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  The homeodomain protein Fushi tarazu (Ftz) and its obligate cofactor Ftz-F1, an 

orphan nuclear receptor, cooperatively bind to DNA and co-regulate the transcription of 

genes responsible for segmentation in the early Drosophila embryo. Two interesting 

questions have arisen about these genes. The first question concerns the evolution of 

Ftz, which changed in arthropods from a Hox, to a pair-rule protein in Drosophila. This 

change in function involved changes in both the expression and protein sequence of Ftz, 

which are being explored throughout arthropod lineages. To determine if the expression 

and function of ftz is conserved in Diptera, Ftz and related genes were examined in the 

mosquito Aedes aegypti using reverse transcriptase - PCR, in situ hybridization, and 

ectopic expression techniques. The second question probes the mechanisms underlying 

Drosophila Ftz/Ftz-F1 target site recognition in vivo. To date, direct computational 



 

 

attempts to identify downstream target genes and their enhancers have been inadequate. 

Towards this end, a microarray analysis was performed comparing wild type and ftz-f1 

mutant embryos. This generated a list of Ftz/Ftz-F1 candidate target genes. To identify 

genes among this group that are directly regulated by Ftz/Ftz-F1, potential Ftz/Ftz-F1 

binding sites around these genes were identified by combining Ftz in vivo ChIP data 

with a computational search for candidate Ftz-F1 binding sites. Next, to test whether 

these regions correspond to Ftz/Ftz-F1-dependent enhancers, enhancer-lacZ reporter 

genes were constructed and their expression was analyzed in wild type and ftz mutant 

embryos. Of 10 enhancers tested, 8 generated expression patterns that overlap with Ftz 

and Ftz-F1 expression in early embryos and were lost in ftz mutants. The enhancers 

found in this study, along with previously identified Ftz/Ftz-F1-dependent enhancers, 

were analyzed to identify binding motifs for additional transcription factors that might 

co-regulate gene expression with Ftz/Ftz-F1. Four transcription factors were identified 

that could potentially be involved in Ftz/Ftz-F1-dependent gene regulation: Deaf-1 and 

Zeste, both transcriptional activators, and Dichaete and GAGA factor, both repressors. 

Together, these studies identified five new Ftz/Ftz-F1-dependent target genes and seven 

new Ftz/Ftz-F1-regulated enhancers, and they suggest that other transcription factors 

may also play roles in the pair-rule gene regulatory system. 
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Overview 

 The central issue of modern developmental biology is the molecular basis of the 

diverse body plans seen in nature. This question is being explored from two main angles 

–a genetic approach, and an evolutionary approach. Both approaches are valuable and 

contribute different pieces to the puzzle. The genetic approach makes it possible to 

understand the molecular basis of development in extant species, while the evolutionary 

approach allows us to understand how these molecular mechanisms arose in the context 

of the history of life on earth. The purpose of this work is to use both of these 

approaches to answer questions about the gene fushi tarazu (ftz) in the pair-rule 

transcriptional network found in the genetic model system Drosophila melanogaster. 

 Chapter 1 is a literature review that covers thirty years of research on the pair-

rule segmentation gene network in Drosophila. This chapter summarizes the historical 

context that launched this field of study, and then reviews the discovery and 

characterization of each of the nine Drosophila pair-rule genes. This establishes the 

background needed to understand the questions asked in the following chapters. 

 Chapter 2 is a brief chapter outlining research into whether the cell-adhesion 

proteins, the cadherins, could play a role in the pair-rule promotion of segmentation in 

the embryo. It was found that the expression of the Drosophila cadherins suggests that 

they are not involved in segmentation. 

 Chapter 3 takes an evolutionary approach to look into the question of whether 

the Drosophila pair-rule gene ftz is conserved in Diptera. Within Arthropoda, ftz has 

evolved from a Hox gene to a pair-rule gene. To do this, both the expression and 
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function of ftz changed. Therefore, the expression and function of ftz in the mosquito 

species Aedes aegypti was studied to compare to that of ftz in Drosophila melanogaster 

to determine whether variation in either expression or function occurs within the order 

Diptera. 

 Chapter 4 takes a genetic approach to determine how Ftz and its cofactor Ftz-F1 

bind their specific targets in vivo. Understanding how a set of pair-rule transcriptional 

regulators activate their target genes will help future attempts to identify the 

downstream target genes that are directly involved in the morphological formation of 

segments. Finding the genes involved in creating segments will ultimately give insight 

into how pair-rule genes direct the formation of the segmented body plan of the fly and 

other insects. While the core binding sites of both Ftz and Ftz/F1 are known, previous 

attempts to find bona fide binding sites in the Drosophila genome using a 

computational approach were not successful. My work combined experimental and 

computational approaches to identify first, a larger set of direct targets of Ftz/Ftz-F1, 

and then to identify the Ftz/Ftz-F1 responsive enhancers that regulate these targets. 

Once these enhancers were confirmed, they were analyzed to determine if they 

contained any binding site motifs that would suggest other candidate transcription 

factors that could have a role in Ftz/Ftz-F1 gene regulation. Several factors were 

identified that will be studied in the future to determine if they do have a role in the 

pair-rule promotion of segmentation. 

 The final section of the paper, Conclusions and Future Directions, summarizes 

the findings from this work and speculates on where this work could lead next. 
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Chapter 1: Introduction 

 

1.1 The segments of the fly are established by a cascade of regulatory genes 

The fruit fly Drosophila melanogaster has been used as a model to study 

development for many years, and the pathways directing early embryonic development 

have been well characterized. These pathways are organized in a cascade of genes that 

divides the embryo into monomeric units that become more and more defined 

throughout development (Fig. 1-1). The first step in the cascade is the set of genes 

whose RNA is maternally deposited, which define the basic axes of the embryos – 

anterior/posterior and dorsal/ventral. These egg polarity genes regulate the gap genes, 

which define large sections of the embryos. Large sections containing multiple 

segments of the embryo do not form when a gap gene is mutated. The gap genes 

regulate the pair-rule genes, which are expressed in striped patterns and define the 

borders of the segments that are later seen in the morphology of the larvae and adult. 

The pair-rule genes regulate the segment-polarity genes, which define the anterior and 

posterior sides of each newly formed segment.  This definition of the borders of the 

segments is essential for the function of the homeotic genes, which determine the 

identity of each segment and direct their morphology. 

 

 

 



4 

 

 

Figure 1-1. The cascade of genes that divide the Drosophila embryo into segments. A 

hierarchy of genes was determined by their mutant phenotype. The egg-polarity (maternal 

effect) genes regulate the gap genes, which in turn regulate the pair-rule, which then 

regulate the segment-polarity genes. Once the segments have been established, they are 

given their identity by the homeotic selector genes. Figure from Molecular Biology of the 

Cell. 4th edition, Alberts B, Johnson A, Lewis J, et al. 2002. 

 

The pair-rule gene network is a complicated set of genes that regulate both each 

other and other genes in order to direct the formation of segments with exact borders in 

the embryo. These genes are essential to the proper development of embryos into 

larvae. When the segments are not formed correctly, first instar larvae usually die 

before hatching. Understanding the molecular basis of this pair-rule gene network has 

been a large focus in Drosophila melanogaster (Dm) research for the last thirty years, 

resulting in large amounts of information about the Dm pair-rule genes, their 

interactions with each other, and their regulation by and of many other genes.  Here I 
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discuss how these genes were discovered, summarize what is known about how they 

interact within the segmentation gene network, and speculate about future insights. 

 

1.2 Genetic Screens Identify Pair-rule Genes 

In the early 80’s and 90’s, a number of genetic screens (Nusslein-Volhard et al., 

1985; Nusslein-Volhard and Wieschaus, 1980; Perrimon et al., 1996; Sander et al., 

1980; Wakimoto and Kaufman, 1981) were performed in order to understand the 

molecular basis of the metameric segments that make up the complex form of the fly. 

At the time, little was understood about how these segments were formed, or if indeed 

the segments even had a biological role or were just a structural artifact with no real 

function (Garcia-Bellido, 1998). The fly larva was clearly made up of a set of 

compartments, but it was unclear whether these compartments were truly separate from 

each other and whether they formed individually or simultaneously. The idea of the 

parasegment was also new and not fully accepted until the mid-80’s - after the first of 

these screens were complete. The segments of the embryo were morphologically visible 

– there were grooves in the embryo between each segment, the longitudinal muscles 

attach at these grooves, and each of these segments appeared to correspond to the 

segments of the adult fly. The parasegments were much more difficult to detect. 

Parasegments are also metameric units, off register with the visible segments. Each 

parasegment consists of the posterior half of one segment and the anterior half of the 

next segment. But parasegments are delineated on a molecular level; several 

segmentation genes are expressed in parasegments rather than segments. Early evidence 
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of parasegments was drawn from multiple studies showing some of the first expression 

patterns of segmentation genes and early morphogenic evidence in Drosophila and 

other crustaceans (Martinez-Arias and Lawrence, 1985). So, it had yet to be determined 

whether the segments (and parasegments) had a genetic basis or were controlled by 

other means, such as widespread interactions in growth. 

It was in this context that the most influential of these screens was conducted by 

Nusslein-Volhard and coworkers (Nusslein-Volhard et al., 1985; Nusslein-Volhard and 

Wieschaus, 1980), who were the first to identify classes of genes that control the basic 

subdivisions of the early embryo into segments. In their first screen, they looked 

through thousands of mutant stocks for any lines that were embryonic lethal, which 

ended up being 2,600 lines. The cuticles of these lines were inspected for defects, and 

then complementation tests were used to map the genes responsible for these mutant 

phenotypes. At the time, this type of large-scale screen was a newly designed approach 

to observing many mutant phenotypes. It proved effective if not efficient, finding 15 

genes that caused the types of segmentation defects for which they were looking. This 

work proved invaluable and launched the study of the molecular basis of development, 

earning Nusslein-Volhard and Wieschaus the Nobel Prize in Physiology or Medicine in 

1995. 

Once the initial screen was complete, the true work of trying to understand what 

these defects suggested about the molecular mechanism behind the compartmental body 

plan of the larvae started. Despite not yet having even the concept of genetic networks 

formulated, Nusslein-Volhard was able to recognize that these genes worked together to 

direct this body plan. The authors classified the genes identified into three groups– gap, 
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pair-rule, and segment polarity genes – based on the phenotypes seen in the cuticles of 

larvae. The gap gene mutants were identified by loss of several segments in a row, so 

that there was a gap in the cuticle. The pair-rule mutants were identified by loss of 

alternating segments. The segment-polarity mutants were identified by the loss of 

repeating regions of each segment, often with mirror image duplications of the 

remaining portion of each segment.  Without a proper understanding of parasegments, 

the function of pair-rule genes in alternating segments was interpreted as dividing the 

embryo into units the size of two segments at an earlier stage. It was not understood 

until later that these pair-rule genes worked together in overlapping expression patterns 

to define the borders of the segments and parasegments. The five pair-rule genes found 

in their first screen were even-skipped (eve), odd-skipped (odd), paired (prd), hairy (h) 

(originally called barrel in this paper), and runt (run).  

eve mutants were missing the even-numbered segments - the prothoracic, 

metathoracic, and 2nd, 4th, 6th, and 8th abdominal segments. Odd mutants were missing 

the opposite, the odd-numbered segments. prd mutants were missing sections of both 

odd-numbered (posterior  - naked cuticle) and even-numbered (anterior - denticle band) 

segments. h had the same phenotype as prd, just weaker. run mutants were missing half 

of their segments, and the anterior rows of the denticle belts of each segment were 

mirrored. Nusslein-Volhard and co-workers then conducted  a larger screen, searching 

for any phenotypes that affect the cuticle. In this second screen, among many other 

cuticle defects, they found another pair-rule gene, sloppy-paired (slp), as well as 

confirming the eve and odd phenotypes. slp mutants were identified by the loss of naked 

cuticle in segments T2, A1, A3, A5, and A7. The ftz pair-rule phenotype, loss of the 
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even numbered parasegments, was independently discovered in a screen for larval 

segmentation defects with genes in the Antp complex (Lewis et al., 1980; Wakimoto et 

al., 1984). tenm was found by two different labs in the same year, one in a search for a 

Drosophila homolog of the mammalian tenascin gene (Baumgartner et al., 1994), and 

the other after observing the expression pattern of the gene (see below), which they 

named odd Oz (Levine et al., 1994) . Tenm was expressed in the seven striped 

expression pattern, typical for pair-rule genes, and three different mutants gave a range 

of phenotypes from slight segment fusions to full missing alternate segments, very 

similar to odd (Baumgartner et al., 1994). However, unlike the other pair-rule genes, 

tenm is not a transcription factor, but works outside of the cell to start a signal cascade. 

The last pair-rule gene ftz-f1, not previously found as it functions in the early embryo 

through maternally deposited RNA, was discovered in a screen for maternal effects of 

zygotic lethal genes (Chou and Perrimon, 1996) and was confirmed as a pair-rule gene 

through its mutant phenotype (Yu et al., 1997). 

 

1.3 Cloning and expression pattern of pair-rule genes 

The pair-rule genes were first cloned and their expression patterns first 

determined over a decade, from the early 80’s to the early 90’s. The expression patterns 

of all pair-rule genes have a few characteristics in common. They each contain the core 

seven pair-rule stripes (with the exception of ftz-f1 and opa), which typically develop 

first as broader regions that are then refined into the thinner stripes during 

cellularization by gaps of expression forming within the region to form periodic stripes. 
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The stripes also generally develop anterior to posterior, and ventral to dorsal. In this 

section, the original cloning and determination of expression patterns of each pair-rule 

gene are reviewed. 

1.3.1 even-skipped 

 eve was isolated from a library of bacteriophage clones containing genomic 

sequences (Macdonald et al., 1986). The eve homeobox was detected when the library 

was probed for homeoboxes of Antp, ftz, and Ubx. The sequence from the positive 

clones was mapped to region 46C of the polytene chromosome. Using northern blotting 

and RNase protection mapping of RNA from staged embryos, a 1.4 kb transcript for eve 

was found. This transcript had one 71 bp intron. The homeobox of eve was unique - 

unlike the other three homeobox-containing genes that had been characterized so far 

(ftz, Antp, Ibx), the homeobox was in the amino terminal region of the protein. It was 

also only 60% identical to other known homeoboxes. Within the homeodomain, there 

were two particular amino acids that contact DNA that varied in Eve, which were 

predicted to make it bind to different DNA sequences. Sixteen of the nineteen amino 

acids in Eve’s homeodomain were identical to the N-term of the Engrailed 

homeodomain. 

 The spatial pattern of eve was first expressed as a band in the peripheral, 

cortical cytoplasm in a gradient anterior to posterior. This band expanded to seven 

stripes, each stripe three nuclei wide and separated by five nuclei. When compared to 

the expression pattern of ftz, the stripes were found to be 180 degrees out of phase with 

ftz, and shifted anteriorly from ftz. This means that the seven major stripes were 
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expressed in the progenitor cells of the odd numbered parasegments. As gastrulation 

proceeded, seven weaker stripes were expressed posterior to the original so that eve was 

expressed in every segment. The stripes fade as the germband extends.  

1.3.2 odd-skipped 

To isolate odd clones, odd mutant alleles containing a P-element were first made 

using hybrid dysgenesis (Coulter et al., 1990). The oddhd1 mutant had an odd-like 

phenotype, and an in vivo hybridization of a polytene chromosome showed a P-element 

in the chromosome interval odd was mapped to, making this sequence the odd 

sequence. A bacteriophage library from oddhd1 mutants was used to isolate the clone. 

The line was first crossed to M strain females to get rid of all unwanted P-elements. 

Then the fragment containing the P-element in the odd locus was subcloned and used to 

screen a wildtype genomic library. Four clones were obtained from this library, which 

together overlapped a 25 kb region. This region was confirmed using other mutants. A 

northern blot using genomic fragments from this region as a probe found a 2.2 kb 

transcript. cDNA clones from embryonic libraries were used to find the transcript for 

cloning because the RNA had long repeats. The transcript was confirmed by comparing 

it to existing mutant restriction maps. The longest cDNA contained an ORF of 392 

amino acids. odd is the only pair-rule gene that encodes a zinc-finger DNA binding 

motif. 

The expression pattern of odd was determined by performing in situ 

hybridization on sections of embryos, using an antisense RNA probe from a cDNA 

clone derived from an odd transcript. Transcripts were first detectable as a stripe at 62% 
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egg length at end of 13th nuclear division. The transcripts extended posteriorly to 24% 

egg length in 3-4 broad regions. Six stripes formed during cellularization, as did a 

domain on the very anterior of the embryo. A posterior 7th stripe appears in late 

cellularization, after cell elongation is complete.  These seven stripes persist until 

gastrulation begins.  The stripes are 3 cells wide and the gaps are 4-5 cells wide. The 

gap between 6 and 7 is slightly wider. During gastrulation, the stripes double to 14 

stripes, one in each segment. Double staining with engrailed (which marks the posterior 

portion of each segment) for comparison found that the 7 odd stripes are slightly 

posterior to the engrailed stripes. 

1.3.3 paired 

The location of prd was found by chromosome walking from the gene extra sex combs 

on chromosome 2L (Kilchherr et al., 1986). The sequences from the walk were cut with 

ecoRI and used as probes for a southern blot of cDNA from 0-4 hour embryos. The 

probe hybridized to a 9.6 kb EcoRI fragment. A whole genome southern blot of wild 

type and prd mutants found the only difference was a 1.1 kb insertion within the 9.6 kb 

EcoRI fragment. This region was further confirmed by northern analysis, showing that 

the mutants had a larger allele for prd. 

The expression pattern of prd  begins in cellular blastoderm as a six nuclei wide 

band at ~70% egg length (Sander et al., 1980). This band widened after a round of 

nuclear division. During late syncytial blastoderm, five more bands appeared. The 

anterior band split, so that all seven bands are equal in width. The expression of all 

bands was stronger on the ventral side. The width of the six posterior bands was 5-7 
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cells, while the most anterior band was four cells wide. The gap between each band was 

2-3 cells wide. A new band formed near the anterior pole, only on the dorsal side.  A 

new band formed posterior to the 7th stripe. Bands 2-7 split, so that there is one anterior 

dorsal band, thirteen middle stripes, and one broader 14th stripe. The original seven 

stripes are shifted anteriorly to ftz. ftz stripes 1-7 and prd stripes 2-8 have their anterior 

border aligned, but prd stripes are twice as thick. 

1.3.4 hairy 

Sequences were first cloned from the h gene using the h1 mutation (Holmgren, 

1984).  The gypsy transposable element that caused the mutation was used as a probe to 

find the h gene out of a library. The sequence from this clone was then used as a probe 

in a wild type library.  Four clones covered a region of 40 kb, but the exact location of h 

was not found in this paper. h was previously mapped to chromosome subdivision 66D 

(Jeffery, 1979).  

To determine the expression pattern of h, two transcripts were found to be 

expressed in embryogenesis - one 2.1 kb and one 2.0 kb (Ingham et al., 1985). A 1.7 kb 

genomic probe was made from these sequences and hybridized to sections. A staining 

with ftz was used to compare to as a reference in same the embryo in the same slide and 

two adjacent slides. Transcripts were first detectable at the eleventh nuclear division, 

like ftz. Transcripts are first ubiquitous, then localized in two areas. In the blastoderm 

there are seven stripes on the ventral side, but the most anterior stripe is wide and 

interpreted as two stripes. The seven most posterior stripes are also expressed on the 

dorsal side. These stripes are the same width as ftz and are mostly located in the 
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cytoplasm –but with some nuclear presence. Stripes one and two flank the cephalic fold 

during gastrulation. By the time the germ band has finished extending, h stripes are 

gone. There is h expression in the hindgut and foregut at this point. 

1.3.5 runt 

run was isolated using the same method as odd. in situ hybridization was 

performed on a polytene chromosome to find P-elements in a run mutant (Gergen and 

Butler, 1988). This mutant was crossed to an M strain to remove unwanted P-elements, 

and then a genomic library was generated from this mutant and probed for P-elements. 

The wild type polytene chromosome was hybridized to probes made from all of these 

clones, and one was found to bind to the correct region. DNA fragments from this clone 

were used to scan a wild type genomic library. The clones from this screen covered a 50 

kb region, and were used to make a restriction map. 

cDNA probe of the transcript was made from poly(A)+ RNA isolated from 

blastoderm stage embryos. This probe was used on a southern blot of restriction digest 

fragments of the run region. Two of these fragments were hybridized to a northern blot 

of embryonic poly(A)+ RNA and total RNA, and they detected a 2.6 kb fragment. The 

fragment was found to be transcribed 5’ to 3’ by subcloning it into a vector with RNA 

polymerase promoters on each side and using RNA made from this vector as probes. To 

confirm the run clone, a rescue experiment inserting the clone into a run mutant with P-

elements was performed, but there was only partial rescue. 
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To determine the expression pattern, radiolabelled RNA probes were used. RNA 

was found in a broad domain over 10-70% egg length in nuclear cycle 13. The seven 

stripes became clear in nuclear cycle 14.   

