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Chapter 1: Introduction

1.1. Overview
Earthoés forests and the climate system are | in
intense studybecause they affect human wed#ing. These interactions, both biogeochemical and
biogeophysical, are controlled in part by the vertical aizbntal distribution of canopy elements
(structure) of forest vegetation spatially, seasonally, andameually. Changes in these interactions are
often first observed at biome boundaries. The boundary between the boreal (taiga) and tundra biomes in
the high northern latitudes (HNL) is an ecological transition zone (ecotone) known as tHertdiga
ecotone (TTE) that has experienced particularly strong regional surface temperature warming. Examining
the characteristics of forest structureintieE i s cr i ti c al for understandi n

to, and effects on, climate and the consequences for humaheiredl.

1.2. Research Goals and Questions

An understanding of how current spaceborne remote sensing tools characterize TTE vegetation
structure in Siberia is neededhis need is driven mecent, widespread and variable vegetation change
within the Siberian TTEwhose forests are on the leading edge of recent surface warmiagsacéated
with permafrost, and coincide with vast gties of belowground carborilhe ability to characterize
TTE vegetation structure is particularly critical given the central role of TTE vegetation structure patterns
in determining ecological processes in the HNL and in influencing global change gsenari

The goal is to evaluate the uncertainty of current and planned spaceborne remote sensing for
monitoring vegetation structure across sparse forest gradients, integrate spaceborne measurements of
vegetation characteristics in a data fusion approachapyplgl this approach to evaluate forest patch
height and its uncertainty within the TTE of northern Siberia. This uncertainty will be examined in light

of a conceptual model of regional vegetation structure to assess the potential of spaceborne maps for



deqcting ecotone form and TTE forest structure vulnerabil&gsessing the uncertainty of spaceborne
observations of vegetation structure at the fine spatial scale® 6 s odt whioleittcleanges)in the
TTE is afirst step in understanding how stauat variability influences broader ecological procesdes.
this study, both forest aboveground live biomass density (AGB) and forest canopy height will be the
vegetation structural attributes of gthreegeseasi . Thi
guestions:
1. How do the estimates of AGB error and AGB error uncertainty from LIDAR and SAR vary
across a vegetation structure gradient in sparse forests?
2. How can estimates of forest structure from spaceborne data be integrated and scdéd in
fusion approach to characterize structure across sparse forest gradients?
3. How well do the estimates of forest patch height and its uncertainty from spacebuoaote

sensing depict ecotone form across a latitudinal forest gradient in the TTE in northern Siberia?

1.3. Background

1.3.1. The Taigd undra Ecotone

Earthodéds | ongest ec ol oleiween terrestrialdbionsethe taigatundr&z one ( ec
ecotone (TTE) of the circumpolar boreal region in the high northern latitudes (HNL) extends for 13,400
km across two continents, varies widely in terms of position and pattern, covers approximately 1.9
million square kilometers, holds vast amountsulifssirface carbgrmand can amplify warming through
decreases in surface albg@wnan, 2008; Callaghan, Werkman, & Crawford, 2002b; Swann, Fung,
Levis, Bonan, & Doney, 2010%enerally, the TTE extends from the continuously forested region of the
boreal biome northward to the northernmost position of arboreal g@atfette, Fortin, & Gamache,
2001) However, this transition zone is disdonbus and nomniform, as reflected in a recent map of
the circumpolar TTE extent derived from MODIS dé&anson, Montesano, & Nelson, 2011)

Pale@cological data suggest this vegetation regime has not been static throughout the last 10,000

years, but has both advanced northward and retreated southward in response to changiigafiargte



2008; Callaghan, Werkman, & Crawford, 2002b; K. B. Liu, 1990; Payette & Gagnon, 1985; Swann et al.,
2010) This evidence indicates thdiring a warming episode nearly 5000 years &gested patches
appeared ithe undra in central Canadhiring atransitionthat lasted-150 year¢G. M. MacDonald,

Edwards, Moser, Pienitz, & Smol, 1993; Payette et al., 200iLhorthern Siberia, Holocene increases in
tree cover were asynchronous, perhaps emerging from refugial stands, while vertical growth has been
evident since the first half of the 20th cent(lEgper & Schweingruber, 2004; G. M. MacDonald,

Kremenetski, & Beilman, 2008; Payette, Eronen, & Jagi2602; Ranson et al., 2011)

1.3.2. TTE Vegetation Variability: Site and Climate Controls

Vegetation within the TTE is subjected to a short growing season, varying topographic and
edaphic conditions, and changes with shifts in clinff@teMacDonald et al., 2000; Wolfe et al., 2000)
Evidence of paleoclimate summer tengiare suggests that Arctic summers are warmer now than any
time in the last 4 centuri€é€hapin, 2005; Overpeck et al., 199'Becent studies have documented these
changes in TTE vegetation under a shifting clinfglenendorf et al., 202; Esper & Schweingruber,

2004; M. Harsch, Hulme, McGlone, & Duncan, 2009; Kirdyanov et al., 2011; Sturm, Racine, & Tape,

2001; Tape, Sturm, & Racine, 2006; Vaganov, Hughes, Kirdyanov, Schweingruber, & Silkin, 1999)

Many of these studies demonstrdtat the ways in which the TTE eceggm responds to warming

depenbn changes in the structure and productivity o
regime(S. Goetz et al., 2010; Payette et al., 200)rthermore, the response of ecotone vegetation to

climate depends on the magnitude and raéengironmental change, the sensitivity of dominant species
(physiological tolerance), and the resilience of these species to dRisger, 1995)

While climate is important for determining the extent and pattern of the TTE and the distribution
of its vegetation, other controlling factors include les@dle spatial structure of vegetation, species
dispersal mechanisms and regenerative potg@ghache & Payette, 2005:k. Holtmeier & Broll,

2005; K. B. Liu, 1990; Payette & Gagnon, 1983he geographic vaability in site conditions thus

influences the spatial heterogeneity of vegetation structure in théBéargen et al., 2009; Hall et al.,



2011; Ropars & Boudreau, 2D), creating feedbacks to ecosystem structure and function that may also
vary spatially. The spatial patterns of vegetation, and their variability, may help explain the variability in
vegetation dynamics in the TTEI. A. Harsch & Bader, 2011)

The structure of vegetation in the TTE also affects climate through a number of feedback
mechani sms, and the net effect of vegderstod i on stru
(Bonan, 2008; Bonan, Pollard, & Thompson, 1992; Chapin et al., 2000; G. MacDonald et al., 2000;
Wolfe et al., 200Q)These feedback mechanisms can involve vegetation dynamics associated with
changesn disturbanceegimeg(V. I. Kharuk, Ranson, Dvinskaya, & Im, 2011¢mperaturéA. Soja et
al., 2007) hydrology(Kajimoto, Osawa, Usoltsev, & Abaimov, 2009; Miyahara, Takenaka, Tomioka, &
Ohta, 2011)andsurface albed@eck, Goetz, et al., 2011a; Betts, 2000; Loranty, Goetz, & Beck, 2011;
Shuman, Shugart, & O'Halloran, 2011; C. Thompson, Beringer, Chapin, & Mcguire, Zltarbon
storage of the unique larglermafrost coupled system of northern bb&iberia is considered important

to global carbon storage and regional clin{@est et al., 2009; N. Zhang, Yasunari, & Ohta, 2011)

1.3.3. TTE Vegetationf Northern Siberia: Biophysical Relevance and Recent Changes
The land surface in the TTE of northern Siberia has experienced rapid warming at least twice that
of the average for global land ard@oisman & Soja, 2009about2-3 degrees CACIA, 2005).
Modeling studies on vegédtan feedbacks to permafrost extent and active layer depth, timing of carbon
feedback, fire activity, temperature, carbon storage, growing season length and climate help explain the
relevance of potential changes in vegetation distribution and structecesgstem dynamics in the HNL.
Model projections of the strength and timing of a permafrost feedback to climate, accounting for
vegetation characteristics, suggest a central role for high latitude vegetation structure in determining the
magnitude of chages to the global carbon cyg®chaefer, Zhang, Bruhwiler, & Barrett, 2011 this
region, the extent of continuous permafrost influences the distribution of vegétadige, Bunn, &
Berner, 2011; Schulze et al., 2012; Sugimoto, Yanagisawa, Naito, Fujita, & Maximov, 2002;

Tchebakova, Parfenova, & Soja, 2009; N. Zhang et al., 2011¢ strength and timing of a climate



feedback from permafrostound carbon is function of vegetation structu(&pstein et al., 2004;

Jorgenson et al., 2010; Lawrence & Swenson, 2011; Schaefer et al., 204ty on the potential

impact of largescale vegetation structure changes in the Arctic on boreal climate revealed that the
strength and timing of landtmosphere feedbacks were sensitive to shrub height, and that taller shrubs
had larger effects on soil temmpture and permafrost conditio(@onfils et al., 2012)Liess et al.

explored the ways in whiché climate responds to boreal forest expansion, finding that modest forest
expansion along the northern boreal edge resulted in summertime warming, enhancing the Arctic frontal
zone(Liess, Snyder, & Haling, 2011) Forest expansion imposed on the modeling simulations was

subtle and spatially variable, yet led to an increase in AGB, leaf area, and lower surface albedo, among
other changes. A modeled increase in growing season length showed guea#ssot soil carbon in

areas with more vegetati§¢guskirchen et al., 2006)Modeled expansion of forests yielded a positive
feedback with climate, from decreased albedo and increased transpiration, that amplified warming when
operating in unison with sdae procesas(Swann et al., 2010)However, forest expansion will be

regionally variable because of spatial variability in soil and clirf@teM. MacDonald et al., 2008)

Finally, multiple studies explain the need for understanding vegetation height and cover, which may play
an important role in determining the strength of the amplifying effect on climateimg(Blok et al.,

2010; 2011; Lawrence & Swenson, 2011; Loranty & Goetz, 2012; Mymiith et al., 2011)

The modeling results thaethonstrate the potential strengths and consequences of changes in
vegetation structure for ecosystem dynamics in the HNL are underscored by multiple lines of evidence
from plot and satellite studies directly observing change. This evidence highligsvegetation
changes in the TTE in general and in northern Siberia in particularsdaliet vegetation changes in the
HNL have been studied with field experiments while msittale studies of changes in vegetation
productivity and structure have beemrad out with satellite data analyses.

