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FOREWORD 

Legendre Polynomials appear for the first time in the work of 

Legendre in 1?84 in relation to problems of potential and of celestial 

mechanics. A more systematic exposition of their most elementary 

properties appears in Legendre • s treatise on calculus. The poly­

nomials may be defined by means of a generating function, an e~plicit 

form, a differential equation, an orthogonality property, an n~h 

differential coefficient, a recurrence relation, several definite 

integrals, or a determinant. 

In this paper, the historical approach is taken and the 

generating function is the point of departure. All the other · 

definitions are made to depend on the original one. Some elementary 

properties of the polynomials are first derived~ a....nd the i'und,amental 

bases of the application of Legendre Polynomials to mechanical 

quadrature given. The significance of the Legendre differential 

equation and its relation to the general theory of linear differ-

ential equations of the second order is brieny considered. Some 

attention is given to the various definite integral representations 

of the polynomials. 

One of the more importa.t'lt pha~es of this paper is an ex­

position of most of the significant properties of ·the Legendre Poly­

nomials. This includes a discussion of some definite integrals which 

involve the polynomials in the integrand. An indication is given of 

some applications of the polynomials to combinatory analysis and 

algebraic theory. Various algebraic properties of the polynomials are 

displayed. A. number theoretic property of their coefficients is given, 



and the discriminant and its properties exhibited. ~'he zeros are con-

sidered ill some detail. Bounds are given for each zero, and the proper-

ties of linear combinations of the polynomials discussed. Considerable 

attention is devoted to various asymptotic x-epresentations of the poly-

nomials, and the behavior of the polynomials in the neighborhood of 1 

and -1 for n large is treated also. Through the latter, a relation 

is derived b&t\\lEien Legendre Polynomials and Bessel functions. 

The asymptotic expansions play an importtwt part in the discussion. 

of Legendre Series.. The prime question of au:f':t'icient conditions for 

convergen¢t. of the series is ansuered. completely in one case and other 

results are indicated. Interpolation by finite Legendre sums is also 

considered and Gauss quadrature is.discussed in less elementary fashion. 

Important continued fraction relations form the basis of the extension to 

general mechanical quadrature. 
.. 

Finally, an attempt has been made to present developments historically 

without creating disjunction in a logical and systematic exposition. The 

bibliograph~ is of independent value and represents sorr~ of the material 

the author has collected in his work as research assistant to a committee 

of the National Research Council, forming a bibliography on Orthogonal 

Polynomials. 



SECTION I 

RISTORICl~ INTRODUCTION 

A considerable part of the elementary theory of celestial mech­

anics was propounded in the years. between the birth of ~wton and the 

death of Laplace., One of the important phases or the basic theory 

was a consideration of the figures of the planets. Sir Isaac Newton 

was among the first to consider a mathematical theory of the physical 

causes of the figures of the planets.. In the course or his invest­

igations, he was forced to make several restrictive assumptions. He 

supposed that at "creation" the earth and the planets were in a fluid 

state, and that they now preserve the figure they were then given. 

By this hypothesis, the problem of the figure of the planets was 

reduced to determining the figure necessary for the equilibrium of 

a fiuid mass. 

Few mathematicians of the 17th and 18th century who followed 

Newton went beyond hie hypotheses, and the problem in a limited 

sense was eventually solved. For. they succeeded in showing that a 

mass revolving about an axis and consisting of fluids of one or 

more densities will preserve its figure only if it has the form or 

an elliptical spheroid of revolution oblate at the poles. 

However, Newton's hypotheses are not realistic; and D' Alembert 

attempted to generalize the problem to the consideration of attractions 

of non-elliptical spheroids. Because the theory of the figure of the 

planets was closely associated with the theory of attractions or bodies, 

he tried to investigate the attraction of a body of any proposed figure, 

and of strata varying in their densities according to any given law. 



His results, complex and limited, still left the problem virtually 

unsolved. And it was in this form that the problem was handed on to 

the mathematicians of the latter part of the eighteenth century. 

The principal object, then, vre.s to investigate the figure, 

which a nuid, consisting of porti one varying in density according te any: 

given law1 would assume, when every particle is acted upon by the at­

traction of every other particle and by a centrifugal force arising from 

a rotary motion. To what extent this may have been the original con­

dition of the earth was not at issue. but it was made the foundation or 

most mathematical calculations. It was in these calculations that the 

Legendre Polynomials and the so-called Laplace Coefficients were first 

introduced. 

While there is considerable question concerning the priority of 

Legendre or Laplace in the introduction of these functions, and even 

perhaps concerning the priority in the solution of the problem of at­

tractions, it is of some interest to examine first the major difficulties 

facing the mathematicians of 1780 investigating the theory of the figure 

0 r the planets. 