1.3.6 sloppy-paired 

The enhancer detector transposon P[lArB] was used to find transposants on a 

CyO balancer chromosome, and two transposants mapped to the slp locus (Grossniklaus 

et al., 1992). One probe was made from each of these transposants and used to probe the 

genomic library. A 28 kb region was found. EcoRI fragments from this 28 kb region 

were used to probe northern blots of RNA from developmental timepoints. Two 

transcripts were found, a 1.5 kb transcript called slp1 and a 2.2 kb transcript called slp2. 

slp1 was expressed in 0-3 hour embryos and slp2 appeared in 3-6 hour embryos. Both 

transcripts were most highly expressed in 3-6 hour embryos. Both transcripts are 

expressed at a steadily decreasing amount throughout embryogenesis and then are 

expressed strongly in the first instar larvae and weakly in the third instar larvae. The 

genomic sequence of the two genes showed neither had an intron. The protein contains 

a forkhead domain, a DNA binding domain also found in Forkhead proteins and other 

transcription factors. When both slp1 and slp2 were mutated, a severe pair-rule defect 

was found, showing functional redundancy (Cadigan et al., 1994a; Grossniklaus et al., 

1992). 

To determine the expression pattern, an in situ hybridization of whole mount 

embryos with digoxigenin probes was performed. Slp1 is expressed first during the 

syncytial blastoderm in a region from 100-70% EL. The anterior most part of this 
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expression is lost as development continues into cellularization. This region then splits 

into an anterior cap and a stripe that becomes the first stripe of the seven metameric 

stripes. The six other stripes appear from anterior to posterior. These stripes start 

ventrolaterally and spread ventrally and dorsally, but never meet at the dorsal tip. The 

stripes are two cells wide with six cell gaps in between them. The fourth stripe is 

narrower in places - only one cell. The primary seven stripes are fully established 

during blastoderm, and towards the end of this stage, seven more secondary stripes start 

to form in the alternate segments. These secondary stripes also form anterior to 

posterior and laterally outwards, and do not connect at the dorsal tip. The anterior cap 

splits into two stripes at this time. A new anterior region of expression forms as well. 

The secondary stripes are fully established by early gastrulation, although they are 

slightly weaker than the secondary. Each of the stripes is two cells wide with 2-3 cells 

in between. Lateral cell clusters connected to each stripe by a thin strip appear during 

germ band extension. The stripes fade during germband retraction.  slp2 has similar 

expression, the main difference being a later start time. The primary stripes start 

expression just before cell membranes form, and the secondary stripes form just start 

forming during gastrulation. Double in situ hybridizations with en and ftz showed that 

slp is expressed in the posterior half of the each parasegment, just anterior to the 

boundary. 

1.3.7 fushi tarazu  

Antp cDNA clones were hybridized to a segment 30 kb upstream of the Antp 

gene. This segment was used as a probe for a northern blot, which hybridized to a 1.9 

kb transcript (Kuroiwa et al., 1984). Another study (Scott et al., 1983) also mapped ftz 
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to this site on the chromosome. EcoRI fragments from within a clone were used to 

determine which region of DNA hybridized to the 1.9 kb RNA in a northern blot.  

An expression profile of ftz was determined by hybridizing nick translated DNA 

to electrophoretically fractionated poly(A)+ RNA from embryos to adult.  The RNA 

was most highly expressed at 0-3 hours, then continued at 3-6 hours, and then fainter at 

6-12 hours.  

To map the ftz transcript, the direction of transcription was determined to be left 

to right using strand-specific probes on clones in single stranded phage vectors. A 

restriction map of the clones was made by S1 nuclease mapping. Restriction mapping of 

a clone from a cDNA library showed an intron of 150 bp. 

That same year, another study also isolated ftz and then determined its 

expression pattern (Hafen et al., 1984). A plasmid that contained gDNA homologous to 

ftz RNA transcripts was used to make a probe to hybridize to frozen sections of WT 

embryos at various stages, labeled with a radioactive tag. Transcripts were first barely 

visible after 11th nuclear division.  The stripes became clearer after the 13th nuclear 

division. At the cellular blastoderm, there was a definite pattern of seven stripes, which 

continued through gastrulation. During germ band extension, the 7th stripe extended to 

the anterior part of the dorsal side of the embryo. No transcripts were detected at the 

end of germband extension so that all stripes were gone by the time visible segments 

appeared. ftz was not expressed in  the anterior head segments, only in the posterior and 

thoracic and abdominal segments. 

 



17 

 

1.3.8 Odd-paired 

odd-paired was first identified in a screen that used EMS to generate lines with 

mutations on the third chromosome that caused cuticle defects (Jürgens et al., 1984). By 

examining the cuticle of embryos from thousands of lines, and then performing 

complementation tests, they were able to find 13 mutant alleles. The mutation of opa 

caused a typical pair-rule defect, for which the odd parasegments were missing. 

Unexpectedly given opa’s pair-rule function, it was found that opa was not 

expressed in seven pair-rule stripes, but instead was expressed ubiquitously throughout 

cellularization, blastoderm, and gastrulation. First, a northern blot with a probe against 

opa showed that a 3 kb mRNA was expressed starting at 2 hours after egg laying (AEL) 

and continues until 12 hours AEL. When the expression of this transcript was observed 

by in situ hybridization, it showed that it was first expressed in a band that was 10 cells 

at 80% egg length (EL), after which the expression expands to cover between 20% and 

80% egg length. The expression is lost from the ectoderm and expression fades in 

between stripes to form the typical 14 stripes after germband extension begins (Benedyk 

et al., 1994).  

1.3.9 tenascin major/odd oz 

A genomic library was scanned with a probe for the extracellular epidermal 

growth factor (EGF)-like domains of tena of Drosophila (Baumgartner et al., 1994). 

Several clones were found and used to create a map of the 110kb region of tenm. The 

region included 5 introns and a 7545 bp open reading frame. The putative protein 

contained two domains with tenascin-type EGF-like repeats. 
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tenm had two transcripts, found by northern blot, of 10.5 and 11.5 kb. While the 

11.5 kb transcript was found throughout development, the 10.5 kb transcript was only 

expressed in early embryogenesis. In situ hybridization showed that the 10.5 kb 

transcript was first expressed during the 14th nuclear cycle (stage 5). Expression begins 

as a broader region across the center of the embryo. This broad expression does not 

resolve into 14 stripes until germband extension is already underway, during stage 12. 

Transcripts were also expressed in cardiac cells and in the lymph gland at this time. 

After germband retraction, transcripts of tenm continued to be expressed in various 

structures of the embryo throughout development. Protein expression was seen in seven 

stripes in the blastoderm that are 4 to 5 cells wide. There was also some weak anterior 

and posterior staining. Because the RNA and protein patterns do not match, it was 

proposed that the protein was interacting with a receptor that was expressed in the seven 

pair-rule stripes. At the beginning of germband extension, the seven stripes of the 

protein were detected on cell surfaces in the mesoderm and ectoderm, then become 

restricted to the mesoderm, and faded completely by the end of germband extension. 

Other protein expression continues throughout development. In order to determine 

where these stripes were located, the protein pattern was compared to the expression 

patterns of Ftz, Prd, and Eve. Tenm was found to be localized to all odd numbered 

parasegments  

Another study discovered tenm at the same time, although they first named the 

gene odd oz (Levine et al., 1994). Monoclonal antibodies were made against tyrosine 

kinases and tyrosine kinase substrates. Performing immunohistochemistry on whole 

mount embryos, seven stripes located on the periphery of cells were found in cellular 
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blastoderm embryos with one of these antibodies. During gastrulation and germ band 

extraction, the seven stripes expanded to fourteen stripes. This protein continued to be 

expressed in various structures throughout embryonic development, most notably the 

CNS. The antibody was used to isolate a cDNA clone from a library. They found 10 and 

11 kb transcripts and used in situ hybridization to observe the RNA pattern, which they 

also found not be expressed in seven stripes in the blastoderm. They used the transcripts 

to hybridize to polytene chromosomes to isolate the gene location and clone it out from 

a genomic library. They used P-element insertions to verify that mutations in the cloned 

genes generated the tenm phenotype. 

1.3.10 Ftz-Factor1 

Ftz-F1 was first identified in a search for proteins binding an enhancer element 

of ftz that directs expression in a striped pattern, called the zebra element. First several 

factors were found in vitro using an exonuclease III experiment, and then a gel mobility 

shift assay was used to show a factor binding to the zebra element. This factor was 

purified and named Ftz-F1 (Ueda et al., 1990). 

 ftz-f1 was later shown to be maternally deposited (Guichet et al., 1997) and 

expressed ubiquitously through blastoderm by in situ hybridization (Yu et al., 1997; 

Yussa et al., 2001), which were unusual characteristics for a gene that gives the mutant 

phenotype of missing alternate parasegments typical of a pair-rule gene (Yu et al., 

1997). This was explained by many studies that show that Ftz and Ftz-F1 are obligate 

cofactors that interact directly to promote segmentation in the early Drosophila embryo. 

Ftz and Ftz-F1 physically interact both in vitro and in vivo (Guichet et al., 1997; Yu et 
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al., 1997) in wild type Drosophila embryos; they bind synergistically to DNA 

containing composite Ftz/Ftz-F1 binding sites (Yu et al., 1997), they interact through 

the Ftz-F1 AF2 domain (Guichet et al., 1997; Schwartz et al., 2001) and the Ftz LXXLL 

motif (Yussa et al., 2001),  and coordinately activate the transcription of target genes 

(Yussa et al., 2001). 

 

1.4 Pair-rule genes interact in a complicated network of activation and repression  

The pair-rule genes interact in a complicated network to ensure the correct 

formation of the parasegments. Several layers of repression and activation occur to 

define the exact borders of expression of the segment polarity gene engrailed. In order 

to help organize our understanding of this network, scientists have classified the pair-

rule genes somewhat arbitrarily into a hierarchy of primary, secondary, and tertiary 

pair-rule genes. The primary pair-rule genes are mostly activated by gap genes, are 

expressed early in the pair-rule cascade in the blastoderm, regulate each other to define 

their borders, and then help to activate or repress the later expressed pair-rule genes. 

Secondary pair-rule genes are activated and maintained by primary pair-rule genes, and 

also regulate each other to define their borders, but these genes do not regulate primary 

pair-rule genes. Pair-rule genes that might be categorized as tertiary would be activated 

by secondary pair-rule genes, and then work together to define the precise expression of 

en. However, the hierarchy of genes does not work as simply as defined by this order. 

After an examination of the interaction of pair-rule genes, summarized in Fig. 1-2, the 

accuracy of ordering them in this hierarchy will be reexamined below. 
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Figure 1-2. The network of pair-rule interactions in even and odd-numbered 

parasegments. The pair-rule genes repress (bar) and activate (arrow) each other in order to 

define their borders and ultimately to define the borders of en in the anterior of each 

parasegment. Dotted lines represent interactions that are not confirmed, as discuss below. 

Figure from (Jaynes and Fujioka, 2004). 

1.4.1 Primary pair-rule genes 

Because of its role early in the pair-rule hierarchy, h is considered one of the 

‘primary’ pair-rule genes, along with run and eve. Hairy represses both run and ftz. run 

was shown to be mildly affected in h mutants, with the seven stripes still appearing but 

broader and less defined. The run transcripts then increase between the stripes so that 

the expression is uniform by gastrulation (Ingham and Gergen, 1988). run and ftz were 

also activated by a h derivative containing heterologous transcriptional activation 

domains, showing that h represses run by binding the promoter sites of run (Jimenez et 
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al., 1996). ftz stripes do not resolve properly in h mutant, they are expanded but still 

show a periodicity (Howard and Ingham, 1986; Ingham and Gergen, 1988). 

run is also considered one of the ‘primary’ pair-rule genes. run’s initial broad 

expression begins before gap genes fade, characteristic of activation by gap genes, and 

is resolved into stripes by the other early acting pair-rule genes eve, run, and to a lesser 

degree, h (Klinger and Gergen, 1993). It is expressed at the beginning of the pair-rule 

network and controls the expression of other early expressing as well as later expressing 

genes. run represses h, as shown by an expansion of h stripes in run mutants (Hartmann 

et al., 1994; Ingham and Gergen, 1988). By the onset of gastrulation, the expression has 

become uniform between the first and last stripes (Ingham and Gergen, 1988). eve is 

expanded in run  mutants, suggesting run represses eve (the opposite of what was seen 

in h mutants) (Howard and Ingham, 1986; Ingham and Gergen, 1988). eve was rapidly 

repressed when run was expressed throughout the embryo with a heatshock promoter 

(Manoukian and Krause, 1993). eve was also activated by a run derivative containing 

heterologous transcriptional activation domains, showing that run represses eve by 

binding run CRE(s) (Jimenez et al., 1996). Once run has helped establish the early pair-

rule genes eve, h, and itself through autoregulation, it then has a later role in 

maintenance and the repression of some secondary pair-rule genes. ftz expression is lost 

in run mutants (Carroll and Scott, 1986; Howard and Ingham, 1986). These effects 

occur during cellularization for ftz expression (Carroll and Scott, 1986) and gastrulation 

for eve expression. Run regulates the expression of odd in the odd parasegments by 

repressing the posterior border of odd expression, which expands in run mutants 

(Jaynes and Fujioka, 2004). Run along with Opa are necessary and sufficient to activate 
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slp1 in odd parasegments, while Run represses slp1 with the help of Ftz in even 

parasegments (Swantek and Gergen, 2004). Run controls slp1 independently of its co-

repressor Groucho, shown by repressor function independent of the Runt binding motif 

VWRPY (Walrad et al., 2010) and a Runt and Ftz coexpression with reduced Groucho 

expression  (Walrad et al., 2011). Later, run is involved in both the repression and 

maintenance of en stripes, although it is possible this role is fulfilled by Run repressing 

the anterior end of eve at the anterior border of the odd parasegment (see section 1.5). 

A large amount of evidence points to eve also being a primary pair-rule gene. 

The strongest evidence comes from a series of studies that have shown that elements in 

the cis-regulatory elements (CREs) of individual stripes of eve are regulated by different 

maternal and gap genes (Fujioka et al., 1999; Goto et al., 1989; Harding et al., 1989; 

Small et al., 1992, 1996). The next line of evidence comes from the eve’s role early in 

the hierarchy. A promoter fusion experiment found the promoter region of eve that early 

expressed Eve binds to autoactivate and refine later expression of eve (Harding et al., 

1989) along with a deletion analysis of the cis-regulatory region of eve (Goto et al., 

1989). eve helps establish/maintain the posterior border of the later run stripes in even 

parasegments, and so run expands into the odd parasegments in eve mutants (Fujioka et 

al., 1995). This was further shown when eve was expressed under a heatshock promoter, 

which strongly repressed late run stripes (Manoukian and Krause, 1992). As a primary 

pair-rule gene, eve also regulates several later pair-rule genes through repression – odd, 

slp, and prd – which then directly regulate the formation of en stripes to set up the 

borders of the parasegments (see section 1.5). eve repression of the anterior third of late 

odd expression, in the even parasegments, is lost in eve mutants, which allows for the 
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expression of the even en stripe to be expressed in this space (Coulter and Wieschaus, 

1988; DiNardo and O'Farrell, 1987; Fujioka et al., 1995). When eve was overexpressed 

under a heatshock promoter, odd was rapidly repressed (Manoukian and Krause, 1992). 

Mutation of eve also causes slp to completely expand throughout the odd parasegments, 

meaning that eve must repress the posterior of slp (Fujioka et al., 1995; Jaynes and 

Fujioka, 2004). eve also represses the anterior portion of late slp in the odd 

parasegments, as shown when eve is expressed abnormally in run mutants and so odd 

expression, normally repressed by slp, expands to the domain of slp expression (Jaynes 

and Fujioka, 2004). Similar to the effect on slp, loss of eve also causes prd expansion in 

odd parasegments (Baumgartner and Noll, 1990; Fujioka et al., 1995), and 

overexpression of eve under a heatshock promoter represses prd (Manoukian and 

Krause, 1992). 

  

1.4.2 Secondary pair-rule genes 

ftz has been defined as a primary pair-rule gene by some because it is activated 

by maternal and gap genes (Carroll and Scott, 1986; Carroll and Vavra, 1989; Vavra 

and Carroll, 1989), but it has also been considered a secondary pair-rule gene because 

of its role slightly later in the network and its direct interaction with en. A number of 

studies have shown that ftz autoregulates, and the enhancers mediating this direct 

regulation have been identified (Hiromi and Gehring, 1987; Hiromi et al., 1985; Pick et 

al., 1990b; Schier and Gehring, 1992, 1993). In addition, anterior expansion of ftz 

stripes was observed after ectopic expression of ftz throughout the embryo (Ish-

Horowicz et al., 1989). Ftz activates odd, as well as activating en (see section 1.5). ftz 
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overexpression by a heatshock promoter activated odd, and ftz mutant embryos have 

reduced odd expression (Nasiadka and Krause, 1999). The same study showed that ftz 

mutants also have broadened slp stripes, but this is not due to Ftz repression of slp and 

prd, but is instead due to ftz activation of odd, which then represses slp and prd (Jaynes 

and Fujioka, 2004).  

Once Ftz activates odd, Odd then represses the posterior half of ftz early stripes, 

refining the stripes, as seen in the failure of ftz stripes to narrow odd mutants (Mullen 

and DiNardo, 1995) and in the repression of ftz when odd is overexpressed by 

heatshock (Saulier-Le Drean et al., 1998). Odd also represses prd, seen in odd mutants 

where prd expression continues throughout the even parasegment, instead of narrowing 

into prd stripes that overlap the even and odd parasegments  (Baumgartner and Noll, 

1990), and in overexpression of odd by heatshock repressing prd (Saulier-Le Drean et 

al., 1998). Odd represses slp, with late Odd repressing the anterior end of late slp in the 

even parasegments (Jaynes and Fujioka, 2004). This makes odd a repression 

intermediate between eve and slp, meaning that eve does not directly repress slp, but 

first represses odd which then represses slp. A complicated combination of mutant and 

expression analysis led Jaynes et al. to this conclusion. Perhaps a simpler and certainly a 

more definite way of understanding these pair-rule direct/indirect interactions would be 

to determine whether Odd binds directly to slp enhancers. 

Although the Ftz cofactor Ftz-F1 has not traditionally been studied in the pair-

rule network, it has been shown that for every one of the 16 non-pair-rule targets of ftz 

found so far, ftz and ftz-f1 have both been necessary to activate them, including en, in 

the segmentation pathway (Bowler et al., 2006; Hou et al., 2009)(this work). It seems 
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likely then, that if studies were done of ftz-f1 in the pair-rule network, it would show 

that ftz-f1 is necessary for ftz regulation of odd as well as en. 

Opa has been shown to be involved in the activation of slp (cooperatively with 

Run) (Swantek and Gergen, 2004) and in the regulation of prd, repressing the middle of 

prd stripes to split into their even and odd parasegment stripes and activating the 

anterior of the prd stripes to maintain them (Baumgartner and Noll, 1990). However, 

there is no evidence that these interactions are direct, and so the role of opa in the pair-

rule network needs to be explored further. Opa has also been shown to up-regulate en 

expression through repression of odd (Benedyk et al., 1994). The presence of a putative 

Opa-binding site in the en intron enhancer suggests that Opa may also exert a direct 

effect on en (Florence et al., 1997). 

1.4.3 Tertiary pair-rule genes 

The final pair-rule genes are activated by secondary pair-rule genes and interact 

directly with en. Slp represses the posterior half of early odd stripes, so that slp mutants 

cause prd stripes to expand throughout the even parasegment (Jaynes and Fujioka, 

2004). This odd expansion has an effect on en stripe formation more thoroughly 

explained in section 1.5. The posterior half of early ftz expression is repressed by slp, 

shown by the failure of ftz stripes to narrow in slp mutants (Cadigan et al., 1994b).  Slp 

also represses the late odd stripes in the odd parasegments. It was shown that late odd 

stripes are lost in eve mutants (Fujioka et al., 1995), but this was shown to be caused by 

the Slp repression of odd once slp stripes were expanded in eve mutants (Jaynes and 

Fujioka, 2004). Jaynes et al. (2004) also showed that slp represses eve in the odd 
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parasegments by demonstrating that en stripes, usually lost in eve mutants, are returned 

to expression in eve, slp double mutants. In vitro binding and transgenic analysis shows 

that Prd activates late eve (Fujioka et al., 1996). 

The terms ‘primary, secondary, and tertiary’ pair-rule genes are well established 

in the literature. However, after examining the pair-rule interactions, this assignment is 

ambiguous at best. Different genes have been defined as primary – h, run, and eve are 

often considered the primary pair-rule genes (Akam, 1989a). However, one of the 

defining features of a primary pair-rule gene is activation by gap genes, which is also 

true of ftz (Carroll and Scott, 1986; Yu and Pick, 1995) and prd (Gutjahr et al., 1993). A 

defining feature of a tertiary pair-rule gene is the direct regulation of en, which both ftz 

and prd also do. Another factor that adds confusion to the order is the fact that the 

expression of most of pair-rule genes is split into early and late expression. This leads to 

differences in establishment and maintenance of genes. For example, eve is first 

established by gap genes, but later expression is maintained by Slp, a tertiary pair-rule 

gene. Run is also regulated by secondary and tertiary pair-rule genes ftz and prd 

(Klinger and Gergen, 1993). 

