Hz) at 1500 rotor rpm in hover.
Figure 7.21: Time history of blade pitch response to trailing edge flap input at 1500 RPM, 25 Hz flap frequency, 1.55/rev pitch stiffness.

The root pitch stiffness is at 1.55/rev. The blade pitch follows the trailing edge flap input with a delay. Smooth trailing edge flap and blade pitching mechanism was observed.

Further, a sweep of various trailing edge flap amplitudes was carried out and the blade pitch response was recorded. The trailing edge flap input could be thought of as a combination of a steady deflection (i.e., collective trailing edge flap) and oscillating flap deflections (i.e., cyclic trailing edge flap). The cyclic flap was operated at 1/rev frequency, 20 Hz for 1200 rotor rpm and 25 Hz for 1500 rotor RPM.

Figure 7.22 shows the effect of steady flap deflections on the root pitch of the blade. Due to indexing, when the trailing edge flap is aligned with the trailing edge of the blade, the root pitch is about 4° at 1200 rotor rpm. Upwards trailing edge
flap deflection (positive) increased the blade pitch and downwards trailing edge flap deflection (negative) decreased the blade pitch. Similar trend was observed at 1500 rotor rpm. Since the pitch spring is softer for 1500 rpm case, the flattening produced by spinning the rotor is greater than at 1200 rotor rpm. Further, the slope of change in blade collective with change in trailing edge flap collective seems to be similar for both the rotor speeds.

![Blade root collective angle response to trailing edge flap collective](image)

Figure 7.22: Blade root collective angle response to trailing edge flap collective, pitch stiffness of 1.9/rev at 1200 RPM and 1.55/rev at 1500 RPM.

Figure 7.23 presents the cyclic response of the blade pitch to trailing edge flap inputs. For low trailing edge flap inputs, the blade pitch response is comparably small. This could be due to frictional losses in the radial bearings and linear slider in the soft pitch link. As the flap amplitudes were increased, large blade pitch angles were recorded. At 1500 rotor rpm, 18 deg. peak-peak flap cyclic produced 8 deg.
peak-peak blade root pitch cyclic. These experiments demonstrated the effectiveness of trailing edge flaps in producing blade pitching.

Figure 7.23: Blade root cyclic angle response to trailing edge flap cyclic, pitch stiffness of 1.9/rev at 1200 RPM and 1.55/rev at 1500 RPM.
Chapter 8: Wind Tunnel Testing

Once the active blade operation was established on the hover test stand, the suitability of the active trailing edge flaps in trimming the rotor in forward wind speed was assessed. Wind tunnel trim could be understood as adjusting the blade pitch to minimize cyclic blade flapping at desired rotor thrust condition. Conventionally, swashplate pitch actuators were used to trim the rotor by directly commanding the blade root cyclic pitch. A swashplateless trim using trailing edge flaps involved commanding trailing edge flaps and the resulting pitching moment pitched the blade about the root.

When using the torsionally soft rotor, it is important to ensure the blade chord-wise c.g. is at or ahead of quarter-chord to avoid any aeroelastic instability. The test facility and installation procedure is first explained, followed by active blade track and balance. The active rotor was systematically tested, first with stiff pitch links the motor-flap operation was verified under various rotor RPMs and wind speeds. A baseline swashplate trim control inputs were also recorded. Finally the torsional stiffness was reduced to 2/rev and swashplateless wind tunnel rotor trim was attempted using motor operated trailing edge flaps.
8.1 Installation Procedure

The rotor test stand as used for hover test and described in Section 2.1 was moved to the Glenn L. Martin wind tunnel for forward flight testing. The wind tunnel is a closed circuit tunnel with a rectangular test section 11 ft (3.35 m) wide and 7.75 ft (2.36 m) tall, capable to operating at wind speeds of up to 230 miles per hour (102 meters per second). The details of the wind tunnel are described in Section 2.10.

The installation and calibration checklist for the rotor test apparatus in the wind tunnel is listed below:

1. Install the rotor stand in the test section. Make sure that the shaft tilt is zero.
 The mounting structure for the rotor test stand is shown in Fig. 8.1.

2. Connect the two slip ring cables, the balance and swashplate controls cables.

3. Connect the cables to the control box and the data acquisition system.

4. Setup the acquisition and control computer, motor controllers and the dc power supplies.

5. Check if the LabView VI reads all the channels. If not, there is a loose or broken connection.

6. Make sure that the shaft encoder calibrated to correct azimuth location. calibration procedure is detailed in Section 2.4.2. Also, ensure that the sensor is aligned to correct azimuth setting.
(a) Using the two wind tunnel walls, set the rotor at zero azimuth. Measure the distance between the blade lag hinge and the two walls. Zero azimuth is equidistant from both the walls.

(b) Loosen the screws holding the encoder and adjust it to read zero azimuth.

(c) Once adjusted to zero azimuth, make sure to tighten the screws holding the encoder.

7. Calibrate the swashplate control angles. The calibration process and curve was included in Section 2.4.4.

(a) Mount the two axes inclinometer setup on blade grip number one.