Ground studies show that in central Siberia, der&dle conifers are expanding imiarix-
dominated foresf@nd canopyclosure and expansion bérix in tundra has been observ@d I. Kharuk,
Dvinskaya, Ranson, & Im, 2005; V. I. Kharuk, Ranson, Im, & Naurzbaev, 200@he polar Urals of
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northwestern Siberia,r@cent study reports marked increase in woody growth as well as increases in
areas supporting sparkarix trees following increases in open and closed cahapx woodlands in
those areas through the twentieth cen{rgvi et al., 2008; Shiyatov & Mazepa, 2012Zhese changes i
sparsd.arix forest structure were observed over ldagn studies that examined changes in vegetation
throughout the first and second halves of the 20th century. Mazepa and Devi (2007) discussed the
changes in arboreal growth form, from shiille to prostrate, oLarix in the treeline ecotone in the polar
Urals(Mazepa & Devi, 2007)Other dendrologic studies linked observed tree ring growdtlaus
associated with permafrost in the TTE of northern Siberi& tooincident with increased summer
temperature§vVaganov & Kirdyanov, 2009)

Satllite observations support ground studies of vegetation change. Recent findings suggest
warminginduced productivity increaseselikely in northern Siberian taigé.loyd et al., 2011) In
western Siberia increased shrub growth has been associated with increased summer temperatures in the
second half of the 20th century and has been linked to increased photosynthetic greening as documented
by satelliteqForbes, Fauria, & Zetterberg, 201This growth is related to the position of specific
summer air masses and may create new vegetation structure r@gswessFauria, Forbes, Zetterberg,
& Kumpula, 2012) Berner et al. demonstrated with dendrochronology and satellite data that plant growth
increased with temperature inntheastern Siberi@erner, Beck, Bunn, & Goetz, 2013h northcentral
Siberia landsat and highesdution satellite ime-series havéeen used to document the expansion of tall
shrubs and trees in the TTE of northern Siberia in recent de@adss & Epstein, 2014; G. Sun, Ranson,

Kharuk, & Kovacs, 2004; M. Urban et al., 2014)

1.3.4. Uncertainty in Spaceborne Obseion of TTE Vegetation Structure

Biogeographic studies in the HNL stress that-8oale, sitdbased monitoring is critical for
understanding the nature of variation in TTE vegetation characteristics and dy(t&gpsiesn et al.,
2004; Harpeet al., 2011; Hofgaard, Harper, & Golubeva, 201Phe authors also note the utility of

spaceborne sensing for monitoring changes in structure while explaining thatsozdesdata (i.e.



Ransoret al. 2011) may not resolve the critical daeel detail needed to fully understand TTE
vegetation characteristics, variability, dynamics and vulnerability to structural changesc&ime
spaceborne sensing of TTE vegetation structure across ¢henpiolar domain of the TTE is a challenge
because the magnitude and uncertainty of measurement error may mask measured differences in structure.
It is necessary to reduce this uncertainty because the deviation of currentscadgsgbservations and
modé predictions from ground data can be larger than the expected changes in vegetation structure
(Hofgaard et al., 2012; Hofgaard, Temmervik, Rees, & Hanssen,.2013)

The recommendations from biogeographers for statied techniques that improve estimates of
TTE characteristics echo the common call for the use of remote sensing data across the circumpolar
domain for collecting vegetation observatig@allaghan, Werkman, & Crawford, 2002b; Danby, 2011,
Hofgaard et al., 2012; Hofgaard & Harper, 2011KFHoltmeier & Broll, 2005; Hufkas, Scheunders, &
Ceulemans, 2009)These improved spaceborne sensing techniques for estimating TTE vegetation should
include the magnitude and uncertainty associated with measurement error at scales at which spatial
patterns of vegetation change. @yantifying spaceborne uncertainty of TTE vegetation structure, we
can work to identify where reductions in uncertainty of structure will have the greatest potential for
understanding variations in spatial patterns of structure that are linked to variatresponses of TTE
vegetation to climatic drivers. A careful examination of the spaceborne uncertainty of TTE vegetation
structure is warranted to appropriately answer the call for quantifying its current state and vulnerability

that are modified by doainwide temperature increases and-specific environmental factors.

1.4. Dissertation Organization

The three research questions described in Section 1.2 are addressed in the following four
chapters. These chapters present original research aimedranig the uncertainty of spaceborne
measurements of vegetation structure across sparse forest gradients, and the implications of this

uncertainty for evaluating forest structure patterns in the-taigdra ecotone.



Chapter 2 addresses the first reskajaestion. Here, | aggregated ground reference AGB across
sites in central Maine, Aurskog, Norway and northern Siberia. This ground referenceddiaked to
current airborne and spaceborne LIDAR and SAR data to examine the uncertainty of thésseasiog
measurements across a statistical gradient of AGB consistent with a gradient of AGB found across the
TTE in northern Siberia. The work is published in the jouRghote Sensing of Environment

Chapter 3 also addresses the first research qnedtiowever, in this chapter | used a radiative
transfer model to examine simulated measurements consistent with that of a plantedmear
spaceborne LIiDAR (ICES&). The uncertainty of these simulated measurements was examined across
the same statistal gradient of AGB as that of Chapter The AGB gradient used to initialize model
simulations was derived from field data acquired in northern Sibeagx forests. This chapter is also
published irRemote Sensing of Environment

The uncertainty ispaceborne measurements of sparse vegetation structure in Chapters 2 & 3 led
to the methodology presented in Chapter 4. In this chapter | present an approach to estimate spaceborne
canopy height with complementary spaceborne measurements. This worlseddhnessecond research
guestion by integrating spaceborne LiDAR and high resolution spaceborne imagery to estimate canopy
height at the scale of a field plot. The canopy heights examined were those coincident with field plots in
the sparséarix forestsof northern Siberia along the Kotuykan River. This chapter is published in
special issue of the journBemote Sensing e n tRéntote Bemsing of Changing Northern High
Latitude Ecosystemso

Chapter 5 is the final research chapter of the dissertafibis. chapter draws from the
uncertainty findings and methodological approaches discussed in the previous three chapters. Here, |
addressed both the second and third questions. | integrated spaceborne measurements of vegetation
structure and scaled thdmforest patches mapped across sites in the TTE north of the Kheta River in
northern Siberia. | examined the estimates of uncertainty in forest patch height using a conceptual model
of ecotone form. | explain how this conceptual model provides focdsemapping, in that maps of
TTE spatial patterns may yield the spatial extent of TTE vulnerability. There is specific potential for a
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spaceborne mapping approach to map these spatial patterns by reducing the uncertainty of forest patch
height estimateso as to distinguish clear gradients of forest patch heights associated with diffuse TTE
form.

The final two portions of this dissertatiorcludethe concluding chapter and the appendix. The
concluding chapter summarizes the finding of the previousrémaarch chapters, provides a synthesis of
these findings, summarizes the importance of resolving current TTE strastdhéghlights the
emerging potential for understanding the vulnerability of forest structure in the TTE. The appendix offers
backgroud on individual tree measurements gathered during the various field campaigns that provided

ground reference for all studies in this dissertation.



Chapter 2 TheUncertainty of Biomass $fimates from LIDAR and SAR

Acrossa BorealForest $ructureGradient

2.1. Abstract

In this study, we examined the uncertainty of aboveground live biomass (AGB) estimates based
on light detection and ranging (LIDAR) and synthetic aperture radar (SAR) measurements distributed
across a lovbiomass vegetation structure gradient from forestanforest in borealike ecosystems.
The coniferdominant structure gradient was compiled from ground data amassed from multiple field
expeditions in central Maine (USA), Aurskog (Norway), and across central Siberia (Russia). Single
variable empiricaimodels were built to model AGB from remote sensing metrics. Using these models,
we calculated a root mean square error (RMSE) and a 95% confidence interval (Cl) of the RMSE from
the difference between the remote sensing AGB predictions and the graeneticefAGB estimates
within AGB intervals across aD00Mg-ha® boreal forest structure gradient. The results show that the
error in AGB predictions (RMSE) and the error uncertainty (the CI) from LIDAR and SAR change across
a forest gradientThe errorof airborneLiDAR and SAR metrics and spacebotiBAR platforms show
a general trend of reduced relative errors as AGB magnitudes increase, particularly 86rk1g-ha”.
Empirical models relating spaceborne metrics to AGB atichates of spaceborhgéDAR error
uncertaintydemonstratéhe difficulty of characterizing differences in AGB the sitdevelwith current

spaceborne sensoparticularlybelow 80Mg-ha* with less than 5000% error.