Enough exceptions to the rule have now been found to question whether the 

original rule should be applied any longer. It would be convenient if the pair-rule 

network did follow a set cascade of genes, as the segmentation network does, but the 

evidence no longer supports this way of thinking. Trying to insert pair-rule genes into 

categories that do not exist only makes it more difficult understand the complicated 

interactions in this network. 
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1.5 The pair-rule genes work together to establish en expression 

The segment polarity gene en is a highly conserved segmentation gene 

important in the establishment of parasegments. eve and ftz are two major controls that 

define the expression of en and thus the parasegment borders. They have a 

complementary expression pattern, with eve stripes being expressed in the odd 

parasegment primordia and ftz stripes expressed in the even parasegment primordia 

(Harding et al., 1986). It has been shown that the odd parasegments narrow (Frasch and 

Levine, 1987; Fujioka et al., 1995; Fujioka et al., 2002) and expand (Fujioka et al., 

1999; Hughes and Krause, 2001) with the reduced and extended expression of eve. The 

odd parasegments also expand when the repressive function of eve is increased (Fujioka 

et al., 2002; Kobayashi et al., 2001). Similarly, when Ftz is overexpressed (Hughes and 

Krause, 2001) or its stability is increased (Kellerman et al., 1990), the even 

parasegments expand. Ftz also binds to an enhancer located in the first intron of en 

(Florence et al., 1997), showing direct regulation by Ftz. The expansions of one 

parasegment always come at the cost of the other, which become smaller. en is 

expressed at the anterior end of the eve and ftz stripes, and so the anterior of each 

parasegment (Ingham et al., 1988; Lawrence et al., 1987). While eve and ftz are the key 

players, seven of the pair-rule genes work together in a complicated network of 

activation and repression to ensure that the control of en expression is tightly regulated. 

Once en stripes have been established, they must be maintained. en stripes are in part 

maintained by late eve expression (Fujioka et al., 2002) and continued slp expression. 

en itself represses eve to end its expression (Harding et al., 1986), although it is not 

known if this repression is direct. 
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 Early research identified the genes that directly activated or repressed en, as well 

as the genes that regulated those direct genes. It was shown that even en stripes were 

lost in ftz mutant embryos and odd en stripes were lost in prd mutants (DiNardo and 

O'Farrell, 1987) and that en expression was expanded with ftz overexpression by 

heatshock (Ish-Horowicz et al., 1989), indicating ftz and prd activate en even and odd 

stripes, respectively. odd and slp are direct repressors of en. odd defines the posterior 

border of even en stripes, as can be seen in the posterior expansion of en stripes both in 

odd mutants (DiNardo and O'Farrell, 1987), in overexpression of eve leading to odd 

repression (Manoukian and Krause, 1992), and in the restoration of cuticle defects, 

normally seen in odd mutants, in odd, en double mutants (Coulter and Wieschaus, 

1988), and the posterior expression of even en stripes ending sharply at the expression 

of the odd stripes (Fujioka et al., 1995). slp was shown to define the anterior border of 

en stripes through repression as overexpression led to en repression (Cadigan et al., 

1994a), through anterior expansion of en stripes in slp mutants (Cadigan et al., 1994b), 

and lost en stripes in eve mutants returning in eve, slp double mutants (Jaynes and 

Fujioka, 2004). 

 

Along with these known regulators of en, there is speculation that run could be a 

direct repressor of en as well. There was an idea that run has a redundant function with 

slp, directly repressing odd en stripes. Odd en stripes were lost in run ectopic expression 

by heat shock (Aronson et al., 1997), even though expression of early eve remained 

unaffected (Manoukian and Krause, 1993). Additionally, overexpression of run both 
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under the control of a heatshock promoter (Tsai and Gergen, 1994) and using the GAL4 

system (Tracey et al., 2000) resulted in the repression of en. And it was shown that the 

establishment of en stripes is dependent on run and tramtrack expression (Wheeler et 

al., 2002) but not dependent on run’s repressive function with its cofactor Groucho 

(Aronson et al., 1997; Wheeler et al., 2002) or Hairless (Walrad et al., 2011). This 

model is consistent with the fact that en expression expands throughout the ftz domain 

in run,slp mutants (Jaynes and Fujioka, 2004). However, this redundancy is not the only 

possible explanation. Instead, this expansion could result from loss of both odd and slp 

expression in these double mutants. It was shown that slp is an intermediate between 

eve and en, and so a change in eve expression could affect slp and then en expression. It 

was also shown that the anterior border of en may be under the control of odd when slp 

is null (Jaynes and Fujioka, 2004), because slp is no longer present to repress en, and 

odd expression overlaps with slp in the even parasegment and also represses en, it takes 

on that role. In run mutants, early eve repression is lost and early eve expression extends 

into the even parasegment (Fujioka et al., 1995). If runt mutants also caused the 

expansion of late eve expression, then late eve would repress slp in the even 

parasegment, leading to the expansion of en stripes anteriorly. To summarize the 

possible results from this model: 1) in a single slp mutant, odd would still be present 

and so would repress en normally  (Jaynes and Fujioka, 2004) 2) in a single run mutant, 

slp would be repressed and so en would extend anteriorally (Aronson et al., 1997; 

Manoukian and Krause, 1993) in a run,slp double mutant, expression of both odd and 

slp would be lost and en would expand anteriorally (Jaynes and Fujioka, 2004). Thus, 

these results could have been caused either by a redundancy in slp and run direct 
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repression of the anterior border of the even en stripe, or it could have been caused by 

run directly repressing eve expression, keeping eve expression from expanding into the 

even parasegment.  

 

  There is a lack of definite evidence for either of these possibilities. This is an 

excellent example of how the effects on expression in loss of function or overexpression 

mutants is not enough to determine direct regulation, as the effects on the rest of the 

network may confuse the results about the gene of interest. Only so much can be 

learned by comparing different expression patterns in different sets of mutants. To truly 

test for direct regulation, the enhancers for the pair-rule genes must be found and the 

binding sites for the suspected activators and repressors must be mutated to confirm a 

direct effect. 

 

Indirect interactions are just as important as the direct interactions in ensuring 

well defined en stripes. The pair-rule gene eve is an important control point in the 

network of en stripe formation even though it does not regulate en directly. Eve is 

necessary for en stripe expression in both odd and even parasegments, as shown by the 

failure of the trunk region to develop in eve mutants (Nusslein-Volhard et al., 1985) and 

the lack of both sets of en stripes in eve null mutants (Harding et al., 1986; Macdonald 

et al., 1986). Beyond just the presence of some of these indirect and direct regulators, 

the concentration of the regulators may affect which targets are being regulated in each 

parasegment. The concentrations of Eve and Ftz may be important in establishing the 

expression of en. eve regulates en expression by controlling both ftz and prd expression 
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through repression. eve was shown to work in a gradient dependent fashion on several 

pair-rule genes (Manoukian and Krause, 1992). The expression pattern of pair-rule 

genes in eve embryos showed that early activation of eve was essential for the 

establishment of all en stripes, while later expression of eve was important for the 

continued strong expression of the odd en stripes (Fujioka et al., 1995). This led to the 

first model of a gradient-dependent regulation of en stripes, which suggested that en 

could only be expressed in odd parasegments when eve expression was strong enough 

to repress en repressors slp and runt, but weak enough to allow expression of the en 

activator prd. This odd parasegment network was next to the even parasegments, in 

which ftz expression activated the even en stripes. eve repressed ftz expression, 

guaranteeing it would not activate en expression in the odd parasegment. 

While this model held after years of further study, a review of pair-rule literature 

was used to make an expanded model explaining the effects of concentration changes of 

both of eve and ftz on how each en stripe is set (Fig. 1.3) (Jaynes and Fujioka, 2004). In 

this model, it was proposed that reduced expression of eve, away from the anterior 

border of the odd parasegment, and the increased expression of ftz, into the posterior of 

the odd parasegment, could change the downstream network to narrow the odd 

parasegment. Reduced eve expression would change the border of repression for slp and 

prd. slp only requires weak expression of eve to be repressed, and so slp expression 

would expand until the beginning of the reduced eve expression. prd requires strong eve 

expression, and so would continue to be expressed until it reached the domain of strong 

eve expression. Thus, the odd en stripe would be activated by prd more posteriorly into 

the region of the odd parasegment and would be repressed by slp also more posteriorly.  
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The entire en stripe would be moved posteriorly from its normal position. Since the en 

stripe defines the border of the parasegment, the parasegment itself would also move to 

posterior from its normal position, and the even parasegment on its anterior would 

expand with the expansion of wg expression. In the same vein, an increased ftz 

concentration would shift the odd parasegment posterior border anteriorly, narrowing 

the parasegment on the posterior side. In this case, increased ftz would lead to a shift in 

activation of both en, which would more anteriorly, and odd, which would repress the 

posterior border of en more anteriorly. This model suggests that small changes in the 

gradients of either of these two key genes would have a large effect on the placement of 

the parasegments, and the formation of the embryo. 

  

 

Figure 1-3. A model suggesting small changes in the expression of eve and ftz could 

have large effects on the borders of the parasegments. A change in the wild type 

expression of eve (blue wave and darker expression bars) to a reduced expression (yellow 

wave) creates a shift of its targets’ expression to the posterior (lighter expression bars). 

Similarly, an increase in ftz expression (dark green expression bar) causes an anterior shift 

in the expression of its targets. These shifts in expression cause a change in the position of 

the border of the odd numbered parasegment. Figure from (Jaynes and Fujioka, 2004). 
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1.6 Pair-rule Conclusions 

The network of pair-rule interaction to establish en expression has largely been 

elucidated through a large number of experiments that examined the effects of 

expression patterns of pair-rule genes in other pair-rule mutants. These mutant and 

expression pattern analyses are useful and relatively simple, but they cannot determine 

if control of pair-rule expression is direct or indirect. For example, it was thought that 

Ftz repressed slp until it was shown that this repression occurs through the activation of 

odd by Ftz, which then represses slp. Another difficult and unresolved case is the 

question of whether Runt directly represses en or does so through a cascade of 

repression through eve and slp (discussed in section 1.5). The only way to fully 

determine these network interactions is to determine the binding of the pair-rule 

transcription factor to the enhancer of its candidate target. However, enhancer analyses 

are much more difficult, as searching for enhancers is a time-consuming process. Even 

so, to have a complete understanding of the pair-rule network, it will be necessary to 

find enhancers for pair-rule genes, and after doing so find all functional binding sites 

within the enhancers. 

To date, the body of work elucidating Ftz direct binding of targets is the best 

example of a complete set of experiments showing direct interaction. It has been shown 

that ftz autoactivates beyond doubt. First, the ftz enhancer was identified through a 

deletion analysis of the genome upstream from the transcription start site of ftz, and then 

it was shown that Ftz was necessary for proper ftz expression (Hiromi and Gehring, 

1987; Hiromi et al., 1985; Ish-Horowicz et al., 1989; Pick et al., 1990b; Schier and 

Gehring, 1993). Finally, it was shown that Ftz binds directly to the ftz enhancer by 
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mutating Ftz binding sites, which resulted in a loss of enhancer-directed expression. 

This loss of expression was rescued by expressing a Ftz protein with altered DNA 

specificity that gained the ability to bind these altered Ftz sites (Schier and Gehring, 

1992). Additionally, the direct interaction of Ftz with its target en has been thoroughly 

established. Again, first the expression of en was shown to be dependent on ftz 

(DiNardo and O'Farrell, 1987; Howard and Ingham, 1986), and then an en enhancer was 

found in the first intron of en that contains Ftz (and Ftz-F1) binding sites. When the Ftz 

binding sites were mutated, a loss of lacZ expression was observed in an en-lacZ 

reporter gene (Florence et al., 1997). 

          In this work, I set out to further understand how Ftz works with its cofactor Ftz-

F1 to identify and activate its targets. To do this, we first identified Ftz/Ftz-F1 targets 

through a microarray experiment. We next identified candidate enhancers of these target 

genes and tested their function in vivo. Once bona fide enhancers were found, they were 

analyzed to learn more about what motifs they contain and which other transcription 

factors could be involved in Ftz/Ftz-F1 target binding. Learning more about how 

Ftz/Ftz-F1 bind their targets will give us the ability to more fully understand their place 

in the pair-rule gene hierarchy, as well as giving more insight into how other pair-rule 

genes may regulate both their pair-rule and segmentation targets. 
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Chapter 2: Cadherin Expression in the early Drosophila embryo 

 

2.1 Introduction 

In order to understand how pair-rule genes promote segmentation, the genes 

they regulate, which encode products that actually carry out this process, must be 

determined. In Drosophila, segments get established simultaneously during germband 

extension, but the morphological and molecular basis for this process is not understood. 

It is known that in order to expand, the cells of the germband intercalate, causing the 

germband to thicken and lengthen. Once intercalation has occurred, the cells that have 

moved into position next to each other remain together as the germband expands and 

retracts. This suggests that cell adhesion may be essential for this process, and so for the 

formation of segments. 

 

As cell surface proteins that bind like proteins and can initiate signaling within 

the cell, cadherins have many functions in development, including cell-cell adhesion, 

cell sorting, boundary formation, and cell movement. Cadherins have an extracellular 

domain and an intracellular domain. The extra-cellular domain is often dependent on 

calcium and involved in binding other cadherin molecules of the same type. The 

intracellular sequence binds the actin cytoskeleton, both anchoring the cadherin to the 

cell and allowing the cadherin to signal cell shape changes and movement (reviewed in 

(Halbleib and Nelson, 2006). There are 17 cadherins in the Drosophila genome (Hill et 

al., 2001; Hynes and Zhao, 2000). Three of them, (Shotgun/DE-Cad, Cadherin-N/DN-

Cad, CadN2), fall into the category of classical cadherins, which includes E-cadherin, 
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which functions in the epithelia, and D-cadherin, which functions in the nervous 

system. Seven of the Drosophila non-classical cadherins, which do not contain a 

catenin-binding domain (Fung et al., 2008; Hill et al., 2001; Tepass et al., 2000) can be 

categorized as Fat-like (Fat, Fat2, Dachsous), protein kinase cadherins (Cad96Ca and 

Ret), seven-pass transmembrane cadherins (Starry Night/Flamingo), and the calsyntenin 

cadherin Calsyntenin-1 (Zartman et al., 2009) . The remaining seven cadherins 

(Cad74A, Cad86C, Cad87A, Cad88C, Cad89D, Cad96Cb, Cad99C) are not categorized 

(Fung et al., 2008; Hill et al., 2001). Because of their function as cell-cell adhesion 

molecules, cadherins are candidates for the role of cell adhesion that holds cells together 

germband extension. Identifying such a role would be a first step towards understanding 

how pair-rule genes promote segmentation. To determine if cadherins are involved in 

segmentation, in situ hybridizations against the RNA for all Drosophila cadherins were 

performed in the embryo. It was determined that they did not have a striped expression 

pattern that could suggest a role in segmentation, and so are unlikely to be involved in 

segmentation. 

 

2.2 Methods and Materials 

Whole mount in situ hybridization  

Standard protocols were followed for in vivo hybridization (Kosman and Small, 

1997; Tautz and Pfeifle, 1989) with one modification - in place of Proteinase K 

treatment, embryos were heated at 95°C for 5 minutes. Digoxigenin-labeled RNA 

probes were made by isolating coding and/or 3’UTR sequences by PCR using a reverse 

primer with the T7 polymerase promoter sequence (TAATACGACTCACTATAGGG). 
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Sheep anti-digoxigenin (1:2000, Roche) was used for RNA probe detection. Stainings 

were visualized using DIC on a Leica DMRB microscope. 

 

2.3 Results 

With such functions as cell adhesion, sorting, and movement, it is not surprising 

that cadherins play a vital role in development. With so many roles and functions 

already known in development, it stands to reason cadherins may have important 

functions in the early Drosophila embryo. The first step to discovering this possible 

function was to examine the expression of the 17 Drosophila cadherins in the early 

embryo, from blastoderm formation to germband extension, when pair-rule genes are 

expressed in their peak patterns of seven stripes and when segmentation is determined 

A target of a pair-rule gene would be expressed in stripes corresponding to the pair-rule 

gene regulating it. Expression of the 17 cadherin-like genes was examined by in situ 

hybridization to early and late embryos. Pools of embryos, that were collected for both 

0-6 hours and overnight, were fixed, and RNA probes were used against individual 

cadherin mRNAs to see where they were being expressed. Cadherin expression in the 

early D. melanogaster embryo for seventeen cadherins was examined (Fig. 2-1). Only 

one cadherin, fat, showed a reliable striped pattern, but it did not appear until the end of 

germ band elongation, after gastrulation was complete. With such late expression, it is 

unlikely fat is directly regulated by a pair-rule gene. Staining of an older embryo 

showed that fat was not a Ftz/Ftz-F1 target, as it is expressed on the anterior of each 

alternate segment at late stages, while Ftz expression is reduced to the posterior of each 
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segment. Because no other cadherin had a striped expression pattern, the cadherins do 

not appear to be targets of Ftz/Ftz-F1 or any pair rule gene. 

 

Figure 2-1. Expression of cadherins in D. melanogaster embryos. Each cadherin 

expression pattern is shown in both early and late embryos. Cad74 showed faint striped 

staining at stage 8. The shg image, taken from the Berkely Drosophila Genome Project 

expression database, showed strong striped expression in embryos as early as the end of 

germband elongation. 

 

2.4 Conclusion 

Because the cadherins were not expressed in stripes patterns during blastoderm 

and gastrulation stages, it is unlikely they have a role in segmentation. Therefore, we 

did not continue with this project but instead decided to focus on finding targets of the 

pair-rule genes Ftz/Ftz-F1. 
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Chapter 3: Conservation of ftz in Diptera 

3.1 Introduction 

The diverse body plans found in the animal kingdom are established early in 

embryonic development by a small set of regulatory conserved genes (Carroll et al., 

2005).  How this small, conserved group of genes could control such different forms is 

a difficult question. The regulation of expression of these genes is one key feature 

influencing their ability to create diversity. A single gene can direct the formation of 

two very different structures in different contexts. For example, the human Pax6 gene, 

which controls the formation of a human eye, drives the formation of a fly eye when 

inserted into a fly (Halder et al., 1995). This experiment and many others have 

suggested that changes in the regulation of developmental genes allowed for their 

evolution.  Because regulatory genes are often pleiotropic, meaning a gene is used at 

different times and for different purposes throughout development, even a small change 

to the coding region could have catastrophic consequences to the organism (Stern and 

Orgogozo, 2008). This reasoning suggested that a major driving force behind the 

evolution of developmental strategies has been change in the cis-regulatory elements 

(CREs) of these pleiotropic regulatory genes (Carroll, 2008; Prud'homme et al., 2007). 

Mutations in CREs allow changes in the timing and location of gene expression, giving 

new function to already existing genes. For example, the loss of limbs in snakes was not 

due to a loss of gene that controls the development of limbs, but instead to the 

expansion of the expression of a Hox gene that controls development of thoracic 

vertebrae into the forelimb region (Cohn and Tickle, 1999). Similarly, the Hox genes 

expressed in broad overlapping domains in the trunk of the ancestral brachiopod 
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crustacean Artemia franciscana evolved through changes in their CREs in at least two 

lineages, leading to compartmentally defined expression of Ubx and Abd-A in both the 

insects and the malacostracan crustacean Porcellio scaber, while the actual expression 

patterns evolved differently in both (Abzhanov and Kaufman, 2000). By changing the 

CREs, the proteins themselves were left unaffected, allowing them to continue their 

function in their often necessary ancestral roles while gaining new functions in other 

cell types. 

However, changes to protein coding sequences are also essential during 

evolution, and several examples have been discovered to show this as well. For 

example, while CRE changes allowed for expression differences of Ubx to lead to a 

change in its role in trunk formation, changes in its protein sequences allowed it to gain 

a function - the repression of the limb-forming gene Distal-less (Grenier and Carroll, 

2000). Ubx is expressed in both the thoracic and abdominal segments in crustaceans 

without affecting limb formation, allowing for varying numbers of limbs throughout. 

With the acquisition of the repression domain, Ubx became restricted to abdominal 

segments in hexapods, repressing limb formation in these segments but leaving limbs in 

the thoracic segment untouched (Galant and Carroll, 2002; Ronshaugen et al., 2002). 

