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FOREWORD

legendre Polynomials appear for the first time in the work of
Legendre in 1784 in relation to problems of potential and of celestial
mechanics. A mors systematic exposition of theéir most elsmentary
properties appears in Legendre's treatise on calculuse The poly-
nomials may be defined by means of a generating function, an explicit
form, a differential equation, an orthogonality property, an nth
differential coefficient, a recurrence relation, several definite
integrals, or a determinant.

In this paper, the historical approach is taken and the
generating function is the point of departure. All the other
definitions are made to depend on the original ons. Some elementary
properties of the polynomials are first deriveds a_nd the fundamental
bases of the application of Legendre Polynomials to mechanical
quadrature givene The significance of the Legendre differential
equation and its relation to the general theory of linear differ-
ential equations of the second order is briefly considered. Some
attention is given to the various definite integral representations
of the polynomialse

One of the more important phases of this paper is an ex-
position of most of the significant properties of the Legendre Poly-
nomialse This includes a discussion of some definite integrals which
involve the polynomials in the integrande An indication is given of
some applications of the polynomials to combinatory analysis and
algebréic theory. Various algebraic préperties of the polynomials are

displayed. A number theoretic property of their coefficients is given,




and the discriminant and its properties exhibited. The zeros are con-
sidered in some detail. Bounds are given for each zéro, and the proper-
ties of linear combinatioﬁs of the polynomials discussede Censiderable
attention is devoted to various asymptotic representations of the poly-
nomials, and the bohavior of the polynomials in the neighborhood of 1
and =1 for n large is treated alsoe Through the latter, a relation

is derived beiween Legendre Polynomials and Besgsel functiong,

The asymptotic expansions play an important part in the discussioen
of Legendre Series. The prime question of sufficient conditions for
convergencg of tbe séries is ancwered.completely irn one case and other
results are indicatede Interpolation by finite Legendre sums is also
congidered and Gauss quadrature is discussed in less elementary fashion.
Important continued fraction relations form the basis of the extension to
generzl mechanical quadraturee

Finally, an attempt has been made to present developments historically
without creating disjunction in a logicel and systematic expositions The
bibliegraphy is of independent value and represents some of the material
the author has collected in his work as research assistant to a committee
of the National Reeearch Council, forming a bibliography on Orthogonsal

Pelynomial s,




SECTION I
HISTORICAL INTRODUCTION

A considerable part of the elementary theory of celestial mech-
anics was propounded in the years between the birth of Newton and the
death of Laplacee One of the important phasés of the basic theory
waé a consideration of the figures of the planetse Sir Isasc Newton
wae among the first to consider a mathematical theory of the physical
causes of the figures of the planetse In the course of his invest-
igations, he was forced to make several restrictive assumptions. He
supposed that at "creation® the earth and the planets were in a fluid
state, and that they now preserve the figure they were then given.

By this hypothesis, the problem of the figure of the planets was
reduced to determining the figure necessary for the equilibrium of
a fluid masse

Few mathematicians of the 17th and 18th century who followed
Newton went beyond his hypotheses, and the problem in a limited
sengse was eventually solvedes For, they succeeded in showing that a
mass revolving about an axis and consisting of fluids of one or
more densities will preserve its figure only if it has the form of
an ellipticel spheroid of revolution oblate at the polese

However, Newton's hypotheses are not realistic; and D'Aleﬁbert
attempted to generalize the problem to the consideration of attractions
of non-elliptical spheroidse Because the theory of the figure of the
planets was closely associated with the theory of attractions of bodies,
he tried to investigate the attraction of a body of any proposed figure,

and of strata varying in their densities according to any given laws




His results, complex and limited, still left the problem virtuslly
unsolvede And it was in this form that the problem was handed on to
the mathematicians of the latter part of the eighteentk centurye.

The principel object, then, wes to investigate the figure,
which a fluid, consisting of portions varying in demsity according te amy:
given law, would assume, when every particle is acted upon by the at-
traction of every other particle and by a centrifugal force arising from
a rotary motione To what extent this may have been the original cone
dition of the earth was not at issue, but it was made tbe foundation of
most mathematical calculationse It was in these calculations that the
Legendre Polynomiazls and the so-called Laplace Coefficients were first
introducede

While there is considerable question concerning the prioerity of
Legendre or Laplaceé in the introduction of these functions, and even
perhaps concerning the priority in the solution of the problem of at-
tractions, it is of some interest to examine first the major difficulties
facing the mathematicians of 1780 investigating the theory of the figure
of the planetse

Whatever the permanent configuration of a fluid covering a solid
body, that configuration will depend on the gravity at the surface. At
the same time, the form of the surface determines the gravity, which is
the combined effect of the attractions of all the particles of the bodye.
That the figure of the surface is in a sense both a datum and guagesitum
of the problem constitutes a difficultye An exprassion must be found
for the intensity of the attractive force which will be related to the

form of the attracting body and shall yet be sufficiently simple.




In Laplace®s "Praite de Mébanique Céleste" appears a revision of hie selution
-of the probleme He concerns himself with the attractions of spheroids in gener-
al and especially those which differ only elightly from spheres. He succeeds
in deducing a relation between the radius of the sphercid and a series ex-
prossion for the attractive force on a particle without, on, or within the
surfacee This derivation is comparativeély simple, when the complexities of

the problem are considered.

Laplace begins with a potentiaml function, from which the attractive
force in any desired direction can be obtained by differentiation. The
potential function is the sum of all the particle-masses of the attracting
body, divided by their respective distances from the attracted particle.

He expands this function into a series of descending or ascending powers
of the distance of the attracted particle from the center of the spheroid,
according as the particle is without or within the surface. His next

step is to determine the coefficients of the terms of this expansione.

First of all, Laplace proves that every one of thg coefficients
satisfiea a partial differential equation, which was first given by him
and which is the key to his work on the theory of attractions and the
figure of the planetse This equation is not integrated, but, by the use
of its properties, the problem of atiraction is simplifiede Laplace .
next states a theorem he declares true at the purface of all nearly
spherical spheroidss This theorem is stated without prodf; and it holds,
as later writers showed, only for a restricted class of spheroidse The
theorem declares that the radii of all nearly spherical spheroids can be
developed into series, every term of which would satisfy the Laplace

differential equation. On the basis of this, he deduces the value of an

expression, which is the sum, Z_ A3Pj, where the A's are known and the P's

are the desired coefficients. This value is found to be proportional to



the difference between that radius e¢f .the spherocid drawn through the
attracted particle and +the radius of the sphere nearly equal to the
spheroide ThHus, he expresses the radius of the spheroid and the series
for the attractive force by means of the same functionse ¥or, in order
to find the coefficients sought, we have only to develop the difference between
that radius of theé spheroid drawn through the attracted particle and the
radius of the aphere nearly equal to the spheroid. Thus, he expresses the
radius of the sphere in- - a series of terms, every one of which will
satiofy the pafti&l differential equatione Laplace not only gives a
method for computing these temms, but he alsp attempts to prove that the
series is uniquee |

Thus, the functions which serve as coefficients of the expansion
play an extremely important role in the work of Laplace. These functions
are the Laplace Coefficients; and it is now a question of observing in
greater detail the manner in which they are used in the theory of at-
tractions, particularly with regard to the assignment of priority in
their introductione '

It is essential to discuss in some length the chronology of

several memoirs of Legendre and Laplae§§

The order in which the content
of these memoirs became the common knowledge of Legendre and Laplace can

. 2
easily be shown te be the following:

ae Legendre - Recherches sur l'attraction des Sphéroides homogénes (1784),

be Laplace - Théorie du mouvement et de la figure elliptique des plé.nStis
(1784).

1.) See bibliography for detailed referénces to these workse

2.) 0Only the pertinent memoirs of these men during this peried are
listede There were others which did not involve Legendre Polynomials or
Laplace Coefficients.




¢v. Legendre ~ Recherches sur la figure des planétes (1784)
de Laplace - Thé€orie das: attractions des sPhé;OEdes et de la
figure des planétes (1782)

e. Laplace - Méméire sur la figure de la terre (1783)

fo. Laplace ~ Mémoire sur la théorie de l'anneau de Saturme (1787)

g+ Legendre - Suite des recherches sur la figure des plandtes (1789)

h. Laplace. - Sur quelgues points du systéme du monde (1789).

There are some peculiar circumstances in connection with these

papers which cast refléctions on the character of Laplace. First, it is
to be remarked that papers c, d, e, £, g, h appeared in the "Mémoires
de 1l'Académie royale des Sciences de Paris', Legendre's first paper,
a. above, appeared in the "iémoires de Mathematiques et de Physique,
preséntées 3 1'Académie royale des Sciences pars divers Savans'.
Laplace's first paper, b. above, appeared as a tract privately printed.
Now, when a volume of the "Paris Mémoires" is of a specified year, it
is usu&l that it contain memoirs written before, during and even after
the specified year. It will appear, therefore, that Laplace was
familiar with the work of Legendre and made use of it. Yet, in almost
every instance, he pointedly failed to aCknowledgebthe priority of or
his indebtedness to Legendre. Legendre was sufficiently disturbed by
this to devote sections of his memoirs to reminding the reader of
Laplace's obligations. Thus, Laplace, who later gained for himself a
reputation for remarkable political opportunism in currying favor for
himself with revolutionists and royalty, was as early as 1784 guilty

of intellectual dishonesty.



0ddly enough, Legendre's first paper contains an acknowledgement,
indicating that Laplace had suggested to him that he approach the problem
of attraction through the expansion of the potential function in soriesd A
In his memoir he eeeks the attraction of an ellipsoid on a particle en
the prelongation of one of the axes. He succeeds in establishing that if
the attraction of a so0lid of revolution is known for every exiternal point
which ig on the prolongation of an axis, it is known for every external
pointe His demonstration involves the use of series of hitherto unknown
functionse

Let (r,0) and (r', 8') be the polar coordinates of the attracted
particle and the element of the attracting body respectively. Let ¢=w0—ﬁ'
be the difference of longitudes of the attracted particle and the attract-
ing element. With the density homogeneously unity, the element of attract-
ing mass is r'%sin@'de'dpdar's Thue the potential function, the idea of
Laplace, will l:;eTr o s ,Lnlﬂ;wo'iﬂludn'
(1.1) V= jjo L ﬁj’ﬁ”ﬁ ’
where cosY-cos® cos@'+ dnd® sind! cosde Since Legendre treats the case
of an ellipsoid symmetrical with respect to its equator, the limits of
integration for r' are -s and s, where s is the radius vector of the
s01id corresponding to a colatitude @'« The reciprocal of the denominator
of the integrand, today called the generating function of the Laplace
Coefficients, is now expanded in ascending powers of r'/r, obtaining

T 27T K /1' _/I—_—lf_ R Ida’ ;
(1.2) sz J‘ f *,;T{""X._’: +X, Tt }/J.,wa dé dn
o 0 -3

and the coefficients Xy, Xg,eee, 2re the quantities in which we are

349) ae above P, 421




e ssentially interested?

Legendre proceeds to perform the indicated integration obtaining
an expression for Vy in which the first term is mass/r. First, however,
the X's are discussed in some detail as functions of €, @', f. Here,
for the first time, Legendre displays the remarkable property that if
these functions are integrated with respect to ¥ from O to 2w , the
resulfing function depends only on @ and 6', Wwhich variables are separable,
i.e., the function can be written as the product of a function depending
only on 6 and a function depending only on 8'e The proof of this important
property is by an induction which is of no special intereste However, it
is interesting fo note that, after exhibiting as a special case of the
"Iaplace Coefficients" the functions which we today know as the Legendre
Polynomials of even degree, Legendre becomes interested in these polynom-
ials of themgelves, presenting several properties? After exhibiting a
few polynomials in explicit representation, he shows
(1.3)?Xn(x)#1 for x=1, and ,
(1.4). fo' %%%%%—"*36 = (an +’t)‘f|)+all<)“*'/x

where X,(x) represents the Legendre polynomiel of degree 2n in xe

4,) Neither Legendre nor Laplace were the first to use an expression
gimilar to the reciprocal of the distance between two points as a generating
function of a series., It is unlikely that M. le Chevalier de Louville, who
expanded (p<-2qx-x%)"% in ascending powers of x in his "Sur une difficulté
de Statique", Mems de 1'Ace des Sce de Paris (1722)128-142(p.132), was really
the firste One scarcely dares, as does N, Nielsen in "Sur 1'introduction des
fonctions sphériques dane 1'analyse®, Det Kgle Danske Videnskabernes Selskab,
Mathe=-Fys. Meddelelser 10#5(1929)9pp., attribute to de Louville the intro-
duction of the Legendre Polynomials, for de Louville had no concern with the
coefficients in his expansion and appeared in no way conscious of the fact

that hidden behind his computation was a new function in analysis.

5.) If Yn satisfies F{0- ‘)d;',{',‘}ﬁ—l;,‘;%,mmn)‘(ﬁo, vhere m=cee b, P =w-w'
Yy is the Laplace Coefficient of nth order. Any other function of 8 and w
satisfying the differential equation will be a Laplace function of nth orders
Jf ¥n is a function of the single variable /x » we have the Legendre Poly-

nomial of degree n in}x.




In confirmation of the contention that this paper of Legendre precedes
the work of Laplace is the reference in Laplace's tract of 1784 (b. above)
to the researches of Legendre§ Furthermore, Laplace uses the potential
function expressed in the usual rectangular coordinate system, and is led
in his expansion of the generating function in series to laborious computa=-
tion. The complex form of his result does not prevent him from recoghizing
some properties of the coefficients in the series, but he speaks of the
results as known from the work of Legendre'z

On July 7, 1784, Legendre read his next memoir (c. above) to the Paris
Academye The journal bearing the memoir did not appear until 1787 In the
meantime, a work by Laplace (de above), written after Legendre's lecture,
appeared in the volume of 1782, actually published in 1785 Laplace made
no mention of Legendre; Legendre, peeved, had the editors insert a footnote
to his paper® Here he poimts out that his paper was read before Laplace's
was submitted, that Laplace used his results to develop further the theory
of attractionss Writing of the coefficients obtained from the generating
function, he says: "J'al recours aux prOprieS'bés d"une espece particuli\ere

. 7~
de fonctions rationelles gul ne se sont point encors presentées aux

Analystes"? (emphasis mine)s Again, he refers to his earlier work
{(a.above) as representing the first presentation of these functions. And
so, it seems definitely established that Legendre introduced the "Laplace
Coefficients" and the Legendre Polynomialse

Another remarkable feature of this paper is the evidence of Legendre's
increasing interest in the Laplace Coefficient of one variable, i.s. the

.
Legendre Polynomial. He considers the expansion of —'5(l+211+f) 4':‘,'—’(‘-:zu—+z

6., 7.) be above, }_3096.

84) ce above, p.370.
9.) ibid-p. 371.




in ascending poﬁers of z, obtaining the explicit representation for the
coefficients, the Legendre polynomial of even degree in x, and giving seven
of their propertiess Of these, the following are not found in his earlier
paper}0

(1) fohote = EEESNT, et et e

(1.6) fo'XIMX, dx = o, folefd’* - %;, , wxv)

(1.7) K= ) =g ) (=X ), 's alh Aeal, veegunl, and o (0,0).
(1.8) X/u(x)<! e 0l L]

In addition, in treating a particular case, that of obtaining the equation of

the meridian of the ellipsoid in terms of series of the polynomials, he states
the theorem known today: A given function can be expanded in a series of
Laplace functions in only one way. It is interesting to remark that neither
Legendre nor Laplace were concerned with the convergence properties of the
series they obtained, a difficulty which played a significant part in the
history of the devélopment of the theory of Legendre Polynomials.

Now, the memoir of Laplace which {reated Legendre so unfairly was of
itself epoch-making. In it is contained the basis for the second and fifth
volumes of that tour de force, "Traité de Mé%anique Céleste™, First of all,
Laplace completes the theory of attractions of spheroids terminated by
surfaces of second order, which was the problem of Legendres The work
in this part is new in ifs appréach and simplicitys Secondly, hs considers
the attractions of any spheroids whatever. He makes them depend on a
partial differential equation of the second order, which is the foundation
of all of his researches on the figure of the planets and of the "Mécanique
Céleste™. This equation leads him to some general results on the expression

in sories of the attraction of spheroidse Assuming the spheroids approach

10.) We use {kn(xi} for the Legendre Polynomials of even degree, Xi(x)
being of degree 2i. We use {?n(xﬁ' for the usual Legendre Polynomialse



spheres and combining these results with the partial differemntial equation
which now holds on their surfaces, he arrives at an expression in series of ate
tractions of nearly spherical spheroids of any kind. Ordinarily, very
complicated integration is necessary to arrive at an expréssion of this kind,
but by the method of Laplace the expression is arrived at without any
integration and by a single differentiation. Finally, the results are
applied to obtaining all the theory of tﬁe tigure of the planets and the
gravitational laws on their surfacess The equilibrium of a homogeneous
planet is shown to be possible only if it takes a definite shape. Thus,
for example, the sarth is an ellipsoid of revolution. Because he succeeds
in obtaining all the known results by use of the method, he argues that
there is no loss of generality in {the use of series. In the latter, his
intuition misled him.

As in his tract of 1784, Laplace works, at first at least, in
rectangular coordinates, a poor choice as it will appear. Let (a.b,c)

and (x,y,2) be the coordinates of the attracted particle and of the particle

of mass dM of the spheroid respectively. Then the potential function is

given by
a My

(1.9) V=g O rzs?

and interpreted as

AM

+ly -4+ (@ —o*

(1.10) V :1& e
From this the components of atiraction parallsl to any given direction

can be obtaineds Now, if V.is expanded in series

z 23

M 265 + 2 L RS 2t Doz =y
(1o11) Vs [ S § o L Rt iy 2em iyt 3 @enc2hacs 2t ]
P s, 2 A 4T ™ § (o™« &>+« )

and if the center of attraction is far away, we can consider only the first
. 2, 2
term; thus V:M/(az+b-+c )ni’where M is the mass of the sgpheroid. This

formula is even more exact if the origin of coordinates is taken to be the

center of gravity of the spheroid.
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In space polar coordinates, with

X"—'—Qc—oﬂ.@‘ a = hcoa & tﬂ_M: &LV: EICQEAe‘dLO\MBI
4= Reme caw £ = Ao B Coew f r

%= Osemd zunid ¢ = M Stn b g P= &%Mﬁkaﬂk Fﬂhﬁill %}qﬂhAeéb
R-Vporgees  n=(Ci ks

AT AT AR
- > \ ‘ . \
V becomes ff J PTRTARAL duw' s 6
Lo
° o [ ()LL"D.LR\:C&'J@GMB\-(’W& SAAQ\ C—Q’“—(W—N‘)J—‘r EZ){Z

(1.12)

Letting/y.::cos 8 and making use of some observations on integrals of
linear partial differeuntial equations of second order contained in a

paper of 1779, he derives the now famous Laplace differential equation

2 2V 2V . .
(o13) PEUl L FGe LG
’a)k ]--/M‘L 'bh-”

Assuming the center of attraction to be outside the sphers, he writesll

)

1014‘ — 9_2 O U‘L UV‘ v -
( ) \1——'L+71'_+1,8+...+F_H+
and stows that the Laplace Coefficient Ui sutisfies
~ LO —}&)'3__09_1"] 330‘; '
(1.15) ————F % 22 & JlU4n)Ur =0
+ L=

By comparing Uj with the integral expression for V, he concludes that Ui
is a rational integral function of};, YF;:E Sewd , and VF;IE Ceaw
depending on the nature of the spheroide

In order to determine the values of the U's, he considers again the
generating function -y
(1.18) T= {mn IR Lcon & cpad ¢ 5iob it eonlw-w)] Hﬁ -

showing that T satisfies (1.13)e Expanding T in series of ascénding powers

of R/r,
'E:L
(1.17) T = %" * Q\W%%ZA; ys DA

where the Q's satisfy (1.15) and are rational functions of/u and‘(l—/u} Com (L0 -L1Y) .
If the Q's ars known we can determine Ui by

i+ )
(1019) U;=[J[RT AR Q4w an cie’
The object then becomes to transform (1e16) in such a way that the values

11.) The invalidity of this expansion in the general case will be
treated laters



J o

of the Q's can be easily obtained. There is a slight error in the

original, corrected by Legendrelz

in 1789 and in the "Me/ca.nique Ce/leste",
but the chief argument is unimpairede Essential to the determination of

the Q's are the facts that they satisfy (1.15), that the variables on which

they depend (@ andw) are separable, and that the part which depends onw can
be sxpressged in series of cosines of multiovles of w-w' o An expression
for a general Q is finally given. Thus the U's are determined from (1.18)
and V is given in series of Laplace Coefficients by (1lel4)e
In applying the results to the determination of the figure of the
planets, Laplace for the first time introduces the orthogonality property
of the Laplace Coefficients, which Legendre had previously given (1.186)
for functions of a single variable. In the next papers (eo‘and f. above),
the radii of the sarth and Saturn are given in the form of series of Laplace's

functions., The key di fferential equation (1.13) is given in rectangular

coordinates as
2*V _k?fy TV

— —

(1919) dx” 'Dlt"’)r 2z> 9

and fthe particular form of the equation determined for solids of revolu-
tion and the sphere. The results are in error, and the correction, that
the right member of (1.19) should be—‘fgp or zero according as the particle
is within or without the sphere, was made by Poissonl3° As for Saturn,
Laplace shows that if the ring were circular and perfectly alike in all

its parts, its equilibrium would be unstable. The demonstration involves

the following properiy of Legendre Polynomials.

T 0 (n odd)
(1. 20) j‘?(caoe)ke = oz Cne
o T T (e ave)

which is essentially a generalization of (1.5) given by Legendre.

12.) ge. zbove p. 432.

13.) Poisson, SeD.~-Bull. de la Soci&té Philomathique 3(1812)388,
Hemo de 1'Ac. roy.des Sc. 4o Paris (1823)463



3.

In his memoir of 1789 (ge above), Legendre indicates the roles
played by Laplace angd himself in developing the knowledge of Laplace Coef-

ficients. 14

He finds it necessury to reemphasize the prior date of his
earlier memoir to the work of Laplace (a. and b. above). He points out
that Laplace was the first to treat the Laplace Coefficients in this
memoir published in 1785 { d. above), but these functions were general-
izations of those develoved in Legendre's 1784 memoir (ae ubove). The
extension affected by Laplace consigted in treating as functions of twoe inde-
pendent variables the functions which Legendre had formerly itreated as
functions of one varizble.