2.2. Introduction & Background

Characterizing differences vegetation structure, such as biomass, across a vegetation gradient
can reveal spatial patterns in forests and their changes over time. Vegetation structure, which influences
biodiversity and climate, varies over space and(@uoean, Chapin, & Thompson, 1995; Callaghan,

Werkman, & Crawford, 2002b; Epstein et al., 2004; Hofgaard et al., 2010; F. K. Holtmeier, 2809; F.
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Holtmeier & Broll, 2005; Risset,995) This variation is manifested as gradients in vegetation structure.
Temporally, gradients can occur as vegetation recovers following a disturbance event or as vegetation
structure shifts in response to temporal changes in environmental coadiBpatially, vegetation
structure gradients coincide with geographic variation in environmental factors, which can influence
vegetation performance such as growth, regeneration and maalitgn ¢ al., 1992; Loranty & Goetz,
2012; Sveinbjérnsson, Hofgaard, & Lloyd, 2002)he differences in vegetation structure at various time
periods and geographic positions, and its effects on biodiversity and climate, can reveal the degree to
which vegetatn structure contributes to ecosystem dynaif@edlaghan, Werkman, & Crawford, 2002b;
Dobson et al., 199Dubayah & Drake, 2000; M. Lefsky, Cohen, Parker, & Harding, 2002; K. C.
McDonald, Dobson, & Ulaby, 1990)

Vegetation structure across the sparse forests of the circumpolatutaitya ecotone (TTE), at
the convergence of the boreal forest andarased tundra, is linked to clima{@onan et al., 1992)
Recent changes in climate have lglouabout changes in arctic ecosystems associated with the TTE
(ACIA, 2004; S. Goetz & Dubaya 2011) These recent changes in TTE vegetation throughout the
circumpolar high latitudes have been widely docume(Bedk, Juday, et al., 2011b; Elmendorf et al.,
2012; Forbes et al., 2010; Hofgaard et al., 2013; V. I. Kharuk et al., 2006; Nfatiga et al., 2012; D.
A. Walker et al., 2012) While climate is important for determining the eattand pattern of the TTE and
the distribution and structure of its vegetation, other factors such ast@talspatial structure, species
dispersal mechanisms, regenerative potential aneiiatic abiotic factors are also key drivers of its
current gate and capacity for, and velocity of, chaf@allaghan, Crawford, i®6nen, Hofgaard, et al.,
2002a; Frey, Penman, Hanle, Monni, & Ogle, 2006; Gamache & Payette, 260F16tmeier & Broll,
2005) This range of drivers makes for diverse conditions of vegetation structure, however, conditions
that are evident at locatales can be masked at broad sq@efgaard et al., 2012; Woodcock, 2006)
As multi-scale shifts in vegetation continue to serve as the expression of changes in environmental
conditions brought about by changing climate, them meed to better quantify their spatial
characteristics. These vegetation shifts occur at the $oe#t because they are often-specific, yet
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collections of such shifts in vegetation may be evident across the broad scales at which the disgurbance
taking placgCallaghan, Werkman, & Crawford, 2002b; Hofgaard et al., 20EQ)ythermore, the
vegetation shifts that are occurring in the TTE may not coincide with model predietidgaard et al.,
2013) Finally, there is a need to characterize differences in vegetation strihetuaeg biophysically
and ecologically relevant in order to understand the feedbacks of vegetation to (@iorae et al.,
1992; Loranty & Goetz, 2012)

Remote observations of vegetation from active sensors can charaotgetation structure
across a landscape. These characterizations differ depending on the type of active sensing system. Light
detection and ranging (LiDAR) and synthetic aperture radar (SAR) provide two general means of
assessing vegetation structurmotely. LiDAR provides a direct measure of vegetation canopy and sub
canopy height and density while polarimetric SAR backscatter provides information that mixes signals
from the ground surface and the size, shape and orientation of vegélatimon et al., 1992; Dubayah
& Drake, 2000; M. Lefsky et al., 2002; K. C. McDonald et al., 1990)

Spaceborne LIDAR and SAR have been used to map and inventory boreal forest gfRucture
Nelsm et al., 2009; Santoro et al., 2009; Selkowitz, Green, Peterson, & Wylie, 2012; Whitcomb,
Moghaddam, McDonald, Kellndorfer, & Podest, 200Fhese systems provide a means for biszzde,
synoptic mapping of entire biomes. Consistent, broad scalpingapf the current state of vegetation is
the first step in capturing a time series of vegetation structure that facilitates the study of the spatial
variation of vegetation structure, its change, and sources and sinks of abovegroun{adoetz &
Dubayah, 2011) In order to capture salient and ecologically relevant changes in vegetation structure, the
uncertainty of these remote measuremeatgirto be placed into context with such changes. The
measurements can only provide new insight if their errors are small enough to be sufficiently certain that
a measured difference in vegetation structure across space or time translates to actwal structu
differences on the ground. An examination of the remote vegetation structure measurement errors across

a gradient would demonstrate the sensitivity of current remote sensing to a range of structural regimes.
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A spatial gradient of vegetation structure may occur in AGB as boreal forest transitions to non
forest. Samples of AGB at transect intervals crossing such a transition could provide AGB measurements
that span a continuous set of AGB intervals. Similarlgtatistical gradient can be amassed by collecting
many measurements at disparate sites representing a variety of AGB conditions similar to those that
would be found along a transect crossing a transition of boreal forest-foresh Such a statisat
gradient of AGB measurements would have similar structure as sites across an actual spatial forest
transition.

Uncertainty is a key component of remote sensing studies and applications, and can be defined as
60t he probabil ity buedtoeifferet soGrcébungan, 200&This defeitioa t t r |
highlights two components of a remote sensing measurement; the error of the measurement as well as its
probability. The error is represented as a mean value while the probability of this error can be represented
as a probability densiff unct i on (PDF), and helps describe the
value(Frey et al., 2006) The focus on the uncertainty of remote measurements of vegetation draws
attention to the limits of what these measurements can add to the current understanding of vegetation
characteristics, such as structure aném{iVoodcock, 2006) There have been a number of studies
guantifying a number of uncertainties, inariety of ways, from LIDAR and SAR measurements
(Ahmed, Siqueira, & Hensley, 2013; Frazer, Magnussen, Wulder, & Niemann, 2011; Gobakken &
Neesset2009; Hensley et al., 2014; Hodgson & Bresnahan, 2004; Lu et al., 2012; Mascaro, Detto, Asner,
& Muller-Landau, 2011; Tinkham et al., 2012 this study we used spatially coincident ground
reference and remote sensing data acquired across a fduyeal forest biomass to evaluate the
uncertainty of remote measurements of vegetation struttureLiDAR and SAR across a boreal forest

to nonforest structure gradient.
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2.3. Methods

2.3.1 RemoteSensingData

LiDAR and SAR data from both airbornedaspaceborne platforms were used in this study to
measure vegetation structure across a forest gradient. Zalpeovides a summary of each dataset used.
Airborne data came from the synthetic aperture radar UAVSAR, the medium footprint waveform Laser
Vegetation I maging Sensor (LVIS) and the smal/l
Hyperspectral, and Thermal Imager (GLiHBJair, Rabine, & Hofton, 1999; Cook et al., 2013; Rosen et
al., 2006) Spaceborne data came from ICESat GI(ABshire et al., 2005; Zwally et al., 200a)d
ALOS PALSAR (Rosengyvist, Shimada, Ito, & Watanabe, 2013)r each study area, there exists both
LiDAR and SAR, with the exception of a few ground refeeeplots in Eurasia for which one of the two
remote sensing measurements, from either GLAS or PALSAR, was not available.

Spaceborne data (GLAS and PALSAR) are available from the National Snow and Ice Data
Center and the Alaska Satellite Facility, respettier the study sites in Eurasia while airborne data
(LVIS, UAVSAR and GLIiHT) are available from NASA instrument websites (http://lvis.gsfc.nasa.gov;
http://uavsar.jpl.nasa.gov; http://gliht.gsfc.nasa.gov). Airborne LIDAR and SAR were spatially
coincident in Maine as were spaceborne LIDAR and SAR in Eurasia, however these datasets were
generally acquired independent of each other, with the exception of the temporally coincident UAVSAR
and LVIS campaigns in Maine in 2009. The UAVSAR data was radiomitrizdibrated for viewing
geometry and topograpliilontesano et al., 2013; Small, 2011)

Table 21. Summary of the airborne and spaceborne systems that provided remotensing data for
this study, including the metrics used for this analysis.

Study | Acquisition - .
Type Sensor Region Year Description, metrics
airborne LIiDAR LVIS Maine 2009 ~20m footprint waveform @ 1064nrrh90, rh75, rh50)
airborne LIDAR GLIiHT Maine 2012 small footprint discrete return @ 1550n(rh90, rh70, rh50)
spaceborne LIiDAR I(C;Efgt Eurasia| 20032006 | ~60m footprint waveform @ 1064nrrh90, rh75, rh50)
airborne SAR UAVSAR | Maine 2009 ~5m full-polarimetricL-band(HH, HV, VV)
spaceborne SAR P’j\tgiR Eurasia| 20072010 | ~20m duapolarimetricl -band(HH, HV)
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2.3.2.GroundReferencdnventories

We compiled ground based forest structure measurements from sites across Eurasia and central
Maine (Figure2-1). These measurements of tree diameter at breast height (DBH) and tree height were
spatially coincident with remote sensing data, and were acquired for a gradient of boreal forest structure
ranging from forested to neflorested, representative of vegeiatstructure regimes within the TTE.
These inventories took place across multiple years at a number of locations to sample trees within a
portion of a LiDAR footprint, and infer ground reference forest AGB for each footprint, which was used

as a surrogatfor vegetation structure.

Spaceborne LiDAR Lo i e
and SAR collection ) -

Aurskog, Norway plots

o e

Kotuykam River plots: J

Kachechum River plots

West Siberian Plains pIotsJ

1,000 km

Airborne LIiDAR
and SAR collection

4,

Figure 2-1. Locations in Eurasia and central Maine of ground reference inventories of vegetation
structure at LiDAR footprints.

Plots corresponded to either spaceborne or airborne data. Those plots associapstelirne
data were centered on GLAS footprints and collected from the Kochechum River, Kotuykan River and
Western Siberian Plains sites in the summers of 2007, 2008, and 2010, respectively. GLAS footprints in
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Aurskog, Norway were surveyed using wiahwall airborne laser scanner (ALS) déhéeesset et al.,
2011) Plotsassociated with airborne measurements were collected in the Howland Experimental Forest
in central Maine, where plots that were centered on LVIS footprints were surveyed in 2009 and 2011.