Whatever the permanent configuration of a nuid covering a solid 

body, that configuration will depend on the gravity at the surface. At 

the same time, the form of the surface determines the gravity, which is 

the combined effect of the attractions of all the particles of the body. 

That the figure of the surface is in a sense both a datum and quaesitum 

of the problem constitutes a difficulty. .An expression must be found 

for the intensity of the attractive force which will be related to the 

form of the attracting body and shall yet be sufficiently simple. 



3. 

" / ~ In Laplace's "Traite de Mecanique Celeste" appears a revision of his solution 

ot the problem. He cone&Mls himself with the attractions of spheroids in gener­

al and especially those which differ only slightly from spheres. He succeeds 

in deducing a relation between the radius of the spheroid and a series ex-

pression tor the attractive force on a pa~icle without, en, or within the 

surface. This derivation is comparatively simple, '~en the complexities of 

the problem are considered. 

Laplace begins with a potential function, from which the attractive 

force in any desired direction can be obtained by differentiation. The 

potential function is the sum of all the particle-masses of the attracting 

body, divided by their respective distances from the attracted particle. 

He expands this function into a series of descending or ascending powers 

of the distance of the attracted particle from the center of the spheroid, 

aecot•ding as the particle is without or within the surface. His next 

step is to determine the coefficients of the tenns of' this expansion. 

First or all, Laplace proves that every one of the coefficients 

satisfies a partial differential equation, which was first given by him 

and which is the key to his work on the theory of attractions and the 

figure o t the planets. This equation is not integrated 1 but, by the use 

of its properties, the problem of' attraction is simplified. Laplace 

next states a theorem he declares true at the surface of all nearly 

spherical spheroids. This theorem is stated without proof; and it holds, 

as later writers showed, only for a restricted class of spheroids. The 

theorem declares that the radii of all nearly spherical spheroids c<m be 

developed into series. every term of which would satisfy the Laplace 

ditf'erential equation. On the basis of this, he deduces the value of an 

expression, which is the sum, f AiPi• where the A's are known and the P's 

are the desired coefficients. This value is found to be proportional to 



the difference between that radius of .the spheroid drawn through the 

attracted particle and the radius of the sphere nearly equal to the 

spheroid. Thus, he expresses the radius of the spheroid and the series 

for the attractive force by means of the same functions. J':or, :tn order 

to find the coefficients sought, we have only to develop the difference between 

that radius of the spheroid drawn through the attracted particle and the 

radius of the sphere nearly equal to the spheroid. Thus, he expresses the 

radius of the sphere inc,.,. a series of terms, every one of 'ltlbieh will 

satisfy the partial differential equation. Laplace not only gives a 

method for computing these terms, but he also attempts to prove that the 

series is unique. 

Thus, the functions which serve as coefficients of the expansion 

play an extremely important role in the work of Laplace. These functions 

are the Laplace Coefficients; and it is now a question of observing in 

greater detail the manner in Which they are used in the theory of at-

tractions, particularly with regard to the assignment of priority in 

their introduction. 

It is essential to discuss in some length the chronology or 

several memoirs of Legendre and Laplace! The order in which the content 

of these memoirs became the eommon knowledge of Legendre and Laplace can 
2 

easily be shown to be the following: 

a. Legendre - Recherches sur l'attraction des sph6roides homogenes (1784)~ 

b. Laplace - Th~orie du mouvement et .de la figure elliptique des planetes 
(1784). 

1.) See bibliography for detailed refer&nees to these works. 

2.)::0nly the pertinent memoirs of these men during this period are 
listed. There ~~re others which did not involve Legendre Polynomials or 
Laplace Coefficients. 



c• Legendre - Recherches sur la figure des planetes (1784) 

d. Laplace - Th~orie d~ attractions des sphero1des et de la 

figure des planetes (1782) 

e. Laplace - M~moire sur la figure de la terre (1785) 

f. Laplace - Memoire sur la th~orie de l'anneau de Saturme (1787) 

g. Legendre - Suite des recherches sur la figure des planetes (1789) 

h. Laplace. -Sur quelques points du systeme du monde (1789). 

There are some peculiar circumstances in connection with these 

papers which cast ref!ections on the character of Laplace. First, it is 

to be remarked that papers c, d, e, f, g, h appeared in the "M~oires 

de l'Academie royale des Sciences de Paristt. Legendre's first paper, 

a. above, appeared in the "Memoires de Mathematiques et de Physique, 

presentees i l'Academie royale des Sciences pars divers Savans". 

Laplace's first paper, b. above, appeared as a tract privately printed. 

Now, when a volume of the "Paris Memoirestt is of a specified year, it 

is usual that it contain memoirs written before, during and even after 

the specified year. It will appear, therefore, that Laplace was 

familiar with the work of Legendre and made use of it. Yet, in almost 

every instance, he pointedly failed to acknowledge the priority of or 

his indebtedness to Legendre. Legendre was sufficiently disturbed by 

this to devote sections of his memoirs to reminding the reader of 

Laplace's obligations. Thus, Laplace, who later gained for himself a 

reputation for remarkable political opportunism in currying favor for 

himself with revolutionists and royalty, was as early as 1784 guilty 

of intellectual dishonesty. 

s: 



b. 