(b) Use the stiff pitch links and set blade number one at zero blade pitch and zero blade flap angles.

(c) Record in an excel sheet, the control voltages and the pitch angle at 0, 90, 180 and 270 degree azimuth locations. At each azimuth, ensure that the blade flap angle is zero.

(d) At least five cases of setting the swashplate at various orientations by moving the collective and cyclic controls are needed.

(e) Cover the entire collective and cyclic travel range.

(f) Be careful of the travel limits on each control.

8. Calibrate the blade pitch sensors.

(a) Ensure the blade is at zero azimuth location and zero blade flap.
(b) Loosen the nuts holding the stiff pitch link and turn it to change the length, which changes the blade root pitch.

(c) Calibrate the pitch sensor for each blade for a range of +15 to -5 degree using procedure detailed in Section 2.4.3.

9. Calibrate the blade flap sensor.

(a) Set the blade root pitch at zero and blade at zero azimuth location record the blade flap angle.

(b) Record the bottom most angle, -2, -1, 0, +1, +2 and +5 deg. flap angle.

(c) Follow the calibration procedure in Section 2.4.3.

10. Calibrate the blade lag sensors.

(a) Set the blade root pitch and flap at zero and blade at zero azimuth location record the blade flap angle.

(b) Use the wind tunnel walls to calibrate the lag angle, using the procedure detailed in Section 2.4.3.

11. Check the calibration of the trailing edge flap deflection angles.

12. Connect all the channels to the slip ring terminals as per chart in Fig. 8.5 and 8.7.

13. Finally, use the shaft inclination turnbuckle and set the shaft tilt at desired angle.

For the results presented here the shaft tilt was set at two degree forward.

Figure 8.3 shows the active rotor mounted in the wind tunnel test section. Figure 8.4 shows the view of the control room at the wind tunnel.
Figure 8.1: Mounting structure for rotor test stand in the wind tunnel.

Figure 8.2: Rotor test stand mounted in the wind tunnel.
Figure 8.3: Rotor test stand installed in Glenn L. Martin wind tunnel.

Figure 8.4: View of the control room at Glenn L. Martin wind tunnel.
<table>
<thead>
<tr>
<th>Label</th>
<th>DAQ Ch #</th>
<th>scale</th>
<th>Label</th>
<th>DAQ Ch #</th>
<th>scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Force Power</td>
<td>MOD 2: ai0</td>
<td>3m to -3m</td>
<td>Torque</td>
<td>MOD 2: ai6</td>
<td>0 to -15m</td>
</tr>
<tr>
<td>Normal Force Signal</td>
<td>MOD 2: ai1</td>
<td>5m to -5m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Force Power</td>
<td>MOD 2: ai2</td>
<td>3.5m to 1m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rolling Moment Power</td>
<td>MOD 2: ai3</td>
<td>5m to -5m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitching Moment Power</td>
<td>MOD 2: ai4</td>
<td>1m to -4m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yawing Moment Power</td>
<td>MOD 2: ai5</td>
<td>5m to -5m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torque Power</td>
<td>MOD 2: ai6</td>
<td>0 to -15m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shaft Encoder Power</td>
<td>MOD 2: ai7</td>
<td>shaft encoder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/rev</td>
<td>MOD 1: ai0</td>
<td>5 to -500m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60/rev</td>
<td>MOD 1: ai1</td>
<td>5 to -500m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collective</td>
<td>MOD 1: ai2</td>
<td>3 to 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longitudinal</td>
<td>MOD 1: ai3</td>
<td>3 to 1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lateral</td>
<td>MOD 1: ai4</td>
<td>4 to 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accelerometer X</td>
<td>MOD 1: ai5</td>
<td>3 to 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accelerometer Y</td>
<td>MOD 1: ai6</td>
<td>3 to 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accelerometer Z</td>
<td>MOD 1: ai7</td>
<td>3 to 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil Temperature</td>
<td>MOD 8: ai4</td>
<td>100 to 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Motor 1</td>
<td>MOD 1: ai8</td>
<td>1 to -1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Motor 2</td>
<td>MOD 1: ai9</td>
<td>1 to -1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Motor 3</td>
<td>MOD 1: ai10</td>
<td>1 to -1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Motor 4</td>
<td>MOD 1: ai11</td>
<td>1 to -1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dead Slip Ring Lines</td>
<td>SR # 1</td>
<td>6, 51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SR # 2</td>
<td>1, 18, 49</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 8.5: Channel labels of hub sensor connections for active rotor experiments.

![Figure 8.5](image_url)

Figure 8.6: Blade wire labeling convention.