Several new properties of the functions are derived in the course of
this memoir. Requiring the value of the potential for any point within
the mass or on its surface, Legendre sets up (1l.12) and expands (1.16)
in powers of R/r or r/R, taking precautions to insure convergence of the
series so obtainede Then he lists the first eight coefficients in this
series and proves again that the variables are separable. In fact, he
gives the first correct and convenient expression for Laplace's nth

coefficient: '
= J'P“(}L) A_'_;?:,(-}.L)sme S8 Coa (w0 —w!)

(. P () Bt + (l:»-H) \
(1e21) Vo= F 9‘ " 3 Pt#)duvaﬁ) .
\h-n)v\tw«»\)(v__u,) /LF T_‘g S 5B Coa 201w -1')
2 _ vyl 42 B »
TR0 () —’—“”}:‘) —-—P'i) §0n 38 1Bl csa 3w )

where Pp is the Legendre Poly®Womial”f degree n. This served o correct
an error in an earlicr memoir of Laplace (de above), in which the terms in
cos m(w-w') were omitted when m+n was odd. Legendre also demonstrates

I
{(1e22) £| T.6OT. 00 dx =0 (v an),

! 2,
(1»23) [, E\‘—Lx) doe = ,E:«l'

140) Ee a.bove De 4‘32&
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Further, he presents the Legendre differentiél squation as a special
case of the Laplace Bqu‘thnls

Laplace in his paper of the sume year (h. above) could make no
addition to the work of Legendre. In fact, Lagrange's "Mécanique
Analytique", which appeared about the sane time, went back to the earliest
work of Legendre for its approach to the problem of ellipsoidal potentials.
This is even more marked in a later memoir of Lagrange].'6 In this latter,
after reaffirming (1e19) and (1.10), letting a=psinAcospu, b=psinksinu,
sin c==fcos);in (1.10) and expanding the radical in increasing powers
of 1/% , he states that the nth coefficient is a homogensous function of
%,¥, and z of degree n. This fact is already used in a fundamental way
in Legendre's first paper (a. above).

There wore several other papers presented during the last decade of
the sighteenth century by Laplace, Legendre, Lagrangs, and others.
From the standpoint of celestial mechanics in general and of the pnroblem
of attractions in particular, they arc of considerable importance; but
one finde in them no distinct contributions to the theory of Legendre
Polynomials or of Laplace Coefficients, aand it is work of the latter

kind with which we shall be primarily concerned hereafter,

15.) Legendre also gives the values of mePn dx for m=n and m*w »
A simple presentation of these values is given by Todhunter, I.,
Note on the Value of a Certain Definite Integral, Proc. Roy. S0ce Lond.,
23(1875)300-1. 4 more complex treatment of these integrals is given by
Jo¥s Strutt (Lord Rayleigh), On the values of the 1ntugralsf'Q9(;w%M, Q. G
being Laplace's Goefficients of the orders n, n' with an application to the

Theory of Radiation. Phil. Trans. 160(1870)579-590.

VL

16.) J. Lagrange--Mémoire sur les spheroides elliptiques, Nouv. Mem.
de 1*Ac.roy. des Sc. ot Belles-Lettres de Berlin (1792-3); Oeuvres 5(1870) 645~ 66(
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The first volume of the memoirs of the Berlin Academy of Sciences to
appear in the ninoteenth century contains a paper read by one J. 'I‘rezmblray}'7
The author takes the explicit expression for P,(x) and from it derives the
Legendre differential equation:

(1.24) %;{cbqp)g§}ﬂxmnvu)2\:0.

Then he aims to demonstrate that P,(1)=1 as follows. In (1l.24) set x-1,

then (1) 2: 4% = w0 R or
a2 nii-ti) .
(i1) % T = , from which

wlnt)

mnwW:%m
2 nln1)
(iv) ?\»\ (,'X/)

K
(v) ()

(k constant), and hence

1

and

V< .

i

Now k is independent of n, and since Py(1)= %=1, then P,(1)=1. The
author was apparently oblivious to the fact that he was letting x be
variable and equal to one simultaneouslys. Thus (i) and (ii) hold only
for x=1, and (ii) is not even a differential equation.

Other results given in Trembley's work are likowise neither new nor
presented more satisfactorily than in the work of Legendre (a., ¢. above).
Integrating (1.24) from o to x and setting x=0 to determine the constant

- LS \ * _—)l 3
of integrution, Trembley obtains (/->%) (*-%)71-4'“““*D£ del'“|"]L:5 Lot x=1,
! ah.
(1.26) nteen [ B = 45]
o wo=o
Now, if n is even, P4(x) has a factor x and then the right member of

(1.25) will be zero; if n is odd, Trembley gives
w =)

L P = 30y T e
2 " = (— e
(lo‘-'?) &3‘-’:! D‘ L ') o - (n—1) '

17 ) Jo Trembley-Observations sur 1'attraction et 1'équilibre des
spheroldes liem-de L'Ac. des Sc.et B.-L. de Berlin (1799-1800} 58~ 109,



6.

In general, if (1.24) is multiplied by x” and integrated from o to x, he

obtains

(1e28) LIL’“ 4 {u- 4 ““”"/ B da =0

Integrating the first term by parts, and taking x=1 for the upper limit of
integration, he presents us with a known formula of Legendre (1.5), with a
. quperfluous + gign before the right side of the equation. Thére is no
evidence tbax Trembley misled anyone into similar error.

About the same time there were publighed the definitive, sarly volumes
of the "Mééanique Céieste”, in which was repeated the work of Laplace's
memoir of 1782 (d. abqve) in a more elegant forme In addition to establish-
ing Legendre's observation that a function ofpmand @ could be expanded in series
of Laplace Coefficients (1.21) in only one way, the minor errors of Laplace's
previous work are corrected, virtually all of which were remarked by Legendre.
For soveral yoars after, Laplace's treatise was considered an in fé.llible
sourcé book, and little original work was forthcoming. Yet it would be false
to say that interest in the problem of attractions waned, for mathematicians
were evidently thoroughly digesting Laplace's work. |

To end this period of quiescence came a paper by Ivory reviewing the
solutions of the problems of ellipsoidal attractions as given by Legendre
and Laplace}a Shortly afterward, Ivory presented a paper in which he very
hesitantly, for Laplace's treatise had come to be looked on with reverence,
indicated a fundamental error in the work of Laplace}9 The same reéults
had been published by Lagrange a little earlier; but Lagrange's work did

not arrive in England until Ivory's paper had been read to the Royal

18.) J. Ivory--On the Axtractlons of Homogeneous Ellipsoids, Phil Trans
(1809) 345-372.

19.) J. Ivory--On the grounds of the Method o# which Laplace has given in
the second chapter of the third book of his Mécanique Céleste for computing
the Attractions of Spheroids of every deseription, Phil. Trans 102(1810)1-45.
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Society of Londcn?o Laplace's error consisted in asserting that gny

function coﬁld be expanded in‘a series of Laplace Coefficientss Ivory:

and Lagrange quite correctly maintained that Laplace proved the theorem only
for rational integral functions of b\ {igew!, (iop>aaw)  [pw as in (1412)]
and consequently, lkaplace' s work on the attraction of gpheroids held only
for a restricted class of spheroids in which the radii can be expressed as
such rational integral functions.

The usefulness of the Laplace Coefficients was thus restricted; and
when Legendre introduced elliptic intégrals into the problem of the
attraction of a homogeneous ellipsoid, the application of Laplace Coeffi-
cients was even less neceasary?1 However, a year later, Legendre's ﬁExercise du
Calcul Intégral" appeared, and its presentation of the Legendre Polynomial

was 80 elegant as to attract considerable attention,

20.) Je Lagrange--fcl.aircissement d'une difficulté singuliére qui s=e
rencontre dans le Calcul de 1'Attraction des Sphéroides trde-peu différens
de la Sphére, Jour de 1'Ec. Polytech. 15(1809)57-67

21e) Aolle Legendre--Mé&oire sur l'attraction des ellipsoides homogShes,
Mem. de 1'Institut de France (1810)#2, pp.155-183,



SECTION II
DEVELOPMENT OF ELEMENTARY FORMAL PROPERTIES

In the first edition of Legendre's “Exercise du Calcul Int(gra.l" was
published the first significant advances in the theory of Legendre Poly-
nomiagls since the Legendre memoir of 1784. Beginning with the simplified

generating functi on,22

-} = _n <
(2.1) T;O"b‘-*-\'%”) Y — ’%’_;;2 Px), IXV£1, [z <«l,

Legendre presents the general formula for the polynomials

(- 385 - (2a=t) W (3.5 (2n-2) x™* 1135 (2n-%) é_"_’*_—
(2.2) Fux) = ") X~ o) Zz VT Gom a4 ’

and exhibits them up to the ninth dsgree?’3 In a series of theorems, he
egtablishes other fundamental properties of the polynomialse Considering

-, [ad
=1/ (1-2z) for x=l and T = E— 25t~ Z) +( ‘2)‘] /‘3—'_ ZH)“Z“T’,\(::) for x replaced by -x,

nNZ0O

obviously

(2.3) Pyi1)=1 , Pp(-x)=(-1)"Pp(x)-

Further, let x=cos¢, G‘(-_-n,i?, /9=n:if o Then T'—‘-("“z)-z'('”/*yaOP

(2.4) T:[l-n-';dt +'z'%o<"z’.+'£;‘-’°< :”:'*a/‘z'i' + /572 Iabﬂa I ]

s o N 3g then Ples _*3 ‘%“)4 L3 42n-3)n's 1430 (2n-5) l) 1:3(3nl) 1n
The coefficient of 2 8 thenT (c«e9) THon D) T (QA,-IP)-?* /3+ *;4—'“;“;/3)

or sinceo?(&;—l and the imaginary part is Z0r04

(25) RiewP= 1os?]

The coefficients on the right in (2.5) are all positive; thus P, (x) takes

1-3 nlh-1)

' W~ e - ) q
m"‘?“'lcz o )So-‘—lle;\,—»)Lﬂw"})M( o tega (i am)‘ﬂ

its maximum in [-1,1] for x1, and its minimun is greater than or equal to <Bu(1)e

22,) Here we preosent Legendre's work (vol. 2, pp.247-263) in a more
extended and more modern guise. That will be our plan in this and succeeding

sections, t0 present historically theoretical developments without losing
gight of the desirability of an organized log:.cal structure with a consistent

notatione .

23.) (2.2) may be intérpreted as defining the Legendre Polynomial for all x.



Hence
(2.6) VRwl£) W—léxél -
Now Legendre applied Laplace's differential equation to T and obtained
T 2T *(=T) _
(-2 5% _g.xﬁ-\-'z, .

If in this the coafficients of z0 are equated, wo have the lLegendre differ-

ential equation

nd o R &P
(2'7) Q’*) d,x':- - 1x Ix -+ V\LW*')PW':-

«for x=cos @, {hiz yields
{We d’P}-\—w(n-H) =0, ))

Consider, as did Laplac® and Legendre, the equation (2.7) for Pn to be

I
(2.7&) wae Y:3

multiplied by Pp, and 1ntegraxe with respect to X between -1l and 1, i. e.,

wont ) TPuse == [ R L) RPN LCS i ,f Pt e ST an

Iy __] f“ )t ARy ,fu- Al AT 4y
Similarly, me[ B Pdx _f L'—x’)dﬁ df;‘m

Thus [whmM)PW%h~+dU’? > Ax =0 holds for all integral m and n;
and if m+n, b]mendx—o. This property is called the orthogonality property
of the sequence of lLegendre polynomials, if the integral has a non-zero

value for m=n. This can be verified and the orthogonality property obtained

at the same time. Consider

|+ Yuv [
/—ov} = Al
[‘l Zx_u—h,(,"\l _’va,.,,/T- {uy ,_ w

|
Then -f%mPndx 18 the coefficient of u'v2 in the above. Hen0924
iy

(2.8) ! o) (i %w)
' [ Fwe=da

- 2n+1 (W\:.’-V\.) .

+ 5 u.;v’— ] f(P+uP+u1[7+ )(P+vP+vE - )dx .

24.) A proof similar to this appears in JeW.le Gléisher'a "Notes on
Laplace's Coefficients®, Proc. Lond. Math. Sece 6(1875)126-136,



RO

Returning to (2.2), we see that %" can be represented by a series involving
legendre Polynomials, as follows:

X = @ P By Pt -
in which the coefficients can be detefmined by means of (2.8) « For,

(2.9) a,. = 1‘““”'fx P 4 (hZm),

Obviously
1

(2010) chhPmM = 0 (n= D, l,l,'—‘}wx-'() or
-1

(zJJ)/ é. o fds = o,

where Gp- _1(x) is an arbitrary polynomial of degree £ m-1 in x

Thus, legendre obtains

(nh* ™ Q=T A1)
(2.12) x"= ¢ @ [P + 7k, (—"ZT—‘ Rt ]

0f considerable interest are the zeros of the polynomialss Legendre
shows that they are real, distinct, in (-1,1) and distri!fbed gymmetrically
with respect to the origin. For, since.f;ndx=0, with Py not identically
L
zero, there exists at least ome zero, say aj, of Py in (-1,1)s But

Pp(ay)=(-1)"Py(-21) and xz-alz is a factor of Py Sincef G~ B dx f(x ~a*) Fooad =0,
MM¢W1F“4 ﬁ?a;:m(")““""x}“a" wa{u»t&bog,? &W*WMQ"W’M)
j(x %) map) a2y T dxv= 0 3 and consequently Pam = (x*- ¢ ) (xva® - (xead).

From (2.2) it appears that x is a factor of Pgy,qs Hence, in this case

3
fx(x M) Axap, )B,m*."i"’o , from which Pgy = X(x*—aP)—a2) o (x>—am).

-1
From (2.7) and the result of differentiating (2.7) n-2 times with respect

to x, Py is identically zero if there is a multiple root of Py in (-1,1).

0
(m >n)

25.) Legendre actually gives 2 ml)*>
| n+V ! (m=wn)

(mdn, mtn wad.)

f?m)(_“d,l'_‘ 3‘“ N l;(k{—lm—)]l
x cr:;:mL[ e | RN CCPTNPAEPRS)
For deriva'bioxxs of these and related integrals, see A.R. Forsyth: On the
tegrals oy o
integ f’P,,\ &}L f?mmﬁi}p}{ d/},) f?;.,.‘mé'd}l.)

. Quart. Jour. of Math. 17(1880)37-46.



2/
Repeated differentiation of (247) leadsto some results interesting

in themselves. Already (p.19) we ave o i~ %)
D AP APy

(2.13) V'l(h-f])/ Pwm&x‘:[,(l—-z’j Ty ’\Ax {1,:2(;1:;)(
1

2 & _
Differentiating (2.7), (1-1’)‘19' F —‘1‘1& b, 4t Ty T O
Pu
—(nt2hn- 0 Ll

» 4°F,
Multiplying by 1-x2 Zx{“ *") h}
-,) d‘P &R“\‘cd—)(,

'd."m a2 d P — (e adn-) (1—x
Bt -f G EACTT g s e f om0

-1
_" P A™ 7. 4 F — hn = 1
PR Azﬁ A,;,P&I f —_— -I—"‘, ._~L A {_’—— (tm+2)0e+1) n -~ '))( ).

Hence, o (n®n)
(2014) JL o = Zntt o =)

The se formulaa adnit the generalization

J WA P (v] (W*a(rv‘)
2.15 (-2") "% ".{;)r_— 2 M)t
( )I . »P Zowt oAyl (=),
d

and f (4- xz)"'g G ——ndx =0, where G is defined as above-(p.2@).

dy*
These appear in Legendre's work and agaln in a paper by Ivory.26

In the latter, Ivory gives the generating function and differential equation «
the Legendre Polynomials and the differentiates repeatedly the differential

equation, obtaining . o A
!
2 E)‘;“'B_’x{u"xw) . hu} =0,

27
and the orthogonality property of the derivatives as in (2.15)e He gives

(2.16) (n-rfnars D0 -

also the explicit expression

e G e
(2.17) A)l)[f“ e Lm - 2lan-1) 2. (2Zh-1) (2n-3) )

Ivory's interest is in using a series of differentiated Legendre Polynomials
to express the Laplace Coefficients. His expression was already known to Lege

and Laplace in a more complex form (1.21).

26.) J. Ivory, On the Attractions of an extensive Class of Spheroids,
Phile Trans. 102(1812)46-82.

27.) A very simple proof of (2.15) is given by D.D. Heath, On Laplace's
Coefficients and Functions, Quart. Jour. of Math. 7(1866)23-36.
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The most remarkable eimplification of the expression appeared in the
1813 thesis of Rodrigues?' There for the first time is demonstrated the

most compact representation of the Legendre Polynomials

(218) R0 = 75 ‘L%;r?

This expression has been variously attributed te Ivory, Jacobi, and Murphy,
but it is clear that it appeared first in Rodrigues' work in the little known
"Correspondance sur l'ﬁcnle Polytechnique"” published for only a period of

three years. It is aleo evident that Ivory arrived independently at the

same formula in 1824?8 Further, Jacobi's work in Crelle's Journal fHir

Mathematik for 1827 indicetes unfamiliarity with boeth preceding papers?g

Although it is claimed by overenthusiastic Englishmen that Murphy in his

"~ ¢reatise on electricity (1833) deduced the same results independently, this

is not so evident in his workZd

In Rodrigues' dissertation appears another important fommula,
(2.19) . Q“+"Y A" o)™ nd "t )"

-l A ™™ bL—‘L,) W b

which Ivory unque stionably would have derived from (2.17) had he been aware

of (2.18).31

27.) O, Bodrigues - Mémoire sur 1l'attraction des sphéroides (Thesis)
Correspondance sur 1'Ecole royale polytechnique 3(1816)361-85.

28.) J. Ivory - On the figure requisite to maintain the equilibrium of
a homogeneous fluid mass that revolves upon an axis, Phil. Trans. 114(1824)85-150.

29a) CeGeJes Jucobi - Ueber eine besonders Gatiung algebraisches
Functionen, die aus der Entwichlung der Function (1-2x2 +2*)"% entstehen,
Jours fir Math. 2(1827)223-6, Vierke 6(1891)21-5.

30.) Re Murphy = Elementary Principles of the theories of electricity,
hesgt, and molecular actions, Cambridge 1833, p.7.

21, ) For proof of (2.19)see - JoWeL. Glaisher, On Rodrigues' Theorem,
Messe of Math. (2)9(1879)155-160; E.W.Hobson, Proof of Rodrigues' Theorem,
Megs. of Mathe (2)9(1879)53-4; W.Walton Two Demonstrations of a Theorem due
to Rodrigues, Quart. Jour. of Math. (1)15(1878)335-7 W.H.Hudson, On a
Theorem due to Rodrigues, Mess. of Math. (2)7(1877)117.
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Rodrig_uee arrived at his results with some difficulty, but both Ivery and

Jacobl resort to the Lagrange expansion of the generating expansion. Aesume

that 1-7z=\1-2x2+2> theny=x«452(r%) o Congider 7 as & function of x

and appl o 4 (x>1)"
pply Lagrange's method, then V= x + 3 5 z2(x _,)+ ) z* ), ceey
‘”?d | —2xz+2> = 1-%x2-Lz"(x*1)- 2:"5,2%4( n*_

Differentiating with respect to x and dividing by -z,

| B S C ) B > 47 (x>0
T:'P_—__—_——|—Q_)('ﬁ+2"=l+it A z: ZIZ -—2——'-‘—“ 3

from which the remarkable form of the Legendre Polynonials as nth differentisl

coefficients followse

Another exceedingly curious representation of the Legendre Polynomials
was made known by Laplace in the "Paris Mémoirs" of 1817; and it appears with
a congiderably revised proof in the final volumes of "Mécanique céleate"(lazs)?z
In the origiral memoir no formal proof is really presented, but a vague
reference is made to previous work on probability integralse This situation is
only slightly remedied in the "Mécanique Céleste". However, adequate proof cen

be easily providede A well known integral is
[W iq _ 2T
, u-vewd s’
where v/u is real andlw-fs>l4 IVl o Thus
LN _ f"’ AP
YT=2xz 42> Jo =22 2eonPlat
(2.20) (T "
* T 7‘7—/‘; P-comP =) 49,
which is the famous Laplace Integral Formula. Since
?n,: TT[ [17- | VK" ICO“‘P+( "‘—')bn ]&CP)

, and comparing coefficients of z°, ve hae

?V\-: f Tx "t Lﬂ- l(x‘«l)m’“!f +('£/,) i “_4—()( %) cea “’So__(, J Aﬁ
as fcoazn"g}o d¢ =0, Thus, equally well

(2.20&) .= ,f (5t +ew Py ) AP

32,) Laplace, PeSe - Mémoires sur la figure de la Terre.Mem. de 1'Ace.
roy. des. Se. de Paris (2)2(1817). Osuvres complétes 12(1898)415 459,
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The Laplace memoir is noteworthy also for a discussion of the behavior of

Pn for large values of n, and its conclusion

con[(nr5)0- ]

(2021)" TFitesoo) ~ \|——r

No estimate of the error is made, and some later writers, Todhunter notably,33
accepted the result with reluctance because it does not hold for 8=0 and is

unsatisfactory when O is small, which Laplace did not observe apparently.
However, Laplace's result was verified by Cauchy in 1829 in a general treatment
of definite integrals related to certain types of Lagrange expansions of which
the Laplace integral is an examplel? Todhunter's major objection is that
Prn(cos @) should approximate unity for ©=0. This difficulty was resolved by
Shé.rpe, who showed for what values of @ (2.21) gave a good approximation and
the nature of Pp(cos ) when 6 does not have these value ss?

We give an exceedingly simple derivation of (2.21)e The differential
equation (2.7a) is sometimes written as

&%+¢&cg &I% +nlndl) Pw -0,
Assuming Py of the form u cos ab + u' sin a®, where u and u' are functions
of @ and & ={niw+ , substituting in the differential equation, and equating
coefficients of ein a@ and cos a@, 1'%***“’ i(%ﬂl— *’%c"tal

oy aT?e‘ +u'cete =—5 ( %»-" % Co‘iTV).
Since 1/a is so emall for very large n, the temms on the right are neglecteds
o

H
A first approximation is thus u-=(::::. y W — ; de04,
' . Hm o , e

Som
! . < ‘
Blewse) ~ '\ste(”c‘" 6@+ H smab) = mm(&é-{'?’)