Another example of a protein that changed function is the homeodomain transcription 

factor Ftz (Lohr and Pick, 2005; Lohr et al., 2001; Telford, 2000). In Drosophila, Ftz 

binds DNA with its cofactor Ftz-F1 (Florence et al., 1997; Guichet et al., 1997; 

Schwartz et al., 2001; Yu et al., 1997; Yussa et al., 2001) to activate genes involved in 

segmentation (Bowler et al., 2006; Hou et al., 2009) and the segment polarity gene en 

(DiNardo and O'Farrell, 1987; Florence et al., 1997; Harding et al., 1986; Hughes and 
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Krause, 2001; Kellerman et al., 1990). In Drosophila, ftz is essential for establishing the 

even numbered parasegments. When Dm-ftz expression is lost, the primordia of the 

even parasegments do not develop (Schwartz et al., 2001; Yu et al., 1997), and 

reciprocally, when it is ectopically expressed throughout the embryo, the primordia of 

the odd parasegments do not develop, a phenotype which has been dubbed the ‘anti-ftz’ 

phenotype (Struhl, 1985). 

The function of ftz completely changed during arthropod evolution from an 

ancestral Hox gene to a pair-rule segmentation gene in Drosophila (Alonso et al., 2001; 

Gibson, 2000; Lohr et al., 2001). ftz first arose as a duplication of the Hox gene Antp 

(Telford, 2000). With a similar sequence and function to Antp and the other adjacent 

Hox gene Scr (Lohr et al., 2001), the ftz-ancestor had no constraint on its function and 

was free to evolve (Force et al., 2005; Ohno, 1970). Looking into the history of ftz, 

when and where it changed during the evolution of arthropods, gives insight into how 

genes are able to gain new roles. ftz changed both its expression and function to gain its 

new role as a segmentation gene. Homeotic genes are expressed in a single region of the 

embryo, where they function to define the identity of that body region (McGinnis and 

Krumlauf, 1992). In basally branching arthropods, ftz is expressed in a single broad 

region expected for a homeotic Hox gene, but in Drosophila, ftz is expressed in the 

typical seven stripe pattern of a pair-rule segmentation gene (Hughes and Kaufman, 

2002; Janssen and Damen, 2006; Papillon and Telford, 2007; Telford, 2000). In 

addition to this change in expression pattern, the ftz protein sequence changed, allowing 

ftz to gain a role in segmentation. Specifically, Hox proteins find their specific target 

genes by binding DNA with a cofactor Extradenticle, and they bind Exd through a 
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YPWM motif upstream of the homeodomain (Johnson et al., 1995; Mann and Chan, 

1996; Passner et al., 1999; Zhao et al., 1996). Drosophila Ftz lost this YPWM motif and 

so lost its potential to function as a homeotic gene (Lohr et al., 2001). Instead, Ftz 

gained an LRALL motif, which allowed it to bind to a new cofactor, Ftz-F1, giving it 

specificity to bind new target genes (Schwartz et al., 2001; Yu et al., 1997; Yussa et al., 

2001). With this new ability, ftz gained the potential to regulate segmentation (Lohr et 

al., 2001) and was incorporated into the segmentation pathway (Lohr and Pick, 2005), 

where it became necessary for body plan formation. It still needs to be determined when 

in evolution these changes took place. Did the change in expression pattern come first, 

or the change in protein sequence? Could an animal survive a change in expression 

pattern before a change in function, or vice versa? Answering these questions will help 

clarify how it is possible for genes to gain new functions without harming the complex 

organism in which the change occurred. 

To study the change in expression and function of ftz, the ftz expression pattern 

and DNA sequence has been determined in several species spanning Arthropoda 

(Heffer et al., 2010). It was shown that the first step was the change from a Hox-like 

expression pattern to stripes. ftz lost its Hox-like expression in Crustacea and then 

gained striped expression at some point within Insecta, although the striped expression 

was lost again within this clade as ftz is not expressed in stripes in all derived insects. 

Along with this, the YPWM motif degraded at least eight separate times, first seen in 

Pancrustacea. Finally, the LXXLL motif was stably gained at one point during 

evolution, at the base of holometabolous insects. This allowed Ftz to interact with its 

new cofactor Ftz-F1. These changes allowed for the loss of homeotic potential and the 
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gain of segmentation potential.  However, these studies did not show the actual function 

of Ftz in the species harboring different forms of Ftz, rather they used ectopic 

expression in Drosophila to assess functional potential. Functional studies outside of 

model species like Drosophila melanogaster is challenging.  It is now possible to use 

RNAi to knock down gene expression through feeding or injection in many species, and 

this technique is extremely useful in functional studies. Still, it is better to create stable 

lines with a permanent gene alteration to assess gain and loss of function phenotypes. 

 In this study, I generated transgenic Aedes aeypti (Aa), the mosquito vector for 

the viruses that cause Dengue and Yellow Fever, to determine the expression and 

function of ftz within Diptera. Aedes diverged from Drosophila 210 million years ago 

(Yeates and Wiegmann, 1999), at the base of Diptera, such that Aedes and Drosophila 

represent diverse branches.  I reasoned that if the expression and function of ftz is 

conserved between Drosophila and Aedes, it is likely conserved throughout all of 

Diptera. The Aedes genome was already sequenced and annotated (Nene et al., 2007), in 

situ hybridization techniques were worked out (although are still unreliable), and ability 

to make transgenic mosquitoes already was well honed, making Aedes a good candidate 

for this study. However, in situ techniques proved to be quite difficult. To determine the 

expression of ftz and its cofactor ftz-f1, reverse transcriptase (RT)-PCR was performed 

for several time points in the early embryo, showing a similar expression progression to 

Drosophila. To assess the function of Aa-ftz, a transgene was generated in which Aa-ftz 

was placed downstream of a heat shock promoter. Transgenic mosquitoes were 

generated in order to make animals that overexpress ftz. We attempted to determine the 

function of ftz by overexpressing ftz by heat shock and then observing any segmentation 
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abnormalities, either by observing developed embryos or observing the expression 

pattern of a known Ftz target in early embryos. Unfortunately, technical difficulties with 

in situ hybridization precluded an analysis of embryonic phenotypes.  

 

3.2 Methods and Materials 

Mosquito rearing 

Mosquitoes were kept at 28o C and 68% humidity with a 12 hr. light: 12 hr. dark cycle. 

Adults were fed with cotton balls soaked in 10% glucose and laid on the mesh top of a 

cage. To induce egg laying, adults were starved overnight, and were then fed bovine 

blood. The blood was first heated in an incubator and then aliquoted into tubes with 

parafilm stretched over one side to simulate a skin membrane. Eggs were collected by 

placing cups with a small amount of water in the bottom and filter paper on the sides, 

constantly wet from the water, into the adult cages. To induce larger amounts of 

egglaying in a short amount of time, bloodfed females were removed from the large 

cage and placed in a small collection cup, with water covering the bottom and filter 

paper on the sides, to encourage them to lay more eggs. Filter paper with eggs were 

placed in larger trays filled with water, where larvae would live when they hatched. 

Larvae were fed by pouring a small amount of ground dog food on the surface of the 

water, after which it would sink to the bottom. Pupae were selected and moved to cages 

to eclose as adults. 
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Generation of Aedes transgenic line 

Aedes aegypti ftz was isolated from genomic DNA by PCR, using the primers                 

5’ CTAGAA GCTTATGGCAGCCGCATATCCATAT and                                                         

5’ GATCAAGCTTGATCAGAGGTCAATAAA AAAATGTTTGCTGATAT. The 

gene was inserted into pCaSpeR-hs in order to gain the Hsp70 heatshock promoter. The 

heatshock promoter+ftz was cut from the plasmid and inserted into pBac[3xP3-

EGFafm], a plasmid used for mosquito transformation as it has a high rate of insertion 

into the genome (Kokoza et al., 2001). This construct was designated hs-ftz. 

Transgenic mosquito lines were generated by the University of Maryland IBBR 

Insect Transformation Facility. Two transgenic lines were established from this 

transformation. The 3xP3-EGFP marker in the piggyback plasmid allowed for mutant 

animals to be selected under a fluorescent microscope, as it expresses EGFP in the eyes 

the larval stage. Selection of fluorescing larvae continued with each generation until all 

larvae were fluorescing for three generations in a row. Once this occurred, the lines 

were thought to be homozygous. Lines were occasionally tested for homozygosity by 

back crossing with wild type mosquitoes. 

Reverse Transcriptase-PCR expression profile 

 Aedes aegypti embryos were collected for 3 hours and aged to five different ages – 0-3 

hours, 3-6 hours, 6-9 hours, 9-12 hours, and 12-15 hours. The embryos were ground in 

RNAlater Solution with mortar and pestle and stored overnight at -20oC. RNA was 

extracted using the Omega Microelute Total RNA Kit, then converted to cDNA using 

the Qiagen Quantitect Reverse Transcription Kit. Primers were designed to amplify 



47 

 

three genes out of this cDNA. The primers were designed to span introns so that any 

remaining gDNA would not be amplified. The sequences were: actin – 5’ 

TGACTCAGATCATGTTTGAGACCT and 5’ GTTGCCAATGGTGATGACCT, ftz – 

5’ GTTAATACTCCGCCACTTTCAC and 5’ GCCAAATTGTAATCCAACTGAG, 

and ftz-f1 – 5’ GGACAAGATCTCCGGCTTCC and 5’ 

TGCGATCCTCACGAATTGCT. These primers were used to amplify actin, ftz, and 

ftz-f1 from the cDNA of each timed collection, to examine the expression during the 

first fifteen hours of Aedes aegypti embryonic development. The PCR conditions for all 

four primer sets were: 25 cycles, annealing temperature of 55o C with a one minute 

elongation time. 

In situ hybridization and antibody staining 

Embryos were fixed and dissected as described by others (Clemons et al., 2010b). 

Established protocols were followed for in situ hybridization (Haugen et al., 2010) and 

antibody staining (Clemons et al., 2010a). RNA probes were transcribed using template 

generated by PCR amplification of genomic DNA, using primers with T7 polymerase 

sequence added to the 5’end of the reverse primer. For antibody staining, engrailed 

antibody 4F11 (Patel et al., 1989) was used. 

Heatshock 

To express Aa-ftz ectopically, embryos were collected for three hours and then aged to 

the appropriate time. To heatshock, embryos were removed from filter paper using a 

paintbrush and placed in a scintillation vial with water. The vials were placed in a 37o C 

water bath for the appropriate time. To remove the embryos from the vial, the water was 
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poured over a new filter paper and placed back into a cup with shallow water to allow 

aging to continue. Aging progressed either until germband extension (9-12 hours), at 

which point embryos were fixed for en antibody staining, or until they were fully 

developed (72 hours), at which point embryos were dissected to observe phenotypes. 

 

3.3 Results 

3.3.1 Drosophila and Aedes Ftz have similar protein sequences 

In order to study the Aa-Ftz sequence, the genomic sequence was obtained from the 

published Aedes genome (Nene et al., 2007). An alignment between the protein 

sequences of Dm-Ftz and Aa-Ftz shows that the sequences essential to Ftz function are 

highly conserved between the two species (Fig. 3-1). The first nine nucleotides of the 

homeodomain, which confer binding specificity to Ftz (Heffer et al., 2010; Telford, 

2000) are identical. Comparing the entire homeodomain, the amino acid sequences are 

75% identical and 95% similar. In addition, both have lost the YPWM, which binds the 

cofactor Exd and gives homeotic potential, and gained the LRALL motif, which confers 

the ability to bind the cofactor Ftz-F1 that is necessary for Ftz segmentation potential. 

Around the LRALL motif, an additional 3 amino acids are shared downstream – TNP, 

and the two amino acids upstream are the same but reversed – PS in Drosophila and SP 

in Aedes. This shows that conservation remained high in the area immediately 

surrounding the functional LXXLL motif. The remainder of the protein sequence shows 

little sequence conservation, consistent with the notion that these sequences are not 

necessary to conserve Ftz function (Heffer et al., 2010). This similarity between the 
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sequences of the two Ftz proteins suggested that Aa-Ftz would have the same 

segmentation function as Drosophila Ftz. To test this hypothesis, we set out to analyze 

the expression and function of Aa-ftz. 

 

 

Figure 3-1. Amino Acid alignment of Dm-Ftz and Aa-Ftz. A protein alignment 

between Dm-Ftz and Aa-Ftz is shown.  Strong conservation of functional sequences is 

evident. The homeodomains are 75% similar and 95% identical. Both contain the Ftz-

F1 binding motif LRALL, while both have lost the Exd binding motif YPWM. 

 

3.3.2 ftz and ftz-f1 expression in Aedes is consistent with expression in Drosophila 

melanogaster 

RNA was extracted from Aa embryos at five timepoints covering development through 

germband extension (15 hrs.) and then converted to cDNA. From this cDNA, RT-PCR 

was performed to detect expression of Aa-ftz and Aa-ftz-f1, using Aa-actin as a control 

to determine overall RNA level from each sample. Then the samples were run on an 

agarose gel (Fig. 3-2). Aa-ftz expression began and was strongest during 3-6 hours AEL 

and continued weaker 6-15 hours AEL. Aa- ftz-f1 was also expressed during the entire 

15 hours, with highest expression between 3-9 hours AEL. Aa-ftz-f1 expression 

decreased during 9-15 hours AEL. The timeline for Aa-ftz expression began in 

blastoderm and then decreased and continuted through germband extension, which 

matches the expression timeline for Dm-ftz. Aa-ftz-f1 expression also matches the Dm-

ftz-f1 expression timeline, which is maternally deposited and continues to be 

ubiquitously expressed in the embryo until it begins to fade during germband extension.  

Homeodomain YPWM LXXLL 
PSTLRALLTNPV----GDFN ...WSHIE--10aa—- KRTRQTYTRYQTLELEKEFHFNRYITRRRRIDIANALSLSERQIKIWFQNRRMKSKKDR Drosophila Melanogaster  
SPALRALLTNPA----DSAAS..SPSQL--10aa-— KRTRQSYSRHQTLELEKEFHSNKYLTRRRRIEVANVLRLTERQVKIWFQNRRMKAKKDK Aedes Aegypti  
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Figure 3-2. Expression profile of ftz and ftz-f1 in early Aedes embryos.  cDNA was 

collected from Aedes aegypti  embryos aged to 5 different time points and RT-PCR was 

performed to examine the expression levels across the first 15 hours of embryonic 

development. actin was used as a control across all time points. ftz was most highly 

expressed at 9-12 hours AEL and ftz-f1 was most highly expressed at 0-9 hours AEL. 

 

3.3.3 engrailed is likely expressed in stripes in Aedes 

The engrailed (en) gene is expressed in segmental stripes in developing embryos 

of all insects examined (Patel et al., 1989), including the mosquito Anopheles gambiae 

(Yoder and Carroll, 2006),  and thus serves as a good control for establishing in situ 

hybridization and antibody staining in Aedes embryos.  In addition, in Drosophila, Ftz 

and Ftz-F1 directly regulate en gene expression (Florence et al., 1997). After ectopic 

expression of Dm-ftz, en expression is altered (Ish-Horowicz et al., 1989; Struhl, 1985). 

Thus, En expression also serves as a marker for a potential anti-ftz phenotype in Aedes. 

In previous studies, the commercially available anti-EN antibody 4D9 was 

tested on Aedes embryos.  None of these stainings were successful (personal 

communication with Molly Duman-Scheel). Therefore, I tested the anti-EN antibody 

4F11 (Patel et al., 1989), which had been used successfully in other insect species. 

ftz 

ftz-f1 

0-3    3-6    6-9    9-12   12-15 

actin 
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Antibody staining proved to be difficult, giving unreliable results. Figure 3 shows an 

attempted staining with the 4F11 antibody. Arrows point to potential stripes, although 

no stainings were clear enough to give definite results. 

 

 

 

 

 

 

Figure 3-3. Antibody staining of Aedes embryos with anti-en 4F11. Anti-en staining 

of embryos during germband extension shows potential stripes, indicated by arrows. 

High amounts of background make it difficult to determine whether stripes are present 

or an artifact of staining. 

 

Embryos were then stained with the 4F11 antibody along with the fluorescent 

nuclear dye Sytox green, to allow visualization of the embryo and germband within the 

yolk (Fig. 3-4). Color and fluorescence pictures were taken before (Fig. 3-4A and 3-4C) 

and after (Fig. 3-4B and 3-4D) dissection of two embryos, one of which is shown in 

Fig. 3-4A and 3-4B and the other is shown in Fig. 3-4A and 3-4C. Because patterns 

were difficult to assess on whole embryos due to a spotty background, embryos were 

dissected under GFP fluorescence to try to separate the embryo from the yolk. Again, 

arrows point to potential, but unclear, stripes (Fig. 3-4C and D). Interestingly, it appears 

that these potential stripes are not only expressed in the germband, but in some embryos 
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seem to spread across the entire width of the embryo (Fig. 3-4C).  However, despite 

repeated attempts, and some promising preliminary results, neither in situ hybridization 

(not shown) nor antibody staining (Fig. 3-3) worked well enough in early embryos to be 

useful for assessing the effects of ectopic Aa-ftz expression. 
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Figure 3-4. Embryo dissection minimally improves visualization of staining. To aid 

in visualization of staining of the embryo germband, dissection of the germband out of 

the yolk were performed. Two dissections of anti-en and Sytox Green stained wild type 

embryos are shown. Nuclear stain Sytox Green was used to visualize germband, 

indicated by white arrow in A) and B). Potential en stripes are indicated by black arrows 

in C) and D). 

 

3.3.4 Overexpression of ftz by heatshock indicates some lethal effect 

Both wildtype and hs-Aa-ftz embryos were collected and subjected to heatshock for 

various times. Embryos were then either allowed to hatch to determine effects on 

survival, or they were fixed at blastoderm to germband stages for analysis of gene 

expression patterns or when nearly fully developed as larvae for segmentation analysis 

by dissection from the chorion. Table 3-1 shows survival of embryos after heat shock. 

There was a large difference in the survival rate of wildtype embryos compared to those 

in which Aa-ftz was overexpressed. When heat shock was performed after 9-12 hours 

AEL (germband extension), when endogenous Aa-ftz expression is strongest (Fig. 3-2), 

wildtype embryos had a 44% survival rate, while Aa-ftz transgenic embryos had a 0% 

survival rate. However, dissection of heatshocked embryos that were fixed after 70+ 

hours of development did not show any segmentation defects (Fig. 3-5). Next, 

heatshocks were performed during blastoderm and gastrulation (6-9 hr), to determine if 

a segmentation phenotype would be observed if ftz was overexpressed at the onset of ftz 

expression (Fig. 3-2).  In this case, 17% of wildtype embryos died before developing 

segments, while 11% of Aa-ftz transgenic embryos died early. These numbers are too 

similar to be meaningful. 
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Table 3-1. Overexpression of Aa-ftz suggests a lethal effect 

 

 

 

Again, dissections of embryos that developed in a range from blastoderm to the 

beginning of germband extension (6-9 hrs AEL) and were then subjected to heatshock 

did show some developmental defects, but no segmentation defects (Fig. 3-5). Fig. 3-5A 

and B shows wild type and Aa-ftz embryos respectively that were heatshocked for 15 

minutes. The wild type embryos were overall healthier and more whole upon dissection, 

while the Aa-ftz embryos looked less well formed. This pattern continues in embryos 

that were heatshocked for 40 min (Fig. 3-5C and D). While both wild type and Aa-ftz 

embryos look to be more affected by this longer heatshock, the Aa-ftz appear to have 

more defects than wild type. Note that Aa-ftz embryos that were heatshocked for 40 min 

are severed due to dissection, and not as an effect of heatshock. However, these 

embryos were much more delicate and so difficult to dissect, which was an effect of 

heatshock found much stronger in Aa-ftz embryos compared to wild type. No definite 

segmentation defects, which would be indicative of a pair-rule phenotype, were 

observed. 

Figure 3-5. Overexpression of Aa-ftz results in some developmental defects. 

Heatshock was performed on wild type and Aa-ftz embryos after aging them to 

blastoderm and gastrulation stages (6-9 hrs). Heatshock was performed for A,B) 15 min 

and C,D) 40 min. Wildtype embryos heatshocked for 15 minutes were largely 

unaffected (A) and for 40 min had mild defects (C). Aa-ftz embryos heatshocked for 15 

minutes had mild defects (B) and for 40 min had stronger defects (D). 
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3.4 Discussion and Future Directions 

The mosquito embryo develops approximately three times slower than the Drosophila 

melanogaster embryo. In Aedes aegypti, blastoderm stage ends at 9 hours after egg 

laying (AEL), germband extension begins around 9 hours and is finished around 14 

hours (Rezende et al., 2008). In D. melanogaster, the blastoderm stage ends around 3 

hours AEL, and germband extension goes from 3 hours to 5 hours AEL. The expression 

of ftz and ftz-f1 also follow this same pattern, being expressed about 3 times later and 

during the same stages in Aedes as in Drosophila (Fig. 3-2). In Aedes aegypti. 