Figure 8.6: Blade wire labeling convention.
<table>
<thead>
<tr>
<th>Ch #</th>
<th>Blade Wire</th>
<th>Label</th>
<th>DAQ Ch #</th>
<th>scale</th>
<th>ohm</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>2</td>
<td>Motor W1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>3</td>
<td>Motor W2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>4</td>
<td>Motor W3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>7</td>
<td>Red : Power +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>9</td>
<td>TEF Angle</td>
<td>MOD 4: ai0</td>
<td>5 to -500m</td>
<td>in:8.8M / out:31M</td>
</tr>
<tr>
<td>48</td>
<td>11</td>
<td>Black, White : Gnd</td>
<td>Black, White : Gnd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>6</td>
<td>TC + White</td>
<td>MOD 8: ai0</td>
<td>80 to 20</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>TC - Red</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>3</td>
<td>Motor W1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>4</td>
<td>Motor W2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>5</td>
<td>Motor W3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>6</td>
<td>Red : Power +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>8</td>
<td>TEF Angle</td>
<td>MOD 4: ai1</td>
<td>5 to -500m</td>
<td>in:8.8M / out:23M</td>
</tr>
<tr>
<td>32</td>
<td>7</td>
<td>Black, White : Gnd</td>
<td>Black, White : Gnd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>7</td>
<td>Green : Signal +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>TC +</td>
<td>MOD 8: ai1</td>
<td>80 to 20</td>
<td>2.5</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>TC -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>3</td>
<td>Motor W1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>4</td>
<td>Motor W2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>5</td>
<td>Motor W3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>7</td>
<td>Red : Power +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>6</td>
<td>TEF Angle</td>
<td>MOD 4: ai2</td>
<td>5 to -500m</td>
<td>in:8.5M / out:25M</td>
</tr>
<tr>
<td>40</td>
<td>8</td>
<td>Black, White : Gnd</td>
<td>Black, White : Gnd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>8</td>
<td>Green : Signal +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>1</td>
<td>TC +</td>
<td>MOD 8: ai2</td>
<td>80 to 20</td>
<td>3.4</td>
</tr>
<tr>
<td>42</td>
<td>2</td>
<td>TC -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>6T</td>
<td>Motor W1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>7T</td>
<td>Motor W2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>8T</td>
<td>Motor W3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>8B</td>
<td>Red : Power +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>7B</td>
<td>TEF Angle</td>
<td>MOD 4: ai3</td>
<td>5 to -500m</td>
<td>in:9.7M / out:28M</td>
</tr>
<tr>
<td>24</td>
<td>6B</td>
<td>Black, White : Gnd</td>
<td>Black, White : Gnd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>6B</td>
<td>Green : Signal +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>4T</td>
<td>TC +</td>
<td>MOD 8: ai3</td>
<td>80 to 20</td>
<td>2.8</td>
</tr>
<tr>
<td>16</td>
<td>5T</td>
<td>TC -</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 8.7: Channel labels of on-blade connections for active rotor experiments.
8.2 Rotor Track and Balance

The procedure for blade chordwise, spanwise and flap-wise inertia matching was detailed in Section 6.3. The final table for matched rotor blades is reproduced in Table 8.1.

Table 8.1: Blades weight, c.g. and inertia comparison.

<table>
<thead>
<tr>
<th></th>
<th>Weight (g)</th>
<th>Chordwise C.G. (%c)</th>
<th>Spanwise C.G. (%R)</th>
<th>Flap Inertia (kg⋅m²)</th>
<th>Tip Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade 1</td>
<td>304.3</td>
<td>23.7</td>
<td>50</td>
<td>0.0642</td>
<td>Blue</td>
</tr>
<tr>
<td>Blade 2</td>
<td>304.7</td>
<td>23.2</td>
<td>52</td>
<td>0.0641</td>
<td>Silver</td>
</tr>
<tr>
<td>Blade 3</td>
<td>304.2</td>
<td>23.7</td>
<td>51</td>
<td>0.0641</td>
<td>Yellow</td>
</tr>
<tr>
<td>Blade 4</td>
<td>304.5</td>
<td>23.4</td>
<td>50</td>
<td>0.0643</td>
<td>Orange</td>
</tr>
</tbody>
</table>

Once the blades are mounted on the hub, the rotor tracking was carried out. Reflective tapes on the blade tips are illuminated by a light strobe synced to rotor frequency and phase. The blade root pitch was adjusted to ensure all the blade tips are in a plane within half blade thickness. Tracking procedure described in Section 2.6 was used.

8.3 Active Rotor in Forward Flight with Stiff Pitch Link

Preliminary wind tunnel testing was performed with the rotor stiff in torsion. The aim was to establish active flap performance in forward wind speed.
Figure 8.8 shows the trailing edge flap amplitudes obtained at various operating conditions. For each test condition, the flap was synced with rotor and excited at 1/rev flap frequency. Two important observations were made from these results. First, for a given rotor speed, the trailing edge flap performance was not strongly affected by forward wind speed. Second, for a given forward wind speed, increasing centrifugal load results in decreased flap amplitude for same input power. This was as expected from the hover experiments.

Figure 8.8: Trailing edge flap amplitude at 40 Hz for various rotor speeds and wind speed.
8.4 Rotor Trim Algorithm

The objective of wind tunnel trim was to counter the cyclic blade root flapping. This ensures that the rotor thrust was always aligned with the rotor shaft and only coning was observed in the blade flap motion.