33,) Todhunter, X.- An Elementary Treatise on Laplace's Functions,
Laz®'s Functions, and Begsel's Functions. London, Mac Millen & Co., (1875) Chap TIL

34,) A. Cauchy - Mémoire sur divers points d'Analyse, Mem. de :UAc. TOYe
des Sce de 1'inst de France (2)8(1829)101-129 (p.120).

35.) HeJe Sharpe - Nete on Legendre's Goefficients. Quart. Joure of Math,
24(1890) 383-6. ‘ :
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Lo
Now a.’.:v V\(VV"“U ~ V\+“§‘ , a_,y\,d. PV\ ~ —S—;:-e Co—d(.h@‘+ _{,7)
If n is odd, Py=0 when 0=72, s07 =- 7. Fur‘hher, if n is even and ©-T72,

Q!
Em (m)™ l“’"k) =C N"‘"’"" Y/l:T
and (2.21) is established.
The mothod here given can be extended to more precise approximations

as does Heine,6 who writes

@ -21a) lewe)~ VT;eIC"+")“{(“**)” z}+'§‘¢°’69““{(‘“*i)9 1}]
~Laplace does not concern himself with the asymptetic behavior of Pp

for values of x outside of (=1,1), but such an extension is easily madee

Let 2x-= g-pv;s; 22 and 2Vx*=) = §——"§’ » hence E = o + V(00
\ -/ % "’/z
and _{.. Vg o Using T=(i-f2) z(|-——§—) and proceeding
_ (Zu 1) n, z I+ 3en(n-1) _ —
as in (24), Ron= ARV e SR et LI ey e

(2.22) _ szo‘

27‘“ { [ l‘Zh-l)E-z JN -——§ []"' zg ]

-l
(223) N\/:V\—LTT’ “(I...{"l z
For x<{~1l, we can use the relation (2.3)e
One evident application of the Laplace result is to discussion of the
behavior of terms in a series of Legendre Polynomialse Such series, and

more generally series of Laplace Coefficients, were considered carefully

31 38

in 1822. FHe repeats his earlier results* concerning the

by Ivory
expansion of an arbitrary function of the sines and cosines of two angles
@ and Yo Let,-ces 8, then the given function may be developed in a series

fle9) = U, +tU, + U_.L-P
in which all the U's satisfy the Laplace differential equation (1l.15),

- without difficulty if £(6,P) is a rational integral function of/;, Son PITp

and cea PYi-u> e This is his and Lagrange's previcus correction

36s) Heine, E, - Handbuch der Kugelfunktionens

3.) Je Ivory - Om the expansion in series of the attraction of a Spheroid
Phil. Trens. 112(1822)99-112.

38.) Ses P. 16.
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29
of Laplace's theorems

Poisson is concerned with the same problem in a paper extending some
resulte on Fourier Series to seriecs of Laplace Goefficientséo He proved
g.gain the regult of Laplace, that the Laplace Coefficient is a rational
integral function of ,, Fu> s » and /e P
which satisfies the Laplace differential equatione Can any arbitrary
function be expressed in series of such coefficients! Poisson believed
with Laplace that the question should be answered in ’tho affirmative.
However, very obviously his demonstration implies that f(8,%) be of class C'.
I, Poisson's paper the problem is alsoe linked to the Lapiace differential
equation, and he raises the question of the determination of the general
solution of the equation, which had received only slight attention before hims
Also, in order to discuss the behavier of terms in series of Legendre
Polynomials, particularly in the neighborhood of their extreme values,
he adapts Laplace's result (2.21): o .

- 2 - 7
(2.24) T (e &) NY’%:[““;B_%’ + igm‘(; #, g—}’é “*ﬁ___ffe_; i ]
Ivory's 1824 paper takes cognizance of the work of Poisson in attempt-

ing to prove Laplace's theorem, but that is not its most noted features
It is chiefly known for its independent derivation of (2.18). This is alse
the case with Jacobi's article in the second volume of Crelle's Journale
Jacobi gives an interesting consequence of Rodrigues' formula (219),

X X (X,"v])m

8ince L L P oI = LS
an application of (2.19) yields

()

“AP\PM

A X (qu)[
.--dx = (Z,.L—l) -——«W'
‘[1 (M)[: P‘"‘ A kh«.‘\—u)! Ax

39. ) See polﬁ-— 7.

| 40,) Poisson, SeDs = Addition au Mémoire précSdent, ot au Mémoire eur
1a manidre d'exprimer les Fonctions par des Séries de quantit®s périocdiques
Jour. de 1'Be. Polytechnique 19(1823)145-162,
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A Lo ) (x -]

i

same properties as the Legendre Polynomial, only the interval of integra-

Furthermors, the polynomial associated with has the
tion is now (a,b) instead of (-1,l). In particular, the Legendre
Polynomials are exactly those functions whose zeros are used by Gauss
in his famous paper on evaluating definite integralse This last
observation of Jacobi and his paper of the preceding year (1826) served
to stimulate new interest in the whole questionof Gaussian (so ealled,

" mechanical™) quadraturee



SECTION III

EARLY DEVELOPMENTS IN GAUSS QUADRATURE

The problem of quadraturs is essentially to approximate an integral
by replacing the integrand curve with an approximating polygon in some

4
convenient way as, for example, Simpson's rule. Thus, to evaluate ]}(x)dx

when f(x) is known fore,, «, , ese , o, n values of x in (a,b), Newton
employs a polynomial of degree n-l which coincides with f(x) for the
given abscissas. Of course, the polynomial should approximate f(x) more
closely with increasing n. The abscissas which Newton chose for various
degrees were given by him in a table. Gauss obtained a closer approxima-
tion using a polynomial of the same degree and as many abscissas as did
Newton. The abscissas in Gauss quadrature are the zeros of a polynomial
of the nth degree. If (a,b)=(-1,1), the polynoﬁial is the Legendre Poly-
nomlial and the general case can be correlated with the gpecial case, for
(3.1) x= &2 x boe, f‘F(v)d)C’ wff( iz 82 ax
transforms (a,b) into (-1,1).

The first problem is to coastruct a polynomial which will coincide
with the given function £(x) for n given values of X Of all the functions
which will coincide with the given function at (a,,/,e, ), (al,ﬁ),...,,

«;,/e”) there is only one integral function of degree n-le If P(x)=

(%= *) (%= )ens(x-,), w0 use the Lagrange approximating polynomial

! /32- . ﬁh
(3.2) F()‘)f'—- ?(")[(x—ﬂ.)‘f‘(% (’(_—“:,)So'(o{:.)“\— N (X —, )(P (o(k)

Certainly this function satisfies the conditions. If there were another

such function, G(x), of degres n-1, F(x) would be identical with G(x)
for the n values &,, o, , ess, A, ; and so, F(x) is identical with G(x).
Tt is evident that ¥(x) coincides with £(x) at the n given points,

g0 we can write ™ F(q;)

(3 Foo~ ‘Y“)Z—'Gf %) P,




If f(x) is integrable and the conditions of approximation are fulfilled,
1.9, €70 I N 2 |T(x)-F(x)|<& for n>N, and the abscissas such that
]°(.L'~oll-_‘|<1/n then

(3.4) (f(x)dx ~ [F(x)dxe

-1
et (3.5) A= 'c«)/ _e09 y,

X — ol

Whe reupon ff(x)dx NZA:LF( ol )e

All this restricts the manner of choosing the «'s only in that

l"‘l"“’(f—'l-a’ 0 o4 n—>e0.

41

In (-1,1), Cotes™ takes the x's in an arithmetic progression,

oy = 22 , and calculates the A's up to the case for n=1l. Gauss quadra-

n-|
ture likewise uses x's symmotrically distributed with respeét to the origine.

Hence o, = ~%., o>a,> >, o Ifn is odd, one o« is zero, The A's

o b >

are similarly symmetrical, for POJ=CU"P(-x), P <" P -2) | and

! ' @ En"" 7' oox) L (e
A —_ _—r IARL J)C = _— = — —— M
e ‘P(°£ H“) ) )(-D‘k-wH ?I(dm) , X +dmdlb Pl(,.) !y W A+ oy
! P )
= T e = A
(P'(ﬂ(m) x X = Sy "~

In any event, the degree of approximation depends on n, the nature of f(x),

and the choice of the «'ss Furthermore,

(306) [ Tods = & Fla) + A Flaa) o rAFlan) = 2 ATFL)

gives the true value of '/fl(x)dx only when f(x) is of degree ¢ n-l.

Suppose we were to seek ﬂ;'e error. Set

(3.7) E) :/_.,I’[“M’“‘iZ:Ai Fla;)

Then E(f+f,) = E(f) + Elf), M—E(K-F)=KE(F) o In particular, iffou=%et®X+K%..., we have
EMf)= KuE G + K,y E(x"Y) -0,

More specially

(3.8) E(x™ = f'x'“dhc— A"~ A’zdz”‘:_..._.Aho(:v

Equating (3.8) to zere forwm=0,1,2,...,n-1 gives n linear equations for

41.) ‘Harmonia Mensurarum (1732).
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determining the A's which are likewise n in number,

The achievement of Gauss was in showing that the degree of approxima-
tion could be made 2n by a proper cholice of the abscissas, still in a
symmetrical waye In this case, the error would be zero if the function
approximated was a polynomial of degree 2n-l, i,8,E(f)=K, E™)+K, EGH")+ ..
The A 's are none other than the zeros of the Legendre Polynomial of degree ne.
While this last fact was not immediately evident to Gauss, one can demon-
strate it in a straightforward fashion;

2h -1

Approximating {(1) = W, +Kx «Kon e -+ Ky, X by a Lagrange approximation

polynomial Fy_j(x) of degree n-1 built from n values of the «'s,

fixy <F,_ 00) N foo-E o) et
D=ty (x - ay) ¢ U =otn) ~ _—:r;;)__‘—* = ia—"z(x*”"‘—zuqx = Gh-l(l)'

W seok E(f) :f'[{’u)—f:ﬂm]lx, =f'€f’L>L) G,. () du = 0.
This is pmcisgly (2.11), and—'T(x)=Pn(x), within a constant factor. Thus
only in the case of Gauss quadrature will /’IF(x)dx = ?; A; Fla)
hold exactly if f(x) is a polynomial of degree < 2u-1 o And if

fo) = Kotk 4 Ky g AW Xy E(F) = W, EG™) 4.0,

As the problem is solved originally by Gauass, no mention is made of

Legendre Polynomials and the entire question is related to continued
fractions and hypergeometric functionsfm An earlier paper of Gauss gives

the continued fraction reprssentation for a hypergeometric function? 3

The problem of quadrature is solved by writing log % as a hypergeometric

function and then as a continued fraction; and by taking for the abscissas

42.) We reserve discussion of this aspect of Gaussian quadrature
until we come t0 the work of Christoffel and others.

43,) C.F. Gauss - Disquisitiones gener?.les )c;rc)a geriem infinitam
o X (At D plptr) o R(x4l) (A+2]AlA+)@a+2) 3z
I+ T"‘;"* 12 - v (1) X 1523 - (7% )(3+3) e

pars prior, Comment. soc. reg. scient. Gotting 2(1813), Werke 3(1866)125-162.
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.the zeros of the denominators of the successive convergents of the continued
fra.<:1;.ionf"4 These convergents are listed, and it is obvious that they
differ from the usual Legendre Polynomials only by constant factors.
In 1826, Jacobi?® 1ike Gauss is concerned with evaluating ﬁ'rdt.
]
After showing that the «'s should be the zeros of ¥(x), a polynomial of

degree n, he reduces the problem to finding a polynomial such that

‘,./
J&?(X)xkdx=0 for k=0,1,%,0es,0-1. Integrating by parts, he arrives at
? o, T100) Rit nots of putbiplicy v at 2 =0 and =1, Thua U= M

A d"[”-n(l-i)':]‘
f"..,flcfm)dx---dx= TTwo where M must be constant if $(x) is to be of
o (-

()

Adxr

degree n. In 1827?6 he considers the interval (-1,1) and arrives at the
nth differential coefficient form of the Legendre Polynomial as a solution
to the problem of finding a polynomial satisfying f;i‘(‘i’(x)d.b= 0, K=0hL20n-t.
‘ -1
This game problem is the concern of Rev, Murphy in a series of
articles on the “"inverse method" of definite integralsd! He defines

1
\Vuo=f‘?<t)t‘<dt =0 for k=0,1,2,r0s,0-1 and sceks to determine a
(2]

polynomial satisfying this conditione. Let ®@ = At "+A,.  t "+ At +l,

d Y0z o+ o e P ince ¥ i
an = wa T ea el — @ ¢ Since YLK) vanishes for k=0,),2,...,n-1,
P CKIK-DK-2) - (Ken 1—{)) G = WKe))Kt2)r - (K +n+i)

Now ¢=(-1)" and the A's can be found, giving Pt)e Observation of the

n " I"' "
polynomial term by term leads to Ft)= ,,'\—, d—g#’_)_l,

y
coefficient of 7% in [-220-26)+2% © ., Thus, within a constant factor

which is the

the Legendre Polynomial, translated so that %=1-2t, is determined from

the conditions on W(K)e

44,) C.Fo Gauss - Methodus Nova Integralium Valores per approximationem
inveniendi, Cormente soc. reg. scient. Gott. 3(1816), Werke 3(1866)165-206.

45.) CeGeJe Jacobi - Ueber Gauss' neue lethode, die Werbhe der
Integrale n#herungsweise zu finden, Jours fir Math. 1'1826) 301-8,
verke 6(1891)3-11.

460) See p. 12:‘
47.) Rev. R. Murphy - On the Inverse

Physical Applications, Trans. Camb. Phi
315-393, ' Hie Soce 4(1833)353-408, 5(1835)113-148,

listhod of Definite Integrals with
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Hurphy makes geveral applications of the polynomials to problems
of electrical potential on a éphere, and he discusses several properties
of the zeros of the polynomials. These are based on a relation betvween
succesgive members of the sequence{f4é}, which Murphy is not the first to
produce., Gauss gave the continued fraction of which the -{RCQ} were
denominators of the successive convergents, and he also wrote the usual
recurrencd relation for the denominators of the convergents?s Thus
(34) wRww - (an-)xl 0 +h-nk . )= o, R=l, P=x,
which can be independently derived from equating the coefficients of like
powers of x in the easily verified differential equation satisfied by the
génerating function:
(.,212*24)’%1;-% [z2-0)T =o0O.

The Legendre Polynomials therefore form a sequence of Sturm functions, and
the zeros of Pn_l(x) gseparate those of Pn(x) and are in turn separated

by those of P, _o(x).

48,) Gauss-Nova Methoda..,paragraph 17, 18, 19,



SECTION IV

STURM - LIOUVILLE

Immediately above is one example of the application of the advances
of Sturm to developments in the theory of Legendre Polynomialse It is
only fitting to turn to the early volumes of Liouville's Journal and
examine their pertinent contentse Prior to the foanding of the Journal
de Mathematiques, Liouville had already published a memoir on the

(401) (ay>y sx+c) ‘5._)%’+(&1+L)%_‘_ ?‘} =0, (a, &, = 4, ﬂ-;{, constat)

of which the Legendre differential equation is an example?g Legendre
gave the procedure for integrating (4.1) in the case where ax*+fx+c= v((r:w%)f‘
but Liouville is concerned with equations in which this is not necessarily so.
By means of genéralized differentiation and integration he obiains a
méthod for solving the equation.
More important, however, are the papers which appeared in the first
+wo volumes of Liouville's own journal, containing Sturm and Liouville's
analysis of the linear differential equation of second orders Sturm's
first naperso transformed the equation Lu) £y L+ M09 I—+ N(x) Vix) =
in vhich L,M,N are known functions of x, continuous in [ﬂ)/f],such that L
does not vanish in [X,p] , into the equation
(4.2) %—x{KCX) %; + GOy V=0,
lvivhere K(x) = cf%dn and C=NK/L are continuous functions of x in 4] .
If V=V'=0 at some point in [«4], V is identically zero. Sturm excludes

this possibility, and thus V changes sign each time that it vanisheg in[a(,ﬁ].

49,) J, Liouville - Mémoire sur 1'intégration de 1'equat:.on
(ot rnxep) ' (qun)y' ¥ Sy = O, d 1l'aide des différentielles & indices
quelconques, Jour. de 1l'Ecole Polytech. 21(1832)163-186.

50.) C. Sturm - Mémoire sur les équations différentielles lindaires
du second ordre, Jour. de Math. (1)1(1836)106-184.
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The soiution V depends on G, K and two arbitrary constants A and B. -The
chief result of this paper is the Sturm Theorem; V will chahge sign more
often, if K is decreased or G increaseds
Liouville applies Sturm's results to the system

(4.3a) LIKEG +(gp-DV=0
(4.3Db) "%’L_szo for =<,

%é+HV=0 for * =4,
where g, k, 1 are continuous functions of x in]%vél, g>0 and k>0 in A
Y¢ and H non-negative constantsgl This system occurred in his researches
on the flow of heat in a heterogeneous bar and atiracted the attention of
Poisson. For every r, there exists a solution of (4.3a)s And in order that
(443b) hold, it is necessary that r be a root of a certain transcendental
oquation ¢(r)=0, Let the solutions be {V.(x)h Liouville secks to show

that the value of

A
(4. 4) w
Z _[ /%, vnmd’)"
M ®
summed over all the values of r satisfying the transcendental equation, is

£(x) itself if x is in [xaland f(x) is arbitrary>?

First of all, the roots of w(r)=0 are infinite in number, all real,
distinct, and positive, say O <!‘1<r2< ers <rm< see Ty voe. Let Vl’ Vgs e
corré spond to the r'se Then

A
(4.5) ]?\/M\/nixro (mxin).
'~ .
There are n-1 zeros of V, in («,s) and they are distinct and separate the

w
n zeros of Vy 4+ Also, 2: A3V; , whers the A's are constants not all zero,
l=m

51,) Liouville, J. = Mémoire sur le développement des fonctions ou
parties de fonctions en séries dont le divers termes sont assujettis & satisfaire
une mdme bquation différentielle du second ordre contenant un paramétre
variable, Jour, de Math. (1)1(1836)253-265.

52.) The importance of the work of Liouville and Sturm from the standpoint
of Legendre Polynomials is evident when the Legendre differential equation is
viewed as a special case of (4.2) and (4.3).
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has at least m-1 roots and at most n-1 roots in (de) but they are not necessarily
distincte Some of these properties are consequences of Sturm's prior memoir;
others, as Liouville takes pains to make clear, are contained in a later Sturm
memoir with which Liouville as editor and friend of Sturm was already fam-

iliar.s3

As for the value of (4.4), he does not really prove the convergence
of the series to f(x) but confuses the problem with that of finding the
coefficients when f(x) is assumed to have an expansion in series of V'g, If
an expansion for f£(x) in series of V's exists and is uniformly convergent for
x in[y,Fﬂ,
(4.6)  f(x)=AgVrhyVy+es s thgViveess =:§;Arvr,
f_:g?ViF(x)dL

and A e
Hence (4.4) yields f(x). But this does not prove that the expansion exists,
converges, and has the value f(x)e

The Sturm memoir mentioned above gives the results quoted by Liouvilless4
The theory of the second order linear differential equation is extendeds
Bounds for the number of zeros of a selution in a given interval and for the
distance between zeros are given. It is to be remarked that Sturm believes
Liouville showed that the solution could be obtained in the form of a
convergent seriese Quite correctly, Sturm maintained that Fourier and others
generally confused the problem of the possibility of éxpressing an arbitrary
f(x) by a convergent series of the form (4.6) with the problem of determining

the coefficients when the expansion does exist. He declares that Liouville

proéed that the sum (4.4), if it converges for all x in[x,4] 5 can only be f(x)a

53.) Actually, most of these are proved in different ways than does
Sturm by Liouville in a succeeding memoir, Démonstration d'une théordme du
a Mo Sturm ot relatif 4 une classe de fonctions transcendantes, Jour de Math.
(1)1(1836)269-27T. '

54.) Sturm, C. - Mémoire sur une classe d'équations & différens
partielles, Jour. de Math. (1)1(1836)373-444.
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Liouville's argument is insufficient for this conclusions

Apparently, both Liouville and Sturm shortly recognized this circumstance,
for Liouville the next year wrote with dissatisfaction of his attempts to
prove the convergence of (4.4) to f(x) unrestricted§5 He c¢laims to have had
a proof for some time that (4.4) can only converge to f(x) for x injx,s] if
g,k, f(x) and their firet and second derivatives are bounded in[},ﬁﬂg Sturn
had also communicated a proof to him which is similar to the one he givese
As a matter of fact, after showing the absolute value of the nth term to be
O(I/hz), Liouville concludes (4.4) is convergent. Nothing is done to show
that it converges to f(x).

Writing together in a point paper, Sturm and Liouville hasten to meet

this dlfflcultY?G

They seek the sum of (4.4), which they call F(x). They
wish to prove that F(x)=f(x) under the assumption that f(x) is arbitrary

but bounded. Before the demonstration goes far, virtually all the assumptions
made by Liouville in his previous congiderations are implicitly involvedy

aad even so, the proof is no more satisfactory. Liouville himself calls the
proof not general enough?7 He points out that it demands that F(x),g,k,

have bounded second derivatives and that f(x) satisfy the conditions for V

in (4.3b). Although he distinguishes between the convergence and the sum

55,) Liouville, J. - Second Mémoire sur le développement des fonctlons
ou parties de fonctions en séries dont les divers termes sont assujettis a
satisfaire a une méme équation différentielles du second ordre contenant
un paramdtre variable, Jour. de Math. (1)2(1837)16-35.

56.) Sturm, @, and Liouville, Jo - Extrait d'une Mémoire dur le
developpement des fonctlons en séries _dont les differentes termes sont assujettis
4 satisfaire & une méme équation différentielle linéaire, contenant un
paramétre variable, Jour. de Math. (1)2(1837)220-235 (abstract, Comptes
Rendus 4(1837)675—7)

57.) Liouville, J. = Troisidme Memoire sur le developpement des
fonctions ou partles ds fonctlons en géries dont le divers termss song
assujettis & satisfaire & une méme équation différentielle du second ordre
contenant un paramétre variable, Jour, de Math. (1)2(1837)418-436 (abstract,
Comptes Rendus 5(1837)205-7).
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of {4.4), ho still maintains that when (4.4) is convergent.its sum is f(x)e.
The convergence of (4.4), he insists, holds for any bounded f(x); and f(x) may
have "jumps" for one or more values of x. However, 4o show F(x):f(x) it is
necessary to exclude this possibilitys Otherwise F(x):f(x).only for the
points of continuity of f(x)s The proof is not reaily valid.