Oddly enough • Legendre's first paper contains an acknowledgement, 

indicating that Laplace had suggested to him that he approach the problem 

of attraction through the expansion of the potential function in seriesf 

In his memoir he seeks the attraction of ari ellipsoid on a particle on 

the prolongation of one of the axes. He succeeds in establishing that if 

the attraction of a solid of revolution is kno~n for every external point 

which is on the prolongation of an axis, it is known for every external 

point. His demonstration involves the use of series of hitherto unknown 

functions. 

Let ( r,l) \and ( r' , e•) be the polar coordinates of the attracted 

particle and the element of the attracting body respectively. Let cp=-w- w' 

be the difference of longitudes of the attracted particle and :the attract-

ing element. With the density homo~neously unity, the element of attract­

ing mass is r•2sin0 1 dQ 1 d~dr1 • Thus the potential function, the idea of 

Laplace, ~~11 be . ' , 

5TTs11's~~ (1.1). V=- ~ V fl''"-Z.fl-fl-. (...Qil. r ''. 
0 0 -~ 

where cosf-=-eosQ cosO'+ S.ne sin91 cosl/J. Since Legendre treats the case 

of an ellipsoid symmetrical with respect to its equator, the limits of 

integration for r' are -s and s, where s ie the radius vector of the 

solid corresponding to a colatitude e•. The reciprocal of the denominator 

of the integrand, today called the generating function of the Laplace 

Coefficients. is now expanded in ascending powers of r' /r, obtaining 

(1.2) V= jvJmJs ~1 {t+X. ':._.+X~~~ +···}~o'db'a¢ .JA' ) 
o o -s 

and the coefficients X1, X2••••a are the quantities in Which we are 

a.) a. above P. 421 



(. 

essentially interested~ 

Legendre proceeds to perform the indicated integration obtaining 

an expression for v, in which the first term is mass/r. First, however, 

the X1 s are discussed in some detail as functions of e, 9' 1 f• Here, 

for the first time, Legendre displays the remarkable property that if 

these functions are integrated with respect to P from 0 to 2lf, the 

resulting function depends only on e and e', which variables are separable, 

i.e. • the function can be v..ritten as the product of a function de}Xlnding 

only on e and a function depending only on e'. The proof of this important 

property is by an induction which is of no special interest. However, it 

is interesting to note that, after exhibiting as a special case of the 

"Laplace Coefficients" the functions \Vhich we today know as the Legendre 

Polynomials of even degree, Legendre becomes interested in these polynom-

ials of themselves, presenting several properties~ After exllibiting a 

few polynomials in explicit representation, he shows 

(1. ar ~(xF=l for x=l, and "Y. 
·. L I X~:~.(:x.) clJL. (,-K) ,., I 

(1.4). o (~-t-K1<.£)"-t3t:a.-::: ~"'-+1)(1.;-K)"'-t?. 

where Xn(x) represents the Legendre polynomial of degree 2n in x. 

4.) Neither Legendre nor Laplace were the first to use an expression 
sintilar to the reciprocal of the distance between two points as a generating 
function of a aeries~.l. It is unlikely that M. le Chevalier de Louville, who 
expanded ( p2-2qx-x2) 2 in ascending powers of x in his "Sur une difficult' 
de Statique", lam. de l'Ac. des sc. de Paris (1722)128-l42{p.l32), was really 
the first. One scarcely dares, ae does N. Nielsen in "Sur 1' introduction des 
tonctions sph,riques dans 11 analyse", Det Kgl. Dan eke Videnskabernes Selskab, 
Mathe•Fys. Meddelelser lO#S(l929)~pp., attribute to de Louville the intro­
duction of the Legendre Polynomials, for de Louville had no concern with the 
coefficients in his expansion and appeared in no way conscious of the fact 
that hidden behind his computation was a new function in analysis. 