Drosophila ftz is expressed from the blastoderm stage to the beginning of germband 

extension, 2-4 AEL (Hafen et al., 1984). Mosquito ftz expression also begins during the 

early blastoderm stage (3-6 hours), decreased some through gastrulation (6-9 hours), 

and continued through germband extension, which matches the expression timeline for 

Dm-ftz. In flies, ftz-f1 is maternally deposited, so expression begins immediately. In 

Aedes, ftz-f1 expression is strong at 0-9 hours and then begins to fade. The weaker Aa-

ftz-f1 band for 9-12 hours can be explained by a lower RNA concentration for the 

collection at this time point, as shown by weaker band for the actin control. The 

expression profile of ftz and its cofactor ftz-f1 in Aa from RT-PCR matches the 

expression file of these genes known for Drosophila from in situ hybridization 

techniques (Yu and Pick, 1995), suggesting that Aa ftz would have the same expression 

as Dm-ftz. Attempts at performing an in situ hybridization with a ftz probe were 

unsuccessful.  However, knowing the expression pattern of Aa-ftz in the early embryo 

could be indicative of potential segmentation function, so it would be valuable to 

continue this experimental line. 
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The sequence of Aa-Ftz suggests that it will have the same function as Dm-ftz 

(Fig. 3-1), but experiments must be performed to assess its functionality. The evidence 

collected in this project does indicate that Aa-ftz has a segmentation function, but 

experiments were not conclusive. The lethality of ftz overexpression indicates that 

overexpressing this gene does have a serious effect on development (Table 3-1). This is 

encouraging, but without knowledge of what those effects are, it is impossible to 

conclude that ftz has the same segmentation function in mosquitoes that it has in flies. In 

sum, functional studies using heatshock to overexpress ftz have been promising but 

inconclusive. 

A segmentation function for Aa-ftz does appear likely, and the question is 

certainly worth pursuing. The next step should be to continue varying heat shock times 

in both wild type and Aa-ftz transgenic embryos, and then to determine what 

phenotypes result from Aa-ftz overexpression. While analyzing en expression to 

determine effects on segmentation earlier in the development of the embryo would be 

the most effective way of determining roles in segmentation, the difficulty of staining 

protocols in Aedes aegypti may make this method too difficult to accomplish. The 

embryos could instead be allowed to fully develop and then dissected to analyze 

morphological defects. Alternatively, in situ hybridization and antibody stainings are 

much easier to perform in the closely related mosquito species, Anopheles gambiae 

(personal communication with and unpublished protocol from J. Juhn (Juhn and James, 

2006), due to differences in their chorions. Attempting this same experiment in 

Anopheles may be a more feasible experimental approach. 
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 Another informative experiment that could be performed in the future would be 

to use RNAi to knockdown ftz expression in mosquito. Because the phenotypic effect 

would occur in the embryo, the dsRNA would have to be injected in the very early 

embryo, before ftz expression begins during blastoderm. This protocol has been 

established in mosquitoes (Caplen et al., 2002; Clemons et al., 2010c) and so should be 

possible. I hypothesize that this would give the opposite phenotype from overexpression 

of ftz.  That is, the primordia of the even numbered segments would be lost in these 

knock down embryos, as they are in ftz mutant Drosophila (Schwartz et al., 2001; Yu et 

al., 1997). Ideally, both the overexpression of ftz through transgenic lines and the loss of 

ftz through RNAi would be performed, giving a complete picture of ftz function in 

mosquitoes. 
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Chapter 4: The Systematic Identification of Drosophila Ftz/Ftz-F1 Target Genes  

4. 1 Introduction 

 Highly conserved cascades of regulatory genes control embryonic development 

of diverse animal species. The regulatory genes are often members of large families of 

DNA binding transcription factors that control the expression of larger sets of so-called 

downstream or target genes that are involved in cell growth and differentiation.  These 

regulatory transcription factors activate or repress expression of these sets of 

downstream targets via sequence-specific DNA binding in the genome. Understanding 

the mechanisms used by embryonic transcription factors to identify genomic binding 

sites is the key to understanding their function.  

 The Hox family of transcription factors regulates segmental identity but controls 

diverse processes in all metazoans (McGinnis and Krumlauf, 1992).  Hox proteins share 

a highly conserved DNA binding domain, the homeodomain, a sequence-specific DNA 

binding domain  (Akam, 1989b; McGinnis and Krumlauf, 1992).  However, these 

homeodomains in different proteins do not have specific binding sites that are easily 

distinguished, all binding very similar DNA sequences (Berger et al., 2008; Mann et al., 

2009; Noyes et al., 2008).  This contrasts with the unique biological activities seen for 

individual Hox proteins in vivo.  This ‘Hox paradox’ was thought to have been resolved 

by the identification of binding partners for Hox proteins (Mann et al., 2009; Moens and 

Selleri, 2006).  Many Hox proteins were found to form heterodimers with a divergent 

homeodomain-containing protein, Extradenticle (Exd) through the protein interaction 

motif YPWM upstream of the homeodomain, which can be thought of as ‘homeotic 
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Hox genes’ (Chan et al., 1994; Mann et al., 2009; Passner et al., 1999; Phelan et al., 

1995).  Hox-Exd complexes bind to specific ten base pair DNA sequence 

TGATNNATNN (Chan and Mann, 1996; Lu et al., 1995; Mann and Chan, 1996; Piper 

et al., 1999). While these findings explain some of the specificity of Hox regulation, it 

is surprising that so many Hox proteins can heterodimerize with the same partner and 

maintain such diverse specificity.  Recent reports suggest that Hox-Exd specificity is 

achieved through the different protein complexes’ ability to distinguish between 

different low affinity binding site (Crocker et al., 2015), but Ftz/Ftz-F1 use a completely 

different method to gain specificity (Yu et al., 1997). This may be because having a 

unique cofactor confers all the specificity needed, so low affinity binding sites that the 

HOX-Exd uses to distinguish different target sites is not needed. Thus, the Hox gene ftz 

has evolved its own method for achieving specificity. 

 In contrast to the Hox genes in Drosophila that contain this homeodomain, the 

Drosophila fushi tarazu (ftz) shares the chromosomal location and homeodomain of 

Hox genes but is expressed in stripes (Hafen et al., 1984) and functions as a pair-rule 

segmentation gene. It appears to have lost the ability to functionally interact with Exd in 

vivo, and instead Drosophila Ftz interacts with the orphan nuclear receptor Ftz-F1 

(Florence et al., 1997; Guichet et al., 1997; Schwartz et al., 2001; Yu et al., 1997; Yussa 

et al., 2001). Many studies have shown that Ftz and Ftz-F1 are obligate cofactors that 

interact directly to promote segmentation in the early Drosophila embryo. Ftz and Ftz-

F1 physically interact both in vitro and in vivo in wild type Drosophila embryos; they 

bind synergistically to DNA containing composite Ftz/Ftz-F1 binding sites, and 

coordinately activate the transcription of target genes. Importantly, ftz-f1 mutants 
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display the same pair-rule phenotype as ftz mutants, with loss of alternate body 

segments, despite the fact that Ftz-F1 is expressed ubiquitously, present in all somatic 

nuclei of blastoderm embryos (Guichet et al., 1997; Yu et al., 1997; Yussa et al., 2001). 

One of the best characterized targets of Ftz and Ftz-F1 is ftz itself, which 

autoregulates gene expression through independent enhancers in the upstream element 

(Hiromi 1987, Pick 1990). Mutation of the three Ftz-F1 binding sites in a core region of 

the upstream element resulted in loss of expression of a lacZ-reporter gene, as did 

mutation of the Ftz binding sites (Schier and Gehring, 1993). Similarly, Ftz and Ftz-F1 

coordinately regulate the expression of engrailed (en) through binding to composite 

sites in an intronic cis-regulatory element (Florence et al., 1997). en is expressed in the 

even numbered parasegments (Florence et al., 1997), and the pair-rule gene even-

skipped establishes en expression in odd parasegments by regulating the activator 

paired and the repressors runt and sloppy-paired (Fujioka et al., 1995). en and another 

segment polarity gene, wingless, are expressed in alternating stripes, which establish 

and define the borders of the parasegments (DiNardo et al., 1988; Heemskerk et al., 

1991; Martizez Arias et al., 1988; Vincent and O'Farrell, 1992). Together, these studies 

demonstrated that the function of Ftz and Ftz-F1 in the early Drosophila embryo are 

tightly linked, both being dependent on each other to create the pair-rule segment 

formation. 

 The findings summarized above suggest that the unique regulatory specificity of 

Ftz can be explained by its interaction with a unique co-factor, Ftz-F1, which is distinct 

from the homeotic Hox protein interaction with Exd. Ftz-F1 has a longer and more 

specific DNA binding site than do Hox proteins, increasing the specificity of the Ftz-
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F1/Ftz heterodimer in vivo. A computational screen identified 30,000 potential Ftz-F1 

binding sites in the D. melanogaster genome while over 14 million candidate Ftz 

binding sites were found (Bowler 2006). Thus, the requirement for Ftz-F1 binding site 

would restrict Ftz binding to a much smaller set of potential sequences in the genome. 

Further, Ftz-F1 alone is a strong transcriptional activator in vitro(Yussa et al., 2001), 

and it was shown that a Ftz protein lacking its homeodomain can carry out many of the 

functions of full length Ftz protein, likely due to its interaction with Ftz-F1 (Copeland et 

al., 1996; Fitzpatrick et al., 1992). These studies all support the notion that Ftz-F1 plays 

the major role in the function of the Ftz-F1/Ftz heterodimer.  However, because Ftz-F1 

is expressed ubiquitously while Ftz expression is restricted to seven pair-rule stripes, it 

is possible that Ftz-F1 is able to regulate some target genes in Ftz- cells. 

In order to characterize how Ftz/Ftz-F1 regulate their targets, previous attempts 

to find targets and their Ftz-F1 responsive enhancers have been attempted, with some 

success. Bowler (2006) tried a computational screen, using two known configurations 

of composite Ftz/Ftz-F1 sites - binding sites for ftz itself (the F1F-site) (Yu 1997, Yussa 

2001) and engrailed (called the en-site) (Florence et al., 1997). Ftz uses the same core 

binding site as other Hox genes, ATTA, while the core binding sequence found in all 

Ftz-F1 binding sites is AAGG (Florence et al., 1997; Han et al., 1993; Ueda et al., 

1992). By searching for the Ftz/Ftz-F1 binding site that matched these configurations in 

the entire genome, the authors hoped to identify bona fide Ftz/Ftz-F1 targets. The 

screen did find two new Ftz/Ftz-F1 targets, but only two of the thirty candidate targets 

tested were actual targets. 
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In another study, in situ hybridization data from the Berkley Drosophila Genome 

Project was used to identify candidate Ftz/Ftz-F1 targets on the basis of their striped 

expression patterns (Hou et al., 2009). Next, the genomic regions surrounding the genes 

expressed were examined for potential Ftz and Ftz-F1 binding sites. Three targets were 

identified in this study: drm, noc, and 5-HT2. Two Ftz/Ftz-F1 responsive enhancers of 

drm were found that directed expression in the striped expression during blastoderm, 

late gastrulation, and early germband extension. Further, expression of drm-lacZ fusion 

genes was lost in ftz or ftz-f1 mutant embryos, and point mutations of Ftz-F1 sites within 

these two enhancers constructs abolished reporter gene expression, showing drm to be a 

direct target of Ftz/Ftz-F1 (Hou et al., 2009). Together, these studies identified seven 

targets of Ftz/Ftz-F1: ftz itself (Florence et al., 1997; Yu et al., 1997), en (Florence et 

al., 1997),apt, Sulf1 (Bowler et al., 2006), drm, noc, and 5-HT2 (Hou et al., 2009). For 

only two of these, Ftz/Ftz-F1-responsive enhancer regions have been identified. 

However, it is likely there are many more targets as yet undiscovered. The methods 

used in both of these studies proved to be inefficient, and their results indicate that there 

is more information about the in vivo target site recognition for Ftz/Ftz-F1 than could 

be predicted by their binding sequences alone.  

Here we have combined computational and experimental approaches to find an 

efficient method for identifying Ftz/Ftz-F1 targets and their Ftz/Ftz-F1 responsive 

enhancers in the Drosophila genome. A microarray analysis was used to identify genes 

regulated by ftz-f1 in early embryos. Expression of nine of the top ten genes overlapped 

with that of Ftz, suggesting they could be coordinately regulated by Ftz and Ftz-F1. The 

expression of these nine candidate Ftz-F1 targets was lost in ftz and ftz-f1 mutant 
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embryos, also indicating that they are coordinately regulated by Ftz and Ftz-F1. To 

determine whether these are direct Ftz/Ftz-F1 targets, the DNA surrounding these 

targets was examined for Ftz binding and Ftz-F1 binding sites. These enhancer regions 

were analyzed for additional motifs and transcription factor binding sites that could 

provide additional information on how Ftz/Ftz-F1 bind to their enhancer sequences. The 

DNA- binding proteins Deaf-1 and Zeste were identified as potentially necessary for 

Ftz/Ftz-F1 binding, while Dichaete and GAGA Factor were identified as potential 

repressors. This work has identified new Ftz/Ftz-F1 targets and enhancers, which will 

help give insight into how these transcription factors work together to activate their 

targets and elucidate a complicated system of regulation. 

 

4.2 Materials and Methods 

Fly line and genetics 

Flies were maintained at 25 °C on a standard diet. The ftz mutant was 

ftz9H34/TM3Ser, hb-lacZ, with expression of β-galactosidase used to identify mutant 

embryos. Embryos derived from ftz-f1 germline clones (referred to as ftz-f1mutants) 

were generated with the autosomal FLP-DFS technique (Chou and Perrimon, 1992, 

1996; Chou et al, 1993) using ftz-f119 (Broadus et al., 1999; Fortier et al., 2003; Pick et 

al., 2006). Transgenic fly lines were generated by Rainbow Transgenic Flies, CA and 

BestGene, CA. The PhiC31 integration system was used to insert transgenes into the 

genomic attP site VK00022. Transgenic lines were maintained as homozygotes. One 
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transgenic line, containing the blot enhancer construct, was homozygous lethal but was 

homozygous viable when crossed into a ftz mutant background. In this ftz background, a 

rare phenotype was observed in which half of the thoracic segment was missing and 

only one wing grew.  

To examine transgene expression in ftz mutant embryos, virgin females w-

; ftz9H34/Tm3 Sb were crossed with w-; P[enhancer-lacZ]/P[enhancer-lacZ]; Dr/Tm3 

Sb males. From this cross, w-; P[enhancer-lacZ]/+; ftz9H34/Tm3 Sb males and 

females were crossed to generate w-; P[enhancer-lacZ]/P[enhancer-lacZ]; ftz9H34/Tm3 

Sb offspring, which were then self-crossed to maintain the stable transgenic enhancer 

lines in ftz mutant background for examining β-galactosidase expression. 

Germline clones homozygous for the ftz-f119 were generated using the 

‘autosomal FLP-DFS’ technique (Chou and Perrimon 1996). Briefly, yw 

hsFLP;FRT2Aftz-f119/TM3Sb virgin females were crossed with w; FRT2A ovoD/TM3Sb 

males. Females were allowed to lay eggs for 1 day in vials and their progeny were heat-

shocked for 2 hours at 37oC in a circulating water bath on the third and fourth days after 

egg laying. Subsequently, embryos derived from the females of genotype of yw 

hsFLP;FRT2Aftz-f119/ FRT2A ovoD (identified as non-Sb females) were analyzed. All of 

the FRT2A ovoD recombinant chromosomes were associated with a fully penetrant DFS 

phenotype such that all eggs laid by these females are derived from germline 

recombination events. For the control for the microarray experiment, yw hsFLP;FRT2A/ 

FRT2A virgins were crossed to w; FRT2A ovoD/TM3Sb males and subjected to the same 

heat shock and selection protocol in parallel. 
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Whole mount in situ hybridization and Immunochemistry 

For in situ hybridization, standard protocols were followed (Kosman and Small, 

1997; Tautz and Pfeifle, 1989) with one modification - in place of Proteinase K 

treatment, embryos were heated at 95°C for 5 minutes. Digoxigenin-labeled RNA 

probes were made by isolating coding and/or 3’UTR sequences by PCR using a reverse 

primer with the T7 polymerase promoter sequence (TAATACGACTCACTATAGGG). 

Primer sequences for probes available upon request. Sheep anti-digoxigenin (1:2000, 

Roche), followed by incubation with NBT/BCIP, was used for for RNA probe 

detection. Standard protocols were followed for antibody staining (Gutjahr et al., 1994) 

For reporter constructs, anti-β-galactosidase antibody (Cappel, 1:2000; Gutjahr et al., 

1993) was used with a secondary biotinylated - anti-rabbit IgG (Vector Laboratories, 

1:500), followed by amplification with an ABC kit (Vector Labratories, Inc) and 

detection with 3,3’-Diamino-benzidine tablets (Sigma). Protein/RNA double staining 

followed standard in situ hybridization protocols, using an RNA probe against 

engrailed. After several washes in PBST, and rinses with PBS, embryos were mounted 

in 90% glycerol, 0.1M Tris–HCl, pH 7.9. Stainings were visualized using DIC on a 

Leica DMRB microscope. 

Microarray 

ftz-f1 heterozygous or control females were mated to w1118 males in collection 

cages at 25oC and allowed to lay eggs for up to 2 hours. Eggs were dechorionated in 3% 

sodium hypochlorite for 3 minutes and then covered with halocarbon oil and aged. 

Embryos were visualized under phase contrast optics at 100-200x magnification. 

Individual embryos were pooled into groups of roughly equivalent developmental 
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stages and kept out of the light path of the microscope as much as possible. To generate 

pools of embryos at specific stages, each pool was monitored closely and selected by 

visual inspection at late cellularization, stage 5 (when the invaginating cell membrane 

had reached approximately 80-90% of its maximal depth and before any sign of the 

cephalic furrow invagination was visible), at the onset of gastrulation, stage 6 (when the 

cephalic furrow had invaginated approximately one full cell depth), or at mid germband 

extension, stage 8 (when the posterior end of the germband had extended approximately 

half way towards the cephalic furrow.  

Embryos were manipulated using a small needle. As each embryo reached the 

desired stage of development, it was transferred to 100 ul of TRIZOL on ice. 

Approximately 100 embryos were collected per time point. Individual collections were 

stored at -80oC. Each experiment was done in triplicate. Total RNA was extracted using 

the Qiagen RNEasy kit according to standard protocols, and samples were hybridized to 

Affymetrix Drosophila 2.0 expression arrays by the UMBI microarray facility. 

Affymetrix drosophila2 genechip CEL files were imported into 

BioConductor/R(Gentleman et al., 2004) using the ReadAffy function of the affy 

package (Gautier et al., 2004) and assigned to developmental stage (5,6,8), wild type or 

ftz-f1 mutant condition (0,1) and batch number (processing and hybridization batch). 

Using 3 replicates of 3 stages and 2 states of ftz-f1 gave a total of 18 genechip arrays. 

All arrays were normalized by the expresso function using quantiles normalization, only 

perfect match, and median polish summary method. This generated the normalized 

expression set used for all further data analysis. The normalization procedure produced 

log2 expression results, and the fold change between the average of any two data sets s1 
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and s2 was calculated as
�����

|�����|
2|s2-s1|. To identify differentially expressed genes showing 

a response to the presence or absence of functional Ftz-F1, the microarray analysis of 

variance package, maanova (Wu et al., 2011), was run in oneColor mode fitting a mixed 

effect ANOVA model using the formula ŷ=Stage+Ftz.F1+Batch. Batch represents the 

groups of RNA that were processed and hybridized on the same day and was treated as 

a random or non-repeatable term in the model. The function matest was run with a 

permutation count of 100 to compute the p-value for the Ftz.F1 model term. p-values 

were further controlled for the N discovery rate using the Q-value method of the adjPval 

function (Dabney et al., 2011). Probesets having an FDR adjusted p-value < 0.05 were 

considered potential target genes. We restricted the analysis to genes showing at least a 

1.1 fold increase between stage 5 and stage 6 of our wildtype microarrays. This 

eliminated genes with solely maternal expression that could mask responses to Ftz/Ftz-

F1. 

Analysis of BDNTP Chip Data to identify candidate enhancers 

Data files containing the 1% FDR bound regions for all 22 transcription factors 

having ChIP-chip data, excluding polymerases (MacArthur et al., 2009), available at 

http://bdtnp.lbl.gov/Fly-Net/browseChipper.jsp were downloaded and all interval 

coordinates along with the peak binding positions were remapped from release 4 to 

release 6 of the Drosophila genome using the Coordinate Converter provided by 

Flybase. 