8.4.1 Conventional Swashplate Rotor Trim

For conventional swashplate rotors, the trim was achieved by adjusting the cyclic blade pitch inputs to the rotor via the swashplate. Hall position sensors were installed at the blade flap hinge.

The blade flapping and rotor azimuth data was used to resolve the flap motion.

Figure 8.9: Trim procedure using swashplate controls.

The blade flapping and rotor azimuth data was used to resolve the flap motion.
in terms of rotor azimuth. In each data acquisition cycle, a number of rotor revolutions were captured. These multiple revolution data was then averaged to generate a phase resolved blade flap motion. The blade coning angle was removed from the data and longitudinal and lateral cyclic angles were calculated. This process was carried out for all the blades and an averaged lateral and longitudinal flapping angles were calculated for the rotor. Cyclic pitch inputs were then chosen to cancel cyclic flap angles. For an articulated rotor with low hinge offsets, the rotor flap response lags pitch input by about quarter rotor revolution. This phase was introduced at the swashplate by installing the lateral and longitudinal pitch servos 90° offset of the flap locations. This iterative process was carried out until lateral and longitudinal flapping was negotiated to be about zero. Detailed explanation was presented in Section 2.7 and a concise chart is reproduced in Fig. 8.9.

8.4.2 Swashplateless Rotor Trim

For a swashplateless rotor, the controls were the cyclic deflection of the trailing edge flaps. The motion of the trailing edge flaps, produced a blade pitching moment that changed the pitch of the blade. This change in the blade pitch in turn caused change in the blade flap motion. The pre-pitch applied to the blades is carefully set to ensure that each blade reached the same steady pitch angle at the operation rotor speed. The flap mean position was only changed in a limited amount to reject any disturbances, but primarily cyclic pitch control was implemented with motor actuation.
Figure 8.10: Trim procedure using trailing edge flaps.
A closed loop controller was employed to ensure that the trailing edge flaps operated at correct phase difference and in sync with the rotor azimuth. In addition, a closed loop controller maintained the desired trailing edge flap amplitude.

Figure 8.10 shows the flow chart of the control algorithm as implemented in LabVIEW data acquisition and control software. Once the connection with the hardware and power supplies is verified, the data acquisition loop is initiated with collecting data at desired rate. Care was taken to ensure that data for multiple rotor revolutions were captured so any measurement error could be minimized by averaging. The blade root flap data is then processed to calculate the cyclic flapping. Then the trailing edge flap controls are provided to counter these flapping. Closed loop controllers ensure flaps operate at desired amplitude, frequency and phase locking. Once the trim inputs were applied, the data from the six degree of freedom hub balance is processed through a coupled matrix to compute hub loads. Each data acquisition cycle is then phase averaged and written into a separate file that holds the average computed data for each cycle.

8.4.3 Bench-Top Proof of Concept for Swashplateless Trim

Before testing the closed loop trailing edge flap amplitude and phase controllers (TEF controllers) on the hover stand, a bench-top verification was carried out. The four blades were secured on the bench top and were first systematically tested to ensure that they all operate at the desired trailing edge flap amplitude and with the correct phase offset. Also, the flaps were loaded with torsional loads as a simulated
aerodynamic loading. Figure 8.11 shows the TEF controllers maintaining the desired trailing edge flap operation for each individual blade. The target wave (black-solid) was matched as close as possible by the controller on trailing edge flap one (red-dotted-square). The remaining trailing edge flaps were also operated with proper phase offset.

Figure 8.11: Bench top verification of TEF controller.

Figure 8.12 shows the trailing edge flap waveforms phase for two, three and four blade shifted by 90, 180 and 270 degree respectively. This compares the waveform shapes of all the trailing edge flaps deflections. Also, a transfer function based on hover tower experiments with soft pitch link was implemented and blade flap response was simulated for actual trailing edge flap inputs. The trim methodology
discussed in Fig. 8.10 was employed. This allowed to check, on the bench-top, if these flaps would be able to trim the rotor. Once bench-top verification was established, the active rotor was tested in the wind tunnel and swashplateless trim using trailing edge flap inputs was attempted.

![Phase shifted TEF waveforms.](image)

Figure 8.12: Phase shifted TEF waveforms.

8.5 Active Rotor Trim in Forward Flight

Wind tunnel trim implies minimizing the cyclic blade root flapping using cyclic pitch controls. This ensures that the rotor thrust was always aligned with the rotor shaft and only coning (steady blade flap) was observed in the blade flap motion. For swashplateless rotor, the controls were the cyclic deflections of the trailing edge flaps.
The motion of the trailing edge flaps, produced a pitching moment that changed the pitch of the blade. This change in the pitch caused change in the blade flap motion.

The blades were pre-indexed to achieve 2 degree blade pitch at operating RPM. The rotor was first spun to 900 RPM and then the wind was turned on, with gradual increase in the wind speed to 30 mph. Once rotor trim was achieved at 30 mph, the wind speed was increased in steps of 5 mph, progressively trimming the rotor at each wind speed. Once rotor trim was achieved at 50 mph, the wind speed was gradually reduced to zero and finally the rotor RPM was reduced to zero as well. Under no circumstances, should the rotor speed be reduced until the wind has been completely turned off. This ensured rotor and wind tunnel safety while swashplateless rotor trims were attempted.

