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Phylogenomics refers to the use of genome-scale data in phylogenetic analysis.

There are several methods for acquiring genome-scale, phylogenetically-useful data

from an organism that avoid sequencing the entire genome, thus reducing cost and

effort, and enabling one to sequence many more individuals. In this dissertation we

focus on one method in particular — rna sequencing — and the concomitant use

of assembled protein-coding transcripts in phylogeny reconstruction. Phylogenomic

workflows involve tasks that are algorithmically and computationally demanding, in

part due to the large amount of sequence data typically included in such analyses.

This dissertation applies techniques from computer science to improve methodology

and performance associated with phylogenomic workflow tasks such as sequence clas-

sification, transcript assembly, orthology determination, and phylogenetic analysis.

While the majority of the methods developed in this dissertation can be applied

to the analysis of diverse organismal groups, we primarily focus on the analysis of

transcriptome data from Lepidoptera (moths and butterflies), generated as part of

a collaboration known as “Leptree”.
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Chapter 1: Introduction

1.1 Background on phylogenetics

The theory of evolution by natural selection laid out by Charles Darwin is the

fundamental guiding principle in modern biology. Evolutionary theory now includes

a detailed understanding of evolution at the molecular level. Molecular sequencing

technologies developed over the course of the past several decades have enabled the

recovery of the exact nucleotide sequence of biological macromolecules (e.g., dna

and rna), and in particular, subsequences of these molecules — genes — that encode

the fundamental functional units of cell biology (most commonly, proteins).

Phylogenetics — the study of evolutionary relationships among groups of or-

ganisms — has benefitted greatly from the availability of molecular sequence data,

and consequently has come to rely less on morphological data (data derived from

visual inspection of organisms and sometimes measurement of organismal features).

Molecular phylogenetics, therefore, uses variation in genetic sequence data as the

basis for proposing and revising phylogenies — hypotheses about the evolutionary

relationships of organisms, most commonly represented as phylogenetic trees.

The next section describes molecular phylogenetic workflows in more detail.
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1.2 “Genes to trees”: an overview of phylogenetic workflows

1.2.1 A traditional phylogenetic workflow

A traditional molecular phylogenetic analysis typically commences with the

acquisition of specimens, either from a natural environment or an existing collec-

tion, followed by the isolation or purification of particular molecules that are to be

sequenced (most commonly dna or rna). For each taxon included in the analysis,

one or more genes are sequenced using primers (oligonucleotides) that are designed

to amplify and sequence particular genomic loci (i.e., Sanger-style sequencing [1]). In

this manner, one expects to recover orthologous sequence data — typically, parts of

genes — for multiple taxa. (Orthology and paralogy are discussed in more detail in

Chapter 3.) Sets of orthologous gene sequences are then analyzed either separately

or together in a process that entails multiple sequence alignment and phylogenetic

analysis. The final product is most commonly a phylogenetic tree relating the taxa

in question.

1.2.2 The Leptree collaboration

Phylogenetic workflows were integral to Assembling the Tree of Life (atol)

projects, which were funded by the National Science Foundation and typically in-

volved collaboration among multiple research groups to study a particular clade (or

group) of organisms. “Leptree”, which began as an atol project headquartered at

the University of Maryland, was an ambitious effort to collect, sequence, and ana-
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lyze the evolutionary relationships of hundreds of insects of the order Lepidoptera

(moths and butterflies). During the first stage of the project, which lasted sev-

eral years, the consortium acquired dna for the majority of target specimens, and

Sanger-sequenced either all or part of 26 genes that were deemed useful for resolving

relatively deep phylogenetic relationships. Sequence alignments for various subsets

of taxa were created and manually refined, and phylogenetic analysis was performed

using maximum likelihood and Bayesian methods (as implemented in garli [2] and

MrBayes [3, 4], respectively). The results and their implications for lepidopteran

evolution are described in multiple publications [5–8].

More recently, the Leptree group has begun generating transcriptome data

for various lepidopteran taxa (a process described in the following section, and

more extensively in Chapters 7 and 8); Leptree-generated transcriptome data is the

primary genomic sequence data analyzed in this dissertation.

1.2.3 Phylogenomics: whole-genome-inspired methodology

So-called “next-generation sequencing” technologies have enabled massive

amounts of genome sequencing to be performed at relatively low cost compared

to Sanger-based sequencing practices [9]. Next-generation sequencing was first used

for whole-genome shotgun sequencing, in which the entire genome of an organism is

sheared into small pieces of dna that are individually sequenced, thus producing a

large number of sequence “reads”. These millions of reads are typically assembled

into longer sequences called “contigs”, which are then combined into “scaffolds”

3



using mate-pair information. Scaffolds, finally, are arranged and oriented such that

they accurately represent the sequence of the particular molecule from which they

originated (e.g., a chromosome). Another, more recent assay is RNA sequencing

(rna-seq) [10], in which complementary dna (cdna) is synthesized from rna —

most commonly, messenger rna (mrna) — and then sequenced. In this manner,

a significant portion of the “transcriptome” of an organism (protein-coding genes

expressed by the cell, as well as some non-coding rnas) may be sequenced in a

single experiment.

In a pioneering study, Hittinger et al. [11] showed how rna-seq could be used

in a “phylogenomic” analysis of mosquitos. Using a non-normalized rna-seq pro-

tocol, they sequenced many highly-expressed genes thought to be phylogenetically

useful (e.g., housekeeping and cell-cycle genes, which are well-conserved and have

favorable evolutionary rates). Transcripts were assembled de novo (without the aid

of a reference transcriptome) using velvet [12]. Following quality control and fil-

tering, a reciprocal best hit strategy using blast [13] was used to identify clusters

of orthologous gene sequences. Multiple sequence alignment of these clusters was

performed using dialign2 [14] and custom Perl scripts. Phylogenetic analyses of

these data matrices recovered robust and well-supported phylogenies of the various

mosquito species, thus demonstrating the viability of rna-seq as a cost-effective

way to obtain genome-scale data for use in phylogenetics.

Since then, phylogenomic studies of many organismal groups have been under-

taken [15–25,25–42]. The methodology employed in these studies may vary from the

Hittinger et al. workflow in certain respects. For example, the methods used to ac-
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quire genomic data may vary: instead of rna-seq, studies may employ “targeted se-

quencing” approaches to capture sequence from multiple genomic loci; additionally,

studies may incorporate expressed sequence tag (est) data from public databases.

These various high-throughput sequencing approaches to generating data for system-

atics and phylogenetics are discussed in a comprehensive (although biased) review

by Lemmon and Lemmon [43]. Other workflow details may vary as well, including

methods for sequence assembly, orthology determination, data filtering, and phy-

logenetic analysis. In broad outline, however, most phylogenomic studies proceed

according to the same basic steps, which we hereafter call the “canonical workflow”

(Figure 1.1).

1.3 Computational methods in phylogenomic workflows

In the canonical phylogenomic workflow (Figure 1.1), once specimens have

been acquired (step one) and rna or dna purification, library preparation, and

sequencing (step two) have been completed, the remaining steps are purely com-

putational. In the following sections we present the computational steps in the

rna-seq-based workflow developed in this dissertation as well-defined computer sci-

ence problems. Specifically, for each step we describe the input data, the algorithms

used to compute results, and the resulting output data.
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“canonical” phylogenomic workflow

1. specimen collection

2. RNA or DNA 
purification, library 
preparation,  and 

sequencing

3. quality control, and
transcriptome or 

genome assembly

4. orthology determination and
multiple sequence alignment

5. phylogenetic analysis

Figure 1.1: (1) The canonical phylogenomic workflow begins with spec-
imen acquisition. (2) rna (or dna) is extracted from the specimen and
sequenced. (3) Low-quality sequence reads are trimmed or removed,
and data of sufficient quality is assembled into transcripts (or contigs).
(4) Orthologous gene sequences among taxa are determined, and then
aligned to one another. (5) Finally, phylogenetic analysis is performed
on the gene alignments either individually, or after they have been con-
catenated.
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1.3.1 Transcriptome assembly

In de novo transcriptome assembly, one is given a set of sequencing reads,

usually of uniform length, each of which is composed of a sequence of characters

over an alphabet of four symbols {A, C, G, T}. The goal is to assemble the reads

whose sequences overlap into a set of longer sequences called transcripts, each of

which should correspond to the cdna sequence of an mrna molecule. In eukaryotes,

there is a biological mechanism called alternative splicing that enables multiple gene

products, called isoforms, to be produced from a single genomic locus. Thus, many

recent transcriptome assemblers aim to assemble a set of transcripts corresponding

to all of the isoforms in the sample, often by finding paths through a De Bruijn

graph [44, 45]. In this data structure, the nodes consist of k-mers (sequences of

length k), and the edges represent overlap between k-mers.

1.3.2 Orthology determination

As discussed in Chapter 3, there are variety of methods for determining or-

thologous gene sequences among extant genomes — i.e., sequences that derive from

a common ancestral gene sequence. From a computational standpoint, the input is

a set of transcripts (either whole or partial coding sequences) associated with each

taxon in the analysis, and the output is a set of orthologous groups of sequences. An

orthologous group frequently corresponds to an individual gene, or perhaps isoform.

The process of clustering sequences into orthologous groups most commonly relies

on sequence similarity searches [13] to identify sequences that are reciprocally most
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similar to one another. In addition, phylogenetic analysis of sequences can be very

useful in orthology determination, as demonstrated in the Ensembl pipeline [46].

1.3.3 Multiple sequence alignment

Given a group of orthologous sequences, it is necessary to determine orthology

down to the level of the individual nucleotide (or amino acid, in the case of a trans-

lated nucleotide sequence), as phylogenetic inference usually analyzes each character

independently. Although we expect the sequences in an orthologous group to have

a high degree of similarity (the exact degree depends on the evolutionary distance

between the taxa), some variation among sequences is needed to make evolutionary

inferences. Furthermore, the sequences frequently vary in length, so the sequence

alignment process should ensure that putatively orthologous characters are placed

in the same column of the alignment. Thus, where evolution has inserted characters

in a particular sequence relative to the other sequences in the group (or equivalently,

deleted characters from the other sequences relative to a particular sequence), this

may be modeled with gap characters (often represented with a dash: “–”). The

input to a multiple sequence alignment program in the context of a phylogenomic

workflow, therefore, is a set of orthologous, unaligned sequences, and the output

is a set of orthologous sequences that have been aligned according to an optimal-

ity criterion (usually the maximization of an alignment score, which is penalized

for mismatched characters and the number and length of gaps that have been in-

troduced). A performance comparison of multiple sequence alignment programs is
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given by Thompson et al. [47].

1.3.4 Phylogenetic analysis

The aligned orthologous sequence groups are subjected to phylogenetic anal-

ysis, either individually or in a combined analysis. The most powerful and com-

putationally intensive class of phylogenetic analysis methods apply an evolutionary

model to the sequence data, and evaluate possible topologies that relate the taxa

together. The result of phylogenetic analysis is typically a hierarchical, bifurcat-

ing tree that gives the relationships among taxa, wherein the length of a branch

corresponds to the amount of evolution a particular taxon has undergone relative

to the others. The large number of possible topologies, branch lengths, and model

parameter values makes finding the “best tree” — i.e., the tree that best explains the

data — a challenging combinatorial optimization problem. Indeed, an exhaustive

search of “tree space” is not possible for all but the smallest data sets. Instead,

phylogenetic analysis programs such as garli [2] use heuristics for proposing and

improving candidate trees (e.g., garli uses a heuristic resembling a genetic algo-

rithm). garli is an example of a type of phylogenetic analysis program that uses

maximum likelihood. The other major type of model-based phylogenetic analysis

uses Bayesian inference, as implemented in a program such as MrBayes [4].
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1.4 Applying high-throughput computing to phylogenetic analysis

Phylogenetic analysis is often extremely computationally intensive. The total

amount of computation required for a particular analysis depends on the number of

taxa included, the number of informative characters in the data set, the complexity

of the evolutionary model being applied, and the heuristic used to search the solu-

tion space of possible phylogenetic trees, a space in which the number of possible

topologies grows exponentially with the number of taxa. Like many problems in

computer science, one can apply parallelism, in this case to phylogenetic analysis,

to reduce the time needed to obtain results. In particular, the “embarrassingly par-

allel” paradigm, known more formally as high-throughput computing (htc), may

be used with the maximum likelihood type of phylogenetic analyses because they

do not typically require inter-processor communication. Thus, a large number of

searches for the “best tree” (the tree of highest likelihood) can be launched in par-

allel on processors that are distributed among various computer systems. When

these analyses complete, the results are aggregated, compared, and presented. For

this reason, maximum likelihood phylogenetic analysis is a good fit for grid comput-

ing, a model of distributed computing that uses geographically and administratively

disparate resources. The user of grid computing is able to use a large number of

computers without having to directly interact with them [48]. In the following sec-

tion we describe The Lattice Project, the grid computing system that we use to

perform computationally-intensive phylogenetic analyses.
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1.4.1 The Lattice Project: a multi-model grid computing system

The Lattice Project is a grid computing system developed since 2003 at the

University of Maryland under the guidance and direction of Dr. Michael Cummings

and Adam Bazinet. The Lattice Project, which is based on Globus [49] software,

incorporates volunteer computers running boinc [50] as well as traditional grid com-

puting resources such as Condor pools [51] and compute clusters. The architecture

and functionality of the system is described extensively in Bazinet’s master’s thesis:

The Lattice Project: A Multi-model Grid Computing System [52]. In recent years,

we have enhanced the system for phylogenetic analysis by developing a web inter-

face to the garli service [53,54], currently available at molecularevolution.org.

(The garli web service is described in greater detail in Chapter 4.) Our labora-

tory has also created a C++ library that uses gpus and other specialized hardware

to speed up the likelihood calculations that form the kernel of many phylogenetic

analysis programs [55]. (Synergistically, the boinc pool of volunteer desktop com-

puters is a substantial source of modern gpus.) The Lattice Project has been

used in studies of conservation biology [56], pandemic influenza [57], human evolu-

tion [58], protein binding [59], quantification of lineage divergence [60], and phylo-

genetics [5, 6, 6–8, 61–130]. The Lattice Project enables us to complete large-scale

phylogenetic analyses in a reasonable amount of time, and is thus an essential part

of the computing infrastructure used in this dissertation. Improvements to the grid

system to better support phylogenetic analysis are discussed in Chapters 4–6.

11

molecularevolution.org


1.5 Dissertation outline

The dissertation is structured as follows. Chapters 2–6 each describe work rele-

vant to a particular stage of a phylogenomic workflow. Thus, Chapter 2 reviews and

benchmarks sequence classification programs, which are useful for identifying the

origin of reads and transcripts derived from the sequencing and assembly process,

respectively. Chapter 3 describes a novel method for robust orthology determi-

nation, which is a critical and often challenging step in phylogenomic workflows.

Chapter 4 describes the garli web service, our public-facing interface that facil-

itates the execution of garli analyses on our grid system. Chapter 5 describes

several improvements to the grid system, many of which are aimed at improving the

scheduling and execution of phylogenetic analyses. Chapter 6 describes a scheme

that enables the use of boinc for phylogenetic analyses that need to be completed

relatively quickly, such as those submitted by users of the garli web service. Chap-

ter 7 incorporates all of the foregoing work into a complete phylogenomic workflow

that is used to analyze Leptree data. Chapter 8 improves on the methodology used

in the phylogenomic workflow, and expands the scope and number of analyses that

are performed. Finally, Chapter 9 seeks to identify the presence of endosymbiont

sequences in transcriptome data derived from insect hosts.
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Chapter 2: An evaluation of sequence classification programs

This chapter is based on the following publication: Adam L. Bazinet and

Michael P. Cummings. A comparative evaluation of sequence classification pro-

grams. BMC Bioinformatics, 13:92, 2012. Corrections included.

2.1 Background

A fundamental problem in modern genomics is to taxonomically or functionally

classify dna sequences derived from environmental sampling (i.e., metagenomics).

Many metagenomic studies are essentially community ecology studies, which seek to

characterize communities statically or dynamically in terms of composition, struc-

ture, abundance, demography, or succession, and sometimes with consideration of

other biotic or abiotic factors. Consequently many of these characterizations, and

inferences derived from them, are sensitive to the accuracy and precision of tax-

onomic assignment of the metagenomic sequences involved. These sequences are

often in the form of unassembled reads whose average length in a sample may vary

by an order of magnitude depending on the sequencing technology used (e.g., ≈ 100

bp to ≈ 1,000 bp). To classify these sequences of unknown origin, the basic strategy

employed is to compare them to annotated sequences that reside in public databases
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(e.g., GenBank [131], Pfam [132]). On the basis of such comparisons, one may be

able to say with some certainty that a particular sequence belongs to a specific

taxon (of any taxonomic rank from domain to species; more specific classifications

are usually more desirable). Sometimes the query sequence does not have a close

relative in the database, which is problematic for all methods.

The classification of unlabeled sequences using previously labeled sequences

is supervised learning; this approach is the focus of our evaluation. However, it

is important to mention that unsupervised learning techniques exist for “binning”

sequences in an environmental sample (e.g., LikelyBin [133], CompostBin [134]);

i.e., clustering groups of similar sequences together. These techniques are useful

when one desires a high-level characterization of their sample (e.g., classification of

bacteria at the phylum rank). Binning may also be used to improve subsequent

supervised classification of groups of sequences (PhyScimm [135]).

It is important to note that some supervised learning methods will only clas-

sify sequences that contain “marker genes”. Marker genes are ideally present in all

organisms, and have a relatively high mutation rate that produces significant vari-

ation between species. The use of marker genes to classify organisms is commonly

known as dna barcoding. The 16S rrna gene has been used to greatest effect for

this purpose in the microbial world (green genes [136], rdp [137]). For animals,

the mitochondrial coi gene is popular [138], and for plants the chloroplast genes

rbcL and matK have been used [139]. Other strategies have been proposed, such

as the use of protein-coding genes that are universal, occur only once per genome

(as opposed to 16S rrna genes that can vary in copy number), and are rarely hor-
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izontally transferred [140]. Marker gene databases and their constitutive multiple

alignments and phylogenies are usually carefully curated, so taxonomic and func-

tional assignments based on marker genes are likely to show gains in both accuracy

and speed over methods that analyze input sequences less discriminately. However,

if the sequencing was not specially targeted [141], reads that contain marker genes

may only account for a small percentage of a metagenomic sample.

2.1.1 General approaches to sequence classification

We have identified three main supervised learning approaches that compare

query sequences to database sequences for the purpose of assigning a taxon la-

bel: sequence similarity search-based methods (homology or alignment-based meth-

ods; e.g., blast [142]), sequence composition methods (e.g., Markov models, k-mer

counting), and phylogenetic methods (which apply an evolutionary model to the

query and database sequences and determine where the query best “fits” in the

phylogeny). Most software programs use only one of these approaches, but some

use a combination of two approaches. (None of the programs referenced in this

study combine all three approaches.)

Programs that primarily use sequence similarity search include carma [143,

144], facs [145], jmotu/Taxonerator [146], marta [147], megan [148], Meta-

Phyler [149], mg-rast [150], mtr [151], and sort-items [152]. Most of these

programs employ blast (most commonly, blastx), and several incorporate some

version of the lowest-common ancestor (lca) algorithm first pioneered by megan.
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After blast, the second most common method aligns a query sequence to a ref-

erence sequence represented by a profile hidden Markov model (phmm); usually

a Pfam domain. Alignment-based methods display great accuracy, even for short

query sequences, but suffer from two general shortcomings: a) because the reference

databases are very large, it can take a long time to search each query sequence

against them; and b), if the query sequence is not represented in the database, as

could often be the case, assignment accuracy may suffer more so than with other

methods.

Programs that primarily use sequence composition models include Naive Bayes

Classifier (nbc) [153, 154], PhyloPythia [155, 156], phymmbl [157], raiphy [158],

rdp [159], Scimm [135], sphinx [160], and tacoa [161]. Methods for building se-

quence models often make use of interpolated Markov models (imms), naive Bayesian

classifiers, and k-means/k-nearest-neighbor algorithms. There is some overhead to

computing sequence models of organismal genomes, but once models are built, query

sequence classification is generally faster than with alignment-based methods. Accu-

racy, however, may still be able to be improved — this is why phymmbl incorporates

similarity search (the “bl” is for blast). As a result, phymmbl achieves greater

accuracy than either Phymm or blast alone. Finally, it was widely reported that

the initial version of PhyloPythia performed poorly for query sequences less than

1,000 bp in length [157,158]; few current next-generation sequencing (ngs) technolo-

gies produce reads of that length or greater. However, composition-based methods

are now perfectly capable of classifying short query sequences. For example, nbc

obtained over 90% accuracy for 25 bp reads with five-fold cross-validation [153].
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Programs that primarily use phylogenetic methods include epa [162], Fast-

Tree [163], and pplacer [164]. Phylogenetic methods attempt to “place” a query

sequence on a phylogenetic tree according to a model of evolution using maximum

likelihood (ml), Bayesian inference, or other methods such as neighbor-joining (nj).

Some programs compute the length of the inserted branch, which represents the

amount the query sequence has evolved relative to the rest of the sequences; most

programs, however, are simply concerned with the placement (and hence classifica-

tion) of the query sequence. Programs assign a specific taxon (and hence taxonomic

rank) to a “placed” sequence using different algorithms, but they all make use of the

basic observation that an inserted branch will be divergent from an internal node

representing a species or higher rank. Since phylogenetic methods require a multi-

ple alignment, and a fixed topology (either derived from the multiple alignment, or

from some other source; e.g., the ncbi taxonomy), the first step in most phyloge-

netic workflows is to add a query sequence containing a marker gene to a reference

alignment (amphora [165, 166], Treephyler [167], green genes [136]). Hence, most

phylogenetic methods require the use of marker genes. One that does not, however,

is sap [168], in which the first step is to construct a multiple alignment from the

results of a blast search. Phylogenetic methods assume that using computation-

ally intensive evolutionary models will produce gains in accuracy, and their inherent

use of tree-based data structures makes taxon assignment to higher ranks as well as

lower ones very straightforward. The additional algorithmic complexity means that

phylogenetic workflows currently require substantial computing power to analyze

large metagenomic samples, however; this is true even for methods that only use
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marker genes. Large-scale analyses will gradually become more practical as more

efficient algorithms are developed, computational resources become more powerful,

and through use of parallelization.

2.1.1.1 Additional considerations

It is important to consider if a sequence classification method offers a measure

of assignment confidence. Such an uncertainty measure is extremely useful; assign-

ments whose confidence score is below a certain threshold can be disregarded, for

example. Phylogenetic methods tend to provide confidence of assignment through

use of bootstrap values, posterior probabilities, or other techniques. Alignment-

based methods generally do not provide a confidence estimate.

Another consideration is the availability and ease of use of the program — if

it is a command line program, has a graphical user interface (gui), is available as

a web service, and so on. If the program is to be downloaded and installed, one

must consider how much processing power, memory, and disk the program will need

to analyze a particular data set. Some of these needs will prohibit local execution

of the program for large data sets, perhaps instead necessitating use of a compute

cluster. If there is a web service available for the program, one needs to find out

how much computational power is allocated to a single user, and thus if the service

can be used in practice to analyze large metagenomes. A further consideration is

if the program continues to be actively developed and maintained after a paper

is published and the code is initially released. Actively maintained programs are
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likely to be improved as a result of feedback from users, and may eventually become

“standard” tools used by the community.

2.1.2 Program capability analysis

We identified 25 sequence classification programs that fall into one of the three

primary analysis categories mentioned previously: sequence similarity or alignment-

based (nine programs), sequence composition model-based (eight programs), and

phylogenetic-based (eight programs). Our list is not exhaustive, but we do include

a broad cross section of widely-used and interesting programs in our comparison.

The attributes and capabilities of each program are given in Table 2.1. For each

program, we report the general analysis method it uses, and more detailed analysis

characteristics, as applicable; if the program requires specific genes as input; and

the type of interface to the program. For a given program attribute (a column in

Table 2.1), it is possible to have multiple values. We defined a distance function

and created a neighbor-joining tree that clusters the programs based on attribute

similarity (Figure 2.1).

2.1.3 Program performance evaluation

When publishing their method, researchers typically compare their program to

one or more existing programs. Presumably they attempt to choose programs that

are most similar to their own, but we find that this is not always the case. Perhaps

the researcher is simply not aware of all the tools in existence, or does not have the
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Figure 2.1: A neighbor-joining tree that clusters the sequence classifica-
tion programs based on attribute similarity.
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Similarity-based Methods

Program Similarity Method LCA Specific Genes Req’d Interface

CARMA BLAST, HMM command line, web-based

FACS other command line

jMOTU/Taxonerator BLAST, other multiple alignment command line

MARTA BLAST LCA-like command line

MEGAN BLAST LCA-like GUI

MetaPhyler BLAST marker genes command line

MG-RAST BLAST marker genes web-based

MTR BLAST LCA-like command line

SOrt-ITEMS BLAST LCA-like command line

Composition-based Methods

Program Composition Method Machine Learning Confidence Method Specific Genes Req’d Interface

Naive Bayes Classifier NBC supervised other command line, web-based

PhyloPythiaS other supervised command line, web-based

PhymmBL IMM supervised other command line

RAIphy other semi-supervised GUI

RDP k-means/kNN, NBC supervised bootstrap 16S rRNA command line, web-based

Scimm IMM semi-supervised command line

TACOA k-means/kNN supervised command line

Phylogeny-based Methods

Program Phylogeny Method Confidence Method Specific Genes Req’d Interface

EPA ML bootstrap, other multiple alignment command line, web-based

FastTree other bootstrap multiple alignment command line

green genes (NAST, Simrank) other 16S rRNA web-based

pplacer ML, Bayesian posterior probability, other multiple alignment command line

Combined Similarity and Composition-based Methods

Program Similarity Method Composition Method Machine Learning Specific Genes Req’d Interface

SPHINX BLAST k-means/kNN supervised web-based

Combined Similarity and Phylogeny-based Methods

Program Similarity Method Phylogeny Method Confidence Method Specific Genes Req’d Interface

AMPHORA HMM other bootstrap marker genes command line

MLTreeMap BLAST, HMM ML bootstrap, other marker genes command line, web-based

SAP BLAST Bayesian, other posterior probability, other command line

Treephyler HMM other bootstrap marker genes command line

Table 2.1: Sequence classification program attributes and characteristics.
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time to evaluate them all, so they pick a couple of popular or well-known tools. In

contrast, we focused our comparisons on a single category at a time, which we believe

generates more interesting and generally useful comparisons between programs that

are conceptually similar.

We evaluated the performance of sequence classification programs in two main

areas:

1. assignment accuracy — we tested assignment accuracy using data sets from the

publications associated with each program, and analyzed each data set with as

many programs from the corresponding category as possible. Specifically, we

measured assignment sensitivity (number of correct assignments / number of

sequences in the data set), precision (number of correct assignments / number

of assignments made), the overall fraction of reads that were assigned, and the

taxonomic rank at which assignments were made. (In general, more specific

taxon assignments are more useful, although one usually expects sensitivity

and precision to decrease as increasingly specific assignments are made.)

2. resource requirements (processing time, ram, and disk requirements) — we

monitored the resources consumed by each program during the analysis of

each data set. Some programs have web services available that we used in

program evaluation, which made it more difficult to precisely measure resource

consumption.
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2.2 Results

Within each category, we selected a subset of programs to evaluate. Programs

were selected on the basis of several factors: if they were actively maintained, how

popular they were, how recently they were published, if they were superseded by

another program, and so on. From this standpoint, we attempted to make the com-

parisons in each category as interesting and useful to the current active community

of researchers as possible.

2.2.1 Alignment

In the alignment category, we selected five programs to evaluate: carma (com-

mand line version 3.0), facs (1.0), megan (4.61.5), mg-rast (3.0), and MetaPhyler

(1.13). Based on our experience using these programs, we note the following:

1. facs requires bloom filters to be built for the reference sequences that are

to be searched, which is infeasible to do for large databases (e.g., GenBank’s

non-redundant nucleotide (nt) and protein (nr) databases). Therefore, we were

unable to analyze the majority of data sets with facs.

2. We ran blastx with default parameters against the nr database, and used

this as input to carma and megan. blast accounted for 96.40% and 99.97%

of the total runtime for these workflows, respectively (Table 2.5).

3. mg-rast has several different analysis options. We used the non-redundant

multi-source annotation database, or m5nr, and their implementation of an
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lca algorithm for taxon assignment.

4. mg-rast requires input sequences to contain protein-encoding genes (pegs),

and assigns each of these to a particular taxon. Not all query sequences in

a random shotgun sample will contain a peg, so mg-rast typically classifies

fewer overall sequences than other methods. In addition, it is possible for a

single input sequence read to contain multiple pegs. In order to be consistent

with other methods that make classifications on a read-by-read basis, we map

the peg assignments back the read they came from, and make fractional read

assignments to a particular taxon as necessary. (For example, a particular

read could contain two pegs: one peg assigned to phylum A, and the other

peg assigned to phylum B. If only one of these is correct, the read would con-

tribute 0.5 to a tally of “correct” assignments, and 0.5 to a tally of “incorrect”

assignments.)

5. MetaPhyler requires input sequences to contain certain “marker genes”

(protein-coding genes that are “universal” and occur only once per genome),

an approach pioneered by amphora. Very few query sequences in a random

shotgun sample will contain marker genes, so MetaPhyler typically classifies

fewer overall sequences than other methods; many fewer than even mg-rast,

for example.

Four data sets were selected for analysis with each of the alignment-based

programs. Percentage of sequence classified, sensitivity, precision, and resource

consumption are shown for the alignment-based programs in Table 2.5. What follows
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is a short description of each data set, and a summary of the results of analysis with

each program.

2.2.1.1 FACS 269 bp high complexity 454 metagenomic data set

This data set, which consists of 105 sequences of average length 269 bp, orig-

inally used by Stranneheim et al. [145], was downloaded from the facs web site.

The sequences are from 19 bacterial genomes, three viral genomes, and two human

chromosomes. The distribution of sequences is as follows: 73.0% Eukaryota, 25.6%

bacteria, and 1.5% viruses.

It was reported that facs assigned sequences to species with 99.8% sensitivity

and 100% specificity using a k-mer size of 21 and a match cutoff of 35% sequence sim-

ilarity [145]. However, we encountered technical difficulties using the facs software

and were unable to reproduce the results reported in the facs paper.

Distribution of sequence assignments produced by the alignment-based pro-

grams is shown in Table 2.2.

2.2.1.2 MetaPhyler 300 bp simulated metagenomic data set

This data set, which consists of 73,086 sequences of length 300 bp, originally

used by Liu et al. [149], was acquired from the authors. The sequences are simulated

reads from 31 phylogenetic marker genes from bacterial genomes. The distribution

of sequences into bacterial phyla is as follows: Proteobacteria, 47.0%; Firmicutes,

21.9%; Actinobacteria, 9.7%; Bacteroidetes, 4.8%; Cyanobacteria, 3.9%; Teneri-
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cutes, 2.2%; Spirochaetes, 1.9%; Chlamydiae, 1.3%; Thermotogae, 0.9%; Chlorobi,

0.9%.

Although a comparison of MetaPhyler, megan, carma, and phymmbl is

already given for this data set [149], we decided to redo these analyses in a way that

is consistent with our standard procedures (i.e., we did not exclude query reads from

the reference database, as Liu et al. did with three out of four of their analyses; viz.,

MetaPhyler, megan, and phymmbl). Additionally, we restricted our analyses to

the phylum rank.

The distribution of sequence assignments produced by the alignment-based

programs is shown in Table 2.3.

2.2.1.3 CARMA 265 bp simulated 454 metagenomic data set

This data set, which consists of 25,000 sequences of average length 265 bp, orig-

inally used by Gerlach and Stoye [144], was acquired from the webcarma web site.

The sequences are simulated 454 reads from 25 bacterial genomes. The distribution

of sequences into bacterial phyla is as follows: Proteobacteria, 73.0%; Firmicutes,

12.9%; Cyanobacteria, 7.8%; Actinobacteria, 5.2%; Chlamydiae, 1.0%.

The distribution of sequence assignments produced by the alignment-based

programs is shown in Table 2.4.
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actual CARMA MEGAN MetaPhyler MG-RAST

percentage of sequence classified 29.0 54.4 0.2 27.1

Eukaryota 73.0 30.3 42.0 0.0 21.0

Bacteria 25.6 62.8 52.0 84.0 71.5

Viruses 1.5 0.0 0.3 0.0 0.1

Archaea 0.0 6.9 5.7 16.0 7.3

percentage of sequence misclassified 8.0 12.2 16.0 7.6

correlation coefficient 0.45 0.72 -0.09 0.26

Table 2.2: Results for the facs simhc metagenomic data set (105 sequences, 269 bp). The
actual distribution of sequences compared to the distribution inferred by the alignment-based
programs.

actual CARMA MEGAN MetaPhyler MG-RAST

percentage of sequence classified 93.6 88.2 80.9 29.8

Proteobacteria 47.0 47.6 44.5 48.3 46.7

Firmicutes 21.9 22.2 24.0 21.8 23.1

Actinobacteria 9.7 8.7 8.8 9.1 9.3

Bacteroidetes 4.8 4.5 4.8 4.3 4.4

Cyanobacteria 3.9 3.6 3.8 3.9 3.7

Tenericutes 2.2 2.5 2.7 2.4 2.3

Spirochaetes 1.9 2.4 2.6 2.3 2.2

Chlamydiae 1.3 1.9 2.0 1.8 1.8

Thermotogae 0.9 1.2 1.2 1.1 1.2

Chlorobi 0.9 1.4 1.5 1.3 1.4

percentage of sequence misclassified 0.3 0.3 0.3 0.2

correlation coefficient ≈ 1.0 ≈ 1.0 ≈ 1.0 ≈ 1.0

Table 2.3: Results for the MetaPhyler simulated metagenomic data set (73,086 sequences,
300 bp). The actual distribution of sequences compared to the distribution inferred by the
alignment-based programs.
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2.2.1.4 PhyloPythia 961 bp simMC data set

This data set, which consists of 124,941 sequences of average length 961 bp,

originally used by Patil et al. [169], was downloaded from the fames [170] web site.

All classifications were performed at the genus rank.

2.2.1.5 Discussion

From the alignment-based analyses, we can make several observations.

1. The blast step completely dominates the runtime for alignment-based meth-

ods. It can use a fair amount of disk space in the process (as much as 17 gb

for the MetaPhyler data set), and can use a considerable amount of ram if

analyzing a large number of sequences on a single node.

2. MetaPhyler is the one exception to the previous observation; its blast step

and subsequent algorithmic steps run extremely quickly, but it generally only

classifies a small fraction of reads in a typical sample. Also, Table 2.5 shows

that MetaPhyler uses a large amount of ram (5.6 gb); this is in part due to a

memory leak that has been fixed in a subsequent release (personal correspon-

dence with the author).

3. The mg-rast web service showed a large variance in time required to receive

results, although there is at least a weak correlation with data set size and

analysis parameters. With a web service, it is difficult to know what other

variables affect time to results (e.g., load on cluster queues), and currently the
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mg-rast server does not provide an estimate of how long a given submission

will take.

4. For the facs high complexity data set, none of the programs produced a tax-

onomic distribution that was remotely close to the known distribution (Table

2.2); all greatly underestimated the amount of eukaryotic dna. The reason

for this is unclear.

5. For the MetaPhyler 300 bp data set, all four alignment programs recapitulated

the known distribution of bacterial phyla extremely well (Table 2.3). All

had near-perfect precision, and sensitivity was greater than 80% for three

out of four of the programs (Table 2.5). mg-rast only had sensitivity of 30%,

but this was still enough assignments to accurately estimate the taxonomic

distribution (Pearson’s r ≈ 1).

6. For the carma 265 bp data set, carma, megan, and mg-rast recapitulated

the known distribution of bacterial phyla extremely well (Table 2.4). Meta-

Phyler was slightly worse, but still quite good considering that it only classified

0.5% of sequences.

7. For the PhyloPythia 961 bp data set, all programs except MetaPhyler dis-

played comparable sensitivity and precision (Table 2.5).

8. Methods that use marker genes (MetaPhyler and mg-rast) are generally less

sensitive than methods that do not use marker genes (carma and megan),

but marker-based methods typically run faster (Table 2.5). All methods dis-
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played comparable overall precision; carma and mg-rast were the most

precise (Table 2.5).

2.2.2 Composition

In the composition category, we selected four programs to evaluate: Naive

Bayes Classifier (nbc, version 1.1), PhyloPythiaS (1.1), phymmbl (3.2), and raiphy

(1.0.0). Based on our experience using these programs, we note the following:

1. All four programs need to be “trained” (classifiers built on training data)

before they can be used to classify unknown query sequences. Training times

for all four programs can be found in Table 2.6.

2. nbc, PhyloPythiaS, and phymmbl were all trained on the latest microbial

genomes in the RefSeq [171] database.

3. The database we used for raiphy is the one currently available on the raiphy

web site, which was built from RefSeq in 2010. We built our own database

using the latest version of RefSeq and retrained raiphy with this updated

database, but found that classification accuracy was drastically lower. We

contacted the developers about the problem, but no satisfactory explanation

was found.

4. Technical limitations having to do with memory usage or program bugs re-

quired us to break up our fasta input files into multiple, smaller input files

to use with PhyloPythiaS and phymmbl.
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5. nbc produces raw output as hundreds of large matrices, in which the rows

represent genomes and the columns represent sequence reads. The value in a

particular cell is the score given by the algorithm for assigning a particular

sequence read to a particular genome. Therefore, it was necessary to parse

this output to find the largest score in each column in order to assign each

read to a particular taxon.

Three data sets were selected for analysis with each of the composition-based

programs. Percentage of sequence classified, sensitivity, precision, and resource

consumption are shown for the composition-based programs in Table 2.6. What

follows is a short description of each data set, and a summary of the results of

analysis with each program.

2.2.2.1 PhyloPythia 961 bp simMC data set

This data set, which consists of 124,941 sequences of average length 961 bp,

originally used by Patil et al. [169], was downloaded from the fames [170] web site.

All classifications were performed at the genus rank.