Thus, Sturm discussed the properties of a solution to the differential
equation L(x)V"+M(x) V'+ K(x)v=0,
and showed that these properties are analogous to those of sines and cesinese
Ané Tdouville, using these results, generalized Fourier Series, showing the
relation between the expansion of a function in séries of other functions
and the properties of solutions of linear differential equations of the second
order, Their work is the basis for the theory of orthogonal functions, of
which the classical orthogonal polynomials are a particular instance. The

Logendre Polynomials were the first of these latter to be presented in analysis.



SECTION V
INTEGRALS AND SERIES

In the theory of Fourier Series, in the theory of series of which the
coefficients are Legendre Polynomials or Laplace Coefficients, in the theory
of the expension of an arbitrary function in terms of any other functions,
there isg always the fundamental question: What are the resirictions which
must be imposed on the given functioen in order that the series one forms in
a preassigned way should converge and should represent the given function?
It is this question, limited to expansion in which the coefficients satisfy
a linear differential'equation of second order, which concerned Licuville.
After showing that solutions of the linear differential equation of second
order resembled sines and cosgines or exponéntisls in their behavior, he
was led to consider the analog of the Fourier Series,

Previously, the same question was considered by Poisson in the case of
Laplace Series?8 Poisson was aware of the relation of Laplace Series te
Fourier Series, and his work on Fourier Series encouraged him to attempt to
improve the theory of Laplace Series as welle To him perhaps fzlls the
hoﬁor for recognizing that the series may not represent the given funciion,
elthough its coefficients are those one would have if the series.did con-
verge end represent the functione In his monumental work on the theory of

5
heat, he apparently was aware of this posaibility’.9 Poisson'E analysis
was directed to showing that if the given function is of class C', the

Laplace Series converges and represents the functione While his proof

does not meet the demands of modern rigor, the conclusions reached are in

58.) See e 26,

59¢) SeDe Poisson - Théorie Mathématique de 1a Chaleur, (Paris,
Bachelier 1837), Qhap. VIII, 212-32, (also Connaissance des Tempg 1829, 1831).
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general valide FHowever, his restrictions are more than is necessary to
insure the resulte

One phase of the problem is treated in a short note by Liouville on
Legendre Series9o Liouville has no difficulty showing on the basis of
(2612) that Y(x), a rational integral function of degree n in x, can be
represented by a finite sum éifipi(X)’ where Ay = 2451[:W6512u9&f.
But the significent task ies to show that if f(x) is bounded and if

00

(51) > { “ P oo f_ :Hw PhH:)aLt}

2
h=0

exists and converges to F(x) for x in [-1,1] , then F(x)=f(x)s Liouville
multiplies (5.1) by P,» and integrates term by term with respect te x from
-]l to 1, which is tentamount to assuming (5.1) uniformly éonvFrgent. By
virtue of (2.8), | PP, (x)ax = [ :;'(x)Pn(x)dlx. s [F(x)-2(x)] By(x)ax<C
for all positive integral n, or equa.l;y well |[F(x)-f(x)]x dx=0. Now
an earlier paper of Liouville asserts that F(x):f(x)=0 in this event?l
This is his desired results He also wishes to show that if S, is the sum
of the first n terms of (5.1), then Sn-f(x) changes sign at leastn tirmes
in (-1, 1) , of utility perhaps in proving that lim [Sp=f(x)] =0.

No careful treatment of Laplace or Legendre Series was really given
before Dirichletf2 After e maegnificent paper in which he gave the famous

Dirichlet conditions and integrals for Fourier Series, he turned his attention

60a) Jo Liouville, Sur la sommation d'une série, Jour. de Mathe
(1)2(1837)107-86

61) Jo Liouville, Solution d'une Probléme d'Analyse, Jour. de Math.
(1)2(1837)1-2. If  [9(x)x™ax-0 for a1l integral k, ¢(x) bounded and

defined in [a,b] , then §(x)=0. Otherwise ¢ (x) must change sign in
(a,b) at least onces Suppose it changes sign at o, o,y ese o e
Let W(x):(x— x,)(x-d;)...u(x-d...)- Then \V(x) CP(x)dxéO’ equality

3
holding only when ¢ (x)=0.

62.) Dirichlet, P.L., Sur les séries dont le termegénSral dépend de
deux angles,/et qui servent & exprimer des fonctions arbitraires entre des
limites données, Jour. flr Math. 17(1837)35-56,
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to Laplace Seriess Let f(8,w) be an arbitrary function of the two angles
8 and w, where 040 ¢ and 0¢wé2r . Laplace asserts that the

function can be represented by a series in which the general term is Yoo &
rational integral function of degree n in cos 6, sin® «cosw and sind . sinw,

determined by

T 2
Y=‘ﬁﬂf%@wjfﬁwmde
" A A

-4
P, being the coefficient of 2% in {I - 22lerm 6 &ob 5t we‘mtw*w‘)]+21} =

Ivory and Lagrange pointed out the insufficiency of Laplace's reasoning,
except for rational integral functions of coe€, sin€ cosw and sin@ sinwe
Poisson showed the assertion would hold if £(9,w) was of class C'e But
it was Dirichlei who relaxed the restrictions s¢ that continuous or dis-
continuous functions could be represented by a Laplacé Seriea.

Dirichlet's attention is centered about showing the convergence and
finding the sum of . r
N

T 2 and
(5.2b) Z{@wf{s‘me“w‘f Rt b

o ) 2
where x=co0s0 cos®'+sin® -sinb'cos(w-«') and £(6',u') is bounded between the
limits of integration. The approach is'through a consideration of the
order of magnitude of the terms in the seriese In thie connection,

Dirichlet develops an entirely new définite integral representation

of Pn(x)-

Thus he turns to the properties of P,(x) itself, defining P {x) by
means of the genersting functiome Several interesting expresaioné of
Py(cos ©) are then given, all of which appear earliér in Murphy's
"Electricity”?s A trivizl form, of course, is that in powers ¢f cos ©

obtained from (2.2)s The expression involving cosines of multiples of ©

63.) See footnote p. 1%



-1,

we have already given (2.5)e Suppose however, that ‘1‘*(1-2xz+z2)"1/z

=(|—32vcc:m+2”)- {(! 13‘*32(' Q”’e)} ”k z) {|+ ‘S"* " (lz1<1)
64

is expanded in powsrs of z. Ve obtain
(5.3) Py(cos 8)=F(n+l,=n,l1, #in® 0/2).
’I/:L - Z -
Similarly, T ={(‘+2)"—22U *“/"‘LQ)} =(U+z) l{‘ - @%})Zng} & s wWhence

(5.4) T.lesat) = b)Y Flrsh-n, 1 coa™5).

[ " 2 el T wer . .
Again V)= 750 ;— L™ -0 {'btw +(7) (X+')<x-')4{:)(n+v)(:r~o+--}by Leibnitz's formulae
— .S 36 {—x ]
Set X =cead, ﬂ-« ced” 7 annd - = St 20

(55)  Rlcmdde cr™L F(cn, o, 1, —eu'd).

Murphy also writes

. w! 1Cntt) 13- tnt X wt3) Sem (W4S)B +---
(5.5a) T K(me): M!{W(wﬂje‘“ms‘“(“ﬂ)e* 1-2- (2n43)2nes) )6+ .

These representations are not so important as the definite integral

expression for Pn(coe 6) which accompanies them in Dirichlet's work.

i¢

In T «{l—zame+zf Z 2" (coa @) , let 2=¢, Then

T= ZW“‘*’ P leta0) + 1an¢?(mb T+:5.

% —d S PP —eqa @), v<e2r, 0<PLT,
At the same time I- 2%+ = 14’( € ) =22 en@ = lji(cﬂ‘#’ cea6), n,0

2,

mé;—ls'(m 3
If o>¢% , then {Cwé-wee is real and T= m Y.?(———c;;-——j“—g%f‘EhS

& 'q,qi)
" TS S e L N
If 6<d , then \(Coo-coed is real and T Al a® - ) K, 2

w
Now Tl (eomb)= %J;'Ecnncbub %0,
_  2gT
E(.Coa/e), ﬁ—fo’leddb)
v
P Legat)= %—J:S W\ACbﬂLQP {nXx0)

Hence,

- w“‘i’m :J.fwmudbwi; 44
(5062) NE Tr onfmet con 6) oV 2lcwnd - com P

Mrzngﬁzﬂ

6b =
(506b) T, (e o)z - = WV 3lem d-tme) | T) (leme cor s
[

64.) These formulas ere derived differently by P. A. Hensen,
Entwickelung der negativen und ungeraden. Potenzen der Quadratwurzel der
Function {m K7 = 20kt (cog Uere U arsam Usm Ul cag u)} ’z Abhandle ke sfichse

Ges. dor Wiss. Leédpzig (math.) b(1855)285—375. We use the hypergeometric
funetien form for brevitye.
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Add (5.6a) and (5.6b),
m(n+/,_)¢d¢’ s TFSM(M b af

5 = ‘[
(5:60) Riewm o) = 1) rrms-een ve\mme-m@

Multiply R by sin %;and 5 by cos £ and add, obtaining
Bse® ¢S5 =0 (o> &)

(5.75.) Zs"”"c“*:z‘)“’ Blemo) = T wé

]
*’Slmii: V(e e-cood) ©@4D) -
Multiply R by ces £ and 5 by sin ¢ and subtracte Similarly,
2 Riaa® - Ssnd o — 1
" G5 = o >cb
(5.7n) ZC“‘ (neh)a P (eoa0) :{ { 2 {(Z(cm $-c2=86) ( )

&
ELW',{“S?_W% =0 (9<¢).
The latter play a vart in the study of the Laplace Series.

Instead of considering Dirichlet's problem in regard to (5.2a) and

(S.Zb), we restr;pt ourselves to the similar problem for the Legendre Series?s

We seek to show the convergence of (5.1) by proving the convergence of the
dominating series

(548) Z{Qhﬂ -F(x) (x)dx, = f{:(x)Z(;U\-H) WOudx .

First, we uge the result already known to¢ Legendre, that every raticenal

integrsl function of x can be represented in a Legendre Series, to find the
series for P} 1(x), a polynomial of degree n containing either only odd or

only even powers of X,

{2‘:%:_. = Qn ‘v-"’qwa,a_,—rd ,_(_B_.f_—l——»-j
. .
- 2(“-1)“[])-1 AT’L“ de = 2("—7)“[—‘1-{&1 _ Q(V\:Z:o.)-(—lf-ﬁ‘—“dphz ta (e
Now P, ,1Pn_4 is of odd degree and [N J' =2 » hence & =2(n-i)+l. Thus®®
-1
(5.9) 0;?;4‘ = (2n+|) Pl,\ —\«(2(/\.*'5}12\__»_(,(?4\_7) R\~+ e
Qk: = (9”“‘3)?“--; +(2”"7)E\—4— e
dr

Hence,

65.) We apply Dirichlet's results to Legendre Seriese The proofs here
are variations of Darboux's interpretation of Dirichlet's work.

66,) Dirichlet was not aware of (5.9) which appears for the first time
in Christoffel's disseration, "D_p Motu Permanenti Electricitatis in
Curporibus Homogeneis", Berlin 1856. He made use of identities built on
his integral formulas (5.6) and (BJW).
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(5¢10) @w4Df = o T o and
o 4 F
(5.1)  ZeoR= T e 4k

Thus (5.8) yields ,
dPei 4 4D,
(5.12) S, = ilffm( —f; t g)m,

If £'(x) exists and is bounded, ve can integrate (5.12) by parts,
S.= % [f(x)( H.“‘ I8 ——jnf'cx)( PetBde = fw “’jf(x)(ﬁu% Jdox

To evaluate f Foo (T, +R)ae , Dirichlet writés for arbitrarily mmallebo,
~1+ € )
f " (Rew e B dx + fwf (1)((;»«*‘? Bx + /f'ot)éﬂ*,f&)d&x
l-&
= —l+e

In the first and third integrals, If'(x)l <k (a fixed positive constant), for

£'(x) is boundeds We apply (2.6) a2lro, obtaining

-1+ € “ite

Iff’uc Pt B)ax + ﬂ ) (Fuert )MI /lme LA h*—fle<r)IIPH+P|oLx<2»<e+2Ke =#Ke.
As ?or the middle integral, from Laplace's asymptotic form (2.21), for pre-
assigned ¢ and ) =<0 HH>N 9\17.‘(1)143 as long as |x] <[ ~-¢
Thus |S,-f0] <4 Ke +f 2%y Y LA4K(ern = ¥Ke > N,

Z1ve
Hence (5.12) converges to f(1).

-

Actually, Dirichlet proves the convergence of (5.1) in the case when f(x)
has at most s finite number of finite discontinuities in [-1, l] and & finite.
number of maexima and minima. In the above discussion, the points of dis-
ccntinuit:} end the extrema can be isolatede Let them be £, L., 2., ..., QT'
Then (5.12) becomes p

__[f /Q; P ]{cx)(PM,+P‘)ix
and in each :.nterval of integg‘a'bzon f(x) is monotone and continuous. Here
Dirichlet seems to imply f'(x) exists in each subintervale If £'(x) is alse

bounded in each subinterval, he immediately integrates by parts, obtaining

7'H
Sw :*'-if(x)(ﬁ\ﬂ—rP ——i[ qfcx)(?M[fP)J)x (0,=-1, P*':I)
l—D .
In the 1imit as n —» oo, the first sum reduces to L{ro O+ R0)]-feoR G0+ O]} = £y
as long as f(x) has only finite discontinuities and in view of (2,3) and

(2.21)e As for the second sum, exclueive of the integral over [1, -1+¢]

and [1—e, 1] , ell the other intebrals vanish as n-—>c, if £'(x) is boundede



H4-

And now, the excluded integrals can be treated g&s we treated the similar
integrals in the simpler case. Thus, again Sn__>,f‘(1).
If £'(x) is unbounded at finite many points, we can isolate these as
welle In carrying the above through, we must consider sepecially the inter-
vals (Kj—y WKty ) (=0,2--.,4) in vhich f'(x) is unbounded at ks If there
(p >o0)
are only finite many maxima and minima of f(x), we can arrive at a subdivieion
of (K79, K;+7) such that £'(x) does not change sign in any subintervel of
Ky K; +7))e Thus
( 7) j) ( ’( v**“' 7A'—1 +7
Ky i+ =D f o
[f / ]f(,()(Ph+'+E ):f / - +[ + o ()L)(?M..*’Ph)dl..
K-y Kiogp” K3 Kis ey Ka*Ys '
Again all the integrals vanisgh, excludn.ng those over [l( nh)K] and [KI, ¥; +7M,].

We have . ” {‘(L)(PW,-{'P)&:C| I {»”TLZGWH

< FO=0- F K -0,0] + [ Kt ) - F i o)
Thus, if for an arbitrarily small ¢Jowe can select any, .Y, 80 small that this

last quantity be less than €, Dirichlei's theorem will hold. This is possible,
for £(x) is continuous both to the right and to the lefi{ of k4, bounded, and

both iim £(«;+4 ) and nm (W, - 4) oxiste

-lte
Todhunter raised the objection that the integrals f.f '@, B )b

and f‘FL)L)(PhH*‘P ydx could not be dismissed as lightly as Dirichled d:".cl.a.7

The basis of his objection is the use of (2.21) to show QroO-—>oasn->=fnxsil
He distrusts Laplace's formula, es we have remarked (p.24), because it does
not hold for x—+1{ and is no-b.a good approximation for x in the neighborhood
of i« However, it is claa,;* that with a preassigned <30 , however smmall,

the argument (p.43) is perfectly valide This is all we need to assert.

67+) Todhunter, I., An Elementary Treatise on Laplace's Functions,
Lemé' s Funetions, and Bessel's Functions, London, MacMillan and Co.,
1875, Cap. XI, paragraph 152
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Before we continue with equestions of convergence of Legendre Series,
it would be well to return to some further formal developmenti The most

interesting of these are due to J acobi?e Not only doees he compare
S (N ane o L)_ (—i)“dl“.h'. o_(;_"
Y. WS TR L

with the l®gendre Polynomial given as an nth differential coefficient, but

(-

he also introduces some transformations of definite integrals which lead

im from Dm - to a new integral formula for Pye Poisson had

already discussed a similar integral and its relation to Legendre's elliptic

integrals?g These preliminary works are only of relevance in that in them

is contained the theory of the transformaetions used to obtain the Jacobi

0 4P

7 T
Integral Formula (e,
g ' ?hCX):f;T_jD L)L tYLL_' c¢14>)hﬂ

Perhaps the simpleest way to arrive at this formula is to begin with

LI + T —
[ =van el
where v/u is resle Then

IS S . S
, Tzt zheiend — [T-2z+z> 2 1_1?(-'%)4_(_‘{)1'

Choose 2z so large that |2||x r vy c-d| >1 (0 £ b <) e Expand both sides

68o) CeGeHs Jacobi, Formula transformationis integraliﬁm definitorum,
Jourse fo Mathe 15(1836)1"'38&

. 69.) Poisson, S.D., Suite du Mémoire sur les intégrales définies,
Joure de 1'Ec. Polytech., 17(1815) 612-631.

70e} CsGeJes Jocobi, Ueber dié Entwickelung des Ausdrucks
’ a"——%“,'fcvowmﬁo—k Ww%fﬁoﬂ(@-'a‘)] +a' "/:u
Journe £ Math., 26(1843)81-87. - Sopra le funzioni di Lapluce che risultano
della sviluppo dell'espressione {a* 2ealcrwere €Fm WS P ora(6-0') + &P
Giorne Arcadico di Scienze (Roma) 98(1844)59-56.



in descending powers of z and equate coefficients of like powers,

LR T

Pyt f e P
The question of sign arises. Since P,(1)=1, the upper sign must be taken.

Similarly, P,(-1)=(-1) and the lower sign is takens In fact

e 4 <
(5.13) ﬁ(?ﬂ) = + %‘( '(L + (?::qu ¢)u+l (X'>O)
O N = IOy

Both Jacobi and Heina'” write

(x*-0) -0% .L"* .
i Ni ) & e 0™

The coefficient of cosm$ multiplied by a constant Heine calle the associated

(¢ + 6757 e )= r,{,c

Legendre function F.(X), ie6s
_ ( . " Anfm
(5.14) TRloo = Q“@M) PO e o)

n) .
satisfying the orthogonality property

o (m +r)
(5.15) f? oD m ‘

(™ ol (nam)l 27 0a ) (e =2
I [am'l*
Heine and Neumann give recurrence relations for these functions, relating

-~ 71,7‘

_ 147
PPN P or relating ?M' PP o They also write concerning

Y} 'em 3o m

the relation of Lamé Functions to Legendre Polynomials, but we shall not be

concérned with this subjactzz

70.) Heine, F. - Berlin Dismertation (1842)15-18, Ueber einige Aufgaben,
welche auf partielle Differentielgleichungen fllhren, Jour. f. Math.
26(16843)185-216.

71.) Todhunter (see p.4fff) ibreats this in an elementary and adequate
fachion. See also E. Heine, Handbuch der Kugelfunctionen, vole. I, pe- 259,
and F. Neumann, Beitrfge zur Kegelfunktionen, pe 73,



SECTION VI
SOME GENERALIZATIONS

While generalizatione of the Legendre Polynomials are beyond the
domain of the present work, a brief consideration of the most importantw
developments is not out of place., The method of generalization has been
standarde Some one of the avenues of approach {6 the development of
_Legendre Polynomials ie considered in a more general forme For examplé,
one could consgider, asdid Liouville and Sturm, the Legendre differentizl
equation and from it puss to the general linear differential equation of
second order with varieble coefficients, obtaining in this way the theory
of orthogonal functionse One could observe, further, that the Legendre
differential equation is a particular case of the type considered by
Liouville in (4.1). A2 a matter of fact, this equation has often beeh
taken as the point of departure in the development of the theory of
classical orthogonal po‘.!.ymamiza.lsz2

Just such an extengion appears in an 1843 work of Jacobi, post-
humously publiched in 1859 by Heinez3 In this instance, Jacobl considers
the Legendre differentinl equation to be a special case of the hyper-
geometric differential equation,

x(1-x) "+ [o— (x4m+D) £yt —=By =0,

72.) See Holmgren, He, Sur 1'intégration de 1'équation différentielle
(da+ byt 4+ X y" + (@ + Xy + a0y = 0,
Kongle Svenska Vetenskaps-Akad. Handl. (2)7(1868)49pp58;
E. Routh, On some Properties of certain Solutions of a Differential
Equeation of the Second Order, Proc. Londe Math. Scce 16(1884)245-261;
G. Humber:, Sur 1'équation différentielle linéatres du second ordre,
Jour. de 1'Ec. Polytech. (1)48(16880)207-228; J.A. Shohat, Theorie
générale des polynomes orthgonaux de Tcheblichef, Mem. des Sc. Math,
66(1934)31-3. ;

73.) CeG.Je Jacobi, Untersuckungen ¥ber die Differentialgleichungen
der hypergeometrischen Reihe, Jour. f. Math., 56(1859)149-165,



et

We have already written (B.3). In another form, it becomes
(6.1) Tux)= Flonmarf, '22).

LA -0 =
Jacobi congiders similarly 77 &~ L* U = Flnwteli,2) and

|-
X T (i—x (=t A“ Y+ l W
(6.2) (wrm)—l)_’ S LR j: (=rom e, x).

These must be considered as more than mere extension of his observations con-
cerning sin (n arc cos x) (pe “5 )e In fact, there is defined a sequence

of polynomials satisfying the orthogonality property

(5. 3) : ol-1 oA - o (\M A n) )
: L:JMJ;I (r-x) 4o = £(m) %0 Qw:h)(d>fr|)o<>o))

and e hypergeometric differential equation as well. These are the famous
Jacobi Polynomialse
One could equally well generalize the generating function (2.1)e 48 a

particular instance Jacobl considers the coefficient of 2z® in the expansion

of (l-2vz +2) E_f cy n (O « In hypergecmetric form
{ |-
(64) Glox)= %D;h D! Fl-n, 2v+m2’2i =)

The polynomial Cn (x) has been considered carefully by Most34 He gives +the

orthogonality property, o (1)
n n

(645) f( Iy)p’g‘c (0 C,y, D de = fivxo (m=n):

The se polynomiale satisfy the differential equation

¢C0 9
(646) Q)L) T2 C“+m(m+2\>)C‘)

and hence, one can usge series of them in the same manner as Fourier Seriees.