) 
• • ~ft, .,.,.a.~} , J..,.YO\ .. . ,v 9 l'fl , s. If Y.n satJ.sfJ.es l:y.\\1-p.J ;;;p. + 1_JA. .... ~.,.-m.Cil.-tl1 '"-=0, WheN JA--:::;e+a. ' 7 =w-&V 

Yn is the Laplace CoefficJ.ent of nth order. Any other function of 8 and LV 

satisfying the differential equation will be a Laplace function of nth order .. 
If Yn is a function of the single variable f- , we have the Legendre Poly­
nomial of degree n infL• 



In confirmation of the contention that this paper of Legendre precedes 

the work of Laplace is the reference in Laplace's tract of 1784 (b. above} 

to the researches of Legendre§ Furthermore • Laplace uses the potential 

function expressed in the usual rectangular coordinate system, and is led 

in his expansion of the gene rating function in series to laborious computa-

tion. The complex form of his result does not prevent him from recognizing 

some properties of the coefficients in the series, but he speaks of the 

results as kno'Wl'l from the work of Legendre7 

On July 7, 1784, Legendre read his next memoir (c. above) to the Paris 

Academyo The journal bearing the memoir did not appear until 1787. In the 

meantime, a work by Laplace (d. above), written after Legendre's lecture, 

appeared in the volume of 1782, actually published in 1785. Laplace made 

no mention of Legendre; Legendre, peeved, had the editors insert a footnote 

to his pape:r~ Here he poiltts out that his paper was read before Laplace's 

was submitted, that Laplace used his results to develop further the theory 

of attractions. Writing or the coetf'icients obtained from the generating 

' 
-" / I ' t' 1'' function, he says: "J ai recours aux proprietes d une espece par l.CU :Lere 

de fonctions rationelles qui, ne se sont BOint encore present~s aux 

Ana].ystea"~ (emphasis mine). Again, he refers to his earlier work 

(a.above) as representing the first presentation of these functions. And 

so, it seems definitely established that Legendre i11troduced the "Laplace 

Coefficients" and the Legendre Polynomials. 

Another remarkable feature of this paper is the evidence of Legendre's 

increasing interest in the Laplace Coefficient of one variable, i.e. the 

-~ -x Legendre Polynomial. He considers the expansion of ~( 1-t:l::x.r.+~.,_) -+~(1-lx.~+~,) ~ 

6., 7.) b. above, p.96. 

8.) c. above, P• 370. 
9.) ibid-p. 371. 



q. 

in ascending powers of z, obtaining the explicit representation for the 

coefficients, the Legendre polynomial of even degree in x, and givi'n€ seven 

of their properties. Of these, the follow~ing are not found in his earlier 

paper~0 

(1.8) X,(x)< I 

In addition, in treating a particular case, that of obtaining the equation of 

the meridian of the ellipsoid in terms of series of the polynomials, he states 

the theorem known today: A given function can be expanded in a series of 

Laplace functions in only one way. It is interesting to remark that neither 

Legendre nor Laplace were concerned with the convergence properties of the 

series they obtained, a difficulty which played a significant part in the 

history of the development of the theory of Legendre Polynomials. 

Now, the memoir of Laplace which treated Legendre so unfairly was of 

itself' epoch-making. In it is contai11ed the basis for the second and fifth 

. / / / 

volumes of that tour de force, "'rraite de Mecanique Celeste". First of all, 

Laplace completes the theory of attractions of spheroids terminaited by 

surfaces of second order. which was the problem of Legendre. The work 

in this part is new in its approach and simplicity. Secondly, he CQnsidere 

the attractions of any spheroids whatever. He makes them depend on a 

partial differential equation of the second order, which is the foundation 

9f all of his researches on the figure of the planets and of the "Mecanique 

Celeste". This equation leads him to some general results on the expression 

in series of the attraction of spheroids. Assuming the spheroids approach 

10.) We use tXn(x)} for the Legendre Polynomials of even degree, Xi(x) 

being of degree 2i. We use {Pn(x)} for the usual Legendre Polynomials.· 
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spheres and combining these results with the partial differential equation 

which now holds on their surfaces, he arrives at an expression in series of a~ 

traetiOl'lS of nearly spherical spheroids of any kind. Ordinarily, very 

complicated integration is necessary to arrive at an expression of this kind, 

but by the method of Laplace the expression is arrived at without any 

integration and by a single differentiation. Finally, the results are 

applied to obtaining all the theory of the figure of the planets and the 

gravitational laws on their surfaces. ~he equilibrium of a homogeneous 

planet is shown to be possible only if it takes a definite shapes Thus, 

for example, the earth is an ellipsoid of revolution.· Because he succeeds 

in obtaining all the known results by use of the method, he argues that 

there is no loss of generality in the use of series. In the latter, his 

i11tui tion misled him. 

As in his tract of 1784, Laplace works, at first at least, in 

rect~~gular coordinates, a poor choice as it will appear. Let (a~b,c) 

and (x,y,z} be the coordinates of the attracted particle and of the particle 

of mass ~ of the spheroid respectively. Then the potential function is 

given by 

(1.9) \) = f~Lx.:-a..J.,_-r~-;-t)'-+{E..;-c..l2 > 

and interpreted as 

f eLM 
(1.10) v-== ~.v~-<L)'-+~-""r.,+-c-a--c.) ... 
From this the components of attraction parallel to any given direction 

can be obtained. Now, if V. is expanded in series 
.,_ t.. r_ 2),_ 

llell) _(elM ) -1-.!.- .?.li..><+.:l-'4-+.2~"£.-X.._-~ ... -~.,__+2_(2-a,<+-~h-+;;1"-7.-:x. -'d- +···} 
v- )-V!U .... +~.,..-t-~=--t' ~ .._,__-+!-.... -+c...... ~ (a.~""* ~"'+c.'J..__ ) 

and if the center of attraction is far away, we can consider only the first 

term; thus V~M/(a2+b~e2)~'where M is the mass of the spheroid. This 

formula is even more exact if the origin of coordinates is taken to be the 

center of gravity of the spheroid. 