![Diagram showing Cyclic TEF Deflection vs. Wind Speed](image)

Figure 8.13: TEF deflection for rotor trim at 900 RPM and 2/rev torsion stiffness.
Figure 8.14: TEF deflection for rotor trim at 900 RPM and 1.75/rev torsion stiffness.

Figure 8.15: TEF deflection for rotor trim at 1200 RPM and 2/rev torsion stiffness.
Figure 8.13 and 8.14 show the trailing edge flap input required to trim the rotor operating at 900 RPM at various wind speeds (advance ratio is wind speed non-dimensional by rotor tip speed) and with torsional stiffness of 2/rev and 1.75/rev respectively. The symbols are test data and the solid lines are trends predicted by a preliminary analysis. Figure 8.15 shows the cyclic trailing edge flap deflection required to trim the rotor operating at 1200 RPM with 2/rev torsional stiffness. These results show that a swashplateless rotor can be trimmed in wind tunnel using trailing edge flaps, provided the rotor was made torsionally soft compared to conventional rotor.

Figure 8.16 compares the blade root pitch angle required for rotor trim. The swashplate trim case represents the rotor trim achieved using pilot pitch inputs from the control console. The TEF trim case is the swashplateless trim condition. It contains the blade pitch angles, recorded at the soft pitch link, produced as a response to the trailing edge flap deflections. Irrespective of the method by which the rotor trim was achieved, as long as the operating conditions were same, the blade pitch response was similar to one another. Also, these angles were predicted well by simple analysis as well.

Finally, Fig. 8.17 presents the blade pitch response for trimmed flight at various advance ratios. It includes swashplateless trim flight condition data points for rotor operating at 900 and 1200 RPMs. The blade pitch response trends look consistent with advance ratio, larger cyclic pitch was required for higher advance ratios.
Figure 8.16: Blade root pitch for rotor trim at 900 RPM.

Figure 8.17: Blade root pitch for trimmed rotor at 900 and 1200 RPM.
8.6 Hub Loads Comparison - Swashplate v/s Swashplateless Trim

A comparison the hub loads between swashplate and swashplateless trim rotor is presented here. First with trailing edge flaps inactive and providing pitch inputs through swashplate actuators, baseline loads were recorded. These were then compared with the rotor loads observed in swashplateless trim rotor.

Irrespective of the choice of trim method, the rotor was operating at the same mean thrust level 8.18. Compared to the baseline swashplate trim, the 1/rev normal force loading was lower for the swashplateless trim. These 1/rev loads arise due to blade to blade differences in the rotor system and as such are hard to address using swashplate inputs. Since swashplateless trim using trailing edge flaps allows individual blade control to minimize each blade flapping, these differences can be accounted for and corrective control inputs to minimize them could be achieved. Thus, swashplateless rotor controls were able to better address the loads arising from rotor dissimilarity.

The trailing edge flap input was not a perfect 1/rev sinusoid, but only 1/rev amplitude was targeted. Some amount of higher harmonics were present in the input. So hub load response at higher harmonics was observed as well.

In general, higher in-plane loads (Figs. 8.19, 8.20 and 8.21) were observed for swashplateless trim rotor compared to baseline with conventional swashplate trim. This could be due to the drag of trailing edge flap element operating in a high dynamic pressure region of the blade. Although efforts were made to minimize gaps, however since only a single trailing edge flap was used, larger amplitudes were
required to trim especially at higher advance ratios. This could have contributed to increased sectional drag of different blades and thus an overall higher in-plane force.

Due to the pitching moment (Figs. 8.22, 8.23 and 8.24) induced by the trailing edge flap deflections, a higher 1/rev hub moment was observed. Some response at higher harmonics were also observed.

Finally, torque harmonics are presented in Fig. 8.25. Unfortunately, the baseline values were not correctly recorded during the experiment and hence only swashplateless trim values were included.

These hub load comparisons are to be looked into further details to completely understand the effect of swashplateless trim on these loads.
Figure 8.18: Harmonic components of normal hub force at various advance ratios.
Figure 8.19: Harmonic components of axial hub force at various advance ratios.
Figure 8.20: Harmonic components of side hub force at various advance ratios.
Figure 8.21: Harmonic components of in-plane hub force at various advance ratios.
Figure 8.22: Harmonic components of rolling hub moment at various advance ratios.
Figure 8.23: Harmonic components of pitching hub moment at various advance ratios.
Figure 8.24: Harmonic components of net hub moment at various advance ratios.
Figure 8.25: Harmonic components of shaft torque at various advance ratios.
8.7 Error Estimates in the Experimental Data

Errors in the experimental data could be thought of as either systematic errors or random errors. Systematic errors could arise due to bias in the measurement technique, experiment procedure or errors in calibrations. Unfortunately, systematic errors cannot be removed by averaging the data, since the bias in measured quantities always skews the data in same direction every time the process is repeated. Only careful experimentation and experience can help in avoiding these errors and as such these errors are hard to quantify.