Field-derived AGB measurements were collected in circular ground plots within airborne (LVIS)
or spaceborne (GLAS) LIDAR sample footprints. These field plots werépgated to within ~13m
(airborne LiDAR plots) and ~10m (satellite LIDAR plots) ofthe i DAR f oot print 6s cent i
handheld global positioning system unit. Each LIiDAR footprint was assumed to be a circle with a
consistent radius for each sensor. The accuracy of the pkddemion depended on the site and the
global positioning sstem used. Plots located at LVIS footprints were 10m in radius while those
associated with GLAS were either 10m or 15m in radius. While the plots associated with GLAS shots
represented less than half of the ground area of the LIDAR measurement, thesgleeted in part
because the field sampling area was representative of the larger area sampled by GLAS. Only those plots
with <10e sl opes were used in the analysis.

Field workers recorded DBH measurements of individual trees >3cm in Siberia and >10cm in
Maine within the circular ground plots. The individual tree measurements were converted to AGB using
regionally specific allometry linking tree height or tree DBH with A@Bexeyevé& Birdsey, 1998;
Jenkins, Chojnacky, Heath, & Birdsey, 2008) Bondarev, unpublished data). From each field
inventory, a groundor an airborne laser scandssed estimate of AGB for a corresponding LIiDAR
footprint was calculated where AGB is eitlzefunction of DBH, height or botfiNeigh, Nelson, Ranson,
Margolis, et al., 2013b)In Aurskog, Norway, allometrically derived AGB was calculated for each GLAS
footprint based on withifiootprint tree heights derived from coincident ALS ratur These ALS
measurements had previously been related to grimfieded AGB from 201 circular field plots using
allometric models with DBH and tree height as predictor varigblessset et al., 2011fable2-2
summarizes information on the plots collected for comparison with either airborne or spaceborne data,

and indudes their associated study regions and the subset that weréMg1®®'. Those plots < 100
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Mg-haformed the statistical vegetation structure gradient from cedderinant boreal forest to nen

forest used to examine the error and error uncertafrG@ across a TTHike forest gradient.

Table 22. Ground plots for which field-derived AGB was collected. Each plot is located within the
footprint of either an airborne (LVIS) or a spaceborne (GLAS) LIiDAR sample. This table
summarizes the inventoryyear, regional location and as well as the number of plots used for the
empirical models and the subset used for the analysis across the statistical forest structure gradient
from 0-100Mg-ha.

# of LiDAR footprints
LiDAR Years of .
footprint % field r';'gi'gs 'rcr’]t Eull Full
sensor | 9O | inventory | RAUS(M | 4EE | 0-.100Mg-ha’ | AGB | 0-100 Mgha
range range

Aurskog 2006 811 306 221

GLAS 468 351
Siberia | 20072010| 10-15 162 130

LVIS Maine | 20092011 10 113 60 113 60

2.3.3.LIiDAR WaveformProcessing

LiDAR waveform returns for forested areas show the vertical distribution of vegetation within the
footprint of the return as well as the elevation of the ground surface. Both GLAS and LVIS record vertical
canopy information as a continumwaveform representing the heights of canopy elements and the
elevation of the ground surface. As tree canopy cover decreases, a greater proportion of the LiDAR
return is from vegetation low to the ground, and the ground surface itself. These LiD# fedm
short vegetation can be mixed with the portion of the waveform representing the ground surface. To
offset this influence of the ground peak on the portion of the waveform representing vegetation, the
LiDAR return waveform was adjusted to moreally discern sparse and short stature forests from the
ground surface. This work was similar to that of performed on airborne waveform data of(Mrests
Lefsky, Harding, Cohen, Parker, & Shugart, 1999)

With this adjustment, the ground peak portion of the waveform was identified and a Gaussian
curve wa fit to the portion of the waveform centered on the ground return peak. This was a way to

approximate the amount of transmitted energy that was returned to the sensor from the ground surface.
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Once centered on the ground peak, the portion of the choxedhe ground peak was subtracted from

the actual waveform return. The remaining portion represented the signal return from vegetation with less
interaction with that of the ground surface. Height metrics were then calculated from these Gaussian
reducel (GR) waveforms. An example showing an original GLAS waveform and the adjusted GLAS

waveform are shown in Figu&2.

L2A GLAS Index #, shot: 117543386, 35
Lat: 65.625862 , Lon: -100.714668

U]
@ —
N
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<t - - - =
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Figure 2-2 . Example of an original GL AS -rweadviect eod dm (a@GRl)
waveform that resulted from subtracting theportion of the Gaussian peak above ground elevation
from the original GLAS waveform.
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2.3.4.EmpiricalModeling: Linking RemoteSensing andsroundReferenceMeasurements
The ground measurements of vegetation structure at LiDAR footprints were linkddAR laind

SAR data. LIDAR data was already spatially coincident with ground reference data since the ground data
was acquired at each LiDAR footprint or via grotndALS relationships with full ALS coverage within
the LIDAR footprints. Some of the LiDARatkh had undergone a visual screening of each waveform
before field measurements were made to ensure ground measurements were collected for LIDAR data
representative of vegetation. Some additional screening was necessary to remove GLAS shots whose
data, lased on visual inspection, showed apparent cloud obscuration or saturation, were on slopes of at
least 10 degrees, or whose ground measurements were suspect (ground reference AGB was recorded as 0
but whose percentage of forest within a plot was recorsledld. Furthermore, 20 GLAS plots with
>50% of AGB derived from hardwood trees were excluded from the analysis to maintain focus on
coniferdominant plots. Second, SAR data was gathered for each LiDAR footprint. SAR pixels whose
center points were withiLiDAR footprint boundaries were used to derive the mean backscatter for each
footprint. For ALOS PALSAR, alll pi xels whose cen
center point were used to drive mean backscatter for each footprint. Tieisdrofind the GLAS
footprintds cent er | -ceqgisrationemorsheweegnehd damsets.oMomre grouhdor g e
plots were available for comparison with spaceborne SAR because than with spaceborne LIDAR because
the LIDAR screening process remed potential candidate plots from the regression with LIDAR metrics.

This study used multiple metrics from each sensor. For each LiDAR dataset, three
relative height metrics were used. The relative height metric from a LiDAR return depicts theaheight
which a certain proportion of total received energy (or number of discrete interactions) has been returned
to the sensofDrake et al., 2002) Thiswas done to demonstrate consistency in the way errors from each
metric from a given sensor varied in relation to AGB. The remote sensing metrics from each sensor are
included in Table .

Single variable ordinary least squares (OLS) regression wasaisertlel the relationship of

sensor metrics to AGB. This was done to demonstrate the fundamental association of a single metric with
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vegetation structure. These models were built across the entire range of AGB represented in the ground
reference (up to 80 Mg-ha® for plots at GLAS footprints and up to ~3¥y-ha for plots at LVIS
footprints) for the total number of ground plots shown in Tak?e

The OLS regressions were applied to-toansformed values of the remote sensing metrics and
ground refeence AGB. The logransformed values were battansformed algebraically, resulting in
power function models of the form:

z| A O O mtlerea andb are coefficients of the regression. (1)

Models of this form are commonly used to infer bionfaas tree structural characteristi¢ger-
Mikaelian & Korzukhin, 1997) With these models, the remote sensing data served as the independent
variables to model forest AGB. Using ground reference AGB, field plots were groupedietal AGB
intervals (bins) representing a statistical gradient of vegetation structure across which remote sensing

measurements were evaluated.

2.3.5.UncertaintyAnalysis

An uncertainty analysis was performed to evaluate the error and the uncextaliatyerror of
predicted AGB within AGB intervals across a statistical gradient of AGB fréora@Mg-ha'. For each
sensor metric, we applied its empirical mo d e |l rel
predicted (from the remote sensing MBAGB value to the ground reference (observed) value. Each
pl otds remote sensing model prediction error was
observed AGB value. Due to the fact that there were many more plots establisheditmfeatellints,
the values were grouped into bins ofM@-ha" for spaceborne data and BI@y-ha* for airborne data,
forming a unique sample set for each AGB bin and providing the basis for a per bin analysis.

For each AGB bi ncalculatedeas theiRMSESof tieerset of plotswdatspoints)
within each bin. The uncertainty of the error value per bin was reported as a 95% confidence interval

(C). This CIl characterizes a PBout the mean error value.
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The Cl was calculated using twdfdrent methods. The first method used a bootstrapping

sampling approach to gathetlrobservations for each of 1000 samples, from which 1000 estimates of the

RMSE were computed. These 1000 bootstrapped RMSE estimates formed a PDF representing the mean

and variance of the RMSE for each AGB bin. The second method used-Swahé probability
distribution with df = Rl to characterize the 95% CI. The Cl is calculated as foll@#ts& Longnecker,

2010}

- (n-1)*RMSE*

o )éppfr (2&)

% 2
cr_ - l(n-1)*RMSE
ﬁwﬁ?‘ (2b)

These methods produce an inference about a population variance, where the variability of the

RMSE within a population of many RMSEs for a given AGB bin is expressed with a CI.
2.4.Results

2.4.1.EmpiricalModelsof AGB vs.Metrics
As illustrated in Figur@-3, the airborne LiDAR and SAR models explained a much greater
proportion of AGB variability relative to the spaceborne models. LVIS, GLIHT and UAVSAR models

explained 6689% of AGB variation while GLAS and RASAR explained 1316%. The models derived

from airborne data performed better than those from spaceborne data, effectively creating an upper bound

for model performance and AGB bin errors that can be expected from spaceborferdathorne

LIDAR regression Rranged from 0.74.89, for airborne SAR 0-6.8, for spaceborne LiDAR 0.2%46,

and for spaceborne SAR 0.13 and 0.38is is consistent with a number of studies examined in a recent
metaanalysis of that examined the use of LiDAR for estimafiimgst biomas$Zolkos, Goetz, &

Dubayah, 2010)Iin particular, the airborne models were built on relationships that show significant
heteroscedasticity across the range otigtbreference AGB, where low AGB regions show lower scatter

about the model line than do high AGB regions.
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The spaceborne models were built on relationships showing significant scatter across the entire
range of AGB. In particular, the spaceborne SAR r®eeplain a relatively low proportion of overall
variance(0.16 and 0.32 for HH and HV, respectivelgind poorly fit the dataThe broad range of
backscatter associated with very low AGB values is a prominent component of the overall scatter for both
spaceborne SAR polarizations.

