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The ability to characterize vegetation structure in the taiga-tundra ecotone (TTE) at 

fine spatial scales is critical given its heterogeneity and the central role of its patterns on 

ecological processes in the high northern latitudes and global change scenarios.  This research 

focuses on quantifying the uncertainty of TTE forest structure observations from remote 

sensing at fine spatial scales.  I first quantify the uncertainty of forest biomass estimates from 

current airborne and spaceborne active remote sensing systems and a planned spaceborne 

LiDAR (ICESat-2) across sparse forest gradients.  At plot-scales, current spaceborne models 

of biomass either explain less than a third of model variation or have biomass estimate 

uncertainties ranging from 50-100%.  Simulations of returns from the planned ICESat-2 for a 

similar gradient show the uncertainty of near-term estimates vary according to the ground 

length along which returns are collected.  The 50m length optimized the resolution of forest 

structure, for which there is a trade-off between horizontal precision of the measurement and 

vertical structure detail.  At this scale biomass error ranges from 20-50%, which precludes 

identifying actual differences in aboveground live biomass density at 10 Mg·ha
-1
 intervals. 

 These broad plot-scale uncertainties in structure from current and planned sensors provided 

the basis for examining a data integration technique with multiple sensors to measure the 

structure of sparse TTE forests.  Spaceborne estimates of canopy height used complementary 



  

surface elevation measurements from passive optical and LiDAR to provide a means for 

directly measuring TTE forest height from spaceborne sensors.  This spaceborne approach to 

estimating forest height was deployed to assess the spaceborne potential for examining the 

patterns of TTE forest structure explained with a conceptual biogeographic model linking 

TTE patterns and its dynamics.  A patch-based analysis was used to scale estimates of TTE 

forest structure from multiple sensors and provided a means to simultaneously examine the 

horizontal and vertical structure of groups of TTE trees.  The uncertainty of forest patch 

height estimates provides focus for improving spaceborne depictions of TTE structure 

patterns associated with recent change that may explain the variability of this change and the 

vulnerability of TTE forest structure.  
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Chapter 1: Introduction 

 

1.1. Overview 

Earthôs forests and the climate system are linked through interactions that remain the subject of 

intense study, because they affect human well-being.  These interactions, both biogeochemical and 

biogeophysical, are controlled in part by the vertical and horizontal distribution of canopy elements 

(structure) of forest vegetation spatially, seasonally, and inter-annually.  Changes in these interactions are 

often first observed at biome boundaries.  The boundary between the boreal (taiga) and tundra biomes in 

the high northern latitudes (HNL) is an ecological transition zone (ecotone) known as the taiga-tundra 

ecotone (TTE) that has experienced particularly strong regional surface temperature warming.  Examining 

the characteristics of forest structure in the TTE is critical for understanding HNL vegetationôs responses 

to, and effects on, climate and the consequences for human well-being. 

1.2. Research Goals and Questions 

An understanding of how current spaceborne remote sensing tools characterize TTE vegetation 

structure in Siberia is needed.  This need is driven by recent, widespread and variable vegetation change 

within the Siberian TTE, whose forests are on the leading edge of recent surface warming, are associated 

with permafrost, and coincide with vast quantities of belowground carbon.  The ability to characterize 

TTE vegetation structure is particularly critical given the central role of TTE vegetation structure patterns 

in determining ecological processes in the HNL and in influencing global change scenarios. 

The goal is to evaluate the uncertainty of current and planned spaceborne remote sensing for 

monitoring vegetation structure across sparse forest gradients, integrate spaceborne measurements of 

vegetation characteristics in a data fusion approach, and apply this approach to evaluate forest patch 

height and its uncertainty within the TTE of northern Siberia. This uncertainty will be examined in light 

of a conceptual model of regional vegetation structure to assess the potential of spaceborne maps for 
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depicting ecotone form and TTE forest structure vulnerability.  Assessing the uncertainty of spaceborne 

observations of vegetation structure at the fine spatial scales (10ôs of meters) at which it changes in the 

TTE is a first step in understanding how structural variability influences broader ecological processes.  In 

this study, both forest aboveground live biomass density (AGB) and forest canopy height will be the 

vegetation structural attributes of interest. This studyôs goal is addressed with the following three research 

questions: 

1. How do the estimates of AGB error and AGB error uncertainty from LiDAR and SAR vary 

across a vegetation structure gradient in sparse forests? 

2. How can estimates of forest structure from spaceborne data be integrated and scaled in a data 

fusion approach to characterize structure across sparse forest gradients? 

3. How well do the estimates of forest patch height and its uncertainty from spaceborne remote 

sensing depict ecotone form across a latitudinal forest gradient in the TTE in northern Siberia? 

1.3. Background 

1.3.1. The Taiga-Tundra Ecotone          

Earthôs longest ecological transition zone (ecotone) between terrestrial biomes, the taiga-tundra 

ecotone (TTE) of the circumpolar boreal region in the high northern latitudes (HNL) extends for 13,400 

km across two continents, varies widely in terms of position and pattern, covers approximately 1.9 

million square kilometers, holds vast amounts of subsurface carbon, and can amplify warming through 

decreases in surface albedo (Bonan, 2008; Callaghan, Werkman, & Crawford, 2002b; Swann, Fung, 

Levis, Bonan, & Doney, 2010). Generally, the TTE extends from the continuously forested region of the 

boreal biome northward to the northernmost position of arboreal growth (Payette, Fortin, & Gamache, 

2001).  However, this transition zone is discontinuous and non-uniform, as reflected in a recent map of 

the circumpolar TTE extent derived from MODIS data (Ranson, Montesano, & Nelson, 2011).  

Paleoecological data suggest this vegetation regime has not been static throughout the last 10,000 

years, but has both advanced northward and retreated southward in response to changing climate (Bonan, 
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2008; Callaghan, Werkman, & Crawford, 2002b; K. B. Liu, 1990; Payette & Gagnon, 1985; Swann et al., 

2010).  This evidence indicates that during a warming episode nearly 5000 years ago, forested patches 

appeared in the tundra in central Canada during a transition that lasted ~150 years (G. M. MacDonald, 

Edwards, Moser, Pienitz, & Smol, 1993; Payette et al., 2001).  In northern Siberia, Holocene increases in 

tree cover were asynchronous, perhaps emerging from refugial stands, while vertical growth has been 

evident since the first half of the 20th century (Esper & Schweingruber, 2004; G. M. MacDonald, 

Kremenetski, & Beilman, 2008; Payette, Eronen, & Jasinski, 2002; Ranson et al., 2011).    

1.3.2. TTE Vegetation Variability: Site and Climate Controls     

Vegetation within the TTE is subjected to a short growing season, varying topographic and 

edaphic conditions, and changes with shifts in climate (G. MacDonald et al., 2000; Wolfe et al., 2000).  

Evidence of paleoclimate summer temperature suggests that Arctic summers are warmer now than any 

time in the last 4 centuries (Chapin, 2005; Overpeck et al., 1997).  Recent studies have documented these 

changes in TTE vegetation under a shifting climate (Elmendorf et al., 2012; Esper & Schweingruber, 

2004; M. Harsch, Hulme, McGlone, & Duncan, 2009; Kirdyanov et al., 2011; Sturm, Racine, & Tape, 

2001; Tape, Sturm, & Racine, 2006; Vaganov, Hughes, Kirdyanov, Schweingruber, & Silkin, 1999).  

Many of these studies demonstrate that the ways in which the TTE ecosystem responds to warming 

depend on changes in the structure and productivity of vegetation, as well as the vegetationôs disturbance 

regime (S. Goetz et al., 2010; Payette et al., 2001).  Furthermore, the response of ecotone vegetation to 

climate depends on the magnitude and rate of environmental change, the sensitivity of dominant species 

(physiological tolerance), and the resilience of these species to change (Risser, 1995).  

While climate is important for determining the extent and pattern of the TTE and the distribution 

of its vegetation, other controlling factors include local-scale spatial structure of vegetation, species 

dispersal mechanisms and regenerative potential (Gamache & Payette, 2005; F.-K. Holtmeier & Broll, 

2005; K. B. Liu, 1990; Payette & Gagnon, 1985).  The geographic variability in site conditions thus 

influences the spatial heterogeneity of vegetation structure in the TTE (Bergen et al., 2009; Hall et al., 
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2011; Ropars & Boudreau, 2012), creating feedbacks to ecosystem structure and function that may also 

vary spatially.  The spatial patterns of vegetation, and their variability, may help explain the variability in 

vegetation dynamics in the TTE (M. A. Harsch & Bader, 2011).  

The structure of vegetation in the TTE also affects climate through a number of feedback 

mechanisms, and the net effect of vegetation structureôs influence on climate is not well understood 

(Bonan, 2008; Bonan, Pollard, & Thompson, 1992; Chapin et al., 2000; G. MacDonald et al., 2000; 

Wolfe et al., 2000). These feedback mechanisms can involve vegetation dynamics associated with 

changes in disturbance regimes (V. I. Kharuk, Ranson, Dvinskaya, & Im, 2011), temperature (A. Soja et 

al., 2007), hydrology (Kajimoto, Osawa, Usoltsev, & Abaimov, 2009; Miyahara, Takenaka, Tomioka, & 

Ohta, 2011), and surface albedo (Beck, Goetz, et al., 2011a; Betts, 2000; Loranty, Goetz, & Beck, 2011; 

Shuman, Shugart, & O'Halloran, 2011; C. Thompson, Beringer, Chapin, & Mcguire, 2004).  The carbon 

storage of the unique larch-permafrost coupled system of northern boreal Siberia is considered important 

to global carbon storage and regional climate (Post et al., 2009; N. Zhang, Yasunari, & Ohta, 2011). 

1.3.3. TTE Vegetation of Northern Siberia: Biophysical Relevance and Recent Changes 

The land surface in the TTE of northern Siberia has experienced rapid warming at least twice that 

of the average for global land areas (Groisman & Soja, 2009), about 2-3 degrees C (ACIA, 2005).  

Modeling studies on vegetation feedbacks to permafrost extent and active layer depth, timing of carbon 

feedback, fire activity, temperature, carbon storage, growing season length and climate help explain the 

relevance of potential changes in vegetation distribution and structure to ecosystem dynamics in the HNL.  