Random errors arise due to fluctuations in the measurements. These could be introduced due to limited precision of sensors, changes in ambient conditions not accounted for in the measurements and noise in the data acquisition process. These errors can be minimized by repeating the measurement multiple number of times and taking an average value as representative measurement. Frequent baseline data points (referred to as zero readings) were taken and data was appropriately adjusted to negate any errors due to drift in the sensors. Random errors can be statistically estimated by calculating standard deviation of multiple samples. Standard deviation represents the amount of variation of data from the mean value.

Figures 8.26 and 8.27 present the mean data and one standard deviation dispersion of 200 rotor revolutions data samples of trailing edge flap deflections and blade root pitch angles respectively at 1200 RPM and 0.28 advance ratio in the wind tunnel. The maximum error in peak to peak value of trailing edge flap deflection was found to be ± 0.2 degree and ± 0.1 degree for blade pitch measurements.
Figure 8.26: Standard deviation in trailing edge flap deflection data.

Figure 8.27: Standard deviation in blade pitch data.
8.8 Scalability Assessment for Full Scale Applications

Testing on-blade actuators in the Mach scale rotor presented challenges of limited space and scaled up centrifugal loads. Figure 8.28 presents ratio of g-loads on Mach scale to that on UH-60 rotor calculated at 75% R spanwise location. To match the full-scale centrifugal load, the 6 feet diameter Mach-scale rotor has operate at 800 RPM only.

![Figure 8.28: Comparison of g-loads.](image)

In the current study, hover testing with stiff pitch links were carried up to 2000 RPM, hover tests with soft pitch links at up to 1500 RPM and wind tunnel trim has been demonstrated at up to 1200 RPM. All the testing on the Mach scale
has been done at g-loads significantly higher than the full-scale g-loads.

For a full-scale rotor, on-blade components experience lower centrifugal load compared to Mach-scale rotor. At the same time, full-scale provides larger internal volume to accommodate bigger actuators and support mechanisms. However, larger actuation authority would be required to drive the active flaps. Figure 8.29 presents the maximum continuous torque output from the brushless DC motor with motor diameter. Each data point is a Maxon precision brushless DC motors, having the same construction and technology as the EC-10 motor evaluated in the current study.

![Motor torque scaling with diameter.](image)

Figure 8.29: Motor torque scaling with diameter.

The data points represent the current off-the-shelf EC brushless motors avail-
able from Maxon. The torque output scales with cube of the motor diameter. The motor weight as well as the motor shaft inertia also scale up. But on full scale rotor, the centrifugal load and the actuation frequency for primary control will reduce and the available space for accommodating actuator would increase.

Figure 8.30: Full-scale sectional model for trailing edge flap.

Finally, to explore the scalability of the motor-flap system for full-scale applications, a model with a section of S-434 rotor blade has also been designed. Figure 8.30 shows a section of full-scale blade with a 16 mm diameter Maxon brushless DC motor as actuator. The model is being fabricated and once completed would be tested first in the vacuum chamber under matched centrifugal loads and then in open jet wind tunnel.
Chapter 9: **Summary and Conclusions**

9.1 **Summary**

The focus of this research was to demonstrate a four blade rotor trim in forward flight using integrated trailing edge flaps instead of using a swashplate controls. A compact brushless DC motor was evaluated as an on-blade actuator, with the possibility of achieving large trailing edge flap amplitudes. A control strategy to actuate the trailing edge flap at desired frequency and amplitude was developed and large trailing edge flap amplitudes from the motor (instead of rotational motion) were obtained. Once the actuator was tested on the bench-top, a lightweight mechanism was designed to incorporate the motor in the blade and actuate the trailing edge flaps. A six feet diameter, four bladed composite rotor with motor-flap system integrated into the NACA 0012 airfoil section was fabricated. Systematic testing was carried out for a range of load conditions, first in the vacuum chamber followed by hover tests. Large trailing edge flap deflections were observed during the hover testing, and a peak to peak trailing edge flap amplitude of 18 degree was achieved at 2000 rotor RPM in hover. A closed loop controller was designed to demonstrate trailing edge flap mean position and the peak to peak amplitude control. Further, a soft pitch link was designed and fabricated, to replace the stiff pitch link and
thereby reduce the torsional stiffness of the blade to 2/rev. This soft pitch link allowed for blade root pitch motion in response to the trailing edge flap inputs. Blade pitch response due to both steady as well as sinusoidal flap deflections were demonstrated. Finally, tests were performed in Glenn L. Martin wind tunnel using a model rotor rig to assess the performance of motor-flap system in forward flight. A swashplateless trim using brushless DC motor actuated trailing edge flaps was achieved for a rotor operating at 1200 RPM and an advance ratio of 0.28. Also, preliminary exploration was carried out to test the scalability of the motor driven trailing edge flap concept. In conclusion, the concept of using brushless DC motors as on-blade actuators, actuating trailing edge flaps has the potential to replace the current mechanically complex swashplate with a hydraulic-free swashplateless system and thereby reduce overall weight and hub drag.