75

T4.) Re Most , Ueber die Differentialgieichungen der Kugelfunctionen,
Jour. fo Math. 70(1869)163-8

75.) ReRe Webb, on Legendre's Coefficients, Mess. of Math.
(2)5(1879)125~64



.

Most gives slso relations annlogous to (3.9) between <3:Z be*l Cmf+2

: v
and also between Cf) C:H , Cna » A peculier representation for

D 76
C,(x) appears in a note by Glaisher,
o 2 ¥
p-t =0=xX)t Loy =X
e - e df.
nlw-1nl fo{' © ( '“)
The polynomials ( V(x) are frequently and unjuetly called Gegenbauer Poly-

(6.7)  CJ(n)=

nomiales Gepenbauer, however, is responsible for considerable investigation

inte their propertieszv

Escarge considers closely the epecial case V ) and writes

Sl o e
(6.8) (' - 9—2/)(_ _{/Q’»ZL) ™ — Z ,fj“—_,. é—r\ (11—£L1)W.

nl
V\..'Ol h- A)L

76s) JeW.L. Glaisher, Notes on lLaplace's Coefficients, Proce Londe
Mathe Soce 6(1875)126-136e

77.) L. Gegenbauer, Generalizzazione di Alcune Relazioni contenute nells
nota del Prof. Modera “Sul polinomii di Legendre", Rende Circe Mate Palermo
12(1898)21-22, - Generalizzazione di alcuni teoremi intorno alle funzioni
sferiche contenuti in urna Nota del Profe. Paci, Rends Circe Mate Palermo
13(1899)92-4. 5

For further consideration of Cf(x), P.Wof any degree n, any order \ ,
and any argument st (n and V rational and s real or complex) see
E.W. Hobson - On a type of spherical harmonics of unrestricted degree, order,
and argument, Phile Transe (A)187(1896)443-531.

78.) Escary, Me - Sur les fonctions qui naissent du développement de
1! expression (|- 2uax +a*a®)” &N ,» Comptes Rendus 86(1878)114-6,

1451-3. I here correct some errors in the formulas given by Escarye

Escary, M. - Généralisations des fonctions X, de Legendre, Jour. de Mathe
(3)5(1879)47-68.

The results of Escary are more than mere generalizations of Gegenbauer
Polynomials. Iscary gives recurrence relations involving his functions for
varying 7 as well as for varying n. He discusses quite completely the zeros
of his polynomials, giving various separation theorems and bounds for the
meximum and minimum zerose He alse treats the problem of the number of
zeros of certain linear combinations of his functions. Concerning this

. latter problem, his results are much like those of Laguerre in the case of
Legendre Polynomisls, which we shall soon discuss in the next section.



50.

This leads then to a generalized Legendre Polynomial with real and distinect
roots in (-a2,a), satisfying (0.”—~l°')7" - Q)L(Q'\'I)E".\- nn+ lf_-u):f =0,

and V\C:— ( 2n 4201 CIA\)»' a4 (-t 28-1)a™ CI/\\)—:L = 0,
© (™ %)
£Cn) > D(m = n)-

N g
and such that [ ch" C,f {xY Ay —
-
l%[e:tng9 uses the generating function log( [ - 2x z +Z)te obtain the sequence

{005 (n arc cos X)} . Pimherlgo obtains new functions as coefficients of
the ascending powers of + in (™3¢ +15,é" .

More genernl differential equations of type (4el) and more general
generating functions <F(x,z)= iz"?&m are not slone in leading to.
extenslonsg, With Jacobl, we can consider more general nth differential
coefficients %n{b(—@)a\(* ‘@h-ﬂf o Turther, we can seek a sequence of
polynominls satisfying an orthogonality propertys
(6.9) ff—FLx)E ) x"dx = 0 (wm=101,2 .- n-1),

p(x) being a function which does not change sign in (a,b) and P,(x) being
& polynominl of degree ne The latter is often taken as the foundation of

the theory of orthogonal polynomials in genera.l?l

Another type of extension is due primarily to Hermite, who considers

functions of more than one variable§2 For nth differentisl coefficient he

n

a P 2 Y L 7 T n
usés mf (x +y =D and ‘Q,("*A}/’(dx +2£vx?+ca -1),

-

(x+p=n)

79.) Heine, Ee. - Die speciellen Laméschen Functionen .erster Art von
beliebiger Ordnung, Jour. fo Mathe 62(1863) 110-141. See also C. Hermite -
Lettre 3 M. P, Gordan, Math. Annalen 10(1876)287-8.

80.) S. Pincherlc - Memorie Istituto Bologna (5)1(1890)337-369.
81s) Jo Shohat - Meme des Sciences Mathe 66(1934)7-3.

82.) Co Hermite - Sur quelques développements én séries de fonctions
de Plusieurs variables, Comptes Rendus 60(1865)370-8, 432-440, 461-6,
512.2. Extrait d'une lettre a M. Borchardt, Jour. fo Math. 64(1865)294-6.
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Likewise, the generating function is extended to
Ll
! }: =<,
= a 4 Da(,

|-2ax—1@3+a_‘+lf’” ,A=p A2
he re _ I )
e jfud,/,o,jg-i’ca"d-o (Jv + 4 él)ol-kﬂ:\‘)’—(»t\").
Subsequently, he proves that {\/m'nz is generated by

Wty Wt

where - L ST L S .
v“v‘m’ wminlgm*™ A;c‘““(x "9 )

The orthogonality properties, urper and lower bounds, and the expansion of

2 "/7-
{'_9"’1' 2“’}*‘1,'(_!—\3’)-1-2«1,&)1.14'1:1'Ufi)} 5
|

functions in series of these polynomiuls of two variables are considerede

Extensions have been made to a higher number of variables and to the complex

domeine



SECTION VII
FURTHER FORMAL PROPERTIES

We come now to a further development of the formal properties of the
Legendro Polynomialss We shall see that almost without exception every new
development was related to the then current problems in Gauss quadrature or
Legendre Series. Although we will here treat the properties apart from.
their applications, we do not intend to neglect referring to their sige
nificance.

The remarkable properties of Legendre Polynomials thru which Jacobi
revived interest in Gauss quadrature, we have alrsady considersd (po 3l ),
We saw how the orthogonality property led Jacobi to the nth differential
coofficient form of the Legend;e Polynomials Thie same property led Rouche
also to a new representation of the polynomials?3 Every function of
x, Vy(x), rational and integral of degree n, which satisfies the relation
(7.1) f"xK‘/“()()J:L:O (K=o 1,2 - pet),
differs from the Legendre Polynomial Pn(x) only by an arbitrary constani.
If we seck to determine V, = AM4-Anq’(+’Au-1¥E%~"*WAnx R
it is sufficient to determine the A's by the n linear equations resulting

) 0 (K oad)

from (7.1)0 If we let o((: %_J )(de =<

vy (K poen) s the system of
]

~

equations is
Auet, + A e Aty +4n =0

(7.2) A“"‘*’A’h-ad;(—,r-"’/'\lo(v\ + Augy =0

AV\D(V\-|+ Ah-lo("‘.“” -+ A|°(1“,1+A1“_‘:O ¢

The determinant of the coefficients ig

Ko Ay oLy v o Apy
(7-3) Ky Ky, oLy .- o
A = *
Ao A Opyg” " ” X2n-a2

"83.) Ee Rouché - Sur les fonctione X, de Legendre Comptes Rendus
4’7(1858) 917-921.
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Solving for the A's, and substituting in the expression for V,, we obtain

o, Xy ol, .- Ky

(704) , o, oKy A
' 1

Vv\_: Ah o, HAn Pgrc s Kano

I x xT e "

Thus the Legendre Polynomial PF,, which is within a constant factor equal

to Vy, can be written as the quotient of two de_teminants?‘l

These determinants can[be given still another form when we consider PZn

and P, ., separately. Because P, is an even function of x, (7e2)becomes
Ay, %o YA, At '”+A’°(Jn—.1*’ Ry, T O

Az,\o(-,, +AJ—'\-2°<++ .- "f-A'LO(:Ly\_ + O(J-V\-('?.:: 4]

A
Alno(ik-;.\— Aln—zo(lh"- : '.‘*—AJ"( '\-4-+ dq'n"’“— D’
from which . Lo |
"(o Ay o d’-h-l o I 3 7 2+t
1 t ] [}
(7.5) T Ay - Kaga ERE A A 2n+3
En:T(T‘ = Wl oo |
n O(ZM—L O/MN' ’/o(‘hq-‘}- <>(l«ﬁr\r:l, 2:1 Inil Inetd -‘E—:I
- n
l x* e xR box® ot [
Similarly, » L e
Ao Ay oo Fgia 3 v 7 243
S AR N i
1 M T — "1 q Znt S
(7.5b) 8‘1: - D(;“ D‘J.u,‘.g_" - 4 - ‘( Vs T T AL
'K e i 2 A L L.
. 2nt X x3 A *nt An41 2ned 2mes” T Hntl
X w2 w3t

These formulas can be verified g posteriorie Multiply each determinant by

xk and integrate from -1 o 1« For k=0,E,2,0.m=], where m is the degree of
the polynomials, the integration will produce two like rows in the determinant.

Thus, the orthogonality propsrty will be satisfied with the vanighing of the

determinant.
From the theory of determinants, Rouché is able to write still other

representations for P,(x). For example,

. . Ay~ K oAy~ 2 A - X X
(7 6) 'F | ‘xl—d‘x 0(3 ’dn)(' o o(h+|—o<“L .
. “(x,): —A—:\
X
PESPNE VIR RE SRR .

84, ) Rouche/ does not remark that it is essential to prove that Dpxo ,
which he fails to do. Actually A, >0, for it is the discriminant of a
positive definite form. (See Shohat, J. - Mem. des Sce Math. 66(19-34) P19,
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85

inother determinant for P,(x) appears in a memoir by Glaisher: In a
previous 1:101‘;9?6 he establishes the interesting equality

(n edd.)

e ; : 0
(7.7) P o =nY") = W )
Rl {‘T‘“)‘ﬂ (2,

and from this, he obtains

0 x | O-----
S00-1) @) b
(tg) To=| ©° = Ox @,
L2 eyt o Y @
o St (D4
o . k|).xa -"— """

(ar)!
(in the first colum the 2rth term is O and the (2r+l)th term is o 3 (x*-1)%;

in the other columas, the coefficients'are the binomial coefficisnts and the
law is evident).

Glaisher is also rosponsible for another peculiar rela‘biogz Christoffel
and Bauer gave (5.9) simultaneously in 1858. Later the expression of Pf?(x)
in a finite lLegendrs Seriés was given. Glaisher considers the rth integral of
P,(x)e The result is a sum :__i}ipi in which the coefficisnts are formed
according o0 a complex lawe

The similar problem of expressing the product of any two Legendre Poly-
nomials by means of a Legendrs Series led also %o some curious integrals, in
which the integrand consisted of the product of three Legendre Polynomialse

By making use of the recurrence relation (3.9) and the explicit expression for

the polynomials, Adams attemptis to set up an induction which will lead him to

85.) JoW.L. Glaisher, Expressions for Laplace's Coefficients, Bernoullian and
Eulerian Numbers, etc.; as Determinants, Mess. of Math. (2)6(1877)49-63.

86.) See Glaisher ps4iff.

87.) JeW.L. Glaisher - Formulae for the rth Integral of a Legendrian
Coefficient and of the Logarithm Integral, Mess. of Math. (2)12(1883)120-5,
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‘the desired expression for PmPn§8 His efforts are successful, but his method

canﬁot compare in simplicity with that of Todhunﬁerég
There is a great number of formulas relating the elements of the

sequence {ﬁ&xg. some of these we have already considered (2.19), (3.9),

(5410)e There are also many integral relations involving Legendre Polynomialss

From goveral of these relations it 1s possible to obtain results applicable

to number theory and to combinatorial analysis; others are useful in the study

of Legendre Series. These formulas are, however, so nundsrous and, on the

whole, their derivations are so devoid of nmathematical subilety that there

is nothing to be gained from reviewing several hundred such relationse It

will suffice to remark that in a series of memoirs Catalan has produced

approximately three hundred such relations. These memoirs ard’

a. Mémoire sur les fonctions X, de Legendrse (1881),

be Note sur les fonctions X, de Legendre (1882),

ce Sur les fonctions X, de Legendre (Second Meémoire) (1882),

do Sur les fonctions X, de Legendre (Troisicme Mémoire) (1886),
e. Seconde Note sur les fonctions X, (1889),

£, Nouvelles proprietes des fonctions X, (avec Supplément) (1889),
g. Sur quelques formules d'inalyse (1893)

h, Sur les polynomes de Legendre, d'Hermite, et de Polignac (1893).

88.) Jo Co Adams - On the exprossion of the product of any two Legendre's
Coefficients by means of a Series of Legendre's Coefficients, Proce Roye
Soce Londe 27(1878)63-71.

89.) I. Todhunter - Note on Legendre's Coefficients, Proc. Roys Soce
. London 27(1878)381-3.

90.)-More detailed references are given in the bibliographye




56.

As an example of a relation useful in combinatorial analysis, we

, , o ' '
consider T = (1-2xz+2”) = %:D-En z’ and T (- 2xz+z’)é' Z ! or
= A? 1'—
(ZPQ'E ) Z ; I ¢ Thus Aa O(Z__ ? ?, where ‘,('/3,17.
0 ¥ X

range over all integral values such that <.,><‘+/3 +Y =rn ., 5ince Py(1)=1,

K x
-——GLA:’ gives the number of solutions of « +A+Y = e Now from (5.9)
J“;‘Li'] = Q‘—f—')—%j}—) , 80 wé have not only the solution of the

K=

partition problem bui also the multinomial expansion
3
Gz wzreg’+ )= le3z + b2+ 1023+ -
Among the d:werse expressions of P, appear

. (7 9)? _ 2 ZL—\) ’2“ ) _ *’”Z(‘l)% J(|+><— i’(( 3(_)%’

(k is either n/2 or (n-1)/2 according as n is even or odd) and

n At w1 {n-2)(n-3) xh- 40 e -

(7.20) B = ™ = L e S .

If (7.10) and the latter part of (7.9) are equated and the coefficients
"o 2 2

compared, we obtain |+ (7)+ (L) v () i = ( H) .

. Another property of the lLegendre Polynomial is due to Bauer?l

¥rom (501)
QLQ&L__QQLQL - yx —1yh
(7.21) Fatn)= 1 ) Cr A”, =
(r-h+D)Un-asa) - (ash) (nr) !
where A(h-) L—“——F—G,l‘)’:—'——_’_— RS

Since Ah can be considered to be the number of pemutations of n+r things
of which ncri)u;f one kind, r of another kind, and r of still amother kind,
all the A's are integerse Thus the coefficients of the explicit form for
the Legendre Polynomial have only powers of two in their denominatorse

Bauer also proves that if x is an odd integer, P (x) and all its derivatives

n
as well as fP (x)dx are mtegers. -
<l

91.) G. Bauer - Bemerkungen Uber zahlentheoretische Eigenschaften der
Legendre'schen Polynome, Sitzungsber. k. bay Ak. Wiss. (math. - phys.)
zu Munchen 24(1894)343-359, :
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There are other algebraic theorems which are more significante The first
of these is in rogard to the diseriminant of the equation Pp(x)=0. Stisltjes
demqnstrates that the expregsion
(7.12) "’5")“'55>'-~<"5*)Jif§*"@m

&<l 92
is maximized if the ¢ 'g are the zeros of Pn(x) e The value then

akt 3",48. Rt

obtained for the expression is 5w 5 - "

and the discriminant of Pn(x) 0 is then
Togd b 2

(7.13) ﬂ G- = s E

He further shows that of all the equations of degree n with real zeros all in

(-1,1), that which has the maximum discriminant is Vu(x)=0 where

L. 3---(»\— . 3 T WY
Yi-2%z+ ZV oy 2" ¢ This discriminant has the value :._;35;' _,7‘;?, = ay\:)h-g .
When n is very great, the relation of this discriminant to that of P [x)=0 is
93 -
about ¥ . These results are verified by Hilbert.

There are many theorems concerning the zeros of Pn(x). We have seen
already that these zeros are all real, distinct, and in (=1,1); that they
geparate the zeros of Py.y and are in turn separated by those of Pp_je

Tehebycheff goes further and states a very general theorem for certain classes

. .94 ’ ‘
of polynomials,” which when put in terms of Legendre Polynomials results in

htl

4

Py having a zero in (a,b) if J/'ch)ix < f§ﬁ1f(éﬁ?)
&

Anocther theorem, similarly interpreted, asserts the existence of a zero of

T4
Py in {3 &ﬂ} ]where the sign of the readical is opposite to that

(n-0>T
of Pn(t)/Pn (t)'

92.) T.Js Stieltjes - Sur quelques théoremes d' Algebre, Comptes Rendus
100(1885)439-440. .

93,) De Hilbert - Ueber die Discriminante der im Endlichen abbrechenden
hypergeomeﬁrmschen Reihe, Jour. f. Math. 103(1888)337-345,

'94.) P, Tschebichef - Sur les. fonciions qui différent le moins possible de
zéro, Jours de Mathe (2)19(18'74)3 19-346.
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Theorems on the upper bound of the zeros of Py, (x) are due to La.guerre95

If F{x) is a polynomial of degree n in x with all its zeros real and distinct,

and if F(x) satisfies the linear differential equatioéns
(roa4)  [HR MO NGIg =0

Ly"+ (L +M) 4"+ (M'+N)\d'+ N'ld =0,
then the polynomial

N+ 2 Mz

(1015)  JUo = LN+LM- ML — 25 M7 2 6.
when x is a zoro of F(x)e If we can find the maximum valus of x whieh will
make JUx) > O, we can find an upper bound for the zeros of F(x), This is

~ the problem Laguerre solves for Legendre Polynomialse In this case

Lex®-1, M=2x, N--n(n+1) and JUOY =G+3)(w-1) - h“—"‘(:’_*‘ra x*,

There fors, the absolute value of the greatest zero of P, is less than or

+2 )/
equal to (n-1) {"(h,u) bt « Ve can obiain an even better approximation by

con91der1ng geparately PZm and P2m+1' In the former case, Laguerre finds

that the absolute values of the zeros of Py, lie between two positive roots
N
lw~ -1
In the latter case, the absolute value of the zeros of Py, ., lie between

(3;1,;)'7’-% Qinlmet) (xH-x?) - oa*-Hx* L5 = 0.

of

2 2 -2 '
two positive roots of L n(5%™-3) % a2t 3) (X x7) + roxh 12x P46 = 0

One can see more briefly that x the greatest zero of P,, approaches

one very rapidly as n increases. Newbon's approximation applied at x-1

[ X4 2
results in X, ~ |- ’J:)~ .
’ ph‘(') nin4t)

Let the zeros of Py be (13) x,.>%, >3 > Dxe, > --->x  (-1).

More complex considerations lead Stiéltj6996 {0 an approximation for X ,n®

98.) E. Laguarre - Sur les équations algebriques dont le premier membre
satisfait a4 une 8quation dlfferantlelle lindaire du second ordre, Comptes

Rendus 90(1880)809-812.

96,) T.J. Stieltjes - Sur les polynomes de Legendre, Ann. Fac. Sce
~ Toulouse 4(1890)G1-17.
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I\_ ‘ JCOWQES:LLH .

3
He finds Kym PYPI T a

Laguerr397 also points out that if
(1.26) Foo= AR AT +AT « AR

[ (V‘|4V‘1<"‘<V‘K);

then the number of zeros of F(x) which are greater than or equal 1o one

is at most equal to the number of variations in the ordered set

A, A, Ay - - -, Ak o Obviously, if thers are no variations in the set,
the theorem holds because \Pn(x)\ 21 for x 71, We assume the theorem

true if there are vl variations in the sequenée {Az} e We now sesk an
inductive process. Suppose there are v variations in the seq uence..

Fw)

i .

Consider % () which vanishes at the same time as F(x) and remains finite
n;

4 { Fuo fex)
and continuous for all x21. Set dx i (;)} = P2y °
: i n

Then Rolle's Theorem states that (F) < (f)+1, where (¥) represents the

number of zeros of F(x) which are greater. than or-equal to l. Also,
‘C \
fur= R Foo-2 Foy=3 AR T - DR
1 d,—l t 4 3
W \
From (2.7) (x?-1) Phﬁ. + 2x PJ = V\&'(nJH)Ea.)

n

x*-1) Pk;\ 4 2x Ph“_ = V‘i(“i+l)?ni,

P
ny

\ \
ahonce S [ DR~ Py B} = {1y a0 -l F By
B3

. P
and %L {L)c‘—l)f(x)} = R‘i :'{y\,j (ua--n) —51 ("t‘”)}A,} l,\?.: ?“i {D(x).

o

4
Now the sign of the coefficients o{ @(x) differ from those of the sequence

{Ai} in that the coefficient of P“i is zero and all those preceding it
proserve the same sign as the corresponding A's, vhile ali thoge following
it have their signs opposite to the corresponding A'se Conseguently,

( & )¢ v-1. Applying Rolle's Theorem for x:1 to (xz-l)f(x), we obtain

(£) £ (P ) and hence (F)<v.

99,) E. Laguerre - Sur une propriété des polynomes P, de Legendrs,
Comptes Rendus 91(1880)849-851.
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There are some obvious exteénsiongse If we wish to0 consider the number
of zefoe of F(x) which are £ =1, we seek the numberlof variations of the
sequence {BiEWmere B; = (-1Y%Ai e« If all the zeros are real, we can
determine the minimum number of zeros in (-1,1)s If the sequence of non-
negative integers {n{§has lacunae, their extent gives bounds on the number
of zeros which are imaginary or in (-1,1)e For example, if a term is
missing in the sequence of the P's used to form F(x) and if the neighboring
terms are of the same sign, the equation has at least two zeros imaginary or
in (-1,1).