In space polar coordinates, with 
):.-=. 1?.~ (9 I a...-;:; h_ e-..~ 

d"' R.~e' C<l"1 w 1 ~-:. ,_....__ e ~"' 
tl.M -=tJ...V = f R.l.&R Je-'ctw 1 ~e 1 

;e -=- R .,...__ e 1 s:-uv.. u:.' c -=- Jr. $.-<.-._ ll ~w 

R-= ~:X. ... -t{'--+:c:."- M.. -=-Yc...'--r~.,_-te-... 
f=~at-r~~~ 

V becomes 

(1 .. 12) 

Letting fA::::: cos 0 and making use of some observati,ms on :i.ntegrals or 

linear partial differential equations of second order contained in a 

paper of 1779, he derives the now famous Laplaca differential equation 

t ~ 'dV] 'd.,.V 
( ) 

'"J ( I -)"- ) -'3fo. ~ ,._ '2-~.,_(h. \f) 
1 .. 13 + -+h- --o 

d)J- 1-)J-... 'O.h. .... - . 

Assuming tho center of attraction to be outside the sphere, he wri tes11 

(1 .. 14) \j::: Uo+- u,+U.,_+-···+U"' -+···) 
"- h.... it s /t. .,.. . ..-~ 

and shows that the Laplace Coeftficient Ui stdt;isf:tes 
'd [(J -r ') <l_~q ;)2.. u~ 

(1 .. 15) '"bf= 4 ~ 4- -L l-i-t! )U{ = o. or- 1-jt"J.. . 

By comparing Ui with the integral expression for V ~ he concludes that Ui 

is a rational inte13:ral function off, ~ ~t.O, and Vt-,JL..._ ~w, 

depending on the natur6 of the spheroid. 

In order to determine the values of the U's, he considers again the 

generating function 

i -k 
(1 .. 16) T := {h.-.,_- ;:h .. /( l.cc::d:~ ~.e~ -t ~ ........:_~ ·~tw- w')] -\-'R ~.J 
showing that T satisfies (1.13). Expanding T in series of ascending powers 

of R/r, 
Q. 1C '£;1.. 

( 1 17 ) -r _o -T Q - +-Q -~ -t- •.. J 
., I :::: h... I It--,.. :>. !<-" 

where the Q' s satisfy (1.15) and are rational functions of randy 1-f-~ Cc-.l (w-w')" 

If' the Q1 s are known, we can detel'!!line Ui by 

(lela) ui-::: fff "Ri-r:2. J...R Q.\ ctw' &..~ .. ~e~ 
The object then becomes to transfonn (le 16) in such a way that the values 

U .. ) The invalidity of this expansion in the general case will be 
treated later .. 



J ..<.,' 

of the Q' s cw1. he eac;ily obtained.. There is a slie;ht error in the 

orie;inal 2 corrected by Legendre12 in 1789 and in the "Meca.nique Ceieste", 

but the chief argument is unimpaired. Essential to the determination of 

the Q9 s are the facts that they satisfy (1.,15), that the variables on which 

they de pond ( e and t.0) aro separable, and that the part which depends ont.J can 

be expressed in series of cosines of multi9les of w-w' .. An expression 

for a general Q is finally given~ 'l'hus the U' s are deter.nined from (1.18) 

and V is ~iven in aeries of Laplace Coefficients by (lel4). 

In applying the results to the determination of the figure of ·the 

planets, Laplace for the first time introduces the orthogonality property 

of the Laplace Coefficients, ·Nhich Legendre had previously 1.5-iven (1 .. 16) 

for functions of a sine;le variable. In the next papers (e., and f. above), 

the radii of the earth and Saturn are given in the form of series of Laplace's 

func-tions. The kay differential equation (1.13) is given in rectangular 

coordinates as 
?J.,_V t:?·v v-.. v 

(lel9) ~ 1c.-""' + 'i)'t-....T C>e-.,_-=o; 

and the particular form of the equation determined for solids of revolu-

tion and the sphere. The results are in error, and the correction, that 

the right member of (1.19) should be -+rrf or zero according as the particle 

is within or without the sphere, was made by Poisson13
e As for Saturn, 

Laplace shows that if the ring were circular and perfectly alike in all 

its parts, its equilibrium would be unstable.. The demonstl·ation involves 

the following property of Legendre Polynomials. cr {o lh <>ct.d..) 