Model projections of the strength and timing of a permafrost feedback to climate, accounting for 

vegetation characteristics, suggest a central role for high latitude vegetation structure in determining the 

magnitude of changes to the global carbon cycle (Schaefer, Zhang, Bruhwiler, & Barrett, 2011).  In this 

region, the extent of continuous permafrost influences the distribution of vegetation (Lloyd, Bunn, & 

Berner, 2011; Schulze et al., 2012; Sugimoto, Yanagisawa, Naito, Fujita, & Maximov, 2002; 

Tchebakova, Parfenova, & Soja, 2009; N. Zhang et al., 2011).  The strength and timing of a climate 
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feedback from permafrost-bound carbon is a function of vegetation structure (Epstein et al., 2004; 

Jorgenson et al., 2010; Lawrence & Swenson, 2011; Schaefer et al., 2011).  A study on the potential 

impact of large-scale vegetation structure changes in the Arctic on boreal climate revealed that the 

strength and timing of land-atmosphere feedbacks were sensitive to shrub height, and that taller shrubs 

had larger effects on soil temperature and permafrost conditions (Bonfils et al., 2012). Liess et al. 

explored the ways in which the climate responds to boreal forest expansion, finding that modest forest 

expansion along the northern boreal edge resulted in summertime warming, enhancing the Arctic frontal 

zone (Liess, Snyder, & Harding, 2011).  Forest expansion imposed on the modeling simulations was 

subtle and spatially variable, yet led to an increase in AGB, leaf area, and lower surface albedo, among 

other changes. A modeled increase in growing season length showed greatest losses of soil carbon in 

areas with more vegetation (Euskirchen et al., 2006).  Modeled expansion of forests yielded a positive 

feedback with climate, from decreased albedo and increased transpiration, that amplified warming when 

operating in unison with sea-ice processes (Swann et al., 2010).  However, forest expansion will be 

regionally variable because of spatial variability in soil and climate (G. M. MacDonald et al., 2008). 

Finally, multiple studies explain the need for understanding vegetation height and cover, which may play 

an important role in determining the strength of the amplifying effect on climate warming (Blok et al., 

2010; 2011; Lawrence & Swenson, 2011; Loranty & Goetz, 2012; Myers-Smith et al., 2011).   

The modeling results that demonstrate the potential strengths and consequences of changes in 

vegetation structure for ecosystem dynamics in the HNL are underscored by multiple lines of evidence 

from plot and satellite studies directly observing change.  This evidence highlights recent vegetation 

changes in the TTE in general and in northern Siberia in particular.  Plot-scale vegetation changes in the 

HNL have been studied with field experiments while multi-scale studies of changes in vegetation 

productivity and structure have been carried out with satellite data analyses.   

Ground studies show that in central Siberia, dark-needle conifers are expanding into Larix-

dominated forests, and canopy-closure and expansion of Larix in tundra has been observed (V. I. Kharuk, 

Dvinskaya, Ranson, & Im, 2005; V. I. Kharuk, Ranson, Im, & Naurzbaev, 2006).  In the polar Urals of 
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northwestern Siberia, a recent study reports marked increase in woody growth as well as increases in 

areas supporting sparse Larix trees following increases in open and closed canopy Larix woodlands in 

those areas through the twentieth century (Devi et al., 2008; Shiyatov & Mazepa, 2012). These changes in 

sparse Larix forest structure were observed over long-term studies that examined changes in vegetation 

throughout the first and second halves of the 20th century. Mazepa and Devi (2007) discussed the 

changes in arboreal growth form, from shrub-like to prostrate, of Larix in the treeline ecotone in the polar 

Urals (Mazepa & Devi, 2007). Other dendrologic studies linked observed tree ring growth of Larix 

associated with permafrost in the TTE of northern Siberia to be coincident with increased summer 

temperatures (Vaganov & Kirdyanov, 2009).   

Satellite observations support ground studies of vegetation change.  Recent findings suggest 

warming-induced productivity increases are likely in northern Siberian taiga (Lloyd et al., 2011).  In 

western Siberia increased shrub growth has been associated with increased summer temperatures in the 

second half of the 20th century and has been linked to increased photosynthetic greening as documented 

by satellites (Forbes, Fauria, & Zetterberg, 2010). This growth is related to the position of specific 

summer air masses and may create new vegetation structure regimes (Macias-Fauria, Forbes, Zetterberg, 

& Kumpula, 2012).  Berner et al. demonstrated with dendrochronology and satellite data that plant growth 

increased with temperature in northeastern Siberia (Berner, Beck, Bunn, & Goetz, 2013). In north-central 

Siberia Landsat and high-resolution satellite time-series have been used to document the expansion of tall 

shrubs and trees in the TTE of northern Siberia in recent decades (Frost & Epstein, 2014; G. Sun, Ranson, 

Kharuk, & Kovacs, 2004; M. Urban et al., 2014).  

1.3.4. Uncertainty in Spaceborne Observation of TTE Vegetation Structure 

Biogeographic studies in the HNL stress that fine-scale, site-based monitoring is critical for 

understanding the nature of variation in TTE vegetation characteristics and dynamics (Epstein et al., 

2004; Harper et al., 2011; Hofgaard, Harper, & Golubeva, 2012).  The authors also note the utility of 

spaceborne sensing for monitoring changes in structure while explaining that coarse-scale data (i.e. 
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Ranson et al. 2011) may not resolve the critical site-level detail needed to fully understand TTE 

vegetation characteristics, variability, dynamics and vulnerability to structural changes.  Fine-scale 

spaceborne sensing of TTE vegetation structure across the circumpolar domain of the TTE is a challenge 

because the magnitude and uncertainty of measurement error may mask measured differences in structure.  

It is necessary to reduce this uncertainty because the deviation of current coarse-scale observations and 

model predictions from ground data can be larger than the expected changes in vegetation structure 

(Hofgaard et al., 2012; Hofgaard, Tømmervik, Rees, & Hanssen, 2013). 

The recommendations from biogeographers for standardized techniques that improve estimates of 

TTE characteristics echo the common call for the use of remote sensing data across the circumpolar 

domain for collecting vegetation observations (Callaghan, Werkman, & Crawford, 2002b; Danby, 2011; 

Hofgaard et al., 2012; Hofgaard & Harper, 2011; F.-K. Holtmeier & Broll, 2005; Hufkens, Scheunders, & 

Ceulemans, 2009).  These improved spaceborne sensing techniques for estimating TTE vegetation should 

include the magnitude and uncertainty associated with measurement error at scales at which spatial 

patterns of vegetation change.  By quantifying spaceborne uncertainty of TTE vegetation structure, we 

can work to identify where reductions in uncertainty of structure will have the greatest potential for 

understanding variations in spatial patterns of structure that are linked to variations in responses of TTE 

vegetation to climatic drivers.  A careful examination of the spaceborne uncertainty of TTE vegetation 

structure is warranted to appropriately answer the call for quantifying its current state and vulnerability 

that are modified by domain-wide temperature increases and site-specific environmental factors. 

1.4. Dissertation Organization 

The three research questions described in Section 1.2 are addressed in the following four 

chapters.  These chapters present original research aimed at examining the uncertainty of spaceborne 

measurements of vegetation structure across sparse forest gradients, and the implications of this 

uncertainty for evaluating forest structure patterns in the taiga-tundra ecotone. 
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Chapter 2 addresses the first research question.  Here, I aggregated ground reference AGB across 

sites in central Maine, Aurskog, Norway and northern Siberia.  This ground reference data were linked to 

current airborne and spaceborne LiDAR and SAR data to examine the uncertainty of these remote sensing 

measurements across a statistical gradient of AGB consistent with a gradient of AGB found across the 

TTE in northern Siberia.  The work is published in the journal Remote Sensing of Environment. 

Chapter 3 also addresses the first research question.  However, in this chapter I used a radiative 

transfer model to examine simulated measurements consistent with that of a planned near-term 

spaceborne LiDAR (ICESat-2).  The uncertainty of these simulated measurements was examined across 

the same statistical gradient of AGB as that of Chapter 1.  The AGB gradient used to initialize model 

simulations was derived from field data acquired in northern Siberian Larix forests.  This chapter is also 

published in Remote Sensing of Environment. 

The uncertainty in spaceborne measurements of sparse vegetation structure in Chapters 2 & 3 led 

to the methodology presented in Chapter 4.  In this chapter I present an approach to estimate spaceborne 

canopy height with complementary spaceborne measurements. This work addressed the second research 

question by integrating spaceborne LiDAR and high resolution spaceborne imagery to estimate canopy 

height at the scale of a field plot.  The canopy heights examined were those coincident with field plots in 

the sparse Larix forests of northern Siberia along the Kotuykan River.  This chapter is published in a 

special issue of the journal Remote Sensing, entitled ñRemote Sensing of Changing Northern High 

Latitude Ecosystems.ò 

Chapter 5 is the final research chapter of the dissertation.  This chapter draws from the 

uncertainty findings and methodological approaches discussed in the previous three chapters.  Here, I 

addressed both the second and third questions. I integrated spaceborne measurements of vegetation 

structure and scaled them to forest patches mapped across sites in the TTE north of the Kheta River in 

northern Siberia.  I examined the estimates of uncertainty in forest patch height using a conceptual model 

of ecotone form.  I explain how this conceptual model provides focus for TTE mapping, in that maps of 

TTE spatial patterns may yield the spatial extent of TTE vulnerability.  There is specific potential for a 
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spaceborne mapping approach to map these spatial patterns by reducing the uncertainty of forest patch 

height estimates so as to distinguish clear gradients of forest patch heights associated with diffuse TTE 

form. 

The final two portions of this dissertation include the concluding chapter and the appendix.  The 

concluding chapter summarizes the finding of the previous four research chapters, provides a synthesis of 

these findings, summarizes the importance of resolving current TTE structure, and highlights the 

emerging potential for understanding the vulnerability of forest structure in the TTE.  The appendix offers 

background on individual tree measurements gathered during the various field campaigns that provided 

ground reference for all studies in this dissertation. 
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Chapter 2: The Uncertainty of Biomass Estimates from LiDAR and SAR 

Across a Boreal Forest Structure Gradient 

 

2.1. Abstract 

In this study, we examined the uncertainty of aboveground live biomass (AGB) estimates based 

on light detection and ranging (LiDAR) and synthetic aperture radar (SAR) measurements distributed 

across a low-biomass vegetation structure gradient from forest to non-forest in boreal-like ecosystems.  