Bounds for 0 the kth grestest zero of Py, have also been given
first by Brun%8 and then improved by Markof%ge The derivation of Stieltjes

. . ., 100
is preferable for its simplicitye Stielties proceeds on the basis of

some theorem on quadratic forme. His paper contains a most peculiar
dynamical problem, closely associated with the results to be obtained. If
at -1 and 1 on the x-axla are situated point masses o and i respectively
(both positive), if there are n material points of unit mass which move
freely on the x-acis between ~1 and 1, and if any two points act upon each
other with Newtosnian forces, then there will be a unique position of
equilibrium for the n points between -1 and 1. If their abscissas are
denoted bY X3 >Xg > .ess > Xn, then the x's are zeros of 4>(x); a polynomial
of degree n in x satisfying the linear differential equaxiﬁn

(717) (1-5¢) 00 +2 - - (4p)x] P OO+ nln+ 24425 ~1) P(X) = 0.

. 98,) Bruns, He - Zur Theorie der Kugelfunctionen, Jour. f. Math.
90(1881) 322-8. '
99,) A. Markoff - Sur les racines de ceriaines équations, Math Anne.
27(1886)177-182,

100.) T. J. Stieltjes - Sur les racines de 1'équation X=0, Acta Math.
9(1886) 385-400,
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Furthermore, the x's are shown t0 be continuous functions ofoland/e o

and A= we.

1t o= g X=X 341 (ﬁth X,, = 0if nis odd)e For o= E/
have the Legendre differenti£ equation

(2.7) U-=) Ph" - 2x P“‘ +nheD =0

for «=3/4 andp=% and for«=% and 8 = 3/4, we obtain respectively

(7.18) an’)$\\+(l—21.):¥>\+ V\'U«+I‘)33=D amd

(7,19) (-x7) P - (1+2x) P+l D) $=o.

In view of the dynamieal relations, one might presume that the zeros of the
solution of (7.18) will be closer than the zeros of Py to 1. Similarly,

the zeros of the solution of (7.19) should be closer than the zeros of P, to -1,

Solutions of (7.18) and (7.19) are respectively

_ coa [ (h+byerne coex] " cT: w[(vwl,,) anc ers )
N wn [ darc eonx]
) - Q2-Dm = 2:m .
with zeros at X;= Cea ~577 Xy = tea g respoctivelys

stieltjes proves, by considering the x's as fdnctions of and/g , that

(ai-DT = 2T
actually el T X ia > Yy Fees .

This result was already known 40 Brunse
Even more remarkable are restrictions imposed by Markoff, Stieltjes

arrives independently at the same result by considering (7.17) for«.% and

p= 4+ and for « = 3/4 and /; = 3/4, for which we have respectively
(7026) Q”ll)q;"/x‘?'—kw"? =0 A

(7;21) Q—x‘)‘j“—’ix@‘—\— V\(m+g_)r?:o'

. Solutions of (7.20) and (7.21) are »
g LM +1) re coax]

bl

sl

P = Staln arne e x| and - Toe e <]

and the corresponding zeros are
LT

gi = cva Qﬁlﬂ amd ‘gi:mnH iy

Agein from dynamical considerations, one might presume that the zeros of
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V and ¥V will be symmetric with respect to the origin, that the positive

zeros of ¥ will be closer to 1 and the negative zeros of ¥ closer to -1

than the corresponding zeros of P, that the positive zeros of ¥ will be

¢loser 10 -1 and the negative zeros of ¥ closer to 1 than the corresponding

zeros of P, Stieltjes actually establishes this striking propertye Thus

9 AT e . 3 24~
(7'“2) Cre oY = §'\. éfx'*)"‘ <§~ = o T T for O‘*,'\>°'
LT = . o 241
et 57 = \g* >'x*;" >E, = a1 Fon T
I+ will be wise to recall that
if n=M, 1% Xiym > Xaym 7~ = Femin 20> Ky > 00 0 > Xy~ and
if n=zm+l’|>x‘),,>‘Xx,“>~~->’X...,.\>'xm+:,.‘=°>'Km-u,n>” PXuwyn > =\ « Note also that if
- ontl AT _ 241 . . . . : = -
A= Ty e REm 7 e T ; Af A<ty 224y > 27 and 5, > ¥
‘ . T (e - A ;
n-t 2.4~ A = =
if A< = 2n T L= T and g;\ < ?A .

Very often new representations for P,(x) led to discovery of new properties
of the Legendre Polynomialse We have already discussed the Laplace Integral

(2.20), the Jacobi Integral (5.13) and the Dirichlet Integral (5.6) . From
the latter, Mehlsr has deduced a further integral}al
1¢ (5.6a) and (5.6b) are added,

(5.60) B (o) = A t)fl? +ﬁ'-fé)w”"‘(”+1’;)¢d¢ '

0 Jilegpm@p- coo 8) Viterno-md
while the result of subtraction ie _
O Qu—q_(u""l;d)¢d¢ _ 1 FM(“+£}¢J¢

0 = e
T Vz(mﬁ—waa) T 6 (/i(mg-mﬁj

Ag & consequence, Pn(cos @) permits two new representations,

P, (oo b) = z
(7. 23a) Po (o oy =
r
(7.23b) Ph ( mé); %.fa vy (pn‘-é‘-‘)d 0(%

VZ(co06- Coo 7
Very similar o these is an integral which Catalah®? derives from the

101.) Fole Mehler - Noiiz Uber Dirichlet'schen Inte i

. : gralausdricke f
Kugelfunction Py(cos 8) und Uber eine analoge Integralform fllr die ur
Cylinderfunction J{x), Math. Anna. 5(1872)141-4.

102.) See pe 55 a.
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Laplace Integral .
—%r—f (umol+ltp;,.,o<co<7w) dov
[

(2020) Pn(erm®)=
[ A e oA
_ tanp b YR e T _ . Lo xef
Set con W o= Md/ﬂ/"“' e o coops and dw cﬂ/}r——\————
The integral becomes
coot Y0 _,__,@____
urQol)——~—— (Cm" 4 A R )
P ( [ (= G e
Wo neglect the imaginary part of the in'tegrand obtaining
nel cea h i3
imul ) = Z Lo 28 J’ nat
p. ( N 0 e s F:::‘,;
Let «= % ,ﬂ: = ; thn.s last integral becomes

| e .
6 - o= '
(7024) P (e **) = 9 J .m Valers® ~ces )

84111 other de f:.m.te :.n'tegral repre senta.tlons have been given by

Laurent} 3 His results are based on Cauchy's Residue Theorem. Let

{
£(z) = - where n is a positive integer. We seeok ff z)dz
()= o e reses i gore (fa)e

taken around a small circle with the center at the origine Now

o0 PA_
f(z) “H Z ey , and the regidue of f(z) at the origin is thus
A=o0
P . Consequently,

= T
(7.25) P (x)= o= yc 2 T-axed2 ™

similarly, Laurent shows that the residue of f(z)= ((: ';M, at z=x is
\ (‘AV\ (7(1"‘( )k
— a———— g ® Thus
n! & (250" 2

(7.26) P, (x) = 2!17-/& "‘j (z=-x )" )

taken around a small circle with center at z=x.

Laurent's paper is distinguiched in several other respects. He derives
many known results without giving credit to the original authors. iFor
example, he considers anew the convergence of the generating funmction ex-
pansion (2¢1)s Writing =y+l’ , the generating function becomes

\ \ [}

T= (l—m%’rf)_i: (-zy) " ( "_3:)

103.) Me He Laurent = Mémoire sur les fonctions de Legendre, Jour, de
Hathe (3)1(1875)373-398,
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1f )z |yl<1 and [z/y,<1, the expansion of T is convergente Thus if w is
the minimum of {le ’ \1/y]7g and |z|{<w, the condition is mete This is equivalent

to z varying inside a circle of radius w with the origin as center, while x

ud-f-:', and w——b

varies ingide an ellipse having
2- 2

for semi-axes and foci at +t1. The totality of ellipses for varying « form a

homofocal familys This result is actually due 0 Neumanni®*

One of Laureni's most interesting results is a relation between Legendre

Polynomials and Bessel's Functions. We can write Murphy's Series

(5.5) P (e08) = coa & 11 - () g () el T
Now, 1im cos8 8/2=1 (€< 6<T—€, €50 arbitrarily small). We consider then
the series in tangents of the half angle. If x-cos @, y= 7=

and X = —IT__%] s the series becomes ‘
= 2 Sl
TN RN ARG s A

set y:zz/(Zm)2 and the series is
22_ 2;‘4“
\_ﬂ —_— + —7 i
22(1)°  2¥(2))

L) 2° L= 2.\
— —_— '“vl — « - .
) {__&,(W( ) - &)+

Thus, for n very large

tn o220 (2)
(7.27) Ph(‘hL+?J E

where Jo(z) ie the Beassel function of zero order. This result differs somewhat

from Laurent's and it is Laurent who is in errore

We can arrive at a smilar result by still another method}o5 From

Laplace's integral
w Pulx) = L.'T{x +a Vi-x> e $§” dp

(2420)
‘ z . n a2eo
Let %:\.,7@/ ~ o= ’_—f‘i ; then f:w{x+il/(~kl&ﬂ¢}:e .

104, ) GC. Neumaunn- Ueber die Entwickelung einer Function mit imagin&rem
Argument nach den Kugelfunetionen, Halle, 1862 (Thesis). (See Heine, Haundbuch
der Kugelfunctionen, vols I, p.40).

105.) J. Strutt (Lord Rayleigh) = On the relation between the Functions of
Laplace and Bessel, Proc. Lond. Math. Soce. 9(1878)61-4.
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, T ernd -
But the real part of fo e ap s fom(%wwcf(ﬁ:??\];(z). %@((/,__2_:},,];{2)'

Previously, we have had agymptotic expressions for the Legendre Poly-
nomial given by Laplace (2.21), by Heine (2.21a), and by Poisson (2.24),
A 8killful paper by Bonnet adds still gnother expression}os The method

is long, although not complex, and it will suffice to write

wib)e-3 (n+i)e- T 9 pw{ntl)e-T
(7.28) P, STl L TR i A R L i IS
. " Jaur a0 2 VanTiacnd e Voo E W

where € SpeT-€, €20 arbitrarily small, and p is a bounded

function of © and n.

The results of Bonnet are verified by Darboux and considerably mproveﬁ?v

First of all, Darboux shows that the error in Laplace's formula (2.21) is

of the order of ;l\,% . and writes

L -
29 P ) ~ 2w Ln+h)o s‘J_'_ _,1?__’
(. ) e V2uTr e nw
, ‘ - |
(7.30) Pl {(egat) ~ — 2w MMU“*J;‘)9-—¢J .
] VauTr e Vo /
A N "
(7e31) L2040 ) ~ -2 ]2 pnlinrs ) T ] H%*ﬁm

(04«6 «mW; p, », p" finite). These formulas are of considerable importance

in Darboux's treatment of Legendre Series, and we shall return to them later,
(t-e®) % /- e-<b-%

6 T Vziems L2dead

Now - = — —= | + g , and therefore P

24 ase B 24 o " 8\, _t_eLB,

ey g ety (A ..+bu%g;¢zg(..a)+n.)

= = U malarsg/ tae e 24y e

Whence, for very large n,
b1
135 o fan-t) 1 (+1)o-To)- 1 aln-f)owTlels 13 Cua(“‘?i)o""?']“'“}

(71032) 7, (emb)~ 205 o g {m o-F]- el e il

, 106.) = Sur le développement des fonctions en eéries ordonndes suivant les
fonctions X et Y _, Jour. de Math. (1)17(1852)265-300. The paper includes

a misstatemént. ﬂnder Theorem VIITI, Bonnet asserts that the Legendre dif-
ferential equation determines P, (x) to within a constant factor. This is not
true, as we shall see, when we present the Legendre function of the second kind,

107.) G. Darboux - Mén/mire sur l'gpproximation des fonciions de trés-grands
nombres, ot sur une class étendue de developpements en série, Jour. de Math,
(3)4(1878)377-416. See also p &5 ff.; G. Ascoli - Sulle serie f Anxn,

hzoo

Annali di Mat. (2)7(1875)258-344 verifies Bonnet's result also.
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This formula is a particular achievement, for if the_ approximation is taken
40 a finite number of temms, the error is always of the order of the first
term neglected; and if p terms are taken, the error then will be of the

! .
order of %+5 o If only the first ierm is comsidered, we obtain

P (eo®) o g o [(net)e - 7l

. ;.3.;...(“«-:_)_ - ] . ‘s F . . .
gince T B \1777? by Stirling's Formula. This result is the

seme as that of Laplace (2.21)e

Brun 9108 a,nd‘ He inelo‘3

concern themselves with the behavier of Pn(cos e)
asn —roc o Lf 0<6<T, P (cot)> 05 but suppose that @ is not fixed but ap-

proaches zero with n —»oc o« In this case, Bruns shows that P, (cos 8)—> 0

asn —» oo if 6= (0z2as ) and further this will be true

even if 'frg-ot-’—l e In short, aslong as n® 50 asn —»eo .

Pp ‘(008 8) — O, Both Bruns and Heine use the Mehler-Dirichlet Inteégral to
obtain the result, but we can us® equally well
< <2 Bk
(5°3) - Pa LWH"X):F(""H)”“)') e z»\)
= |- (u‘w)(t}) . = I;)k +(n+z_)( )M ‘Z: -

< oK

Asm —P o , sin 25 — _2_: "
(7.33) . (o &2) o= ‘U’ = (1 W)+-¢—,7»(l— )0+ ")— (, _i)(, L)lv2)s
whence

(7. 34) /f\’::;, Puleca &)= J0 (6K,

From this last result, Giulianitl® obtains the theorems of Heine and Bruns.

108,) See pe 60 ff

109.) E. Heine - Ueber die Kugelfunct:.on Py(cos ¥) fir ein unendlichen n,
Jour. f. Math. 90(1881)32¢-331.

110.) G. Giuliani - Sopra la funzione P, (cos ¥ ) per n infinito,
Gior. di Mat. 22(1884)236-9.
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’ 11
As Frischauf points out, the convergence of Legendre Series depends on

the fact that P, (cos ©)> 0asn —> oo if n@ — oo .

Sfieltjés%lz t00, was interested in the nature of Pn(cos @) for large n.

He obtains a series comparable to that of Darboux,

" £)g-3°T
(7435) ?(Wg)siml{al[(w’;)b“lﬂ + I ua[(m%)é—}%r . I 3*—&%—-] +} .
" T (2np)! Vot 2ant3) m; 24 (2n+ Ve n+S) Y (20 8)

This series converges and represents P,(cos 6) when 2sin 6 > 1, i.e,

- /6 <® <-5'"/6. It further has the peculiar property that if £he first p

teyms of the series are taken, the error is in absolute value less than

twice the (p+l)th term in which the cosine is replaced by unity in the

numérators

Callandreau has proved the results of Darboux and Stielt{jes in a
different way and examined the remainder of the Darboux expressione
The integral related to the Bessel Function is

e
J =T(%=%] ¢

snd we con write for p>0

—aX w"l¢d¢l

oo ar ‘Px —-AJ’K “
[ e 5, ) w e -+, TR * *¢
[]
= _Vl___l_ J'Tr “":‘_L )n+l )
T o (P'f‘_z(/b" CO"L¢

111.) Jo Friechauf - Zur Theorie der Kugelfunctionen, Jour. f Meth.
1.07(1890)87-8.
112+) TeJ. Stieltjes - Sur la valeur asymptotique des polynomes de

Legendre, Comptes Rendus 110(18920)1026-7, Sur les polynomes de Legendre,
Ann. Face Sce Toulouse (1)4(1890)G1-17.

113.) 0. Cellandreau - Sur le calcul des polynomes X (cos ©) de
Legendre pour les grandes valeurs de n, Bull des Sci Math. (2)15(1891)121-4.
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If p=cos 6 and b=—sin 8, we have the Jacobi Integral on the right and
P
&th=>hS;e'mw0L(xm*Wx"dx

On the basis of this and Poisson's expansion (2.24) vhich is essentially
;o(e), Callandreau announces a theorems The femainder of the Darboux ex-
pansion can be congidered as the real part of ﬂ_eli!$+ E%?iﬂr_-(”_P—k)ﬂ
of which the affix falls inside the circle with center at the origin and
radius equal to the absolute value of the (ps1)th term (and in the fourih
quadrant if cos 8>0), By this we are enabled to say something about the

gign of the remainder as welle
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SECTION VIII
INTERPOLATION AND MECHANICAL QUADRATUZE

% is rather surprising that, just as there was a 1apse.of fifteen years
between Gauss' paper on evaluating definite integrals and Jacobi's revival
of interest in Gauss quadrature, there was once again, after the three
memoirs of Murphy, a periocd of more than fifteen years in whick no apparent
progress was made in the problem of evaluating definite integrals by means of

Gauss quadratures There were at best a few attempts to apply the results of

Jacobi and Murphy to specific problems}lé

It is Tchebycheff who heralded the developnent of the modern theory of
interpolation and mechanical quadratures With Tchebycheff's early memoirs
we shall nct be concerned in any detaile It will be sufficient to remark
4+he nature of the problems selvede His first_two papers deal with the
develomment of the sum E;Q‘JL(“A &%3& in continued fractionms,
where Xg, X3, see; X, are m+l real and distinct numbers for which w(x) is
g defined, non-vanishing weight function}ls The continued fraction develop-
pent has as the denominators of the successive convergents a sequence of
functions %), The ssquence is distinguished by the fact that, among

all the functions of the same degree havimg the same coefficient for the

highest power of x, the sequence of V¥ 's renders minimum the sum

Zn: L’)il(/x’i) Ufl(’xi> . for §=1,2,00¢ 4D

114m),For(e ample, Feo Neumann, “liber eine neue Eigenschaft der
Laplaceschen Y %) und ihre Anwendung zur analytischen Darstellung derjenigen
Phinomene , welche Functionen der geographischen Lénge und Breite eind,
Astrone Nachre 15(1838)313-324 (reprint Math. Anralen 14(1872)567-~576),

115.) P Tchebichev - Sur une formule d'Analyse, Bull. Ace Impe ‘Sce
St. Petersbourg (physe -math.) 13(1853)210-211; Extrait d'une Mémoire sur

ies fractions continues, ibid, 287-288.
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That the problem is related to interpolation‘and quadrature problems

of the kind with which we are more immediately concerned is a little more
s 116 ‘
evld?nt from a third papers In the latter, f(x), a ratiopal integral

function of degree n in x vhose value is known for x,, X3, X5, svee Xy
(n+1 real and distinct values of x), is written by the method of Lagrange as

_{1(7() — i (i-—(f:—)—fz(%) ) L(?‘)’-‘-('X"’XO)(?"N)(‘X—?L)-‘--'(rx—v)(“).
i T, ex A :

Also fUO)= c‘)'i ) — 1 Y (X)g, ¥ (XA}¥(X;)+i3WI(xi-Zo Vol

where the ¢'s are the coefficients of x in the Q's of the continued
iy

. ‘ _
fraction e e development of .'RL . and ¥, (%
Q \ Qq_ Q’b 'x’“

izo

is the denominator of the rth convergente If only the first m terms of this
approximetion are taken, f(x) is approximated by a polynomial of degree m-1,
and this approximation will be best in the sense of least squares, if the
known values £(x), £(xq),eeee, f(x,) are considered to be of equal weighte.

. 117
The problems are solved in greai detail by first Tchebycheff t and
118 '
then Hemmites
A systemeatic exposition of the use of series of the denominators of

the convergents of a continued fraction development to approximate a given

<119

function is given by Rouche. Before describing his work in detail, we

will mention the general nature of his results. Let f(x) be a polynomial of

degree n in x, and F(x) a polynomial of degree m+l invx with zeros at

) Fx) 3 b
Py O Pae them gy T e

xo, xl. xz’ ves xm and M 2 Ne 'DBRO"}G .

116¢) Ps Tchebichev, Sur une formulé d'Analyse, Jour. fo Math,
53(1857)123-5.

117.) P, Tchebichef, Sur les fractions continues, Jour. de Math..
(2)3(1858)289-223.
118.) C. Hemmite - Sur 1'interpolation. Comptes Rendus, -‘-18(1859)62-67.

(P. Brioschi, Intorno ad una formola di interpolazions, Annali di Sc. Mat.
o Fig. (1)2(1859)132-4 reviews the work of Tchebycheff end Hemite).

tions

119.) E. Rouché, Mémoire sur le développement des en séries ordonnées
suivant les dénominateurs des réduites d'une fraction continue, Comptes Rendus
46(1858)1221~4, Jour. de 1'Ec. Plytech, (1)37(1858)1-24.
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Form the Sturm sequence

and the continued fraction

(8.2) . [y‘,rgl_ l‘\‘i_ - I‘Z.H'

F )
Rouché's demonstrations demand that R, be a polynomial of degree n-i,

Q) of degree m-n+l gnd all the other Q's linear. Write

Ri=/1/;'x"' PR (,{:111,3),‘.)u))
N |

Q"—‘— %IIX P )

QA=. Z;”“*”ki (.A":.z,a,‘f,-..)n-i-l),

Let Nk/Dk be the kth convergent of (82), then Ny is a polynomial of
degree k-1 and Dy is of degree ment+l+k=-l=m-n+ke Given m+l valuee_
Wlx), @ (1), ¢l), . ) 0f @(x) , a polynomial of degree m, we seek to
' devélop this function in series of D' s and to study the properties of
this expansion. We shall see that there are essentially two cases. For
m-n, there will exxst a solution
(8.3 ()= 2 [gen & ‘“7- e 20 009] (D (0=0),
For m>n, the D's w:.ll depend on an excess number of linear equatlons and
the problem will be "overdetermined”s

The most fruitful discussion comes from secking an appfoximation
which‘will be best in the sense of least squares, considering the ¥x)'g
to be equally weighteds In this case, of all the rational functions which

lead to series giving exact representations of #(X) (m=n), the fraction
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' [
» Fuo

(8.4) Y= [Ag,m mZ D (%:) €3]
we take only the f:l.rst r+1 terms (r arbitrary), we obtain an approximation

(8.5) 200= 7 [A T De (x)Z Delx,) €1x.)]

(A constan‘t) hes the following property: If in

AT O

which is such that the sum Z_ [‘F(x )~ Z(%A)] is minimum. This is the
A=O , - ‘
result obtained by Tchebycheff in the case of A=y , for ;i")) =Y Tox.

and (8+4) becomes

(8.6) @)= Z; LZ"*' Dk(x); Dy (3) ‘P(oc;ﬂ.