 These ChIP-chip data were used to identify Ftz binding sites within 70 kb each 

of the top 9 Ftz-F1 targets identified from the microarray by uploading the published 
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BDTNP data onto Flybase (supplementary table 4). Genomic regions of ~1 kb 

surrounding each finding Ftz binding interval were queried for consensus Ftz-F1 

binding sites (BSAAGGHYRHH). For each gene, the region that contained the 

strongest Ftz binding and at least one candidate Ftz-F1 binding site was selected to be 

tested functionally. A candidate enhancer region was found for all but two targets at 1% 

FDR. No Ftz binding was detected at this level within 70kb of the target gene astray, so 

the Ftz binding peak found in the dataset using 25% FDR was used. No Ftz binding was 

found with 70kb surrounding the target gene 5-HT2. However, because 5-HT2 was 

already known to be ftz/ftz-f1 target (Hou et al., 2009), a candidate enhancer was 

selected based on a candidate ftz-f1 binding site near the gene. In order to increase the 

strength of this candidate enhancer, an exception for the size of the region was made, 

making it 2 kb to include both the strongest potential Ftz-F1 binding sites and Zelda 

binding sites, which are important in the activation of transcription in many 

developmental genes (Liang et al., 2008). This provided a good test of the importance 

of Ftz binding in choosing an enhancer. Using these criteria, one enhancer-reporter 

construct was made for each candidate target by isolating the 1 kb region from gDNA 

by PCR and fusing each enhancer to generate ken-lacZ, aay-lacZ, mid-lacZ, 5HT2-lacZ, 

trn-lacZ, hh-lacZ, Antp-lacZ, and blot-lacZ.  Transgenic flies were generated and 

analyzed as described above. 
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Motif Analysis 

401bp windows surrounding the peak binding position for all intervals were 

merged and the underlying genomic sequences were extracted from a repeat masked 

copy of the Drosophila melanogaster genome. This dataset was processed with the 

meme application fasta-get-markov, to generate a 5th order hidden markov model of the 

available background enhancers found in the Drosophila blastoderm (Bailey and Elkan, 

1994). This model or its associated fasta file were used as the background model for all 

relevant processes of the meme suite of applications. 

A subset of the 401bp sequences, defined by the ftz_3_032707-sym-1 dataset, 

was used as the positive set for Ftz binding. This set contains 403 intervals identified as 

bound by Ftz in stage 5 Drosophila melanogaster embryos, along with the location of 

maximal binding within each interval. Genomic sequence for each of these regions was 

extracted from the repeat masked genome. This dataset was processed with MEME and 

DREME applications to identify the core binding motifs of Ftz. For both MEME and 

DREME, a q-value threshold of 0.05 was used with the previously computed 

background file searching both forward and reverse strands. MEME was restricted to a 

maximum motif width of 10, while DREME’s default of 8 was used (Bailey, 2011).The 

results of both MEME and DREME runs were passed to TOMTOM with the previously 

computed background model, q-value threshold of 0.05, and scanning was performed 

on all of the Drosophila databases distributed with the MEME suite (flyreg.v2.meme, 

idmmpmm2009.meme, and dmmpmm2009.meme) (Gupta et al., 2007).  
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To search for additional motifs within the enhancer regions, then Ftz/Ftz-F1 

enhancer regions were analyzed using the MelinaII software and University of 

Maryland Institute for Advanced Computer Science (UMIACS) position weight matrix 

(pwm) program. For MelinaII, 4 algorithms were used – Consensus, MEME, MDScan, 

and Gibbs. These algorithms search for motifs de novo. For UMIACS pwm, the 

Drosophila JASPAR database was used to scan enhancer sequences, with a confidence 

of 95% in all 10 sequences. The sequences used for these enhancers were ftz upstream 

element, en intron (Florence et al., 1997), ken-lacZ, trn-lacZ, mid-lacZ, hh-lacZ, Antp-

lacZ, blot-lacZ, drm2 and drm34 (Hou et al., 2009). 

4.3 Results 

4.3.1 Overall gene expression determined more by developmental stage than genotype. 

In order to identify candidate targets of Ftz/Ftz-F1, gene expression was 

compared between wild type and ftz-f1 germline clones embryos (referred to throughout 

as ftz-f1 mutants) at three time points during development: stage 5, when the blastoderm 

forms and ftz expression begins and is strongest, stage 6, when gastrulation occurs, and 

stage 8, when germband extension occurs and ftz expression continues to be strong (Fig. 

4-1). Gene expression was compared in whole embryos (wild type vs. ftz-f1 mutants). 

Previous analysis of ftz-f1 mutants suggested that gene expression would only be 

affected in the Ftz+ cells (see above); these cells represent a maximum of 25% of the 

cells in the whole embryo, thereby potentially diluting the overall fold change observed 

for genes regulated by Ftz/Ftz-F1 and other transcription factors. However, this method 

also allowed us to identify potential Ftz-F1 targets that are not co-regulated by Ftz. 
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Figure 4-1. Ftz-F1 and Ftz protein expression and staging of embryos. A) Stage 4 

(A,E,I), stage 5 (B,F,J), stage 6 (C,G,K), and stage 7 (D,H,L) embryos showing Ftz-

F1(green) is maternally expressed and localizes to the nuclei. Ftz (red) reaches its peak 

level during late cellularization (stage 5), where it is expressed in seven stripes. At the 

onset of gastrulation (stage 6), the most anterior stripe of Ftz is immediately posterior to 

the cephalic furrow. The Ftz stripes weaken throughout germband extension (stage 8).  

Both proteins are coexpressed (yellow) in nuclei of the primordia of even numbered 

parasegments. B) Hand staging of embryos at stages 5, 6, and 8 was performed using 

phase contrast microscopy of live, dechorionated embryos in halocarbon oil as shown. 
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Of the 18952 probesets on the genechips, 735 (3.9%) showed detectible 

alterations in response to Ftz-F1. 3944 (20.8%) of the probesets showed a 1.1 fold 

increase in expression level between stage 5 and stage 6 (note: this was meant to be an 

inclusive cutoff, so no statistical threshold was applied to this set). The intersection of 

these two data sets produced a list of 379 potential targets for validation. 314 (82.8%) of 

these potential targets showed upregulation in response to the loss of Ftz-F1. As both 

Ftz and Ftz-F1 have been shown to function in vivo as transcriptional activators (Bowler 

et al., 2006; Dubrovsky et al., 2011; Florence et al., 1997; Hou et al., 2009), many of 

these may be indirectly regulated targets of Ftz-F1. Overall, 65 probesets showed at 

least a 1.1 fold increase in expression level between stages 5 and 6 and a loss of 

expression in ftz-f1 mutants, marking these as potential Ftz-F1 targets. These 65 

probesets map to 63 unique genes. Figure 4-2 shows a heatmap of the changes in 

expression level for potential target genes and Table 4-1 shows the top 12 candidate 

target genes, ordered by their fold change in expression level in ftz-f1 mutants. Each 

showed an average of at least -1.49 fold change in expression levels between wildtype 

and ftz-f1 mutants. Mutant fold change shows the average ratio of expression levels 

between ftz-f1 mutant embryos and wildtype embryos at stages 6 and 8. Activation fold 

change shows the ratio of expression levels between wildtype stages 5 and 6. And the q-

value shows the FDR adjusted p-value for a change in expression with respect to the 

state of Ftz-F1 in the embryos. Interestingly, pairwise comparison of Pearson 

correlation coefficients showed that individual genechips clustered varied more strongly 

with developmental stage and then by the presence or absence of a functional Ftz-F1 

protein (Tables 4-2 and 4-3).  
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Table 4-1. Top eleven targets identified by the microarray. 

Gene Affymetrix 
Probset 

Mutant 
Fold 

Change 

Activation 
Fold 

Change 
q-value 

ken 1628840_at -6.1 3.43 0.00E+00 
en 1627445_s_at -4.16 4.22 0.00E+00 
aay 1633488_at -1.89 1.22 0.00E+00 

tektin-C 1628238_at -1.87 1.23 0.00E+00 
mid 1637867_at -1.88 5.28 2.22E-04 

tal-1A 1625897_s_at -1.84 3.21 0.00E+00 
5-HT2 1633198_a_at -1.83 2.05 6.66E-04 

trn 1639235_at -1.69 3.32 0.00E+00 
hh 1626527_at -1.56 2.39 2.15E-02 

Antp 1624759_s_at -1.59 2.61 6.94E-03 
blot 1626839_s_at -1.56 2.41 0.00E+00 
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Figure 4-2. Microarray identified genes differentially expressed in ftz-f1 mutant 

embryos. RNA was extracted from wildtype or ftz-f1 mutant embryos at stages 5,6, and 

8, as indicated, and were hybridized to Affymetrix Drosophila 2.0 expression arrays  

The dendrogram shows Pearson correlation coefficients of mean expression levels 

across all probesets under assayed conditions. The heatmap shows expression levels of 

the 60 probesets activated at gastrulation in wildtype embryos, and showing statistically 

significant loss of expression in ftz-f1 mutant embryos. Genes were sorted from highest 

to lowest average fold change in expression between wildtype and ftz-f1 mutants after 

cellularization. This experiment was carried out by W. Ray Anderson. 

 

 

Table 4-2. Overview of the upregulation and downregulation of RNA transcripts 

identified using the microarray at different different p-values. 

 
p-value 0.25 0.10 0.05 0.01 

Total # Differential expressed 897 500 345 159 

Total % regulated 4.7%  2.6% 1.8% 0.8% 

# down-regulated 116 78 60 31 

% down-regulated 0.6% 0.4% 0.3% 0.2% 

# up-regulated 781 422 285 128 

% up-regulated 4.1%  2.2% 1.5% 0.6% 

 

 

 

Table 4-3. A comparison of the upregulation of RNA in different stages in wild type 

and ftz-f1 mutant embryos. 

 

  FF1.5 FF1.6 FF1.8 FRT.5 FRT.6 FRT.8 
FF1.5 1 0.97114 0.947377 0.995691 0.968568 0.946157 
FF1.6   1 0.991669 0.96222 0.997102 0.989425 
FF1.8     1 0.937397 0.990501 0.996754 
FRT.5       1 0.962672 0.939053 
FRT.6         1 0.992129 
FRT.8           1 
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4.3.2 Candidate Ftz-F1 target genes require Ftz and Ftz-F1 for expression in embryos 

In order to determine whether the microarray correctly identified Ftz-F1-

responsive genes that are also regulated by Ftz, the expression patterns of ten of the top 

eleven genes from the microarray were examined and compared to the expression 

pattern of ftz RNA (Fig. 4-3). tektin-C was not examined because it does not show a 

detectable level of expression at this time. For 10 of the 11 remaining candidate target 

genes, expression of the target gene overlapped with ftz expression. A) two stripes of 

ken expression overlapped with the anterior and posterior stripes of ftz. B) en is 

expressed in 14 stripes, every other stripe overlapping with a ftz stripe. C) the 7 stripes 

of both aay and ftz overlap. D) 7 alternating stripes of the 14 stripes of mid overlap with 

ftz expression. E) stripes 2 and 3 of tal-1a are more strongly expressed than the rest of 

the 7, and the stripes of tal-1a do not overlap with ftz stripes. F) 5HT2 expression is 

broader than ftz expression, but all 7 5HT2 stripes cover the 7 ftz stripes. G) the 7 

posterior stripes of trn overlap the 7 stripes of ftz, while the most anterior trn stripe does 

not. H) 7 alternating stripes of the 14 stripes of hh overlap with ftz expression. I) The 

one Antp stripe overlaps with the second ftz stripe. J) blot expression, while expressed in 

a striped pattern, is not as precise as other ftz/ftz-f1 targets. The pattern is not formed in 

tight stripes, but in more blurred lines with soft edges. This expression does overlap 

with ftz stripes. Because tal-1a stripes did not overlap with ftz expression, tal-1a could 

not be a direct target of ftz, and so was removed as a possible target.  
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Figure 4-3. Nine of the ten candidate target expression patterns overlap 

with ftz stripes. A fluorescent double in situ was performed against ftz and each target 

gene, as indicated. ftz stripes, red, and target gene stripes, green, overlap, yellow.  Some 

or all of each of the target gene expression patterns overlap ftz expression during the 

blastoderm stage for all candidate targets but tal-1A. A) ken B) en C) aay D) mid E) tal-

1A F) 5HT2 G) trn H) hh I) Antp (J) blot 
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To further test whether these targets are controlled by Ftz/Ftz-F1, expression 

patterns of nine of the top ten genes from the microarray were examined in control, ftz, 

and ftz-f1 mutant embryos (Fig. 4-4). A striped expression in early stage embryos (A-I) 

was altered or undetectable in both ftz (A’-I’) and ftz-f1 (A’’-I’’) mutants. A) ken was 

expressed in 2 stripes, which were lost in ftz (A’) and ftz-f1 (A’’) mutants. B) en is well 

known to be expressed in 14 stripes, and 7 alternating stripes were lost in both B’) ftz 

and B’’) ftz-f1. C) aay, was expressed in seven stripes in control embryos, which were 

lost in C’) ftz and C’’) ftz-f1 mutants. D) mid was normally expressed in 14 stripes. Like 

en, in the D’) ftz and D’’) ftz-f1 mutants, 7 of the 14 stripes were lost, presumably those 

controlled by Ftz/Ftz-F1. tal-1a expression was lost in both E’) ftz and E’’) ftz-f1 

mutants, and although it was shown that it could not be a direct target (Fig. 4-2E), this 

indicates it is an indirect target of Ftz/Ftz-F1. F) 5HT2 was expressed in seven stripes 

beginning in early gastrulation in control embryos, which were lost in F) ftz and F’’) ftz-

f1 mutants. G) trn was expressed in 8 stripes, the 7 most posterior overlapping with Ftz 

expression (data not shown). In ftz (G’) and ftz-f1 (G’’) mutant embryos, the expression 

of these 7 posterior stripes is lost while the Ftz-independent stripe remains. H) hh was 

expressed in 14 stripes, 7 of which were lost in H’) ftz and H’’) ftz-f1 mutants. H) Antp 

was expressed in one broad band posterior to the cephalic furrow of the embryo, as 

shown in (Carroll et al., 1986). Expression was also lost in I’) ftz and I’’) ftz-f1 mutants. 

blot was weakly expressed in seven stripes in (J), but unlike the other candidate targets 

from the microarray, no loss or alteration of expression was observed in either ftz (J’) or 

ftz-f1 (J”) embryos. 
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Figure 4-4. Expression patterns of nine of the top ten candidate targets are lost in ftz 

and ftz-f1 mutants. 10 of the top 11 candidate target genes from the microarray are 

expressed in stripes at the blastula/gastrula stage of embryogenesis, tektin-C being the 

exception. All but one of those 10 also lost expression of at least a subset of those stripes 

in embryos lacking functional Ftz or Ftz-F1 protein, blot being the exception. 
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In sum, of the top 9 Ftz-F1 targets from the microarray experiment, all showed 

striped expression patterns in the early embryo that suggests regulation by a pair-rule 

gene. Interestingly, all 10 of these responsive targets responded in the same way to loss 

of either Ftz or Ftz-F1. Thus, of the 13 Ftz-F1-responsive genes identified to date, all 

require Ftz for expression in embryos. These 13 genes are the seven targets found in the 

microarray (ken, aay, mid, hh, trn, Antp, blot), en (Florence et al., 1997) ftz itself, apt, 

Sulf1 (Bowler 2006), drm, noc, and 5HT2 (Hou et al., 2009). This finding is consistent 

with the fact that ftz and ftz-f1 pair-rule phenotypes are indistinguishable (see above) 

and strengthens the conclusion that Ftz-F1 absolutely requires Ftz for its activity in 

early embryos.  

4.3.3 Ftz ChIP-chip peaks overlap many known cis-regulatory modules 

 The Ftz-F1-responsive target genes analyzed above could be either directly or 

indirectly regulated by Ftz and/or Ftz-F1. To address this, we made use of BDNTP 

published ChIP-chip data to identify candidate Ftz/Ftz-F1 responsive candidate 

enhancers for each of these targets. BDNTP published ChIP-chip data on a large set of 

Drosophila transcription factors, including Ftz (Fig. 4-5). 
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Figure 4-5 ChIP-chip data shows Ftz binding over all chromosomes. Over-

represented sequences in the Ftz ChIP-chip binding data, identified by A,B) DREME 

and C,D) MEME. Ftz-F1 candidate binding sites are overrepresented where Ftz binds 

DNA. E) The red stripes represent strong Ftz binding, and the green stripes represent 

weak Ftz binding. Candidate targets from the microarray are shown near strong Ftz 

binding in pink. 

 

 

 Ftz binding was located within 70 kb each of the 9 Ftz-F1 targets by uploading 

the published BDTNP data onto Flybase (Table 4-4). By searching for candidate Ftz-F1 

sites within the strongest Ftz binding surrounding each target, the strongest candidate 

Ftz/Ftz-F1 responsive enhancer for each Ftz/Ftz-F1 target was chosen for further 

analysis (Fig. 4-6). In addition to the criteria stated here, these figures show accessible 

chromatin data also published by BDTNP. This data shows that all candidate enhancers 

were in accessible chromatin at stage 5. 
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Table 4-4. All enhancers found within 70kb of the Ftz/Ftz-F1 targets and related data. 
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Table 4 also shows the association of these Ftz binding intervals with 1) overlapping 

open chromatin, 2) candidate Zelda sites and 3) candidate Ftz-F1 sites. Not all 

enhancers had a Zelda site within the binding interval, indicating that candidate Ftz-F1 

sites are more predictive than Zelda binding sites for Ftz ChIP-chip peaks near potential 

target genes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

B 

C 



84 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D 

E 

F 

G 



85 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-6. Candidate enhancers were identified by combining experimental and 

computational experiments. Candidate enhancers were identified from three major 

criteria, shown here. 1) Within 70kb of the of the target gene 2) Ftz binding was 

observed (with the exception of 5-HT2), and 3) candidate Ftz-F1 binding sites were 

found within the bound region. Open chromatin was also found in blastoderm stage at 

all enhancers. A) ken B) en C) aay D) mid E) 5HT2 F) trn G) hh H) Antp I) blot  
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4.3.4 Expression of the enhancer region reporter genes in vivo 

For functional analysis, ~1 kb genomic regions containing candidate Ftz-F1 

binding sites within the strongest binding peak of Ftz near each target were isolated 

(Methods). These candidate enhancers were fused upstream of a basal promoter and 

lacZ in a lacZattB vector and transgenic flies were generated. As shown in Figure 4-7, 

expression of reporter genes was analyzed by anti-β galactosidase antibody staining of 

transgenic embryos.  

Seven of nine of the candidate enhancers directed lacZ reporter gene expression 

in striped patterns similar to those of the endogenous genes (Fig. 4-7). The ken-lacZ 

reporter gene was expressed in two weak stripes, anterior and posterior, in blastoderm 

(A). The enhancer for en was identified previously (Florence et al., 1997), and so was 

not tested (B). mid-lacZ was expressed in 14 stripes, similar to mid wild type expression 

(C). trn-lacZ was expressed in 7 of the 8 stripes of trn (D). This finding clearly indicates 

that a Ftz-F1/Ftz-responsive enhancer was identified for trn, as only seven of the eight 

endogenous trn stripes are regulated by ftz (Chang et al. 1993 and Fig. 4-3). Antp-lacZ 

was expressed in one strong stripe just posterior of the cephalic furrow at the 

blastoderm stage (E), while two weaker bands anterior and posterior of the first band 

appear later, during gastrulation and germband extension (F). These two weaker bands 

are not expressed by the endogenous gene. blot-lacZ was expressed in 7 stripes, similar 

to the endogenous expression (I). hh –lacZ was expressed in an interesting pattern, in 

that 14 stripes were detected but alternating stripes were strong and weak (G). The 

endogenous hh gene is expressed in all 14 stripes at similar levels. One fusion gene, 5-

HT2-lacZ, was expressed in a weak pattern, but this pattern did not correspond to wild 
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type expression of 5HT2 and the expression was spotty (E). 5-HT2-lacZ was expressed 

in three thick bands evenly spaced, between engrailed stripes 2 and 3, 4 and 5, and 6 

and 7 (Fig. 8 E’). For one of the candidate enhancers, aay-lacZ (C) no expression of β-

Galactosidase was detected.  

 

Figure 4-7. Candidate enhancer regions for Ftz show ftz-like stripy expression 

pattern. Expression of enhancer-lacZ reporter constructs in transgenic embryos is 

shown.  Eight of the nine candidate enhancer regions tested directed expression of lacZ 

in patterns similar to the endogenous genes. These expression patterns match the wild 

type expression pattern seen in Fig. 4-2 (shown again here for easy comparison), in the 

regions that overlap with ftz. No expression was detected in transgenic flies carrying an 

empty attB-lacZ vector (not shown). A) ken B) en C) aay D) mid E) 5HT2 F) trn G) hh 

H) Antp I) blot.  
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In sum, seven of the nine reporter transgenes – ken-lacZ, mid-lacZ, trn-lacZ, hh-

lacZ, Antp-lacZ, and blot-lacZ - were expressed in striped patterns, in part or wholly 

similar to that of the endogenous gene. These were categorized as “strong” enhancers. 

One of the nine –5HT2-lacZ – was expressed in a weak, banded pattern that did not 

align with the expression pattern of its target. This was categorized as a “weak” 

enhancer. For one of the nine transgenes – aay - no expression was detectable, 

suggesting that this region does not function as an enhancer. Overall, 88% of the 

candidate enhancers were confirmed as either strong or weak, making this method of 

finding enhancers highly efficient. 