Models from adjusted waveform metrics generally explained more of the variation between
height metrics and ground reference than did those from thejusted metrics. This was more evident
in the spaceborne GLAS data tharthie airborne LVIS data, and more evident in the height metric most

representative of the middle of the canopy (rh50) than that of the upper canopy (rh90).

LVIS rh90 LVIS rh75 LVIS rh50 LVIS GRrh90 LVIS GRrh75 LVIS GRrh50

2-0.83 MR°—0.89

15y 2_0.88 R%-=0.87 /R® = 0.82
i n=113 n=113 .. * n=113 . n=113 n=113
GLiHT rh90 = GLIiHT rh70 GLIHT rh50 UAVSAR HH UAVSAR HV UAVSAR VWV

1

R2-079 - /R*-082 - ZR*-0.8 R2=0.74 - #R>-08 R?-06
n =108 n =108 n=108 n=113 =f n=113 n=113

ICESat GLAS rh90 ICESat GLAS rh75 ICESat GLAS rh50 ICESat GLAS GRth90  ICESat GLAS GRth75  ICESat GLAS GRrh50

=041 - 3F-035 . .
Wh-468 _Bh=468 =

ALOS PALSAR HH ALOS PALSAR HV

Re- 0.32
n =607

22.-0.13 ¢
n =607

LiDAR metric (m), SAR backscat. coef. (m*/m?)

Field AGB, Mg-ha™

Figure 2-3. Plot matrix showing the empirical models used to predict AGB from airborne and
spaceborne remote sensing metrics.
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2.4.2.Error anderror Uncertainty within AGBBins

The error (RMSE) and error uncertainty (95% confidence interval of the RMSE) of AGB
predictions from airborne LIDAR and SAR and spaceborne LIDAR metrics are reporbad do/ part of
the plot matrix in Figur@-4 for the set of metrics reported above. In this portion of the analysis, results
are not reported for spaceborne SAR. The errors calculated would be derived from poorly fit models and
are fundamentally misleadirbecause the empirical models for each polarization fail to explain an

overwhelming majority of the variation.

23



ICESat GLAS

100

LVIS GLIHT UAVSAR

# of plots
50

0 20 40 60 80 1000 20 40 60 80 1000 20 40 60 80 1000 20 40 60 80 100

LVIS GLIHT UAVSAR ICESat GLAS
GRrh90 GRrh90

0 20 40 60 80 1000 20 40 60 80 1000 20 40 60 80 1000 20 40 60 80 100

UAVSAR ICESat GLAS

0 20 40 60 80 1000 20 40 60 80 1000 20 40 60 80 1000 20 40 60 80 100

LVIS GLIHT UAVSAR ICESat GLAS
w GRrh50

0 20 40 60 80 1000 20 40 60 80 1000 20 40 B0 80 1000 20 40 60 80 100

UAVSAR ICESat GLAS
GRrh90

0 20 40 60 80 1000 20 40 60 80 1000 20 40 60 B8O 1000 20 40 60 80 100

UAVSAR

ICESat GLAS
GRrh75

RMSE, Mg-ha"
0

0 20 40 60 80 1000 20 40 60 80 1000 20 40 60 80 1000 20 40 60 80 100

UAVSAR ICESat GLAS
GRrh50

0 20 40 60 80 1000 20 40 60 80 1000 20 40 60 80 1000 20 40 60 80 100

AGB bin, Mg-ha™

24



Figure 2-4 . Each sensor 6 bycolums. ulhetfist roavishowsrthe pistogranme of
ground reference plots used in comparisowi t h each sensor-D08Mgame™t ri cs acr o
structure gradient. The gray bars of the histograms span 2Blg-ha™ bins used to report airborne
results, and are overlaid with whiteoutlined bars used to report spaceborne results. Rows£2show
error plots in relative terms (RMSE %). Rows 57 show error plots in absolute ¢rms (RMSE).
Each columnédés plot is set up so that each AGB bin
The larger number of ground reference plots associated with the spacebosats gegamitted
consideration of smaller bin sizes relative to those used for the airborne datasets. Each error value is an
estimate of the true mean error value associated
the relative RMSE (RMSE %)s ialso shown in absolute terms (RMSE) in the bottom portidiigoie 2
4. The datapoints in the plot matrices are shown with black dots, connected by the black lines, for each
AGB bin. These errors are based on the empirical models derived from eaglatibaship of ground
reference AGB with each sensor metric. AGB prediction models based on adjusted waveform metrics
(for LVIS and GLAS metrics) explained a greater proportion of overall variation and were used to
evaluate error and error uncertaimgrtds in place of their unadjusted counterparts. The relative errors
were calculated by dividing the RMSE by the mean AGB value of the datapoints in the corresponding
AGB bin while the absolute errors involved the standard RMSE calculation per binotk@els of
plots, data values align on theaxis with the midpoint value for each bin.
The errors oairborneLiDAR and SARand spaceborne LiDARietrics show a general trend of
reduced relative errors as AGB magnitudes increase, particularly fid®® Blg-ha’. Interruptions in
this general trend occurred for airborne data (LVIS rh90, GLIiHT rh90, UAVSAR HH, HV, VV) in bins
for which there were fewer than 10 datapoints. The plots for the airborne data (first 3 columns) report
results in 20Mg-ha* bins. The number of ground reference observations for each airborne bin ranged
from 67 23. In airborne LiDAR (LVIS and GLiHT) bin-20 Mg-ha?, all the error datapoints are above
50% (for all 3 metrics of both sensors). In binZMg-ha® half of the erro datapoints are below 50%
(the GLIiHT are all above this mark). Bin-80 Mg-ha" shows all but one error datapoint to be below
50%. The exception occurs where there is a spike in the trend of the adjusted rh90 metric for LVIS. Bins

60-80 and 8a100Mg-ha* show all but one error datapoint below 50%, the exception being a spike along
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the GLiHT rh90 trend. In airborne SAR (UAVSAR) bir20 Mg-ha® each polarization had errors
greater than or approximately equal to 100%. Bind@&hrough 86100 showerrors varying from <50%
to > 100%. The polarization with the best relationship with ground reference AGB ¢#\Q.B),
reveals a clear trend whereby relative errors decrease from ~100% fe28iddivn to <50% for bins
60-80 and 80100 and is similato that of the VV polarization but for which the empirical model of AGB
explains less variance {R 0.6). Spikes in these error trends occur within bins where there are fewer
than 10 datapoints.

The error trends for the spaceborne LIDAR were derivea fEOMg-ha* bins. Across
the intervals of the AGB gradient, 8 of the 10 bins had greater than 20 datapoints and thus show
somewhat smoother error trends across the gradient. For this errobiren@10 through 3840 Mg-ha
! show errors above andarel00% while bins 480 through 6670 Mg-ha* show errors between 50
100%. Only above 7Mg-ha* do errors begin to approach 50% of ground reference AGB.

The error plots in Figurg-4 also show two estimates of the error uncertainty (95% confidence
interval of the RMSE) for each AGB bin. The first error uncertainty estimate, depicted with the colored
ribbons around the horizontal black lines, is the result of the bootstrapping method used to derive a 95%
confidence interval around each bin AGB RMSE ealThe second error uncertainty estimate, depicted
with the vertical black bars position through each datapoint, shows the result of a method using the chi
squared distribution to calculate a 95% confidence interval. These uncertainty calculatiook fonea
form error bounds around the mean values of AGB errosa@dorest AGB gradient ofTDOMg-ha’.

The pairs of error uncertainty estimates (the ribbons and vertical bars in Figure
bounding the error estimates are generally consistent fimeslics of all datasets. Airborne error
uncertainty estimates differ notably for a few spikes along the error curves, particularly for LVIS rh90 bin
40-60 and UAVSAR HV bin 4860 and VV bin 6880. Aside from these spikes, where error uncertainty
broades conspicuously, error bounds general range from-28%% of a gi meamvaldeGB bi nd
The uncertainty bounds for the error trends of the spaceborne LiDAR metrics are consistently broad
across the majority of theDOMg-ha* range. Below 3Mg-ha* the uncertainty bounds never fall
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below 50% and extend to well above 100%. Fror88Mg-ha’ the uncertainty bounds occupy most of
the range from 5@00% error. Theseestimates of spaceborhédAR error uncertaintylescribehe
difficulty of characteizing differences in AGB with current spaceborne sensors beldvggoa’ with

less than 5A.00% error.

2.5.Discussion

The goal of this study was to evaluate the uncertainty of biomass inferred from LiDAR and SAR
across a forest structure gradient. This study reports both the relative error and the absolute error of AGB,
and their uncertainties, across a boreal foresbteforest structure gradient fromI0Mg-ha* which is
characteristic of sparse forests in the TTE of northern Sifi€aianoto et al., 2009) The analysis of
both airborne and spaceborne measurements help evaluate the relative lack of sensitivity ofBhese AG
measurements from spaceborne measurement compared to those from airborne sensors designed
primarily to measure fine details (plot scale) vegetation structure. Remote sensing provides a means to
assess terrestrial details across a variety of scalesybptie results of this study suggest a limited
ability to discern potentially important vegetation structure differences in sparsely forested regions with
short stature vegetation. This insensitivity has been noted across a latitudinal gradient ifRuebec
Nelson, 201Q) There are important implications of this lack of sensitivity for understanding change in
vegetation structurgarticularly at biome boundaries. However, the methodology has limitations

associated with characterizing AGB error that warrant discussion.