(1.20) f t:CC-«~g)J...G:::: 1T0· 3 ... (\o\-1~ ~) 
0 1.2.·'1-'--- ~"-') (1'\. 

which is essentially a generalization of (1 .. 5) given by Legendre. 

l2e} g. above P• 432 .. 

13 .. ) Poisson, S.D.--Bull .. de la Societe Philomathique 3(1812)388, 
f.lem. de 1' Ac. roy. des Sc. de Paris (1823)463 



In his memoir of 1789 {g. above), Legendre indicates the roles 

played by Laplace and h:imself in developing the knowledge of Laplace Coef­

ficients.14 He finds it necessary to reemphasize the prior date of his 

earlier memoir to the work of Laplace (a .. and b., above).. He points out 

that Laplace was the first to treat the Laplace Coe ff:i.cients in this 

memoir published in 1785 ( d. above) , but these functions were general-

izations of those developed in Legendre's 1784 memoir (a .. ubo~re).. The 

extension affected by Laplace consisted in treating as functions of two inde-

pendent variables the functions which Legendre had formerly treated as 

functions of one variablae 

Several new properties of -the functions are derived in the course of 

this memoir. Requiring the value o i the potential for any l)Oint within 

the masn or on its surface, Legendre sets up (1 .. 12) and expands (1 .. 16) 

in powers of R/r or r/R, taking precautions to insure convergence of the 

series so obtained. Then he lists the first eight coefficients in this 

series and proves again that the variables are separable.. In fact, he 

gives the first correct and convenient expression for Laplace's nth 

an error in an earlier memoir of Laplace {d .. above), in which the terms in 

cos m( l<l -w') were omitted when m+n was odd.. Legendre also demonstrates 
I 

( 1 .. Z2) J '?,..,. L>l) 'P,,bt) d..x..- = o _, 

(1 .. 23) J' f.Lx) tl)t.. ::::- _3_ 
1 

• 
-t 1'\ ~-l-

-------·--· --~~ 
14.) g., above P• 432e 



Further, he presents the Legendre differential equation as a special 

case of the Laplace equationt5 

Laplace in his paper of the same year (h. above) could make no 

addition to t.he work of Legendre. In fact, Lagrange's "Mecanique 

I'/-. 

Analytique", w!1ich appeared about the same time, went back to the earliest 

work of Legendre for its approach to the problem of ellipsoidal potentials. 

This is even more marked in a later memoir of Lagrange!
6 

In this latter, 

after reaffirming (1 .. 19) and (1 .. 10), letting a=tsinA.cosr, b·=psin>-.sl"-jA ..... 

-Sin- , c=rcosA.in (1.10) and expanding the radical in increasing powers 

of 1/p 9 he states that the nth coefficient is a homogeneous function of 

x,y, and z of degree n$ This fact is already used in a fundamental way 

in Legendre's first paper (a .. aboye) .. 

There were several other papers presented during the last decude of 

the eighteenth century by Laplace, Legendre, Lagrange, and o-thers. 

F'rom the standpoint of celestial mechanics in general and of the problem 

of at-tractions in particular, they ar0 of considerable importance; but 

one finds in them no distinct contributions to the theory of Legendre 

Polynomials or of Laplace Coefficients, a.'ld it is work of the latter 

kind with which \116 shall be primarily concerned hereafter .. 

I 

15 .. ) Legendre also gives the values of JrmPn dx form=n and~M--=\'"'- .. 
A simple presentation of these Yalues is given "by Todhunter, I., 
Note on the Value of a Certain Definite Integral, Pro c., Roy. Soc. Lon d .. , 
23(1875) 300-1. A more complex treatment of these integrals ~s given by 
J.W .. Strutt (Lord RaylGigh), On the values of the integralsJ Q Q,&..LL, 'Q n, .f 0 \'\. h: /- ~~U\.IA 

being Laplace's Coefficients of the orders n, n with an application to the 
Theory of Radiatio11.. Phil .. Trans. 160(1870)579-590., 

16.) J & Lagrange--Memoire sur les spheroides elliptiques, Nouv. Mem. 
de l'Ac-.roy. des Sc .. et Belles-Lettres de Berlin (1792-3); Oeuvres 5(1870)645-66( 



The first volume of the memoirs of the Berlin Academy of Sciences to 

appear in the nineteenth century contuins a paper read by one J .. Trembley~7 

The author tab,1s the explicit expression for P11 (x) and from it derives the 

Legendre differential equation: 

(1 .. 24) 

Then he aims to demonstrate that P11 (1)==1 as follows.. In (1,.24) set x"'l, 

then ( i) 

(ii) 

(iii) 

(iv) 

(v) 

cl R ) v 
}._y '&_)L :::- V' (t-c -II 1~-v 

_3:_ d_P._ _ vcl h -II) 

Y"' -;(jc )(_ 

~ -r\'V1-::: ~- \(l(_,>cl~<-41) 

"(<,;-/) r ~ t :c) == K x. 
·~ 

f~ll) = VK.- . 

or 

, from which 

(k constant), and hence 

and 

Now k is independent of n, and since P1 (1)= (i(=l, then P11 (1)==1• The 

author was apparently oblivious to the fact that he was letting x be 

variable and equal to one simultaneously. Thus (i) and (ii) hold only 

for x=l, and ( ii) is not even a differential equation. 