The conifer-dominant structure gradient was compiled from ground data amassed from multiple field 

expeditions in central Maine (USA), Aurskog (Norway), and across central Siberia (Russia).  Single 

variable empirical models were built to model AGB from remote sensing metrics.  Using these models, 

we calculated a root mean square error (RMSE) and a 95% confidence interval (CI) of the RMSE from 

the difference between the remote sensing AGB predictions and the ground reference AGB estimates 

within AGB intervals across a 0-100 Mg·ha
-1
 boreal forest structure gradient. The results show that the 

error in AGB predictions (RMSE) and the error uncertainty (the CI) from LiDAR and SAR change across 

a forest gradient.  The errors of airborne LiDAR and SAR metrics and spaceborne LiDAR platforms show 

a general trend of reduced relative errors as AGB magnitudes increase, particularly from 0 ï 60 Mg·ha
-1
. 

Empirical models relating spaceborne metrics to AGB and estimates of spaceborne LiDAR error 

uncertainty demonstrate the difficulty of characterizing differences in AGB at the site-level with current 

spaceborne sensors, particularly below 80 Mg·ha
-1
 with less than 50-100% error. 

2.2. Introduction & Background 

Characterizing differences in vegetation structure, such as biomass, across a vegetation gradient 

can reveal spatial patterns in forests and their changes over time.  Vegetation structure, which influences 

biodiversity and climate, varies over space and time(Bonan, Chapin, & Thompson, 1995; Callaghan, 

Werkman, & Crawford, 2002b; Epstein et al., 2004; Hofgaard et al., 2010; F. K. Holtmeier, 2009; F.-K. 
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Holtmeier & Broll, 2005; Risser, 1995).  This variation is manifested as gradients in vegetation structure.  

Temporally, gradients can occur as vegetation recovers following a disturbance event or as vegetation 

structure shifts in response to temporal changes in environmental conditions.  Spatially, vegetation 

structure gradients coincide with geographic variation in environmental factors, which can influence 

vegetation performance such as growth, regeneration and mortality (Bonan et al., 1992; Loranty & Goetz, 

2012; Sveinbjörnsson, Hofgaard, & Lloyd, 2002).  The differences in vegetation structure at various time 

periods and geographic positions, and its effects on biodiversity and climate, can reveal the degree to 

which vegetation structure contributes to ecosystem dynamics (Callaghan, Werkman, & Crawford, 2002b; 

Dobson et al., 1992; Dubayah & Drake, 2000; M. Lefsky, Cohen, Parker, & Harding, 2002; K. C. 

McDonald, Dobson, & Ulaby, 1990). 

Vegetation structure across the sparse forests of the circumpolar taiga-tundra ecotone (TTE), at 

the convergence of the boreal forest and un-forested tundra, is linked to climate (Bonan et al., 1992).  

Recent changes in climate have brought about changes in arctic ecosystems associated with the TTE 

(ACIA, 2004; S. Goetz & Dubayah, 2011).  These recent changes in TTE vegetation throughout the 

circumpolar high latitudes have been widely documented (Beck, Juday, et al., 2011b; Elmendorf et al., 

2012; Forbes et al., 2010; Hofgaard et al., 2013; V. I. Kharuk et al., 2006; Macias-Fauria et al., 2012; D. 

A. Walker et al., 2012).  While climate is important for determining the extent and pattern of the TTE and 

the distribution and structure of its vegetation, other factors such as local-scale spatial structure, species 

dispersal mechanisms, regenerative potential and non-climatic abiotic factors are also key drivers of its 

current state and capacity for, and velocity of, change (Callaghan, Crawford, Eronen, Hofgaard, et al., 

2002a; Frey, Penman, Hanle, Monni, & Ogle, 2006; Gamache & Payette, 2005; F.-K. Holtmeier & Broll, 

2005).  This range of drivers makes for diverse conditions of vegetation structure, however, conditions 

that are evident at local scales can be masked at broad scales (Hofgaard et al., 2012; Woodcock, 2006).  

As multi-scale shifts in vegetation continue to serve as the expression of changes in environmental 

conditions brought about by changing climate, there is a need to better quantify their spatial 

characteristics.  These vegetation shifts occur at the local-scale because they are often site-specific, yet 
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collections of such shifts in vegetation may be evident across the broad scales at which the disturbance is 

taking place (Callaghan, Werkman, & Crawford, 2002b; Hofgaard et al., 2010).  Furthermore, the 

vegetation shifts that are occurring in the TTE may not coincide with model predictions(Hofgaard et al., 

2013).  Finally, there is a need to characterize differences in vegetation structure that are biophysically 

and ecologically relevant in order to understand the feedbacks of vegetation to climate (Bonan et al., 

1992; Loranty & Goetz, 2012). 

Remote observations of vegetation from active sensors can characterize vegetation structure 

across a landscape.  These characterizations differ depending on the type of active sensing system.  Light 

detection and ranging (LiDAR) and synthetic aperture radar (SAR) provide two general means of 

assessing vegetation structure remotely.  LiDAR provides a direct measure of vegetation canopy and sub-

canopy height and density while polarimetric SAR backscatter provides information that mixes signals 

from the ground surface and the size, shape and orientation of vegetation (Dobson et al., 1992; Dubayah 

& Drake, 2000; M. Lefsky et al., 2002; K. C. McDonald et al., 1990). 

Spaceborne LiDAR and SAR have been used to map and inventory boreal forest structure (R. 

Nelson et al., 2009; Santoro et al., 2009; Selkowitz, Green, Peterson, & Wylie, 2012; Whitcomb, 

Moghaddam, McDonald, Kellndorfer, & Podest, 2009).  These systems provide a means for broad-scale, 

synoptic mapping of entire biomes.  Consistent, broad scale mapping of the current state of vegetation is 

the first step in capturing a time series of vegetation structure that facilitates the study of the spatial 

variation of vegetation structure, its change, and sources and sinks of aboveground carbon (S. Goetz & 

Dubayah, 2011).  In order to capture salient and ecologically relevant changes in vegetation structure, the 

uncertainty of these remote measurements need to be placed into context with such changes.  The 

measurements can only provide new insight if their errors are small enough to be sufficiently certain that 

a measured difference in vegetation structure across space or time translates to actual structural 

differences on the ground.  An examination of the remote vegetation structure measurement errors across 

a gradient would demonstrate the sensitivity of current remote sensing to a range of structural regimes. 
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A spatial gradient of vegetation structure may occur in AGB as boreal forest transitions to non-

forest.  Samples of AGB at transect intervals crossing such a transition could provide AGB measurements 

that span a continuous set of AGB intervals.  Similarly, a statistical gradient can be amassed by collecting 

many measurements at disparate sites representing a variety of AGB conditions similar to those that 

would be found along a transect crossing a transition of boreal forest to non-forest.  Such a statistical 

gradient of AGB measurements would have similar structure as sites across an actual spatial forest 

transition.  

Uncertainty is a key component of remote sensing studies and applications, and can be defined as 

óthe probability of errorô that can be attributed to different sources (Dungan, 2006). This definition 

highlights two components of a remote sensing measurement; the error of the measurement as well as its 

probability.  The error is represented as a mean value while the probability of this error can be represented 

as a probability density function (PDF), and helps describe the lack of understanding of the errorôs true 

value (Frey et al., 2006).  The focus on the uncertainty of remote measurements of vegetation draws 

attention to the limits of what these measurements can add to the current understanding of vegetation 

characteristics, such as structure and extent (Woodcock, 2006).  There have been a number of studies 

quantifying a number of uncertainties, in a variety of ways, from LiDAR and SAR measurements 

(Ahmed, Siqueira, & Hensley, 2013; Frazer, Magnussen, Wulder, & Niemann, 2011; Gobakken & 

Næsset, 2009; Hensley et al., 2014; Hodgson & Bresnahan, 2004; Lu et al., 2012; Mascaro, Detto, Asner, 

& Muller-Landau, 2011; Tinkham et al., 2012).  In this study we used spatially coincident ground 

reference and remote sensing data acquired across a range of boreal forest biomass to evaluate the 

uncertainty of remote measurements of vegetation structure from LiDAR and SAR across a boreal forest 

to non-forest structure gradient. 
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2.3. Methods 

2.3.1. Remote Sensing Data 

LiDAR and SAR data from both airborne and spaceborne platforms were used in this study to 

measure vegetation structure across a forest gradient.  Table 2-1 provides a summary of each dataset used.  

Airborne data came from the synthetic aperture radar UAVSAR, the medium footprint waveform Laser 

Vegetation Imaging Sensor (LVIS) and the small footprint discrete return scanner of Goddardôs LiDAR, 

Hyperspectral, and Thermal Imager (GLiHT) (Blair, Rabine, & Hofton, 1999; Cook et al., 2013; Rosen et 

al., 2006).  Spaceborne data came from ICESat GLAS (Abshire et al., 2005; Zwally et al., 2002) and 

ALOS PALSAR (Rosenqvist, Shimada, Ito, & Watanabe, 2013).  For each study area, there exists both 

LiDAR and SAR, with the exception of a few ground reference plots in Eurasia for which one of the two 

remote sensing measurements, from either GLAS or PALSAR, was not available. 

Spaceborne data (GLAS and PALSAR) are available from the National Snow and Ice Data 

Center and the Alaska Satellite Facility, respectively, for the study sites in Eurasia while airborne data 

(LVIS, UAVSAR and GLiHT) are available from NASA instrument websites (http://lvis.gsfc.nasa.gov; 

http://uavsar.jpl.nasa.gov; http://gliht.gsfc.nasa.gov).  Airborne LiDAR and SAR were spatially 

coincident in Maine as were spaceborne LiDAR and SAR in Eurasia, however these datasets were 

generally acquired independent of each other, with the exception of the temporally coincident UAVSAR 

and LVIS campaigns in Maine in 2009.  The UAVSAR data was radiometrically calibrated for viewing 

geometry and topography (Montesano et al., 2013; Small, 2011).  

Table 2-1. Summary of the airborne and spaceborne systems that provided remote sensing data for 

this study, including the metrics used for this analysis. 

Type Sensor 
Study 

Region 

Acquisition 

Year 
Description, metrics 

airborne LiDAR LVIS Maine 2009 ~20m footprint waveform @ 1064nm, (rh90, rh75, rh50) 

airborne LiDAR GLiHT Maine 2012 small footprint discrete return @ 1550nm, (rh90, rh70, rh50) 

spaceborne LiDAR 
ICESat 

GLAS 
Eurasia 2003-2006 ~60m footprint waveform @ 1064nm, (rh90, rh75, rh50) 

airborne SAR UAVSAR Maine 2009 ~5m full-polarimetric L-band (HH, HV, VV) 

spaceborne SAR 
ALOS 

PALSAR 
Eurasia 2007-2010 ~20m dual-polarimetric L-band (HH, HV) 
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2.3.2. Ground Reference Inventories 

We compiled ground based forest structure measurements from sites across Eurasia and central 

Maine (Figure 2-1).  These measurements of tree diameter at breast height (DBH) and tree height were 

spatially coincident with remote sensing data, and were acquired for a gradient of boreal forest structure 

ranging from forested to non-forested, representative of vegetation structure regimes within the TTE.  