2.2.2.2 PhymmBL 243 bp RefSeq data set

This data set, which consists of 80,215 sequences of average length 243 bp,

originally used by Brady and Salzberg [157], was downloaded from the phymmbl

web site. All classifications were performed at the genus rank.
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2.2.2.3 RAIphy 238 bp RefSeq data set

This data set, which consists of 477,000 sequences of average length 238 bp,

originally used by Nalbantoglu et al. [158], was downloaded from the raiphy web

site. All classifications were performed at the genus rank.

2.2.2.4 Discussion

From the composition-based analyses, we can make several observations.

1. PhyloPythiaS took the longest to train (≈ three days), but its classification

step was relatively fast (≈ 41× faster than phymmbl). However, the fastest

program was raiphy, which took a negligible amount of time to train, and

classified sequences ≈ 4× faster than PhyloPythiaS and ≈ 159× faster than

phymmbl (Table 2.6).

2. nbc displayed the highest average sensitivity and precision (97.4%), and

phymmbl displayed the second-highest average sensitivity and precision

(≈ 76%) (Table 2.6).

3. PhyloPythiaS displayed very low average sensitivity (2.4%), but competitive

average precision (70.9%) (Table 2.6).

4. Average precision is lower for composition-based programs than for alignment-

based programs, but this is probably mainly due to the fact that classifications

were made at the genus rank for composition-based classifications, and primar-

ily at the phylum rank for alignment-based classifications (Tables 2.5 and 2.6).
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5. Composition-based programs are supposed to excel at classifying sequences

that are not exactly represented in the database, so it would be interesting

to compare the performance of these programs in that type of analysis (cf.

“clade-level exclusions” in Brady and Salzberg [157]).

2.2.3 Phylogenetics

In the phylogenetics category, we selected two programs to evaluate:

mltreemap (version 2.061) and Treephyler (1.1). Based on our experience using

these programs, we note the following:

1. The mltreemap web interface limits an analysis to 50,000 sequences, so we

used the command line version. The mltreemap workflow makes callouts to

blast, Gblocks [172], hmmer [173], and raxml [174], and is very sensitive to

the versions of these dependencies used, so it is important to use the specific

versions of these programs that are bundled with mltreemap.

2. Treephyler requires the input sequences to be converted to amino acids, and

the corresponding ufo [175] assignments to be provided. Thus, we performed

a 6-frame translation of our dna input sequences, and used the ufo web server

to assign protein sequences to Pfam domains. These files were then used as

input to Treephyler.

3. Treephyler is capable of utilizing multiple processing cores during analysis.

The only simulated data set associated with the mltreemap and Treephyler
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publications is the simulated medium complexity (simmc) PhyloPythia data set, so

we analyzed this with both programs. Percentage of sequence classified, sensitivity,

precision, and resource consumption are shown for the phylogenetics-based programs

in Table 2.7.

2.2.3.1 PhyloPythia 961 bp simMC data set

This data set, which consists of 124,941 sequences of average length 961 bp,

originally used by Patil et al. [169], was downloaded from the fames web site. All

classifications were performed at the genus rank.

2.2.3.2 Discussion

From the phylogenetics-based analyses, we can make several observations.

1. Treephyler took twice as long to run as mltreemap, but was ≈ 8× more

sensitive and achieved higher precision. (Table 2.7).

2. mltreemap and Treephyler made some assignments at taxonomic ranks higher

than genus that were not included in this analysis, but would otherwise be of

interest.

3. mltreemap and Treephyler are capable of producing measures of confidence of

assignment, which we did not include in this analysis but would be of practical

use in most scenarios.
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2.2.4 Comparison of all programs

All ten programs were used to analyze the simulated medium complexity

(simmc) PhyloPythia data set, so it is of interest to compare their relative per-

formance on this particular data set.

1. Composition-based programs displayed the highest average sensitivity

(50.4%), and alignment-based programs displayed the highest average pre-

cision (93.7%) (Tables 2.5 and 2.6).

2. The two most computationally expensive programs, carma and megan,

achieved the highest precision (97.4% and 98.1%, respectively) (Table 2.5).

3. In terms of the best combined sensitivity and precision, nbc outperformed all

other programs, achieving sensitivity and precision of 95.4% (Table 2.6).

2.3 Conclusions

The performance of a particular category of programs varied substantially be-

tween data sets. The precise reasons for this are likely a complex function of sample

taxonomic composition and diversity, level of sequence representation in databases,

read lengths and read quality. In general, however, if a data set was challenging for

one program, it was challenging for the other programs in that category. The overall

variance of the statistics makes it difficult to make definitive statements about the

superiority of one program or method over another, but we can state some broad

conclusions.
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In general, high sensitivity is undesirable if corresponding precision is low.

However, very precise methods that do not assign a large fraction of sequences

may still be useful, depending on the application. For example, we have shown

that in some cases, classifying only a small percentage of a sample may still be

enough to recapitulate the correct organismal distribution, especially at a high rank

(e.g., phylum). Methods that search for marker genes in a metagenomic sample

interrogate relatively few sequences, but as a consequence run quickly and with

high precision. In a targeted sequencing experiment, phylogenetic methods and

other methods that use marker genes might thus be especially appropriate.

In general, composition-based programs classified sequences the fastest, once

they were trained. Phylogenetic programs might be the most computationally in-

tensive on a per-read basis, but owing to their use of marker genes only ran for an

intermediate amount of time in our experiments. As expected, blast-based pro-

grams that did not use marker genes consumed the bulk of the computing resources

in our study. Researchers should take note of the fact that programs vary by orders

of magnitude in computational resource requirements, and should thus choose pro-

grams appropriately depending on the computing resources they have access to, the

amount of data to analyze, and the particular bioinformatics application. In addi-

tion, some programs are much easier to set up and use than others. Of course, there

is often a tradeoff between the level of flexibility and configurability of a program,

and its ease of use.

Taxonomic sequence classification is a fundamental step in metagenomic anal-

yses, as classification accuracy has a direct impact on downstream analyses and
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the conclusions drawn from them. Therefore, it is important to be aware of the

wide variety of tools that currently exist to address this need, and to choose the

best performing and most appropriate tools for a given analysis and set of resource

constraints.

2.4 Methods

2.4.1 Program classification

We created and filled in Table 2.1 by hand using appropriate literature,

program web sites, and documentation as necessary. In order to cluster the

programs, we wrote a Perl script to construct a matrix containing a measure of

similarity, or distance, for each possible pair of programs, defined as follows:

distance(program1, program2) =
n∑

a=1

distance(program1[a], program2[a])

where n is the number of program attributes (equal to the number of columns in

the table). A program attribute may have multiple values.

Distances are calculated as follows:

if program1[a] == program2[a] then

distance(program1[a], program2[a]) = 0

else if common(program1[a], program2[a]) == 0 then

distance(program1[a], program2[a]) = 1
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else

distance(program1[a], program2[a]) = common(program1[a],program2[a])
greater(program1[a],program2[a])

end if

where common(program1[a], program2[a]) is equal to the number of values the two

attributes share in common, and greater(program1[a], program2[a]) is equal to the

number of values in the program attribute with the greater number of values.

We provided the distance matrix as input to the neighbor program from the

phylip package [176]. We plotted the resulting neighbor-joining tree in FigTree [177]

and labeled it to produce Figure 2.1.

2.4.2 Tool usage and result processing

We wrote custom Perl scripts to parse the correct annotations out of the fasta

headers of the various input files for each data set. The phymmbl data files did

not contain annotations, so we used ncbi E-Utilities to access the ncbi taxonomy

database and retrieve the scientific classification for each sequence. We used custom

Perl scripts to parse out of program output files the classifications made by each

program, and compared these to the correct annotations to calculate sensitivity and

precision.

We used Pearson’s correlation coefficient (via the cor() function in R [178])

to compare the known distribution of bacterial phyla to the classifications made by

the various alignment programs.
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We calculated runtimes in minutes of wall clock time; if a process ran in paral-

lel, then we multiplied the runtime by the number of parallel processes. The runtimes

are not directly comparable because the analyses used heterogeneous hardware. We

calculated memory usage by manually inspecting process memory usage intermit-

tently, which is error-prone. Despite their shortcomings, both measures should still

be useful as the basis for a rough comparison.

2.5 Use of sequence classification programs in phylogenomics

Our research finds significant variability in classification accuracy, precision,

and resource consumption of sequence classification programs when used to analyze

various metagenomics data sets. However, the general trends and patterns that we

observe are useful to be aware of when conducting various types of bioinformatics

analyses.

In a typical metagenomics workflow, for example, a sequence classification

program is used to identify the organism from which each read in the sample origi-

nated. In the context of an rna-seq-based phylogenomic workflow, it may be useful

to treat the collection of assembled transcripts as a metagenome, because in addi-

tion to the organism one sets out to sequence, one may also (perhaps unknowingly)

sequence other organisms that may be of interest. For example, when sequencing

Lepidoptera, one may expect the majority of reads to be of lepidopteran origin.

However, a fraction of the reads may belong to symbiotic organisms such as Mi-

crosporidia [179], or may be contaminants (human or bacterial). Therefore, before
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proceeding with downstream analysis steps, it can be useful to partition the reads

or transcripts according to the organism from which they likely originated.

In our comparison of sequence classification programs, we found that the

following programs exhibited an ideal balance between performance (assignment

accuracy and precision) and computational resource requirements: carma [144],

megan [148, 180], and mg-rast [150]. Hence, we would be most likely to use

these particular programs in a phylogenomic workflow to assign reads or transcript

fragments to various types of organisms. Upon doing this, we might proceed with

downstream analysis steps using only the subset of reads or transcript fragments

assigned to a particular organismal group (e.g., Lepidoptera).
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actual CARMA MEGAN MetaPhyler MG-RAST

percentage of sequence classified 68.7 90.5 0.5 80.2

Proteobacteria 73.0 73.2 73.0 69.2 73.2

Firmicutes 12.9 13.2 12.8 17.3 12.9

Cyanobacteria 7.8 7.3 7.8 6.8 7.6

Actinobacteria 5.2 5.0 5.3 2.3 5.4

Chlamydiae 1.0 1.2 1.1 4.5 0.9

percentage of sequence misclassified 0.3 0.2 0.0 0.1

correlation coefficient ≈ 1.0 ≈ 1.0 ≈ 1.0 ≈ 1.0

Table 2.4: Results for the carma 454 simulated metagenomic data set (25,000 sequences,
265 bp). The actual distribution of sequences compared to the distribution inferred by the
alignment-based programs.
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Program FACS 269 bp MetaPhyler 300 bp CARMA 265 bp PhyloPythia 961 bp Mean

Percentage of sequence classified

CARMA 29.0 93.6 68.7 61.3 63.2

MEGAN 48.4 88.2 90.5 62.2 72.3

MetaPhyler 0.2 80.9 0.5 0.6 20.6

MG-RAST 27.1 29.8 80.2 70.5 51.9

Sensitivity (percentage)

CARMA 26.7 93.4 68.5 59.8 62.1

MEGAN 42.5 87.9 90.3 61.0 70.4

MetaPhyler 0.1 80.7 0.5 0.5 20.5

MG-RAST 25.0 29.7 80.1 67.2 50.5

Precision (percentage)

CARMA 92.0 99.7 99.7 97.4 97.2

MEGAN 78.1 99.7 99.8 98.1 93.9

MetaPhyler 84.0 99.7 100.0 83.8 91.9

MG-RAST 92.4 99.8 99.9 95.3 96.9

CPU Runtime (minutes)

CARMA1,2 290,880 77,340 74,950 360,107 200,819

MEGAN1,2 288,020 72,060 72,010 351,060 195,788

MetaPhyler3 10 20 2 28 15

MG-RAST4 60 10,080 20,160 12,960 10,815

Memory Usage (Megabytes of RAM)

CARMA 100 100 100 120 105

MEGAN 1024 1024 1024 1410 1121

MetaPhyler 5734 5734 5734 5734 5734

MG-RAST5 - - - - -

1analysis performed on a 2.66 ghz Intel Core i7 MacBook Pro running Mac os x 10.7.1 with 8 gb 1067 mhz ddr3 ram.

2blast v2.2.18 analysis performed using ≈ 200 Opteron 2425 he (2.1 ghz) cores; each node had 48 gb ram.

3analysis performed on an amd Opteron 250 (2.4 ghz) Sun Fire V40z with 32 gb ram.

4used web service; recorded value is number of minutes to receive results, not actual cpu runtime.

5used web service; memory usage was unable to be determined.

Table 2.5: Performance of alignment-based programs. Measurements of sensitivity, precision,
and resource consumption on four simulated data sets.
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Program PhyloPythia 961 bp PhymmBL 243 bp RAIphy 238 bp Mean Training

Percentage of sequence classified

NBC 100 100 100 100

PhyloPythiaS 3.5 3.1 3.3 3.3

PhymmBL 100 99.7 100 99.9

RAIphy 100 100 100 100

Sensitivity (percentage)

NBC 95.4 97.5 99.4 97.4

PhyloPythiaS 3.1 1.8 2.2 2.4

PhymmBL 48.4 96.8 81.9 75.7

RAIphy 54.8 31.8 48.0 44.9

Precision (percentage)

NBC 95.4 97.5 99.4 97.4

PhyloPythiaS 88.1 58.5 66.1 70.9

PhymmBL 48.4 97.0 81.9 75.8

RAIphy 54.8 31.8 48.0 44.9

CPU Runtime (minutes)

NBC1 13,496 3,595 17,573 11,555 1,217

PhyloPythiaS2 297 180 506 328 4,320

PhymmBL1 15,600 1,035 23,508 13,381 2,880

RAIphy3 105 25 122 84 30

Memory Usage (Megabytes of RAM)

NBC 200 200 200 200

PhyloPythiaS4 100 100 100 100

PhymmBL4 100 100 100 100

RAIphy 500 335 400 412

1analysis performed on an amd Opteron 250 (2.4 ghz) Sun Fire V40z with 32 gb ram.
2analysis performed on an amd Opteron 248 (2.2 ghz) workstation with 8 gb ram.
3analysis performed on a 2.66 ghz Intel Core i7 MacBook Pro running Mac os x 10.7.1 with 8 gb 1067 mhz ddr3 ram.
4input sequences were broken up into smaller files.

Table 2.6: Performance of composition-based programs. Measurements of sensitivity, precision,
and resource consumption on three simulated data sets.
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Program % of sequence classified Sensitivity (%) Precision (%) CPU Runtime (minutes)

MLTreeMap1 0.9 0.8 81.4 3,344

Treephyler1 6.6 6.3 95.7 7,444

1analysis performed on an amd Opteron 250 (2.4 ghz) Sun Fire V40z with 32 gb ram.

Table 2.7: Performance of phylogenetics-based programs. Measurements of sensitivity, preci-
sion, and resource consumption on the PhyloPythia 961 bp data set.
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Chapter 3: Use of consensus sequences as an alternative to orthology

determination

This chapter is based on the following publication: Adam L. Bazinet, Michael

P. Cummings, and Antonis Rokas. Homologous gene consensus avoids orthology-

paralogy misspecification in phylogenetic inference. Unpublished.

3.1 Background on orthology

Orthologs are homologous genes that have evolved from a single ancestral

gene; i.e., the gene copies have arisen through a speciation event [181, 182]. As a

consequence of this evolutionary relationship, one usually expects orthologous genes

to have similar functions. Orthologs are frequently contrasted with paralogs [181,

182], genes that have arisen through a duplication event within a (possibly ancestral)

species. The process of gene duplication and divergence has been proposed as a

mechanism by which genes acquire new function [183, 184]. Figure 3.1 shows the

evolution of the β-globin gene, which involves both duplication and speciation.

As a consequence of gene duplication and loss, incomplete lineage sorting,

and lateral gene transfer, the evolutionary history of a particular gene (a “gene

tree”) may disagree with the species tree relating certain organisms [186]. These
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Figure 3.1: A model for the evolution of β-globin genes in mammals. The
gene tree is drawn within the constraints of a species tree. The ancient
gene duplication event (indicated by an arrow) gave rise to two ancestral
genes, gene A (red) and gene B (green). Gene A was the progenitor of
marsupial ω-globin and the β-like globin genes of birds. Gene B gave
rise to the β-like globin genes of mammals. Genes or pseudogenes that
may be expected to occur are indicated by question marks. To simplify
the diagram, not all of the avian β-like globin genes (as exemplified by
the chicken) are shown, and the eutherian genes shown are typical of
humans and some primates. Figure from Wheeler et al. [185].
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complications make phylogenetic inference of the species tree more challenging, as

such inference typically makes use of many genes, each with its own individual

history. Most of the phylogenetic methods mentioned throughout this dissertation

assume that the sequences of a particular gene among a set of taxa are orthologous,

so it is important to be able to identify orthologs among species and differentiate

them from paralogs when selecting data for inclusion in an analysis. Relevant to

data analyzed in this dissertation, Figure 3.2 shows phylogenetic relationships and

orthologous gene information for 12 species of Insecta and Arachnida, which include

some members of Lepidoptera.

The most widely-used method for orthology determination is known as “re-

ciprocal best blast hit” (rbh) [188, 189], a criterion stating that a pair of genes,

each of which belonging to a different taxon, may be designated orthologous if their

protein products are found as the best hit for one another in a reciprocal similarity

search of the two proteomes. Other interesting methods, such as reciprocal smallest

distance (rsd) [190], have also been developed. These methods are far from perfect,

however, and currently much attention is being paid to this area, both by com-

puter scientists (algorithm developers), and genome annotators (users of orthology

prediction tools). Combined expertise in these two areas is demonstrated by the

sophistication of the Ensembl orthology determination pipeline [46], for example,

which we leverage in Chapter 8.
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Figure 3.2: Number of orthologs found among arthropods. The
red dots (for calibration) represent the divergence time of Drosophila
melanogaster and Culicidae (295.4-238.5 mya) and the divergence time of
D. melanogaster and Apis mellifera (307.2-238.5 mya), which are based
on fossil evidence. The Arachnida, Tetranychus urticae, was used as
an outgroup. 1:1:1 orthologs include the common orthologs with the
same number of copies in different species; N:N:N orthologs include the
common orthologs with different copy numbers in the different species;
patchy orthologs include the orthologs existing in at least one species
of vertebrates and insects; other orthologs include the unclassified or-
thologs; and unclustered genes include the genes that cannot be clustered
into known gene families. Figure from You et al. [187].
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3.2 Consensus sequences: an alternative to orthology determination

Orthology determination is fraught with challenges due to the variety and

complexity of biological processes that govern the evolution of genes. The size of

gene families frequently differs, even in closely-related species, which leads to pos-

sibly complex, “one-to-many” or “many-to-many” orthology assignments. Existing

methods (such as rbh) attempt to assign orthology status to individual genes cho-

sen from paralogous gene sets, and frequently make errors in doing so. The novel

idea developed in this dissertation is to integrate over the uncertainty in orthology

determination by representing a set of paralogous genes in a particular individual as

a single consensus sequence, one that potentially includes ambiguous bases (using

standard iupac nucleotide ambiguity codes [191]). Therefore, in a strict sense, we

do not determine the orthology status of any individual gene sequence, thus mit-

igating orthology assignment errors that would result from choosing a single gene

sequence. The consensus gene sequences from different individuals may subsequently

be compared as if they were orthologs.

The performance of the consensus method can be evaluated using taxa whose

true evolutionary relationships are known; in such cases, if phylogenetic analyses

using consensus sequences from those taxa recover the correct tree, the consensus

method is shown to be effective. Such analyses are described in the following section.
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3.3 Validation of the consensus method

We validated the consensus method by applying it to phylogenetic problems

in three different eukaryotic kingdoms: fungi, animals, and plants.

3.3.1 Yeast transcriptome analysis

We obtained transcriptome data from three yeast species that were described

and analyzed in Scannell et al. [192] (S. cerevisiae, S. castellii and C. glabrata), along

with a yeast outgroup. Based on observed patterns of evolution, Scannell et al. di-

vided yeast genes into various classes (C0, C1, C2, and C4); some classes had sub-

classes denoted by a letter (e.g., C1A, C1B, etc.). In addition, we ran orthomcl [193]

on the four yeast transcriptomes to create a new class (“C5”) consisting of the 46

gene sets that had eight or more genes represented in all four species. For each

class (or subclass), we created three types of ortholog sets: (1) a “gold standard”

ortholog set using data from the Yeast Gene Order Browser (ygob) database [194];

(2) an ortholog set created using the rbh implementation in orthomcl; and (3) an

ortholog set of paralogs represented by a single consensus sequence (abbreviated

“con”).

For each gene in each ortholog set, we performed a maximum likelihood search

for the best tree using paup* [195], and we also performed 2,000 bootstrap replicates

using a branch-and-bound search. Since there are four taxa in the data set, there are

only three possible bifurcating topologies. The topology that represents the correct

species tree for the four yeast species is denoted .**. (S. cerevisiae and C. glabrata
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form a monophyletic group).

Table 3.1 shows for each class (or subclass) and for each ortholog set (ygob,

rbh, and con) the number (and corresponding percentage) of genes for which phy-

logenetic inference yielded each of the three possible topologies. For each ortholog

set, we calculated the average percentage of genes across all classes for which tree

inference found the correct topology. We observed that ygob (our “gold standard”)

and con (the consensus method) performed nearly identically, finding the correct

topology in ≈ 35% of cases. This was somewhat better than rbh (the most widely-

used method for orthology determination), which only found the correct topology

in ≈ 27% of cases. However, the percentage of genes for which ygob and con re-

covered the correct topology (≈ 35%) was barely better than random (which would

have been ≈ 33%), so these results were not especially compelling on their own.

We were not surprised that phylogenetic analysis found the correct tree with

only approximately one-third of the genes, as this is known to be a particularly

challenging phylogenetic problem [196]. Furthermore, our criterion for correctness

was rather strict; if we were to perform an approximately unbiased (au) test [197], we

would expect to find that some of the genes do not have enough signal to significantly

reject the two alternative topologies.

Therefore, we decided to test the following hypothesis: as gene length in-

creases, the percentage of genes for which the two orthology determination methods

and the consensus method recover the correct topology increases concomitantly. We

pooled the genes from classes where there was an equal number of genes in both the

ygob and con data sets — C1A, C1B, C1C, C2B, C2D, and C2F — a total of 509
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Class Topology YGOB RBH CON

Genes Correct (%) Genes Correct (%) Genes Correct (%)

C0 .**. 172 36.1 61 25.8 99 41.9

C0 ..** 154 32.3 38 16.1 65 27.5

C0 .*.* 151 31.7 40 16.9 72 30.5

C1A .**. 16 31.4 13 25.5 17 33.3

C1A ..** 17 33.3 3 5.9 14 27.5

C1A .*.* 18 35.3 13 25.5 20 39.2

C1B .**. 9 33.3 7 25.9 8 29.6

C1B ..** 11 40.7 8 29.6 10 37

C1B .*.* 7 25.9 4 14.8 9 33.3

C1C .**. 45 32.4 22 16.1 49 35.8

C1C ..** 37 26.6 18 13.1 35 25.5

C1C .*.* 57 41 37 27 53 38.7

C2A .**. 1 33.3 3 50

C2A ..** 1 33.3 2 33.3

C2A .*.* 1 33.3 1 16.7

C2B .**. 64 42.1 49 32.5 69 45.7

C2B ..** 45 29.6 34 22.5 44 29.1

C2B .*.* 43 28.3 29 19.2 38 25.2

C2C .*.* 1 100 2 100

C2D .**. 29 33.3 21 24.1 27 31

C2D ..** 20 23 12 13.8 23 26.4

C2D .*.* 38 43.7 30 34.5 37 42.5

C2F .**. 18 32.1 18 32.1 18 32.1

C2F ..** 15 26.8 5 8.9 20 35.7

C2F .*.* 23 41.1 17 30.4 18 32.1

C4 .**. 1,285 36.7 1,218 34.7 1,285 36.7

C4 ..** 995 28.4 946 27 995 28.4

C4 .*.* 1,222 34.9 1,172 33.4 1,222 34.9

C5 .**. 10 23.3

C5 ..** 15 34.9

C5 .*.* 16 37.2

Average percent correct 34.7 27.1 35.8

Class Topology YGOB RBH CON

Samples Correct (%) Samples Correct (%) Samples Correct (%)

CONCAT10K .**. 4,080 40.8 4,965 49.7 4,562 45.6

CONCAT10K ..** 2,010 20.1 1,327 13.3 2,060 20.6

CONCAT10K .*.* 3,910 39.1 3,708 37.1 3,378 33.8

Table 3.1: Percentage of genes that recovered the correct topology for various yeast data
sets and orthology determination methods. Classes C0-C4 are from Scannell et al. [192].
In addition, we ran orthomcl on the four yeast transcriptomes to create a new class
(“C5”) consisting of the 46 gene sets that had eight or more genes represented in all four
species. The correct topology is shown in the first row of each class, denoted by .**. rbh
percentages are corrected (using the total number of genes from the corresponding con
entry) to account for missing observations due to lack of a significant blast hit.
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genes. Then we binned genes according to the number of parsimony-informative

characters they contained. The histogram in Figure 3.3 shows no indication that

an increase in gene length is positively correlated with an increased probability of

recovering the correct tree.

Thus, we hypothesized that even the longest single genes still did not carry

enough phylogenetic signal to recover the correct topology, so we decided to move

beyond single gene analysis to concatenated gene analysis. From the pool of 509

genes, we drew 10 genes at random from the ygob ortholog set and concatenated

them to form a single sample alignment. We then took the exact corresponding

genes from the rbh and con ortholog sets to build analogous rbh and con sam-

ple alignments, respectively1. We drew 104 such samples, and for each sample

we performed the same phylogenetic analyses described previously (ml search and

bootstrap analysis using paup*). The results, shown in Table 3.1, indicated an

improvement in all three methods: they all found the correct topology at least 40%

of the time. Perhaps surprisingly, con (45.6% correct) outperformed ygob (40.8%

correct), and even more surprisingly, rbh (49.7% correct) performed the best of all

three methods.

The Venn diagram in Figure 3.4 shows the overlap among the ygob, con, and

rbh concatenated samples that recovered the correct tree. We see, for example, that

1In the case of rbh, if the corresponding gene was missing, we simply omitted it. Thus, rbh

samples contained, on average, a couple fewer genes. We felt that this was an appropriate “penalty”

under the basic assumption that a longer alignment affords a better chance to recover the correct

topology.
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Figure 3.3: Histogram showing the breakdown of the percentage of genes
for which ygob and con ortholog sets recover the correct tree as gene
length increases. Along the x-axis are buckets of size 50. The number of
genes in the bucket is shown in parentheses.
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for 13.4% of the samples, both orthology determination methods and the consensus

method recovered the correct tree, whereas for 21.2% of the samples, all three meth-

ods failed to recover the correct tree. Interestingly, con had the largest percentage

of samples that recovered the correct tree when the others did not (17.8%).

Finally, we created three scatterplots (all pairwise combinations of data sets)

that show, for a subset of the concatenated samples, the percentage of the 2,000

bootstrap replicates that recovered the correct tree (Figure 3.5). Our objective was

to see if any of the three data sets significantly outperformed the other two in terms

of tree inference robustness as measured by bootstrapping. However, we found that

overall, the percentages were fairly even (Figure 3.5).

From the yeast analysis, we conclude that the consensus method is competitive

with the two orthology determination methods we tested.

3.3.2 Vertebrate proteome analysis

We isolated 39 homologous gene groups from seven vertebrate proteomes and

applied the consensus method to the 1,563 individual gene sequences so that each

taxon/locus combination was represented by a single consensus sequence. We then

concatenated these 39 genes to form a con vertebrate data set.

To construct a competing reciprocal best blast hit (rbh) data set, we used

orthomcl as with the yeast data (Section 3.3.1), which resulted in 2,129 alignment

files containing 14,903 gene sequences. We searched these files for occurrences of

sequence identifiers that were also present in the con vertebrate data set, which

55



Percentage of concatenated samples that recover the true phylogeny
based on 10,000 samples of 10 concatenated genes

from classes C1A, C1B, C1C, C2B, C2D, and C2F
(509 genes total)

YGOB CON

RBH 21.2

11.1

17.8

9.2

6.1

16.1

5.2

13.4

Figure 3.4: Venn diagram showing overlap among the ygob, con, and
rbh concatenated samples that recovered the correct tree.
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returned eight loci. We concatenated these eight genes to form an rbh vertebrate

data set.

We performed 100 maximum likelihood searches for the best tree on both

the con and rbh data sets using garli 2.0 [198] with a gtr+i+g nucleotide

model. The tree with the highest likelihood score from each analysis was selected

for comparison to the canonical vertebrate phylogeny, which is as follows:

(((((Human,Mouse),Dog),Chicken),Frog),(Zebrafish,Pufferfish));

We ran treedist from the phylip [199] package to calculate the symmetric

distance between the con/rbh vertebrate trees and the reference phylogeny. For

the purpose of comparing tree distance between and among data sets, we also report

a normalized distance based on the maximum symmetric tree difference for a pair

of trees (2n-6, where n is the number of taxa).

distance between reference and con = 2 (normalized distance = 2/(2(7)-6) = 0.25)

distance between reference and rbh = 0 (normalized distance = 0/(2(7)-6) = 0.00)

In this analysis, the rbh tree matched the reference phylogeny exactly, and

the con tree was almost correct.

3.3.3 Plant proteome analysis

We selected 11 plant genes and downloaded the corresponding files from the

plaza [200] database, in which 23 plant species were represented (Figure 3.6). We

applied the consensus method to the 618 gene sequences therein, and concatenated

these 11 genes to form a con plant data set.
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To construct the reciprocal best blast hit (rbh) data set, we used the same

methodology as with the yeast and vertebrate data (Sections 3.3.1 and 3.3.2, re-

spectively), which resulted in each taxon being represented by exactly one sequence

in each gene file. We concatenated these 11 genes to form a rbh plant data set.

We performed 100 maximum likelihood searches for the best tree on both of

these data sets using garli 2.0 with a gtr+i+g nucleotide model. The tree with

the highest likelihood score from each analysis was selected for comparison to the

canonical plaza phylogeny, which is shown in Figure 3.6.

We ran treedist from the phylip package to calculate the symmetric dis-

tance between the con/rbh plant trees and the reference phylogeny. For the pur-

pose of comparing tree distance between and among data sets, we also report a

normalized distance based on the maximum symmetric tree difference for a pair of

trees (2n-6, where n is the number of taxa).

distance between reference and con = 8 (normalized distance = 8/(2(23)-6) = 0.2)

distance between reference and rbh = 4 (normalized distance = 4/(2(23)-6) = 0.1)

We found that both trees were quite similar to the reference phylogeny, and

were also very similar to one another.

3.4 Summary

In our validation studies, we found that the consensus method performed com-

parably to the orthology determination methods we tested. Perhaps this comments

on the relative performance of existing orthology determination methods, as intu-
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itively one might not have expected the consensus method to perform as well as

rbh, for example, which is more algorithmically complex and computationally in-

tensive. Generally speaking, the simplicity of the consensus method may allow it

to be applied in situations where orthology status cannot be easily determined by

other methods.

In Chapter 7, we apply the consensus method to the analysis of Leptree data

in the context of a phylogenomic workflow, and evaluate its utility compared to

that of selecting a single representative sequence per locus (Appendix A). We find

that the consensus method is competitive with, and even sometimes outperforms

the representative sequence selection method, and thus in Chapter 8 we transition

to using the consensus method exclusively.
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Figure 3.5: Bootstrap scatterplots for all pairwise combinations of ygob,
rbh, and con for a random subset of the concatenated data sets. The
blue line is a least squares fit line, and the dashed line is a lowess line.
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Figure 3.6: The canonical plaza phylogeny, taken from
http://bioinformatics.psb.ugent.be/plaza/. At the time we
performed the plant proteome analysis, Fragaria vesca and Theobroma
cacao were not included in the phylogeny.
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Chapter 4: The GARLI web service

This chapter is based on the following publication: Adam L. Bazinet, Derrick

J. Zwickl, and Michael P. Cummings. A gateway for phylogenetic analysis powered

by grid computing featuring GARLI 2.0. Systematic Biology, 63(5):812-818, 2014.

Corrections included.

4.1 Introduction

The most widely used modern statistical methods of phylogenetic inference

fall into two broad classes: maximum likelihood (ml) methods, and Bayesian infer-

ence methods. Depending on the number of sequences, the number of characters,

and the chosen evolutionary model, both ml and Bayesian tree inference methods

can be computationally intensive, thus creating the need for strategies that speed

up computation and decrease time to results. One such strategy is parallelization,

which distributes a logical unit of computation over multiple processors. Maximum

likelihood methods are generally more amenable to parallelization than Bayesian

inference methods, since the hundreds or thousands of searches for the ml tree and

bootstrap trees that are required for a typical phylogenetic analysis may be run inde-

pendently of one another. We have developed a grid computing system that features
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the maximum likelihood-based program garli [2] for high-throughput phylogenetic

analysis. Here we describe this publicly available system, in particular focusing on

the user-friendly garli web interface available at molecularevolution.org.

garli is an open-source phylogenetic inference program that uses the maxi-

mum likelihood criterion and a stochastic evolutionary algorithm to search for op-

timal solutions within the joint space of tree topologies, branch length parameter

values, and model parameter values. garli was developed with the goal of increas-

ing both the speed of maximum likelihood tree inference and the size of data sets

that can be reasonably analyzed. garli 2.0 implements models for the analysis of

biological sequence data (at the level of nucleotides, amino acids, or codons), as well

as morphology and (not officially released) insertion-deletion characters. Version

2.0 introduced support for partitioned models, allowing simultaneous use of differ-

ent data types or assignment of differing model parameters and rates to individual

loci or codon positions. The program design focuses on flexibility of model choice

and rigor in parameter estimation.

Searches through phylogenetic tree space may become entrapped in local op-

tima, and therefore it is necessary to perform multiple garli searches for the tree

with the highest likelihood, which we simply call the best tree. This could entail

hundreds of searches, depending on the difficulty of the problem. Furthermore, one

typically conducts hundreds or thousands of bootstrap replicate searches to assess

confidence in the bipartitions found in the best tree. Depending on the number

of sequences, the number of unique alignment columns, the evolutionary models

employed, various garli configuration settings, and the capability of the computa-
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tional resource, it can take hours or even days to complete a single garli search

replicate. Thus, running many search replicates in parallel on a grid computing

system greatly reduces the amount of time required to complete a set of analyses.

Grid computing is a model of distributed computing that seamlessly links ge-

ographically and administratively disparate computational resources, allowing users

to access them without having to consider location, operating system, or account ad-

ministration [48]. The Lattice Project, our grid computing system based on Globus

software [49], incorporates volunteer computers running boinc [50] as well as tra-

ditional grid computing resources such as Condor pools [51] and compute clusters.

The architecture and functionality of the grid system is described extensively else-

where [52]; fundamentally, however, The Lattice Project provides access to scientific

applications (which we term grid services), as well as the means to distribute the

computation required by these services over thousands of processors. In recent years,

the system has been enhanced by the development of a web interface to the garli

grid service [54]. The garli grid service has been used in at least 60 published

phylogenetic studies, with usage having increased dramatically since the release of

the garli web interface [5, 6, 6–8, 61–130]. As of 09 June 2015, 1,191 distinct web

service users have completed 6,901 analyses comprising 3,235,709 individual garli

search replicates (Figure 4.1).

Here we compare The Lattice Project to other scientific gateways and describe

the features of the garli web service. In addition, we provide details about how the

grid system efficiently processes computationally-intensive phylogenetic analyses.
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4.2 The Lattice Project compared to other scientific gateways

There are a number of other scientific gateways that provide bioinformatics

tools and services, including those for phylogenetic analysis. These include the Cy-

berinfrastructure for Phylogenetic Research (cipres) Gateway [201], the University

of Oslo Bioportal [202, which has recently closed], the Cornell Computational Biol-

ogy Service Unit (cbsuapps.tc.cornell.edu), Phylemon [203], and Mobyle [204].

Although each of these other systems has proved to be of use in phylogenetic re-

search, our grid system has some distinguishing characteristics.

1. GARLI version 2.0 — Of the gateways supporting phylogenetic analysis,

only The Lattice Project and the cipres gateways offer a garli 2.0 [198]

service.

2. Unlimited computation — The garli service at

molecularevolution.org currently allows an unlimited number of sub-

missions, up to 100 best tree search replicates (1,000 search replicates in

“adaptive” mode) or 2,000 bootstrap replicates per submission, and no

resource or runtime limitations. We are able to offer this level of service

due to our implementation of stringent error checking, advanced scheduling

mechanisms, and inclusion of several types of grid computing resources.

3. Facile user interface and resource abstraction — Fully embracing the

grid computing model, the computing resources backing the garli service are

abstracted from the user, facilitated by an elegant user interface. In contrast,
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the cipres gateway requires the user to become familiar with their computing

resources and to specify their analysis in such a way that it will complete on

the allocated resource (usually only a small number of processors) within an

allotted period of time.

4. Sophisticated and relevant post-processing — The use of stochastic al-

gorithms, multiple search replicates, and bootstrap analyses generates a large

number of individual results that must be compiled and processed for evalua-

tion and subsequent use. We perform much of this post-processing automati-

cally, including computation of the best tree found or bootstrap majority rule

consensus tree, and the calculation of various summary statistics and graphical

representations (Section 4.5).

5. Large-scale public participation — The Lattice Project is the only phylo-

genetic analysis system that provides an easy and meaningful opportunity for

public participation in research, which is achieved by using our boinc project

(boinc.umiacs.umd.edu). Volunteers simply download a lightweight client

to their personal computer, thus enabling it to process garli workunits for

The Lattice Project. As of 02 April 2014, more than 16, 956 people from 146

countries have participated.

6. Minimal energy usage — Emergy, the energy embodied in computing com-

ponents (which includes manufacture and transportation), accounts for the

majority of power consumed in computing [205]. Put another way, the “green-

est” computer is one that is never built. Apart from a few servers for web,
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database, and middleware services, no hardware is purchased specifically for

our grid system. The institutional resources we use are comprised largely of

desktop systems and clusters purchased for other purposes (e.g., teaching labs

and research, respectively), and we use these resources only when they are not

being used for their primary purpose. In addition, more than 38, 481 com-

puters from the general public have been volunteered at various stages of the

project. For all of these resources, the emergy investment has already been

made, and our use of these resources amortizes this investment over a greater

usage basis. In contrast, phylogenetic analyses through other gateways com-

pete for limited resources on high-capacity clusters, where the jobs often do

not take advantage of the high-bandwidth, low-latency interconnects and other

special hardware features offered. Furthermore, the widely-distributed, low-

density computing model of our grid system results in almost no additional

energy use for cooling compared to the substantial energy costs of cooling

computer data centers.