4.3.5 Candidate Ftz/Ftz-F1 target gene enhancers are Ftz-responsive 

 To test whether these candidate enhancers are ftz-responsive, transgenic flies 

carrying the eight confirmed enhancer-lacZ lines (ken-lacZ, en-lacZ, mid-lacZ, trn-lacZ, 

Antp-lacZ, blot-lacZ, hh-lacZ, and 5HT2-lacZ), and the empty attB-lacZ vector as 

control, were each crossed to ftz9H34 /TM3Sb flies. If expression is dependent upon ftz, it 

should be lost in ftz9H34 homozygotes. The embryos from these crosses were double 

stained with anti-β-galactosidase antibody (brown) to detect enhancer expression and en 

(blue) to identify the ftz mutants (Fig. 4-8). en staining in ftz mutants would only show 

expression in 7 stripes, rather than its normal 14 stripes. The enhancer-lacZ reporter 

gene expression pattern (A-G) was partially or completely lost (A’-G’) for all eight 

enhancers, shown during germband extension when expression was strongest. The two 

stripes of ken-lacZ expression (A) were completely lost in the mutant (A’). While some 

bands were still visible for trn-lacZ in ftz mutants (B’), these were much weaker and 

spotty. The seven strong stripes for mid-lacZ (C) were completely lost in ftz background 
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(C’). All 14 stripes of hh-lacZ (D) were lost (D’), which was surprising, as only the 7 

stripes corresponding the ftz expression should be lost if the enhancer is under Ftz 

control. For 5HT2-lacZ (E), the weak enhancer with 3 spotty, thick bands, the weak 

bands were completely lost in a ftz background (E’). Antp-lacZ developed two weaker 

bands during germband extension, posterior to its original stripe. (F). These weaker 

bands were completely lost and the stronger, original stripe was much weaker in the ftz 

background (F’). The seven stripes of expression driven by blot-lacZ (G) were lost in 

the ftz background (G’). Figure 6H, H’ show that empty attB-lacZ vector did not show 

any expression pattern in wild type and en was expressed in 14 stripes in wild type 

embryos and seven stripes in ftz mutant embryos. Overall, each enhancer for all eight 

targets had weakened or complete loss of expression in a ftz mutant background, 

indicating that these enhancers are Ftz-responsive. 
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Figure 4-8. Expression of candidate enhancer regions is lost in ftz mutants. Anti-β-

galactodsidase staining was used to detect expression of the enhancer-lacZ transgenes 

(brown), and in situ hybridization against en (blue). en is expressed in 14 stripes in w 

embryos and 7 stripes in ftz embryos. The expression of all candidate enhancer are 

shown in wild type and in ftz mutants A) ken B) mid C) tal-1A D) 5HT2 E) trn F) hh G) 

Antp H) blot and I) empty attB-lacZ vector. 
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4.3.6 Motif analysis finds Ftz-F1 sites along with new candidate sites 

MEME and DREME analysis of the candidate enhancer regions each produced 

2 overrepresented sequence motifs (Fig. 4-5). A). meme_motif #1 was built from 95 

sites, and had a q-value of 5.5e-018. meme_motif#2 was built from 36 sites with a q-

value of 1.2e-015. Dreme_motif#1 was built from 314 sites with a q-value of 4.7e-25. 

Dreme_motif#2 was built from 290 sequences with a q-value of 0.006. In each case, 

TOMTOM analysis identifies the strongest sequence as a Ftz-F1 binding site. When 

searched over the entire genome, the Ftz-F1 like binding motif is over-represented in 

Ftz ChIP-chip data (Fig. 5A-D). 

Once the enhancer regions were shown to be controlled by Ftz/Ftz-F1, they were 

examined for additional motifs that might be important for Ftz/Ftz-F1 regulation. For 

this analysis, the seven strong enhancers found in this study (enhancers for ken, mid, 

trn, hh, Antp, and blot) were combined with three previously confirmed Ftz/Ftz-F1 

responsive enhancers (ftz proximal enhancer, en, drm2, and drm34) to determine if there 

were any binding sites common to all ten. All four of the de novo algorithms used by 

the MelinaII program -Consensus, Meme, MDScanner, and Gibbs - found that the 

binding site for Ftz-F1 was the most common motif (Fig. 4-9A,B) which was also found 

in the PWM analysis of the negative enhancers (Table 4-4). This is expected, as all 

enhancers were chosen based on whether they had at least one candidate Ftz-F1 

sequence. 

Enhancers that fit the criteria used to search for enhancers in these studies (they 

contain at least both Ftz and Ftz-F1 binding sites), but were then shown to not be 
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enhancers, were designated as ‘negative enhancers’. Three negative enhancers have 

been found so far, the enhancers found in this study (aay-lacZ) and a previous study 

(drm1 and drm5) (Hou et al., 2009).  The same analysis was run with the three negative 

enhancers, and the most common binding motif found was for the Forkhead (Fig 4-

9C,D), which was also found in the PWM analysis of the negative enhancers below 

(Table 4-4). 
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           GACCTCG 

Meme:         TGTCCTTG 

MDScan:        GTCCTTGA 
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Figure 4-9. Examination of motifs in candidate Ftz enhancers shows Ftz-F1 as the 

prominent binding motif. Melina II software was used to compare A) the 10 positive 

enhancers to search for common motifs using 4 algorithms – CONSENSUS, MEME, 

Gibbs, and MDScan. The boxes represent motifs found by each algorithm common to 

all 10 enhancers across each enhancer. B) All 5 algorithms showed the most common 

motif to be the binding site for Ftz-F1. The software was also used to compare C) the 

negative enhancers aay-lacZ, drm1, and drm5.  D) The strongest motif found between 

these three sequences was the binding site for Forkhead. 

 

When the enhancers were analyzed using the UMIACS pwm programs, which 

scans sequences for known transcription binding sites from the JASPAR database, 

binding sites were found for 67 known transcription factors (Table 4-5). 57 of the 67 

transcription factors contain a homeodomain, as does Ftz. These homeodomain-

Consensus: TTTTGTGTG 

        TTTTGTTTG 

Meme:         TTTTGTTT 

MDScan:     AAGATATA  

         TATATTTT 

Gibbs:         TTTTGTTT 

C 

D 
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containing transcription factors were eliminated, as they were likely identified by the 

program because their binding site is similar to the binding site of Ftz. One transcription 

factor that did not contain a homeodomain, DEAF-1, had a particularly high PWM 

score. The three negative enhancers were also analyzed using the UMIACS PWM 

program (Table 4-5). This pwm analysis also found many homeodomain binding sites, 

64 out of 77, and only 13 transcription factors that did not contain a homeodomain. 

When the lists of transcription factors that do not contain a homeodomain for the 

positive enhancers and the negative enhancers were compared, only one transcription 

factor in the positive enhancer group was identified, while five were found in the 

negative enhancer group. For the positive enhancers, this transcription factor was Zeste 

(z), and for the negative enhancers, they were Trithorax-like (Trl), which codes for 

GAGA factor, Scalloped, Dichaete, Forkhead, and Sloppy-paired1 (Table 4-5). 
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Table 4-5. A position weight matrix program was used to search for transcription factor 

binding motifs within the positive and negative enhancer groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.7 ChIP-chip data identifies GAF binding near negative enhancers 

A ChIP-chip analysis was performed on pooled embryos 4-12 hours AEL for 

several chromatin markers, including methylation markers K4 and K27, as well as 

GAF, PC, and Pho (Schuettengruber et al., 2009). These data were used to analyze 

binding surrounding Ftz/Ftz-F1 targets and enhancers. For the methylation markers, no 

clear pattern was detected, and in fact, some targets that are known to be active during 

the blastoderm stage had strong K27 binding (data not shown). This could be explained 
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by the broad collection time of the embryos. These genes may be both activated and 

repressed over this long time period and in different cells, and so repression markers 

would be observed that are bound in some cells of the whole embryo at any point in 

time during the collection. When GAF binding, along with PC and Pho binding, was 

analysed surrounding the Ftz-F1 responsive targets and enhancers, an interesting pattern 

emerged (Fig. 4-10). While PC and Pho showed no distinct difference between positive 

and negative enhancers, strong GAF binding was found only near the three negative 

enhancers. All but one of the positive enhancers contained no GAF binding, while the 

ken enhancer had weak GAF binding. 
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Figure 4-10 ChIP-chip data for Pho, PC, and GAF surrounding Ftz-Ftz-F1 

enhancers. ChIP-chip data published by Schuettengruber et al., 2009 shows binding by 

fold change (y-axis) of transcription factors GAF, PC, and Pho along the DNA (x-axis). 

GAF binds at all three of the negative enhancers, while GAF does not bind near nine of 

the positive enhancers, and binds weakly near the ken enhancer. No discernable pattern 

could be seen for Pho and PC binding. 

 

4.4 Discussion 

This study identified target genes coordinately regulated by Drosophila Ftz and 

Ftz-F1 using microarray data, identified and confirmed the enhancers of those genes 

based on ChIP-chip data and enhancer reporter constructs respectively, and then 

analyzed these newly identified enhancers for interesting motifs. The microarray was 

used to compare RNA expression during blastoderm and gastrulation from control and 

aay-lacZ 

drm1 drm2 drm34 drm5 
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ftz-f1 mutant embryos, identifying 63 candidate Ftz-F1 targets genes that had at least a 

1.1 fold increase between the two stages and a downregulation in ftz-f1 mutants (Fig. 4-

2). Nine of the top ten positive targets from this list were shown to be regulated by Ftz-

F1 and Ftz in that their expression overlapped with that of ftz (Fig. 4-3), and target gene 

expression was lost in both ftz and ftz-f1 mutants (Fig. 4-4). In order to determine 

whether Ftz/Ftz-F1 directly regulate expression of these target genes, Ftz/Ftz-F1 

responsive enhancers were found by combining ChIP-chip data of Ftz binding (Fig. 4-5) 

and a computational search of candidate Ftz-F1 binding sites (Fig. 4-6). Analysis of the 

expression of these enhancers using lacZ reporter constructs in transgenic Drosophila 

embryos showed that eight of the nine the enhancers direct expression in a striped 

pattern (Fig. 4-7). These patterns were similar to those of the endogenous Ftz-F1/Ftz 

target genes they were expected to regulate, indicating that they were in fact enhancers 

of these genes, and the enhancer expression was lost in a ftz mutant background (Fig. 4-

8). Analysis of these new enhancers, along with previously identified Ftz/Ftz-F1-

regulated enhancers (Fig. 4-9), identified Deaf1, Dichaete, Zeste, and GAGA factor 

(Table 4-5) as possibly necessary for correct Ftz/Ftz-F1 regulation. 

 

4.4.1 An RNA expression-based search for Ftz/Ftz-F1 targets was more efficient than 

those based on Ftz and Ftz-F1 binding sites 

Two approaches were used previously to identify Ftz/Ftz-F1 target genes 

(Bowler et al., 2006; Hou et al., 2009) but both proved to be inefficient in identifying 

targets. The first (Bowler et al., 2006) used a computational approach to scan the 

genome for known Ftz and Ftz-F1 binding sites, based on the sequence configurations 



101 

 

of Ftz and Ftz-F1 binding sites in the two previously verified target genes, engrailed 

(Florence et al., 1997) and ftz itself (Yu et al., 1997). Genes that had at least 5 

composite Ftz and Ftz-F1 binding sites in these orientations within 40 kb of their 

transcription start site were considered to be candidate targets. Of the 111 candidate 

targets found this way, 30 had known expression patterns published by BDGP. Their 

expression patterns were analyzed to determine whether they overlap with Ftz and thus 

could be directly regulated. Of these 30 candidate targets, only 2 candidate genes were 

shown to be new targets of Ftz/Ftz-F1. While the expression of most of the candidate 

targets was not affected in ftz mutants, 3 of those 30 candidate targets had a strong 

striped pattern that was altered in ftz mutants, and one of those was en itself. The two 

new genes, Sulf1 and apt, both co-localize with ftz expression, and this expression was 

lost in ftz and ftz-f1 mutants. To further determine if they were targets, ftz was 

ubiquitously expressed using an NGT40-GAL4 driver. This ectopic expression of Ftz 

altered apt and Sulf1 expression similarly to that of en, a known direct target, with fused 

stripes of expression, indicating that they were regulated by Ftz/Ftz-F1. Sulf1 was 

shown to be a direct target of Ftz/Ftz-F1. Two candidate Ftz-F1 binding sites, Sulf2 and 

Sulf34, were found within 8.5 kb upstream of the TSS for Sulf1. Direct interaction 

between the enhancer Sulf34 with Ftz and Ftz-F1 in an electromobility shift assays was 

observed, and this interaction was lost when the Ftz-F1 site was mutated in the Sulf34 

enhancer. Enhancer-reporter transgenes demonstrated that Sulf34 was sufficient to 

generate a Sulf1 pattern, while Sulf2 was not sufficient on in its own but worked with 

Sulf34 to generate a cleaner pattern. 
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In the second study (Hou et al., 2009), the opposite approach was used. Known 

expression patterns published by BDGP were visually examined for any striped 

expression patterns suggestive of pair-rule targets, which led to 95 candidate targets. 

The genomic regions (~20 kb) around these targets were scanned for Ftz and Ftz-F1 

candidate binding sites in the ftz or en configuration, similar to method used in Bowler 

2006, which narrowed the candidate targets to 30. The expression pattern of these 30 

genes was examined in both wildtype and ftz-f1 mutants, and only 10 of the genes 

showed an aberration in the mutants. 5HT2, noc, and drm were further investigated. For 

all three, 7 of their stripes overlapped with Ftz expression. Ectopic expression of Ftz 

altered the expression of all three genes, with several stripes becoming fused or paired, 

and expression became expanded or unclear in all. One of these candidate targets, drm 

was further analyzed. Ftz-F1 binding sites were identified in the genomic region 

surrounding the drm coding region and four enhancers were identified. Two of these 

enhancers, drm2 and drm34, directed striped expression in the early embryo. These 

were shown to be directly regulated by Ftz/Ftz-F1 by mutating the core AAGG of the 

Ftz-F1 sites to AGAT and fusing these mutated enhancers to a lacZ reporter gene. The 

mutated enhancers gave reduced or no expression, showing the Ftz-F1 site was 

necessary for the enhancers to function, indicating direct control by Ftz/Ftz-F1. 

Interestingly, two other candidate enhancers for drm, drm1 and drm5, which were 

identified by Ftz and Ftz/F1 binding sites, did not give a striped pattern and so were not 

enhancers at all. This showed the presence of candidate Ftz and Ftz/F1 binding sites 

was not enough to identify a Ftz/Ftz-F1 responsive enhancer. Overall, this approach 

identified 10 candidate Ftz/Ftz-F1 target genes, of which only only 3 targets were 
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further investigated and shown to be actual targets. Together, these two approaches 

showed that a search for Ftz/Ftz-F1 targets based on expression patterns and Ftz and 

Ftz-F1 binding sites was not enough to identify targets efficiently. This indicates that 

Ftz/Ftz-F1 use more information to locate their target sites in the genome than just the 

core Ftz and Ftz-F1 binding sites.  

In the current study, a microarray comparing wildtype and ftz-f1 at blastoderm 

stage identified 63 candidate targets, 10 of which were investigated further and shown 

to overlap with ftz expression. The expression of each of the ten genes was altered in ftz 

and ftz-f1 mutants, indicating that they were indeed Ftz/Ftz-F1 targets. This method may 

have been more successful in finding targets because it did not depend on 

computationally identifying Ftz and Ftz-F1 sites in the genome, but was instead based 

on RNA expression. This again suggests that more information is needed to determine 

how Ftz/Ftz-F1 choose their targets than just the presence of Ftz and Ftz-F1 binding 

sites. 

4.4.2 Ftz/Ftz-F1 target genes have known roles in development 

The new Ftz/Ftz-F1 target genes generated by this study all have roles in 

development. En and hh have many roles in development, the most significant one as 

pair-rule targets being segment polarity genes (Peel, 2004). hh is also the ligand in the 

hedgehog signaling pathway (Briscoe and Therond, 2013). mid is also a segment 

polarity gene (Tearle and Nusslein-Volhard, 1987), along with being involved in axon 

guidance (Liu et al., 2009), heart development (Miskolczi-McCallum et al., 2005; Qian 

et al., 2005; Qian et al., 2008; Reim et al., 2005), and nervous system development 

(Leal et al., 2009) (Gaziova and Bhat, 2009) (Buescher et al., 2006). Antp is a Hox gene 
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that specifies segments in the thorax (Schneuwly et al., 1987), as well as later roles in 

lymph gland development (Mandal et al., 2007), specification of the muscle cell fate 

(Enriquez et al., 2010), and neuroblast development (Tsuji et al., 2008). All of the other 

genes have known roles in development in the later embryo. ken works in genitalia 

development (Lukacsovich et al., 2003) and is a regulator of JAK/STAT pathway 

(Arbouzova et al., 2006). aay has a role in axon guidance/nervous system development 

(Prokopenko et al., 2000). trn encodes a cell surface protein that has many roles - in cell 

movement and migration in the imaginal discs (Milan et al., 2001), tracheal branch 

outgrowth “joining of tracheal branches over segment boundaries” (Krause et al., 2006), 

salivary gland invagination (Maybeck and Roper, 2009), retinal epithelial integrity 

(Mao et al., 2008), and mediate homophilic cell adhesion (Shinza-Kameda et al., 2006). 

Blot is a putative neurotransmitter with a role in morphogenesis of epithelium (Johnson 

et al., 1999). 5HT2 is a serotonin receptor with specific ligand binding (Colas et al., 

1995). It helps control morphogenetic movements in gastrulation - mutants had 

defective germband extension and mislocalization of Armadillo, suggesting 

abnormalities in adherens junctions (Colas et al., 1995; Colas et al., 1999a; Colas et al., 

1999b; Schaerlinger et al., 2007). It was already shown to be a target of Ftz/Ftz-F1 (Hou 

et al., 2009), as discussed in the previous section. 

 

4.4.3 Nine Ftz/Ftz-F1 enhancers direct expression in striped patterns 

 Nine of the ten Ftz/Ftz-F1 enhancers found in this study directed reporter gene 

expression in patterns in the early embryo. The one exception, the Ftz/Ftz-F1 enhancer 

for aay, was the only candidate enhancer found using the ChIP-chip data at 25% FDR, 
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and so was likely a false positive. If aay is a Ftz/Ftz-F1 target, either the Ftz binding 

within 100 kb of the gene was missed by the ChIP-chip analysis, or the enhancer is 

outside of the 100 kb range used. 

 Seven of the ten newly found Ftz/Ftz-F1 enhancers were categorized as “strong” 

enhancers, as they directed lacZ expression in patterns similar to the endogenous genes 

they were expected to regulate (Fig. 4-7). That is, ken-lacZ was expressed in two 

stripes, one anterior and one posterior, similar to endogenous ken. en-lacZ, mid-lacZ, 

and hh-lacZ were expressed in 14 stripes. tal-1A-lacZ, 5-HT2-lacZ, and blot-lacZ were 

expressed in seven stripes. Antp-lacZ was expressed in one broad stripe. trn-lacZ was 

particularly interesting, because while trn is expressed in eight stripes, the Ftz/Ftz-F1 

enhancer directed expression in only seven stripes. The most anterior trn stripe does not 

overlap with ftz, and so was unlikely to be controlled by Ftz. The expression pattern of 

trn-lacZ indicates that the seven posterior stripes are indeed regulated by Ftz/Ftz-F1, 

consistent with the overlap of these seven stripes. 

One of the Ftz/Ftz-F1 enhancers, 5HT2-lacZ, was expressed in a pattern that 

differed from the endogenous expression of 5HT2. For this “weak” enhancer, rather 

than the 7 stripes expected, the reporter genes were expressed in 3 broad, spotty bands 

in the middle of the embryo. This was the only enhancer chosen that did not entirely fit 

the criteria – there was no Ftz binding at this location based on the ChIP-chip data. 

Instead, this enhancer was chosen because 5HT2 was a known ftz/ftz-f1 target, but no 

Ftz binding was detected within 70kb of the gene. Instead, 5HT2-lacZ was selected 

based on a candidate ftz-f1 site found near the gene. This result could have several 

explanations: 1) the 1 kb chosen for the candidate enhancer includes only a small part of 
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the functional enhancer; 2) there are other enhancer(s) working with this enhancer to 

direct the correct expression pattern; and/or 3) the candidate enhancer is not a true 

enhancer for the proposed target, although it could still be enhancer for a different gene. 

Combining the strong and weak enhancers, nine out of the ten enhancers chosen (with 

the criteria of Ftz binding within 100 kb of a Ftz/Ftz-F1 target gene and containing at 

least one candidate Ftz-F1 site), were shown to have enhancer activity at least partially 

overlapping the expression of the endogenous gene. 

aay-lacZ was the only candidate enhancer that directed no β-Gal expression, 

indicated that it is not an enhancer. This enhancer was chosen at a region that only had 

Ftz binding at 25% FDR, so this may have been a false positive. 