9.2 Conclusions

The objective of the dissertation was to experimentally demonstrate that a swashplateless rotor trim could be achieved. Over the years, several analytical studies have concluded that in-principle a torsionally soft rotor, with blade torsional frequency of 2/rev, could be controlled using trailing edge flap inputs. However, limited stroke from smart material actuators such as piezobenders and piezostacks has been a major limitation in achieving the goal of rotor primary control using Individual Blade Control (IBC). To address this shortfall, compact brushless DC motors were evaluated as on-blade actuators. Systematic evaluation and focussed
design and fabrication efforts were made to integrate Maxon EC-10 brushless DC motor in a Mach scale composite rotor blade and actuate a trailing edge flap. The key conclusions of this research effort are summarized below:

1. Maxon EC-10 brushless DC motor was examined as an on-blade actuator to drive trailing edge flaps. A motor control strategy using Maxon AECS 35/3 controller was successfully implemented, to obtain flap amplitudes instead of rotational motion from the motor, to actuate the trailing edge flap at desired amplitude and frequency. The control scheme allowed precise control of trailing edge flap amplitude and frequency electronically, independent of any motor-flap mechanism.

2. A bench-top test setup was designed, with pre-strained torsion springs to simulate aerodynamic loading, and parameters like flap amplitude, motor current and temperature were monitored. The control strategy developed was implemented and a maximum half peak to peak amplitudes of 15 degree from the motor operating at 40 Hz under simulated torsional loads was obtained. Sufficient actuation moment capability was demonstrated and flap amplitude repeatability was established. Further, no hysteresis in flap amplitude with increasing and decreasing input voltages was observed. Motor temperature was identified as an important parameter affecting actuator performance. The motor was operated at 40 Hz and 15 degree half peak to peak amplitude under torsional load for an extended time. The motor temperature was remained below the allowable limit of 100 degree C.

3. The motor performance was independently tested under centrifugal loads in a ten
feet diameter vacuum chamber. The motor was tested under the same centrifugal loads as it would experience in the the rotor blade. Although, a reduction in motor output was observed with increasing centrifugal load, the motor remained structurally intact and its operation remained consistent.

4. A focussed effort was made to design a compact motor-flap system that could smoothly operate trailing edge flaps under centrifugal loads. Efforts were made to minimized exposed parts and associated drag penalty. The motor-flap mechanism was fabricated and successfully tested in vacuum chamber under various centrifugal loads. The system operated smoothly under the centrifugal loads. However, inadequate motor cooling limited the maximum peak to peak flap amplitude to eight degree at 40 Hz in vacuum chamber at 1200 RPM.

5. A composite rotor was constructed with integrated motor-flap system. In addition to careful composite layup and fabrication process, chordwise and spanwise mass balancing and flap-wise inertia matching were carried out to minimize blade to blade dis-similarities. An experimental setup was designed and manufactured to apply precise bending and torsional loads on the active rotor blades. The blades were then tested and blade deformations were recorded using a Vicon motion capture system. The active blade bending and torsional stiffness were found close to be $32\ Nm^2$ and $38\ Nm^2/rad$ respectively.

6. For initial experiments in hover, the blade pitch was constrained, as the objective was to establish adequate trailing edge flap operation. The trailing edge flap frequency was fixed at 40 Hz and flap amplitudes at various rotor speeds and
motor input voltages were recorded. The rotor was tested up to 2000 RPM in hover and peak to peak trailing edge flap amplitudes of up to 18 degree were obtained. Motor temperature was well below the critical limit over entire input voltage range. Repeatability in motor-flap system operation was demonstrated with increasing and decreasing input voltages at 1200, 1800 and 2000 rotor RPM.

7. A single-input-single-output PID based controller for the trailing edge flap amplitude and mean position control was implemented. It was successfully demonstrated by holding the trailing edge flap amplitude at desired value with increasing rotor speed from 1200 to 1500 RPM. The controller was also demonstrated to command the motor to achieve desired trailing edge flap amplitudes.

8. A soft pitch link was designed and fabricated to allow lowering the blade torsional stiffness to 2/rev. This allowed the blade root pitch to respond to trailing edge flap inputs. The blade collective and cyclic root pitch control were demonstrated using trailing edge flap inputs instead of conventional swashplate controls. The rotor with soft pitch links tuned to 1.55/rev, was tested to 1500 RPM in hover and peak to peak blade pitch output of up to seven degree at 40 Hz actuation was demonstrated.

9. Wind tunnel demonstrations of swashplateless rotor trim were successfully carried out. A rotor trim algorithm using trailing edge flap inputs instead of swashplate controls was developed. The trim algorithm was implemented and wind tunnel trim of the rotor operating at 1200 RPM and an advance ratio of 0.28 was successfully achieved. The trailing edge flaps were also found effective in addressing
1/rev blade dis-similarities. A lower 1/rev hub normal force was observed for the rotor trimmed using individual blade flaps compared to swashplate trim.