No other openly-accessible phylogenetic computing system collectively shares these

attributes. Although dedicated high-performance computing resources have their

place in scientific research, a substantial share of phylogenetic analyses can be per-

formed very effectively, and more energy efficiently, by means of grid and public

computing.
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4.3 GARLI web service: user interface and functionality

We have recently upgraded the user interface to our grid system from a Unix

command-line interface to a web-based one. This greatly reduces the entry bar-

rier for potential non-technical users. Researchers were previously required to use

command-line tools to upload data, submit analyses to a particular grid service

(e.g., garli), and download subsequent results. Basic utilities were also available

to query the status of jobs or cancel them.

Although the command-line interface is still available, the web-based interfaces

to our services have generated considerably more interest; the garli web service was

the first of these to be developed. The following sections describe the modes of use

and the basic functionality of the garli web service at molecularevolution.org.

4.3.1 Modes of use

A garli web service user may register an account or choose to remain anony-

mous. Anonymous users are only required to provide an email address (used to

notify them of job status updates) and to fill out a captcha (Completely Au-

tomated Public Turing test to tell Computers and Humans Apart) for each job

submission (to prevent spam submissions). Anonymous use of the web service is a

convenient way to try out the service with minimal effort. However, registration at

molecularevolution.org confers several advantages: (1) one does not have to fill

out a captcha for each job submission; (2) one gains access to a file repository

that can be used to store and reuse input files (Figure 4.2); and (3) one gains the
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ability to view a list of their jobs and manage them.

4.3.2 Create job page

Submitting a garli analysis via the create job page (Figure 4.3) consists

of the following general steps: (1) specification of a job name, analysis type (best

tree or bootstrap search), and number of replicates (up to 2,000); (2) upload or

specification of necessary input files (sequence data, starting tree, and/or constraint

file); and (3) specification of model parameters and other program settings. Upon

job submission, the system uses a special validation mode of the garli program to

ensure that there are no problems with the user-supplied data file and the parameters

specified; for example, very large data sets may require more ram than the system

currently allows (8000 mb). garli search replicates are then scheduled to run in

parallel on one or more grid system resources that meet the job requirements (e.g.,

that have enough ram). The user is notified by email if their job was submitted

successfully or if it failed for some reason.

4.3.3 Job status page

The job status page (Figure 4.4) allows a registered user to view and manage

a list of their jobs. For each job listed, the following attributes are displayed: job id,

job name, number of replicates complete, job status, and time the job was created.

The dropdown at the top of the page allows one to filter jobs by a particular job

status (“idle”, “running”, “retrieved”, “failed”, or “removed”). Finally, using the
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button at the bottom of the page, one may remove jobs that are no longer of interest.

If the jobs to be removed are in the process of running, they will be canceled.

4.3.4 Job details page

When a registered user selects a particular job from the job status page, or an

anonymous user enters a valid e-mail address/job id combination on the same page,

the job details page is shown (Figure 4.5). This page contains a section for job

input files (both user-provided and system-generated) and a section for job output

files. The job output files section always includes a zip file that contains all of the

currently available output associated with the analysis. If all of the replicates for a

particular analysis are complete, then the job output files section will also include

the results of post-processing (Section 4.5).

4.4 Partitioned analysis specification

Support for partitioned substitution models is the most significant new feature

of garli 2.0. However, partitioned analysis specification can be a relatively compli-

cated and error-prone process. We have made the specification of modestly-complex

partitioned analyses easier by introducing a guided mode that allows the user to spec-

ify the details of the partitioned analysis with graphical form elements (Figure 4.6),

rather than by manually composing a nexus sets block and garli model blocks.

Guided mode is enabled once the user has selected a valid nexus data file, which

the system processes with the Nexus Class Library [206]. The user then creates one
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or more character sets (charsets), each consisting of a name, a start position, and

an end position; charsets may also be specified by codon position using a checkbox.

Once the user specifies one or more valid charsets they will be made available to

be added to data subsets. Each data subset must contain at least one charset, but

may contain more than one. The service currently allows the definition of up to ten

data subsets in guided mode. For each data subset, a particular substitution model

(or particular model parameters) may be specified. When the partitioned analysis

is submitted, the service will automatically transform the charset and subset data

into a nexus sets block and include it in the data file, and will likewise produce

the appropriate model blocks and add them to the garli configuration file. For

users who prefer to provide their own nexus sets block and garli model blocks,

we provide an expert mode that allows the user to input them directly.

4.5 Post-processing routines

Due to the difficulty of inferring large phylogenetic trees, multiple searches for

the best tree are typically performed with garli. This increases the thoroughness of

the search for the best tree, but the resulting large number of files and analysis results

can be overwhelming. To ease the burden on the end user, our web-based system

performs some post-processing routines, which include graphical and quantitative

characterizations of the set of trees inferred from multiple search replicates.

Post-processing generates a textual summary for all analyses (Figure 4.7). This

file contains the following general information: (1) the data file used; (2) the number
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of replicates performed; (3) the cumulative garli runtime; and (4) suggestions for

citing the garli web service (omitted from Figure 4.7). The analysis summary for a

best tree search also contains summary statistics that characterize the distribution of

log-likelihood scores and symmetric tree distances [207] (absolute and normalized),

as well as estimates of the number of search replicates required to recover the best

tree topology at three probability levels (Section 4.5.1).

In the case of a best tree search, post-processing generates the following files

in addition to the analysis summary: (1) a nexus tree file containing the single tree

with the highest likelihood score; (2) a file containing all of the trees found across

search replicates, as well as a file containing only the unique trees found (both files

in nexus format); (3) a file containing a sorted list of the likelihood scores of the

trees found by the analysis and a file containing a sorted list of the likelihood scores

of the unique trees found; (4) a pdf file showing the distribution of likelihood scores

among trees (Figure 4.8a); and (5) a pdf file showing the distribution of symmetric

tree distances (Figure 4.8b).

In the case of a bootstrap analysis, post-processing uses DendroPy [208] to

generate the following files in addition to the analysis summary: (1) a nexus file

containing all of the bootstrap trees from the analysis; (2) a nexus file containing the

majority rule bootstrap consensus tree with bootstrap probability values embedded;

(3) a pdf file showing the 0.90, 0.95, and 0.99 confidence intervals for the bootstrap

probabilities observed in the majority rule bootstrap consensus tree, calculated using

the formulas given in [209] (Figure 4.9); and (4) a table giving the 0.90, 0.95, and

0.99 confidence intervals for the bootstrap probabilities observed in the majority
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rule bootstrap consensus tree.

4.5.1 Calculating the required number of GARLI search replicates

Our post-processing routines for a best tree search include the calculation of χ,

the number of search replicates necessary to guarantee a particular probability (e.g.,

0.95) of recovering the tree topology with the highest observed likelihood score [5].

This statistic, based on properties of the binomial distribution, is calculated using

the number of replicates that find the identical best topology (x), where “identical

topology” is defined as having symmetric distance from the best topology equal to

zero.

For example, if the topology of the best tree is unique among 100 topologies

(x = 1), χ = ln(0.05)/ln(1 − (x/100)) ≈ 298. Thus, 298 replicates are required

in order to recover the best topology with a probability of at least 0.95 (Figure

4.10). Of course, it is entirely possible that upon running 298 replicates, χ would

be revised upwards; e.g., if the topology of the best tree were still unique among the

set of topologies, then yet more replicates would be required.

This statistical estimate of the number of search replicates required to achieve

a given probability of obtaining the best tree is intended to inform users about the

joint behavior of their data and the garli search algorithm, and consequently how

many search replicates they should perform. The garli web service is now able to

automatically and adaptively perform the appropriate number of search replicates

on behalf of the user (Section 5.5). This introduces an objective decision process
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into the analysis design that eliminates guesswork and the need to evaluate inter-

mediate output, thus saving investigator time and improving analytical results. It

also reduces waste of grid resources and energy by suggesting that the user run only

the number of replicates needed. Eventually, it may also be possible to do some-

thing similar for bootstrap replicates, perhaps based on a desired level of precision

(Figure 4.9) or other criteria [210].

4.6 System performance

The performance of any distributed computing system depends on how effi-

ciently its resources are used. We have implemented a number of scheduling opti-

mizations that enable efficient use of our grid computing resources [52]. These in-

clude a round-robin scheduling algorithm to distribute load evenly among resources

(Section 5.1.1); a scheme for benchmarking resources and prioritizing job assign-

ments so that faster resources receive jobs before slower resources (Section 5.4);

use of predicted job runtime to ensure that long-running jobs are placed on re-

sources where they are unlikely to be interrupted (Section 5.2); and a mechanism

for combining many short-running jobs into a single job with an “optimal” aggregate

runtime to maximize system throughput (Section 5.3.1). These last two features de-

pend on a framework we developed for garli runtime prediction using random

forests [211, 212], a machine learning method. We have improved this framework

so that the runtime prediction model is continuously updated as new jobs are run

(Section 5.2).
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It is important to keep in mind that our grid system is designed for high-

throughput computing rather than high-performance computing. As a result, while

any one analysis might run more quickly on a dedicated high-performance plat-

form, The Lattice Project allows many such analyses to run concurrently and

still complete in a relatively modest amount of time (Figure 4.11). In addition,

use of a high-performance system may not necessarily yield decreased time to re-

sults once allocation processes, system availability, queue waiting times, schedul-

ing policies, and other considerations commonly associated with the use of high-

performance resources are factored in. The high-throughput computing gateway at

molecularevolution.org is well-matched to the requirements of many typical phy-

logenetic analyses, and it has already proven useful to many researchers conducting

maximum likelihood phylogenetic analyses using garli 2.0.
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Figure 4.1: garli web service statistics showing number of distinct users,
completed analyses, and completed search replicates over a five-year time
period.
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Figure 4.2: The file repository belonging to an example registered user.
Registered users may select from among the files found in their repository
when specifying input files for a garli analysis, in addition to being able
to upload new files.
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Figure 4.3: The create job form found at molecularevolution.org, as
viewed by a registered user.

78



Figure 4.4: The job status page found at molecularevolution.org, as
viewed by a registered user.
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Figure 4.5: The job details page found at molecularevolution.org, as
viewed by a registered user.
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Figure 4.6: The partitioned analysis portion of the create job form,
currently showing a guided mode specification of two character sets and
two data subsets.
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file:///Users/adambazinet/Downloads/analysis_summary.txt[4/1/14, 3:19:37 PM]

[Analysis Summary]

Data file: rbcL_Analysis_1.fasta

Number of replicates: 100

Total runtime = 0 days, 8 hours, 37 minutes, and 34 seconds.

Summary of ln likelihood scores:
     Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
-7221.578 -7198.774 -7197.587 -7197.792 -7196.600 -7194.006 

Summary of symmetric tree distances (raw)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  0.000  14.500  20.000  19.657  25.000  35.000 

Summary of symmetric tree distances (normalized)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
0.00000 0.11154 0.15385 0.15120 0.19231 0.26923 

Number of replicates needed to recover the best topology with 0.90 probability: 22 
Number of replicates needed to recover the best topology with 0.95 probability: 28 
Number of replicates needed to recover the best topology with 0.99 probability: 44 

[Citing the GARLI Web Service]

Here is an example of how the GARLI web service may be cited in a publication:

"To complete the phylogenetic analyses we used GARLI 2.0 (Genetic
Algorithm for Rapid Likelihood Inference; Zwickl 2006) and grid
computing (Cummings and Huskamp 2005) through The Lattice Project
(Bazinet and Cummings 2008), which includes clusters and desktops in
one encompassing system (Myers et al. 2008). A web service for GARLI
was developed (Bazinet and Cummings 2011) that uses a special
programming library and associated tools (Bazinet et al. 2007). 
Following the general computational model of a previous 
phylogenetics study (Cummings et al. 2003), which used an earlier 
grid computing system (Myers and Cummings 2003), we distributed 
required files among hundreds of computers where the analyses were 
conducted asynchronously in parallel.

Post-processing of the phylogenetic inference results was done using
DendroPy (Sukumaran and Holder 2010) and the R system for statistical
computing (R Core Team 2013). The estimation of the number of 
replicates required to recover the "best" topology follows 
Regier et al (2009), and the calculation of confidence intervals for 
the bootstrap probabilities observed in the majority rule consensus
tree follows Hedges (1992)."

List of references:

Bazinet AL and MP Cummings (2011) Computing the Tree of Life -

Figure 4.7: Partial output summarizing the results of 100 best tree search
replicates. Among the results of the post-processing displayed here are
summary statistics that characterize the distribution of log-likelihood
scores, symmetric tree distances (raw and normalized), and estimates of
the number of search replicates required to recover the best tree topology
at three probability levels.
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Figure 4.8: Properties of trees from multiple search replicates for a repre-
sentative garli analysis. a) The distribution of likelihood scores. b) The
distribution of symmetric tree distances (as a fraction of the maximum
possible value for the data set). Both measures are given as frequency
and proportion.
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Figure 4.9: Confidence intervals associated with the bootstrap prob-
abilities observed in the majority rule consensus tree computed from
500 garli bootstrap replicates. Confidence intervals are given for three
probabilities (0.90, 0.95, and 0.99).
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Figure 4.11: Completion times of 719 analyses submitted to the garli
web service for a recent six-month period (23 July 2013 to 23 Jan-
uary 2014). Despite great variation in analysis parameters (e.g., data
matrix size, substitution model used, number of replicates requested),
≈ 97% of analyses were completed in less than 24 hours.
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Chapter 5: Improvements to grid computing for phylogenetics

This chapter is based, in part, on the following publication: Adam L. Bazinet

and Michael P. Cummings. Computing the tree of life: leveraging the power of

desktop and service grids. In Proceedings of the Fifth Workshop on Desktop Grids

and Volunteer Computing Systems (PCGrid), 2011. Corrections included.

5.1 Meta-scheduling framework

Many of the improvements to the grid computing system specifically for phylo-

genetics concern the performance and efficiency of grid-level scheduling (also called

meta-scheduling). Thus, we first provide some background on the meta-scheduling

framework used in our grid system.

The scheduling component of any grid system is likely to be one of the most

important and logically complex, because to a large extent it determines the overall

efficiency of the system. The grid-level scheduler must decide to submit a job to one

of several possible grid resources (i.e., local resources; e.g., various Condor pools,

clusters, or pools of boinc clients); after the job is submitted to the local resource,

it is usually scheduled again to a compute node in the local environment by the

scheduler managing the local resource. Thus, the grid-level scheduler is termed a
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meta-scheduler because it performs scheduling one level above that of local resources

— i.e., at the grid level. The meta-scheduler must be informed about the current

state of local resources, which we achieve using the Monitoring and Discovery Ser-

vice (mds), a standard Globus component that requires minimal configuration. Take

the example of a Globus installation for which mds has been configured to report

about the status of a Condor pool. In that case, a script called the Condor sched-

uler provider will periodically parse the output of the condor status command to

discover the total number of nodes in the pool, the number of nodes that are free

to be used by Condor (not bound to a machine owner or another computational

process), as well as other attributes about the Condor pool. This information is

stored as xml in the Globus container memory space, and expires after a specified

amount of time (in our system, three minutes).

The mds database can be queried for the information it contains, such as the

status of the Condor pool in the preceding example. The information in an mds

database can also be periodically propagated to another mds database running in a

Globus container on a different host. Using this mechanism, we centrally aggregate

all of our grid resource data in the mds database on our central grid server, and

query it to assist in scheduling decisions. In the next section we describe our grid

meta-scheduling algorithm in detail.
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5.1.1 Meta-scheduling algorithm

First of all, the meta-scheduler needs to know which grid resources are report-

ing. If a grid resource goes offline, any jobs sent there will fail, so we cannot safely

assume that our resources are always up and running. Therefore, if we cease to re-

ceive mds information from a particular resource, we mark the resource as “offline”,

thus ensuring that new jobs will not be scheduled to run there. The meta-scheduler

then uses several criteria to choose from among the resources that are reporting.

First, not all jobs will run on all resources, so the scheduler matches on various

attributes to narrow down the list of possible resources. For example, the system

keeps track of which cpu architecture and operating system combinations each grid-

enabled application is compiled for (e.g., Intel/mac os x), and compares this list

to the platforms each grid resource is advertising. From the remaining eligible re-

sources, the scheduler then eliminates resources that do not have sufficient memory

(ram) to run the job. Other resource requirements are also considered if necessary,

such as whether or not the resource is mpi-capable, and whether or not it has ad-

ditional required software installed (e.g., r [178]). One can imagine any number of

additional filtering and ranking criteria, especially concerning complex issues such

as policy — determining which grid users may access a particular resource, which

users have priority over other users, when a particular resource may be used and

for how long, and so on. We have not yet placed any such policy restrictions on

resource use at the grid level, though it may be necessary to do so in the future.

However, it is important to mention that when grid jobs run on a local resource,
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they are always subject to the local policies that govern use of that resource. From

the final set of eligible grid resources, the scheduler chooses the one with the lightest

load and submits the job there. If multiple resources are considered equally loaded,

the scheduler submits the job to the resource with the highest throughput rating

(Section 5.4.3).

5.2 GARLI runtime estimation with random forests

5.2.1 Motivation for a GARLI runtime estimate

Procuring an accurate runtime estimate for a garli analysis in advance of job

scheduling is useful for a number of reasons. First, it helps prevent long-running jobs

from being scheduled to a resource where they do not have a chance of completing.

Interruptions can occur because of interference from human users or other compu-

tational processes, limits on resource use, technical failures, and a variety of other

factors. Thus, we currently prevent garli jobs whose estimated runtime is greater

than ten hours from being scheduled to Condor resources, where interruptions are

especially frequent.

Second, having a runtime estimate allows us to deal with boinc-specific

scheduling issues. For example, we can programmatically specify reasonable worku-

nit deadlines, which are needed on a volunteer computing platform to periodically

reissue work if results are not received in a timely manner. Before runtime estimates

were available, we had to specify a workunit deadline manually for each batch of

work we ran through boinc, a practice that is not feasible if we wish to use volunteer
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computing for the wide variety of garli jobs routinely submitted through the garli

web service. In a similar vein, accurate runtime estimates allow the boinc scheduler

to hand out the proper amount of work when a client makes a work request, thus

overloading fewer boinc clients and improving overall system efficiency.

Third, if we find that a grid user has submitted a very short-running analysis

— e.g., only a few minutes of runtime per search replicate — we can ratchet up

the number of search replicates each individual garli invocation will perform (Sec-

tion 5.3.1). Similarly, long-running jobs can be broken up into homogeneous-length

subunits, which is an especially efficacious strategy to use when running on boinc

(Chapter 6). We have found that both of these optimizations greatly improve system

efficiency.

Finally, in combination with other data, runtime estimates may eventually help

us provide researchers with an estimated runtime for their phylogenetic analysis

submissions, which would be helpful for project planning and time management

purposes.

5.2.2 Use of random forests for GARLI runtime estimation

garli is a particularly challenging program for which to compute runtime

estimates. For one, the size of the input data can vary from modest (a few taxa,

short sequences) to massive (hundreds or thousands of taxa, sequences thousands

or millions of characters in length). Furthermore, the program supports a variety

of evolutionary models, some requiring much more computation than others. For
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example, amino acid and codon models tend to take substantially longer than nu-

cleotide models to analyze the same data set, primarily due to an increased number

of possible character states. Finally, because the program is genetic algorithm-like,

there are numerous options for controlling the behavior of the genetic algorithm that

can have an impact on runtime. In our approach, we first identify the parameters

that are most likely to affect runtime, and then we use a machine learning algo-

rithm to produce a runtime estimate for a particular combination of inputs on the

basis of training data collected from previous garli runs. This approach contrasts

with machine learning techniques for runtime prediction that are based solely on

historical workload traces [213, 214]. There are many machine learning methods

for classification and regression [215]; the particular method we use here is random

forests, for which we provide additional background in the following section.

5.2.3 Background on random forests

Random forests [211, 212, 216, 217] is a machine learning technique developed

by Breiman and Cutler to perform classification and regression using an ensemble

of tree-based statistical models (hence, “forest”) instead of just one, thus producing

more accurate results. Final predictions are obtained by a voting scheme using

the ensemble. Bagging [212] is an early example of this technique in which each

tree is constructed from a bootstrap sample [218] drawn with replacement from the

training data. Bagging reduces prediction error for unstable predictors, such as trees,

by reducing the variance through averaging [212, 219]. Minimizing the correlation
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between the quantities being averaged can favorably enhance this effect, so random

forests seek to effect such correlation reduction by a further injection of randomness.

Instead of determining the optimal split of a given node of a constituent tree by

evaluating all allowable splits on all covariates, as is done with single tree methods or

bagging, a subset of the covariates drawn at random is employed. Breiman [211,217]

argues that random forests (a) display exceptional prediction accuracy, (b) that this

accuracy is attained for a wide range of settings of the single tuning parameter

employed, and (c) that overfitting does not arise due to the independent generation

of ensemble members.

To estimate garli runtimes, we generated random forests made up of 104

individual trees constructed by subsampling nine predictor variables at each node.

Variable importance was assessed by measuring the increase in group purity when

partitioning data based on a variable. We used the r package randomForest [178,

220].

5.2.4 Random forests model building

In order to construct a model with random forests, it is necessary to select the

analysis parameters that will be included. Based on a combination of our experi-

ence using garli, program documentation, and correspondence with the program

author, we isolated nine parameters that were most likely to affect runtime: data

type, proportion of invariant sites, memory used, number of rate categories, number

of taxa, number of unique patterns, rate heterogeneity model, rate matrix, and spec-
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ification of state frequencies (Figure 5.1). Unlike other machine learning methods,

random forests does not require variable (attribute) selection. Rather, it allows use

of all possible variables, and the importance of each variable is quantified. This is

illustrated in our model, in which the most important analysis parameter affecting

runtime is use of a substitution rate heterogeneity model, with a difference in mean

square error of 89.7%, followed by data type (nucleotide, amino acid, or codon)

at 72.4%. In contrast, the number of rate categories turned out to be of very lit-

tle importance. All analysis parameters and their effect on runtime prediction, as

measured by percent increase in mean square error, are shown in Figure 5.1.

Approximately 150 garli jobs were initially used as training data; these rep-

resented a wide diversity of production jobs that had been previously submitted

by grid system users. The values of the nine predictor variables, along with the

response variable (runtime, measured in seconds) were determined for each job, ar-

ranged in a matrix and used to build a model with the randomForest r package

[178, 220]. The percentage of variance explained by the model was approximately

93%. The model itself, an ensemble of 104 individual trees stored as an R object,

may subsequently be used to make a runtime estimate for a new set of predictor

values. Our cross-validation testing showed that estimated job runtimes matched

actual job runtimes closely enough to be used for the purposes stated in Section

5.2.1 (data not shown).

There are several reasons why random forests is a good choice of machine

learning algorithm for garli runtime estimation: (a) its estimation performance

is excellent; (b) it automatically produces a measure of variable importance that
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Figure 5.1: Importance of garli analysis parameters in predicting anal-
ysis runtime as determined by random forests and measured in terms of
percent increase in mean square error.
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enables better understanding of how analysis parameters affect runtime; (c) it easily

incorporates categorical and continuous variables in the analysis; and (d) building

and updating the model is computationally tractable.

5.2.5 Integration with the grid meta-scheduler

The grid system uses the random forests model to produce a runtime estimate

for each garli analysis submitted. More specifically, the system collects the values

of the nine predictor variables from each job and produces a runtime estimate via

the predict() function from the randomForest package. This runtime estimate

is subsequently used for the purposes previously stated: (a) to decide to send a

particular job to a stable or an unstable resource (scaling the runtime estimate used

to make this decision by the runtime-only throughput rating of each grid resource;

Section 5.4); (b) to provide boinc with an accurate runtime estimate that is used

to estimate the number of floating-point operations associated with the job, as well

as to set a reasonable wall clock deadline; (c) to increase the number of search

replicates per garli invocation in the case of very short-running analyses; and (d)

to provide the researcher an estimate of time to results.

As the training data did not cover the entire spectrum of possible values for

the nine predictor variables, and because garli itself is periodically updated, it

is advantageous to continuously update the model based on information collected

from incoming jobs. To do this, we simply fork off a single estimate job replicate

that is representative of a particular submission, which is scheduled like a normal
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job to execute on a particular grid resource. After it completes, we record the

runtime (after scaling it by the runtime-only throughput rating of the resource on

which it executed; Section 5.4) along with the values of the predictor variables,

and add them to the training data matrix. The model is rebuilt once nightly and is

then immediately available to provide runtime estimates for newly-submitted garli

analyses. In this manner, the accuracy of the random forests model is continually

improved (Figure 5.2).

We also added a routine for determining runtime estimates for partitioned

garli analyses, which treat various subsets of the data matrix in an analysis dif-

ferently, such as by applying a different instance of an evolutionary model to each

subset. The routine calculates a separate runtime estimate for each data subset and

adds them together to produce a single runtime estimate for the partitioned analysis

as a whole.

5.3 Use of optimal-length GARLI jobs for grid computing

There is significant overhead associated with managing each grid-level job sub-

mission due to the negotiation of various layers of middleware, latency associated

with file transfers, queue wait times, and so on. Thus, the submission of large num-

bers of short-running grid jobs leads to reduced efficiency and reduced overall system

throughput, as the majority of each job lifetime is composed of various sources of

latency rather than actual scientific computation. Conversely, long-running jobs are

not ideal either because they are more likely than short-running jobs to be inter-
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Figure 5.2: Average fold-difference between estimated and actual garli
runtime, for data spanning approximately 400 days. The average fold-
difference gets smaller over time, indicating that the accuracy of the
random forests model is improving.
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rupted by other processes, computer failures and reboots, and human intervention,

all of which lead to wasted computation. In the middle of these two undesirable

extremes there exists a theoretically “optimal” job runtime (r), which maximizes

scientific computation by minimizing both unnecessary job overhead and potential

for interruption. Determining r is a challenging problem when one considers the het-

erogeneity of jobs that are submitted, the complexity of the grid meta-scheduling

algorithm, and the heterogeneity of grid resources. Once r is determined, it is possi-

ble to combine short-running garli jobs into optimal-length jobs by increasing the

number of searchreps (or bootstrapreps) performed in a single garli invocation.

The following sections describe the optimizations we have implemented that depend

on the optimal runtime value, as well as how we have determined r for non-boinc

resources. (In Chapter 6, we describe a scheme that subdivides long-running garli

jobs into shorter, fixed-length workunits on the boinc platform.)

5.3.1 Combining short-running GARLI jobs into optimal-length jobs

The first major optimization combines predicted short-running garli jobs

into optimal-length jobs. In the event of a garli job submission whose estimated

runtime is less than r/2, we increase the number of search replicates each garli

invocation will perform, which reduces the number of grid jobs we must manage

and simultaneously improves performance gains from parallelization. For example,

given r = 3, 600 seconds (one hour) and a runtime estimate for a particular anal-

ysis equal to 300 seconds (five minutes), the system will set searchreps = 12 (or
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bootstrapreps = 12, in the case of a bootstrap analysis) for each garli invocation.

Given a reasonable setting of r, we have found that this simple optimization greatly

increases overall system efficiency.

To date, however, we have only applied this optimization to jobs submitted

to our non-boinc (dedicated) resources, even though it might also naturally ben-

efit jobs assigned to our boinc pool. This is primarily because we have avoided

scheduling garli web service jobs to boinc, as our dedicated resources have pro-

vided a more consistent turnaround time and have generally sufficed to handle the

number of submissions we receive. Thus, the following section discusses how we

have determined r for dedicated resources.

5.3.2 Determination of r for dedicated resources

The attributes and dynamics of the boinc pool set it apart from our dedicated

resources (i.e., Condor pools and compute clusters); in particular, job completion

and overall turnaround times tend to be longer for boinc due to the need to set

generous workunit deadlines for our volunteers (typically a few days at minimum).

In general, the scheduling strategies used for boinc are different from the scheduling

strategies used for our dedicated resources. Thus, there is reason to believe that the

optimal job runtime (r) will be quite different for boinc than it will be for dedicated

resources. Here, we specifically focus on how we have determined r for dedicated

resources.

For any sufficiently complex and dynamic system, it is difficult to determine
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r theoretically; it is almost certainly more expedient to determine r empirically

(and if necessary, adaptively; r is likely to be a dynamic quantity). Given that

performance characteristics among our different Condor pools and clusters vary,

each resource likely has its own optimal runtime value. However, the specification of

job parameters such as the number of searchreps per garli invocation (discussed

in Section 5.3.1) currently occurs before job scheduling; a significant amount of

reengineering would be required to invert this order of operations, and it would

likely create other inefficiencies to address. Thus, it would be convenient to find

a single value of r that works uniformly well for all of our dedicated resources.

The value that we have used to date is 3,600 seconds (one hour), which is simply

an estimate conditioned on many years of experience running garli jobs on the

grid. Anecdotally, this value has been working quite well in production, but here

we explore ways to optimize r more rigorously.

5.3.2.1 Strategies for empirically determining r

There are two basic strategies for gathering the data necessary to determine r

empirically. The first strategy is to use everyday production jobs submitted to the

grid system, and the second strategy is to submit special jobs specifically for data

collection purposes.

As mentioned previously, r is currently set to 3,600 seconds (and has been

for several years, resulting in a large amount of historical data associated with this

value). The first strategy, which uses the production system, is to conduct a simple
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hill-climbing search near the current value of r; i.e., raise or lower r from its current

value in increments until performance ceases to improve in whichever direction seems

beneficial. There are several drawbacks to this approach, however. The first problem

is that we know neither in which direction to move r, nor how much of a “shock”

the current system can tolerate. Thus, it is potentially dangerous and costly to

conduct such experiments with the production system, but unfortunately there is

no convenient alternative: we do not have a grid system simulator at our disposal.

Second, it is potentially difficult to evaluate the positive or negative effect of each

new setting of r. A possible method of evaluation would be to consider a set of

jobs that have a very similar base execution time, constrain evaluation to one grid

resource at a time, and then compare the actual turnaround time of batches of such

jobs under different values of r. However, an effective calculation would require a

relatively large sample size for each set of jobs and each value of r tested, and because

we are at the mercy of our grid users to provide these jobs, we could potentially

spend a long time searching for the optimal runtime value. In fact, we may never

actually be able to cease the search because the true optimal runtime may change

significantly during the time it takes to gather data. The major advantage of this

overall strategy, however, is that it makes the most realistic possible use of the

system by modeling all sources of latency and the various idiosyncrasies associated

with typical patterns of job submission.

The second strategy is to submit a suite of test jobs specifically earmarked

to collect data that will be used to determine r. This strategy has at least two

advantages over the previous one: (1) the characteristics of the jobs that are used
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for testing can be exactly specified, and variability in some aspects of jobs can be

eliminated when desired, thus leading to more precise measurements; and (2) be-

cause these tests can be explicitly designed and executed, they can be completed

relatively quickly, thus mostly eliminating “change in resource characteristics” as a

confounding variable for any single test. Drawbacks as compared to the first strategy,

however, include the following: (1) a relatively significant amount of computational

cost will be incurred, which has the potential to interfere with the execution of

normal production jobs; (2) some effort will be needed to simulate “realistic” grid

usage, which involves considering the load induced on resources as well as the period

of time over which the experiment is conducted; and (3) the procedure will likely

have to be repeated periodically to keep up with changing resource characteristics.

Given these considerations, we decided to try out the second strategy. The

following section details our implementation of that strategy and the results.

5.3.2.2 Using test jobs to determine r for dedicated resources

To control for as many variables as possible, we restricted ourselves to a single,

relatively short-running garli job named rana. By fixing the random seed, we

ensured the execution of rana was deterministic. The runtime estimate produced

by the system for this job is 633 seconds — a little over 10 minutes.

All six of our dedicated resources were targeted in this experiment. These

included four Condor pools (cmns, Coppin, TerpCondor, and umiacs) and two

clusters (Deepthought and Topaz). To simulate “normal” grid use to a limited
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extent, we introduced a delay between job submissions to any particular resource

equal to 12 hours plus a random number of additional hours (0–12). For each value

of r considered, 10 job submissions were made to each resource, each consisting

of 100 search replicates executed by 100 or fewer garli invocations (simply called

replicates). Each replicate ran on a separate processor.

The following values of r were considered: 633 seconds (x), 4x, 10x, 25x, and

100x. These values were chosen to make the arithmetic work out neatly: an optimal

runtime value equal to x (633 seconds) would cause each of 100 garli replicates

to consist of a single search replicate, whereas r = 100x would pack all of the

computation into a single garli replicate with searchreps = 100.

The measurement of interest is turnaround time — i.e., the total time a batch of

jobs spends on a resource, including time spent waiting in scheduling queues. This

quantity is simply the difference between the timestamps recorded when a batch

finished and when it was submitted. We expected better values of r to produce

shorter average turnaround times.

The results of the experiment are shown in Table 5.1. The “1 rep/100 sr”

column represents a single garli replicate that ran 100 search replicates on a single

processor. At the other extreme, the “100 reps/1 sr” column represents 100 garli

replicates that each ran a single search replicate on a separate processor.

If each resource were comprised of computers that were homogeneous, always

willing to process grid jobs immediately and at the highest priority, and of suffi-

cient quantity to run all 100 rana search replicates simultaneously, then one would

expect a linear speedup from parallelization. Although each of these assumptions
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are routinely violated in practice, we nonetheless observe a roughly linear speedup

from parallelization (Table 5.1). Thus, this data suggests that we should set r to

a value that would cause each rana search replicate to run on its own processor,

which in this case would be r < (2 × 633) seconds. If r > (2 × 633), then the grid

would increase the number of search replicates per garli replicate, which we can see

from the data usually leads to longer turnaround times. This result disagrees with

our impression that system performance has improved since we began combining

short-running jobs into jobs of approximately 3,600 seconds. The following section

describes several factors not considered in this experiment that can account for this

discrepancy.

5.3.2.3 Factors that favor a longer optimal runtime value

As of 30 January 2014, there were 833 garli web service analyses that re-

ceived a runtime estimate > 316 seconds but ≤ 1, 800 seconds. Thus, had the

optimal runtime value initially been set to 633 seconds instead of 3,600, 833 fewer

analyses (≈ 20% of all analyses) would have been “compressed” via increased values

of searchreps or bootstrapreps.

As mentioned in Section 5.3.2.1, it is difficult for a strategy that uses test jobs

to approximate real grid usage without interfering overly much with normal grid

operation. The following factors that favor r = 3, 600 were left unaccounted for in

the experiment described in the previous section.

1. The previous experiment did not take into account the extra time needed to
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submit multiple batches as part of a garli web service submission. Using

r = 633 instead of r = 3, 600, for example, would result in ≈ 5.7× as many

batches submitted, on average. The time it takes to submit each batch is

approximately three minutes. Given that the maximum batch size for a garli

web service submission is 100 replicates, and the maximum number of search

replicates allowed in a single submission is 2,000, up to 20 batches may be

submitted if multiple search replicates per job are not used, thus resulting in

approximately 60 minutes of submission time. Hence, for short-running jobs,

using r = 3, 600 instead of r = 633 could save as much as 50 minutes during

a single submission.

2. The grid system periodically iterates through the list of gram1 jobs it is man-

aging (each of which may be a batch of jobs consisting of as many as 100 garli

replicates), and polls the Globus container on the appropriate remote grid re-

source to update the status of these jobs. Although we have implemented an

exponential backoff scheme that doubles the amount of time between status

checks (up to some maximum amount) in the event the status of a job is

queried and found not to have changed, the fact remains that checking and

updating the status of hundreds or thousands of gram jobs is still a source

of latency. Compressing multiple short-running garli replicates into a single

garli invocation leads to a reduction in the number of gram jobs there are

1gram is a software component of the Globus Toolkit that can locate, submit, monitor, and can-

cel jobs on grid computing resources. It provides reliable operation, stateful monitoring, credential

management, and file staging [221].
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to manage, thus improving system throughput.

3. Using fewer gram jobs saves on bandwidth and disk space, as fewer file trans-

fers are needed.

4. Using fewer gram jobs simplifies grid system administration. For example,

it is easier to monitor and manage the relatively large number of gram jobs

that job submissions generate when the number of gram jobs is minimized,

and it takes less time to fix problems that occur.

Item four in the list above would be difficult to study because it involves

human-computer interaction; however, the other factors that favor a longer optimal

runtime value could be included in an experiment (cf. the first strategy described

in Section 5.3.2.1). However, due to the problems associated with performing that

experiment, we will only explore that option if we observe a problem with system

load that could be hypothetically alleviated by modifying r. Thus, we have not

changed our setting of r = 3, 600 seconds for dedicated resources, which represents

a compromise between the parallelization data we have gathered, and our knowledge

of other factors that are more difficult to model.

5.4 Automatic measurement of resource throughput

An important attribute of a grid computing resource is its processing capabil-

ity, or rate of throughput. A throughput rating that is comparable across resources

can be used to send jobs to the fastest resources first, to scale runtime estimates by
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the rating of potential assigned resources, and to evaluate and maximize overall sys-

tem efficiency. However, devising a single, uniformly-calculated throughput rating

is challenging for large, heterogeneous computing resources composed of machines

that frequently change their capabilities, architectures, operating systems, and other

attributes.

Prior to dissertation-related work, the procedure to measure grid resource

throughput was to execute an identical, short-running garli job on each individ-

ual computer that made up a grid resource, record the runtimes of these jobs, and

average them. We would then compare this averaged runtime to the runtime of

the same garli job on a “reference computer”, which was arbitrarily assigned a

throughput rating of 1.0. If the reference job ran in half the time on the resource

we were testing, that resource was assigned a rating of 2.0 — or in twice the time, a

rating of 0.5 — and so on. This procedure was performed via periodic manual sub-

mission of test jobs, which limited its effectiveness because resource characteristics

were likely to change more frequently than we could measure them, thus leading

to throughput ratings that were quickly outdated. Furthermore, this runtime-only

throughput rating did not take into account the time that jobs spent waiting in

queue on a remote resource.