These inventories took place across multiple years at a number of locations to sample trees within a 

portion of a LiDAR footprint, and infer ground reference forest AGB for each footprint, which was used 

as a surrogate for vegetation structure.   

 

 

Figure 2-1. Locations in Eurasia and central Maine of ground reference inventories of vegetation 

structure at LiDAR footprints.  

 

Plots corresponded to either spaceborne or airborne data.  Those plots associated with spaceborne 

data were centered on GLAS footprints and collected from the Kochechum River, Kotuykan River and 

Western Siberian Plains sites in the summers of 2007, 2008, and 2010, respectively. GLAS footprints in 
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Aurskog, Norway were surveyed using wall-to-wall airborne laser scanner (ALS) data (Næsset et al., 

2011).  Plots associated with airborne measurements were collected in the Howland Experimental Forest 

in central Maine, where plots that were centered on LVIS footprints were surveyed in 2009 and 2011.  

Field-derived AGB measurements were collected in circular ground plots within airborne (LVIS) 

or spaceborne (GLAS) LiDAR sample footprints.  These field plots were geo-located to within ~1ï3m 

(airborne LiDAR plots) and ~1-10m (satellite LiDAR plots) of the LiDAR footprintôs centroid using a 

hand-held global positioning system unit. Each LiDAR footprint was assumed to be a circle with a 

consistent radius for each sensor. The accuracy of the plot geo-location depended on the site and the 

global positioning system used.  Plots located at LVIS footprints were 10m in radius while those 

associated with GLAS were either 10m or 15m in radius.   While the plots associated with GLAS shots 

represented less than half of the ground area of the LiDAR measurement, they were selected in part 

because the field sampling area was representative of the larger area sampled by GLAS.  Only those plots 

with <10ę slopes were used in the analysis. 

Field workers recorded DBH measurements of individual trees >3cm in Siberia and >10cm in 

Maine within the circular ground plots.  The individual tree measurements were converted to AGB using 

regionally specific allometry linking tree height or tree DBH with AGB (Alexeyev & Birdsey, 1998; 

Jenkins, Chojnacky, Heath, & Birdsey, 2003); A. Bondarev, unpublished data).  From each field 

inventory, a ground- or an airborne laser scanner-based estimate of AGB for a corresponding LiDAR 

footprint was calculated where AGB is either a function of DBH, height or both (Neigh, Nelson, Ranson, 

Margolis, et al., 2013b).  In Aurskog, Norway, allometrically derived AGB was calculated for each GLAS 

footprint based on within-footprint tree heights derived from coincident ALS returns.   These ALS 

measurements had previously been related to ground-inferred AGB from 201 circular field plots using 

allometric models with DBH and tree height as predictor variables (Næsset et al., 2011). Table 2-2 

summarizes information on the plots collected for comparison with either airborne or spaceborne data, 

and includes their associated study regions and the subset that were < 100 Mg·ha
-1
.  Those plots < 100 
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Mg·ha
-1 

formed the statistical vegetation structure gradient from conifer-dominant boreal forest to non-

forest used to examine the error and error uncertainty of AGB across a TTE-like forest gradient.   

 

Table 2-2. Ground plots for which field-derived AGB was collected.  Each plot is located within the 

footprint of either an airborne (LVIS) or a spaceborne (GLAS) LiDAR sample.  This table 

summarizes the inventory year, regional location and as well as the number of plots used for the 

empirical models and the subset used for the analysis across the statistical forest structure gradient 

from 0-100 Mg·ha
-1
.  

    

# of LiDAR footprints  

LiDAR 

footprint 

sensor 

Study 

region 

Years of 

field 

inventory 

Field plot 

radius (m) 
Full 

AGB 

range 

0 - 100 Mg·ha
-1
 

Full 

AGB 

range 

0 - 100 Mg·ha
-1
 

GLAS 
Aurskog 2006 8-11 306 221 

468 351 
Siberia 2007-2010 10-15 162 130 

LVIS Maine 2009-2011 10 113 60 113 60 

 

2.3.3. LiDAR Waveform Processing 

LiDAR waveform returns for forested areas show the vertical distribution of vegetation within the 

footprint of the return as well as the elevation of the ground surface. Both GLAS and LVIS record vertical 

canopy information as a continuous waveform representing the heights of canopy elements and the 

elevation of the ground surface.  As tree canopy cover decreases, a greater proportion of the LiDAR 

return is from vegetation low to the ground, and the ground surface itself.  These LiDAR returns from 

short vegetation can be mixed with the portion of the waveform representing the ground surface.  To 

offset this influence of the ground peak on the portion of the waveform representing vegetation, the 

LiDAR return waveform was adjusted to more clearly discern sparse and short stature forests from the 

ground surface.  This work was similar to that of performed on airborne waveform data of forests (M. A. 

Lefsky, Harding, Cohen, Parker, & Shugart, 1999). 

With this adjustment, the ground peak portion of the waveform was identified and a Gaussian 

curve was fit to the portion of the waveform centered on the ground return peak.  This was a way to 

approximate the amount of transmitted energy that was returned to the sensor from the ground surface.   
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Once centered on the ground peak, the portion of the curve above the ground peak was subtracted from 

the actual waveform return.  The remaining portion represented the signal return from vegetation with less 

interaction with that of the ground surface.  Height metrics were then calculated from these Gaussian-

reduced (GR) waveforms.  An example showing an original GLAS waveform and the adjusted GLAS 

waveform are shown in Figure 2-2. 

 

Figure 2-2. Example of an original GLAS waveform and the adjusted ñGaussian-reducedò (GR) 

waveform that resulted from subtracting the portion of the Gaussian peak above ground elevation 

from the original GLAS waveform.  
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2.3.4. Empirical Modeling: Linking Remote Sensing and Ground Reference Measurements 

The ground measurements of vegetation structure at LiDAR footprints were linked to LiDAR and 

SAR data.  LiDAR data was already spatially coincident with ground reference data since the ground data 

was acquired at each LiDAR footprint or via ground-to-ALS relationships with full ALS coverage within 

the LiDAR footprints.  Some of the LiDAR data had undergone a visual screening of each waveform 

before field measurements were made to ensure ground measurements were collected for LiDAR data 

representative of vegetation.   Some additional screening was necessary to remove GLAS shots whose 

data, based on visual inspection, showed apparent cloud obscuration or saturation, were on slopes of at 

least 10 degrees, or whose ground measurements were suspect (ground reference AGB was recorded as 0 

but whose percentage of forest within a plot was recorded as > 1).  Furthermore, 20 GLAS plots with 

>50% of AGB derived from hardwood trees were excluded from the analysis to maintain focus on 

conifer-dominant plots.  Second, SAR data was gathered for each LiDAR footprint. SAR pixels whose 

center points were within LiDAR footprint boundaries were used to derive the mean backscatter for each 

footprint.  For ALOS PALSAR, all pixels whose center points were within 60 m of a GLAS footprintôs 

center point were used to drive mean backscatter for each footprint.  This buffer around the GLAS 

footprintôs center location helped account for geo-registration errors between the datasets.  More ground 

plots were available for comparison with spaceborne SAR because than with spaceborne LiDAR because 

the LiDAR screening process removed potential candidate plots from the regression with LiDAR metrics. 

 This study used multiple metrics from each sensor.  For each LiDAR dataset, three 

relative height metrics were used.  The relative height metric from a LiDAR return depicts the height at 

which a certain proportion of total received energy (or number of discrete interactions) has been returned 

to the sensor (Drake et al., 2002).  This was done to demonstrate consistency in the way errors from each 

metric from a given sensor varied in relation to AGB.  The remote sensing metrics from each sensor are 

included in Table 2-1. 

Single variable ordinary least squares (OLS) regression was used to model the relationship of 

sensor metrics to AGB.  This was done to demonstrate the fundamental association of a single metric with 



 20 

vegetation structure. These models were built across the entire range of AGB represented in the ground 

reference (up to ~400 Mg·ha
-1
 for plots at GLAS footprints and up to ~340 Mg·ha

-1
 for plots at LVIS 

footprints) for the total number of ground plots shown in Table 2-2.  
 

The OLS regressions were applied to log-transformed values of the remote sensing metrics and 

ground reference AGB.   The log-transformed values were back-transformed algebraically, resulting in 

power function models of the form:   

ÍzÅÔÒÉÃ , where a and b are coefficients of the regression.  (1) 

Models of this form are commonly used to infer biomass from tree structural characteristics (Ter-

Mikaelian & Korzukhin, 1997).  With these models, the remote sensing data served as the independent 

variables to model forest AGB.  Using ground reference AGB, field plots were grouped into several AGB 

intervals (bins) representing a statistical gradient of vegetation structure across which remote sensing 

measurements were evaluated.   

2.3.5. Uncertainty Analysis 

An uncertainty analysis was performed to evaluate the error and the uncertainty of the error of 

predicted AGB within AGB intervals across a statistical gradient of AGB from 0 ï 100 Mg·ha
-1
.  For each 

sensor metric, we applied its empirical model relating it to AGB, and then compared the modelôs 

predicted (from the remote sensing metric) AGB value to the ground reference (observed) value.  Each 

plotôs remote sensing model prediction error was calculated as the difference between the predicted and 

observed AGB value.  Due to the fact that there were many more plots established on satellite footprints, 

the values were grouped into bins of 10 Mg·ha
-1
 for spaceborne data and 20 Mg·ha

-1 
for airborne data, 

forming a unique sample set for each AGB bin and providing the basis for a per bin analysis. 

For each AGB bin, the binôs error was calculated as the RMSE of the set of plots (datapoints) 

within each bin.  The uncertainty of the error value per bin was reported as a 95% confidence interval 

(CI).  This CI characterizes a PDF about the mean error value. 
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The CI was calculated using two different methods.  The first method used a bootstrapping 

sampling approach to gather n-1 observations for each of 1000 samples, from which 1000 estimates of the 

RMSE were computed.  These 1000 bootstrapped RMSE estimates formed a PDF representing the mean 

and variance of the RMSE for each AGB bin.  The second method used the chi-square probability 

distribution with df = n-1 to characterize the 95% CI.  The CI is calculated as follows (Ott & Longnecker, 

2010): 

(2a) 

(2b) 

These methods produce an inference about a population variance, where the variability of the 

RMSE within a population of many RMSEs for a given AGB bin is expressed with a CI.  