If the given x's are equally spaced, ie0¢ Xj=x; ;= m in [—l,ﬂ ,
|

' Fl()() ) { _Q:I - { _ X4
P Y

consider mDoe m F (X) e T T ol S 1 x

T

Then, we censider the continued fraction development of 4 log :::T of

which the denominators of the convergen'bs are Legendre Polynomialse In this

case, (8.6) become s

(8.7)  ¢(x) = f | =5 R )J Q) P, () at] = Z A P

One could easily show that such an approximation is best in the sense of

leagt squaress

Let us seek now the relations regarding the rational fraction and its

corﬁinued fraction. Consider, as before, f(x)/F(x), wvith ?ir.f(xi)/pl(xi).

R o™
o : ~
. - .l _ _ <
Let ‘1"‘ +‘P' +1”- l + t P X gfh A y I i s
So 5, .~ . Se S, S, .- . Sa
Sy S, ot Pw S, S. - Sw+)
= . T = B _ .
JAYH - . _ , k LTS e Saand]
Wy
w
S Swr C Saw | A %

,Tk(x) is a polynomial of dEgree W, In its expansion on the last row,

A K +’x dAg . +’xu) JAK
T, )= 45, o AS“,H Lo T a3, .
Replace x by Xg0 multiply by pixf and sume Then .
3 g -~ - - o
dAk _ ° ! o S
IR R S = [T
A W
° S -
(8'8) * su~' Su 2w~
s S S/w+w
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Form=w, this gives

(8.9) ff ¢A‘Xf)7lfﬂg) =4,

A=o

For pm= w—g' <w (j:'/L,L ce L) , the last determinant will contain

twice the row S, Swur, Sta, - -, Spsw , therefore

Y

(8410) ETXY?TK(”)“’ (/*=';1'/1/-“";w"')‘

Furth:-:—mora,
(8o11) Ric= F7 0~ PN
From (8.1) end (8.2) this is obviously true for k=1,2¢ In general
R, = R;, @i~ Ri- = from (8.1); D, = pi_, Qi —Di-o
and N; = N @i - Ni-y from well known continued fraction relationships .
wo assume R;_, = T Di- ~Fe Ny and R, = ;- Dica =F-NMica | Now

Ri= (?'Dku‘—FiA&_Alli“({UM~1~F:M&1)==¥(m¥,Qg—Dbx)_F(MFH@_NH).
Hence, R, = ' Di— F N and (8.11) follows from an obvious induce-
tions Since F—_(.'xA.)-_ o,

(8.12) R (®xa) = £(%:) D (%i) o

- A known result in the theory of rational fractions is

; ) N . fv | i ~
>_ M'Xf:o (g:o,;,z,.../wﬂ),erf R (x:) /lk’
ATO F, (’.xﬁ) ,i:() F l('XA) A

(r,, A constents; A is coefficient of highest power of x in F); by virtue

(8e13)

of (8,12) this becomes
— 7 __ ‘ . Y w R
(8.14) AZ—_O +. D (%e) *;. =o (3 =0,0,2, -, w..,)/ Z e %, D (x,)= \—A;_' )
= =
The se W A1 relations determine the wW+1 coefficients of Dk<")

which is of degree ¥ o Now (8.9) and (8410) determine T)(x) which is
also of degree ¥ 4 and it is clear that Tk(x) differs from Dk(x) only by

a constant factore TIn fact
St _w

! x4

_ LA T (x) = e
Do (¥)= 3 o & A A

Further, write (8.11) for k-1 end k, multiply the first by D, and the

(8415)

gecond by Dg.p, subtract to eliminate f. Thus
QK-' Dy R Py = F (N Dreas ™ N Dk) = F/
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" the parenthetic quantity im the middle expression reducing to unity by a well

known con’oi.mged fraction property. Using ([8.15), equate the coefficients
et oA

\ :
of the highest power of x(x'-M_ here)e Then - Ry Ruy
A

L

- But the eoeff:.cient of x in U1 is the coefficient of x in Rk 1/ » 8nd 80

= Re-t _ JUe Rt A* A
(8.16) bt = TR A

'in‘ particular, for 01 the coefficient of the highest power of x is that of
the highest power of x in F/f. If we let a be the coefficient of the
highest power of x in f(x), we have q,= Afae

We now exhibit a most important property of the D'se From (8.13) and

(8.15), for h<k two integers between 0 and m+l,

< A
lxs R (%) 1 pr B
frerd DK *) F_'(,x) - A:. L AK
o R (%)
(’X K = ©
L ) T

By virtue of (8.12) end (8.16) these become
|
(8.170) Z T4 D XD = o

I (Solqb) Z '?; DA #’A) DK(¥/;) =0 .,
4=v w  Fx;)
Even for h=0, (8.17b) holds. For k=0, (8.17a) 48 7 T,  and O or
A0 .

;/A according as n<m or n=ms Thus (8;1'1a) is true for k=0 and n= m also.

We now seek to represent a ratiox;al iniegral function by a series of
polynomials, which are dencminators of the convergents of a continued
fractione Given. ¥(¥), Wx,)) lr.) . -, @) , m+l values of ¥(x)
# rational integral function of degree m, end the continued fractien

"development from which we obtain the sequence {Dk(x)} s Yo write
‘3=u°D,(x)+u.D,(*)+ Lo 4wabaix)  where  Yyi = €lx) Gime iz

Suppose n<m. We can then wﬂto

HoDo(Xe) +w, D, (X 4 - - - +uy Dy (xg)= ¥lx,)
Uo D, (%)) +wy Dy(x)+ -~ 4 U D (X,): @(x,)

- -—

| ' - @l
ty Do LX) (D, (KD + 4 D(x)= ¢ )1

an overdetermined system of m\l equations im n+l unknowns (m > n)e We can

impose , however, some added conditions, say that the approximation be best in
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"","the gonse of least squares. Thus, let us minimizﬁ.

’7 (3318) = Z [f((x ) -‘Z u D (% ﬂ
Aol i
" '4n the usmal wey, setting

. QJL - ;__.& —o0 R ;—__ﬁ—‘- o
~ (8e19) Fa 00 ew ! 7 %m
Co S )
. Let z D« &) v, (xi) = 3

;,(8.»20) i Dk('xﬂ) @) = T

,L-a-b

‘and (8.19) then gives a system of n+l linear equations

(o) (1) . "
Wo &g +U, cS +MIS° +...'+u“<$°()-_—'ﬂ‘°
A 8(‘) J(I) . (M)
o b rwy & U 8T e Aua T
(8421) _ _ _
. Q) tz) {w -
SR NIE PR AU RE PR AT ),

for determining the u's, the m+l coefficients of the _seri.és.

| The case of more immediate 'intereét occurs when n=me In this case,
_'mul'tiply each y; by pibk(xi) and sum on i, then

Z_ bz D () @) = W Z D. (’h)f Z"“'

- by virtue of (8+17). Hence. -bhe result previously annouﬁced in (8.3) vnl
_ be obtainede How is this related to the best approximation in the sense
iKZo

of least squares! If we take K P (X) (hc m) to approximate ¥(x) ,

"the coefficients

(8.22) Lk Z pi D (%2) PRL)
depend on all m+1 va.luke—so of ¢(%) , but the approximation will in general not
be best in the sense of least squarese In order to achieve the latter, we
. must take the u's as in (8.21). The seme is true for #((x)= A F'(x), 1..9,‘
" 4he rational fraction A F'(x)/F(x), in which P, =2 ~md d, . (k;&”(,;}

Then (8.21) reduces to - ukr- T /g'f")_ .
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We are now ready to seek the more intimate relations of the preceding
discussion to Legendre Polynomialse Gauss]’m had already given the cone
tinued fraction associated with the hypergeometric functit'm, and had
written log %%E ZtF(%,l,S/Z, tz). We are going to prove that
the denominators of the convergents of this ‘e ontinued fraction develop-
ment differ from Legendre Polynomials only by constant factors. We recall
first that
(3.9) (nt1) Posy — (2n+t)x P, + 0 P =0 , Po =1, P,‘~9<
éompletely determines the Legendre Poiynomiala. Now the continued fraction

vl v vy V. o« o .
y = Fé ru/r‘) m{_.-. hasconvergentsw'l;:rd—m{---‘—%.

We list some well known continued fraction relations which will be helpful

Vn = Ur“q Vln-|"' Vaa Vn—:) v“,,_' W" -V, Wu+1= v v
y
Wh: \Af“_‘ Wn—-l_\r;\, Wn-z) Z‘,‘il- —_ _\{_'l__; U Vg U'z-._.U:‘
Wv\+l Wn Wh WK+I )
Vo VoV,
= ww P ow veVi T VeV Vi Vi
¥ W, W, w‘wl*' e F VeV Vot Ve
273 W“ WM+,
= 15 DY SRS RN
et Y, ﬁi 'Ti Qs have the convergents Ni/Di' Then
NV\-}-‘ = Nthy‘+| ‘—N"_’ , NH+| D“ _ N“ DK+‘ - ‘)
. Dn-n = D Qs — Dnﬂ , QH_' = w
: ‘ -~
Y = e A . .
! +
Pl ‘7,[72 V.\ 'DV\-.'J

Further, Gausg gives -
_ 1 et ll‘ot ?’ﬂ— IQ;:J——~..
F sy 5,4 =6 - - [{)‘ l ' S

(A1) k=) _ (k#FQUIFK —ol)
e = e =
>Wh re A (J+Q_[(-,){a’+g_l<) /7 r 2w )X F2K+1)

+ 2 Log* 2-2 ,» 33 42
Thus-%log',"f_—'g:tp(ii/;)%_ t): rflJ, 3 )_———3':{ 3 =t L
’ (. r—-—-’, r————" .

Let t:l/x, this becomes s

2-2

[ —
[ X+t v 3] 3"J__ 1) ...
2 = I~ x x p)

"
QES

. X~
in which v, -_men w = — -
B (an-0)(ant) » =% W, =1, wly\zx. Now
. \"/n+| = )(\N',\—— (1__—‘———‘0'\—1)(1\4-0-1_)\4/“‘" s

~ 120.) The discussion here resembles in its basic form that of Guss
(sse p 27 ). There are, of course, important embellishments, for Gauss
wae apparently unaware of the relation of his results to Legendre Polynomialse
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. ’ 5. - {2m-t
in which st Up =- LW Ue = 1, V=X Thus (wy Vs FGurgxly+nl, o,

121 .
Comparing with (3.8), we see thal U, =P, and W= 2" uf ) p,. Thus
(2!

. ‘ Lw x+y _ RN U - o
(8.23) B Py wn tomn * (n+')P,.'P“+: *
- Y _ A4 _ =N
. IQ, ﬁgm T T D
with Dl‘:-Pl, D2:2P2, Dg = Li?: P3, D4‘;—l; Pgs etee In general,
w (a1 ;
(8.24) Dy=CyPn, Cn= il  for n even and Cp= F_ET“—)'T for n odde
Now Qn_,_l:-z.ﬂ’“‘knﬂ" [L“i‘—gi;' « The coefficient of x in Vs;q o 1;»;” , and so
R - - » W “
(8025) %V\‘H o = zwtl
Lot xy =t L4 (g —«) in (4, 3) be equidis'tant abscissase Then
Z + 8(')( = = ZB(1A)(7‘A+I w«-)“'/&'— Ao )(YH" Y) ’L‘j‘ﬁétx)ol%
y=o » = e Y £0x) F'(x) L
In the same way, f°r T and q, D, arising from Fir) = {: ooy 4 XX

(8.4) tecomes N
(s.26) ¢ (0)=L U X < g ) €]

Let X3 increase by Z/m in Ll 1_\ s 1e0e X4 = -1+Al" e 18t m —>s , then '

G (x)= L I ‘7K+ (1)5 Do le)cpéfc) Jﬂ
K=o — ~ Lf -A_t
2J, X~

ghere q and D are determined from &:«; / 'x

A=0

‘Wo assume, of course, that the expression couverges and represents the

functione From (8.24) and (8.75), we obtain

@2 - {(= Z[”‘“*‘”’ o [ Pt 4] = “L AR

The mean square error, if only the first r+l terms of (8.26) are taken,
is J,:Z[_‘P(M)'-*ign(*;ﬂl . This expression is minimum and has 3[/[‘?(7()—?,,] Hx
as 11m;.'t agm —> o o Similarly, if Sr(x) is the sum of the first r +1 terms

of (8.27), then, among all the rational end integral functions {2} of x of

N !
the some Gegree, Sr(x) ig the one which minimizes ) - j [ix)- Z]l M e

121.) Other proof given by
Hermite, Co - Extrait d'une lettre addressée o F. Gomes Teixeira, Jour de

ciencias Mathe © Astrone 6(1885)81=4, Osuvres 4(1917)169-171e
Catalan apparently velieved no proof had ever been given. Most authors
considered 44 obvious from the work of Gausse Catalan gives a formal

proof (see Do 55§ e



78.

122
The proof is simple. Since Z is a rational integral funciion of degree r,

(n=0,1,2, .-, fl.)'

set Z‘ = Z_D A,Pye The condition for minimum is sil_:“’
[ n
.0 j"[W(;)_il]P,‘z/‘oc:o or J:; [‘(’Ix)-nz_ AP ] P de=o.
- f =0
In view of the orthogonality property of Legendre Polynomials, this becomes

2n+1

f
Sl 90(7() Py‘b")‘: 2= An or .AA: u__f,‘.f")“(x) QO(X)(/L)C « Hence the 2

pertaining to the minimum is of the form Z =sz;£“:' P.‘_(x)g CIP () [=S, (x) .
The orthogonality property upon which the proof depends could be obtained,

it may be remarked, from the limiting case of (8+17) for P;=1/m and

2= ! +'L—9_y1 (A=0,0,2,-~ m)as m—700 , if we make use of the relations which
we have slready seen te result D = G P, and qnflc’:: 2n+le

Returning now to the earlier discussion of Gauss quadrature (Sectien 111),

we can extend the results there obtained so that the role of the continued

x4} '
graction development of log =/ is more obviouse We evaluated ) f(x)dx
x—I ), .
when f(x) wee known for 0(l) "lz_, - ey, oL all in (_1’1)’ by writing
. | " .
(306) f o Fman = Z’ A FLaz) where
) . LY
| L | n e
(3.5? AA T OR) L LIt N
and the error funct‘ion is . _Z“ Aﬂ-af‘ oy
‘\ -~ — v . z A ool = A=y
(3.8) t('x)——g_-mM L AL % P N ey
* / A=) o ;7?',;‘0(*_ (r~ Lot~
44 > M
If log | —, — t % £ A is expanded in descending powers of t,

the coefficient of 2771 4111 be precisely E(ka). Let

] ?V\‘XJ"‘PH({) ! P"(K}
(8.28) ‘FU-')"‘JL, ”T—i‘—‘dy’ SU(O(A):LI K- ot o
i'hen A= f_(,fil e Now ¥(t) is a rational integral funciion
g Pl (42)

of t of degree n-1; end therefore, by the method of Lagrange,

122.) One is given by Plarr, Ge = Note sur une propriété commune aux

géries dont le terme général dépend des fonctions Xn de Legendre, ou des

cosinus et sinus des multiples de la variable, Comptes Rendus 44(1857)984-6.
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' (« A
wit)= P Z V) =P, H:)Z
izt P (v( )L‘é “’») A= 4~
By virtue of the symmetry of the X Vg and A's (see Do 29), Apumi1 = m and
woAL
- = = opn o Thus W(lt)= P T3 also. Add:.ng this to
A=

n—vn4|

the preceding express:.on tor ¥(t) , we have pie)=th “)Z

yit) —+ -
and p ) Z t

-2kl

2k
< . Thus E(x ) is the coefficient of ¢

-t+|'_‘£_§f-)-

~  PE) jn descending powers of te

in the expansion of log
Be fore we rewrite this result, we introduce another function, Qn(x),
vhich is the golution of the Legendre differential equation in descending

powers of Xe It has the representation

. (n!)>2 " nit ondz 3 4w L.
(8.29) an(): m XLM,F 2 2 =z 7 + ", -xa.)

1t the equation for Q, is miltiplied by P, and subtracted from the product

of Qn and the equation for Pn' we obtain
!
(1- Xl)j‘%i{ P, G — @n ?,.'} = 2% {7’,\.0,,'— Q. P }

and therefore, Pu Q. — Q. P = ;k:_‘, : . Divide this last result by Pﬁ ’
KQ"”T Pu= %{%)}:(x’:—:)l" « Hence '
B |
where o= el T » C3 ‘(?'«’—ﬂ’n‘]x:-« =-% 4 BT a(*_fu%)' ne
Bj_ i{%);hx_d o Now Pn(x)z(x- «;,)8(x), and
B} = %{ (;;"—)S—lﬂ =-2 ‘—3‘-%%5{7%] ~ . From the differential

e@ua’oio’n for P, —%“)[(x— %) gz s [m2x [(x-) SI4S] +n (n41) Oc-ty) Seo,

Hence if x=4« , (1-x 2) s'- Sx=o and B:'.L=0. Thus

ST NS e L+ z xAx,L *K] . Comparison with (8.28) will

¢ AR

justify taking k=-1 and k' = 0, and writing
e S X+
8.90) Gu=r | Gmgpr T = P (m) Loy KEL R, ()

'fhis Qn is the Legendre function of the second kinde

Heinelza already knew that if ;_L; is developed in increasing powers

123,) Heine, E. - Theorie der Anziehung eines Ellipssdts-, Jour f.
Mathe 42(1851)70-82. -




of t/x,'the powers of t replaced by their expressions in Legendre Series

(2.12), end the whole series collected according to the indices of the Legendre

Polynomials, then
(6.31) —-= 2 (nr0) PUE) Q) fe- Ven o [> [x= /77 |-

x—€
Multiply both sides of (8.31) by P, (%) and integrate with respect to t,

I P (E)
(8.32) Q“(x)::_é_g s dA4

n=o

124

by virtue of the orthogonality property of Pe Now

! P.(x) o — L I P(x) —P (¥

Qv\(x)‘_ j_J:I »)(,_t ?_[’ ___Txt——t—‘—‘u-
o B R N S P e

(8. 33) Q" (7‘) ey E ?M(X/ /b? _;—:’ — _2: , :i 112‘-

end thus, by comparison with (8.30)
t Ptx)—Pu t+) ‘b/‘

- L o
(8.34) Roo==4] —oT¢
Finally we write
LJ"_éi;
I (8. 35) B0 = Putx) L= R 00y LD =2J, x¢
Wo showed that E(x2%) is the cosfficient of +™°° © in the expansion of
+ 4+ P (£) X .
10 T ~ P in descending powers of te From (8.28), we see
that Y +)=2Ralt) « Thus, E(ka) is the coefficient of g2kl

in ZQn(t)/Tn(t). In Gauss quadrature all the preceding coefficients must
—n_l

vanish, end the leading term in Q,(t) is therefore that in ¥ e Ve may

also remark that the denominators of the convergents of the continued

fraction development of L(x) are the polynomials whose zeros we use in

Gaussian quadraturee

Let us return to (8.30) and use the fact that P and Q satisfy (247),
\ n

then PL_“ gatisfies _Aﬁ- {(x’—_l)ﬁ,"} = n (n+D)R. —2 ’P,:

Hote also that R, 1like WiX) is & polynomial of degree n-1, and (8+34) shows

%24s) Jo Neumann- Entwickelung der in elliptischen Coordinaten
ansgedrlickien reciproken Entfernung sweier Puncte in Reihen, welche nach den
Laplaceschen Yn fortschreiten; und Anwendung dieser Reihen zur Bestimmung
de s magnetischen Sugztandes eines Rotations-Ellipsoids, welcher durch
vertheilende Krifte erregt ist, Joure fe Math. 37(1848)21-50.

1
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l)nﬁlﬂn(-x). The Legendre Series for’Rn is thus

that R, (x) =(-

Rn(*)a (*t,Phﬂ + “317;«-3 + &g Pu-s + ..

If this is put in the differential equation for R, and (5.9) used o elimin-

2h-1| 2n-§

A, = . ——m— PR
PP S ar Py N and

ate P;l’ then «/= 2

- Ln-5 2n~-9 + ...
(8. 36) R“ {(x) = 13‘2;?"&' Pn-[ 4‘3(”——‘_—')&‘-3‘4— -——-‘5("“2) Pn-: j
125 126

Thig is the result given by Christoffel and Bauer e Bauer also gives
’ ) nt Pefui f'ﬁ’ T (ot

8037 N :——;— nf o = 74

( Ry‘b‘/ = i.::o N-A ) 1y (zhn-l)(_v\-h\ﬂ‘-‘) (- =ny oded )

and this can be used to evaluate _["PmPandx and to obtain P§ in a Legendre
Ser:‘.a‘s.'

In his papér on Ga\'xsa quaérature, Christoffel gives a startling summation
formula, of fundamental importance in the theory of Legendre Series.
From (3.9), we obtain

()P () +n P (x) P (¥

2n 4 P ox)?P ()= (n+1) Puss
e ) (x) + w P (4D Pl ()

(2n41) %P0 Pult) = (a+0) Doty (8D Pue

- t) P (0
flV‘\‘F\)(?(“t) P“(XJ();\I,'U’—‘— (n.;,‘)[[’““ (X)P,‘ H:) PVH_,L W )‘]

and
o [Patn) A = Py (+)0,, ()]

gum this and the series on the right will telescope,

w

(3,33) jz; (22-1)P.(x) @, lt)é (_:;.L)_ Powy P ) = Py (B P (X)] _
This is the famous Christoffel Summation Formulae
It would be well to consider some steps which were taken to generalize

Gaussian quadrature. In this respect, siehler* %' considers an analytic

function f(x) = 4, +ax+axt e .. and seeks to evaluate a definite

125,) EeBe Christoffel, 6ber die Gausgssische Quadratur und eine
Verallgemeinerung derselben, Joure. f. Math. 55(1858)61-82,

126.) G Bauer, Bemerkungen iiber Reihen nach Kugelfunktionen und ins-
besondere auch uber Reihen, welche nach Produkien oder Quadraten von Kugel-
funktionen, Sitzbers ke haye AKe Wisvs. Nunchen (math. - phys.) 5(1875) 247-2726

" 127.) Mehler, F.§., Bemerkungen zur Theorie der h
Jour. fir Math. 63(1864)152-7, mechanischen Quadratur,
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integral by a mechanical quadrature

(8439) L’ﬁm (=2 (142)" d e A F )+ e Tl s AnF (2]

¢ and o 2> -1), where w(x) = (1-%)" O+4x)y” we will ecsll the weight
function and the A's and « 's are to be determined in such a way as to
obtein absolute precision if f(x) is a polynomial of degree < 2n-1,

the error in general being E(f)= 6, EO") +e, 0 E(3"")+ -+, The procedure
in the solution is identical with that used in Section IIl. Ve tzke a
polynomial Jp(x)=(x- 4)(x-42) - -+ (K=<w) and write the Lagrange

Interpolation Polynomial for f£(x), —Clx)=i T fl=)
sy (x— X)J_v\' (=)

Then the A's in (8.39) have the form
| N Y (1~X)A(H—x)
Ai= J,! () L h._x——_:(iﬁ*
I{f we specify absolute precision in the case of f(x) of degree 2n-1, we may

A~

dns .

write #(x) = I (x)Q(x) +R(x), Q and R of degree n-1 and R(« )= 1(~.),

Jn( aci)‘—O.
If S“(l')()’\(H"X}/u J’M(x)/xkd%:o (k:_o/lJ?_,-.')M~l) Hea

] A A
[ b fmay — § ROV w00 k=Y A RGac) = LA,
A=y A=

2, )
fhe desired resulte But this condition will be met only if the J's are

Jacobi Polynomials and the o's are zeros of these polynomials (see $.v47 )

l\ 01“2(!'“!) A(I—f—’x)"‘hi
- —
In the case of Mehler, J, (x)= SR 4

J'X“-
40 within & constant factore We can obtain results analogous to (8.33),
- (T w ) 0)-T.x) ) L
bY mtingKh(x)z-S'—-———————-‘x_t JJ') R“(K)z:s' 3 —'X__ ur(-l:)d:}-and K. (x) »:y,\(x)j‘ pupe s w00,

0f course, Jacobi had already considered the case where w(x)= (-x) ?