Homogeneous sets of production jobs are often split up to run on multiple

different grid resources, so we can use such analyses to assess differential resource

performance by measuring job runtime as well as other sources of latency, such

as time spent in queue. Thus, our improved throughput rating procedure uses

production jobs that continually flow through the system to evaluate resources,
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instead of manually submitting jobs for this purpose. The improvements we have

implemented provide for continuous, automatic updating of resource throughput

ratings while simultaneously introducing a composite throughput rating for use in

scheduling that incorporates both job runtime and resource latency in its calculation.

5.4.1 Introducing the composite throughput rating

A composite throughput rating, one made up of both job runtime and other

sources of latency, such as time spent in queue, is desirable because it is a more ac-

curate measure of average job throughput on a given resource than the runtime-only

rating. For example, resource X may have more capable computers than resource

Y, but if Y is more available than X — i.e., there is less competition for Y, or the

grid user has a higher priority on Y — then for the purpose of ranking resources by

job throughput, Y may deserve a higher ranking than X.

The basic data measurement used for the composite throughput rating calcu-

lation is job turnaround time — i.e., the time a job actually spends on a resource,

including time spent waiting in scheduling queues — which is simply the difference

between the timestamps recorded when a job is submitted and when it finishes.

To derive the turnaround time, nothing new needed to be added to our job pro-

filing procedures; all of the necessary information was already being stored in our

database.

The steps to calculate the composite throughput rating are as follows:

1. For all garli analyses that are split up to run on at least two resources,
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calculate the turnaround time — i.e., the average time a garli job is resident

on each resource, which includes runtime and various sources of latency. Also

record the number of search replicates from which the turnaround time is

derived.

2. An equivalency factor for each pair of resources enables one to compare their

relative throughput and make statements such as “resource X is 2.5 times faster

than resource Y” (or conversely,“resource Y is 0.4 times as fast as resource X”).

The calculation of the equivalency factor is as follows: for all analyses involving

a particular resource pair (e.g., X and Y), divide the larger turnaround time

by the smaller turnaround time and weight the result by the total number of

search replicates used in the calculation.

3. Derive the composite throughput rating for a particular resource by iterating

through the list of resource pairs of which it is a member and computing an

average of the equivalency factor values calculated for the resource, weighted

by the number of search replicates associated with each equivalency factor.

The composite throughput rating is used by the grid meta-scheduler to send

jobs to the fastest resources first, as well as to allow faster resources to have longer

job queues (Section 5.4.3). The previously developed runtime-only throughput rat-

ing, now computed similarly to the composite throughput rating, is still appropriate

for at least two system functions, however: (1) when deciding if it is necessary to

send a job to a stable resource where it is unlikely to be interrupted, one must scale

the estimated job runtime by the runtime-only throughput rating of the proposed
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resource; and (2) when updating the runtime prediction model (Section 5.2), one

must scale the runtime collected from an estimate job by the runtime-only through-

put rating of the resource on which it ran. Thus, we calculate both ratings and use

each in the appropriate context. Figure 5.3 shows both the runtime-only rating and

the composite throughput rating for our various grid resources.

5.4.2 Updating throughput ratings automatically

Both the composite and runtime-only throughput ratings are now updated

automatically using regular, production jobs that flow through the system. An in-

dividual analysis submitted via the garli web interface may comprise as many as

2,000 identically-specified search replicates, which are often split up to run on mul-

tiple grid resources as a natural consequence of the grid meta-scheduling algorithm.

We use this fact to our advantage: as long as the jobs associated with a particular

analysis run on at least two different resources, that analysis can be used to update

our resource throughput ratings.

Many resources are highly dynamic: computers are added and decommis-

sioned, are upgraded, or change their capability. Furthermore, the intensity of local

resource usage by non-grid users fluctuates over time, all of which affects grid job

throughput. Thus, intuitively, one would value recent performance of a grid resource

over historical performance, since resource characteristics can change radically and

without warning. With this in mind, we recalculate resource throughput ratings

once nightly using data from only the past 30 days. If a particular resource did not
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Figure 5.3: A snapshot of information associated with The Lattice
Project grid resources. The resources are shown sorted by composite
throughput rating. A live version of this information is available at
http://lattice.umiacs.umd.edu/resources.
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complete at least 1,000 jobs during that time period, its ratings are left unchanged.

5.4.3 Faster resources are allowed longer job queues

Allowing faster resources (those with higher composite throughput ratings)

longer idle job queues than slower resources is a scheduling optimization that we

implemented in conjunction with the introduction of the composite throughput rat-

ing. The motivation for this optimization was simple: we wish to complete jobs as

quickly as possible using the resources that are available. Before this optimization

was implemented, if all eligible grid resources were fully occupied, then additional

jobs would be spread evenly among them. This was undesirable because the fastest

resource would complete the jobs in its queue and would be unoccupied while slower

resources finished their jobs. Thus, allowing faster resources longer idle job queues in

proportion to their throughput rating should increase system efficiency by ensuring

that all jobs finish at roughly the same time.

In general, the grid meta-scheduler tries to balance various competing prior-

ities, such as spreading jobs around to resources evenly (not overloading any one

resource, and attempting to use all resources efficiently), and sending jobs to the

fastest resources first for maximum throughput. Thus, when considering how much

load is on a resource, it looks at the number of jobs assigned to it that are idle. If the

scheduler finds a resource with significantly fewer idle jobs than others, it chooses

to send jobs to that resource. However, there needed to be an exact definition of

“significantly fewer”; thus, we introduced a variable called idle job equality (IJE):
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resources are considered equally loaded if their idle job counts are within IJE of

each other (currently, IJE = 100). Among equally loaded resources, then, jobs are

sent to the resource with the highest composite throughput rating.

In order to provide faster resources longer idle job queues, the effective number

of idle jobs calculated for each resource is scaled by the composite throughput rating

for that resource according to the following formula:

effective idle job count = actual idle job count + (actual idle job count × (1 / composite rating))

Hereby, resources are penalized by an amount inversely proportional to their

throughput rating.

If the differences in queue lengths resulting from the formula above are too

modest (e.g., speedy resource X frequently completes all its jobs and is waiting while

slower resources finish theirs), then it would be straightforward to add an inflationary

parameter that would exaggerate the differences. The system could monitor the

occupancy of various resources over time (Section 5.4.4) and dynamically adjust the

value of the inflationary parameter to maximize resource occupancy.

5.4.4 Demonstrating the utility of the composite throughput rating

While it seems obvious that the introduction of the composite throughput rat-

ing and adaptively-sized resource queues based on the rating would increase system

efficiency and overall throughput, we wanted to demonstrate this definitively. We

posit that if scheduling is efficient, then sets of jobs associated with a particular

analysis that are assigned to different resources should finish at roughly the same
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time. For a set of jobs assigned to a particular resource, then, we define occupancy

as the difference between the time the last job was submitted and the time the last

job finished. Thus, for a particular analysis, we have a set of occupancy values (one

per resource), each measured in seconds.2

A simple measure of the variation in occupancy values is desired; thus, we

calculate the coefficient of variation (cv) for each set of occupancy values as cv =

σ/µ, where σ and µ are the standard deviation and mean of the set of occupancy

values, respectively. The cv is a relative measure that allows for comparison of

variation in occupancy even when the absolute values of occupancy vary significantly

between analyses.

For any analysis submitted through the garli web service that ran on two

or more resources, it is possible to calculate the cv for that analysis. Thus, to de-

termine if the scheduling changes associated with the composite throughput rating

were effective, we calculated the median cv for a set of analyses consisting of ap-

proximately 350,000 total garli search replicates immediately prior to the schedul-

ing changes, and performed the same calculation for a set of analyses immediately

following the scheduling changes. We found that the median cv calculated from

the set of analyses performed after the scheduling changes (0.42) was substantially

smaller than the median cv calculated from the set of analyses performed prior to

the scheduling changes (0.70), thus demonstrating that the changes had the desired,

2This framework assumes that all of the jobs are submitted to various resources roughly simul-

taneously; thus, we only consider the primary jobs associated with the initial analysis submission,

and not any make-up jobs that may have been submitted later on due to processing errors, etc.
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beneficial effect.

The cv could also potentially be used to adjust the inflationary parameter

mentioned in Section 5.4.3. A running average could show the recent trend in cv

values, and the inflationary parameter could be dynamically adjusted to minimize

the cv values. We save this for future work.

5.4.5 Changes to the random forests runtime prediction model

The random forests model used for garli runtime prediction, described in

Section 5.2, was eventually updated as a result of the changes to the way the

runtime-only throughput rating was computed. On 01 July 2014, a new random

forests model was put into production that used as training data only analyses sub-

mitted after 30 July 2013 — i.e., the model was only built from jobs that executed

after the new procedures for determining and updating resource throughput ratings

described in this chapter had been implemented. These new procedures resulted

in several important changes: (1) throughput ratings are now updated dynamically

(practically continuously), whereas previously they were updated quite infrequently;

(2) the new ratings are based on more realistic use of grid resources, since produc-

tion jobs may only run on a subset of computers that constitute a heterogeneous

grid resource, whereas the previous procedure for assigning ratings assumed that

jobs were distributed evenly among all computers that constituted a resource; and

(3) perhaps most importantly, the new throughput ratings are not directly compa-

rable to previous ones: in the previous scheme, one particular resource (the “seil”
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cluster) was designated as a reference; its rating was fixed at 1.0, and all other rat-

ings were relative to it. In the new system, the “reference”, which can be thought of

as a centroid, is not associated with any one resource and its value changes dynami-

cally. Thus, the level of throughput represented by a particular rating in the current

system — e.g., “1.0” — is not comparable to the level of throughput represented by

“1.0” previously.

For these reasons, we hypothesized that we might get better runtime prediction

performance if we built a random forests model using only analyses that executed

after these changes to throughput rating calculation had been implemented. To test

this, we kept updating the “all data” model, and in parallel we created and up-

dated a “recent data” model. After monitoring the diagnostics that computed the

difference between estimated and actual runtime (Figure 5.2) for approximately two

months, we decided to put the newer “recent data” model into production, as its

performance characteristics were indeed somewhat improved (average fold-difference

between estimated and actual runtime ≈ 2.4 for the “recent data” model as com-

pared to ≈ 3.1 for the “all data” model as of 01 July 2014). The “recent data”

model contained approximately 40% as much training data as the “all data” model,

a proportion that will increase over time. Future work might test the efficacy of pe-

riodically removing the oldest entries from the random forests model, which would

essentially amount to iterating the procedure described here. However, determining

the optimal amount of historical data to use is relatively difficult, as both too lit-

tle data and perhaps, as demonstrated here, too much data could be detrimental.

Moreover, testing any particular model requires a significant number of analysis
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submissions, so as a practical matter, this optimization procedure is quite involved.

In this particular case, we tested an alternative model only because we knew we had

likely made a significant amount of historical data inaccurate by changing various

system attributes; thus, it was logical to consider removing that historical data from

the model.

5.5 Adaptive best tree search

The statistical estimate of the number of search replicates required to achieve

a specific probability of obtaining the best feasible tree, χ, is intended to inform

users about the joint behavior of their data and the garli search algorithm, and

consequently how many search replicates they should perform (Section 4.5.1). A

previous limitation of the system, however, was that if χ indicated that more search

replicates were needed, there was no way to “add replicates” to an existing job sub-

mission; instead, the user had to submit a separate, larger analysis. Furthermore,

and perhaps even more importantly, examination of completed garli web service

analyses revealed that 73% of best tree searches (1,194/1,630 eligible analyses) per-

formed more search replicates than necessary. For any such analysis, the median

absolute difference between the number of replicates performed and the number of

replicates recommended at the 0.95 level was 92 replicates. Similarly for these anal-

yses, the service ran, on average, 11 times as many replicates as were needed. The

total number of “unnecessary” search replicates performed was 447,177 — a huge

amount of probably unnecessary computation. Here we describe our implementation
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of an adaptive best tree search that automatically determines the required number

of replicates and performs them on behalf of the user, thus eliminating the need for

the user to “guess” how many search replicates to specify.

5.5.1 Implementation

When the garli web service user chooses to run an adaptive best tree search,

they do not specify the number of replicates to perform. Instead, the service sub-

mits a default number of starting replicates (currently 10). When those replicates

finish, post-processing is run as usual, and χ is calculated on this initial set of tree

topologies. If χ ≤ 10 replicates at the 0.95 level, then the user is notified that their

analysis is complete. If χ > 10, then the service submits the necessary supplemen-

tal replicates. For example, if the best tree topology were unique among the 10

initial replicates, the statistic would recommend that 28 total search replicates be

performed, and the service would submit the 18 additional required search repli-

cates. If, for some reason, the best tree topology continued to be unique among all

replicates, then the total number of required replicates would continue to increase

in an approximately geometric progression: 10, 28, 82, 244, 729, ... . In practice,

this particular situation occurs quite frequently due to insufficient strength of signal

in the data and a very large search space. Thus, because we could continue to add

replicates indefinitely, we set an upper bound on the number of allowed search repli-

cates (currently 1,000). In turn, this ensures that the maximum number of “rounds”

— the number of times we add replicates to an analysis — is relatively small. If the
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evaluation conducted after a particular round indicates that a sufficient number of

replicates have been performed, the adaptive search is terminated and the user is

notified that their analysis is complete. Therefore, an adaptive best tree search will

perform a minimum of 10 search replicates, and a maximum of 1,000.

5.5.2 Incentivizing usage

Initially, we did not completely eliminate the standard best tree search as an

option for garli web service users, but instead we encouraged users to try out the

adaptive search, which offers a principled and efficient means of determining search

effort as opposed to specifying an arbitrary, often large number of search replicates

without any intermediate evaluation of results. In order to incentivize users to

choose the adaptive best tree search, we made it the default analysis type, and we

limited the number of search replicates allowed in a standard best tree search to

100. Eventually, we eliminated the standard best tree search entirely in favor of the

adaptive search.

5.5.3 Discussion

Having the system automatically calculate and perform the required number

of search replicates is advantageous for the following reasons.

1. It introduces an objective and automatic decision process into the analysis

design, eliminating guesswork and the need to evaluate intermediate results,

thus saving investigator time and improving analytical results.
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2. It provides reasonable and quantified assurance of adequate search space ex-

ploration for a particular phylogenetic analysis.

3. It reduces waste of grid resources and energy by running only the necessary

number of search replicates.

The statistic (χ) could potentially be refined to take into account the difference

in likelihood score between alternative topologies instead of the simpler “identical

topology” criterion currently in use, although this would necessitate a somewhat

more sophisticated mathematical and conceptual framework. It should also be noted

that using χ to determine search effort is not a panacea in all instances; while we

observe that the majority of replicates for “difficult” search problems return varying

topologies and likelihood scores, and the majority of replicates for “easy” search

problems readily converge on the same topology, one can imagine a case where

every search replicate returns a similar, sub-optimal result, thereby disguising a

difficult search problem as an easy one. However, as a general means of determining

search effort, we find this simple statistic to be highly useful.
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Resource 1 rep/100 sr 4 reps/25 sr 10 reps/10 sr 25 reps/4 sr 100 reps/1 sr

cmns 176,443 15,153 7,865 8,107 1,407

Coppin 170,453 67,166 10,036 62,850 1,351

TerpCondor 176,411 17,888 7,569 8,164 3,032

umiacs 386,953 25,876 10,021 5,656 1,420

Deepthought 154,273 1,240,725* 20,201 1,170,388* 39,570

Topaz 364,032 692,526* 4,484 696,157* 1,533

Table 5.1: Turnaround times for 100 rana search replicates submitted to dedicated
resources, measured in seconds. Each value in the table represents an average of 10
submissions that were spaced apart by at least 12 hours. Values marked with an
asterisk are anomalously large due to cluster maintenance that occurred over the
course of the experiment.
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Chapter 6: Subdividing long-running, variable-length analyses into

short, fixed-length BOINC workunits

This chapter is based on the following publication: Adam L. Bazinet and

Michael P. Cummings. Subdividing long-running, variable-length analyses into

short, fixed-length BOINC workunits. Journal of Grid Computing. Submitted.

6.1 Summary

We describe a scheme for subdividing long-running, variable-length analyses

into short, fixed-length boinc workunits using phylogenetic analyses as an example.

Fixed-length workunits decrease variance in analysis runtime, improve overall sys-

tem throughput, and make boinc a more useful resource for analyses that require a

relatively fast turnaround time, such as the phylogenetic analyses submitted by users

of the garli web service at molecularevolution.org. Additionally, we explain

why these changes should benefit volunteers who contribute their processing power

to boinc projects, such as the Lattice boinc Project (boinc.umiacs.umd.edu).

Our results, which demonstrate the advantages of relatively short workunits, should

be of general interest to anyone who develops and deploys an application on the

boinc platform.
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6.2 Introduction

Computing resources volunteered by members of the general public can greatly

benefit scientific research, as demonstrated by high-profile research projects in

disparate areas such as radio astronomy (seti@home; setiathome.berkeley.

edu), climate modeling (climateprediction.net), protein folding (Rosetta@home;

boinc.bakerlab.org/rosetta), and particle accelerator physics (lhc@home;

lhcathomeclassic.cern.ch/sixtrack), to name just a few. The most widely-

used platform for volunteer computing is, by far, the Berkeley Open Infrastruc-

ture for Network Computing, or boinc [50]. Our research group has made boinc

an addressable computational resource in The Lattice Project [222, 223], a grid

computing system built on Globus [49] software. In recent years, our grid sys-

tem development has been increasingly focused on improving phylogenetic analysis

capability [54]. Our primary phylogenetic inference application is garli [2, 198],

a popular maximum likelihood-based program. Recently, we have made a garli

web service publicly available at molecularevolution.org [53], which executes

garli analyses on Lattice Project computing resources. The Lattice boinc Project

(boinc.umiacs.umd.edu) is an outstanding resource for running garli analyses: a

significant proportion of volunteer computers have an appreciable amount of mem-

ory, which garli analyses often require; and garli automatically checkpoints its

state when running on boinc, which allows for efficient use of the boinc platform.

Indeed, having the capability to run garli analyses on boinc has been critical to

the successful completion of several phylogenetic studies [5,7,86]. However, thus far
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it has not been feasible to run garli web service analyses on boinc because it has

been difficult to guarantee complete results from boinc in a timely manner. Here we

address this problem by subdividing long-running garli analyses into short, fixed-

length boinc workunits (the term used for a unit of work on the boinc platform).

This speeds up analysis completion by reducing the variance in workunit runtimes,

thus making boinc a more attractive resource for analyses that require a relatively

fast turnaround time. The remainder of the paper is organized as follows. In Section

6.3, we put the problem in context by providing some background on phylogenetic

analysis and our computing systems. In Section 6.4, we provide a more detailed de-

scription of the problem and our proposed solution. In Section 6.5, we describe our

implementation of the steps required to subdivide garli analyses into fixed-length

boinc workunits. In Sections 6.6, 6.7, and 6.8, we demonstrate the efficacy of our

implementation with large-scale tests using the Lattice boinc Project. Finally, in

Section 6.9 we make some concluding remarks.

6.3 Background on phylogenetic analysis and computing systems

A very common analysis type in evolutionary biology, and increasingly in other

areas of biology, is the reconstruction of the evolutionary history of organisms (e.g.,

species) or elements of organisms that have evolutionary or genealogical relation-

ships (e.g., members of gene families, or sampled alleles in a population), sometimes

simply called operational taxonomic units. This phylogenetic inference problem

is especially computationally intensive when based on statistical methods that use
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parameter-rich models, as is commonly done with maximum likelihood and Bayesian

inference. The combination of increasingly sophisticated models and rapidly increas-

ing data set sizes has prompted the development of strategies that speed up analysis

execution. Our own work has focused on decreasing time to results through paral-

lelization of maximum likelihood phylogenetic inference, which is more amenable to

atomization than Bayesian inference because the many searches that typically com-

prise an analysis can be performed separately and concurrently. Specifically, we have

chosen to deploy an open-source program for maximum likelihood-based phyloge-

netic inference — garli (Genetic Algorithm for Rapid Likelihood Inference) [2,198]

— in a heterogeneous-resource grid computing environment.

As with all phylogenetic inference programs that analyze more than a small

number of operational taxonomic units and use an optimality criterion, garli em-

ploys a heuristic algorithm to solve the simultaneous optimization problem. Specifi-

cally, garli uses a stochastic evolutionary algorithm to search for the point of max-

imum likelihood in the multidimensional space consisting of tree topology, branch

lengths, and other model parameters, which we simply call the best tree. Because of

this stochasticity, it is both usual and recommended to perform multiple searches

so as to avoid results that represent local optima, seeking instead to obtain results

that more nearly reflect the global optimum. Our system assists with this task by

dynamically adjusting the number of search replicates performed so as to be reason-

ably assured of finding the best tree with a high probability [53]. Furthermore, in

addition to searches for the best tree, one typically conducts hundreds or thousands

of bootstrap replicate searches to assess confidence in the bipartitions that consti-
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tute the best tree. Depending on the size and complexity of the analysis, and the

capability of the computational resources used, it may take many hours to complete

even a single garli search replicate. Thus, running many search replicates in par-

allel on a grid computing system greatly reduces the time required to complete an

analysis.

Grid computing is a model of distributed computing that seamlessly links ge-

ographically and administratively disparate computational resources, allowing users

to access them without having to consider location, operating system, or account ad-

ministration [48]. The Lattice Project, our grid computing system based on Globus

software, incorporates volunteer computers running boinc, as well as traditional

grid computing resources such as Condor pools [51] and compute clusters. The ar-

chitecture and functionality of the grid system is described extensively elsewhere [52];

fundamentally, however, The Lattice Project provides access to scientific applica-

tions (which we call grid services), as well as the means to distribute the com-

putation required by these services over thousands of processing nodes. In recent

years, we have enhanced the system by developing a web interface to the garli

grid service [53], which is currently available at molecularevolution.org. The

garli grid service has been used in over 60 published phylogenetic studies, with

usage having increased dramatically since the release of the garli web service in

July 2010 [5–7, 86, 113, 130] (see lattice.umiacs.umd.edu/publications for the

full publication list). As of 09 June 2015, 1,191 garli web service users have com-

pleted 6,900 analyses comprising well over three million individual search replicates.

As mentioned previously, however, we have not yet been able to use our most
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novel and potentially most valuable computational resource — our pool of boinc

clients — for processing garli web service analyses. The reasons for this are ex-

pounded upon in the following section.

6.4 Problem description and proposed solution

6.4.1 Optimal-length analyses for grid computing

There is substantial overhead associated with managing each grid-level analysis

submission due to the negotiation of various layers of middleware, latency associated

with file transfers, queue wait times, and so on. Thus, the submission of a large

number of short-running analyses leads to reduced efficiency and reduced overall

system throughput, as the majority of each analysis lifetime is composed of vari-

ous sources of latency rather than actual scientific computation. Conversely, long-

running analyses are not ideal either because they are more likely than short-running

analyses to be interrupted by other processes, computer failures and reboots, and

human intervention, which all lead to wasted computation. In the middle of these

two undesirable extremes there exists a conceptually “optimal” analysis runtime,

which maximizes scientific computation by minimizing both unnecessary overhead

and potential for interruption. Determining a grid-wide optimal runtime is chal-

lenging when one considers the heterogeneity of analyses that are submitted, the

heterogeneity of our grid resources, and the complexity of the grid meta-scheduling

algorithm. Thus, here we specifically consider only garli analyses running on our

boinc resource, as we anticipate that such analyses will greatly benefit from runtime
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optimization.

6.4.2 Optimal-length GARLI analyses for BOINC

There are multiple factors that contribute to variance in garli analysis run-

times on boinc. These include factors specific to the boinc platform, such as

variability as to when result units (instances of a workunit) are downloaded by

volunteer computers, differences in volunteer computer capabilities and reliability,

and variation in the computing preferences expressed by volunteers. In addition,

the stochastic nature of the garli algorithm leads to variable and indeterminate

runtimes for individual garli search replicates. These and other factors produce

analysis batch completion dynamics with a markedly heavy tail (Figure 6.1). By

standardizing the length of garli workunits, we aim to improve overall analy-

sis batch turnaround time by decreasing the variance in analysis runtimes. The

optimal workunit runtime maximizes analysis batch throughput (while not taxing

system resources, such as storage space, overly much).

Assuming that a near-optimal runtime for garli analyses on boinc can be de-

termined, it is possible to combine multiple short-running garli analyses into a sin-

gle fixed-length analysis by increasing the number of search replicates (or bootstrap

replicates) that a single garli invocation performs. This optimization is relatively

trivial, and we do not discuss it further here; instead, we focus exclusively on the

converse problem of breaking up a single long-running garli analysis into multiple

short, fixed-length subunits, which garli enables by providing a lightweight check-
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Figure 6.1: boinc analysis batch completion dynamics for nine typical
analysis batches as the density of analyses completed by their relative
time to completion. All batches exhibit the typical heavy-tail distribu-
tion.
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pointing mechanism. If checkpointing is activated, garli periodically writes some

small text files to disk that contain the information needed to restart a run from

that point. This ensures that not much computation is lost if a volunteer computer

is rebooted, for example, or if computation is interrupted for some other reason.

(Checkpointing is not currently possible during either the initial optimization or

final optimization analysis stages of the program, however.) By setting various

garli parameters appropriately, it is possible to checkpoint the state of a garli re-

sult unit on a volunteer computer after a fixed length of time has elapsed or amount

of computation has been performed (e.g., one hour, or some number of floating point

operations, respectively), terminate the analysis, and send the intermediate results

back to the boinc server. The pertinent analysis files and checkpoint files can then

be downloaded by another boinc compute node (simply termed a host) to resume

computation where it left off, again for the same fixed length of time or amount

of computation. Though this type of scheme incurs some additional overhead in

terms of required data movement and storage, communication, and record keeping,

we expect that these costs will be outweighed by the performance gains, which are

potentially substantial and important in several ways.

6.4.3 Benefits of fixed-length analyses

The performance gains that result from the standardization of garli analysis

runtime on the boinc platform are realized both for boinc volunteers, as well as

researchers who use the garli web service.
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boinc volunteers tend to prefer uniform-length workunits, an expectation de-

rived from participation in boinc projects that have a practically unlimited supply

of homogeneous workunits (e.g., seti@home; setiathome.berkeley.edu). Hence,

dividing variable-length, long-running analyses into short, fixed-length workunits

better meets the expectations of boinc volunteers and increases their enthusiasm

about running garli analyses, which in turn leads to greater volunteer participa-

tion and retention. Furthermore, long-running analyses of unknown runtime create

many opportunities for failure and interruption, as well as uncertainty and anxiety

about when the analyses will finish, all of which causes some boinc volunteers to

abort such analyses prematurely. Thus, by shortening and standardizing the length

of garli workunits, we make our system much more appealing to volunteers. Fi-

nally, standard-length workunits afford the opportunity to grant a fixed amount of

credit per workunit, an inherently fair procedure that volunteers tend to favor.

For researchers using the garli web service, garli analysis runtime opti-

mization yields performance benefits as well. As already mentioned, subdividing

long-running analyses into shorter-length workunits increases reliability by decreas-

ing the probability of premature workunit termination. It also provides a natural

load-balancing mechanism by affording the most capable boinc hosts more oppor-

tunities to process more workunits, thus lightening the tail in Figure 6.1 by shifting

the distribution to the left. This decrease in the variance of analysis completion

times should result in increased overall system throughput and decreased time to

results for garli web service users.
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6.4.4 Related work

There has been some research into optimizing boinc scheduling policies [224–

226], often through simulation. However, these studies attempt to solve a more

general scheduling problem than we do here, and thus model many different factors:

heterogeneity in host capabilities and computing preferences, variation in workunit

properties and deadlines, requirements of multiple simultaneously connected boinc

projects, and so on. One such study [227] specifically focuses on optimizing schedul-

ing policies for “medium-grained” tasks (tasks that take minutes or hours), which

is relevant to our present work because we are targeting tasks of this length. We

do not change or optimize any boinc scheduling policies ourselves, however, but we

would benefit from any such optimizations that already exist, especially ones tar-

geted at relatively short tasks. In this work, we take the current boinc scheduling

policies as a given, and demonstrate how reducing workunit runtimes leads to faster

turnaround time for analysis batches.

6.5 Implementation of fixed-length GARLI workunits

To implement this scheme, we divide each garli analysis into at least three

workunits: the initial workunit, which performs the initial optimization phase of

the analysis; 1 to n main workunits, which perform the bulk of the search; and

the final workunit, which performs the final optimization phase of the analysis.

As mentioned previously, checkpointing is not available during the initial or final

optimization phases, so we are unable to precisely control the runtime of the initial
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or final workunits. However, these program phases are typically short, and do

not account for more than 10% of the overall program execution time. The main

workunits, on the other hand, comprise the majority of the runtime, and their

maximum execution time can be precisely controlled.

To divide program execution into phases, a workphasedivision option was

added to garli version 2.1. When workphasedivision=1, garli automatically

checkpoints and terminates immediately after initial optimization is complete, and

immediately before final optimization begins. Additionally, the stoptime param-

eter, which is a positive number of seconds after which an analysis should be ter-

minated, was redefined in garli version 2.1 to be relative to the time an anal-

ysis was most recently restarted instead of its very beginning. Thus, by setting

stoptime=3600, for example, one may cause a garli main workunit to terminate

after one hour of runtime. (Note: stoptime is ignored during the initial and final

optimization phases.)

6.5.1 GARLI checkpoint files and BOINC homogeneous redundancy

Unfortunately, garli checkpoint files are not portable between operating sys-

tems, and may not even be portable between 32 bit and 64 bit variants of the same

operating system. This presents a major implementation obstacle, as one may not

simply mix and match execution hosts indiscriminately. To deal with this issue,

we made use of a boinc feature called homogeneous redundancy (hr), which was

originally developed to ensure that multiple instances of the same workunit (termed
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result units) would run on the same “class” of host. This guaranteed that the nu-

merical output from multiple result units would match exactly, which was required

to use a voting scheme to verify that results were computed correctly. Depending

on how a particular application was compiled and what computations it was per-

forming, host classes could be more or less broadly defined. Maximally-inclusive

host classes are desirable because having more hosts available to run any particu-

lar workunit improves overall system throughput. boinc currently defines two hr

types: a coarse-grained type in which there are four host classes (Windows, Linux,

Mac-PowerPC, and Mac-Intel), and a fine-grained type in which there are 80 host

classes (four operating system and 20 cpu types). For our testing, we enabled

coarse-grained hr for garli, along with a boinc feature called homogeneous app

version (hav) that ensured consistent use of either the 32 bit or 64 bit version of

garli. These settings did not completely eliminate errors related to checkpoint

portability, but allowed testing to proceed with a sufficiently low error rate (less

than 2%).

With normal use of hr, each boinc workunit may have a different hr class; it

is the various result units associated with a particular workunit that must have the

same hr class. Thus, the hr class for a given workunit is not usually determined

until its first result unit is assigned to a particular host. In our scheme, the main

and final workunits associated with a particular garli analysis must have the same

hr class as that of the initial workunit, so we needed to set the hr class of the

main and final workunits at the time of their creation. To accomplish this, we used

a new argument to the boinc create work program. In addition, we added the
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hr class static tag to the boinc configuration file, which suppresses the mecha-

nism that clears the hr class of a workunit if a result unit fails when there are no

other result units for that workunit in progress or already completed.

6.5.2 Modifications to grid system components

The implementation of this scheme was relatively complex and involved

changes to several different grid system components. The component that was

the most heavily modified was the boinc job manager, the Perl script respon-

sible for transforming a generic Globus job description into appropriate boinc

workunits [222]. The boinc job manager checks the garli configuration file for

workphasedivision=1; upon finding it, the script creates the initial workunit and

writes three separate workunit templates and assimilator scripts for the analysis, one

for each workunit type (initial, main, and final). The workunit templates specify

the input and output files for each workunit, which vary depending on the workunit

type; they also specify that input and output files associated with initial and main

workunits are not allowed to be deleted immediately after such workunits complete,

unlike files associated with regular garli workunits. The appropriate assimila-

tor script is invoked when a workunit of a particular type completes successfully.

The initial assimilator script sets restart=1 in the garli configuration file, which

causes the main and final workunits to restart from checkpoint files. It also moves

the checkpoint files and the standard output (associated with the canonical result

of the initial workunit) from the boinc upload directory to the download directory,
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so these can be used as additional input files to the first main workunit. Finally,

the initial assimilator script creates the first main workunit using the correct tem-

plates and other parameters, and sets its hr class to that of the initial workunit.

The main assimilator script parses the garli log file to determine if the analysis

is ready for final optimization; if so, it creates the final workunit; if not, it creates

the next main workunit. The final assimilator script copies the final output files to

the location where Globus expects them, removes all intermediate output files that

may be resident on disk from associated initial or main workunits, and updates the

boinc database.

Numerous changes were made to other grid system components as well; a few

examples follow. The boinc scheduler event generator (seg), a Globus component

that periodically queries the boinc database for the status of jobs [52], was modified

to include final workunits in its queries, but to exclude initial and main workunits

from such queries. The boinc validator, a daemon that verifies that garli results

returned by boinc clients include a valid tree file [52], was modified to ignore results

from initial or main workunits. The boinc assimilator, a daemon that processes

successfully completed workunits [52], was modified so that the number of the main

workunit was passed to our custom assimilator scripts, among other minor changes.

Although not discussed here in detail, we made additional modifications to

support analysis batches, which allowed multiple initial workunits to be created

simultaneously and to be associated with one another as a batch of analyses. Each

initial workunit still generates its own main and final workunits that are tracked and

updated independently of those associated with other initial workunits in the batch.
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This functionality allowed us to quickly and easily submit batches of thousands

of workunits, which was the order of magnitude required to properly evaluate the

performance of this scheme.

Should we enable this scheme for production garli web service analyses in

the future, some additional development will be necessary to support garli anal-

yses that specify multiple search replicates or bootstrap replicates, and to support

analyses that use different numbers and types of input and output files. More robust

status updating, workunit tracking, and error handling will also be needed. How-

ever, the development described up to this point was sufficient to enable large-scale

testing of the fixed-length workunit paradigm, and to compare it to the normal,

“full-length” paradigm in which a single boinc workunit executes an entire garli

analysis from start to finish. We describe this testing in the following sections.

6.6 Fixed-length vs. full-length GARLI workunit tests

We decided that a comparison of the new “fixed-length workunit” paradigm

to the standard “full-length workunit” paradigm was best accomplished with large-

scale boinc testing — i.e., we would assess runtimes and other performance charac-

teristics using thousands of analyses, which would exercise the boinc client pool in

a realistic manner. For these tests, we analyzed an 82-taxon, 13-mitochondrial-gene

data set with garli using a codon model. If uninterrupted, the runtime of this

analysis on an average computer was approximately 10 to 15 hours, and the 1024

mb memory requirement was low enough that the majority of clients could partic-
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ipate. We used the following garli settings: randseed=42; availablemem=1024;

and stopgen=30000. Additionally, for fixed-length analyses, we set stoptime=3600,

which caused main workunits to terminate after one hour. boinc workunit wall

clock deadlines were set to two days for initial and final workunits, and six hours

for main workunits. The deadline for full-length workunits was one week. Each

test began with the submission of 1,000 workunits (either 1,000 initial workunits, or

1,000 full-length workunits). Other test attributes, including the date of the test,

the number of result units per workunit, and the status of the hosts in the boinc

pool at the time of submission are given in Table 6.1.

The purpose of this series of tests was, first and foremost, to compare the

performance of series of fixed-length workunits to standard, full-length workunits.

Secondarily, we also sought to measure the effect of using two result units per worku-

nit instead of just one. For each combination of fixed-length or full-length, and one

result unit or two result units, we performed two large-scale tests to increase the

overall precision of our assessment; this totaled eight tests (Table 6.1).

For evaluation purposes, we measured total analysis time as follows. For a

fixed-length workunit series, total analysis time was measured as the time interval

beginning when the initial workunit was created, and ending when valid results from

the final workunit were returned to our boinc server. For a full-length workunit,

total analysis time was measured simply as the time interval beginning when the

workunit was created, and ending when valid results from the workunit were re-

turned to our boinc server. In Figures 6.2 and 6.3, we compare the total analysis

time of fixed-length and full-length analysis batches; Figure 6.2 includes the tests
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that used one result unit per workunit, and Figure 6.3 includes the tests that used

two result units per workunit.

The one-result unit comparison (Figure 6.2) shows the general pattern that we

expected to observe: the variance in total analysis time is lower in the fixed-length

workunit scheme. Thus, while the fixed-length scheme takes longer to complete

≈ 70% of the analyses, it completes all of its analyses ≈ 2.3× more quickly than

the equivalent number of full-length analyses.

The effect of doubling the number of result units per workunit (Figure 6.3)

is also apparent: the analysis batches complete more quickly, as faster hosts in the

pool are given the opportunity to process more work. The effect is greatest for the

full-length analysis batches, which complete ≈ 3.3× more quickly in the two-result

unit tests. Comparing the fixed-length scheme to the full-length scheme in the two-

result unit case, however, we observe a performance pattern that is similar to the

one-result unit case, as the performance of the fixed-length scheme begins to equal

or outperform the full-length scheme at a large proportion of analyses completed.

Thus, here we demonstrate two ways of improving performance: 1) using a

series of fixed-length workunits instead of a single full-length workunit, which incurs

no additional cost in terms of boinc client resources; and 2) doubling the number

of result units per workunit, which incurs twice the cost in boinc client resources.

Supporting summary statistics for these tests are given in Table 6.2.
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Date of test Test type

Result Hosts Hosts Result
units per granted reportinga,b units in
workunit credita,b progressa

14 Jan 2015 fixed-length one ≈ 1, 300 3,813 37
21 Jan 2015 full-length one ≈ 1, 325 3,755 26
31 Jan 2015 fixed-length one ≈ 1, 300 3,715 165
02 Feb 2015 full-length one ≈ 1, 400 3,724 123
05 Feb 2015 fixed-length two ≈ 1, 350 3,698 331
08 Feb 2015 full-length two ≈ 1, 420 3,732 145
13 Feb 2015 fixed-length two ≈ 1, 430 3,724 172
15 Feb 2015 full-length two ≈ 1, 480 3,695 134

aConditions at the time of submission.
bTallied over the previous 30 days.