2.4. Results 

2.4.1. Empirical Models of AGB vs. Metrics 

As illustrated in Figure 2-3, the airborne LiDAR and SAR models explained a much greater 

proportion of AGB variability relative to the spaceborne models.  LVIS, GLiHT and UAVSAR models 

explained 60-89% of AGB variation while GLAS and PALSAR explained 13-46%.  The models derived 

from airborne data performed better than those from spaceborne data, effectively creating an upper bound 

for model performance and AGB bin errors that can be expected from spaceborne data. For airborne 

LiDAR regression R
2 
ranged from 0.74-0.89, for airborne SAR 0.6-0.8, for spaceborne LiDAR 0.26-0.46, 

and for spaceborne SAR 0.13 and 0.32.  This is consistent with a number of studies examined in a recent 

meta-analysis of that examined the use of LiDAR for estimating forest biomass (Zolkos, Goetz, & 

Dubayah, 2010). In particular, the airborne models were built on relationships that show significant 

heteroscedasticity across the range of ground reference AGB, where low AGB regions show lower scatter 

about the model line than do high AGB regions. 
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The spaceborne models were built on relationships showing significant scatter across the entire 

range of AGB.  In particular, the spaceborne SAR models explain a relatively low proportion of overall 

variance (0.16 and 0.32 for HH and HV, respectively), and poorly fit the data.  The broad range of 

backscatter associated with very low AGB values is a prominent component of the overall scatter for both 

spaceborne SAR polarizations. 

Models from adjusted waveform metrics generally explained more of the variation between 

height metrics and ground reference than did those from the un-adjusted metrics.  This was more evident 

in the spaceborne GLAS data than in the airborne LVIS data, and more evident in the height metric most 

representative of the middle of the canopy (rh50) than that of the upper canopy (rh90).  

 

 

Figure 2-3.  Plot matrix showing the empirical models used to predict AGB from airborne and 

spaceborne remote sensing metrics. 
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2.4.2. Error and Error Uncertainty within AGB Bins 

The error (RMSE) and error uncertainty (95% confidence interval of the RMSE) of AGB 

predictions from airborne LiDAR and SAR and spaceborne LiDAR metrics are reported by bin as part of 

the plot matrix in Figure 2-4 for the set of metrics reported above.  In this portion of the analysis, results 

are not reported for spaceborne SAR. The errors calculated would be derived from poorly fit models and 

are fundamentally misleading because the empirical models for each polarization fail to explain an 

overwhelming majority of the variation.  
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Figure 2-4.  Each sensorôs results are reported by column.  The first row shows the histograms of 

ground reference plots used in comparison with each sensorôs metrics across a 0-100 Mg·ha
-1
 

structure gradient.  The gray bars of the histograms span 20 Mg·ha
-1
 bins used to report airborne 

results, and are overlaid with white-outlined bars used to report spaceborne results.  Rows 2-4 show 

error p lots in relative terms (RMSE %).  Rows 5-7 show error plots in absolute terms (RMSE).  

Each columnôs plot is set up so that each AGB bin aligns vertically with the plot below. 

 

The larger number of ground reference plots associated with the spaceborne datasets permitted 

consideration of smaller bin sizes relative to those used for the airborne datasets.  Each error value is an 

estimate of the true mean error value associated with each binôs AGB prediction. The measure of error, 

the relative RMSE (RMSE %), is also shown in absolute terms (RMSE) in the bottom portion of Figure 2-

4.  The datapoints in the plot matrices are shown with black dots, connected by the black lines, for each 

AGB bin.  These errors are based on the empirical models derived from each the relationship of ground-

reference AGB with each sensor metric.  AGB prediction models based on adjusted waveform metrics 

(for LVIS and GLAS metrics) explained a greater proportion of overall variation and were used to 

evaluate error and error uncertainty trends in place of their unadjusted counterparts.  The relative errors 

were calculated by dividing the RMSE by the mean AGB value of the datapoints in the corresponding 

AGB bin while the absolute errors involved the standard RMSE calculation per bin.  For both sets of 

plots, data values align on the x-axis with the midpoint value for each bin. 

The errors of airborne LiDAR and SAR and spaceborne LiDAR metrics show a general trend of 

reduced relative errors as AGB magnitudes increase, particularly from 0 ï 60 Mg·ha
-1
.  Interruptions in 

this general trend occurred for airborne data (LVIS rh90, GLiHT rh90, UAVSAR HH, HV, VV) in bins 

for which there were fewer than 10 datapoints.  The plots for the airborne data (first 3 columns) report 

results in 20 Mg·ha
-1
 bins.  The number of ground reference observations for each airborne bin ranged 

from 6 ï 23.  In airborne LiDAR (LVIS and GLiHT) bin 0-20 Mg·ha
-1
, all the error datapoints are above 

50% (for all 3 metrics of both sensors).  In bin 20-40 Mg·ha
-1
 half of the error datapoints are below 50% 

(the GLiHT are all above this mark).  Bin 40-60 Mg·ha
-1
 shows all but one error datapoint to be below 

50%.  The exception occurs where there is a spike in the trend of the adjusted rh90 metric for LVIS.  Bins 

60-80 and 80-100 Mg·ha
-1
 show all but one error datapoint below 50%, the exception being a spike along 
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the GLiHT rh90 trend.  In airborne SAR (UAVSAR) bin 0-20 Mg·ha
-1
 each polarization had errors 

greater than or approximately equal to 100%. Bins 20-40 through 80-100 show errors varying from <50% 

to > 100%.  The polarization with the best relationship with ground reference AGB (HV, R
2
 = 0.8), 

reveals a clear trend whereby relative errors decrease from ~100% for Bin 0-20 down to <50% for bins 

60-80 and 80-100 and is similar to that of the VV polarization but for which the empirical model of AGB 

explains less variance (R
2
 = 0.6).  Spikes in these error trends occur within bins where there are fewer 

than 10 datapoints.  

 The error trends for the spaceborne LiDAR were derived from 10 Mg·ha
-1
 bins.  Across 

the intervals of the AGB gradient, 8 of the 10 bins had greater than 20 datapoints and thus show 

somewhat smoother error trends across the gradient.  For this error trend, bins 0-10 through 30-40 Mg·ha
-

1
 show errors above and near 100% while bins 40-50 through 60-70 Mg·ha

-1
 show errors between 50-

100%.  Only above 70 Mg·ha
-1
 do errors begin to approach 50% of ground reference AGB.  

The error plots in Figure 2-4 also show two estimates of the error uncertainty (95% confidence 

interval of the RMSE) for each AGB bin.  The first error uncertainty estimate, depicted with the colored 

ribbons around the horizontal black lines, is the result of the bootstrapping method used to derive a 95% 

confidence interval around each bin AGB RMSE value.  The second error uncertainty estimate, depicted 

with the vertical black bars position through each datapoint, shows the result of a method using the chi-

squared distribution to calculate a 95% confidence interval.  These uncertainty calculations for each bin 

form error bounds around the mean values of AGB error across a forest AGB gradient of 0-100 Mg·ha
-1
. 

 The pairs of error uncertainty estimates (the ribbons and vertical bars in Figure 2-4) 

bounding the error estimates are generally consistent for all metrics of all datasets.  Airborne error 

uncertainty estimates differ notably for a few spikes along the error curves, particularly for LVIS rh90 bin 

40-60 and UAVSAR HV bin 40-60 and VV bin 60-80.  Aside from these spikes, where error uncertainty 

broadens conspicuously, error bounds general range from ~25%-50% of a given AGB binôs mean value.  

The uncertainty bounds for the error trends of the spaceborne LiDAR metrics are consistently broad 

across the majority of the 0-100 Mg·ha
-1
 range.  Below 30 Mg·ha

-1
 the uncertainty bounds never fall 
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below 50% and extend to well above 100%.  From 30-80 Mg·ha
-1
 the uncertainty bounds occupy most of 

the range from 50-100% error.  These estimates of spaceborne LiDAR error uncertainty describe the 

difficulty of characterizing differences in AGB with current spaceborne sensors below 80 Mg·ha
-1
 with 

less than 50-100% error.   

2.5. Discussion 

The goal of this study was to evaluate the uncertainty of biomass inferred from LiDAR and SAR 

across a forest structure gradient.  This study reports both the relative error and the absolute error of AGB, 

and their uncertainties, across a boreal forest to non-forest structure gradient from 0-100 Mg·ha
-1
 which is 

characteristic of sparse forests in the TTE of northern Siberia (Kajimoto et al., 2009).  The analysis of 

both airborne and spaceborne measurements help evaluate the relative lack of sensitivity of these AGB 

measurements from spaceborne measurement compared to those from airborne sensors designed 

primarily to measure fine details (plot scale) vegetation structure.  Remote sensing provides a means to 

assess terrestrial details across a variety of scales, however the results of this study suggest a limited 

ability to discern potentially important vegetation structure differences in sparsely forested regions with 

short stature vegetation.  This insensitivity has been noted across a latitudinal gradient in Quebec (R. 

Nelson, 2010).  There are important implications of this lack of sensitivity for understanding change in 

vegetation structure, particularly at biome boundaries.  However, the methodology has limitations 

associated with characterizing AGB error that warrant discussion.   

2.5.1. Limited Ability to Discern Sparse Forests at Plot Scale 

Spaceborne data could provide the best means to synoptically measure vegetation across broad 

scales.  However, the results suggest that currently a single type of measurement, independently, may not 

reliably capture plot level differences in AGB.  In this study the scale of the plot level is equivalent to the 

site-level scale discussed elsewhere in the literature (Hofgaard et al., 2012; Hofgaard & Harper, 2011; F.-

K. Holtmeier & Broll, 2005).  At the site-level scale, characteristics of groups of trees can be described 

and help to explain the biogeographic drivers and dynamics of vegetation structure (Bonan et al., 1995; 
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Hofgaard et al., 2012; F. K. Holtmeier, 2009; F.-K. Holtmeier & Broll, 2005; Risser, 1995).  According to 

the results reported above, spaceborne LiDAR measurements of a forest patch of ~60 Mg·ha
-1
 are likely 

indistinguishable from those measurements of a forest patch of ~20 Mg·ha
-1
.  This is because the 

uncertainty of the measurementsô AGB error for each patch overlaps statistically with the other.  For 

spaceborne SAR, the empirical models were so weak that an assessment of AGB bin error was unrealistic.  