2.5.1.Limited Ability to DiscernSparseForests aPlot Scale

Spaceborne data could provide the best measyiuptically measure vegetation across broad
scales. However, the results suggest that currently a single type of measurement, independently, may not
reliably capture plot level differences in AGB. In this study the scale of the plot level is equigatent
sitellevel scale discussed elsewhere in the litergtdoégaard et al., 2012; Hofgaard & Harper, 2011%; F.
K. Holtmeier & Broll, 2005) At the sitelevel scale, characteristics of ggs of trees can be described

and help to explain the biogeographic drivers and dynamics of vegetation st(Bctiuae et al., 1995;
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Hofgaard et al., 2012; F. K. Holtmeier, 2009:K=.Holtmeier & Broll, 2005; Risser, 1995According to

the results reported above, spaceborne LIDAR measurements of a forest patcMgfhégare likely
indistinguishable from those measurements of a forest patch dflg2@i*. This is because the
uncertainty of the measurementsé AGB error for eac
spaceborne SAR, the empirical models were so weak that an assessment of AGB bin error was unrealistic.

It is likely that inferred AGB derived from circulalots 10- ~ 30m in radius are insufficient for

establishing relationships with backscatter from ALOS PALSAR. Larger plots, oriented perpendicular to
the sensorés view angle may produce better relati
requirenent for SARspecific field plot design precludes the use of the wealth of ground data available.
Significant scatter is also evident in the relationship of spaceborne LiDAR withdéeied AGB, which

may be due partially to plots size, and may incréasdinal uncertainty of predicted AGB. However, the

issue of plot size was likely not as problematic as it was with SAR data, because the technique of

sampling a small portion of the overall LiDAR footprint was facilitated by the selection of plotsditet
representative of the larger GLAS footprint. The extent to which plot size affected regression scatter was

not explored.

2.5.2.Implications forUnderstanding TTE egetatiorStructureChange

Subtle changes in vegetation structure in and aroundftBe dcross broad scales, can have
varying local and regional effectisoranty & Goetz, 2012Pearson et al., 2013; Sveinbjornsson et al.,
2002) Changes in vegetation structure, such as AGB, along the northern edge of the boreal forest can
alter the way the land surface amplifies or dampens ongoing changes to (lorae et al., 1995;
Callaghan, Werkman, & Crawford, 2002B)Vith the lack of sensitivity of spaceborne LiDAR &WR
to subtle changes in biomass reported above, it is difficult to obtain a synoptic perspective of such
changes, with these instruments alone, across a biome boundary such as the TTE that has begun showing
spatially variable changes in vegetation streee(Bonan et al., 1992; Elmendorf et al., 2012; M. Harsch

et al., 2009; Hofgaard & Harper, 2011lHowever, the extent to which this measurement error limits the
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ability to provide a synoptic perspective for discerning differences in ecologically significant vegetation
patterns, or forms, along a biome boundarflux such as the TTE remains in question.

To better understand spatial difference in TTE vegetation structure, the error and error uncertainty
of vegetation structure measurements, specifically AGB, across low biomass boreal forest gradients need
to bereduced significantly. If this is accomplished by increasing plot size and averaging an increasing
number of remote sensing measurements, then the ability to discern site level characteristics from space is
not likely. Sensors designed primarily to rea@ vegetation structure at the plot scale would likely
reduce the uncertainty of AGB measurements in general, and may improve our understanding of subtle
changes in vegetation in the high northern latitudes whose cumulative effect on ecosystem dyagmics m

have resounding broad scale effects.

2.5.3.Limitations of AGBUncertaintyEstimates

These error and uncertainty figures need to be put into context in terms of their limitations and
their use for evaluating the efficacy of spacebaneasurements of subtle differences in vegetation
structure in a region where such differences can have varying and dramatic local and regional effects on
climate. These limitations arise from the use of RMSE as a measure of overall error and errontyncerta
the empirical models relating ground reference to sensor data, and the statistical approaches for assessing
error uncertainty.

It is necessary to acknowledge that the RMSE does not completely characterize the error of
empirically modeled AGB becauset doesnét account for plot size,
error(Zolkos et al., 2010) First, the size of the plots used to gather ground reference data can have
significant influence on reference AGB values, whereby larger ground plots will decrease both the
relative error of remote sensing predictions of AGB as well as the effectregistration errors between
the plot and the remote sensing ddia@zer et al., 2011; Mascaro et al., 201T)he plots used in this
study were cancident with LIDAR shots, however the plots used to sample the spaceborne GLAS

LiDAR represented only a subset {18m radius from the GPRI8cated dotprint center) of the entire
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GLAS footprint (~32m radius). In Aurskog, Norway, the field measurements were not coincident with
GLAS measurements, but instead we related to ALS data, which was also acquired over GLAS footprints.
For these sites, thereewe two models involved, one relating ground measurements to ALS, and another
relating ALS to GLAS. Furthermore, the size of the plots affected the extraction of coincident spaceborne
SAR data. Pixels providing the SAR measurement for a plot were extrathin a 60m buffer of the

footprint centroid to acquire sufficient pixels to compute a mean SAR metric value in and around the
location of the plot.

This leads into a second limitation of the RMSE metric, which is its inability to account for poor
geolocation. Errors can arise when pixels are poorlymgéerenced and do not represent, for example,
the SAR backscatter from within the plot. A study examining SAR data exclusively would use plots that
are more easily linked to the SAR backscatter measemtgAhmed et al., 2013) The poor empirical
models of both the spaceborne SAR metrics lend credence to the problematic relationship of plot AGB
measurements and SAR backscatter, and decrease the reliabiigyAEB error assessments made for
ALOS PALSAR.

There are three issues with the empirical models relating to the uncertainty estimates that warrant
mention. The first pertains to the single variable models used for each sensor. These models were used
as a way of examining a fundamental relationshipvéen remote sensing metrics and ground reference.
This study intentionally avoided evaluations and comparisons of a variety of empirical models for a given
sensor. If this were the case, a multiple variable regression tree approach such as thaRamhame
Forest method would likely have produced better models, particularly if data from multiple sensors were
combined(Hyde et al., 2006; Kellndorfet al., 2010; Montesano et al., 2013; G. Sun et al., 2011)

Rather, single variable models were used to simplify the analysis, which comes at the expense of model
optimization, but allows for error to be directed attributed to a specific metric amé allese errors to

be compared between metrics. As such, the uncertainty we report may represent the upper bound of AGB
error and error uncertainty across the gradient, which may be reduced with other prediction methods and
additional variables. Secondnpirical models built from lognormal relationships require a correction
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factor to account for the error associated with the asisformation of the regression coefficients. A
correction should be applied to the mededdicted AGB that has been bacansformed from natural log
units(Baskerville, 1972; Flewelling & Pienaar, 198However, this correction resulted in model RMSEs
much larger than those derived from the uncorrected npyddicted AGB, essentially more severelgan
unrealistically penalizing the spaceborne models with the larger RMSEs. Thereforgrabatirmation
corrections were not applied. Third, the form of the empirical model relating AGB to remote sensing
metrics may not be the most appropriate for tliaga. This may be particularly true for the spaceborne
SAR models.

Finally, uncertainty of the RMSE within certain AGB intervals was assessed based on a very low
number of samples within each bin. This was a problem particularly for the airbornaendateas
mitigated slightly by using AGB bins of 20g-ha* as opposed to bins half that size. Nevertheless,
samples still remained small (n < 15). In these cases the RMSE, which has a biased influence on those
datapoints further from the regression lioan become large because outliers within a small sample will
tend to have undue influence on estimates of overall error. This inflates error estimates and was likely
responsible for both the spikes in error estimates and the broad uncertainty estioattédseaerror
trends for airborne metrics. Further mor e, boot s

with very small sample sizes.

2.6.Conclusions

We examined the uncertainty of LIDAR and SAR measurements across a gradient in conife
dominant borealike forest structure based on empirical models of LIDAR and SAR metrics with inferred
AGB from ground measurements. The empirical models from airborne data showed strong relationships,
explaining 6889% of overall variation. Models f@paceborne LIDAR were weaker because of
significant scatter across the modeled range while models for spaceborne SAR explained less than 33% of
overall variation. The error and error uncertainty measurements of AGB across a statistical AGB gradient

from 0-100Mg-ha* show that the uncertainty of both airborne and spaceborne data changes across a
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boreatlike forest gradient. Therrors ofairborne and spaceborbd®AR andairborneSAR metrics

showa general trend of reduced relative errors as AGB maggstindrease, particularly fromii060

Mg-ha'. Empirical models relating spaceborne metrics to AGB atichates of spaceborhéDAR error
uncertainty reinforce the difficulty of characterizing differences in AGB with current spaceborne sensors

particulaty below 80Mg-ha" with less than 5000% error.
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Chapter 3TheUncertainty ofBiomassEstimates fronModeled

ICESat2 ReturnsAcross éBorealForestGradient

3.1. Abstract

The Forest Light (FLIGHT) radiativieansfer model was used to examine the uncertainty of
vegetation structure meas ur2photondcosnting light deteMlidndddd s
ranging (LiDAR) instrument across a synthetic Ldarest gradient in the taigandra ecotone. The
simulations demonstrate how measurements from the planned spaceborne mission, which differ from
those of previous LiDAR systems, may perform across a boreal forest-foreshstructure gradient in
globally important ecological region of northern Sibe&e used a modified version of FLIGHT to
simulate the acquisition parameters of ICESaModeled returns were analyzed from collections of
sequential footprints along LiDAR tracks (liscales) of lengths ranging from 20mM®0m. These link
scales tragrsed synthetic forest stands that were initialized with parameters drawn from field surveys in
Siberian Larix forests. LIDAR returns from vegetation were compiled for 100 simulated LiDAR
collections for each 10 Mg-Hanterval in the 0 100 Mg-h&' above-ground biomass density (AGB)
forest gradient. Canopy height metrics were computed and AGB was inferred from empirical models.
The root mean square error (RMSE) and RMSE uncertainty associated with the distribution of inferred
AGB within each AGB ingrval across the gradient was examined.