Table 6.1: Attributes of large-scale boinc tests of fixed-length vs. full-length garli
workunits.
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Figure 6.2: Total analysis time, in hours, for fixed-length and full-length
analysis batches that used one result unit per workunit. A cumulative
distribution plot gives the proportion of analyses completed by total
analysis time, and a density plot gives the density of analyses completed
by total analysis time. Each line shown is derived from a series of at
most 2,000 points (1,000 from each test replication), where each point
represents an individual garli analysis.
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Figure 6.3: Total analysis time, in hours, for fixed-length and full-length
analysis batches that used two result units per workunit. A cumulative
distribution plot gives the proportion of analyses completed by total
analysis time, and a density plot gives the density of analyses completed
by total analysis time. Each line shown is derived from a series of at
most 2,000 points (1,000 from each test replication), where each point
represents an individual garli analysis.

Date of test Test type

Result Analyses Mean Median Standard
units per included analysis analysis deviation
workunit in results time (hr) time (hr) (hr)

14 Jan 2015 fixed-length one 966 37.0 35.2 14.3
21 Jan 2015 full-length one 962 33.4 24.2 24.6
31 Jan 2015 fixed-length one 968 26.1 25.5 5.5
02 Feb 2015 full-length one 959 21.1 17.8 11.5
05 Feb 2015 fixed-length two 978 27.1 25.2 9.5
08 Feb 2015 full-length two 994 26.7 18.0 21.7
13 Feb 2015 fixed-length two 920 28.0 26.8 7.4
15 Feb 2015 full-length two 977 19.4 16.7 10.0

Table 6.2: Results of large-scale boinc tests of fixed-length vs. full-length garli
workunits.
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6.7 Optimal-length GARLI workunit tests

The next round of large-scale tests was intended to approximately determine

an efficient length for garli main workunits. For these tests, all of which were

fixed-length, we used the same 82-taxon, 13-mitochondrial-gene data set as before,

together with the same garli settings, except that we varied stoptime so as to test

main workunit lengths of 30 minutes, 60 minutes, 120 minutes, and 240 minutes.

As before, the wall clock deadline for initial and final workunits was set to two days;

for main workunits, the deadline was scaled proportionally to the main workunit

length (Table 6.3). Each test began with the submission of 1,000 initial workunits.

Other test attributes, including the date of the test, the main workunit length and

wall clock deadline, and the status of the hosts in the boinc pool at the time of

submission are given in Table 6.3. For each main workunit length evaluated, we

performed two large-scale tests to increase the overall precision of our assessment;

this totaled eight tests (Table 6.3).

For our evaluation, we measured total analysis time as in our previous round

of testing. Figure 6.4 compares total analysis time of analysis batches of varying

main workunit lengths.

We observe, in general, that varying the main workunit length does not impact

the performance characteristics of analysis batches especially greatly, at least at the

main workunit lengths we tested. As before, we observe less variance in analysis time

with shorter main workunit lengths. Once we go as low as 30 minutes, however, we

notice some deleterious effects of overhead associated with generating the increased
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number of workunits and input files that are required. Indeed, each successive

halving of main workunit runtime incurs twice as much file system and database

storage cost, and doubles the processing load on our servers. Thus, as the 60-minute

and 120-minute runtimes performed comparably, we would probably choose a main

workunit runtime of 120 minutes (two hours) to minimize overhead costs. A two-

hour runtime is certainly in keeping with our a priori expectation of a reasonable

main workunit length, an expectation based on many years of interaction with our

boinc volunteers. Supporting summary statistics for these tests are given in Table

6.4.

6.8 Final fixed-length vs. full-length GARLI workunit test

The final round of large-scale tests was intended to measure the performance

of the fixed-length scheme against the full-length scheme with a longer garli anal-

ysis. For these tests, we used the same 82-taxon, 13-mitochondrial-gene data set

as before, along with the same garli settings, except that we set stopgen=60000

and enforcetermconditions=0, which together roughly doubled the length of the

analysis. For the fixed-length test, we set stoptime=7200, which was the best-

performing main workunit runtime determined from the previous round of tests.

boinc wall clock deadlines were set to two days for initial and final workunits, and

12 hours for main workunits. The deadline for full-length workunits was one week.

Each test began with the submission of 1,000 workunits (either 1,000 initial worku-

nits, or 1,000 full-length workunits). Other test attributes, including the date of
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Date of test

Main WU Main WU Hosts Hosts Result units
length deadline granted reportinga,b in progressa

(minutes) (minutes) credita,b

19 Feb 2015 30 180 ≈ 1, 460 3,687 233
22 Feb 2015 60 360 ≈ 1, 520 3,695 133
24 Feb 2015 120 720 ≈ 1, 580 3,707 123
26 Feb 2015 240 1,440 ≈ 1, 545 3,721 123
02 Mar 2015 240 1,440 ≈ 1, 620 3,776 24
05 Mar 2015 120 720 ≈ 1, 630 3,771 69
07 Mar 2015 60 360 ≈ 1, 630 3,772 45
10 Mar 2015 30 180 ≈ 1, 635 3,794 76

aConditions at the time of submission.
bTallied over the previous 30 days.

Table 6.3: Attributes of large-scale boinc tests to determine optimal-length garli
workunits.

Date of test

Main WU Main WU Analyses Mean Median Standard
length deadline included analysis analysis deviation

(minutes) (minutes) in results time (hr) time (hr) (hr)

19 Feb 2015 30 180 896 35.3 34.8 10.2
22 Feb 2015 60 360 945 29.6 28.1 11.6
24 Feb 2015 120 720 898 30.6 29.9 12.3
26 Feb 2015 240 1,440 888 30.3 25.9 16.3
02 Mar 2015 240 1,440 964 32.5 30.4 16.1
05 Mar 2015 120 720 979 30.3 28.1 12.6
07 Mar 2015 60 360 963 33.7 32.1 13.8
10 Mar 2015 30 180 963 38.0 38.1 10.3

Table 6.4: Results of large-scale boinc tests to determine optimal-length garli
workunits.
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Figure 6.4: Total analysis time, in hours, for analysis batches of different
main workunit lengths. A cumulative distribution plot gives the propor-
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cation), where each point represents an individual garli analysis.
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the test, the number of result units per workunit, and the status of the hosts in the

boinc pool at the time of submission are given in Table 6.5.

For our evaluation, we measured total analysis time the same way as in our

previous rounds of testing. Figure 6.5 compares the total analysis time of fixed-

length and full-length analysis batches.

We observe the same pattern that we did in previous tests; the variance in total

analysis time is significantly reduced in the fixed-length workunit test. Thus, while

the fixed-length scheme takes longer to complete ≈ 50% of the analyses, it completes

all of its analyses ≈ 1.8× more quickly than the equivalent number of full-length

analyses. Thus, we note that the relative performance of the fixed-length paradigm

improves as overall analysis length increases. Supporting summary statistics for

these tests are given in Table 6.6.

6.9 Conclusion

As the preceding tests demonstrate, the reduction in analysis time variance

achieved by subdividing long-running garli analyses into short, fixed-length boinc

workunits results in faster completion times for analysis batches. Furthermore,

taking a number of factors into consideration, we arrived at a best-performing main

workunit length of two hours. We also demonstrated how the relative performance

of the fixed-length workunit scheme improves as overall analysis length increases.

Although with a highly heterogeneous pool of consumer-grade computers there will

always be some degree of variance in analysis completion times, our results suggest
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Date of test Test type

Result Hosts Hosts Result
units per granted reportinga,b units in
workunit credita,b progressa

23 Mar 2015 full-length one ≈ 1, 610 3,865 3
31 Mar 2015 fixed-length one ≈ 1, 480 3,875 270

aConditions at the time of submission.
bTallied over the previous 30 days.

Table 6.5: Attributes of final large-scale tests of fixed-length vs. full-length garli
workunits.
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Figure 6.5: Total analysis time, in hours, for fixed-length and full-length
analysis batches. A cumulative distribution plot gives the proportion of
analyses completed by total analysis time, and a density plot gives the
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derived from a series of at most 1,000 points, where each point represents
an individual garli analysis.
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that the heavy tail on analysis batches (Figure 6.1) can be substantially reduced

by subdividing analyses into short workunits. We would expect these results to

generalize to other boinc applications as well. Therefore, other boinc projects,

even those whose applications checkpoint, may be motivated by these results to

shorten their workunits. In our case, we are optimistic that this reduction in runtime

variance, along with strategies such as submitting more than the required number of

analyses and using the first results that become available, will make boinc a viable

and effective resource for processing garli web service analyses.
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Date of test Test type

Result Analyses Mean Median Standard
units per included analysis analysis deviation
workunit in results time (hr) time (hr) (hr)

23 Mar 2015 full-length one 900 91.9 77.3 56.1
31 Mar 2015 fixed-length one 893 79.4 80.1 18.6

Table 6.6: Results of final large-scale tests of fixed-length vs. full-length garli
workunits.
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Chapter 7: Can RNA-Seq resolve the rapid radiation of advanced

moths and butterflies (Hexapoda: Lepidoptera: Apodit-

rysia)? An exploratory study

This chapter is based on the following publication: Adam L. Bazinet, Michael

P. Cummings, Kim T. Mitter, and Charles W. Mitter. Can RNA-Seq resolve the

rapid radiation of advanced moths and butterflies (Hexapoda: Lepidoptera: Apodit-

rysia)? An exploratory study. PLoS ONE 8(12):e82615, 2013. Corrections included.

7.1 Background and motivation

As mentioned in Section 1.2.3, rna-seq enables the acquisition of relatively

large amounts of genomic data with lower cost and less effort than complete genome

sequencing would require. Moreover, the data obtained is primarily expressed

protein-coding sequence that is useful for phylogenetic analysis. Thus, rna-seq has

become a popular choice as a data generation method for phylogenomic analyses,

although other techniques are also being used and developed [228–230].

Following the pioneering methodology of Hittinger et al. [11], many additional

phylogenomic studies have been undertaken [15–25, 25–42]. The majority of these
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studies use the same canonical workflow: specimen collection; rna or dna purifi-

cation, library preparation, and sequencing; quality control and filtering; transcript

assembly; orthology determination; multiple sequence alignment; and phylogenetic

analysis.

As part of an effort known informally as “Leptree-II”, we have sequenced up-

wards of 67 lepidopteran transcriptomes with the Illumina HiSeq 1000, generating

many gigabases of sequence data. Additionally, we have reassembled various other

publicly available lepidopteran transcriptomes to incorporate into our phylogenomic

analyses. This work is expected to elucidate previously unresolved aspects of lepi-

dopteran evolution, starting with difficult-to-resolve early divergences known as the

lepidopteran “backbone”.

A phylogenomic workflow for analyzing this data has been developed as part of

the dissertation research. In addition to the implications for the evolutionary rela-

tionships of Lepidoptera, the methodology used to construct the Leptree-II workflow

will itself be of interest to researchers pursuing similar goals for other taxonomic

groups. In this chapter, we describe the first version of the phylogenomic workflow

that we used to analyze 46 lepidopteran taxa. In the following chapter, we describe

an updated version of the workflow that we used to analyze 82 taxa.

7.2 Introduction

The insect order Lepidoptera (moths and butterflies; >157,000 spp.; [231]) is

arguably the largest single radiation of plant-feeding insects. A prominent element
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of terrestrial ecosystems, Lepidoptera function as herbivores, pollinators and prey,

with substantial impact on humans. Highly destructive as agricultural pests, they

have also become icons for environmental conservation, and supply food and fiber

to multiple societies [232]. And, they provide important model systems for studies

of genetics, physiology, development, and many aspects of ecology and evolutionary

biology [233], including the question of why herbivorous insects, 25% of earth’s

known species, are so species-rich [234–236].

A robust phylogenetic framework is essential for all attempts to understand

the diversity, adaptations and ecological roles of Lepidoptera. The past decade has

seen tremendous advances in our understanding of lepidopteran phylogeny at all lev-

els. Molecular data have proven especially powerful for defining superfamilies and

relationships within them. In a remarkable burst of community progress, robust

molecular phylogenies for nearly all of the major superfamilies (those containing

hundreds to thousands of species), combined with review of the morphological ev-

idence, have been published in the past few years or will be forthcoming shortly.

Recent examples (not an exhaustive list) include studies of Bombycoidea [111], Gele-

chioidea [237], Geometroidea [238–240], Gracillarioidea [113], Noctuoidea [241,242],

Papilionoidea [243], Pyraloidea [98], Tortricoidea [99], and Yponomeutoidea [6]. In

all of these superfamilies, a majority of the major divergences (at least) seem credi-

bly established, though important uncertainties remain. Progress is also now rapid

at more subordinate levels.

The past few years have likewise seen the first attempts at “backbone” phy-

logenies spanning much or all of the order [5, 114, 244]. A recent such study [7],
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with the largest gene and taxon sampling to date, used 483 exemplars, representing

115 of the approximately 125 families of Lepidoptera [245], sequenced for up to 19

nuclear protein-encoding genes/14.7 kb. It gave a topology quite similar to those

of earlier nuclear gene studies, but with stronger bootstrap support. It also agrees

with newly-emerging evidence from whole mitochondrial genomes (e.g., [244, 246];

see Discussion). The main conclusions of the Regier et al. study [7] are summarized

in Figure 7.1.

The so-called non-ditrysian lineages (Figure 7.1, left side) are mostly species-

poor but rich in morphological variation, and often have apparently relictual distri-

butions suggesting great age. Exhaustive comparative-anatomical studies of these

groups (e.g., [247–249]), an early application of Hennigian phylogenetics, yielded

many synapomorphies and a well-resolved backbone phylogeny. Although impor-

tant puzzles remain, the molecular data strongly resolve a majority of these early

divergences, recovering previously-recognized major clades including Glossata, Het-

eroneura and Eulepidoptera (Figure 7.1). There is also strong molecular support

for several novel proposals, such as apparent non-monophyly of Palaephatidae. The

molecular data strongly corroborate the clade Ditrysia, named for the presence in

the female Terminalia of separate openings for mating and for oviposition, which

contains over 98% of lepidopteran species and 80% of the families.

The superfamilies of Ditrysia, in contrast to the non-ditrysians, tend to be

species-rich, cosmopolitan and less distinct morphologically, so that major group-

ings have been difficult to discern. The authoritative morphological hypothesis syn-

thesized by Kristensen and collaborators [245,250,251] postulated only 11 tentative
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Figure 7.1: Summary of previous backbone phylogeny results (483
taxa/19 genes), modified from Regier et al. [7]. ml topology shown for
degen1 (non-synonymous change only) is based on 100 garli searches.
Bootstrap percentages are degen1 followed by nt123 (all nucleotides),
based on 1,000 bootstrap replicates with 15 search replicates each. Only
values greater than 50% are shown. Branch lengths are arbitrary. The
“-” means the node was not found in the ml tree for nt123. Numbers
in parentheses after taxon names indicate number of families/number
of exemplars studied. Names in bold denote clades in which larvae are
not typically phytophagous. Names in serif font denote clades in which
adults typically bear ultrasound-detecting tympanic organs on the tho-
rax and/or abdomen. Classification follows van Nieukerken et al. [231].
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monophyletic groupings among the 33 ditrysian superfamilies recognized. Molecu-

lar data markedly strengthen resolution for the initial divergences within Ditrysia.

There is now strong molecular support (Figure 7.1) for the morphological infer-

ence that all Ditrysia apart from Tineoidea form a monophyletic group. Molec-

ular data also strongly support four new or previously uncertain conclusions: (1)

The Tineoidea themselves are paraphyletic with respect to all other Ditrysia; (2)

Yponomeutoidea and Gracillarioidea are sister groups; (3) Yponomeutoidea and

Gracillarioidea together form the sister group to the remaining Ditrysia; and (4),

the remaining ditrysians form a strongly supported group consisting of Apoditrysia

in an earlier sense [252, 253] plus Gelechioidea. Apoditrysia sensu novo [231], now

including Gelechioidea, are also supported by several morphological synapomor-

phies [237,254].

In striking contrast to those in earlier-originating clades, “backbone” relation-

ships in the Apoditrysia sensu lato are almost entirely lacking in strong support from

either molecules or morphology, although rogue taxon removal [255] helps somewhat.

Recent large-scale molecular studies consistently recover monophyly of some variant

of the huge group Obtectomera (107,551 spp.; [231]), originally proposed for families

with relatively immobile pupae [252], but support is very weak (Figure 7.1). Molecu-

lar studies also find the large superfamily Gelechioidea to be closely related to Obtec-

tomera, but again with weak support (Figure 7.1). Within Obtectomera, the mor-

phological working hypothesis recognized a group Macrolepidoptera, consisting of

the butterflies (Papilionoidea; 18,363 spp. [231]) and the familiar large moths (inch-

worms, cutworms, silkmoths and relatives; five superfamilies, 72,398 spp.; [231]).
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Molecular studies have instead consistently separated the butterflies from the large

moths, and found that the latter, termed the Macroheterocera [231], are more closely

related to the non-macrolepidopteran superfamily Pyraloidea (15,587 spp.; [231]).

These findings too, however, have weak bootstrap support (Figure 7.1). Within

Macroheterocera, neither nuclear genes nor morphology provide strong evidence for

any relationships at all among superfamilies (Figure 7.1; but see [246, 256]). This

phylogenetic uncertainty, in turn, limits the power of analyses of the origins, ages

and evolutionary consequences of traits hypothesized to promote the spectacular

diversification of Apoditrysia, which include 144,524 species in 93 families and 26

superfamilies according to a recent classification [231].

Low support along the apoditrysian backbone probably reflects rapid diversi-

fication, as in other major insect radiations [257,258]. The alternative explanation,

of pervasive strong conflict among gene trees, found little support in our earlier

studies [5]. If short branches resulting from rapid radiation are the problem, it may

be feasible to strengthen resolution by radically increasing the gene sample. Em-

pirical tests of this proposition, however, have been few. In this chapter we assess

the potential of massive gene sampling for resolving the apoditrysian radiation by

analyzing 741 gene sequences, obtained through rna-seq, in 46 exemplars spanning

nearly all major lineages of Apoditrysia. The resulting dramatic but non-uniform

increase in bootstrap support illustrates both the power and the complexity of the

phylogenomic approach.
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7.3 Taxon sampling and taxon set design

The goal of this study was to assess the degree to which rna-seq transcriptome

data can increase the support for relationships among the superfamilies of Apodit-

rysia over that found in our previous 19-gene study [7]. Our 46 exemplars include

42 apoditrysians spanning 16 of 26 superfamilies and 34 of 93 families of Apodit-

rysia in a recent classification [231]. The distribution of our exemplars across that

classification is shown in Table 7.1, while the collecting locality, accession number

and other details for each specimen are given in Table S1 of Bazinet et al. [86]. The

only large apoditrysian superfamily (>1,000 species) not sampled was Papilionoidea.

The phylogenetic position of Papilionoidea is the focus of a forthcoming independent

rna-seq study that is yielding results similar to those we report below [25].

As outgroups we used two non-apoditrysian Ditrysia and two non-ditrysians.

For two taxa we used previously published data: for Bombyx mori, we used the

published genome (SilkDB; [259]), and for Striacosta albicosta, we reassembled raw

sequences from an earlier study that used older sequencing technology [179]. The

purpose of including S. albicosta was to gauge how much data can be extracted

from such older transcriptome studies, and whether these data can be successfully

incorporated into a phylogeny estimate based mainly on newer, larger transcriptome

assemblies. For the other 44 taxa we generated transcriptomes de novo by rna-

seq. We matched the taxa included as closely as possible to those in our previous

backbone study [7]. Thirty-eight of the 44 species had been included in that study,

and for a majority of these we were able to use the same specimen. Four other species
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LEPIDOPTERA (43 superfamilies, including all those below)

Hepialoidea: Hepialidae: Phymatopus californicus

Palaephatoidea: Palaephatidae: Palaephatus luteolus

DITRYSIA (29 superfamilies, including all those below)

Tineoidea: Psychidae: Thyridopteryx ephemeraeformis

Yponomeutoidea: Yponomeutidae: Yponomeutinae: Yponomeuta multipunctella

APODITRYSIA (26 superfamilies, including all those below)

Urodoidea: Urodidae: Urodus decens

Zygaenoidea: Epipyropidae: Epipomponia nawai

Lacturidae: Lactura subfervens

Limacodidae: Limacodinae: Euclea delphinii

Megalopygidae: Megalopyginae: Megalopyge crispata

Zygaenidae: Zygaeninae: Zygaena fausta

Cossoidea: Cossidae: Cossinae: Culama sp. 5, Prionoxystus robiniae; Hypoptinae: Givira mucidus; Zeuzerinae:
Psychogena personalis; Cossulinae: Spinulata maruga

Dudgeoneidae: Archaeoses polygrapha

Sesiidae: Sesiinae: Podosesia syringae, Vitacea polistiformis

Tortricoidea: Tortricidae: Olethreutinae: Grapholitini: Cydia pomonella; Olethreutini: Phaecasiophora
niveiguttana

Immoidea: Immidae: Imma tetrascia

Choreutoidea: Choreutidae: Choreutinae: Hemerophila diva

Pterophoroidea: Pterophoridae: Pterophorinae: Emmelina monodactyla

Gelechioidea: Amphisbatidae: Psilocorsis reflexella

Elachistidae: Antaeotricha schlaegeri

Gelechiidae: Dichomeris punctidiscella

OBTECTOMERA (12 superfamilies, including all those below)

Thyridoidea: Thyrididae: Striglininae: Striglina suzukii

Pyraloidea: Crambidae: Crambinae: Catoptria oregonica

Pyralidae: Galleriinae: Galleria melonella

Mimallonoidea: Mimallonidae: Lacosoma chiridota

MACROHETEROCERA (5 superfamilies)

Lasiocampoidea: Lasiocampidae: Macromphaliinae: Tolype notialis

Bombycoidea: Bombycidae: Bombycinae: Bombyx mori

Drepanoidea: Drepanidae: Cyclidiinae: Cyclidia substigmaria; Thyatirinae: Pseudothyatira cymatophoroide

Cimeliidae: Axia margarita (formerly in its own superfamily; Kristensen, 2003)

Doidae: Doa sp. (formerly in Noctuoidea; Kristensen, 2003)

Geometroidea: Epicopeiidae: Epicopeia hainesii (formerly in Drepanoidea; Kristensen, 2003)

Uraniidae: Epipleminae: Calledapteryx dryopterata

Geometridae: Ennominae: Biston betularia; Geometrinae: Chlorosea margaretaria; Sterrhinae: Idaea sp. 5

Noctuoidea: Erebidae: Lymantriinae: Lymantria dispar; Noctuidae: Heliothinae: Helicoverpa zea, Heliothis
virescens; Noctuinae: Striacosta albicosta

Table 7.1: Classification of exemplar species included, following van Nieukerken et
al. [231]. See Table S1 of Bazinet et al. [86] for accession number, collecting locality
and life stage used.
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were congeners of taxa in the earlier study, and an additional two belonged to the

same subfamily and tribe (see Table S1 of Bazinet et al. [86]). These substitutions

were made because no more material of the same species or genus, respectively, was

available. All of the specimens we sequenced came from the atolep collection built

by the Assembling the Lepidoptera Tree of Life project (Leptree), and had been

stored in 100% ethanol at -80◦ C, some for more than 20 years.

Taxon sampling in this exploratory study expanded in phases, from 16 to 38

to 46 exemplars, each with a separate phylogenetic analysis, as we sought to char-

acterize the data and develop our informatic and analytical workflows. The initial

test set focused (14/16 taxa) on one especially problematic tree region, the hypoth-

esized group consisting of Cossoidea + Sesioidea + Zygaenoidea [251, 253]. This

assemblage, here termed the “csz clade”, consists of 5,996 species in 19 families

according to van Nieukerken et al. [231], who merged Sesioidea into Cossoidea. It is

one of very few groupings among apoditrysian superfamilies that is postulated in the

morphology-based working hypothesis [250]. It also presents an exceptionally clear

superfamily-level contrast in a major life history feature, internal versus external

feeding: Cossoidea and Sesioidea are mostly stem borers, whereas Zygaenoidea are

mostly external folivores. In analyses with the 19 Leptree genes (14.7 kb), the csz

clade is only sometimes monophyletic, and always with very weak support [7]. A

core subset of Zygaenoidea is reliably monophyletic, but Sesioidea, Cossoidea and

Cossidae never are. Relationships of the sesioid families, the cossoid families and

subfamilies, and the two aberrant (parasitic) families of Zygaenoidea (Epipyropi-

dae and Cyclotornidae), to each other and to the “core” Zygaenoidea, are almost
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completely unsupported (e.g., Figure 7.1). The test data set also included one

non-apoditrysian outgroup (Yponomeuta) and one putative apoditrysian outgroup,

Bombyx mori.

After testing and improving our protocols using the 16-taxon test set, we added

22 more exemplars representing most of the other major lineages of Apoditrysia,

focusing on the other large superfamilies (those with over 2,000 species). Another

eight taxa were then added for a final, 46-taxon analysis. These eight had been

held back from the second analysis because we considered them especially likely to

complicate tree estimation, either because they had much less data than the rest

(Striacosta albicosta) or because they were previously identified as difficult-to-place

or “rogue” taxa [7]. We wanted to see how much the inclusion/exclusion of such

taxa would affect the results based on our very large gene samples.

An additional, related benefit to our stepwise increase in taxon sampling is the

evidence it provides as to the effects of taxon sampling density, which has been of

special concern in phylogenomics [260–262]. Strong conflicts among phylogenies of

16 and 38 and 46 taxa could suggest the presence of false signal due to taxon under-

sampling, as could strong support in the rna-seq phylogenies for nodes contradicting

strongly supported nodes in the much larger Leptree taxon sample (Figure 7.1).

Successive expansion of the taxon sample could also identify instances in which

weak support is increased by denser taxon sampling.

To provide a controlled assessment of the potential benefits of massively in-

creased gene sampling, we compared topologies and branch supports from rna-seq

analyses both to those from the 19-gene, 483-taxon “backbone” phylogeny [7], and
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to new 19-gene analyses of 16-, 38- and 45-taxon data sets. The data sets for the

19-gene analyses were taken from the data matrix of Regier et al. [7]. For each

species in the rna-seq data set, an associated Leptree exemplar from Regier et

al. [7], listed in Table S1 of Bazinet et al. [86], was chosen to match it as closely as

possible, and was used in our 19-gene analyses. In 38 cases, exactly the same species

was used; a closely related substitute was used in six others. For Striacosta albicosta,

not included in the “backbone” study, we substituted the con-tribal Agrotis ipsilon,

included by Regier et al. [7], in the 19-gene analysis. We thought it unnecessary

to substitute for Heliothis virescens, for which we also lack 19-gene data, because

it already had a close relative in the 19-gene data set (Helicoverpa zea). Thus, the

final 19-gene analysis used 45 exemplars instead of 46.

7.4 RNA-Seq data generation

Total rna was extracted using promega sv total rna isolation mini-kits. The

great majority of our specimens were adults; four were larvae (see Table S1 of Bazinet

et al. [86]), with species identifications verified by comparison of coi sequences with

those in the Barcode of Life Data System [263]. For larger moths we used the

thorax and/or anterior part of the abdomen; for a few smaller ones we used the

entire body. rna extracts were submitted to the University of Maryland-Institute

for Bioscience and Biotechnology Research Sequencing Core. The quality of total

rna was assessed by capillary electrophoresis on an rna chip using an Agilent

Bioanalyzer 2100 system. rna preps of sufficient quality were subjected to poly-A
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selection and indexed library construction for sequencing on an Illumina HiSeq 1000.

Following Hittinger et al. [11] our libraries were left unnormalized, so as to favor

highly-expressed genes likely to be present in most species and life stages. Libraries

were run four per lane, yielding about 110 million 100-bp paired-end reads per taxon.

7.5 Sequence quality control and transcript assembly

We used the default Illumina HiSeq 1000 quality filter, which ensures that

at least 24 of the first 25 template cycles has a “Chastity” value greater than 0.6.

The Chastity value is a ratio between the highest intensity and the sum of the

two highest intensities. We discarded reads that did not pass the Chastity quality

filter (≈ 5–20% per sample), as well as reads whose Phred quality score [264] was

not greater than 20 at greater than 90% of positions (≈ 5–15% per sample). We

observed biases in nucleotide composition at the beginning of our Illumina-generated

reads [265], but as our canonical workflow does not depend on accurate quantification

of transcript abundance, it was not necessary to correct for this bias. The filtered

reads input to assembly (mean = 76M reads per sample) had median Phred scores

greater than 35 for over 95% of the bases in each read.

De novo transcriptome assembly was performed using both Trinity (versions

r2012-03-17 and r2013-02-25 [44]) and trans-abyss (versions 1.3.2 and 1.4.4; abyss

versions 1.3.3 and 1.3.5 [45,266]), and the results compared (Table S2 of Bazinet et

al. [86]) for numbers and length of transcripts using standard assembly metrics such

as n50 (the length N for which 50% of all bases are contained in contigs of length
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L < N). A typical Trinity assembly required greater than 100 gb ram and finished

in 24 to 96 hours using 16 processing cores. A typical trans-abyss run required

less than 4 gb ram and a single processor, finishing in 1–2 hours. The same was

true for each constituent abyss run, of which there were 23 per sample (k ranged

from 52 to 96 in steps of two). In general, Trinity used more ram and produced

fewer transcripts than trans-abyss, but it produced longer transcripts (Table S2 of

Bazinet et al. [86]). Combining the Trinity and trans-abyss assemblies proved early

on to yield a slightly more complete data matrix than either alone, which is why

we continued to use both. The added cost of doing so was minimal once assembly

workflows were established.

Some modification of these methods was necessary for reassembly of the Stri-

acosta albicosta transcriptome [179]. We acquired the original 75-bp single-end Illu-

mina reads, which were based on 16 individuals and normalized cdna, and were not

subjected to a “Chastity” filter. Application of our Phred filter eliminated 61% of

the reads. We modified trans-abyss to work with single-end data, and optimized

its k-mer sweep for 75-bp reads (k ranged from 38 to 74 in steps of two). The

original assembly contained 16,850 contigs of median length 173 bp; our combined

Trinity and trans-abyss assembly yielded 336,829 contigs of median length 114 bp,

including over 15,000 contigs of median length 351 bp from the Trinity assembly

alone.
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7.6 Sequence classification

For a variety of reasons, it can be useful to treat the sequences derived from

rna-seq as a metagenome (Chapter 2). For example, it is known that many species

of Microsporidia infect insects such as butterflies and moths [267]. Thus, we ex-

perimented with classifying our transcript fragments into various taxonomic groups

(e.g., Insecta, Microsporidia, human and bacterial contaminants, etc.) before pro-

ceeding with downstream steps. For this purpose, we used megan [148, 180] and

mg-rast [150]. We did not find much in our samples that was not lepidopteran

in origin (and hence worthy of isolating and studying separately). Furthermore,

sequence classification programs often leave a significant proportion of sequences

“unclassified” because none are a high enough quality match to a database se-

quence. Because we infer these sequences to be mostly lepidopteran, to discard this

data would significantly reduce the amount of useful data for subsequent analysis

steps. Thus, to simplify matters, we currently omit the sequence classification step

from our workflow and instead rely on the orthology determination step to extract

lepidopteran sequences from the unfiltered data (explained in Section 7.7). How-

ever, we may still use sequence classification programs at a later stage of the project

to search our rna-seq data with more scrutiny for the presence of organisms such

as Microsporidia, in order to recover their transcriptome sequences for independent

study (Chapter 9).

165



7.7 Orthology determination

A variety of methods and implementations of algorithms for orthology deter-

mination are available (Chapter 3). In addition, several public databases of or-

thologous genes have been compiled using these methods [268–271]. The orthology

determination methods used by previous phylogenomic studies were surveyed before

developing a strategy for our own workflow.

To infer orthology, we used hamstr (version 9; [272]), which in turn used

blastp [13], genewise [273], and hmmer [274] to search the combined assembly

data for protein sequences matching a set of “known” orthologs. The known or-

thologs in our case consisted of a database of 1,579 profile hidden Markov models

(phmms; [275]) of orthologous sequence groups called the “Insecta Hmmer3-2 core-

ortholog set”, obtained from the hamstr web site. These models are based on

six genomes representing three holometabolous insect orders (Hymenoptera: Apis;

Coleoptera: Tribolium; Lepidoptera: Bombyx); a non-insect pancrustacean (Veri-

crustacea: Daphnia); a different arthropod subphylum (Chelicerata: Ixodes); and a

different phylum (Annelida: Capitella). An annotated list of the putative orthologs

in the Insecta Hmmer3-2 data set can be found at http://www.deep-phylogeny.

org/hamstr/download/datasets/hmmer3/.

In the first step of the hamstr procedure, regions of our transcript assemblies

(expressed as amino acid sequences) that matched any one of the 1,579 Insecta core-

ortholog phmms were provisionally assigned to the corresponding orthologous group.

To reduce the number of highly-divergent, potentially paralogous sequences returned
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by this initial search, we changed the E-value cutoff defining a “hit” to 1e-05, from

the hamstr default of 1.0, and retained only the top-scoring quartile of hits. In the

next hamstr step, the provisional “hits” from the Insecta search were compared to

a “reference taxon” (Bombyx mori), and retained only if they survived a reciprocal

best blast hit test with that taxon. Once assigned to orthologous groups, protein

sequences from our assemblies were aligned using mafft [276]. The resulting protein

alignments were then converted to the correct corresponding nucleotide alignments

using a custom Perl script that substituted for each amino acid the proper codon

from the original coding sequence.

Following initial orthology assignments, we computed “coverage per base” for

each orthologous group, defined as read length times the median number of reads

mapped to orthologous group sequences divided by the median length of orthologous

group sequences. Read mappings used Bowtie (version 0.12.8) [277], and allowed

for up to four mismatches.

7.8 Data matrix construction and paralogy filtering

Our orthology determination pipeline often yields multiple sequences for a

particular taxon-locus combination, which can reflect the presence of multiple or-

thologs, heterozygosity, alternatively-spliced transcripts, paralogy (including inpar-

alogs; [182]), and sequencing errors, among other possibilities. One general approach

for reducing this variation to a single sequence, as required for phylogenetic analysis,

is exemplified by the “representative” option in hamstr [272]. This procedure
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chooses the single sequence (or concatenation of non-overlapping fragments) with

the best pairwise alignment to a chosen reference taxon. We developed an alterna-

tive that accommodates the uncertainty in orthology determination by combining

the set of sequences into a single consensus sequence, using nucleotide ambiguity

codes [191] as necessary (Chapter 3). Consensus sequences were generated by pro-

viding the alignment of the nucleotide coding sequences corresponding to the amino

acid sequences passing our filtering steps, described above, to the consensus iupac

bioperl subroutine [278]. There are two principal motivations for this “consensus”

approach. The first is a desire to incorporate all information about specific nu-

cleotide states for positions that might reasonably be inferred to be orthologous,

including those where orthologous relationships among genes between pairs of taxa

are many-to-one, and many-to-many, as well as cases of polymorphism. A second

motivation is to mitigate the effects of mistaken orthology determination and other

errors, including those resulting from incorrect choice of a single representative se-

quence, by in effect reducing the weight of positions at which transcription fragments

differ. By including more available transcription fragments, moreover, consensus

can potentially yield longer total sequences than representative, as has been

our experience. However, degenerating nucleotide sites that vary among transcripts

could result in dilution of phylogenetic information, if the single best sequence cho-

sen by representative were almost always the most phylogenetically-appropriate

one. The approach that works best is thus an empirical question, which we addressed

by performing both procedures and comparing the results (Appendix A).

Despite the filters described above, inspection of our initial 1,579 alignments
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revealed obvious paralogs. An extreme example was orthologous group 412460 of

the Insecta Hmmer3-2 database, annotated there as acetyl-CoA acetyltransferase,

a type of thiolase. In our data, hamstr search returned two divergent sets of se-

quences for this ortholog group, which upon blast search matched two different

members of the thiolase gene family in a noctuid moth. No single E-value threshold

can eliminate problems of this kind, so we turned to direct scrutiny of gene trees

(e.g. [27, 28, 279]). Using the initial 16 test taxa, a maximum likelihood (ml) gene

tree was constructed for each orthologous group using all matching sequences, and

provided as input to the program PhyloTreePruner [280]. If the sequences for a

particular taxon form a polyphyletic group, the program prunes the gene tree to

the maximal subtree in which the non-polyphyly criterion is met for all taxa. For

the 16 test taxa, PhyloTreePruner pruned 838 of the 1,579 gene trees to some de-

gree. For this exploratory study we took a very conservative action based on these

results, using for all subsequent phylogenetic analyses only the 741 genes in which

no evidence of paralogy was found in the test taxa, and completely omitting the

remaining genes; alternative possibilities for future studies are considered in Section

7.12. Following application of the paralogy filter, the 741 putative ortholog align-

ments were concatenated, adding gaps for missing data as necessary using a custom

Perl script. For all phylogenetic analyses the nucleotide matrix was subjected to

degen1 coding (version 1.4; [281]), and sites not represented by sequence data in at

least four taxa were subsequently removed. “Degen” uses degeneration coding to

eliminate all synonymous differences among species from the data set, resulting in

phylogeny inference based only on non-synonymous nucleotide change. This proce-
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dure was shown in our previous backbone study [7] to generally improve recovery of

deep nodes. At deeper levels in the Lepidoptera, inclusion of synonymous change

in any form, even as part of a codon model, sometimes introduces conflict and sys-

tematic error due to compositional heterogeneity [7, 114]. Analysis under degen1

can be viewed as a computationally efficient approximation to a purely “mechanis-

tic” amino acid model — i.e., one based on the genetic code but not incorporating

empirical transition frequencies between amino acids [114,282,283].