It is likely that inferred AGB derived from circular plots 10 - ~ 30m in radius are insufficient for 

establishing relationships with backscatter from ALOS PALSAR.  Larger plots, oriented perpendicular to 

the sensorôs view angle may produce better relationships with SAR backscatter.  However, such a 

requirement for SAR-specific field plot design precludes the use of the wealth of ground data available. 

Significant scatter is also evident in the relationship of spaceborne LiDAR with field-derived AGB, which 

may be due partially to plots size, and may increase the final uncertainty of predicted AGB.  However, the 

issue of plot size was likely not as problematic as it was with SAR data, because the technique of 

sampling a small portion of the overall LiDAR footprint was facilitated by the selection of plots that were 

representative of the larger GLAS footprint.  The extent to which plot size affected regression scatter was 

not explored. 

2.5.2. Implications for Understanding TTE Vegetation Structure Change 

Subtle changes in vegetation structure in and around the TTE, across broad scales, can have 

varying local and regional effects (Loranty & Goetz, 2012; Pearson et al., 2013; Sveinbjörnsson et al., 

2002).  Changes in vegetation structure, such as AGB, along the northern edge of the boreal forest can 

alter the way the land surface amplifies or dampens ongoing changes to climate (Bonan et al., 1995; 

Callaghan, Werkman, & Crawford, 2002b).  With the lack of sensitivity of spaceborne LiDAR and SAR 

to subtle changes in biomass reported above, it is difficult to obtain a synoptic perspective of such 

changes, with these instruments alone, across a biome boundary such as the TTE that has begun showing 

spatially variable changes in vegetation structure (Bonan et al., 1992; Elmendorf et al., 2012; M. Harsch 

et al., 2009; Hofgaard & Harper, 2011).  However, the extent to which this measurement error limits the 



 29 

ability to provide a synoptic perspective for discerning differences in ecologically significant vegetation 

patterns, or forms, along a biome boundary in flux such as the TTE remains in question. 

To better understand spatial difference in TTE vegetation structure, the error and error uncertainty 

of vegetation structure measurements, specifically AGB, across low biomass boreal forest gradients need 

to be reduced significantly.   If this is accomplished by increasing plot size and averaging an increasing 

number of remote sensing measurements, then the ability to discern site level characteristics from space is 

not likely.  Sensors designed primarily to measure vegetation structure at the plot scale would likely 

reduce the uncertainty of AGB measurements in general, and may improve our understanding of subtle 

changes in vegetation in the high northern latitudes whose cumulative effect on ecosystem dynamics may 

have resounding broad scale effects. 

2.5.3. Limitations of AGB Uncertainty Estimates 

These error and uncertainty figures need to be put into context in terms of their limitations and 

their use for evaluating the efficacy of spaceborne measurements of subtle differences in vegetation 

structure in a region where such differences can have varying and dramatic local and regional effects on 

climate. These limitations arise from the use of RMSE as a measure of overall error and error uncertainty, 

the empirical models relating ground reference to sensor data, and the statistical approaches for assessing 

error uncertainty. 

It is necessary to acknowledge that the RMSE does not completely characterize the error of 

empirically modeled AGB because it doesnôt account for plot size, positional accuracy, and allometric 

error (Zolkos et al., 2010).  First, the size of the plots used to gather ground reference data can have 

significant influence on reference AGB values, whereby larger ground plots will decrease both the 

relative error of remote sensing predictions of AGB as well as the effect of co-registration errors between 

the plot and the remote sensing data (Frazer et al., 2011; Mascaro et al., 2011).   The plots used in this 

study were co-incident with LiDAR shots, however the plots used to sample the spaceborne GLAS 

LiDAR represented only a subset (10-15m radius from the GPS-located footprint center) of the entire 
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GLAS footprint (~32m radius).  In Aurskog, Norway, the field measurements were not coincident with 

GLAS measurements, but instead we related to ALS data, which was also acquired over GLAS footprints.  

For these sites, there were two models involved, one relating ground measurements to ALS, and another 

relating ALS to GLAS.  Furthermore, the size of the plots affected the extraction of coincident spaceborne 

SAR data.  Pixels providing the SAR measurement for a plot were extracted within a 60m buffer of the 

footprint centroid to acquire sufficient pixels to compute a mean SAR metric value in and around the 

location of the plot. 

This leads into a second limitation of the RMSE metric, which is its inability to account for poor 

geo-location.  Errors can arise when pixels are poorly geo-referenced and do not represent, for example, 

the SAR backscatter from within the plot.  A study examining SAR data exclusively would use plots that 

are more easily linked to the SAR backscatter measurements (Ahmed et al., 2013).  The poor empirical 

models of both the spaceborne SAR metrics lend credence to the problematic relationship of plot AGB 

measurements and SAR backscatter, and decrease the reliability of the AGB error assessments made for 

ALOS PALSAR. 

There are three issues with the empirical models relating to the uncertainty estimates that warrant 

mention.  The first pertains to the single variable models used for each sensor.  These models were used 

as a way of examining a fundamental relationship between remote sensing metrics and ground reference. 

This study intentionally avoided evaluations and comparisons of a variety of empirical models for a given 

sensor.  If this were the case, a multiple variable regression tree approach such as that from the Random 

Forest method would likely have produced better models, particularly if data from multiple sensors were 

combined (Hyde et al., 2006; Kellndorfer et al., 2010; Montesano et al., 2013; G. Sun et al., 2011).  

Rather, single variable models were used to simplify the analysis, which comes at the expense of model 

optimization, but allows for error to be directed attributed to a specific metric and allows these errors to 

be compared between metrics.  As such, the uncertainty we report may represent the upper bound of AGB 

error and error uncertainty across the gradient, which may be reduced with other prediction methods and 

additional variables. Second, empirical models built from lognormal relationships require a correction 
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factor to account for the error associated with the back-transformation of the regression coefficients.  A 

correction should be applied to the model-predicted AGB that has been back-transformed from natural log 

units (Baskerville, 1972; Flewelling & Pienaar, 1981). However, this correction resulted in model RMSEs 

much larger than those derived from the uncorrected model-predicted AGB, essentially more severely and 

unrealistically penalizing the spaceborne models with the larger RMSEs.  Therefore, back-transformation 

corrections were not applied.  Third, the form of the empirical model relating AGB to remote sensing 

metrics may not be the most appropriate for these data.  This may be particularly true for the spaceborne 

SAR models.  

Finally, uncertainty of the RMSE within certain AGB intervals was assessed based on a very low 

number of samples within each bin.  This was a problem particularly for the airborne data, and was 

mitigated slightly by using AGB bins of 20 Mg·ha
-1
 as opposed to bins half that size.  Nevertheless, 

samples still remained small (n < 15).  In these cases the RMSE, which has a biased influence on those 

datapoints further from the regression line, can become large because outliers within a small sample will 

tend to have undue influence on estimates of overall error.  This inflates error estimates and was likely 

responsible for both the spikes in error estimates and the broad uncertainty estimates about the error 

trends for airborne metrics.   Furthermore, bootstrapping doesnôt provide a reliable estimate of uncertainty 

with very small sample sizes. 

2.6. Conclusions 

We examined the uncertainty of LiDAR and SAR measurements across a gradient in conifer-

dominant boreal-like forest structure based on empirical models of LiDAR and SAR metrics with inferred 

AGB from ground measurements.  The empirical models from airborne data showed strong relationships, 

explaining 60-89% of overall variation.  Models for spaceborne LiDAR were weaker because of 

significant scatter across the modeled range while models for spaceborne SAR explained less than 33% of 

overall variation.  The error and error uncertainty measurements of AGB across a statistical AGB gradient 

from 0-100 Mg·ha
-1
 show that the uncertainty of both airborne and spaceborne data changes across a 
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boreal-like forest gradient.  The errors of airborne and spaceborne LiDAR and airborne SAR metrics 

show a general trend of reduced relative errors as AGB magnitudes increase, particularly from 0 ï 60 

Mg·ha
-1
. Empirical models relating spaceborne metrics to AGB and estimates of spaceborne LiDAR error 

uncertainty reinforce the difficulty of characterizing differences in AGB with current spaceborne sensors, 

particularly below 80 Mg·ha
-1
 with less than 50-100% error. 
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Chapter 3: The Uncertainty of Biomass Estimates from Modeled 

ICESat-2 Returns Across a Boreal Forest Gradient 

 

3.1. Abstract 

The Forest Light (FLIGHT) radiative transfer model was used to examine the uncertainty of 

vegetation structure measurements from NASAôs planned ICESat-2 photon counting light detection and 

ranging (LiDAR) instrument across a synthetic Larix forest gradient in the taiga-tundra ecotone.  The 

simulations demonstrate how measurements from the planned spaceborne mission, which differ from 

those of previous LiDAR systems, may perform across a boreal forest to non-forest structure gradient in 

globally important ecological region of northern Siberia.  We used a modified version of FLIGHT to 

simulate the acquisition parameters of ICESat-2.  Modeled returns were analyzed from collections of 

sequential footprints along LiDAR tracks (link-scales) of lengths ranging from 20m ï 90m.  These link-

scales traversed synthetic forest stands that were initialized with parameters drawn from field surveys in 

Siberian Larix forests.  LiDAR returns from vegetation were compiled for 100 simulated LiDAR 

collections for each 10 Mg·ha
-1
 interval in the 0 - 100 Mg·ha

-1
 above-ground biomass density (AGB) 

forest gradient.    Canopy height metrics were computed and AGB was inferred from empirical models.  

The root mean square error (RMSE) and RMSE uncertainty associated with the distribution of inferred 

AGB within each AGB interval across the gradient was examined. 

Simulation results of the bright daylight and low vegetation reflectivity conditions for collecting 

photon counting LiDAR with no topographic relief show that 1-2 photons are returned for 79% - 88% of 

LiDAR shots.  Signal photons account for ~67% of all LiDAR returns, while ~50% of shots result in 1 

signal photon returned.  The proportion of these signal photon returns do not differ significantly (p>0.05) 

for AGB intervals > 20 Mg·ha
-1
.  The 50m link-scale approximates the finest horizontal resolution 

(length) at which photon counting LiDAR collection provides strong model fits and minimizes forest 
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structure uncertainty in the synthetic Larix stands.  At this link-scale AGB > 20 Mg·ha
-1
 has AGB error 

from 20 - 50% at the 95% confidence level.  These results suggest that the theoretical sensitivity of  

ICESat-2 photon counting LiDAR measurements alone lack the ability to consistently discern differences 

in inferred AGB at 10 Mg·ha
-1
 intervals in sparse forests characteristic of the taiga-tundra ecotone.    