128
in which event the o.'sg should be zeros of cos [(n-&-l) arc cos x} .

Remarkably enough, it turns out that the A's are all equal in this case,

128,) See ps ¥ ff and Fo Tisserand - Sur 1'interpolation, Comptes
Rendus 68(1669)1101-4, Other special w(x) leading to Hermite and Laguerre
Polynomizls appear in the works of Hermite, Tchebyche £f, Stieltjes,
Laurent and others. We shall treat the caqqestion more abstractly in the
manner of Stieltjese ,
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gimplifying computation considerably and meking the quadrature

RETSIE 2am
I_, e YT Zo Flesw 57 ).

The notions developed here are perfectly generale We can consider a

weight function w(x)>0 and integrable in [a,'tq and such that f;:(x)dx

has & meaning. Further, we require that w(x)> 0 in some finite subinterval

of [g,b] , 80 that \2:(x)dx> 0. Here, ve deal with (a,b] finite.

First we sesk a pol;momiai 0? degree n, xn(x) = x4, %N L e

such that |

(8. 40¢.) f:f K. () wooxSde=0 (KR=e,i,2, -0, n0

If we let o, = Jj‘w (x) x5 A , we get n linear squations to

determine the a's, duin + & Kngk—g ¥ - Fudn =0 (K=o,7,2, . n-1),

We can solve for the a's and there will consequenily exist a X, satisfy=

ing the orthogonality property (8.402), if the determinant of the .'s, i.e.

of the coefficients of the a's in the linear system, does not vanighe

gtielt jes actually.proves that this determinant is positive.';zg We can

restate (8.40a), writing

(8+40D) ffw(mxn b VI =0 (@, an arbitrary polynomial of)

degree n-l

(8.40¢) jforh)Z"XM¢¥=0 (i )

Phege conditions determine Xp(x) uniquely to within a constant factor.
The zeros of X are all real, distinct end in (a,b), the proof

following the pattern of the Legendre case (ps 20 )o Also, there exists

a recurrence relation analogous to (3.9). For, let X ~(x-c, )X, =R (x)

&
Then J; Rix)wlx) G dx = o and R0x)=A,, X ., , Asand ¢ 's

being constantse Thus,

129.) T..I. Stieltjes - Quelques recherches sur la théorie des quadratures
dites mécaniques, Anne Sc. 1'Ece Norm. Sup. (3)1(1884)409-426,



\ x 4.
(80419.) Xw = (%X~ C“-,)Xn-, T et Xl = %= C°) Xz:(’x—fa)x,— A

Eultiplying (8.41) by w(x)xn__l, integrating and applying (8.40), we obtain
(8. 41b) [ K, w0 & S
. e——

- . C“~ _— s .
! J,_ Xniw(x) du and o < Cony < b

gimilarly, multiplying by w( x)Xn_z, since xxn_l.—- KHGy 19

(8.41¢) f} X, T lm) S

)\“_‘ = >0

f »I:’?' o (x) da

The conditions (8.41) completely determine the sequence of the X's.a From
(8.41) it is also clear that we have a set of Sturm functions, and the

gzeros of xn-l separate those of Xn and are in term separated by those of

Xp-2°
As for the application 1o mechanical gquadrature, let f(x) be a polynomial
£(x) Vv, :
of degree 2n-1, and = Uag ™ —i:—.‘f wvhere U and V

&
are of degree n-l. Then f(x) = X Un 3V, 3 and | —F(K)ur(x)a"x-=j:rvk_‘urf>‘)b‘4

pecause of (8.40b).

Let x'>x WS> P X ( be the zeros of X , then
. \_J,’_’L‘—_- — £Ux,)
v, (=X 00 2— (x~%) K (%) X. (”AZ. -x) X (r4)

M( ) -
Consequently, f £0x) v (%) dx = Z[H )f %;ﬁ%] =7 A F )

A=

Note that the A's are complétely mdependen’t of f(x)s Thus, we can

’~ Wl
evaluate the A's for 2(x)= [m -, by writing ur(x;l—-—)]x Z[X”q [X' (w)] S>o

As a result, A; > Oy By taking f(x) =1, it 1s clear that S A f w(m) .
! . A

And in general,

Kic
(8 42) A|+Aq_+' T "”AK> .Y W(X)M (kzl, 2) ..,,y\) I
(B |
Kiapy
A,+ Aa_*}— e <J w-(x) M (K:}l;_, “")"“'U
In the case of Gauss quadrature, whers —!<¥ < NP IR PN

are the zeros of the Legendre Polynomial, these become

- x =
[+ A+ Ay + +Ar> TR . 5 Ae=2
p A FBh e A T ‘
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Again in the case of Gauss quadrature, the zeros of P, are in
(=1,-1+a), (1A =148, 48, - - - o GraAtAr H A, 1) .
Then applying quadrature to an arbitrary integrable function t(x), we have

j_“"fmd«,. AFlx) #hs $00) + oo AT X
where A_ represents also the length of the kth subinterval of [-1,1] and
'xk is a point in this intervale Thus, the guadrature formula becomes in
this sense a Riemann sum, and L'f(x)dx = lim ;i:. Aif(xi). A;— O as

ng = oo o In order to substantiate that'Ai—?' 0 as n-><, Stleltjes proves

73
that if (%) is any subinterval of (a,b) for which Lﬂx)dx> 0,

then 3 n> N> a zero of X lies in («3); and hence, |x5-x5 9120

T+t
as n-—>oo e From (8.42), Ax < J; w(x)dxs Since Ay is a continuous

et

function of the limits of v:.i.ntagration and \xk+1-xk_l\—>,~ 0, then f\k—a 0
as n — %  This result holds for general mechanical quadrature.

We might ask ‘_whe:’cher the error in the quadrature formula is de-
eroased with increasing ne The answer is definitely in the affirmative.

Let f(x) be a function satisfying conditions so that it can be represented
’ An-f -]

by a Legendre Series, F(x)= 2 Bi¥ fx)+; BiP =S, +Ry

where €> 0 3 n>N. 3 \th.\ <€ o Apply quadrature to f(x),

[ t n "
j";(x)M“Z,AA’““):g_, Sa-«""‘“.z' A; S0 4 L’g%‘k =S AR ) .
- A= A= AT
But SZn ig a polynomial of degree 2u-l, and iis quadrature is exact; thus,

the first two terms on the right vanishe Now for a preassigned,
i
arbitrarily emall ¢€> o' 3 n>N, ;|gzg<e , i.e. ):f‘Rzndegewd
n w t "
s JI<E :efdx:- 2€ Thus £(x) dx~ { < &€
|2, dyBan(alleel by=e | ax= 26, ¥ 2 agt(x)| < a€,

and the error approaches 2ero as n —amj.'?’o

, 130.) This result of Stieltjes (Sur 1' évaluation approchée des
intégrales, Comptes Rendus 97(1883)740-2) is readily extensible to the
general cas® whers #(x) is not necessarily 1 and (a,b) not necessarily
(-1 ,1)0 '
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We have already seen how Gauss quadrature was related to the con-
tinued fraction development of L(x) of (8.35). We might ask whether there
are not similar relations of genéré.l mechanical quadratures. At any rate,

one might suspect that in the work of Stielijes and Tchebycheff some
131

such relations would invariably appear. In a more general case, — let
-Eu () w

L(}) —-f w-('f:)od' Lo +___ + z”(") jglx) mou_ W, (x)f X ) (-U‘M'
“ -t

Then, =s in (8,35), Wn(x)“ -'-:,Xn(x)l..aﬂx)-zn(x). Again, as before, Z, is a
polynomial of degree nél. If L(x) is ekp&nded in descending powers of
x, the integral part of an is evidently Zn and the terms in the
negative powers of x form Ve In the Legendre case Qn begins not with
1/x but with x 2"Y, The same condition imposed here leads to the
orthogonality property L;nGn_lw(x)dx = 0 and the fact that all the
roots of X are real, distinct and in (a,b), separate those of X0

aré ars separated by those of_xn 1* Finally, the quadrature formula

associated with Xn is

w (X) w(x) Al x:)
J Fx)w[x) ML~ Z -ﬁ('x,‘)f (7~ x )X’ (xA) Z: F O }Tr” %)

an exact formula if f(x) is a-polynomal of degree < 2n-l. Christoffel

ot
- . :(t
L L i N R L, [ 745
a-1 x-t RS

shows that X ~1ln--)(;;l:’-n__:’_
whers a, is the coefficient of X in Xn and Bn—l is the coefficient of

x® in Wn-l. These can be compared with the earlier Christoffel Sum-

mation Formula. But even more to the point is the continued fractioen

develomment written by Stieltjes, L(x)= Ae) _ As

'X-‘l < }x(‘ ‘x (3

13).) Christoffel, E4Bs = Sur une classe particuliere de fonctions
entidres et de fractions continues, Annali di Mat. (2)8(1877)1-10,
T.J. Stieltjes - Sur 1'évaluation approchée des intégrales, Comptes
Rendus 97(1883)'798-9.
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with convergents N, /D, given by

No =0 Do =1

N, = Ao Py =x

NL: (k= JN = M Mo p = - cp) Dyp=iPe
Nn+|—:(x"ch)yn"‘ I\r\ Mot Dn+l= (’(—C")Dn‘A" pn-l

Thus, the D's form really the sequence of the X's and the N's are

actually the 2'se

These results were in a measurd known earlier and may be obtained
much differently. For example, Humbertsihowed that the equation of
ILiouville
(4.1) (2% +bx+y" + (dx+e)y' +Fy =o

has polynomial solutions vhich are denoming‘bors of the convergents of

A w(t)di 0
5; _'xlt vhere o and /3 are the zeros of ax 4bx+c and
dx+2 d’!
(%) = { Sa"’-\—bx-rc
v T g abxtc . Orthogonality of the denominators of

the convergents and their appliecability to quadraturs in (o(/,s) would

3
follow immediately. Some notable examplés may be givan:la

2-

)= ("");"(x) = (1~x*)

_oa® "N ’+ML_ =0 (-l’
U) “ X )a 3 ? ’ p Q_A"" w

X.\:'L‘ﬂ(“ U\LWK)} = G Tan P

= (- = l")(l v
(2) (:—x")y"—— 3«\3' _._.,\(M—a,)}:o) (o{lﬁ)»(’,')Jw{x) ( ) |

o [_(u+|)wmx1 ﬁ"—
X.= , %= T

\) |- X"

A peculiar generalization of mechanical quadrature to evaluating

de finite double integrals has also been made. Appell uses the polynomlals

Prov, 2 1.2, .1
due to Hermite obtained from o (x *Pa ) and 9 XTF97-Y (see poso )e 134
Ix 3 yP
23

132 ) 6. Humbert, Sur 1“quation différentielle lindaire du second
ordre, Jour. de 1'Ec. Folytech. (1)48(1880)207-228.

133.) See As Berger - Sur 1'4valuation approchée des intégrales définie
simples, Nova Acta reg. Soce Sce Upsaliensis (3)16(1893)44, ppfsg, 8 nies

134.) He Bourget, Sur une extension de la methode de quadrature gde

Gauss, Comptes Rendus 126(1898)634-6;5 P. Appell, Sur une classe de
Ann. Fac. Sce. Toulouse (1)4(1890)H1-20. ! as polynomes,



SECTION 1X
LEGENDRE SERIES

In Section V we discussed Legendre Series to some extent, chiefly
in the course of reviewing the work of Dirichlet. We proved then that
if £(x) has at most finite many points of finite discontinuity and finite
meny maxime and minima in [=1,1] , it could be represented by a Legendre
Series which would converg® and represent the functions Dirichlet had
egtablished this result in the case of Fourier Series, bui his work
on Legendre Series was not quite so satisfactory; and the proof we
gave was an extension of Darboux's interpretation of Dirichlet's
results.

Here, we are going to0 consider some minor considérations first.
Legendre already knew that any integral power of x can be expanded in a
Legendre Series. Consequently, any rational integral function can be
expanded in a Legendre Series. Even more than that, if £(x) has a
power series representation, it can be expanded in a Legendre Series.
Cayley considered the expansion in this case and gave relations between
the coefficients in the power series and the coefficients in the

' Legendre Series by means of a symbolic operator.135 Echols put the
felations in determinant :t‘orm.136 Echols even writes the coefficients
of the Legendre Series and the remainder after n tsrms in determinant

ax®"  Curiously enough, if f(x) is = hypergeometric function, its

135.) A. Cayley, On the expansion of Integral Functions in s
Sseries of Laplace's Coefficients, Camb, and Dublin Math. Jour.
3(1848)120-1.

136.) W.H, Echols, On certain determinant forms and their applica-
tions, Annals of Math. 7(1892)11-59.

137s) We He Echols, On the expansion of an arbitrary function in
terms of Laplace's Functions, Annals of Math. 12(1898-9)164-9,




expansion in Legendre Series has coefficients which are hypergeometric
functions alsoe. But such considerations are not those which will occupy us.
Our chief concern will be in examining attempts to minimize the restric-
tions on £(x) and to set up necessary and sufficient conditions for the
exigtonce and convergence of a Legendre Series.

We have already pointed out (see p..’ 4§ ) that if f(x) does permit
of representation by a Legendre Series in [;1, 11 , and if the series
converges uniformly and represents the function, then the coefficients
can be obtained from

!
(9.1) A = Q*"f" f_, F00) Pux) o
Also, we have shown (p.7,7f) that if the first r terms of the series are
taken, Sp will approximate f(x) best in the sense of least squares if the
A's are chosen as in (9.1)s W are going to show that as r increases,

the A's will atill be chosen in the same way and the approximation will

be improved. Let

:S ) e Z;A:; 2%

and J will be clearly less if the negative terms are num erically greater.
Thus, if we take more terms, J will not increase; and if the Legendre
Series does 3£t termlnate, J will decrease. Note also that, since

> £ J_/) o :z_f)
f 52 (%) e Z_ TIE! holds regardless of the value of r, Z o

couverge ss
Anothe? question which we can settle quickly enough is that of the

uniqueness of the expansion £( x)"'Zi A P e« The expansion of f(x) in a

/g.-‘D
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Legendre Series is possible in only one way. For, if f(x)= Z:: B P,

ATo 11
also, then the coefficients in the expansion of zero would be A;-B; =

. [ond 1M+| 1{
= i_%' ©=° and A =B, Further, if F(;Q:Z[’{ Pt f_, Puwﬂi)“*‘]

and the Legendre Series is uniformly convergent in {}1,i1 , then F(x)=f(x)

The first to attempt to improve Dirichlet's results was Bonnet.138

His work is based on an asymptotic expression (p. ¢S ) first given by

2 '—
him and on the relation ' (1=%7) Pu=%Pu—Pusy . The latter is

w41

uged in deriving the asymptotic expansion. Although f(x) is permitted to
have at most finite many discontinuities in [-1,1] , it may not be dis-
continuous nor have more than finite many extrema in [-1, -1+€] or

@7 €, 1| « Since Bonnet's result is no real improvement of the work of
Section V, we will enter into no detail concerning his methods.

Dini was another who failed to do as well with Legendre Series as

with Fourier Series,139 In fact, his work was completed and modified by

Heine.L %0 However, Dini does give, for perhaps thefirst time, a rigorous

treatment of the g uestion of differentiation and integration of Legendre

4
Series.l 1 Darboux adopts essentially the samé point of view as Dini.l42

138.) See p. 65 £fe

139,) Dini, U., Sopra le serie di funzioni sferiche, Ann. di Mat.
(2)6(1874)112-140, 208-225.

140,) E. Heine, Handbuch der Kugelfunktionen, 2nd ed., vole 1(1878)43§
vole 2(1881)361.

141.) U, Dini, Serie di Fourier e altre rappresentazioni analitiche
delle funzioni di una variabile reale, Pisa, 1880.

142,) G. Darboux, Sur les sbéries dont le terme géﬁﬁral dgpend de
deux arTyles et qui servent & exprimer des fonctions arbitraires entre
des limites données, Jour. de Math. (2)19(1874)1-18,

71872
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In the case of Darbou;;, (5,12), we have already shown that if f(x)
4s bounded, continuous except for finite many points, and has a‘bounded
derivative except for finite many points, then Y}_i)n; 8,= £0(1). If f(x)
is unbounded within the limits of integration, we have a new difficulty.
Darboux's contribution consists of relaxing the conditions on f(x) so
that it may have at most finite many points of infinite discontinuity.
It will be no less general to consider a single point x, in (-1,1)s
In this case, Darboux writes (5.12) as

Sa= 3 f:tfth“;b’h(wﬂ t Puon (e8] 48
whore F(8) = f(cos 8), and uses his approximation formulas (p. LS ).
Let 0, be the value of 8 for which F(©) becomes infinite. Darboux writes
F(G):F]_(Q)“'Fz(.g), whers Fy is zverb outside of (8o-7,, 6o+n ) (7,7

two positive numbers) and Fy is finite for @ =84+ Then
B.+y,

Se=4 ),

® ‘

F(6) % ( Py + P )d8 44 jT;‘ (0) A (P +Pusi) B4
ae 2 A EN do
For n —> v , the second integral approaches Fo(0) or F(0)e The

approximation formulas transform the first integral into

T e I e
If Fl(O) is of’the order < Un , this last integral will approach zeéro
as n increases. Later the results are extende'd%%'rhen £(x) will be
developable in a Legendre Series if the integrals have a meaning; if f£(x)
ig unbounded at Xy it remains less than 0(,13/¢) . this condition must
also bo met at +1. It is interesting that Darboux believed his con-

ditions to be necessary as well as sufficient, for satisfactory necessary

conditions for neither Fourier nor Legendre Series have ever been given.

143.) Ge Darboux, Mémoire sur 1'approximation des fonciions, Jour.
de Math. (3)4(1878)5-56, 377-416; Comptes Rendus 82(1876) 365-8, 404-6.
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Integration by parts of .(_5.12) is not essential to the attainment of
the results. If {-1,1] can be broken up into subintervals in each of which
£(x) is continuous and monotone, we can séparate the integral of (5.,12)
ihto a sum of integrals over these subintervals and make use of the second

mean value theorem of Integral Calculuse The proof will go through as before,
and this is the method usually used itoday in treating Dirichlet's conditions.

Dirichlet limited himself to Functions with finite many extrema,
Lipschitz showed, in the case of Fourier Series, that f(x) may have infinitly
many extrema. Concorning the latter problem, du Bois Reymond gave examples
of functions with infinitely many extrema not having Fourier expaﬁsions.
The theory of Legendre Series in these respects lagged behind the theory of
Fourier Series. Dirichlet requires at most finite many points of finite
discontinuity. Darboux permits infinite disconiinuities as long as they
remain finite in number and provided that g"f(x)dx is bounded. Today we
usually say F(x) satisfies "Dirichlet's Conditions” if f(x) has a finite
pumber of infinite discontinuities in (-1, 1] ; if, when arbitrarily small
neighborhoods of the points of discontinuity are excluded, f(x) is bounded
jn the remainder of the interval; if the remainder can be brbken up into
a finite number of opén subintervals in each of vwhich f(x) is monotone;
and finally, if the integral ~y|’i'(:t)(1x is absolutely convergent.

In Jordan's “Cours d4'Analyse" is a statement that f£(x) will have a
Legendre Series for x=x  in (-1,1) if it is coatinuous at and in the
neighborhood of X, and if it‘is of bounded ‘\rar':i.e:.ti.cm.3‘44 Jordan's

conditions for Fourier Series applied to Legendre Series would require the

——

144,) C. Jordan, Cours d'Analyse de 1'Ecole Polytechnique, Gauthier-
villars, Paris, (1894) vol. 2, pp. 245-260.
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existonce and absolute convergence of ijf(x)dx as well as bounded
variation in the neighborhood of an interi&r'point. Continuity is
non-vssential. Such an extension to Legendre Series by Jordan has
not, to the best of our knowledge, been made during the period with
ﬁﬁﬁﬁ wo are dealinge

It may seem rather arbitrary to stop our investigations suddenly
with the end of the nineteenth century. And it is no doubt true
that, particularly in the theory of Legendre Series, major develop-
ments have appeared during the last thirty-five years. (One might
place in the forefront the work of Fejer.)A At the same time, it is
exceedingly doubtful whether a study of the properties of the‘
Legendre Polynomials should be so much dissociated from a study of
thé'properties of Orthogonal Polynoﬁials-in general, as we have done,
Such an approach to the literature of the last thirty-five years
would involve considerable difficultye Particularly in the theory
of Legendre Series has it become éf dubious value to dissociate
the poiynomials from orthogonal functionse And perhaps, we have
already pressed the development of the theory of Legendre Polynomials
beyond the point where it is justifiably separable from the fheory
of Orthogonal Polynomialse For these reasons, we do not take on

further problems.
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