Sequences and alignments for the 19-gene analyses were extracted from Table

S4 of the Leptree backbone study [7]. Nine of these genes are present in the Insecta

Hmmer3-2 database. The pcr amplicon codes of these nine from Regier et al. [7]

are: 40fin, 109fin, 192fin, 262fin, 265fin, 268fin, 3007fin, 3070fin, and cad. Five of

these genes were eliminated by our paralogy screen, while the following four, listed

by their numbers in the Insecta Hmmer3-2 database, were included among the 741

used in phylogenetic analyses: 413101 (262fin); 412564 (268fin); 412293 (265fin);

and 412031 (40fin).

7.9 Phylogenetic analysis

Maximum likelihood phylogenetic analyses used garli (Genetic Algorithm

for Rapid Likelihood Inference; version 2.0 [2]) and grid computing [48, 223] via a

web service at molecularevolution.org [53] based on tools developed by Bazinet

et al. [284] that include post-processing with DendroPy [208], R [285], and custom

Perl scripts. The majority of the phylogenetic analyses were completed using the
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boinc volunteer computing platform [50] (http://boinc.umiacs.umd.edu). We

used a gtr+i+g nucleotide model together with garli default settings, including

stepwise addition starting trees, except that we lowered the number of successive

generations yielding no improvement in likelihood score that prompts termination

(genthreshfortopoterm=5000), as we found that this saved time and yielded com-

parable results. Memory requirements ranged from 800 mb for the 16-taxon, 741-

gene analysis to 3500 mb for the 46-taxon, 741-gene analysis; some exploratory

analyses with larger data matrices used as much as 9 gb of ram. Each search repli-

cate might have run, on average, anywhere from one to a few days. Each best tree

was selected from 100 garli search replicates, while bootstrap analyses consisted

of 1,000 replicates. Insufficient search effort during bootstrapping has been shown

to artificially depress bootstrap support (bp) values [7]. A rough guide to the effort

needed was provided by our initial 100 replicate ml search: if the best tree topology

was found only rarely, multiple search replicates per bootstrap replicate may be

helpful. We tested each of our data sets for the effect of increased search effort on

bp values, at levels of one, five, and ten search replicates per bootstrap replicate.

We found a significant increase in bp values for several analyses using five search

replicates instead of one, but did not find a significant improvement using ten search

replicates instead of five. Thus, all results presented here used five search replicates

per bootstrap replicate.

The 741-gene and 19-gene data matrices have been deposited in Dryad

(doi:10.5061/dryad.02qv3). The Illumina reads have been deposited in the ncbi

Sequence Read Archive, as BioProject prjna222254.
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7.10 Data matrix properties

The paralogy-filtered matrix of 741 genes contained from 742,017 to 873,036

nucleotide positions and was 80–93%-complete, depending on the number of taxa

included and the orthology determination procedure used (Table 7.3). Thus, overall

matrix completeness was slightly higher than in the 14.7 kb, 483-taxon Leptree

analysis [7]. Completeness was fairly consistent among the 44 newly-sequenced taxa,

ranging from, e.g., 67% to 84% for the 46-taxon, 741-gene consensus matrix (Table

S2 of Bazinet et al. [86]). Our reassembly of the previously-published Striacosta

albicosta sequence reads [179] yielded sequence for 1,138 orthologous groups, whose

median sequence length was 147 bp. Thus, in the paralogy-filtered 46-taxon data

matrices, for example, S. albicosta had approximately half the data of our other

taxa (Table S2 of Bazinet et al. [86]). Coverage per base (Table 7.4) averaged 103×

for 15 test taxa, with a range of 31× to 334×.

7.11 Phylogenetic results

The tree of maximum likelihood found for both the 46-taxon, 741-gene con-

sensus data set and its representative counterpart is shown in Figure 7.2, to-

gether with bootstrap values for the consensus and representative 46-taxon,

741-gene data sets and the 45-taxon, 19-gene data set. A phylogram version of the

same tree is given in Figure 7.3. ml cladograms and bootstrap values for all other

data sets are given in Figures 7.4-7.7.
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Contrasta Node
Bootstrap support value

16 taxa 38 taxa 46 taxa

1 Noctuoidea + Drepanidae NAb 54 [-]c

1a Noctuoidea + Geometroidea + Bombycoidea + Lasiocampoidea NA [-] 100

1b Drepanidae + Doidae + Cimeliidae NA NA 100

2 Cossoidea + Sesioidea + core Zygaenoidea (CSZ clade) 83 [-] [-]

2b Cossoidea + core Zygaenoidea + Obtectomera [-] 43 57

3 CSZ clade + Obtectomera NA 90 21

a
1a and 1b, and 2b, are alternative groupings that conflict with nodes 1 and 2, respectively.

b
NA = not applicable; node not present because the constituent exemplars are not included in that data set.

c
[-] = node not present in either ml tree or bootstrap majority rule consensus tree for that data set.

Table 7.2: Notable changes in topology and bootstrap support with change in taxon
sample size for 741-gene, consensus analyses.

741 genes

46 taxa 38 taxa 16 taxa

consensus representative consensus representative consensus representative

number of nu-
cleotide positions

873,036 765,078 764,025 762,252 742,668 742,017

number of non-gap
chars in alignment

32,032,914 31,732,542 26,682,024 26,572,950 11,085,843 11,047,875

matrix complete-
ness (nt present ÷
possible nt)

80% 90% 92% 92% 93% 93%

percent ambiguous
nt (non-gap, non-
A/C/G/T chars)

37% 37% 34% 34% 37% 37%

Table 7.3: Size and completeness of aligned data matrices from rna-seq.
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Figure 7.2: ml tree for 46 taxa, 741 paralogy-filtered genes, degen1 (non-
synonymous change only). Bootstrap percentages: 741 genes consen-
sus method, followed by 741 genes representative method in paren-
theses but only when these two differ, followed by 19 genes, each based
on 1,000 bootstrap replicates with 5 search replicates each. The “-”
means the node was not found in the ml tree for 19 genes.
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Figure 7.3: ml phylogram and bootstraps for the 46-taxon, 741-gene,
consensus analysis. The topology and consensus bootstraps are iden-
tical to those in Figure 7.2.
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Figure 7.4: ml cladogram and bootstraps for the 45-taxon, 19-gene analysis.
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Figure 7.5: ml cladogram and bootstraps for the 38-taxon, 741-gene,
consensus analysis.
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Figure 7.6: ml cladogram and bootstraps for the 38-taxon, 19-gene analysis.
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Figure 7.7: ml cladogram and bootstraps for the 16-taxon analyses. (A)
the 16-taxon, 741-gene consensus analysis, (B) the 16-taxon, 741-gene
representative analysis, and (C) the 16-taxon, 19-gene analysis.
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The two alternative procedures for determining a single sequence per taxon-

locus combination for phylogenetic inference when orthology search returns multiple

“hits” — i.e., representative and consensus — yielded identical ml topologies,

and nearly identical bootstrap values (Figure 7.2). A marked difference between the

two procedures was observed in the 38-taxon analysis, for which finding the best

tree topology took considerably more search effort for representative than for

consensus: out of 100 ml searches, the best tree topology was found 25 times for

the consensus matrix, but only once for the representative matrix. However,

we found no such difference for either the 16- or 46-taxon analyses; in those cases,

a comparable amount of search effort for each procedure was required to find the

best tree topology. An experiment described in Appendix A suggested that the

greater search effort required for representative in the 38-taxon case stemmed

from conflicting signal in a small proportion of nucleotide positions in that matrix

that were left ambiguous in the consensus matrix.

The most dramatic pattern in the results was the much greater frequency,

across all taxon sets, of strong support for nodes subtending multiple superfamilies

in the 741-gene analyses than in either the corresponding 19-gene analyses or the

483-taxon “backbone” study. For example, in the 46-taxon, 741-gene ml topology

of Figure 7.2, there are 22 nodes within Apoditrysia that subtend taxa assigned

to different superfamilies in either the newest classification [231] or its immediate

predecessor [245]. Of these, 11 have bootstrap support (bp) of 100%, two additional

nodes have bp ≥98%, and one additional node has bp >80%, for a total of 14/22

nodes with “strong” or “very strong” support (Figure 7.2). In contrast, of 23 nodes
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subtending multiple superfamilies in the ml topology for the 45-taxon, 19-gene

matrix (Figure 7.3), none have bp ≥80%; only one has bp >70%, and only three

have bp >50% (Figures 7.2, 7.3).

Strong deeper-node support in the 741-gene analyses is not spread evenly

across the Apoditrysia, but is restricted almost entirely to a clade consisting of

Obtectomera sensu van Nieukerken et al. [231] + Gelechioidea + Pterophoroidea

(Figure 7.2). Of the 12 nodes within and including this clade that subtend multiple

subfamilies in recent classifications, 11 have bp=100% and all have bp >80%. In

contrast, of the 11 such nodes elsewhere among the Apoditrysia, none have bp=100%

and only two have bp >80%.

Tree topology changed little as taxon sampling expanded for 741 genes. Table

7.2 summarizes the main differences in topology and bootstrap support among the

16-, 38- and 46-taxon analyses. In no comparison among trees for different num-

bers of taxa were there incompatible nodes that each had strong bootstrap support.

Thus, there is little evidence for artifactual strong support resulting from taxon

undersampling. The most notable conflict concerns monophyly of the putative csz

clade. In the 16-taxon analysis, which includes only one apoditrysian (Bombyx)

apart from the putative csz clade, that clade gets 82% bootstrap support (Figure

7.7). In contrast, the 38- and 46-taxon analyses, which include many other apodit-

rysian lineages, find the csz assemblage to be paraphyletic with respect to the clade

Obtectomera + Gelechioidea + Pterophoroidea. Bootstrap support for this conclu-

sion, however, is only 43% and 59% for 38 and 46 taxa, respectively (Figures 7.2,

7.5). The most striking instance of decline in bootstrap support without change
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in topology involves the grouping of the “csz clade” constituents with the Obtec-

tomera, to the exclusion of other apoditrysians. The 90% bootstrap support for

this grouping in the 38-taxon analysis falls to 27% in the 46-taxon analysis, which

includes three additional non-obtectomeran superfamilies.

The evidence is stronger for a positive effect of taxon sampling density on node

support. The clearest examples are the contrasting positions of Noctuoidea and

Drepanidae in the 38- versus 46-taxon, 741-gene analyses. In the 38-taxon analysis

(Figure 7.5), which is missing several small groups (Cimeliidae, Axiidae, Doidae)

that may or may not represent distinct superfamilies of Macroheterocera [231,245],

Noctuoidea are grouped with Drepanidae, but with weak support (bp=54%). When

the three missing groups are added, as part of the 46-taxon analysis, Drepanidae

and Noctuoidea are no longer paired, but the new positions of these two taxa,

together with those of the newly-added families, are all supported by bp=100%.

A beneficial effect of denser taxon sampling on node support is also suggested by

the generally lower support in our new 19-gene analyses of 16, 38 and 46 taxa than

in our previous 19-gene, 483-taxon study [7]. For example, bootstrap support for

Apoditrysia, 98% in Regier et al. [7], is only 58% here in the 19-gene, 45-taxon

analysis. Moreover, unlike the 483-taxon study, the 19-gene, 45-taxon analysis also

fails to support monophyly for Pyraloidea and for Macroheterocera. An interaction

between gene and taxon sampling is suggested, finally, by the fact that the 45-taxon,

741-gene analysis supports the monophyly of both Pyraloidea and Macroheterocera

with bp=100%.
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7.12 Discussion

Our results suggest that the expansive gene sampling yielded by rna-seq

may be able to strongly resolve inter-superfamily relationships throughout a clade

consisting of Obtectomera sensu van Nieukerken et al. [231] plus Gelechioidea

and Pterophoroidea (at least), comprising over two-thirds of the species of Lepi-

doptera. But, might these high bootstraps be misleading? Multiple authors have

urged caution in the interpretation of bootstrap support in phylogenomic studies

(e.g., [100,261]) or even abandonment of bootstraps altogether in favor of other sup-

port measures [286]. If random error is sufficiently reduced by massive gene sam-

pling, strong but misleading bootstrap support might arise from even subtle forms

of pervasive systematic error, such as minor compositional heterogeneity or slight

differences in the relative abundance of strongly-conflicting gene tree topologies, as

well as from long-branch attraction due to the typically sparse taxon sampling in

phylogenomics.

How could we judge whether the strong support seen in our results is ar-

tifactual? That explanation would gain credence if the strongly-supported nodes

repeatedly conflicted with groupings that were robustly supported, or at least con-

sistently monophyletic, in previous studies. In fact, however, the topology of the

rna-seq phylogeny of Figure 7.2 is closely similar, though not identical, to that of

the 483-taxon, 19-gene study (Figure 7.1) and to those of earlier molecular stud-

ies [5, 114, 244]. It is also consistent, in topology and node support levels, with

recent studies using whole mitochondrial genomes [246,256]. All strongly-supported
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relevant nodes from previous nuclear gene studies are also strongly supported by the

rna-seq analysis. Nowhere in the tree does a strongly-supported node in the phy-

logenomic study contradict a strongly-supported node in any earlier study. More-

over, it appears that limited taxon sampling, rather than inducing artifacts, can

be better overcome by the rna-seq data than by the 19-gene data: in the 38- and

46-taxon analyses, the rna-seq data strongly support the monophyly of Pyraloidea,

for which previous molecular and morphological evidence is definitive, whereas the

19-gene data fail to group the two pyraloid exemplars.

A second reasonable expectation, if strong support in the phylogenomic results

were largely artifactual, is that such support should be distributed across all levels

in the tree. Indeed, some of the forces that can produce strong false signal, such as

convergence in amino acid composition and long branch attraction, should be more

likely for deeper than for shallower divergences. But in fact, within Apoditrysia,

strong support from rna-seq is concentrated in the subordinate clade Obtectomera,

while the deeper divergences have uniformly weak support.

These observations — agreement of strong support with previous groupings,

and decreasing signal strength with increasing depth of divergence within Apodit-

rysia — suggest that such strong support as we find in the rna-seq results is real

rather than artifactual. They further suggest that even with 741 genes, we are still

data-limited: we do not yet have enough characters to fully resolve all stages of

the rapid radiation of the Apoditrysia. On the plus side, however, it also appears

that, unlike many previous phylogenomic studies, we are not working with levels of

divergence at which strong bootstrap support, even from entirely non-synonymous
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change, is both inevitable and often misleading [100,261,286].

If, as we argue, the strong support seen in our 741-gene analyses is real, it

appears that further taxon sampling could quickly produce major advances in our

understanding of the huge clade Obtectomera. Precise definition of this clade has

been difficult, and the placement of multiple superfamilies has been unclear. Our

results suggest that there is a sharp discontinuity between superfamilies that are

and are not strongly supported as near relatives of the Macroheteroceran moths.

If this distinction holds up under further taxon sampling, it would be reasonable

to use it to define the Obtectomera, which would then include both Gelechioidea

and Pterophoroidea. It appears that rna-seq may be able to definitively resolve all

or nearly all relationships within Obtectomera so redefined. There is very strong

support for monophyly of Macroheterocera sensu van Nieukerken et al., and for Mi-

mallonidae as the sister group to these. It might make sense to include Mimallonidae

in Macroheterocera. There is also very strong support for a sister group relationship

of Mimallonidae + Macroheterocera to Pyraloidea.

All of the superfamilies of Macroheterocera are sampled here, and relationships

among them, with one possible exception, are all strongly supported. The basal di-

vergence is between a clade consisting of Cimeliidae + (Doidae + Drepanidae) and

one containing the remaining four superfamilies; an identical or similar division,

albeit weakly supported, is seen in previous molecular studies. The first grouping

corroborates the recent incorporation of all three families into Drepanoidea sensu

novo [231], and increases the evidence for removal of Doa from Noctuoidea, despite

its possession of the two main noctuoid morphological synapomorphies. Within the
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clade consisting of Noctuoidea, Geometroidea, Bombycoidea and Lasiocampoidea,

the latter two are strongly grouped, and only the node uniting these with Ge-

ometroidea (bp=84%) has bootstrap support of less than 100%. The position of

Epicopeiidae, weakly supported in all previous studies, strongly corroborates their

transfer from Drepanoidea to Geometroidea [7,231]. The close relationship between

Geometroidea and Bombycoidea + Lasiocampidae suggested here may explain why

Epicopeiidae sometimes grouped (weakly) with the latter in earlier studies [244].

Although Papilionoidea, formerly grouped with the “big moths”, were not

included in this study, one can confidently predict, from earlier studies (Figure 7.1),

that they would fall among the “lower” Obtectomera. In Figure 7.2, this would

mean somewhere between the base of Obtectomera and the base of Pyraloidea +

Macroheterocera. This prediction has recently been strongly confirmed by studies

based on mitochondrial genomes [246, 256] and on rna-seq (A. Y. Kawahara, in

litt.), although the exact sister group of the butterflies will not be known until

sampling of the non-macroheteroceran superfamilies of Obtectomera is complete.

While prospects for resolving the Obtectomera sensu lato look promising, the

outlook is less bright in the “lower”, i.e. non-obtectomeran, Apoditrysia. In this tree

region only two nodes subtending multiple current or former superfamilies get boot-

strap support approaching conclusive levels (Figure 7.2). There is 99% bootstrap

support for a clade consisting of Cossoidea sensu stricto [245] plus Castniidae, for-

merly placed in Sesioidea [179,245]. If this grouping holds up under further rna-seq

sampling, it may be useful to redefine Cossoidea to conform to it. Such a definition

would re-exclude Sesiidae, included here by van Nieukerken et al. [231], for which
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no strong placement has been discovered. Within the putative Cossoidea sensu

novo, only a single inter-family relationship gets notable bootstrap support, namely,

the novel pairing of Castniidae with Dudgeonidae (bp=98%). The relationships

of the four cossid subfamilies sampled, to each other and to Castniidae + Dud-

geonidae, have weaker support (bp=71–81%). Elsewhere in the non-obtectomeran

Apoditrysia, no bootstrap value exceeds 59%. Phylogenetic relationships in the

Cossoidea-Zygaenoidea-Sesioidea complex will clearly need much further work.

Why are the “lower” Apoditrysia such a difficult phylogenetic problem, in

comparison to lepidopteran lineages of both greater and lesser age? Several com-

plementary explanations seem plausible. Cladogenesis might have been particularly

rapid at the base of Apoditrysia as compared to later on, resulting in especially short

internal branches. Alternatively, the rate of subsequent extinction might have been

high, reducing the taxon sample available for reconstructing rapid cladogenesis. Or,

these divergences might be harder to reconstruct simply because they are older than

those in Obtectomera, leaving more time for synapomorphies to be overwritten by

subsequent substitution. Increasing the gene sample might allow us to overcome

the first and third effects. To overcome the second effect, we would want to sample

taxa as densely as possible, but would face limits set by extinction. Fortunately, as

our results so far have shown, gene and taxon sampling are to some degree inter-

changeable; therefore, more gene sampling might help in this case as well. Thus,

further expanding the gene sample may be critical to further resolution of the lower

Apoditrysia, no matter why these lineages are so refractory to phylogenetics.

One immediate way to increase our gene sample would be to relax our severe
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initial interpretation of the PhyloTreePruner results, under which only genes for

which no evidence of paralogy was found were considered suitable for phylogenetic

analysis. Following Kocot et al. [280], one could recover some of the information

thereby lost by estimating bootstrap support for the individual gene trees and avoid-

ing pruning when support is weak. One could also include the partially incomplete

pruned gene trees, from which the apparent paralogs have been deleted, in phylogeny

calculations. While these measures might be useful, a potentially more profitable

approach in the long run would be to address the underlying problem that led

us to PhyloTreePruner in the first place. The Insecta Hmmer3-2 database was a

highly-useful starting point, but for two reasons it is not ideal for studies within Lep-

idoptera. First, it contains only the 1,579 genes that were identifiably orthologous

across six very divergent arthropod and annelid genomes. Comparisons restricted

to Lepidoptera would undoubtedly yield a much higher number of useful genes;

for example, the complete proteome of the diamondback moth (Yponomeutoidea:

Plutellidae: Plutella xylostella) is close to 15,000 genes [187]. Second, presumably

because most of the taxa on which the database is built are so divergent from Lep-

idoptera, many of its putative ortholog groups appear to include sequences that

are non-orthologous in Lepidoptera. Therefore, it would be useful to have a new

database of Lepidoptera-specific gene models for orthology determination in the

Apoditrysia. Such an effort could capitalize on a growing set of annotated lepi-

dopteran genomes and transcriptomes, which now includes multiple apoditrysians

as well as a member of the sister group to Apoditrysia [187,287–289].
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7.13 Summary and conclusions

This study explored the potential of next-generation sequencing to conclusively

resolve relationships among the superfamilies of advanced ditrysian Lepidoptera

(Apoditrysia), which were very weakly supported in previous nuclear gene studies.

We used rna-seq to generate 1,579 putatively orthologous gene sequences across

a taxonomically broad sample of 40 apoditrysians plus four outgroups, to which

we added two taxa using previously published data. Phylogenetic analysis of a 46-

taxon, 741-gene matrix, resulting from a strict filter that eliminated ortholog groups

containing any apparent paralogs, yielded dramatic overall increase in bootstrap

support for deeper nodes within Apoditrysia as compared to results from previ-

ous and concurrent 19-gene analyses. High support was restricted mainly to the

huge apoditrysian subclade Obtectomera broadly defined, in which 11 of 12 nodes

subtending multiple superfamilies had bootstrap support of 100%. The strongly-

supported nodes showed little conflict with groupings from previous studies, and

were little affected by changes in taxon sampling, suggesting that they reflect true

signal rather than artifacts of massive gene sampling. Additional taxon sampling

has the potential to definitively resolve obtectomeran superfamily relationships. In

contrast, strong support was seen at only 2 of 11 deeper nodes among the “lower”,

non-obtectomeran apoditrysians. These represent a much harder phylogenetic prob-

lem, for which further increase in gene and taxon sampling, together with improved

orthology assignments, offers one potential path to resolution. The following chapter

continues our lepidopteran systematics work along these lines.

189



RNA-Seq taxon
code

Read length (nt) Median no. reads
mapped to OG seqs

Median length of
OG seqs (nt)

Coverage per base

Arc 101 949 1,080 88.7

Cul 101 854 1,080 79.8

Cul2 101 898 1,071 84.7

Giv 101 651 942 69.8

Lag 101 641 1,026 63.1

Mar 101 497 894 56.1

Podo 101 1,532 1,110 139.4

Ppr 101 696 1,008 69.7

Prob 101 1,798 1,113 163.2

Sub 101 3,650 1,104 333.9

Vit 101 516 923 57

YP 101 766 1,047 73.9

Epi 101 653 888 74.3

Euc 101 282 915 31.1

Zyg 101 1,804 1,113 163.7

mean 101 1,079 1,021 103.2

Table 7.4: rna-seq “coverage” for 15 test taxa.
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Chapter 8: Can RNA-Seq resolve the rapid radiation of advanced

moths and butterflies (Hexapoda: Lepidoptera: Apodit-

rysia)? A follow-up study

This chapter is based on the following publication: Adam L. Bazinet, Michael

P. Cummings, Kim T. Mitter, and Charles W. Mitter. Can RNA-Seq resolve the

rapid radiation of advanced moths and butterflies (Hexapoda: Lepidoptera: Apodit-

rysia)? A follow-up study. In preparation.

8.1 Background and motivation

We could have simply continued to use the Insecta core-ortholog set from our

previous study (Chapter 7), but based on current estimates of the number of lepi-

dopteran genes (Figure 3.2; [187]), we thought we could recover many more ortholo-

gous genes from our transcript data — especially considering that our data matrices,

although already very large by current standards, only contained less than 1% of our

assembled transcriptome data. Thus, we decided to build a database using the com-

plement of protein-coding genes from several well-annotated lepidopteran genomes

that were previously sequenced (Bombyx mori [290], Danaus plexippus [289], Heli-
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conius melpomene [287], Plutella xylostella [187], and Manduca sexta [291]). In this

chapter, we discuss the creation of this database and the results of the lepidopteran

phylogenomic analyses we conducted that used this newly-created data resource.

8.2 Taxon sampling and taxon set design

The goal of this study was to assess the degree to which increased taxon sam-

pling along with use of a Lepidoptera-specific database could increase the support for

relationships among the superfamilies of Apoditrysia over that found in our previous

741-gene study (Chapter 7). Our 81 lepidopteran exemplars and one trichopteran

exemplar included five species with previously sequenced genomes, 10 species with

publicly-available transcriptomes that we reassembled and incorporated into our

analyses, and 67 species for which we sequenced transcriptomes de novo.

As the outgroup we used Philopotamus ludificatus, a trichopteran. We used

previously published genomes for five taxa: Bombyx mori [290], Danaus plex-

ippus [289], Heliconius melpomene [287], Plutella xylostella [187], and Manduca

sexta [291]. Additionally, we reassembled raw transcriptome sequence data from

three previously published studies for 10 taxa: Striacosta albicosta [179]; Micropterix

calthella and Philopotamus ludificatus [33]; and Pterodecta felderi, Nothus lunus,

Lantanophaga pusillidactyla, Notoplusia minuta, Anigraea sp., Manoba major, and

Lyssa zampa [25]. For the remaining 67 taxa, we generated transcriptomes de novo

by rna sequencing (rna-seq). Forty-four of these taxa were used in our previous

study (Chapter 7); classification of the 23 newly-sequenced taxa is given in Table
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Superfamily Family Subfamily Genus Species
RNA-Seq

taxon code

Alucitoidea Alucitidae Alucita huebneri Alu

Choreutoidea Choreutidae Brenthiinae Brenthia stimulans Bren

Choreutoidea Millieriidae Millieria dolosalis Mido

Cossoidea Cossidae Hypoptinae Hypopta sp. Hyp

Cossoidea Cossidae Metarbelinae Lebedodes ianrobertsoni Lr3

Cossoidea Cossidae Zeuzerinae Endoxyla encalypti End

Epermenioidea Epermeniidae Epermenia chaerophyllella Eper

Galacticoidea Galacticidae Homadaula anisocentra Hma

Gracillarioidea Douglasiidae Tinagma gaedikei Tgm

Palaephatoidea Palaephatidae Ptyssoptera sp. Ptys

Papilionoidea Pieridae Coliadinae Colias eurytheme Pie

Pterophoroidea Pterophoridae Agdistinae Agdistis americana Agd

Sesioidea Brachodidae Miscera basichrysa AK142

Tineoidea Dryadaulidae Dryadaula visaliella Dry

Tineoidea Meessiidae Eudarcia simulaticella Euds

Tineoidea Tineidae Tineinae Tineola bisselliella Tin3

Tischerioidea Tischeriidae gen. sp. Ts2

Tortricoidea Tortricidae Chlidanotinae Auratonota petalocrossa Aur

Yponomeutoidea Yponomeutidae Attevinae Atteva aurea Ata

Zygaenoidea Cyclotornidae Cyclotorna sp. ANIC6 Cycl

Zygaenoidea Epipyropidae Fulgoraecia exigua Ful

Zygaenoidea Epipyropidae Heteropsyche sp. Het

unplaced unplaced Heliocosma sp. ANIC1 Hcs

Table 8.1: Exemplars used for rna-seq and their distribution across the classification of
van Nieukerken et al. [231].
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8.1. All of the specimens we sequenced came from the atolep collection built by

the Assembling the Lepidoptera Tree of Life project (Leptree), and had been stored

in 100% ethanol at -80◦ C, some for more than 20 years.

In this study, some exploratory analyses used the set of 16 test taxa from our

previous study (Chapter 7); one comparative analysis used all 46 taxa from our

previous study; and the majority of analyses used the complete set of 82 taxa. (One

final analysis used a 23-taxon subset of the 82 taxa.) We compare our new results

primarily to those of our previous study (Chapter 7).

8.3 RNA-Seq data generation

Total rna was extracted using promega sv total rna isolation mini-kits. The

great majority of our specimens were adults; only four taxa were studied as larvae:

Galleria, Lymantria, Epipomponia, and Megalopyge (see Table S1 of Bazinet et

al. [86]). Species identifications were verified by comparison of coi sequences with

those in the Barcode of Life Data System [263]. For larger moths we used the

thorax and/or anterior part of the abdomen; for a few smaller ones we used the

entire body. rna extracts were submitted to the University of Maryland-Institute

for Bioscience and Biotechnology Research Sequencing Core. The quality of total

rna was assessed by capillary electrophoresis on an rna chip using an Agilent

Bioanalyzer 2100 system. rna preps of sufficient quality were subjected to poly-

A selection and indexed library construction for sequencing on an Illumina HiSeq

1000. Following Hittinger et al. [11] our libraries were left unnormalized so as to
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favor highly-expressed genes likely to be present in most species and life stages.

Libraries were either run four per lane, yielding about 110 million 100-bp paired-

end reads per taxon (44 taxa; Table S2 of Bazinet et al. [86]), or eight per lane,

yielding about 63 million 100-bp paired-end reads per taxon (23 taxa; Table 8.2).

Previously-published transcriptome libraries, which were either 100-bp single-end,

100-bp paired-end, or 150-bp paired-end, averaged about 37 million reads per taxon

(Table 8.3).

The Illumina reads for the 44 taxa used in the previous study (Chapter 7)

are available in the ncbi Sequence Read Archive as BioProject prjna222254; the

Illumina reads for the 23 newly-sequenced taxa have not yet been made available.

8.4 Sequence quality control and transcript assembly

Quality control of sequence reads and transcript assembly had previously been

performed for 44 of our taxa plus Striacosta (Chapter 7); thus, we performed quality

control and assembly for our 23 newly-generated transcriptomes and nine previously

published transcriptomes with the slightly updated methods described here.

We used the default Illumina HiSeq 1000 quality filter, which ensured that

at least 24 of the first 25 template cycles had a “Chastity” value greater than 0.6.

The Chastity value is a ratio between the highest intensity and the sum of the two

highest intensities. We discarded reads that did not pass the Chastity quality filter

(≈ 5–7% per sample; Table 8.2). Then we used autoadapt [292] (which in turn

calls fastqc [293] and cutadapt [294]) with default settings to detect and remove
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overrepresented sequences, as well as to trim and remove low-quality reads. About

58 million reads per taxon for our newly-generated transcript data (Table 8.2), and

about 33 million reads per taxon for previously-published transcript data (Table

8.3) were used as input to the assembly process.

De novo transcriptome assembly was performed using both Trinity (versions

r2014-04-13 and r2014-07-17; [44]) and trans-abyss (version 1.4.4; abyss version

1.5.2; [45, 266]). Assembly statistics such as numbers and length of transcripts, as

well as standard assembly metrics such as n50 (the length N for which 50% of all

bases are contained in contigs of length L < N) are given in Table S2 of Bazinet et

al. [86] and in Tables 8.2 and 8.3. A typical Trinity assembly required greater than

100 gb ram and finished in 24 to 96 hours using 16 processing cores. A typical

trans-abyss run required less than 4 gb ram and a single processor, finishing in

1–2 hours. The same was true for each constituent abyss run, of which there were

23 per sample (k ranged from 52 to 96 in steps of two). In general, Trinity used

more ram and produced fewer transcripts than trans-abyss, but it produced longer

transcripts (Table S2 of Bazinet et al. [86] and Tables 8.2 and 8.3). Combining the

Trinity and trans-abyss assemblies yielded a slightly more complete data matrix

than using either assembly by itself, so we used the combined assembly throughout

the workflow. We also found that recovery of mitochondrial genes (Section 8.5.2)

was significantly aided by including the trans-abyss assembly.
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Taxon Reads Failed Chastity After autoadapt
Transcript fragments Median TF length (nt) N50

Trinity Trans-ABySS Trinity Trans-ABySS Trinity Trans-ABySS

Agd 54,241,534 5.6% 50,652,716 37,649 161,065 439 159 1,438 930

Ata 59,644,204 5.5% 55,637,090 42,306 164,856 515 417 1,817 1,250

Cycl 63,959,982 5.5% 61,687,578 66,195 187,184 428 306 1,182 864

End 59,709,414 5.9% 55,390,312 39,456 168,366 422 186 1,244 725

Ful 59,004,712 6.4% 53,508,538 43,710 204,383 451 176 1,809 1,302

Hcs 61,154,138 5.5% 57,095,220 41,979 168,897 497 287 2,118 1,233

Tin3 60,715,492 5.4% 28,446,636 40,696 174,352 581 322 947 536

Ts2 52,103,346 6.3% 23,982,112 86,328 391,401 385 207 1,357 684

AK142 63,016,778 6.1% 58,456,282 349,543 1,213,686 326 201 500 850

Alu 67,256,716 5.6% 62,986,846 254,153 839,695 335 205 536 650

Aur 72,091,792 7.5% 65,917,352 49,640 253,159 409 162 1,042 509

Bren 78,048,610 7.2% 71,063,808 339,831 608,087 350 207 757 916

Dry 57,540,436 6.4% 53,149,010 100,745 305,698 371 205 1,503 1,741

Eper 58,285,538 7.0% 53,090,988 60,398 227,214 381 210 1,548 1,710

Euds 52,928,190 5.6% 49,465,074 76,663 170,687 429 877 1,676 2,451

Het 74,834,174 6.7% 68,820,760 187,648 711,123 394 228 1,215 1,352

Hma 62,863,690 7.5% 56,790,858 39,839 153,348 386 166 878 544

Hyp 64,960,278 7.5% 59,007,170 36,041 128,598 370 175 708 468

Lr3 70,730,128 7.5% 64,559,468 60,344 283,944 378 179 811 657

Mido 67,985,372 5.8% 63,384,530 588,913 1,608,565 346 203 660 521

Pie 79,784,432 7.1% 73,371,956 44,872 277,674 503 218 1,647 1,106

Ptys 56,743,320 6.3% 52,342,996 196,125 614,087 306 214 739 1,406

Tgm 52,932,672 6.2% 48,849,858 74,784 237,492 409 799 1,817 2,400

mean 63,066,737 6.4% 58,264,605 124,255 402,329 409 274 1,215 1,078

Table 8.2: Summary statistics for rna-seq reads and assemblies.

Taxon Reads Read length After autoadapt
Transcript fragments Median TF length (nt) N50

Trinity Trans-ABySS Trinity Trans-ABySS Trinity Trans-ABySS

Micropterix calthella 78,539,568 PE100 67,781,972 192,011 737,387 449 284 791 684

Philopotamus ludificatus 68,898,972 PE100 56,235,488 34,088 425,227 591 158 1,031 594

Pterodecta felderi 23,782,033 SE100 22,234,241 38,102 204,909 454 177 1,357 684

Nothus lunus 22,436,454 SE100 20,682,503 39,168 159,384 523 296 1,614 971

Lantanophaga pusillidactyla 23,149,096 SE100 21,506,159 38,438 269,188 483 299 1,370 647

Notoplusia minuta 24,890,722 PE150 24,486,070 64,411 245,092 406 224 1,140 505

Anigraea sp. 26,732,516 PE150 26,406,826 50,199 215,794 495 263 1,586 956

Manoba major 28,162,032 PE150 27,832,930 71,626 238,304 518 260 1,808 1,144

Lyssa zampa 32,486,672 PE150 31,384,338 52,940 204,086 476 404 1,841 1,310

mean 36,564,229 N/A 33,172,281 64,554 299,930 488 263 1,393 833

Table 8.3: Summary statistics for reassembled rna-seq data from Peters et al. [33] and Kawahara
and Breinholt [25].
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8.4.1 Reassembling previously-published transcriptomes

Some modifications to our assembly methods were necessary to reassemble

the Striacosta albicosta transcriptome [179], which are described in Section 7.5,

and similar modifications were necessary to reassemble single-end libraries from

Kawahara and Breinholt [25].

Comparative assembly statistics for Micropterix and Philopotamus, given in

Table 8.4, indicated that our Trinity assemblies were likely of greater overall quality

than the Newbler assemblies used in Peters et al. [33].

To assess the quality of our reassembled data taken from Kawahara and Brein-

holt [25], we used the Pterodecta taxon. Our Pterodecta Trinity assembly contained

fewer transcripts than the corresponding soapdevnovo-trans [295] assembly from

Kawahara and Breinholt [25] (38,102 vs. 83,540, respectively); however, our n50,

maximum contig size, and mean contig size were all significantly better (cf. Table

8.3 and Table S1 of Kawahara and Breinholt [25]), suggesting that our assembly

was less fragmented and possibly less redundant. To test this more definitively, we

used hamstr (version 13.2.2; [272]) and ran each Pterodecta assembly against the

moth+min-one-butterfly database (Section 8.5.1). The number of hit sequences

from the Trinity assembly (4,050) was comparable to the number of hits from the

soapdevnovo-trans assembly (4,001), as was the number of hits to unique ortholo-

gous groups (Trinity: 3,703; soapdevnovo-trans: 3,561). However, the total size of

the sequence hits was significantly better for our Trinity assembly (1059 kb vs. 736

kb), so we reprocessed the sequence data from Kawahara and Breinholt [25] using
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our quality control and assembly procedures.

8.5 Database construction

In this study, we decided to incorporate analyses that used both nuclear and

mitochondrial (mt) genes. The precedent for using nuclear and mt genes, variously,

to resolve lepidopteran phylogeny is well established [5,6,126,239,241,246,296]. Our

previous study (Chapter 7) only used nuclear genes; however, we thought it likely

that we also captured mt gene sequences in the course of rna sequencing, so we built

gene models of the 13 invertebrate protein-coding mt genes so we could search for

those sequences in our transcriptome data. We had in mind the fact that Timmer-

mans et al. [296] were unable to resolve the lower Apoditrysia using mitochondrial

data alone; however, we reasoned that even if we were similarly unsuccessful, the

analyses might at least provide some supporting information; and, due to our more

extensive taxon sampling, we would have even more definitively demonstrated the

infeasibility of mt data to resolve this problematic region of lepidopteran phylogeny.

Here we describe how we constructed both our nuclear and mt gene databases.