3.2. Introduction 

3.2.1. Global Relevance of the Taiga-Tundra Ecotone 

At the northern edge of the boreal forest in the taiga-tundra ecotone (TTE), vegetation cover and 

structure is changing (Elmendorf et al., 2012; Epstein, Myers-Smith, & Walker, 2013; V. Kharuk et al., 

2013b; Myers-Smith et al., 2011; Ropars & Boudreau, 2012).  These changes can be subtle yet occur 

across broad scales, and can alter the magnitude and direction of biome-level and continental scale 

feedbacks to climate (Bonan, 2008; Bonfils et al., 2012; Chapin, 2000; 2005; Lawrence & Swenson, 

2011; Loranty et al., 2011; Loranty & Goetz, 2012; Loranty, Berner, Goetz, Jin, & Randerson, 2013; 

Myers-Smith et al., 2011; Pearson et al., 2013; Swann et al., 2010). 

Broad-scale, but spatially discontinuous and heterogeneous, changes in forest structure are 

expected in northern Siberia, where the TTE reaches its northern-most limit extending above 72°N 

(Bondarev, 1997).  At specific sites in the TTE canopy closure and expansion of Larix in tundra have 

been observed (V. I. Kharuk et al., 2006).   Evidence shows that dark-needle conifers have begun moving 

into Larix forests and woodlands (V. I. Kharuk et al., 2005).  Observed at broad-scales, the patterns 

formed by the smaller plot-scale changes (Devi et al., 2008; Elmendorf et al., 2012; Forbes et al., 2010; 

M. Harsch et al., 2009; Mazepa & Devi, 2007; Myers-Smith et al., 2011) demonstrate their overall 

magnitude, uniformity, spatial characteristics and links with other landscape characteristics across a 

biome.  Such characteristics include the extent of continuous permafrost, which across northern Siberia 

influences the distribution of vegetation (Lloyd et al., 2011; Schulze et al., 2012; Sugimoto et al., 2002; 

Tchebakova et al., 2009; N. Zhang et al., 2011).  The strength and timing of a climate feedback from 

permafrost-bound carbon is a function of vegetation structure (Epstein et al., 2004; Jorgenson et al., 2010; 
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Lawrence & Swenson, 2011; Schaefer et al., 2011).  Model projections of this feedback to climate, 

accounting for vegetation characteristics, suggest a central role for high northern latitude vegetation 

structure in determining the magnitude of changes to the global carbon cycle (Schaefer et al., 2011).  

These subtle changes in vegetation structure and patterns in the high northern latitudes across 

broad scales and acute climate changes in northern Siberia highlight the need for both synoptic and 

spatially detailed remote monitoring of vegetation.   Furthermore, the possibility that subtle changes in 

vegetation structure may significantly alter climate feedbacks warrants improved characterization of how 

uncertainty in vegetation measurements varies with extent and structure, particularly in the sparse Larix 

forest gradients of the TTE where non-uniform vegetation changes may be converging.  

3.2.2. Forest Structure in Northern Siberia 

 Forest stands within the TTE of northern Siberia have an over-story that is often 

exclusively Larix, are sparse and short in stature, and form the northern limit of forest vegetation 

(Abaimov, 2009).  Stand structure in this region is heavily influenced by the presence of permafrost.  

Larix stands sampled along the Kotuykan River in 2008 at flat or gently sloping north and south facing 

slopes show that >90% of trees are < 10m in height ((V. Kharuk et al., 2013b); unpublished data).  Mean 

tree heights of Larix gmelinii generally do not exceed ~12m for stands underlain with continuous 

permafrost and varying active layer depths (Osawa & Kajimoto, 2009; Usoltsev, Koltunova, Kajimoto, 

Osawa, & KOIKE, 2002).  For these stands, the maximum above-ground biomass density (AGB) is 

approximately 100 Mg·ha
-1
.  This depends on stand age, tree density and local site conditions, and AGB 

potential generally decreases from south to north, following a latitudinal gradient (Osawa & Kajimoto, 

2009). 

3.2.3. LiDAR Remote Sensing of Vegetation 

Light detection and ranging (LiDAR) has become widely used for measuring and monitoring 

vegetation characteristics because of its potential sensitivity to subtle vegetation structural differences 

(Wasser, Day, Chasmer, & Taylor, 2013a; Whitehurst, Swatantran, Blair, Hofton, & Dubayah, 2013)), 
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and its availability on platforms that have sampled across a range of scales (R. Nelson et al., 2009; Næsset 

& Nelson, 2007).  LiDAR sensors are often deployed as airborne systems (LVIS; (Blair et al., 1999), G-

LiHT; (Cook et al., 2013)) but have also collected data globally from space (ICESat-GLAS; (Abshire et 

al., 2005)).  Satellite-based LiDAR collections offer consistent, synoptic sample measurements of surface 

characteristics across broad scales.  While the only free-flying satellite-based LiDAR instrument, to date, 

was designed primarily to measure ice, ICESat-GLAS has been used in concert with passive optical 

satellite data to provide regional-global scale estimates of timber volume, vegetation carbon density, 

above-ground biomass density, and vegetation height (Baccini, Laporte, & Goetz, 2008; M. A. Lefsky, 

2010; Los et al., 2012; Neigh, Nelson, Ranson, Margolis, et al., 2013b; R. Nelson et al., 2009; Simard, 

Pinto, & Fisher, 2011).  These measurements have been made despite GLAS footprints being ~50-60m in 

diameter, spaced ~170m along track (extending to 86° north and south), and covering only a small 

fraction of the vegetated land surface.  The accuracy of vegetation height measurements from ICESat-

GLAS vary depending on a number of factors including vegetation type, slope and measurement scale, 

and can range from ~3m ï 12m . 

LiDAR sensors vary in how they measure vegetation.  Waveform (i.e., pulse-limited) LiDAR 

sensors digitize the vertical distribution of vegetation structure within a footprint by recording the total 

energy returned from a single transmitted pulse for fixed vertical bins.  Discrete return LiDAR provides 

~3-5 returns for each LiDAR pulse based upon the intensity of returned energy (Evans, Hudak, Faux, & 

Smith, 2009).  Recently, micropulse (photon counting) LiDAR technology has emerged as a means for 

remote sensing of vegetation structure.  For vegetation, this technology yields point clouds that represent 

vegetation height measurements that are derived from individual photon returns collected from many low-

energy LiDAR pulses in rapid succession (Herzfeld et al., 2012).  These photon returns can be spatially 

aggregated to create histograms of the vertical distribution of returns for a given area, similar to data 

provided by a LiDAR waveform.  Each sensorôs ability to measure and map vegetation structure depends 

on multiple factors including sensor design, data collection schemes (timing and spatial characteristics of 

the measurement), and vegetation characteristics (type, density, health).  
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The spaceborne LiDAR on the ICESat-2 satellite, scheduled to launch no earlier than 2017, will 

feature a multiple-beam (a combination of stronger and weaker beams) photon counting LiDAR 

instrument (ATLAS).  The initial data collection scheme for a given beam on the ATLAS sensor noted 

that photons will be collected for a 10m diameter footprint at 70cm along-track spacing (Abdalati et al., 

2010), however updated schemes have increased the footprint size.  The exact position of each photon 

from within the footprint will not be known.  For sparse forest stands in the TTE, a single footprintôs 

measurement will be insufficient for characterizing vertical vegetation structure within that footprint and 

for inferring vertical vegetation characteristics outside the footprint, particularly as vegetation 

heterogeneity increases.  LiDAR collection schemes for characterizing various types of forest stands (e.g., 

the way in which photon returns are aggregated spatially) may help improve vegetation structure 

measurements as well as improve understanding of how these measurements change with vegetation 

characteristics. 

Given the sparse density of trees in TTE forests, the photon returns within a single footprint are 

unlikely to come from a tree, particularly the highest portion of the canopy.  This issue of under-sampling 

the top portion of forest canopies is common for LiDAR measurement of forest structure (Kaartinen et al., 

2012; R. Nelson, Krabill, & Tonelli, 1988; Næsset, 2011).  Collections of sequential footprints along a 

LiDAR track (i.e, a link-scale) will provide the best opportunity for measuring forest vegetation canopy 

and forest understory heights, inferring AGB, and assessing how these characteristics vary spatially 

across a heterogeneous landscape such as the TTE.  Understanding these characteristics can help assess 

the spatial details and regional differences in tree recruitment in the TTE, which can have affects on 

climate and biodiversity (Bonan, 2008; Hofgaard et al., 2012) that vary according to scale (Bonfils et al., 

2012; Lawrence & Swenson, 2011).   

 LiDAR has been shown to vary in the uncertainty of its measurements across forest 

gradients (Montesano, Nelson, Dubayah, Sun, Cook, et al., 2014a).  These varying factors may lead to 

differing measurement errors among LiDAR sensors and across vegetation structure gradients.  It is 

important to quantify the measurement errors (uncertainty) of current sensors, as well to provide advance 
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notice of potential errors from those sensors planned for the near-term, in order to evaluate the limits in 

the ability to synoptically characterize biophysically relevant changes in vegetation in the near future. 

3.2.4. The FLIGHT Model 

Radiative transfer models are used in terrestrial remote sensing as tools for examining the 

physical interaction of electromagnetic radiation with earth surface features.  Such models have been used 

demonstrate how LiDAR signals vary with the vertical structure of vegetation (Koetz et al., 2006; Ni-

Meister, Jupp, & Dubayah, 2001; G. Sun & Ranson, 2000).  In the context of this study, these models 

help explore the theoretical sensitivity of photon counting LiDAR from the planned ICESat-2 ATLAS 

instrument to sparse forests in the TTE. 

The Forest Light radiative transfer model (FLIGHT) uses Monte Carlo simulation of light 

transport for the optical domain (North, 1996) to model the interaction of LiDAR with forested surfaces.  

Evaluation of solar bidirectional reflectance and LiDAR backscatter retro-reflectance is achieved by 

simulation of the photon path within a canopy representation, and simulation of the chain of scattering 

events incurred by a photon in its path from the source to the receiver or to its absorption, including 

multiple scattering between canopy elements and the ground surface. 