Simulation results of the bright daylight and low vegetation reflectivity conditions for collecting
photon counting LIiDAR with no topographic relief show th#& fathotons are returned for 79988% of
LiDAR shots. $gnal photons account for ~67% of all LIDAR returns, while ~50% of shots result in 1
signal photon returned. The proportion of these signal photon returns do not differ significantly (p>0.05)
for AGB intervals > 20 Mg-Ha The 50m linkscale approximaethe finest horizontal resolution

(length) at which photon counting LiDAR collection provides strong model fits and minimizes forest
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structure uncertainty in the synthettiarix stands. At this linkscale AGB > 20 Mg-hahas AGB error
from 20- 50% at he 95% confidence level. These results suggest that the theoretical sensitivity of
ICESat2 photon counting LIDAR measurements alone lack the ability to consistently discern differences

in inferred AGB at 10 Mg-Haintervals in sparse forests characttici of the taigaundra ecotone.

3.2. Introduction

3.2.1. GlobaRelevance of th&aigaTundraEcotone

At the northern edge of the boreal forest in the taigara ecotone (TTE), vegetation cover and
structure is changin@Elmendorf et al., 2012; Epstein, MyeBsnith, & Walker, 2013; V. Kharuk et al.,
2013b; MyersSmith et al., 2011; Ropars & Boudreau, 201Phese changes can be subtle yet occur
across broad scales, and can alter the magdménd direction of biordevel and continental scale
feedbacks to climat@Bonan, 2008; Bonfils et al., 2012h@pin, 2000; 2005; Lawrence & Swenson,
2011; Loranty et al., 2011; Loranty & Goetz, 2012; Loranty, Berner, Goetz, Jin, & Randerson, 2013;
Myers-Smith et al., 2011; Pearson et al., 2013; Swann et al., 2010)

Broadscale, but spatially discontinuous aretdrogeneous, changes in forest structure are
expected in northern Siberia, where the TTE reaches its nortiesnlimit extending above 72°N
(Bondarev, 1997) At specific sites in the TTE canopy closure and expansibarofin tundra have
been observefl/. |. Kharuk et al., 2006) Evidence shows that dareedle conifers have begun moving
into Larix forests and woodland¥. |. Kharuk et al., 2005)Observed at broasicales, the patterns
formed by the smaller pletcale changeevi et al., 2008; Elmendorf et al., 2012; Forbes et al., 2010;
M. Harsch et al., 2009; Mazepa & Devi, 2007; My8rsith et al., 2011)lemonstrate their overall
magnitude, uniformity, spatial characteristics and links with other landscape charactanisissaa
biome. Such characteristics include the extent of continuous permafrost, which across northern Siberia
influences the distribution of vegetatifidoyd et al., 2011; Schulze et al., 2012; Sugimoto et al., 2002;
Tchebakova et al., 2009; N. Zhang et al., 20TMhe strength and timing of a climate feedback from

permafrostboundcarbon is a function of vegetation struct(iEpstein et al., 2004; Jorgenson et al., 2010;
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Lawrence & Swenson, 2011; Schaefer et al., 20Mddel projections of this feedback to climate,
accounting for vegetation characteristics, suggest a central role for high northern latitude vegetation
structure in determining the magnitude of changes to the global carbor{Sgslctefer et al., 2011)

These subtle changes in vegetation structure and patterns in the high rafitueles across
broad scales and acute climate changes in northern Siberia highlight the need for both synoptic and
spatially detailed remote monitoring of vegetation. Furthermore, the possibility that subtle changes in
vegetation structure may signidictly alter climate feedbacks warrants improved characterization of how
uncertainty in vegetation measurements varies with extent and structure, particularly in theassparse

forest gradients of the TTE where noniform vegetation changes may be cogueg.

3.2.2. ForesS8tructure inNorthern Siberia

Forest stands within the TTE of northern Siberia have ansivey that is often
exclusivelyLarix, are sparse and short in stature, and form the northern linoitest fvegetation
(Abaimov, 2009) Stand structure in this region is heavily influenced byptieeence of permafrost.
Larix stands sampled along the Kotuykan River in 2008 at flat or gently sloping north and south facing
slopes show that >90% of trees are < 10m in he{ght{haruk et al., 2013bhunpublished data)Mean
tree heights ofarix gmeliniigenerally do not exceed ~12m for stands underlain with continuous
permafrost and varying active layer depf@sawa & Kajimoto, 2009; Usoltsev, Koltunova, Kajimoto,
Osawa, & KOIKE, 2002) For these stands, the maximum abgreund biomass density (AGB) is
approximately 100g-ha’. This depends on stand age, tree density and local siti¢icosgdand AGB
potential generally decreases from south to north, following a latitudinal gréOemiva & Kajimoto,

2009)

3.2.3. LIDARRemoteSensing ofVegetation
Light detection and ranging (LIiDAR) has becowidely used for measuring and monitoring
vegetation characteristics because of its potential sensitivity to subtle vegetation structural differences

(Wasser, Day, Chasmer, & Taylor, 2013a; Whitehurst, Swatantran, Blair, Hofton, &&8ul2013)

35



and its availability on platforms that have sampled across a range of(stdleison et a].2009; Naesset
& Nelson, 2007) LIDAR sensors are often deployed as airborne systems ((Bl&r et al., 1999)G-
LiHT; (Cook et al., 2013)but have also collected data globally from space (ICERAS; (Abshire et
al., 2005). Satellitebased LiDAR collections offer consistent, synogample measurements of surface
characteristics across broad scales. While the onhflfieg satellitebased LiDAR instrument, to date,
was designed primarily to measure ice, ICESBAS has been used in concert with passive optical
satellite data tprovide regionaglobal scale estimates of timber volume, vegetation carbon density,
aboveground biomass density, and vegetation hgi@htcini, Laporte, & Goetz, 2008; M. Aefsky,
2010; Los et al., 2012; Neigh, Nelson, Ranson, Margolis, et al., 2013b; R. Nelson et al., 2009; Simard,
Pinto, & Fisher, 2011) These measurements have been made despite GLAS footprints beB@m-50
diameter, spaced ~170m along track (edieg to 86° north and south), and covering only a small
fraction of the vegetated land surface. The accuracy of vegetation height measurements from ICESat
GLAS vary depending on a number of factors including vegetation type, slope and measurement scale,
and can range from ~3im12m.

LiDAR sensors vary in how they measure vegetation. Waveform (i.e.;lpulsed) LIDAR
sensors digitize the vertical distribution of vegetation structure within a footprint by recording the total
energy returned from a sirgtransmitted pulse for fixed vertical bins. Discrete return LIDAR provides
~3-5 returns for each LIDAR pulse based upon the intensity of returned dBsagys, Hudak, Faux, &
Smith, 2009) Recently, micropulse (photon counting) LIiDAR technology has emerged as a means for
remote sensing of vegetation structure. For vegetation, this techiryiédgds point clouds that represent
vegetation height measurements that are derived from individual photon returns collected from many low
energy LiDAR pulses in rapid successibterzfeld et al., 2012) These photon returns can be spatially
aggregated to create histograms ofuesical distribution of returns for a given area, similar to data
provided by a Li DAR wavefor m. Each sensoroés abil
on multiple factors including sensor design, data collection schemes (timing andczatateristics of
the measurement), and vegetation characteristics (type, density, health).
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The spaceborne LIDAR on the ICESasatellite, scheduled to launch no earlier than 2017, will
feature a multipldbeam (a combination of stronger and weaker Is¢gmoton counting LIDAR
instrument (ATLAS). The initial data collection scheme for a given beam on the ATLAS sensor noted
that photons will be collected for a 10m diameter footprint at 70cm dfank spacingAbdalati et al.,
2010) however updated schemes have increased the footprint size. The exact position of each photon
from within the footprint wild.l not be known. For
measurement will dinsufficient for characterizing vertical vegetation structure within that footprint and
for inferring vertical vegetation characteristics outside the footprint, particularly as vegetation
heterogeneity increases. LiDAR collection schemes for charantewarious types of forest stands (e.g.,
the way in which photon returns are aggregated spatially) may help improve vegetation structure
measurements as well as improve understanding of how these measurements change with vegetation
characteristics.

Giventhe sparse density of trees in TTE forests, the photon returns within a single footprint are
unlikely to come from a tree, particularly the highest portion of the canopy. This issue eEangiing
the top portion of forest canopies is common for LiD@Rasurement of forest structifkaaartinen et al.,
2012; R. Nelson, Krabill, & Tonelli, 1988; Naesset, 201Tpllections of sequential footprints aloag
LiDAR track (i.e, a linkscale) will provide the best opportunity for measuring forest vegetation canopy
and forest understory heights, inferring AGB, and assessing how these characteristics vary spatially
across a heterogeneous landscape such as the Uiiderstanding these characteristics can help assess
the spatial details and regional differences in tree recruitment in the TTE, which can have affects on
climate and biodiversit{Bonan, 2008; Hofgaard et al., 2018t vary according to sca{Bonfils et al.,
2012; Lawrence & Swenson, 2011)

LiDAR has been shown to vary in the uncertairftjtomeasurements across feire
gradientyMontesano, Nelson, Dubayah, Sun, Cook, et al., 201Ra¢se varying factors may lead to
differing measurement errors among LiDAR sensors and across vegetation structure gradients. It is
important to quantify the measurement errors (uncertainty) of current sensors, as well to provide advance
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notice of potential errors from those sensors planned for theerearin order to evaluate the limits in

the ability to synoptically characteribgophysically relevant changes in vegetation in the near future.

3.2.4. The FLIGHTModel

Radiative transfer models are used in terrestrial remote sensing as tools for examining the
physical interaction of electromagnetic radiation with earth surface ésat@uch models have been used
demonstrate how LiDAR signals vary with the vertical structure of veget@metz et al., 2006; Ni
Meister, Jupp, & Dubayah, 2001; G. Sun &riRon, 2000) In the context of this study, these models
help explore the theoretical sensitivity of photon counting LIDAR from the planned ICESHLAS
instrument to sparse forests in the TTE.