8.5.1 The “moth+min-one-butterfly” nuclear gene database

To begin building our Lepidoptera-specific nuclear gene database, we down-

loaded peptide and coding sequences for Bombyx mori, Heliconius melpomene, and

Danaus plexippus from Ensembl Metazoa, release 22 [297,298]. Providing all the pep-

tide, or “gene” sequence identifiers as input, we built up orthologous groups using the
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one2one, one2many, many2many, within species paralog, putative gene split,

and contiguous gene split homology relationships defined in Ensembl that in-

volved any two of these three taxa [299]. We required an orthologous group to con-

tain a Bombyx sequence and a minimum of one butterfly sequence (either Danaus or

Heliconius), which resulted in 7,042 orthologous groups. From Ensembl we retrieved

the “genetree alignment” corresponding to each orthologous group; from each gene-

tree alignment we extracted only the sequences belonging to the three Lepidoptera

species of interest, removed gaps, and realigned the amino acid sequences using the

linsi algorithm in mafft [276] and our custom lep62 substitution matrix (Ap-

pendix B). We built a preliminary moth+min-one-butterfly database for hamstr

(version 13.2.2; [272]) consisting of 7,042 phmms derived from the mafft align-

ments, and a blast database that contained the complete proteome of Bombyx,

our designated reference taxon as required by hamstr.

8.5.1.1 Alignment filtering

Upon visual inspection, we became concerned that some of the amino acid

alignments in the moth+min-one-butterfly database were suboptimal. To avoid

including suboptimal alignments in our data matrices, we used T-Coffee [300] to

calculate a similarity score for each alignment in the database. The median align-

ment similarity score was 81.6%; we decided to remove alignments (i.e., orthologous

groups) with a similarity score less than 70%, which roughly corresponded to the

lowest quartile of alignment similarity scores. This left 5,283 orthologous groups in
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the moth+min-one-butterfly database.

8.5.1.2 Adding Plutella and Manduca

At the time we performed this study, two additional Lepidoptera genomes were

available (Plutella xylostella and Manduca sexta), although not through Ensembl,

and we sought to include these two taxa in our nuclear gene database.

In the case of Plutella xylostella (the diamondback moth), two groups were

sequencing the genome independently. The Japanese group made their genome se-

quence available through konagabase [301], and the Chinese group made theirs

available through dbm-db [302]. The data from konagabase consisted of a pu-

tative gene set that was the result of combining their genome and transcriptome

gene annotations (32,800 sequences) with a putative “unknown” gene set (39,781

sequences). The data from dbm-db consisted of the coding sequence associated with

their genome-based gene predictions (18,073 sequences), together with all “unigenes”

from their transcriptome data (171,262 sequences). In order to select one of these

data resources, we combined the sequences belonging to each data resource (72,581

sequences for konagabase and 189,335 sequences for dbm-db) and ran each set of

sequences against the moth+min-one-butterfly hamstr database. We found that

the “representative” sequences (i.e., the sequences that were the best match to each

orthologous group in the database) were longer, on average, in the dbm-db data

than in the konagabase data, and also slightly more numerous; thus, we decided

to use only the dbm-db Plutella data going forward.
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The Manduca sexta (tobacco hornworm) genome data was available from Man-

duca Base [291] (retrieved late January 2014), and consisted of 27,633 transcripts

(cds regions extracted from the original genome/gff3 file using gffread).

To add Plutella and Manduca to the moth+min-one-butterfly database we

used hamstr, setting both the hmmsearch and the blast E-value cutoffs to 1e-10.

This yielded 9,739 hits in the Plutella data (4,809 unique orthologous groups),

and 5,593 hits in the Manduca data (4,576 unique orthologous groups). We stip-

ulated that in order to add a Plutella or Manduca hit sequence to an existing

moth+min-one-butterfly orthologous group, the sequence needed to be at least

half as long as the shortest sequence in the existing moth+min-one-butterfly or-

thologous group. Both the relatively stringent E-value and this minimum length

criterion were an attempt to keep short, potentially spuriously-matching sequences

out of the database.

After adding the Plutella and Manduca sequences, the orthologous groups in

the hamstr database were realigned de novo using mafft as before. Following

this, we used the T-Coffee similarity statistic to evaluate the new alignments. The

median alignment similarity score was 86.2%; once again, we removed alignments

with a similarity score less than 70% (131 alignments), leaving 5,152 orthologous

groups in the moth+min-one-butterfly database.
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8.5.2 The Lepidoptera mitochondrial gene database

We selected seven taxa that covered most of the major superfamilies of Apodit-

rysia (Table 8.5), and used these taxa to build the lep-mt-gene database.

We downloaded the mitochondrial genome from GenBank for each of the seven

taxa, parsed out the 13 protein-coding mt genes, and created an amino acid align-

ment for each gene using the linsi algorithm in mafft [276] and our custom lep62

substitution matrix (Appendix B). We built a preliminary lep-mt-gene database

for hamstr (version 13.2.2; [272]) consisting of 13 phmms derived from the mafft

alignments, and a blast database containing the complete proteome of Bombyx, our

designated reference taxon as required by hamstr, including its 13 protein-coding

mt genes.

8.6 Orthology determination

To infer orthology, we used hamstr (version 13.2.2; [272]), which in turn used

blastp [13], genewise [273], and hmmer [274] to search the combined assembly

transcript data for translated sequences that matched a set of previously-constructed

amino acid gene models. The gene models in our study were organized into two

databases: the moth+min-one-butterfly database of 5,152 nuclear genes, and the

lep-mt-gene database of 13 mt genes (Section 8.5).

In the first step of the hamstr procedure, substrings of assembled transcripts

(translated nucleotide sequences) that matched one of the gene models in the

database were provisionally assigned to the matching orthologous group. To re-
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duce the number of highly-divergent, potentially-paralogous sequences returned by

this initial search, we set the E-value cutoff defining a “hit” to 1e-05 (the hamstr

default was 1.0), and retained only the top-scoring quartile of hits. In the second

hamstr step, the provisional hits from the hmm search were compared to a “ref-

erence taxon” (Bombyx mori), and retained only if they survived a reciprocal best

blast hit test with the reference taxon. In our implementation, we substituted

fasta [303] for blast; we found that using fasta (specifically, the fasty program)

with our custom lep62 substitution matrix provided more discriminatory power

than using blast with blosum62 (Appendix B). We set the E-value cutoff for

the fasta search to 1e-05 (the hamstr default was 10.0). Once assigned to or-

thologous groups, amino acid sequences from our transcripts were aligned using the

addfragments option to mafft [276] and our custom lep62 substitution matrix

(Appendix B), in which procedure the Bombyx sequences were considered the refer-

ence alignment to which the transcript fragments were added. The resulting amino

acid alignments were then converted to the correct corresponding nucleotide align-

ments using a custom Perl script that substituted for each amino acid the proper

codon from the original coding sequence.

When running hamstr with the lep-mt-gene database, it was necessary to

change the genetic code to the invertebrate mitochondrial code in several places:

(1) in the translate.pl hamstr script; (2) in the call hamstr made to genewise;

and (3) in the call hamstr made to fasty (“-t 5” or “-t t5”; cf. fasta documen-

tation). In the course of making these modifications, we helped discover and fix two

bugs in hamstr — one having to do with a callout to the Unix sort command, and
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another having to do with sequence translation. These bugfixes are documented in

the release notes associated with hamstr version 13.2.2.

8.7 Data matrix construction and paralogy filtering

Our orthology determination pipeline often yields multiple sequences for a

particular taxon-locus combination, which can reflect the presence of multiple or-

thologs, heterozygosity, alternatively-spliced transcripts, paralogy (including inpar-

alogs [182]), and sequencing errors — among other possibilities. We evaluated two

different approaches for reducing this variation to a single sequence, as required

for phylogenetic analysis, which we term “representative” and “consensus”;

these are described in more detail in Section 7.8 and Appendix A. For the majority

of analyses in this study we opted to use only the consensus procedure; in pre-

liminary analyses we noticed consensus slightly outperformed representative,

and if we had continued to use both procedures we would have doubled the already

substantial computational requirements of the phylogenetic analyses.

To screen for possible evidence of paralogy in the moth+min-one-butterfly

database of 5,152 nuclear genes, we constructed a maximum likelihood (ml) gene

tree (Section 8.9.1) for each orthologous group using all matching sequences from

our 16-taxon test set, and provided the gene trees as input to PhyloTreePruner [280].

If the sequences for a particular taxon formed a polyphyletic group, the program

pruned the gene tree to the maximal subtree in which the non-polyphyly criterion

was met for all taxa. Gene trees were only constructed for 4,862 of the 5,152 ortholo-
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gous groups (≈ 94%), as the others had fewer than four sequences. PhyloTreePruner

pruned 1,052 of the 4,862 gene trees (≈ 22%) to some extent. As in the previous

study (Chapter 7), we took a very conservative action based on these results, using

for all subsequent phylogenetic analyses only the 3,810 genes in which no evidence of

paralogy was found in the test taxa. Following application of the paralogy filter, the

3,810 putative ortholog alignments were concatenated, adding gaps for missing data

as necessary using a custom Perl script. For the majority of phylogenetic analyses,

the nucleotide data was recoded with degen1 (version 1.4; [281]); for mt gene anal-

yses, degen1 was applied using the invertebrate mitochondrial genetic code. (See

Section 7.8 for more information about degen1 recoding.) Unaltered nucleotide

data is referred to with the abbreviation “nt123”. For the majority of analyses,

sites not represented by sequence data in at least four taxa were removed. For two

analyses, we used only second codon positions (designated “nt2”), and removed

sites not represented by sequence data in at least 80% or 90% of taxa. For the final

23-taxon analysis, we filtered each ortholog alignment with pygot [304], and then

with guidance2 [305].

8.8 Data matrix properties

Statistics for the paralogy-filtered matrices of 3,810 nuclear genes are given in

Tables 8.6 and 8.7, and are given similarly for the matrices of 13 protein-coding mt

genes in Table 8.8.
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Taxon Reads After filtering
Contigs Large contigs Average large

Largest contig
≥ 150 bp > 500 bp contig size

Micropterix calthella (Newbler) 78,539,568 19,182,692 172,391 41,673 752 5,326

Micropterix calthella (Trinity) 78,539,568 67,781,972 192,011 86,304 967 10,772

Philopotamus ludificatus (Newbler) 68,898,972 27,099,685 29,294 10,959 885 3,348

Philopotamus ludificatus (Trinity) 68,898,972 56,235,488 34,088 19,820 1,064 10,796

Table 8.4: Comparative assembly statistics for Micropterix and Philopotamus, modeled after Table
S2 of Peters et al. [33]. Newbler assembly statistics were taken from Table S2 of Peters et al. [33].

Superfamily Exemplar GenBank accession

Bombycoidea Bombyx mori NC 002355

Gracillarioidea Leucoptera malifoliella NC 018547

Noctuoidea Helicoverpa armigera NC 014668

Papilionoidea Pieris rapae NC 015895

Pyraloidea Ostrinia furnacalis NC 003368

Tortricoidea Cydia pomonella NC 020003

Yponomeutoidea Plutella xylostella JF911819

Table 8.5: The seven taxa represented in the Lepidoptera mt gene database.

82 taxa, 3,810 nuclear genes

nt123 degen1 nt2, 80% nt2, 90%

number of nucleotide positions 7,852,266 4,653,957 671,539 412,265

number of non-gap chars in alignment 254,642,214 250,386,693 50,184,945 32,118,970

matrix completeness (nt present ÷ pos-
sible nt)

39.5% 65.6% 91.1% 95.0%

percent ambiguous nt (non-gap, non-
A/C/G/T chars)

0.6% 37.5% 0.2% 0.2%

GARLI memory requirement (in MB) 83646 64349 8625 4835

Table 8.6: Size and completeness of aligned 82-taxon nuclear gene data matrices from
rna-seq. All nuclear matrices were constructed using the consensus procedure.

207



3,810 nuclear genes

46 taxa 23 taxa 16 taxa

degen1 degen1 degen1 degen1, 100%

number of nucleotide positions 4,477,332 4,225,176 4,042,908 1,183,539

number of non-gap chars in alignment 148,512,429 72,915,234 50,019,603 18,936,624

matrix completeness (nt present ÷
possible nt)

72.1% 75.0% 77.3% 100.0%

percent ambiguous nt (non-gap, non-
A/C/G/T chars)

37.5% 39.9% 37.5% 37.3%

GARLI memory requirement (in MB) 27720 10329 4692 829

Table 8.7: Size and completeness of aligned nuclear gene data matrices from rna-seq.
All nuclear matrices were constructed using the consensus procedure.

13 protein-coding mt genes

82 taxa 16 taxa

degen1 nt1231 degen1 degen1, rep. nt1231, rep.

number of nucleotide positions 11,175 11,967 10,944 10,944 11,328

number of non-gap chars in align-
ment

829,185 830,220 165,528 161,784 162,246

matrix completeness (nt present ÷
possible nt)

90.5% 84.6% 94.5% 92.4% 89.5%

percent ambiguous nt (non-gap,
non-A/C/G/T chars)

42.8% 6.7% 44.7% 38.3% 0.04%

GARLI memory requirement (in
MB)

180 205 21 16 22

1nt123 matrices were for use with a codon model, so no columns were removed.

Table 8.8: Size and completeness of aligned mt gene data matrices from rna-seq. Where
given, “rep.” indicates the matrix was constructed using the representative procedure;
all other matrices were constructed using the consensus procedure.
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8.9 Phylogenetic analysis

8.9.1 Maximum likelihood phylogenetic analysis

Maximum likelihood phylogenetic analysis used garli (Genetic Algorithm for

Rapid Likelihood Inference; versions 2.0 and 2.1; [2]) and grid computing [48,223] via

a web service at molecularevolution.org [53] based on tools developed by Bazinet

et al. [284] that include post-processing with dendropy [208], R [285], and custom

Perl scripts. For the nuclear gene analyses we used a gtr+i+g nucleotide model;

for the mt gene analyses we used both a gtr+i+g nucleotide model, and a codon

model with the following settings: ratematrix=6rate; statefrequencies=f1x4;

ratehetmodel=none; numratecats=1; invariantsites=none; and

geneticcode=invertmito. We used garli default settings, including stepwise ad-

dition starting trees, except that we lowered the number of successive generations

yielding no improvement in likelihood score that prompts termination

(genthreshfortopoterm=5000), as we found that this saved time and yielded com-

parable results. In some cases we used a constraint tree as a starting tree, and for

these runs we also enforced this constraint using a constraint file specifically format-

ted for garli. Each best tree was selected from between 10 and 100 garli search

replicates, while bootstrap analyses consisted of 40 to 2,000 replicates. Insufficient

search effort during bootstrapping has been shown to artificially depress bootstrap

support (bp) values [7]. A rough guide to the effort needed was provided by our

initial ml searches: if the best tree topology was found only rarely, this indicated
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that multiple search replicates per bootstrap replicate might be helpful. Thus, for

data sets that were not too computationally intensive, we ran five search replicates

per bootstrap replicate (instead of just one). We used DendroPy [208] to generate

a 50% majority-rule bootstrap consensus tree, as well as to plot bp values onto the

best tree.

8.9.1.1 Computational requirements and strategies

A substantial amount of computation was required to complete the maximum

likelihood analyses in this study. Memory requirements ranged from 16 mb for the

smallest concatenated analysis, to 64,349 mb for the largest concatenated analysis

(Tables 8.6, 8.7, and 8.8). Each search replicate required anywhere from a few

minutes to several days of runtime.

The phylogenetic analyses were completed using a variety of computational

resources. For analyses that required a significant amount of runtime, and a small

to intermediate amount of memory, we used the boinc volunteer computing plat-

form [50] through our boinc project (http://boinc.umiacs.umd.edu). For analy-

ses that required a large amount of memory, we used dedicated computing resources

available in the Center for Bioinformatics and Computational Biology at the Uni-

versity of Maryland, College Park. For the largest memory analyses, we used the

Deepthought II computing cluster at the University of Maryland, College Park.

Analyses that used a large amount of memory frequently occupied an entire multi-

core compute node; thus, for these analyses we used the openmp [306] version of
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garli so that we could use all of the cores on the compute node simultaneously,

which helped the jobs complete significantly more quickly.

As the large-memory analyses required the use of a queuing system, jobs faced

specific limits on runtime and memory usage, competition from other users, and gen-

eral resource consumption limits that made them challenging to complete. Thus,

we devised a scheme using features of garli version 2.1 that divided long-running

analyses into shorter jobs that could be scheduled more quickly and efficiently, and

more of which could run in parallel. This scheme, which was similar to the one

described in Chapter 6, used the garli checkpointing feature along with the config-

uration settings workphasedivision=1 and stoptime to cause a garli analysis to

be divided into three parts: initial optimization (≈ 5% of overall runtime), the main

work loop (≈ 90% of overall runtime), and final optimization (≈ 5% of overall run-

time). The main loop was further divided into equal-length jobs whose maximum

length was equal to stoptime. In this way, the maximum runtime of most jobs was

explicitly controlled, and analyses made progress by restarting from periodic check-

points. This scheme, which required a relatively complex organizational structure

and management of a large number of files, job submissions, and job cancellations

was orchestrated with custom Perl scripts that were developed for use with both

the torque [307] and slurm [308] queuing systems.
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8.9.2 Gene tree summary methods

Short internodes in the lepidopteran phylogeny, possibly the result of adaptive

radiations, may be difficult to resolve with traditional approaches such as data

concatenation due to the confounding effect incomplete lineage sorting (ils) may

have on phylogenetic signal. Newer methods, variously termed “gene tree/species

tree” or simply “species tree” methods, attempt to adequately account for ils by

incorporating it into their analysis model, and thus may recover robustly-supported

species trees in cases where traditional methods would not. Species tree methods

may be broadly divided into two categories: “gene tree summary” methods, which

reconcile a set of gene trees that have been previously computed independently into

a single species tree [309]; and “joint estimation” methods, which estimate gene trees

and the species tree simultaneously [310]. Joint estimation methods are known to

be computationally prohibitive for the numbers of genes and taxa we examined in

our study [311]; thus, we focused our attention exclusively on gene tree summary

methods.

In our study, we used the following gene tree summary methods: mp-est

(version 1.4; [312]), njst (phybase version 1.3; [313]), rtc [314], star (phybase ver-

sion 1.3; [315]), and steac (phybase version 1.3; [315]). As input, these methods

were provided the 3,810 gene trees previously computed with garli (settings for

garli analyses are given in Section 8.9.1). The gene trees either resulted from a

best tree search, in which case two search replicates were performed and the tree

with the greater likelihood was used; or they resulted from a bootstrap analysis in
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which a total of 100 bootstrap replicates were performed. As explained in Mirarab

et al. [309], gene tree summary methods can be used with a single maximum like-

lihood (ml) tree estimate for each gene (“bestml”), or with a set of the ml gene

trees estimated for the bootstrap replicates of each gene (“multilocus bootstrap”, or

“mlbs”). Using the terminology and methodology from Mirarab et al. [309], we cal-

culated both bestml and mlbs trees using each of the gene tree summary methods.

With mp-est, the bestml tree we used was the best tree returned from 10 separate

runs of the program; the other methods were deterministic and required only one

run. The largest mp-est analyses took several hours of runtime and required use

of torque [307]; all other gene tree summary programs required only minutes to

execute. We plotted bootstrap support (bp) values onto the bestml tree using Den-

droPy [208], and we computed an extended majority-rule (emr) consensus of the

100 mlbs trees using Rphylip [316].

8.9.3 Quartet methods

We performed a quartets-based analysis using the svdquartets [317] method.

svdquartets computes a score based on singular value decomposition of a matrix

of site pattern frequencies corresponding to a split on a phylogenetic tree. The

quartet scores can be used to select the best-supported topology for quartets of

taxa, which in turn can be used to infer the species phylogeny using quartet methods.

The entire procedure was recently implemented in paup* (version 4.0a141; [195]),

which we used to conduct this analysis. We evaluated all possible quartets, and
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ran 100 bootstrap replicates. Due to relatively large memory and computational

requirements, we ran this analysis on the Deepthought II computing cluster at the

University of Maryland, College Park.

8.10 Phylogenetic results

Our phylogenetic results included seven concatenated nuclear gene analyses

(Section 8.10.1.1), five concatenated protein-coding mitochondrial gene analyses

(Section 8.10.1.2), seven gene tree summary analyses (Section 8.10.2), and one

quartets-based analysis (Section 8.10.3). A final 23-taxon concatenated nuclear

gene analysis is presented in Section 8.10.4.

8.10.1 Concatenated-gene phylogenetic results

8.10.1.1 Nuclear gene analyses

16-taxon nuclear gene analyses

We ran two 3,810-nuclear gene garli analyses using the 16-taxon test set (see

Table 8.7 for data matrix properties); the analyses had the following combinations of

attributes: (1) degen1, consensus, nucleotide model; and (2) degen1, consensus,

nucleotide model, 100%-complete.

The phylogenetic result for the full data matrix analysis (Figure 8.1) was based

on 93 best tree search replicates and 185 bootstrap replicates (five search replicates

per bootstrap replicate). To provide an idea of the amount of computation this

represented, the 185 bootstrap replicates alone would have taken over three years
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to compute had they executed sequentially on a single processor. This result was

fairly positive: as compared to the 16-taxon, 741-gene result (Figure 7.7), there was

a significant increase in bootstrap support at several nodes. The two topologies

differed in a few places.

The result for the 100%-complete data matrix analysis (Figure 8.1) was

based on 66 best tree search replicates and 210 bootstrap replicates (five search

replicates per bootstrap replicate). The memory requirement for this analysis was

much reduced as compared to the full matrix analysis, so we obtained the results

more quickly. We did not observe a significant change in bp values, though bp

values for a couple of deeper nodes decreased a small amount; this drop in support

was consistent with the effect of data reduction observed in the Kawahara and

Breinholt study [25]. The topology changed somewhat, relative to that of the

previous analysis; the placement of Hypoptinae varied, and Epipyropidae grouped

with Sesiinae/Paranthreninae, albeit now with bp=72% instead of bp=100%.

46-taxon nuclear gene analysis

We ran one 3,810-nuclear gene garli analysis using the 46 taxa from the previous

study (Chapter 7) (see Table 8.7 for data matrix properties); the analysis had the

following combination of attributes: degen1, consensus, nucleotide model. The

purpose of this analysis was to act as an intermediate point of comparison between

the 46-taxon, 741-gene analysis (Figure 7.2) and the 82-taxon, 3,810-gene analyses

(presented in the following section).

The 46-taxon, 3,810-gene phylogenetic result (Figure 8.2) was based on 10
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Figure 8.1: Results of the 16-taxon, 3,810 concatenated nuclear gene
analyses. Bootstrap support values for the full matrix analysis are shown
first, followed by bp values for the 100%-complete matrix analysis if they
differed. “na” indicates the node was not present in the 100%-complete
matrix analysis.
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best tree search replicates and 100 bootstrap replicates. Comparing the 46-taxon,

741-gene analysis result (Figure 7.2) to the 3,810-gene result (Figure 8.2), we

made the following observations: (1) all nodes with bp=100% in the 741-gene

analysis were retained in the new analysis; (2) the clade consisting of Epicopeia

hainseii (“Epc3”) through Bombyx mori increased to bp=100%, from bp=86%;

(3) several nodes increased from weakly supported to less weakly supported;

(4) several nodes decreased markedly in support; and (5) six new nodes appeared,

with bp ranging from 23% to 80%. Overall, the large increase in gene number

yielded only one additional bp=100% node, while producing approximately equal

numbers of increases and decreases in more weakly-supported nodes. The total

number of nodes with weak bootstrap values (bp=60% and below) was 6/45 for

741 genes, and 10/45 for 3,810 genes; we were surprised that the number of weak

nodes was greater in the result based on the larger data matrix, because gen-

erally speaking, one hopes that additional information will help to increase support.

82-taxon nuclear gene analyses

We ran four 3,810-nuclear gene garli analyses using all 82 taxa (see Table 8.6 for

data matrix properties); the analyses had the following combinations of attributes:

(1) degen1, consensus, nucleotide model, constrained; (2) nt2, consensus,

nucleotide model, 80%-complete, constrained; (3) nt2, consensus, nucleotide

model, 90%-complete, constrained; and (4) nt123, consensus, nucleotide model,

constrained, partitioned by codon position.

These analyses used a constraint tree (Figure 8.3), as the relationships of
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Figure 8.2: Result of the 46-taxon, 3,810 concatenated nuclear gene analysis.
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some taxa were already well established and did not need to be inferred again. The

constraint tree was used both as a topological constraint and as a starting tree with

polytomies randomly resolved.

The phylogenetic result for the degen1, full-matrix analysis (Figure 8.4) was

based on 10 best tree search replicates and 100 bootstrap replicates. Comparing

the previous 46-taxon, 3,810-gene analysis result (Figure 8.2) to the 82-taxon result

(Figure 8.4), we made the following observations: (1) overall, the addition of 36

more taxa resulted in lower bootstrap support; (2) for 46 taxa, the fraction of nodes

with bp=60% or less was 7/45 (0.16); and (3) for 82 taxa, the fraction of nodes with

bp=60% or less was 26/81 (0.32). Thus, by nearly doubling the number of taxa, we

doubled the proportion of weakly-supported nodes. A particularly notable tree re-

gion showing this effect is the “lower Obtectomera”, a clade consisting of Emmelina

monodactyla (“Emm”) through Antaeotricha schlaegeri (“Ant”) (seven superfami-

lies including Gelechioidea, Pterophoroidea, Papilionoidea, and others). With 46

taxa, the relationships among the three included superfamilies had bp=100%; with

82 taxa, none of the relationships among the seven included superfamilies reached

bp=60%, which was surprising.

Among the always-problematic lower Apoditrysia, we did observe bp=97%

for the placement of Brachodidae, a newly-added family represented by Miscera

basichrysa (“AK142”); we retained, at bp=83%, the group that we called “Cossoidea

sensu novo” in the previous study (Chapter 7); and we retained the grouping of

Archaeoses polygrapha (“Arc”) and Synemon plana (“Cul”) at bp=77%. Otherwise

in this tree region, however, topology shifted a fair amount from previous results,
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gene analyses.
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and bootstrap values were low.

Finding lower support with greater taxon sampling is something one might

expect, other things being equal, in smaller data sets, but we did not necessarily

expect to find that here. We compared likelihood scores between constrained and

unconstrained best tree searches — 10 each — and they overlapped extensively,

suggesting that we did not introduce artifacts with our constraint.

The phylogenetic result for the nt2, 82-taxon, 3,810-nuclear gene, 80%-

complete analysis was based on 15 best tree search replicates and 111 bootstrap

replicates; the 90%-complete analysis result was based on eight best tree search

replicates and 145 bootstrap replicates. These results were comparable to those

from the degen1 analysis, including the fraction of nodes with weak bootstrap val-

ues.

The phylogenetic result for the nt123, 82-taxon, 3,810-nuclear gene, parti-

tioned by codon position analysis was based on 10 best tree search replicates and

38 bootstrap replicates. This result had slightly better bootstrap values than the

degen1 and nt2 analyses, but overall was fairly comparable.

8.10.1.2 Mitochondrial protein-coding gene analyses

16-taxon mt gene analyses

We ran three mt gene garli analyses using the 16-taxon test set (see Table 8.8

for data matrix properties); the analyses had the following combinations of at-

tributes: (1) degen1, consensus, nucleotide model; (2) degen1, representative,
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nucleotide model; and (3) nt123, representative, codon model. We ran 100

best tree searches and 1,000 bootstrap replicates. The searches finished quickly

and were relatively “easy” according to our search statistic (Section 4.5.1). The

groupings returned were not similar to those we had grown accustomed to seeing

from nuclear gene analyses, and the bootstrap values were poor (Figure 8.5). We

were not surprised that mt data on its own failed to resolve this problematic region

of the lepidopteran phylogeny.

82-taxon mt gene analyses

We initially ran two protein-coding mt gene garli analyses using all 82 taxa (see

Table 8.8 for data matrix properties); the analyses had the following combinations

of attributes: (1) degen1, consensus, nucleotide model; and (2) nt123, consen-

sus, codon model. We used the garli web service (Chapter 4) to perform an

adaptive best tree search and 2,000 bootstrap replicates for each analysis. The

results for both the nucleotide and codon model analyses were similar (Figure 8.5):

the trees, overall, had fairly weak bootstrap support, although there was good

support for a couple of relatively deep nodes and for a handful of relatively shallow

groupings. Again, we were not surprised that mt data on its own failed to resolve

this problematic region of the lepidopteran phylogeny.

We noticed that two taxa, Micropterix calthella and Philopotamus ludificatus,

had significantly less data than other taxa (the number of non-gap characters in these

two sequences was 3,846 and 7,794, respectively, whereas the average number of non-

gap characters for other taxa in these alignments was over 10,000 characters). We
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hypothesized that the presence of these taxa might be depressing bootstrap support,

so we removed these two taxa and repeated the degen1 nucleotide model analysis.

On the whole, we observed a small but positive effect on bp values; in particular,

there was now strong support for one additional relatively deep split. The overall

result was not significantly changed, however.

8.10.2 Gene tree summary results

8.10.2.1 16-taxon gene tree summary tests

To test the various gene tree summary methods, we computed gene trees us-

ing garli for the 3,810 16-taxon nuclear gene, post-consensus nt123 alignments;

thus, each alignment had at most 16 sequences, which made the downstream gene

tree summary analyses computationally tractable. Another option would have been

to use the pre-consensus alignments, but aside from the fact that these analyses

would have been difficult to complete because of scaling issues associated with large

numbers of sequences, the additional sequences would probably not have been help-

ful: the 3,810 orthologous groups had already passed the PhyloTreePruner filter,

and thus multiple sequences per taxon were already guaranteed to be monophyletic.

These extra sequences would therefore not have been likely to contribute much, if

any, additional information to the gene tree reconciliation process.

Each gene tree was rooted by an outgroup (Yponomeuta multipunctella, for

the majority of alignments; if Yponomeuta did not exist, then Bombyx mori was

used), and polytomies were arbitrarily resolved. These steps were accomplished
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using DendroPy [208].

We computed a bestml tree using mp-est [312], njst [313], rtc [314],

star [315], and steac [315]. The star tree matched the topologies from con-

catenation quite well with only a couple of minor differences. The steac tree was

also quite similar. The mp-est, njst, and rtc tree topologies, on the other hand,

were significantly different from the topologies from concatenation.

We also computed 100 mlbs trees using mp-est, star, steac, and njst.

Thereafter, we plotted bootstrap support (bp) values onto the bestml tree, and we

also computed an extended majority-rule (emr) consensus of the 100 mlbs trees.

We found that mp-est and star produced the highest bp values, so these methods

seemed the most promising.

8.10.2.2 82-taxon gene tree summary analyses

As before, we used garli to compute gene trees for the 3,810 82-taxon nu-

clear gene, post-consensus nt123 alignments; thus, each alignment had at most

82 sequences.

Each gene tree was rooted by an outgroup in the following order of prefer-

ence (when the outgroup taxon was present): Philopotamus ludificatus, Micropterix

calthella, Phymatopus californicus (“Phm”), Palaephatus luteolus (“Pal”), Ptys-

soptera sp. (“Ptys”), Tischerioidea (“Ts2”), Eudarcia simulaticella (“Euds”), Thyri-

dopteryx ephemeraeformis (“Tep2”), Dryadaula sp. (“Dry”), Tineola bisselliella

(“Tin3”), Atteva aurea (“Ata”), Yponomeuta multipunctella (“Yp”), and Plutella
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xylostella. Only 14 of the 3,810 gene trees did not contain one of these outgroup

taxa; in these cases the trees were midpoint-rooted. In addition, polytomies were ar-

bitrarily resolved for all trees. These steps were accomplished using DendroPy [208].

Based on the exploratory 16-taxon results (Section 8.10.2.1), we decided only

to perform mp-est and star analyses. With each method we computed a bestml

tree and 100 mlbs trees. We plotted bootstrap support (bp) values onto the bestml

tree, and we also computed an extended majority-rule (emr) consensus of the 100

mlbs trees.

The star trees had somewhat stronger bootstrap support than the trees from

concatenation, with only 12/81 nodes having bp < 60% (Figure 8.7). However,

some parts of the tree had much weaker support than the trees from concatenation;

e.g., the backbone within Obtectomera. A few groupings were very surprising given

all evidence to date, particularly the grouping of Gelechioidea with Tortridicidae,

Immidae and others thought to be lower Ditrysia.

The mp-est trees resembled those from the star method. As in the star

trees, 12/81 nodes were weakly supported, in contrast to > 20 nodes for the trees

from concatenation. As in the star trees, some parts of the tree had much weaker

support than the trees from concatenation; e.g., the backbone within Obtectomera.

Once again there were a few groupings that were very surprising given all evidence

to date, particularly the exclusion of Pterophoridae from Obtectomera. In addition,

bootstrap support was surprisingly weak for some superfamilies, such as Bomby-

coidea and Pterophoridae.
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Figure 8.7: Result of the 82-taxon, 3,810 nuclear gene star gene tree
summary analysis.
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8.10.3 SVDquartets results

We analyzed the 82-taxon, 3,810-nuclear gene nt123 matrix using the imple-

mentation of svdquartets in paup* (see Table 8.6 for data matrix properties). We

analyzed all possible taxon quartets, and performed 100 bootstrap replicates. The

constraint tree was not applied to this analysis because this option was not yet

supported in paup*.

The overall strength of the svdquartets tree resolution (Figure 8.8) was in-

termediate between that of the previous 82-taxon concatenation analyses, and the

82-taxon gene tree summary analyses. The total number of weakly-supported nodes

(bp < 60%) was 19 for the svdquartets tree; the same number for the previous gene

tree summary analyses was 12, and for the degen1 concatenated analysis, it was 24.

As seen with the star tree previously (Figure 8.7), some parts of the

svdquartets tree (Figure 8.8) had much weaker support than corresponding parts in

the trees built from concatenated data sets (e.g., the backbone within Obtectomera).

Furthermore, to an even greater extent than the star tree, there were groupings that

would be very surprising given all previous evidence to date, including groups that

disagreed with the constraint tree that we used for the concatenated analyses. Ex-

amples included non-monophyly of the superfamilies Pyraloidea and Geometroidea,

and of the major group Obtectomera.
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Figure 8.8: Result of the 82-taxon, 3,810 nuclear gene svdquartets analysis.
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8.10.4 23-taxon nuclear gene analysis

Up to this point, none of the analysis results showed a clear improvement over

the results from the previous study (Chapter 7). To test new methodologies more

rapidly, we created a 23-taxon subset of the 82 taxa that adequately represented

the regions of the phylogeny that were still not well resolved. We ran one 3,810-

nuclear gene garli analysis using the 23-taxon data set (see Table 8.7 for data

matrix properties); novel to this analysis, we filtered the individual orthologous

group alignments with pygot [304] and guidance2 [305] to remove dubiously-

aligned regions. The analysis had the following combination of attributes: degen1,

consensus, nucleotide model.

The 23-taxon, 3,810-gene phylogenetic result (Figure 8.9) was based on 10 best

tree search replicates and 40 bootstrap replicates.

The majority of the tree was very strongly supported, probably owing to the

alignment filtering procedures that were used.

8.11 Summary and conclusions

This study explored the potential of rna sequencing to conclusively resolve

relationships among the superfamilies of advanced ditrysian Lepidoptera (Apodit-

rysia). The problem remained mostly unresolved despite increased taxon sampling,

use of Lepidoptera-specific databases for orthology determination, and application

of a variety of phylogenetic analysis methods that made heavy use of our advanced

computational infrastructure. One recent result that used a more nimble taxon set
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Figure 8.9: Result of the 23-taxon, 3,810 concatenated nuclear gene
degen1 analysis.
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and some new alignment filtering procedures did show promise (Section 8.10.4). We

are hopeful that this methodology also works well when applied to the full 82-taxon

data set. We are also investigating the use of other maximum likelihood phylogenetic

inference programs such as raxml [318].
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Chapter 9: Identifying insect endosymbiont sequences in host-

derived RNA-Seq data

9.1 Background

The goal of this study was to putatively identify endosymbiont sequences

present in rna-seq data derived from insect hosts. If successful, one might even-

tually use such data to analyze patterns of host-parasite coevolution, which might

involve co-speciation, host-switching, host range expansion or contraction, or host

biogeography more generally. Initially we focused our search on Microsporidia, a

fungal parasite, and then expanded our search to include some bacterial endosym-

bionts.

9.1.1 Microsporidia

Microsporidia are unicellular fungal parasites belonging to the phylum Mi-

crospora. They are spore-forming, obligate, intracellular parasites that attack both

vertebrates and invertebrates; in particular, they are often found to infect insects,

fish, and mammals. Microsporidia are widespread throughout nature with over 1,200

identified species, several of which are known to infect humans with compromised

235



immune systems. Of particular interest to us, however, is that Microsporidia species

are known to have an endosymbiotic relationship with Lepidoptera (an insect order

comprising moths and butterflies), a group for which we had already acquired and

analyzed a substantial amount of rna-seq data (Chapters 7 and 8).

9.1.2 Bacterial endosymbionts

A considerable proportion of insect species (and indeed, arthropods more gen-

erally) are infected with bacterial secondary symbionts [319]. In this study, we

searched transcriptome data from insect hosts for evidence supporting the presence

of the following bacterial endosymbionts: Arsenophonus, Blochmannia, Buchnera,

Cardinium, Rickettsia, Spiroplasma, and Wolbachia.

9.2 Methods

9.2.1 Insect transcriptome data

Our query data consisted of 98 transcriptome data sets generated via rna

sequencing (rna-seq). The majority of host taxa were from the order Lep-

idoptera, but also included 16 additional insect orders (Coleoptera, Diplura,

Diptera, Hemiptera, Homoptera, Hymenoptera, Mecoptera, Megaloptera, Neu-

roptera, Orthoptera, Phasmatodea, Phthiraptera, Raphidioptera, Siphonaptera,

Strepsiptera, and Trichoptera). Our group generated many of the rna-seq sam-

ples de novo (Tables 7.1 and 8.1); other samples were obtained from other studies

and projects [25,30,33,179] (Tables 8.3, 9.1, and 9.2). All samples were put through
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our most recent quality control and assembly pipeline (Section 8.4); for this study,

we used only the Trinity [44] assembly (except in the case of Striacosta albicosta,

for which we also used the trans-abyss [45, 266] assembly). Summary statistics

for publicly-available transcriptome data reassembled specifically for this study are

shown in Tables 9.1 and 9.2. We note that many more publicly-available transcrip-

tome data sets remain available to be analyzed.