4.4.4 Ftz binding in the Drosophila genome 

The ChIP-chip data published by BDNTP identified 403 Ftz binding sites in the 

genome of blastoderm stage embryos using a 1% FDR. An additional 3,318 sites were 

identified when a 25% FDR was used as a cutoff. It is likely that the true number of Ftz 

targets is between these numbers, as 1% FDR is a stringent cutoff that would miss many 

sites while 25% FDR would allow many false positives. In contrast, 14.5 million 

candidate Ftz binding sites were found in the Drosophila genome based on sequence 

alone (Bowler et al., 2006). This begs the question of how there can be so few actual Ftz 

binding sites. One possibility is that Ftz is only bound when Ftz-F1 is also bound. 

Bowler searched for two possible Ftz/Ftz-F1 cooperative configurations of binding sites 

in the genome, for en and ftz enhancers, and found 3,310 candidate sites. However, the 

number of genes that are differentially expressed between wild type and ftz-f1 mutants 

at different p-value cut offs (Table 4-1) suggests that the number of Ftz/Ftz-F1 targets is 
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between 159 and 897. There are likely more than only these two cooperative 

configurations for Ftz and Ftz-F1 binding sites, and so there are likely more than the 

403-3,318 candidate cooperative binding sites. If Ftz binding is restricted to areas that 

are also bound by Ftz-F1, what explains the difference between candidate cooperative 

binding sites (403-3,318) and the likely number Ftz/Ftz-F1 targets (159-897)? It is 

possible that another factor besides Ftz-F1 is also restricting the binding of Ftz. 

Of the 403 Ftz bound regions, 56 were CRMs that have previously been 

described, including nearly all published enhancer elements previously shown to be Ftz 

responsive. Some examples are enhancers for teashirt (Coré et al., 1997), en (Florence 

et al., 1997), gooseberry (Bouchard et al., 2000), Ubx (pbx) (Müller and Bienz, 1992; 

Pirrotta et al., 1995), Ubx (bx) (Qian et al., 1993),and the ftz upstream element (Pick et 

al., 1990a). Several known and candidate Ftz/Ftz-F1 responsive elements were not 

identified by either the ChIP-chip data or the analysis in this study, including drm34 

(Hou et al., 2009), the ftz zebra element (Ueda et al. 1990), the 5th hairy stripe 

(Langeland and Carroll, 1993). As mentioned above, two Ftz/Ftz-F1 responsive 

enhancers had been identified for drm – drm2 and drm34 (Hou et al., 2009). Only drm2 

was bound by Ftz in the ChIP-chip analysis - drm34 was not identified at either 1% or 

25% FDR. While the drm34 site was originally selected based on the presence of a 

consensus Ftz-F1 binding site (Hou et al., 2009), that Ftz-F1 binding site was not 

detected by this study using the Ftz-F1 dreme position weight at the threshold (Fig. 4-

5A). However, because drm34 was confirmed as a Ftz/Ftz-F1 responsive enhancer, this 

indicates that bona fide targets were missed in the ChIP-chip analysis. Additionally, the 

hairy stripe 5 element has been suggested to be regulated by Ftz-F1 due to binding site 
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conservation (Langeland and Carroll, 1993). Since these sites were missed by this 

analysis, other areas with Ftz binding may have been missed in the analysis, so it is 

likely there are more Ftz/Ftz-F1 enhancers that were not found with the current data. If 

Ftz’s role in segmentation is to be understood, these other Ftz bound regions need to be 

investigated to see which control targets are involved in segmentation. 

4.4.5 Searching for motifs in Ftz/Ftz-F1 enhancers 

As mentioned above, the number of actual Ftz/Ftz-F1 target genes appears to be 

much smaller than those predicted based upon predicted or verified Ftz genomic 

binding at the blastoderm stage. Analysis of verified Ftz/Ftz-F1-regulated enhancers 

was carried out to identify candidate co-regulators that may limit the action of Ftz 

and/or Ftz-F1 to specific genes (Fig. 4-9, Table 4-2). The MelinaII analysis was only 

able to find Ftz-F1 binding sites (Fig. 4-7B in red) using de novo algorithms. This is 

likely because each enhancer was chosen on the criteria that they must contain at least 

one Ftz-F1 site, and most contained multiple (Table. 4-4), making the Ftz-F1 site the 

strongest site. Examining the ten enhancers using the UMIACS pwm program gave a 

list of strong transcription factor binding sites found in each sequence (Table 4-5). Most 

of these binding sites were for transcription factors with homedomains. Given the 

similarity of homeodomain binding sites, it is likely that these binding site consensus 

sequences were similar enough to the Ftz binding site to be found in this search. 

However, several transcription factors did not contain a homeodomain and so could not 

have been found from a site similar to the Ftz binding site. Similar results were found 

when the three negative enhancers drm1, drm5 and aay-lacZ were analyzed by the 

UMIACS pwm program.  
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The transcription factors that did not contain homeodomains were further 

analyzed to determine if they might have a significance for Ftz/Ftz-F1 binding.  DEAF-

1 stood out as a possible co-regulator of Ftz/Ftz-F1 target genes, as it had the strongest 

pwm score for the binding sites in the positive enhancers. However, DEAF-1 binding 

sites were also found in the three negative enhancers, with a lower pwm score. This 

does not preclude DEAF-1 as a possible co-regulator, but it does mean that a lack of 

DEAF-1 binding sites is not what kept the negative enhancers from functioning as 

enhancers. DEAF1 contains two motifs, SAND and MYND. The 3D structure of the 

SAND domain has been characterized and appears to encode a DNA binding motif 

involved in transcriptional regulation (Bottomley et al., 2001). The MYND motif in 

Drosophila DEAF1 may have a role in protein-protein interaction (Gross and 

McGinnis, 1996). Mutant maternal germline clones of Deaf1 caused early embryonic 

death in 70% of embryos, before gastrulation, but some completed embryogenesis. The 

embryos that survived to first instar larvae or the end of embryogenesis had 

segmentation defects including loss and fusion of all segments across the 

anterior/posterior axis - that could suggest a role in pair-rule regulation (Veraksa et al., 

2002). ftz expression was also lost or altered in Deaf1 maternal mutants, as was the 

expression of gap genes knirps and kruppel. Thus, Deaf1 likely plays multiple roles in 

early embryonic development making specific interactions difficult to unravel. 

However, the consistent presence of strong DEAF1 binding sites in enhancers that are 

regulated by Ftz/Ftz-F1 makes DEAF1 a good candidate for further study as a possible 

co-regulator of Ftz/Ftz-F1. 
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When the lists of transcription factors that did not contain homeodomains for 

both the positive and negative enhancers were compared, one transcription factor was 

identified in the positive enhancer group that was not in the negative enhancer group. 

All ten positive enhancers contained binding sites for the transcription factor Zeste, 

which were not found in the three negative enhancers. Zeste can act as both an activator 

and repressor (Hur et al., 2002; Mulholland et al., 2003; van Steensel et al., 2003), 

working on the chromatin level. Z acts as an activator by recruiting the Drosophila 

Brahma (BRM) chromatin remodeling complex, which opens chromatin (Dejardin and 

Cavalli, 2004; Kal et al., 2000). 

When the reverse search was done, five transcription factors lacking 

homeodomains were identified in the negative enhancer group that were not found in 

the positive enhancer group. Three of these can easily be dismissed as necessary for 

Ftz/Ftz-F1 function – sd and fkh do not have a pattern consistent with Ftz/Ftz-F1 

function, while slp1 is a known pair-rule gene that does not affect Ftz/Ftz-F1 function. 

The functions of the two other transcription factors identified, Dichaete and Trl, are 

known and examined further here. 

Dichaete is a member of the protein superfamily High Mobility Group (HMG). 

This group of proteins affects regulation on the chromatin level (Grosschedl et al., 

1994; Landsman and Bustin, 1993), and is capable of bending DNA when it binds 

(Ferrari et al., 1992; Giese et al., 1992). Dichaete is expressed in the blastoderm in a 

striped pair-rule pattern and contains one HMG DNA-binding domain (Nambu and 

Nambu, 1996; Russell et al., 1996). Embryos that are null mutants for Dichaete show 

defects in eve, h, run, and ftz expression. The expression of ftz in these mutants have 
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stripes 3 and 4 fused, suggesting a repressive function on ftz. Dichaete does not appear 

to be necessary for the establishment of any pair-rule genes, but may be involved in the 

refinement and maintenance (Nambu and Nambu, 1996). When Dichaete was 

overexpressed, it caused the expansion of stripes and an expansion throughout the 

posterior for the expression of eve, h, and run. This overexpression had a much smaller 

effect on ftz expression, causing a shift of the most posterior stripe 3 or 4 cells more 

towards the posterior, although all stripes maintained their normal shape and size 

(Russell et al., 1996). Like DEAF-1, the segmentation defects caused by a Dichaete 

mutant make it a possible that it is necessary for Ftz/Ftz-F1 function, although it is also 

possible that these segmentation defects are caused by some other function of Dichaete 

in segmentation. Furthermore, Dichaete is a particularly interesting candidate for 

Ftz/Ftz-F1 function because it was previously found to interact with Ftz-F1 in a whole 

genome yeast two-hybrid experiment. 

Trl, like Z, can also act as an activator or repressor on the chromatin level (Hur 

et al., 2002; Mulholland et al., 2003; van Steensel et al., 2003). Trl is in the trithorax 

family, commonly known to activate genes (Lehmann, 2004; Simon and Tamkun, 

2002). Trl codes for GAGA Factor (GAF) (Farkas et al., 1994), which contains three 

domains -a zinc finger DNA-binding domain (Pedone et al., 1996) and a BTB/POZ 

protein-protein interaction domain (Bardwell and Treisman, 1994) are connected by a Q 

domain, essential for transcriptional activation (Greenberg and Schedl, 2001). GAF 

assists in gene activation through a mechanism of anti-repression (Croston et al., 1991; 

Lehmann, 2004). However, it has also been shown to repress genes. GAF binding sites 

have been found to be essential sequences in polycomb response elements (PREs) 
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(Busturia et al., 2001; Hagstrom et al., 1997; Horard et al., 2000), where Polycomb 

Group proteins (PcG) bind to repress homeotic genes. Further, both GAF and 

Pleiohomeotic (Pho) are involved in recruiting PcG (Fujioka et al., 2008; Mishra et al., 

2001). It has been shown that GAF binds chromatin and facilitates the binding of  Pho 

as well, and together these two proteins recruit PcG to the chromatin to repress genes 

(Mahmoudi et al., 2003). ChIP-chip binding data of GAF surrounding both the positive 

and negative the Ftz/Ftz-F1 enhancers, it was determined that GAF bound only at the 

negative enhancers, with the exception of weak binding near ken-lacZ (Fig. 4-10). The 

collection time for this experiment was broad so it is impossible to determine from this 

data if GAF was binding during blastoderm and germband extension, but this strong 

binding difference between positive and negative enhancers should be further 

investigated. The GAF binding sites found in the three negative enhancers, along with 

the GAF binding data, provide a possible explanation as to why these candidate 

enhancers did not function as Ftz/Ftz-F1 enhancers – they may have been repressed at 

the chromatin level by GAF, using a mechanism of repression that does not require PC 

and Pho. Both Z and GAF should be further studied as possible Ftz/Ftz-F1 co-activators 

or repressors, respectively. 
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Conclusions and Future Directions 

Here I have studied the expression and function of the developmental gene ftz in 

the mosquito Aedes aegypti and compared it with what is known in Drosophila. RNA 

from Aa embryos was isolated and converted to cDNA. RT-PCR was used to examine 

the timeline of expression for Aa-ftz and its cofactor Aa-ftz-f1.  These temporal 

expression patterns were consistent with Dm-ftz and Dm-ftzf1. Along with this, an 

alignment of the sequences of Dm-Ftz and Aa-Ftz showed that the functional sequences 

were nearly identical, indicating that the two genes will have the same pair-rule 

function. However, further attempts to determine the expression and function of Aa-ftz 

were unsuccessful. In situ hybridization using an Aa-ftz RNA probe and antibody 

staining with anti-en 4F11 were difficult due to the tough chorion of this species. This 

inability to observe the expression pattern of en also made it impossible to determine 

any defects in the early embryos that may have been caused by a functional experiment 

in which Aa-ftz was overexpressed in a transgenic line of Aedes. However, the low 

survival rate of heatshocked Aa-ftz embryos compared to wild type embryos does 

indicate that overexpression of Aa-ftz has a lethal effect. 

Further experiments need to be carried out to determine the expression pattern of 

ftz in the blastoderm through germband extension in mosquitoes. This experiment could 

continue to be attempted in Aedes, or it could be tried in the mosquito Anopheles 

gambiae, now known to be easier to stain because of differences in the chorion. 

Functional studies might also be more successful in Anopheles, as the en pattern might 

be easier to obtain and so segmental defects could be observed. A knockdown of ftz and 
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ftz-f1 by RNAi could also be used to determine the loss of function phenotype of ftz in 

mosquitoes. 

In addition to the conservation of ftz in Diptera, the function of ftz was studied in 

Drosophila. Specifically, I wanted to find a larger set of Ftz/Ftz-F1 targets and 

enhancers so that we could determine any other inputs that are necessary for this 

function. The question of how transcription factors find their targets in vivo is complex 

and varied across different factors. Before this study, the core binding site of both Ftz 

and Ftz-F1 was known, but studies trying to determine more genomic Ftz/Ftz-F1 

binding sites based on a computational search for the in vitro DNA binding sites only 

found a few new target genes. In my study, I combined the experimental data from a 

microarray and a ChIP-chip experiment with a computational search for candidate ftz-f1 

binding sites, and using this approach, nine of the top eleven targets were confirmed to 

be bona fide targets. Five of these were new target genes. Interestingly, every target 

from the microarray comparing wild type and ftz-f1 mutant embryos proved to also 

require ftz to be activated. So far, all known targets of Ftz and Ftz-F1 in their 

segmentation role have needed both factors to be activated. This provides more 

evidence that Ftz and Ftz-F1 do not function separately in the early embryo, despite the 

differences in their expression patterns and their roles later in development. 

 I was also able to identify seven new Ftz/Ftz-F1 responsive enhancers in the 

Drosophila genome – enhancers for ken, mid, 5HT2, trn, hh, Antp, and blot (the en 

enhancer was already known). Combined with previously known enhancers (enhancer 

for ftz and drm), there are now ten confirmed enhancers of Ftz/Ftz-F1. This collection of 

enhancers gave us the opportunity to examine them for any binding motifs that were 
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previously unknown to be necessary for Ftz/Ftz-F1 function. There are also three 

enhancers (for aay and drm) that fit previous search criteria, including Ftz binding and 

candidate ftz-f1 sites, which proved to not function as enhancers. This group allowed us 

to also search for any binding motifs that may explain why Ftz/Ftz-F1 did not activate 

these enhancers. Using a position weight matrix that searched the two groups of 

enhancers for known binding sites of Drosophila transcription factors stored in the 

Jaspar database, we found three factors that may play a role in how Ftz/Ftz-F1 find their 

targets. DEAF-1 and Zeste should be further explored as possible activators of Ftz/Ftz-

F1 targets, while GAGA Factor should be studied as a possible repressor of candidate 

Ftz/Ftz-F1 targets. A simple first step would be to observe the expression pattern of all 

known Ftz/Ftz-F1 targets in embryos carrying mutations in the genes encoding these 

factors, although this would be made difficult made by the universal effects all three 

factors have on development. In addition, the binding sites for the factor should be 

mutated in some or all of the known Ftz/Ftz-F1 enhancers to see if the expression 

patterns directed by these enhancers are affected. 

Another interesting line of study from this work would be to explore if and how 

the new set of Ftz-F1 targets are involved in segmentation. While the fact that Ftz/Ftz-

F1 has a role in segmentation has been well documented, it is not known how they 

promote segmentation. More information on how their targets affect segmentation 

would go a long way towards answering this question. Beyond Ftz/Ftz-F1, this is still a 

question for all of the pair-rule genes, and any work to clarify this question for Ftz/Ftz-

F1 would give insight into how all pair-rule genes contribute to segmentation. 
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Finally, having a greater understanding of how Ftz/Ftz find their enhancers, and 

any other factors that may be involved, will only help to expand our understanding of 

how Ftz evolved into its role as a segmentation gene. If other factors are involved, it 

would interesting to know at which point in the evolution of arthropods they joined in 

the regulation controlled by Ftz/Ftz-F1, or if instead they had to be co-opted into 

development or segmentation before Ftz/Ftz-F1 gained their segmentation role. 
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Appendix: Antp data in Aedes Aegypti. 

Antp and ftz are closely related and have many similarities. ftz likely arose as a 

duplication of Antp (Telford, 2000), and Ftz has a nearly identical homeodomain to 

Antp . Ectopic expression of basally branching ftz gene also cause an antennae-to-leg 

transformation similar to ectopic expression of Antp (Lohr et al., 2001), indicating they 

have the ability to regulate some of the same targets. Because of this, originally I was 

going to use Aa-Antp as a control when studying Aa-ftz expression and function. Aa-

Antp would have served as a control for heatshock experiments, hypothesizing that the 

overexpression of Antp in Aedes would cause the same antennae-to-leg transformation 

seen in Drosophila. At the same time, it would have been the first homeotic 

transformation performed in a mosquito. However, due to the difficulties working with 

Aedes described in Chapter 3, this line of experimentation was not followed. Here, I am 

presenting the preliminary results I discovered about Aa-Antp. First, an alignment 

between Dm-Antp and Aa-Antp shows that they both contain the YPWM motif and that 

their homeodomains are 100% identical (Fig. A-1), indicating that they will have the 

same function in both Drosophila and Aedes. 

 

 

 

Figure A-1. An alignment between the homeodomain of Dm-Antp and Aa-Antp. 

The alignment shows that both Dm-Antp and Aa-Antp have a YPWM motif, and that the 

homeodomains of the two proteins are 100% identical. 

 

Homeodomain YPWM 

PLYPWMRS—6aa—ERKRGRQTYTRYQTLELEKEFHFNRYLTRRRRIEIAHALCLTERQIKIWFQNRRMKWKKENKT Drosophila Melanogaster  
PLYPWMRS—2aa—ERKRGRQTYTRYQTLELEKEFHFNRYLTRRRRIEIAHALCLTERQIKIWFQNRRMKWKKENKT Aedes Aegypti  
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The RT-PCR experiment shown in chapter 3 (Fig. 3-2) originally also included 

the expression profile of Antp. This figure is presented in full here (Fig. A-2). In D. 

melanogaster, the blastoderm stage ends around 3 hours AEL, and germband extension 

goes from 3 hours to 5 hours AEL. The expression of Antp, ftz, and ftz-f1 also follow 

this same pattern, being expressed about 3 times later and during the same stages in 

Aedes as in Drosophila. In Drosophila, Antp is expressed strongly starting during 

blastoderm and lasts through germband extension, approximately 2 -5 hours AEL 

(Bermingham et al., 1990). In Aedes aegypti, Antp began expression at 6-9 hours, in 

which blastoderm ends and gastrulation begins, and continues throughout germband 

extension. Aa- ftz-f1 was expressed during the entire 15 hours, with highest expression 

between 3-9 hours AEL. Aa-ftz-f1 expression decreased during 9-15 hours AEL. The 

weaker Aa-ftz-f1 band for 9-12 hours can be explained by a lower RNA concentration 

for the collection at this time point, as shown by weaker band for the actin control. Aa-

ftz-f1 expression matches the Dm-ftz-f1 expression timeline, which is maternally 

deposited and continues to be ubiquitously expressed in the embryo until it begins to 

fade during germband extension.  Drosophila ftz is expressed from the blastoderm stage 

to the beginning of germband extension, 2-4 AEL (Hafen et al., 1984). The timeline for 

Aa-ftz expression began in the early blastoderm (3-6 hours), decreased some through 

gastrulation (6-9 hours), and continued through germband extension, which also 

matches the expression timeline for Dm-ftz. 
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Figure A-2. Expression profile of Antp, ftz and ftz-f1 in early Aedes embryos.  

cDNA was collected from Aedes aegypti  embryos aged to 5 different time points and 

RT-PCR was performed to examine the expression levels across the first 15 hours of 

embryonic development. actin was used as a control across all time points. Antp was 

most highly expressed at 3-6 hours AEL, ftz was most highly expressed at 9-12 hours 

AEL, and ftz-f1 was most highly expressed at 0-9 hours AEL. 

 

When Aa-Antp was isolated from Aedes in order to make a hsp70-Aa-Antp 

construct (originally to be transformed into Aedes for heatshock overexpression 

experiments), two isoforms of Antp were isolated (Fig. A-3). One contained an exon 

that was not found in the other. It was never determined which one was expressed in the 

early Aedes embryo. To do this, RT-PCR should be performed on RNA taken from a 

pool of 0-8hr embryos, using isoform specific primers. 

Antp 

ftz 

ftz-f1 

0-3    3-6    6-9    9-12   12-15 

actin 
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Figure A-3. Two isoforms of Antp  were isolated from Aedes aegypti  gDNA. 
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