The Forest Light radiative transfer model (FLIGHT) ustste Carlo simulation of light
transport for the optical domafilorth, 1996)o model the interaction of LiDARith forested surfaces.
Evaluation of solar bidirectional reflectance afdAR backscatter retroeflectance is achieved by
simulation of the phain path within a canopy representation, and simulation of the chain of scattering
events incurred by a photon in its path from the source to the receiver or to its absorption, including
multiple scattering between canopy elements and the ground surface.

The model describes tree crowns as conical or elliptical shells using specified diméftsgons.
model taks as input the portional composition of foliage, branch and shoot/senescent material within
crowns, leaf angle distributipand leaf area. The spteal reflectance and transmittance properties of the
canopy components and background surface are also specified. Forest surfaces are generated statistically
using mean conditions related to tree cover, tree type, position and size, or can be inititilizetee
stem map detailing these attributes for each tree. The effect of slope is incorporated into the model using
a planar surface with defined slope angle.

This model has been adapted to simulate satellite waveform LIDAR colle@Worth, Rosette,
Suarez, & Los, 201(nd has been used to examine the uncertainty of these data for vegetation structure

and topographyRosette, North, Suarez, & Los, 2010) has alsdeen used to examine the sensitivity of
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LiDAR to site-specific conditions such as wgraphy, canopy and ground reflectafResette et al.,
2013) For LIiDAR simulation, the model calculates the probability distribution of returrpbbton
emitted from the laser as a function of time, and has waatated by comparinmodel simulationsvith
field and satellite observatioslorton et al., 2014; North et al., 2018)d through comparisons with
other radiativaransfer model$§Widlowski et al., 2007) Forthe simulatian of individual photon returns
for photon counting LIiDAR, the expected energy distribution is quantized, and stochastic Poisson
sampling is used to calculate the expected number
due to photons originating from solar scattering from land and atmosphere is calculated, and included
implicitly within the simulation by increasingnergy within each binThe LIDAR sensor is characterized
using wavelength(s), pulse duration, emitted energy per,poftantaneous field of vievand sensor
6 d e a d Gootpiinhdimensions are determined using sensor altitude, beam divergenanang
geometry. Atmospheric effects of signal delay or pulse broadening are not represented, however
atmospheric transmittance is accounted for, giving attenuation of the signal by fixed gases and aerosols
using coefficients derived frorhé 6Sradiative transfer mod€Vermote, Tanré, Deuze, Herma&
Morcette, 1997)

The goal of this study was to examine the error and error uncertainty of AGB derived from
modeled ICESa® forest height returns from synthetiarix stands in the TTE across multiple link
scales. For this work, a recent versiéithe FLIGHT model has been adapted to stochastically simulate
photon counting LIiDAR ranging measurements representative of those that will be acquired by the
ATLAS instrument on the ICES& satellite. FLIGHT is used to evaluate the number of simulaigght
measurements from photon counting LiDAR shots that are available for sparsdikerfeasts, the
uncertainty of derived AGB from simulated ICESadlata across a low biomass boreal forest gradient,
and the difference in the AGB uncertainty betw@ésB intervals across this gradient. Finally, this study

examines the linlscales at which AGB uncertainty is minimized for sparse forests in the TTE.
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3.3. Methods

3.3.1. Overview

The first portion of this work involved using the radiative transfer mtgimulate photon
counting LiDAR returns foLarix stands, and to derive stand heights across variousdalkes. To
simulate ICESa® LiDAR returns for northern Siberlaarix forest stands within AGB intervals across a
forest to noAorest gradient, HGHT was initialized with forest parameters and ICES&TLAS
instrument parameters (as of November 2012). The first part of the study, in which these returns were
simulated, involved three central steps. The first step focused on preparing theomodebith ATLAS
parameters and for stochastic simulation of photon transport. The second step involved providing
FLIGHT with averagd.arix stand parameters. The third step required deriving an algorithm to determine
canopy height.

The second part of tregudy required empirical modeling and an uncertainty analysis. The means
from the simulated return heights were calculated for each AGB interval and an empirical model was fit
relating each interval 6s mean r eudeuFknally kimdlagght s t o
heights were converted to AGB and the error (RMSE) and error uncertainty (RMSE 95% confidence

interval) of this derived AGB, across all lidcales, was computed.

3.3.2. ICESaR ATLAS Parameters for FLIGHT

FLIGHT was prepared withlCESat2 ATLAS instrument parameters. Tal3d summarizes the
parameters used by FLIGHT to simulate photon transport from the planned ATLAS instrument and Table
3-2 reports the solar and atmospheric parameters (including the scattering mode) useelfor mod
simulations with the sensor at nadir. The ATLAS parameters were proposed as of August 2012 and,
though subject to change, provided the basis for model assumptions regarding instrument design. Key
parameters include the laser wavelength (532nm), siee faotprint diameter (10m), laser pulse energy

(164eJ) and the laser footprint spacing (0.#m1.42857ootprint centerpointsn™).
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FLI GHT was opecauretdi nqq mepded ofnor stochastic si

This mode of the model pvales a different set of simulated returns for each-dicéde across a forest

stand of given set of parameters. For each simulated LIiDAR shot (i{X,Ygdocation ), returned

photon heights are recorded from features within the synthetic forest gtafigtribution of simulated

heights recorded by combining returns for a series of footprints located at 0.7m intervals was compiled by

running the model 100 times for each AGB interval for a givenditdde. This procedure was replicated

at 10m interals for link-scales ranging from 20in100m. This stochastic process was intended to

demonstrate the variability of forest structure measurements from photon counting LiDAR across an

AGB gradient divided into 1Mg-ha" intervals collected across a rarafdink-scales.

Table 3-1. Summary of the parameters used by FLIGHT to simulate photon transport from the

planned ATLAS instrument.
Parameter

Value

Operational altitude (m)
Wavelength (nm)

Telescope diameter (m)
Laser pul se ener
Laser footprint diameter (m) (fje
Telescope field
Detector efficiency@ 532nm
Swath width(km)

Beam divergence (rad)

Pulse duration (ns)

Samples m*

496000
532
0.8
164
10
83.3 (40m)
15%
+3
5.04032E06
0.375
1.42857

Table 3-2. Solar andatmosphere parameters for model simulations with sensor at nadir.

Parameter Value
Irradiance (top of atmosphere) @ 532w m?) 1.6
Scattering mode total
Atmospheric transmittance {fay, nadir) 0.7
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3.3.3. Forest tandParameters for FLIGHT

Forest parameters were input into FLIGHT to simulate returns lflanx stands with no
topographic relief in northern Siberia. FLIGHT requires information on a number of forest stand
variables in order to simulate photon transport from and through aypartiype of vegetation. Forests
of northern Siberia are almost exclusivebyrix, so forest variables input to FLIGHT were either specific
to this forest type, or general to conifer trees where specific parameters were not available. The
simulations wee run for parameters from theoretical stands within specified AGB intervals. Because of
this, the stand parameters (described below) that provided FLIGHT with a set of average forest structure
conditions were compiled to statistically represent such AEBvals.

We collected_arix forest stand parameters for theoretical stands where AGB ranged-tdm 0
Mg-ha' to 90100Mg-ha'. TheLarix stand parameters were derived from data reported in recent
literature and directly from field measurement&amix forests in central and northern Siberia in the
summers of 2007, 2008 and 2Q2exeyev & Birdsey, 1998; Bjarnadottir, Inghammar, Brinker, &
Sigurdsson, 2007; lida et al., 2009; H. Kobayashi, Delbart, Suzuki, & Kushida, 2010; Montesano, Nelson,
Dubayah, Sun, Cook, et al., 2014a; Neigh, Nelson, Ranson, Margolis, et al., 2013bg0&aimaoto,

2009; Ueyama et al., 2010; Xue et al., 201The AGB of these stands was calculated usibgrix-

specific allometric modgJA. Bondarev, unpublished data; Montesano €2@14:

AGB=0.00001* ht* (3.24* dblf + 6.601* dbh+ 3.361)* z* S 1)

where, AGB = aboveground biomass densiti¥g-ha’)
S= stem density (numbéra®)

ht = mean tree height (m)

dbh= mean tree diameter (cm) at breast height (1.3m)

z = timber volume to phytomass scale factor (0.795 for mature, northernlJaaigasp)
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Stand parameters that were input to FLIGHT were also input to the AGB model, which allowed
FLIGHT output to be linked to specific AGB intervals. TaBl8 summarizes the forest parameters used.
Figure3-1 shows how the FLIGHT input was colied from the coupling of direct field measurements,
allometrically-derived metrics, and values gleaned from literaturkasix stands. The plots in Figuge

2 show how forest input forest stand parameters for FLIGHT varied according to AGB bin.

Table 3-3. Summary of the forest stand parameters used for model simulations. Parameters are
derived from unpublished field data and previous studies iLarix forests(Bjarnadottir et al., 2007;
lida et al., 2009; H. Kobayashi, Suzuki, & Kobayashi, 2007; Wolf et al., 2011; Xue et al., 2Q11)

Parameter Value
# of photon trajectories 20000
Plant Area Index (%) determined by AGB binLAI=1.6
Proportion of vegtation(leaf, shoot, bark) 0.2,0,0.8
Leafangledistribution generalizedor conifer
Soil roughness 0 (smooth surface)
Leaf size/clumping 0.05(clumping within conifers)
Fractional cover of crowns (%) determined by AGB binLAI=1.6
Slope (degrees) 0
Crown shape conical
Crowndimensions (m)drown radius, height of crown) | determined by AGB bin
Heightto first branch (m) 2.875
DBH mean for scene (cm) determined by AGB bin
Leaf reflectance, transmittance @ 532nm 10%, 6.5%
Bark reflectance @ 532nm 8%
Soil reflectance @32nm 8%
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Figure 3-1. Diagram showing the relationship between initial plotevel data and the input
FLIGHT parameters used to simulate forest stands for AGB intervals from 10.00 Mg-ha.

Figure 3-2. Plots showing how FLIGHT input forest stand parameters varied for each AGB bin.
DBH = diameter at breast height (1.3m); FCC = fractional crown cover; PAI = plant area index.
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