Other results given in Trembley's work are likowise neither new nor 

presented more satisfactorily than in the work of Legendre (a., c. above). 

Integrating (1. 24) from o to x and setting x=O to determine the constant 

of integrcttion, Trembley obtains (/.'l-~) 

(1 .. 25) 11 & P] 
1'\.CV.. -rl) K4 = -"- ' 

0 d_ )L J'-'=-0 

Now, if n is even, Pb(x) has a factor x and then the right member of 

(1. 25) will be zero;. if n is odd, Trembley gives 
D """-1 

(1 .. 27) ~~~] = (:-1) ~ 
X--=-o 

3· ._,-, 1 --·\'\. 

:l' '+' (., --- (_1A-!) ' 

17 .. ) J. Trembley-Observations sur l'attraction et l'El'quilibre ctes 
sphefoidea.Mem ·de L' Ac. des Sc. et Be-Lo de Berlin (1799-1800) 58-109. 



I~, 

In general, if (1.24) is multiplied by xm and integrated from o to x, he 

Integrating the first term by parts 1 and taking x==l for the upper limit of 

integration, he presents us with a known formula of Legendre (1.5) 1 with a 

. superfluous :t" sign before the right side of the equation. There is no 

evidence that Trembley misled anyone into similar error. 

About the same time there were published the definitive, early volumes 

of the "M~anique Ceie ste" 1 in which was repeated the work of Laplace's 

memoir of 1782 (d. above) in a more elegant form. In addition to establish-

ing Legendre's observation that a function Off- and e could be expanded in series 

of Laplace Coefficients (1.21) in only one way, the minor errors of Laplace's 

previous work are corrected, virtually all of which were remarked by Legendre. 

For several years after, Laplace' e treatise was considered an in fallible 

source book, and little original work was forthcoming. Yet it would be false 

to say that interest in the problem of attractions waned, for mathematicians 

were evidently thoroughly digestiag Laplace's work. 

To end this period of quiescence came a paper by Ivory reviewing the 

solutions of the problems of ellipsoidal attractions as given by Legendre 

and Laplaceta Shortly afterward, Ivory presented a paper in which he very 

hesitantly, for Laplace's treatise bad come to be looked on with re't'erence, 

indicated a fundamental error in the work of Laplace~9 The s~e results 

had been published by Lagrange a little earlier; but Lagrange's work did 

not arrive in England until Ivory• s paper had been read to the RoJal 

18.) J. Ivory--On the Attractions of Homogeneous Ellipsoids, Phil Trans 
ll809) 345:. 3'72. 

19.) J. Ivory--On the grounds of the Method #which Laplace has given in 
the second chapter of the third book of his Mecanique Ce'leste for computing 
the Attractions of Spheroids of every description, Phil. Trane";l02(181'2h-45. 



17. 

Society of' LOn<len!-0 Laplace's error consisted in asserting that .A!U: 

lfamction could be expanded in a eerie s of Laplace Coefficients. lTOJ7: 

and Lagrange quite correctly maintained that Laplace proved the theorem only 

[f~~as in (1.12)J 

and consequently, ~aplace' s work on the attraction of spheroids held only 

for a restricted class of spheroids in Which the radii can be expressed as 

such rational integral functions. 

The usefulness of the Laplace Coefficients was thus restricted; and 

when Legendre introduced elliptic integrals into the problem of the 

attraction of a homogeneous ellipsoid, the application of Laplace Ooeffi-

21 cients was even less necessary. However• a year later, Legendre's "Exercise du 

./ Calcul Integral" appeared, and its presentation of the Legendre Polynomial 

was so elegant as to attract considerable attention. 