9.2.2 Sequence database construction

We downloaded all protein records for Microsporidia from UniProt [320], and

Microsporidia sequence cluster data from UniRef [321] at the minimum 50% iden-

tity level, which resulted in 46,550 microsporidian sequences distributed among

28,436 clusters (June 2014). (There were 20,585 clusters that contained only one

microsporidian sequence; we call these “singleton clusters”, or “singletons”.) We

removed all non-microsporidian sequences from the clusters. These steps were ac-

complished using a combination of the UniProt web site (uniprot.org), custom

Perl scripts, and ncbi E-utilities [322].

We downloaded all protein records for Lepidoptera from UniProt (216,552

sequences; June 2014) and combined these with the 46,550 previously re-

trieved microsporidian sequences to construct a Lepidoptera/Microsporidia (i.e.,

host/endosymbiont) sequence database. We used this database with the fasty pro-

gram from the fasta package [303] to screen transcriptomes from Lepidoptera and

other insects for putative Microsporidia sequences. We only considered transcript
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Taxon Reads Read length After autoadapt Transcript fragments N50

Archaeopsylla erinacei 108,318,120 PE100 107,281,714 59,116 954

Carabus granulatus 122,815,238 PE100 121,679,250 81,072 1,050

Corydalinae sp. 109,799,166 PE100 108,228,826 130,505 606

Mengenilla moldrzyki 213,761,176 PE100 210,807,944 131,504 830

Nannochorista sp. 96,580,760 PE100 95,508,256 84,795 1,081

Nevrorthus apatelios 58,121,176 PE100 54,450,310 32,079 655

Priacma serrata 75,981,168 PE100 71,776,284 41,582 585

Raphidia ariadne 67,920,858 PE100 65,216,538 50,983 774

Sialis lutaria 74,560,668 PE100 70,018,090 24,301 654

Tipula maxima 83,873,478 PE100 79,560,064 42,124 824

Xyela alpigena 67,675,150 PE100 64,234,772 18,378 583

Table 9.1: Summary statistics for rna-seq data sets from Peters et al. [33] reassembled with Trin-
ity [44].

Taxon Reads Read length After autoadapt Transcript fragments N50

Dichochrysa prasina 22,090,140 PE150 22,089,850 119,033 823

Essigella californica 21,640,554 PE150 21,640,212 119,698 780

Meloe violaceus 21,657,976 PE150 21,657,490 40,119 1,246

Menopon gallinae 16,768,868 PE150 16,768,498 52,425 1,917

Occasjapyx japonicus 15,362,662 PE150 15,362,136 61,813 1,394

Okanagana villosa 23,498,120 PE150 23,497,568 113,005 873

Peruphasma schultei 23,480,956 PE150 23,480,362 117,450 752

Platycentropus radiatus 12,712,138 PE150 12,711,986 58,875 698

Prosarthria teretrirostris 23,713,208 PE150 23,712,838 93,573 635

Triodia sylvina 21,885,798 PE150 21,885,482 90,735 935

Table 9.2: Summary statistics for rna-seq data sets from Misof et al. [30] reassembled with Trin-
ity [44].
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sequences for further analysis whose most significant hit was to a microsporidian

database sequence with an expectation value less than or equal to 1e-10.

We downloaded the complete UniProt database (Swiss-Prot and trembl;

91,408,504 sequences; February 2015), which we used for comprehensive screening

of insect transcriptomes for protein-coding sequences from Microsporidia as well as

bacterial endosymbionts. Table 9.3 shows the number of sequences in the UniProt

database associated with each endosymbiont of interest. Because this database was

very large, we searched it with the blastx-like algorithm in diamond [323], a fast

and sensitive alignment program.

We downloaded the complete rnacentral database [324] (8,102,559 sequences;

February 2015), which we used for comprehensive screening of insect transcriptomes

for ribosomal and other types of non-coding rna from Microsporidia as well as

bacterial endosymbionts. Table 9.3 shows the number of sequences in the rnacentral

database associated with each endosymbiont of interest. Because this database was

very large, we searched it with the blastn-like algorithm in Lambda [325], a fast

and accurate alignment program.

9.2.3 Multiple sequence alignments

We aligned all non-singleton Microsporidia clusters with the einsi algorithm

in mafft [276], which yielded 7,851 minimum 50% identity alignments.
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9.2.4 The MICRO50 custom amino acid substitution matrix

Following the methods described in Appendix B, we constructed a custom

Microsporidia amino acid substitution matrix (micro50) using the minimum 50%

identity alignments as input. The micro50 matrix had an entropy value of 0.7529,

and an expected value of -0.5115 (compare to other substitution matrices in Table

B.1). We used the micro50 matrix with Microsporidia-focused database searches

(Sections 9.2.2 and 9.2.5), and with multiple alignments during data matrix con-

struction (Section 9.2.5.1).

9.2.5 Microsporidia HaMStR database

We constructed a hamstr (version 13.2.2; [272]) database of 4,526 amino acid

gene models based on the minimum 50% identity Microsporidia alignments. hamstr

requires the use of reference taxa; for practical as well as theoretical reasons, it is

desirable to have a relatively small number of reference taxa that are widely repre-

sented among the hamstr database gene models. Thus, we calculated the distribu-

tion of Microsporidia species among gene clusters, and chose eight insect-associated

Microsporidia taxa with maximal representation among clusters to use as reference

taxa. These included Microsporidia species associated with the silk moth, grasshop-

pers, mosquitos, and honey bees (Table 9.4). Each gene model in the database

needed to contain at least one sequence from a reference taxon, so this only allowed

us to use 4,530 of the (originally 7,851) minimum 50% identity alignments. We

removed four clusters that might have been associated with transposable elements,
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as their sequence identifiers contained the strings “transpos”, “Pol protein”, “Pol

polyprotein”, or “Gag-pol polyprotein”, which left 4,526 clusters for use. Finally,

for each microsporidian reference taxon, we constructed a blast [13] database for

use with hamstr that contained all taxon-associated UniProt protein records (Table

9.4).

9.2.5.1 Data matrix construction

Transcriptome data sets selected for further analysis were searched against

the Microsporidia hamstr database (Section 9.2.5), and matching sequences were

assigned to one of 4,526 orthologous sequence groups. For each orthologous group,

the amino acid sequences of the database reference taxa and the query taxa were

aligned using the linsi algorithm in mafft [276] and the custom micro50 substi-

tution matrix. The alignments were concatenated, adding gaps for missing sequences

as necessary, and sites with sequence representation in fewer than four taxa were

removed.

9.2.6 Maximum likelihood phylogenetic analysis

Maximum likelihood phylogenetic analysis used garli (Genetic Algorithm for

Rapid Likelihood Inference; version 2.1; [2]) and grid computing [48,223] via a web

service at molecularevolution.org [53] based on tools developed by Bazinet et

al. [284] that include post-processing with dendropy [208], r [285], and custom Perl

scripts. We used garli default settings, including stepwise addition starting trees,
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Taxon NCBI taxon ID UniProt sequences RNAcentral sequences

Arsenophonus 637 3,528 358

Blochmannia 203804 2,539 300

Buchnera 32199 10,684 678

Cardinium 273135 1,686 548

Lepidoptera 7088 219,537 58,230

Microsporidia 6029 60,651 4,448

Spiroplasma 2132 12,877 1,147

Rickettsia 780 59,376 1,408

Wolbachia 953 26,718 1,615

Table 9.3: The number of endosymbiont-associated sequences in our UniProt and
rnacentral databases (downloaded February 2015). The number of Lepidoptera
sequences is also shown.

Microsporidia species NCBI taxon ID Host insect
Sequences in UniProt sequences

HaMStR DB in BLAST DB

Edhazardia aedis USNM 41457 1003232 mosquito 341 4,208

Encephalitozoon romaleae SJ-2008 1178016 grasshopper 1,746 1,826

Nosema apis BRL 01 1037528 honey bee 852 2,727

Nosema bombycis 27978 Bombyx mori (moth) 197 216

Nosema bombycis CQ1 578461 Bombyx mori (moth) 1,968 4,399

Nosema ceranae 40302 honey bee 193 196

Nosema ceranae BRL01 578460 honey bee 726 2,060

Vavraia culicis subsp. floridensis 948595 mosquito 1,564 2,768

Table 9.4: The eight reference taxa in the Microsporidia hamstr database.
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except that we lowered the number of successive generations yielding no improve-

ment in likelihood score that prompts termination (genthreshfortopoterm=5000),

as we found that this saved time and yielded comparable results. The Microsporidia

analyses used the wag amino acid model; the Rickettsia analysis (Section 9.3.4) used

the gtr nucleotide model. The best tree for the Microsporidia gene tree analyses

(Section 9.3.1.3) was chosen from the better of two search replicates, midpoint-

rooted, and visually inspected. The best tree for the Microsporidia concatenated-

gene analysis (Section 9.3.1.3) and the Rickettsia gene tree analysis (Section 9.3.4)

was found using an adaptive search [53]; for these analyses we also performed 1,000

bootstrap replicates. We used DendroPy [208] to generate 50% majority-rule boot-

strap consensus trees.

9.3 Results

9.3.1 Microsporidia analyses

9.3.1.1 Interrogating transcriptome data for Microsporidia

We used fasty to search all 98 insect transcriptome data sets against the

Lepidoptera/Microsporidia database (described in Section 9.2.2). On average, only

a very small proportion of sequences (≈ 0.006) were significant hits to Microsporidia

(E-value ≤ 1e-10). Upon examining the distribution of these proportions (Figure

9.1), we decided empirically to call a sample “positive” for Microsporidia if its

proportion of significant hits assigned to Microsporidia was ≥ 0.01. In total, 12 out
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of 98 samples tested positive for Microsporidia (Table 9.5).

9.3.1.2 HaMStR results

We ran the putative Microsporidia sequences from 9 of the 12 positive sam-

ples1 (Section 9.3.1.1) against our Microsporidia hamstr database, which orga-

nized matching sequences into orthologous sequence groups. Statistics on sequence

matches determined by hamstr are given in Table 9.6.

9.3.1.3 Phylogenetic results

Gene tree analyses

We performed some preliminary gene tree analyses using Microsporidia se-

quences from five Microsporidia-positive transcriptomes (“query taxa”), together

with sequences from the eight microsporidian reference database taxa. We selected

for analysis the 40 orthologous groups in which all five query taxa were represented.

The results were encouraging; we observed sensible groupings and “dispersion” of

query taxa among reference taxa (Figure 9.2). In contrast, if our query sequences

were actually lepidopteran in origin, they would have most likely formed their own

clade when analyzed with a diversity of true Microsporidia sequences (which we

indeed observed in earlier work in which we did not select microsporidian sequences

carefully enough).

One interesting relationship we observed was that sequences of Microsporidia

from Striacosta albicosta (a query taxon) grouped closely with sequences of Mi-

1The other three positive samples were unavailable at this point.
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Figure 9.1: Scatterplot of the proportion of Microsporidia hits in 98
rna-seq samples. The red line at y = log10(0.01) represents our chosen
cutoff for calling a sample “positive” for Microsporidia.
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RNA-Seq taxon Transcript fragments Microsporidia hits Lepidoptera hits
Proportion of

Microsporidia hits

Striacosta albicosta 336,829 14,925 101,471 0.128

Philopotamus ludificatus 34,088 1,316 12,350 0.096

Tineola bisselliella 40,696 865 19,639 0.042

Eudarcia simulatricella 76,663 525 20,600 0.025

Mengenilla moldrzyki 131,504 563 26,338 0.021

Corydalinae sp. 130,505 671 32,989 0.020

Micropterix calthella 192,011 549 32,177 0.017

Okanagana villosa 113,005 360 22,376 0.016

Xyela alpigena 59,116 66 4,642 0.014

Peruphasma schultei 117,450 214 17,105 0.012

Dichochrysa prasina 119,033 317 29,513 0.011

Carabus granulatus 81,072 236 24,479 0.010

Table 9.5: rna-seq samples that tested positive for Microsporidia, sorted by proportion of Mi-
crosporidia hits.

RNA-Seq taxon
Matches identified Matches to Average length of

by HaMStR unique loci sequence match1

Striacosta albicosta 4,536 1,587 120

Philopotamus ludificatus 1,502 1,462 171

Tineola bisselliella 1,152 1,143 138

Eudarcia simulatricella 567 560 136

Mengenilla moldrzyki 160 134 170

Corydalinae sp. 340 303 140

Micropterix calthella 343 305 190

Xyela alpigena 37 37 109

Carabus granulatus 87 80 156

1Length is given in amino acids.

Table 9.6: hamstr statistics for samples that tested positive for Microsporidia.
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crosporidia from Bombyx mori (a database reference taxon); Striacosta and Bom-

byx are closely related species of Lepidoptera. This might suggest a case of host-

endosymbiont co-speciation, or at least that the Microsporidia species inhabiting

Striacosta and Bombyx are very closely related.

Concatenated-gene phylogenetic analysis

We performed a concatenated-gene phylogenetic analysis using Microsporidia

sequences from nine Microsporidia-positive transcriptomes (“query taxa”), together

with sequences from the eight microsporidian database reference taxa. The 4,526-

gene data matrix was constructed according to the methods described in Section

9.2.5.1. The final matrix was 170,055 amino acids in length, and was 30.3% complete

(69.7% missing data).

The concatenated-gene analysis yielded a tree with uniformly high bootstrap

support (Figure 9.3). The species of Microsporidia inhabiting Tineola and Striacosta

(query taxa) fell within a clade of Nosema, a genus of Microsporidia. Interestingly,

some sister taxa in the tree belonged to entirely different insect orders. The phylo-

genetic patterns in these strongly-supported results merit further investigation.

9.3.2 Comprehensive database searches

9.3.2.1 Searching UniProt with DIAMOND

We used diamond [323] with default settings to search all 98 insect transcrip-

tome data sets against the UniProt database described in Section 9.2.2. We only

reported one alignment per query sequence (the best hit with E-value ≤ 0.001).
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Figure 9.2: Gene tree computed for Microsporidia sequences belonging
to orthologous group P30169. Sequences derived from rna-seq are high-
lighted. Scale is the expected number of amino acid replacements per
site.
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Figure 9.3: Phylogeny of Microsporidia in insect hosts based on maxi-
mum likelihood analyses of 4,526 protein-coding genes. Bootstrap values
were plotted onto the best tree, which was midpoint-rooted. Tip labels:
genus and species for previously recognized taxa (or new if the taxon
was first found in this study), followed by the insect order to which the
host belongs. All bootstrap values are 100%, except where noted. Scale
is the expected number of amino acid replacements per site.

249



We counted the number of hits to each endosymbiont, and also calculated the pro-

portion of query sequences that each count represented. The UniProt counts and

proportions are shown for all 98 rna-seq samples in Figures 9.4 and 9.5, respec-

tively. We observed that Wolbachia and Microsporidia were well represented in our

transcriptome data, followed by Rickettsia and Spiroplasma. There were relatively

few hits to other bacterial endosymbionts.

9.3.2.2 Searching RNAcentral with Lambda

We used Lambda [325] with default settings to search all 98 insect transcrip-

tome data sets against the rnacentral database described in Section 9.2.2. We only

reported one alignment per query sequence (the best hit with E-value ≤ 0.1). We

counted the number of hits to each endosymbiont, and also calculated the propor-

tion of query sequences that each count represented. The rnacentral counts and

proportions are shown for all 98 samples in Figures 9.6 and 9.7, respectively. As

with the UniProt search (Section 9.3.2.1), Microsporidia was well represented in our

transcriptome data; on the other hand, Wolbachia was not found quite as regularly.

Spiroplasma and Rickettsia occurred relatively frequently, as did Buchnera.

9.3.3 Assessing high-level taxonomic composition of RNA-Seq data

In order to guide future experiments, we sought to obtain a high-level assess-

ment of the taxonomic composition of our transcriptome data. The rnacentral

database search results were likely to be more appropriate than the UniProt results
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Figure 9.4: Counts of significant best hits to various endosymbiont pro-
tein sequences for all 98 rna-seq samples as determined by diamond,
shown on a log scale. The number of samples for which the count was
greater than zero is given for each endosymbiont in the legend.
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Figure 9.5: Proportions of significant best hits to various endosymbiont
protein sequences for all 98 rna-seq samples as determined by diamond,
shown on a log scale. The number of samples for which the proportion
was greater than zero is given for each endosymbiont in the legend.
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Figure 9.6: Counts of significant best hits to various endosymbiont non-
coding rna sequences for all 98 rna-seq samples as determined by
Lambda, shown on a log scale. The number of samples for which the
count was greater than zero is given for each endosymbiont in the legend.
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for this purpose, as the rnacentral database is largely composed of rrna sequences

— i.e., a relatively few genes for a large number of organisms — thus reducing the

likelihood of false positives resulting from a database search. Still, to characterize

taxonomic composition, we required exceptionally good matches (E-value ≤ 1e-200).

Approximately 350,000 hits (pooled across all 98 transcriptome data sets) met this

level of significance. We used megan [148,180] to classify these hits according to the

ncbi taxonomy, and we generated a breakdown of these hits into taxonomic classes

(Figure 9.8). We observed that the majority of hits were to insect sequences, as

expected. We also found a relatively large number of bacterial classes represented,

as well as some classes of fungi. Both of these findings were in keeping with ex-

pectations. Even at this high level of significance, there were a small fraction of

assignments to taxa that were unexpected, such as Mammalia. This could either

indicate contamination, or possibly a “tie-breaker” situation where the wrong taxon

was arbitrarily chosen. To address this latter case, one could report more than

just the best hit per transcript fragment (instead report the top 10 or top 100 hits,

for example); subsequently, the lca algorithm in megan could use this additional

information to make more conservative assignments (possibly to higher-level taxa).

9.3.4 Rickettsia 16S rRNA analysis

We sought to demonstrate that we could recover rrna data from our transcrip-

tome data sets, and use such data in phylogenetic analyses. Since we had already

focused much of our attention on Microsporidia, we wanted to make this demon-
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Figure 9.8: We used megan to assign approximately 350,000
Lambda/rnacentral transcript fragment hits to various taxonomic
classes according to the ncbi taxonomy. Each hit used for classifica-
tion purposes achieved an E-value ≤ 1e-200. We observed that insect,
bacterial, and fungal sequences were all present in relative abundance,
which was in keeping with expectations.
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stration with an understudied bacterial endosymbiont, so we chose Rickettsia. Of

the 125 Lambda/rnacentral hits to Rickettsia across all 98 transcriptome data sets,

31 hits had an E-value ≤ 1e-05. Of these, there were seven hits to five distinct 16S

rnacentral database sequences, the majority of which seemed to cover most, if not

all, of the 16S gene. We combined these seven query sequences and five database

sequences, and provided them as input to sina [326], an alignment service offered by

the silva [327] database project. (sina classified nine of the sequences as Rickettsia,

and the other three sequences — all query sequences — as “unknown”, suggesting

that perhaps these three sequences were not actually Rickettsia.) In this analysis,

we also included 41 Rickettsia sequences from the silva database that sina identi-

fied to be ≥ 95% similar to the 12 sequences provided initially. Thus, our 16S rrna

alignment consisted of a total of 53 sequences.

Phylogenetic analysis with garli yielded the results shown in Figure 9.9. The

query sequences (derived from rna-seq) of “unknown identity” were relatively easy

to identify, as they were the taxa with the longest branch lengths: “Ful” (found

at the top of the tree), and the two Archaeopsylla erinacei sequences (found at the

bottom of the tree). There was relatively high bootstrap support for some groupings,

although many of these were polytomies.

In summary, this analysis demonstrated that rrna sequences such as the 16S

gene, typically used for bacterial fingerprinting, can be recovered (albeit at low abun-

dance) from transcriptome data sets and used in phylogenetic analyses, although one

should be wary of sequence identifications made on the basis of an E-value alone.

To this end, it may be helpful to add sequences of confirmed identity from existing
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databases such as silva.

9.4 Conclusion

We demonstrated that if done carefully, one can recover endosymbiont se-

quences from host-associated transcriptome data sets with relatively high confidence,

albeit at relatively low abundance. We also showed that in addition to recovering

endosymbiont protein-coding sequences from rna-seq data, one can also recover

their rrna sequences. We produced well-supported phylogenies that included en-

dosymbiont and host sequences, as well as sequences from public databases.
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Figure 9.9: 50% majority-rule bootstrap consensus tree for Rickettsia 16S
sequences. rna-seq sequences are highlighted in yellow, rnacentral se-
quences are highlighted in green, and silva sequences are unhighlighted.
Scale is the expected number of nucleotide substitutions per site.
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Chapter 10: Summary of contributions

Our contributions to the advancement of phylogenomic workflows included the

following: (1) improvements to specific phylogenomic workflow steps, including se-

quence classification, orthology determination, and phylogenetic analysis; (2) devel-

opment of a computational system optimized for performing genome-scale phyloge-

netic analyses; and (3) empirical studies that used complete phylogenomic workflows

to analyze transcriptome data from moths and butterflies (Lepidoptera), as well as

various insect endosymbionts (e.g., Microsporidia).

We compared a number of programs and methods for sequence classification,

most of which were developed with metagenomics applications in mind. Because we

treat our rna-seq samples as if they were metagenomes, it was important for us to

be able to choose from among the vast number of programs available to perform the

sequence classification task. Ultimately, we used hamstr to extract sequences from

our transcriptome data that matched gene models in our databases.

We developed an alternative to strict orthology determination procedures

called the consensus method, which creates a single consensus sequence from a set

of paralogous gene sequences, one that potentially includes ambiguous nucleotides.

We initially validated this method using yeast transcriptome data, vertebrate pro-
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teomes, and plant proteomes. We then applied it in our phylogenomic workflows

and found that it performed as well or better than the primary alternative approach,

that of selecting a single sequence to serve as a putative ortholog. The consensus

method is now a standard part of our phylogenomic workflows.

We described the garli web service, which is freely available at

molecularevolution.org. The service makes it easy to perform computationally-

intensive maximum likelihood phylogenetic analyses, as the analyses run on a pow-

erful computational grid system known as The Lattice Project. We made a number

of improvements to the grid computing system specifically to enhance phylogenetic

analysis capability. These included the implementation of a computation-saving

adaptive best tree search, which runs a relatively small number of searches initially

and analyzes the similarity of the topologies that are returned. In the event that the

topologies are mostly very similar, no additional searches need to be performed. We

described a random forests model that we use to procure garli analysis runtime

estimates, which in turn are used for job scheduling decisions and optimizations.

One such optimization combines multiple predicted short-running analyses into a

longer, optimal-length analysis for greater efficiency. We also described our imple-

mentation of the converse optimization, which subdivides long-running analyses into

short, fixed-length boinc workunits. This optimization reduces variance in analysis

completion times, thus improving the turnaround time of analysis batches submitted

to boinc; this will enable boinc to be used to compute garli web service analyses.

Finally, we devised new throughput ratings for grid resources that are computed

automatically using ordinary production jobs. The resource throughput ratings are
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used to send jobs to the fastest resources first, as well as to allow faster resources

longer job queues.

We used complete phylogenomic workflows to analyze transcriptome data gen-

erated by the Leptree project. The pilot study, which used 46 taxa and 741 genes, re-

solved many Apoditrysian nodes that were previously uncertain, particularly within

Obtectomera. However, although some “lower Apoditrysian” nodes were improved,

many were still weakly-supported. In our follow-up analyses we increased our taxon

sampling to 82 taxa, and increased our gene sample to 3,810 genes by creating a

Lepidoptera-specific hamstr database. We also created a Lepidoptera-specific mi-

tochondrial gene database, as well as a Lepidoptera-specific amino acid substitution

matrix (lep62). We performed many different maximum likelihood analyses of

concatenated-gene data sets, and we also performed a number of gene tree sum-

mary analyses. Although most of these failed to produce a substantial improvement

over the results from our pilot study, a recent 23-taxon analysis that used pygot

and guidance2 to remove dubiously-aligned regions from the data matrix did show

promise.

Finally, we demonstrated that we could recover insect endosymbiont se-

quences from host-derived rna-seq data with high confidence (e.g., sequences of

Microsporidia, or bacterial sequences such as Wolbachia), although at relatively low

abundance. These included both endosymbiont protein-coding sequences and ribo-

somal rna sequences, which we used to produce well-supported phylogenies that

also included host sequences and public database sequences. One could use such

phylogenies with other data to formulate hypotheses about host-parasite coevolu-
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tion.

Phylogenomics is still in its infancy, and our work is only the beginning; con-

tinuous innovation will be necessary to keep pace with the ever-increasing amount

of available genome data and the increasingly complex analytical models needed to

accurately reconstruct the tree of life.
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Appendix A: Exploration of differences between CONSENSUS and

REPRESENTATIVE options.

The two alternative procedures we used for producing a single sequence per

taxon-locus combination for phylogenetic inference when orthology search returned

multiple “hits” — i.e., representative and consensus — yielded identical ml

topologies, and nearly identical bootstrap values in all analyses (Figure 7.2). A

marked difference between the two procedures was observed in the 38-taxon analysis,

however, for which finding the best tree topology took considerably more search

effort for representative than for consensus: out of 100 ml searches, the best

tree topology was found 25 times for the consensus matrix, but only once for

the representative matrix. (We found no such difference for either the 16- or 46-

taxon analyses.) This appendix describes our efforts to find the cause of the different

behaviors of the representative and consensus options in the 38-taxon case.

Comparison of the representative and consensus matrices for 38 taxa

showed two essential differences. First, consensus had more ambiguous sites. That

is, some nucleotides were ambiguous in consensus but not in representative

(though the number of these was less than one percent of the total). Second, con-

sensus had more total sequence. That is, some nucleotide positions were present
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in consensus but not in representative. Again, the size of the difference was

small; there were less than 2,000 such positions. Although both differences seem

quantitatively minor, we felt that one or the other was likely to underlie the con-

trast in search difficulty. Therefore, we sought to isolate each of the two variables in

turn — level of codon ambiguity, and total number of codons — and test the effect

of each variable on search efficacy.

To test the effect of increased codon ambiguity, we built a modified repre-

sentative matrix that differed from the original only in having a level of ambiguity

comparable to that of the consensus matrix. We first aligned the consensus and

representative amino acid sequences to each other, then converted each matrix

back to nucleotide coding sequence. For each comparison of the same taxon between

the two aligned matrices, we identified all of the amino acid positions at which there

were multiple amino acids in the consensus matrix prior to reduction for phyloge-

netic analysis, which would result in ambiguity upon conversion to a phylogenetic

data matrix by the consensus procedure. In those cases, we replaced the cor-

responding codon in the representative coding sequence with the consensus

codon. The result was a matrix the same size as the original representative data

matrix, with mostly the same sequence content, but with some ambiguity added.

When this matrix was subjected to 100 ml searches, it returned the best topology

far more often than did the unmodified representative matrix, and about as of-

ten as the consensus matrix. Thus, the increased ambiguity seemed to make tree

search considerably easier.

To determine whether the greater total amount of sequence in the consensus

265



matrix also affected search efficacy, we built a second modified representative

matrix, intended to differ from the original in size but not level of ambiguity. To do

this, we identified all sites at which there was a gap character in the representa-

tive matrix and a non-gap character in the consensus matrix. We then added all

of these additional non-gap characters to the representative matrix. Under ml

search, this matrix behaved very much like the original representative matrix,

finding the best tree only one or a few times in each of 100 searches.

In summary, replacing non-ambiguous representative codons with am-

biguous consensus codons essentially reproduced the consensus result, whereas

adding the additional consensus data to the original representative matrix did

not have the same transformative effect. We hypothesize that the small number of

nucleotides that are ambiguous under consensus coding but not so under rep-

resentative coding introduce conflicting signal in the latter matrix that makes

finding the best tree topology more difficult than if these nucleotides are degener-

ated. The effect is idiosyncratic, in that we saw it only in the 38-taxon data set. We

felt it was nonetheless worth investigating because essentially nothing was known

about the comparative performance of these two procedures.
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Appendix B: The LEP62 custom amino acid substitution matrix.

A recent study showed the utility of using clade-specific amino acid substitu-

tion matrices in de novo orthology prediction involving Mollicutes genomes [328].

Using a substitution matrix designed specifically for the group of organisms one

is working with makes sense from a theoretical standpoint. As we perform amino

acid alignments many places in our phylogenomic workflow, and these rely on a

well-calibrated amino acid substitution matrix (usually blosum50 or blosum62

by default), we hypothesized that these alignments would be improved if we used a

substitution matrix derived from Lepidoptera-specific protein alignments.

B.1 Creating the LEP62 matrix

We had initially constructed 7,042 orthologous groups from Ensembl genome

data (Section 8.5.1), thus providing a fairly large corpus of Lepidoptera-specific

amino acid alignment data from which to build a custom substitution matrix. As

part of our initial investigation, we calculated (using T-Coffee [300] and custom Perl

scripts) that the average sequence identity of the aligned orthologous groups was

61.997%. To build the lep62 matrix, we retrieved and ran the scripts made available

by Lemaitre et al. [328]; this package also included the blosum program [329]. When
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we compared the lep62 matrix to blosum62, we found that 86/200 matrix entries

were different. Other comparative statistics are given in Table B.1.

Next, we wanted to demonstrate the usefulness of the lep62 matrix in sim-

ilarity searches. As with Lemaitre et al. [328], we found no straightforward way

to have blast use a custom substitution matrix, so instead we used the fasta

package [303], which readily accepted custom substitution matrices. Using a sam-

ple protein sequence taken from our transcriptome data, we performed five searches

against the ncbi nr database with different combinations of alignment program

and substitution matrix: blast+blosum62; fasta+blosum62; fasta+lep62;

ssearch+blosum62; and ssearch+lep62. Inspecting the search results, we made

the following observations: (1) the top two hits were the same in each search (Bom-

byx and Danaus sequences, respectively); (2) ssearch produced better E-values than

fasta; and (3) lep62 produced better E-values than blosum62.

In another test, we performed the same five searches, this time using the

Bombyx proteome as the database. The top hit was the same in each search, and

had a much lower E-value than any of the other hits; this was a case where the top

hit was probably the only “good” hit in the database. Once again, we found that

our discriminatory power was highest with ssearch and the lep62 matrix. After

conducting these tests, we were reasonably confident that using programs from the

fasta package in conjunction with the lep62 matrix had the potential to improve

workflow performance.
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B.2 Modifications to HaMStR

In order to test the efficacy of using the lep62 matrix in our work-

flow, we made incremental modifications to hamstr (version 13.1; [272]) and

ran the Antaeotricha schlaegeri (“Ant”) rna-seq sample against the 7,042-gene

moth+min-one-butterfly database after each modification. Table B.2 gives these

modifications and the corresponding statistics generated from each run of hamstr.

Note that with hamstr we used the fasty program from the fasta package instead

of ssearch, despite the fact that in our previous tests ssearch displayed the best

performance; this is because ssearch only supports dna:dna or protein:protein

comparisons, whereas we needed to search a protein database with a translated

nucleotide query. The only modification not strictly having to do with the lep62

matrix involved running pseg [330] on the Bombyx blast database to mask low-

complexity regions. The statistics in Table B.2 show a slight increase in the number

of hits, generally, when lep62 was used, as we would expect. A fairly substantial

decrease in the number of hits was observed after running pseg; presumably, we lost

hits to low-complexity regions that were not desirable in the first place. At a later

date we discovered another place to use lep62 — namely, in the call hamstr makes

to genewise [273] — so this particular modification is not shown in Table B.2; in

our tests, this change had only a minor effect on hamstr search statistics.
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Matrix Entropy Expected value Mean mismatch Mean match

LEP62 0.8120 -0.5624 -1.63 6.3

MOLLI60 0.7126 -0.582 -1.56 6.1

BLOSUM62 0.6979 -0.5209 -1.42 5.8

BLOSUM45 0.3795 -0.2789 -1.34 7.05

Table B.1: Comparative statistics for the lep62 substitution matrix, the molli60 ma-
trix [328], and two commonly used blosum matrices.

Number of hits Hits to unique loci HaMStR modification

19,192 6,192 HaMStR 13.1, unmodified

19,375 6,259 used fasty with the lep62 matrix instead of
blastx

19,289 6,235 set blast eval to 1e-05 instead of the default
value of 10.0

17,205 5,742 used the -S flag to fasty after running pseg on
the Bombyx blast database

17,222 5,740 used lep62 with mafft for co-ortholog assign-
ment

17,227 5,746 used lep62 with mafft for co-ortholog assign-
ment using reference sequences

Table B.2: Modifications to hamstr that allowed for use of a custom substitution matrix,
and their corresponding effect on the number of hits to the moth+min-one-butterfly

database for the “Ant” rna-seq sample.
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B.3 Phylogenetic analysis results

Ultimately we wanted to characterize the impact that using the lep62 matrix

throughout the workflow would have on the outcome of the phylogenetic analyses.

Previously we had analyzed a 16-taxon, 2,884-gene data matrix to test an early

version of the moth+min-one-butterfly database; this matrix was constructed with

an older version of hamstr (version 9) that had none of the modifications mentioned

in Section B.2. We rebuilt this matrix using the modified version of hamstr, and

repeated the phylogenetic analyses. The new 16-taxon, 2,884-gene matrix had about

10% fewer residues than the previous one, and was slightly more complete. This

correlated with the statistics for the Ant sample, for which the final total number of

sequences was about 10% less than the starting total (Table B.2). Comparing the

new phylogenetic results (110 best tree search replicates; 279 bootstrap replicates;

five search replicates per bootstrap replicate) to the previous phylogenetic results,

we found only minor differences: the topology was the same; bootstrap support

for a couple of internal nodes increased somewhat, and decreased for a couple of

others. Thus, while we could not conclude that our modifications had produced a

substantial improvement in phylogenetic results, they had also not worsened them.

Standing by the logic that using an amino acid substitution matrix specific to the

group of organisms one is working with makes sense a priori, we continued to use

the lep62 matrix for the remainder of the analyses presented in Chapter 8.
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Núñez, Paula F Campos, Bent Petersen, Thomas Sicheritz-Ponten, An Pas,
Tom Bailey, Paul Scofield, Michael Bunce, David M Lambert, Qi Zhou, Polina
Perelman, Amy C Driskell, Beth Shapiro, Zijun Xiong, Yongli Zeng, Shiping
Liu, Zhenyu Li, Binghang Liu, Kui Wu, Jin Xiao, Xiong Yinqi, Qiuemei Zheng,
Yong Zhang, Huanming Yang, Jian Wang, Linnea Smeds, Frank E Rheindt,
Michael Braun, Jon Fjeldsa, Ludovic Orlando, F Keith Barker, Knud An-
dreas Jønsson, Warren Johnson, Klaus-Peter Koepfli, Stephen O’Brien, David
Haussler, Oliver A Ryder, Carsten Rahbek, Eske Willerslev, Gary R Graves,
Travis C Glenn, John McCormack, Dave Burt, Hans Ellegren, Per Alström,
Scott V Edwards, Alexandros Stamatakis, David P Mindell, Joel Cracraft,
Edward L Braun, Tandy Warnow, Wang Jun, M Thomas P Gilbert, and Guo-
jie Zhang. Whole-genome analyses resolve early branches in the tree of life of
modern birds. Science, 346(6215):1320–31, Dec 2014.

[22] Brian R Johnson, Marek L Borowiec, Joanna C Chiu, Ernest K Lee, Joel
Atallah, and Philip S Ward. Phylogenomics resolves evolutionary relationships
among ants, bees, and wasps. Curr Biol, Oct 2013.
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EV Zakharov, DJ Hawthorne, AY Kawahara, and JC Regier. The butterfly
subfamily Pseudopontiinae is not monobasic: Marked genetic diversity and
morphology reveal three new species of Pseudopontia (Lepidoptera: Pieridae).
Syst Entomol, 36(1):139–163, 2011.

[113] AY Kawahara, I Ohshima, A Kawakita, JC Regier, C Mitter, MP Cummings,
DR Davis, DL Wagner, J De Prinis, and C Lopez-Vaamonde. Increased gene
sampling provides stronger support for higher-level groups within gracillariid
leaf mining moths and relatives (Lepidoptera: Gracillariidae). BMC Evol Biol,
11:182, 2011.

283



[114] S Cho, A Zwick, JC Regier, C Mitter, MP Cummings, J Yao, Z Du, H Zhao,
AY Kawahara, S Weller, DR Davis, J Baixeras, JW Brown, and C Parr.
Can deliberately incomplete gene sample augmentation improve a phylogeny
estimate for the advanced moths and butterflies (Hexapoda: Lepidoptera)?
Syst Biol, 60:782–796, 2011.

[115] Y Hirooka, A Y Rossman, and P Chaverri. A morphological and phylogenetic
revision of the Nectria cinnabarina species complex. Stud Mycol, 68:35–56,
2011.

[116] Y. Hirooka, A. Y. Rossman, G. J. Samuels, C. Lechat, and P. Chaverri.
A monograph of Allantonectria, Nectria, and Pleonectria (Nectriaceae,
Hypocreales, Ascomycota) and their pycnidial, sporodochial, and synnema-
tous anamorphs. Studies in Mycology, 71:1–210, 03/2012 2012.

[117] P Chaverri, C Salgado, Y Hirooka, A Y Rossman, and G J Samuels. Delimi-
tation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomy-
cota) and related genera with Cylindrocarpon-like anamorphs. Stud Mycol,
68:57–78, 2011.

[118] P Cárdenas, JR Xavier, J Reveillaud, C Schander, and HT Rapp. Molecu-
lar phylogeny of the Astrophorida (Porifera, Demospongiae) reveals an unex-
pected high level of spicule homoplasy. PLoS ONE, 6(4):e18318, 2011.

[119] JB Pettengill and MC Neel. A sequential approach using genetic and mor-
phological analyses to test species status: the case of United States federally
endangered Agalinis acuta (Orobanchaceae). Am J Bot, 98(5):859–71, May
2011.

[120] DRG Price, RP Duncan, S Shigenobu, and ACC Wilson. Genome expansion
and differential expression of amino acid transporters at the aphid Buchnera
symbiotic interface. Mol Biol Evol, 28(11):3113–26, Nov 2011.

[121] M Tatián, C Lagger, M Demarchi, and C Mattoni. Molecular phylogeny en-
dorses the relationship between carnivorous and filter-feeding tunicates (Tu-
nicata, Ascidiacea). Zool Scr, 40:603 – 612, 11/2011 2011.
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