10. Preliminary scaling assessment was carried out and a full-scale sectional model for wind tunnel testing was designed.

9.3 Recommendations for Future Work

The following recommendations are made for extending the current research effort.

(a) Extend the hover testing and wind tunnel demonstration to the design rotor speed of 2400 RPM.

(b) Manufacture an active blade with larger trailing edge flaps to reduce the control input requirements at low advance ratio as well as extend the trim capability to higher rotor loads.

(c) Implement a more effective trailing edge flap mean position control, to add the collective pitch authority to the active rotor system.

(d) Implement a more robust closed loop controller to include a faster loop closure implementation. This would help with better phase locking of control inputs to rotor azimuth.

(e) Use comprehensive analysis to achieve better theoretical predictions of trim inputs required as well as better understanding of the hub loads.
(f) Fabricate and wind tunnel test the full-scale model of motor actuated trailing edge flap system in a non-rotating but high dynamic pressure conditions.
Appendix A: **Technical Drawings**

A.1 RPM Geartooth

A.2 Torque Membrane

A.3 Fabricast manufactured Signal Slip Ring - 1

A.4 Fabricast manufactured Signal Slip Ring - 2

A.5 Fabricast manufactured Power Slip Ring

A.6 Composite Blade with Trailing Edge Flap

A.7 Top View of Blade Layout

A.8 Spar Assembly

A.9 Root Insert for Composite Spar

A.10 Flap Anchor

A.11 Flap Mount

A.12 Flap Rod

A.13 Shaft Attachments A

A.14 Shaft Attachments B

A.15 Soft Pitch Link
A.2 Torque Membrane

SHEAR MEMBRANE

All dimensions in Inches
Material: Stainless Steel
Scale 1:1

1.900
.800
.625
1.900
.195
3.525
3.100
.200

80 deg. draft angle
85 deg. draft angle

A

Top View

Section cut A-A (Scale 2:1)
A.4 Fabricast manufactured Signal Slip Ring - 2

CHARACTERISTICS

NUMBER OF RINGS = 64
CURRINT = 1 AMPs
VOLTAGE = IRAN GATE
WIRING = 1200 VAC
DYNAMIC RESISTANCE = .010 OHM MAX.
SPDRS = 2500 RPM
MATERIALS OF CONSTRUCTION
CON. SLIDER RINGS
SLIDE CONTACT BRUSHES
STEEL BRUSHES - (4000 PLUS)
ALUMINUM HOUSING - (3000 PLUS)
STEEL HOUSING FLANGE - (600 PLUS)
C-10 BRUSH (4000 PLUS)
CAST BRASS (4000 PLUS)
SHIELDED BEARINGS
TOPOLOGY LEAD WIRES

FABRICAST P/N: 1186-75-64-60U
A.5 Fabricast manufactured Power Slip Ring
ROTOR BLADE WITH TEF

All dimensions in Inches
Scale 1:3

Section cut A-A

Isometric view

Side view (scale 1:1)

Front view

Bottom view

0.39
0.32
0.188

0.36

0.788
0.1

1
28

3.15

4.62

6
3.5

0.472
A.7 Top View of Blade Layout
A.8 Spar Assembly

All dimensions in Inches
Material: Graphite-epoxy fiber / Aluminum 6061
Scale 1:3

COMPOSITE SPAR

Side view
Isometric view
Top view

0.1
0.5
0.05
28
0.32
0.1
0.05
0.5
A.9 Root Insert for Composite Spar

All dimensions in Inches
Material: Aluminum 6061
Scale 2:1
FLAP ANCHOR

All dimensions in Inches
Material: Aluminum 6061
Scale 1:1
A.11 Flap Mount

FLAP MOUNT

All dimensions in Inches
Material: Aluminum 6061
Scale 3:1

FLAP MOUNT

Top View

Front View

Side View

Isometric view

All dimensions in Inches
Material: Aluminum 6061
Scale 3:1
A.12 Flap Rod

FLAP ROD

All dimensions in Inches
Material: Aluminum 6061
Scale 3:1
A.13 Shaft Attachments A

SHAFT ATTACHMENT 'A'

All dimensions in Inches
Material: Aluminum 6061
Scale 4:1

Front view

Left view

Right view

Isometric view

0.092
0.113
0.18
0.059
0.295
0.159
0.039
0.295
0.159
SHAFT ATTACHMENT 'B'

All dimensions in Inches

Material: Aluminum 6061

Scale 4:1

SHAFT ATTACHMENT B

All dimensions in Inches

Material: Aluminum 6061

Scale 4:1

SHAFT ATTACHMENT 'B'

All dimensions in Inches

Material: Aluminum 6061

Scale 4:1
A.15 Soft Pitch Link

SOFT PITCH LINK

Material: Aluminum 6061
Scale 1:1

All dimensions in Inches
Bibliography

[235] Cytec. Data-sheet: FM 300 High-Shear Strength Modified Epoxy Film Adhesive.

[236] Rohacell. Technical Information: Rohacell IG/IG-F.