The model describes tree crowns as conical or elliptical shells using specified dimensions. The 

model takes as input the proportional composition of foliage, branch and shoot/senescent material within 

crowns, leaf angle distribution, and leaf area. The spectral reflectance and transmittance properties of the 

canopy components and background surface are also specified.  Forest surfaces are generated statistically 

using mean conditions related to tree cover, tree type, position and size, or can be initialized with a tree 

stem map detailing these attributes for each tree.  The effect of slope is incorporated into the model using 

a planar surface with defined slope angle. 

This model has been adapted to simulate satellite waveform LiDAR collections (North, Rosette, 

Suárez, & Los, 2010) and has been used to examine the uncertainty of these data for vegetation structure 

and topography (Rosette, North, Suarez, & Los, 2010).  It has also been used to examine the sensitivity of 
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LiDAR to site-specific conditions such as topography, canopy and ground reflectance (Rosette et al., 

2013).  For LiDAR simulation, the model calculates the probability distribution of return of a photon 

emitted from the laser as a function of time, and has been validated by comparing model simulations with 

field and satellite observations (Morton et al., 2014; North et al., 2010) and through comparisons with 

other radiative transfer models (Widlowski et al., 2007).  For the simulation of individual photon returns 

for photon counting LiDAR, the expected energy distribution is quantized, and stochastic Poisson 

sampling is used to calculate the expected number of returned photons at each time interval.  Solar ónoiseô 

due to photons originating from solar scattering from land and atmosphere is calculated, and included 

implicitly within the simulation by increasing energy within each bin.  The LiDAR sensor is characterized 

using wavelength(s), pulse duration, emitted energy per pulse, instantaneous field of view, and sensor 

ódeadô time.  Footprint dimensions are determined using sensor altitude, beam divergence and viewing 

geometry.  Atmospheric effects of signal delay or pulse broadening are not represented, however 

atmospheric transmittance is accounted for, giving attenuation of the signal by fixed gases and aerosols 

using coefficients derived from the 6S radiative transfer model (Vermote, Tanré, Deuze, Herman, & 

Morcette, 1997). 

The goal of this study was to examine the error and error uncertainty of AGB derived from 

modeled ICESat-2 forest height returns from synthetic Larix stands in the TTE across multiple link-

scales.  For this work, a recent version of the FLIGHT model has been adapted to stochastically simulate 

photon counting LiDAR ranging measurements representative of those that will be acquired by the 

ATLAS instrument on the ICESat-2 satellite.  FLIGHT is used to evaluate the number of simulated height 

measurements from photon counting LiDAR shots that are available for sparse boreal-like forests, the 

uncertainty of derived AGB from simulated ICESat-2 data across a low biomass boreal forest gradient, 

and the difference in the AGB uncertainty between AGB intervals across this gradient.  Finally, this study 

examines the link-scales at which AGB uncertainty is minimized for sparse forests in the TTE. 
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3.3. Methods 

3.3.1. Overview 

The first portion of this work involved using the radiative transfer model to simulate photon 

counting LiDAR returns for Larix stands, and to derive stand heights across various link-scales.  To 

simulate ICESat-2 LiDAR returns for northern Siberia Larix forest stands within AGB intervals across a 

forest to non-forest gradient, FLIGHT was initialized with forest parameters and ICESat-2 ATLAS 

instrument parameters (as of November 2012).  The first part of the study, in which these returns were 

simulated, involved three central steps.  The first step focused on preparing the model to run with ATLAS 

parameters and for stochastic simulation of photon transport.  The second step involved providing 

FLIGHT with average Larix stand parameters.  The third step required deriving an algorithm to determine 

canopy height. 

The second part of the study required empirical modeling and an uncertainty analysis.  The means 

from the simulated return heights were calculated for each AGB interval and an empirical model was fit 

relating each intervalôs mean return heights to its corresponding mean AGB value.  Finally, simulated 

heights were converted to AGB and the error (RMSE) and error uncertainty (RMSE 95% confidence 

interval) of this derived AGB, across all link-scales, was computed. 

3.3.2. ICESat-2 ATLAS Parameters for FLIGHT 

FLIGHT was prepared with ICESat-2 ATLAS instrument parameters.  Table 3-1 summarizes the 

parameters used by FLIGHT to simulate photon transport from the planned ATLAS instrument and Table 

3-2 reports the solar and atmospheric parameters (including the scattering mode) used for model 

simulations with the sensor at nadir.  The ATLAS parameters were proposed as of August 2012 and, 

though subject to change, provided the basis for model assumptions regarding instrument design.  Key 

parameters include the laser wavelength (532nm), the laser footprint diameter (10m), laser pulse energy 

(164ɛJ) and the laser footprint spacing (0.7m, or 1.42857 footprint centerpoints m
-1
). 
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FLIGHT was operated in óphoton-counting modeô for stochastic simulation of photon transport.  

This mode of the model provides a different set of simulated returns for each link-scale across a forest 

stand of given set of parameters.  For each simulated LiDAR shot (i.e., an {X,Y} location ), returned 

photon heights are recorded from features within the synthetic forest stand.  A distribution of simulated 

heights recorded by combining returns for a series of footprints located at 0.7m intervals was compiled by 

running the model 100 times for each AGB interval for a given link-scale.  This procedure was replicated 

at 10m intervals for link-scales ranging from 20m ï 100m.  This stochastic process was intended to 

demonstrate the variability of forest structure measurements from photon counting LiDAR across an 

AGB gradient divided into 10 Mg·ha
-1 

intervals collected across a range of link-scales. 

 

Table 3-1. Summary of the parameters used by FLIGHT to simulate photon transport from the 

planned ATLAS instrument. 

Parameter  Value 

Operational altitude (m) 496000 

Wavelength (nm) 532 

Telescope diameter (m) 0.8 

Laser pulse energy (ɛJ) 164 

Laser footprint diameter (m) (1/e
2
) 10 

Telescope field of view (ɛrad) 83.3 (40m) 

Detector efficiency @ 532nm 15% 

Swath width (km) ± 3 

Beam divergence (rad) 5.04032E-06 

Pulse duration (ns) 0.375 

Samples · m-1
 1.42857 

 

Table 3-2. Solar and atmosphere parameters for model simulations with sensor at nadir. 
Parameter  Value 

Irradiance (top of atmosphere) @ 532nm (W·m-2
) 1.6 

Scattering mode total 

Atmospheric transmittance (1-way, nadir) 0.7 
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3.3.3. Forest Stand Parameters for FLIGHT 

Forest parameters were input into FLIGHT to simulate returns from Larix stands with no 

topographic relief in northern Siberia.  FLIGHT requires information on a number of forest stand 

variables in order to simulate photon transport from and through a particular type of vegetation.  Forests 

of northern Siberia are almost exclusively Larix, so forest variables input to FLIGHT were either specific 

to this forest type, or general to conifer trees where specific parameters were not available.  The 

simulations were run for parameters from theoretical stands within specified AGB intervals.  Because of 

this, the stand parameters (described below) that provided FLIGHT with a set of average forest structure 

conditions were compiled to statistically represent such AGB intervals. 

We collected Larix forest stand parameters for theoretical stands where AGB ranged from 0-10 

Mg·ha
-1
 to 90-100 Mg·ha

-1
.  The Larix stand parameters were derived from data reported in recent 

literature and directly from field measurements in Larix forests in central and northern Siberia in the 

summers of 2007, 2008 and 2012 (Alexeyev & Birdsey, 1998; Bjarnadottir, Inghammar, Brinker, & 

Sigurdsson, 2007; Iida et al., 2009; H. Kobayashi, Delbart, Suzuki, & Kushida, 2010; Montesano, Nelson, 

Dubayah, Sun, Cook, et al., 2014a; Neigh, Nelson, Ranson, Margolis, et al., 2013b; Osawa & Kajimoto, 

2009; Ueyama et al., 2010; Xue et al., 2011).  The AGB of these stands was calculated using a Larix-

specific allometric model (A. Bondarev, unpublished data; Montesano et al. 2014):  

 

AGB = 0.00001 *  ht *  (3.24 *  dbh
2
 + 6.601 *  dbh + 3.361) *  z *  S  (1) 

 

where, AGB = above-ground biomass density (Mg·ha
-1
) 

S = stem density (number·ha
-1
) 

ht = mean tree height (m) 

dbh = mean tree diameter (cm) at breast height (1.3m) 

z = timber volume to phytomass scale factor (0.795 for mature, northern Taiga Larix sp.) 
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Stand parameters that were input to FLIGHT were also input to the AGB model, which allowed 

FLIGHT output to be linked to specific AGB intervals.  Table 3-3 summarizes the forest parameters used.  

Figure 3-1 shows how the FLIGHT input was collected from the coupling of direct field measurements, 

allometrically-derived metrics, and values gleaned from literature on Larix stands.   The plots in Figure 3-

2 show how forest input forest stand parameters for FLIGHT varied according to AGB bin. 

 

Table 3-3. Summary of the forest stand parameters used for model simulations.  Parameters are 

derived from unpublished field data and previous studies in Larix  forests (Bjarnadottir et al., 2007; 

Ii da et al., 2009; H. Kobayashi, Suzuki, & Kobayashi, 2007; Wolf et al., 2011; Xue et al., 2011). 

Parameter  Value  

# of photon trajectories  20000 

Plant Area Index (%) determined by AGB bin, LAI=1.6 

Proportion of vegetation (leaf, shoot, bark) 0.2, 0, 0.8 

Leaf angle distribution generalized for conifer 

Soil roughness 0 (smooth surface) 

Leaf size/clumping 0.05 (clumping within conifers) 

Fractional cover of crowns (%) determined by AGB bin, LAI=1.6 

Slope (degrees)  0 

Crown shape  conical 

Crown dimensions (m) (crown radius, height of crown) determined by AGB bin 

Height to first branch (m) 2.875 

DBH mean for scene (cm)   determined by AGB bin 

Leaf reflectance, transmittance @ 532nm  10%, 6.5% 

Bark reflectance @ 532nm  8% 

Soil reflectance @ 532nm  8% 
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Figure 3-1.  Diagram showing the relationship between initial plot-level data and the input 

FLIGHT parameters used to simulate forest stands for AGB intervals from 10-100 Mg·ha
-1
. 

 

Figure 3-2. Plots showing how FLIGHT input forest stand parameters varied for each AGB bin. 

DBH = diameter at breast height (1.3m); FCC = fractional crown cover; PAI = plant area index. 