20.) J. Lagra.nge--Eclairci ssement d' une di f fi cul te' singuli~re qui se 
rencontre dans le Oalcul de 1' Attraction des Spheroides tr~s-peu diff',rens 
de la Sph~re 1 Jour de l 'Ec. Polytech. 15(1809) 57·67 

21.) A.M. Legendre--M.rmoire sur l' attraction des ellipsoides hornog~nes, 
Mem. de l'Institut de France (1810)#2, pp.lSS-183. 



sECTION II 

DEVELOPMENT OF ELEMENTARY FORMAL PROPERTIES 

In the first edition of Legendre's "Exercise du Calcul Int{gral" was 

published the first significant advances in the theory of Legendre Poly-

nomials since the Legendre memoir of 1784. Beginning with the simplified 

generating functionf2 

-Y. 
( 2.1) T = (l-:1-x.:~ + i=~) ~ = 
Legendre presents the general fonnula for the polynomials 

( 2
) u I·'J·.!)' .. ·£:4-.-r) " I·J·l>· .. (':l-~-~J.x."'-'" 1·3·~-·-·(.1...,-!."') )(..__, 

2. r.,(x.) ::: 1'1. '· .X. - 1.:!--'-J.' :;::- + l"' _.,._)! ~ - · .. ) 

and exhibits them up to the ninth degree~3 In a series of theorems, he 

establishes other fundamental properties of the polynomials. Considering 
,:r-~ A "' . 

T:::.l/ (1-z) for x=l. and T-::: fi- ~>t.o(-~)-r{-c)"j ~ L.L-•> ~""Pn(x> for x replaced by -x, 
L.: "'=O 

obviously 

(2.3) Pnll)=l • Pn(-x)={-l)nPn(x)· 

if -if 
Further, let x=eosf, <:(-= Jt. • p-= Jl,. 

The coefficients on the right in ( 2. 5) are all positive; thus Pn (x) takes 

its maximum in [-1,~ for x=l, and its minimum is greater than or equal to ... ~(1). 

22.) Here we present Legendre's work (vol. 2, pp. 247-263) in a more 
extended and more modern guise. That will be our plan in this and succeeding 
sections, to present historically theoretical developments without losing 
eight of the desirability of an organized logical structure with a consistent 
notation. 

23.} (2.2) may be int&rpreted as defining the Legendre Polynomial for all x. 



l:ience 

Now Legendre applied l.aplace' s differential equation to!' and obtained 
e)'-T 'OT -a~c"l:: TJ _ 

(!-X-~) ~1 - ?-.lt () 'J- -+ r. 0 ~... - 0. 

If in this the coefficients of zn are equated, we have the Legendre differ-

ential equation 

{' "1-) d, '&. p,__ a. 'PI'\. "D 
( 2. '7) \.1 - ?t- J_ x :l- _. ;LX. d..>t -t- II'\ LVI. -t I) 1 ~ = 0 · 

(for x=cos e, thig yields 

(2.'7a) i:-; ~f~e;i}-t"'-< ... +l>~=o. )) 
Consider, as did Laplace and Legendre, the equation { 2.'7) foJ' Pn to be 

multiplied by Pmt and integrate with respect to x bet.ween -1 and 1, i. e., 
.r' f' [ &}·pi\ &.Pt...] . (

1 
D 4- f(l >-) d.i>.._] l. v..<"+')L,'P""'P"h-=- _,'P~-.- Ll-.,.,..) J:x,_-::L)(.TY. J.x.-= -j_,r.-J,_l -1l A tJ-L 

A F.'] I l I tl f .... &. f.: J I ... d P ..... J.. 'P., ~ --u--x.>-)f'\M- ~~ ~ U-Jt')-p_~J.x-::- (t-;)T:i- J..,_a.x. 
- <>- _:\ -1 (Jio~ - I 

Similarly, ML~o--+t){ 1'"" f"'A.x ::::-i'u-x.•) ~ c15d4<... _, ~ ~ ~~ 

I 

Thus [1"l\A.-td-IN'C1M--+t)Jf f..._ f~'-d-JL -:::-o holds for all integral m and n; 
I -1 

and if mi'-n, J~mPndx==O. This property is called the orthogonality property 
-1 

of the sequence of Legendre polynomials. if the integral has a non-zero 

value for m==n. This can be verified and the orthogonality property obtained 

at the same time. Consider 

24.) A proof similar to this appears in J.W.L. Glaisher's "Notes on 
Laplace's Coefficients•, Proc. Lond. Math. Soc. 6(18'75)126-136. 



Returning to (2.2), we see that xn can be represented by a series involving 

Legendre Polynomials, as follows: 

xn == a ... 'P ..... -~-" tt ... -:~.. P .... _,. + · · · 
25 

in Which the coefficients can be detetmined by means of (2.8) • For, 

Obviously 

(2.10) f 1

)c"P,.._k.;:; 0 (n.-::= OJ 1,2,··-,V~A.-/) or _, 
(2.lJ.) J 1 &~_ 1(x) P~~>"-J.:x.. = o) 

-I 

where Gm-l (x) is an arbitrary polynomial of degree ~ 

Thus, J,egendre obtains 

( } 
h_ (vJJ.l. ;L "'[ D '2"-- 3 F.' + (::2.~-7)/ ?-w-1) p -t- , • . ] • 

2.12 X. - (~"')! riA+ 2 ~-o-:>. z·t+ ~'<-'-1-

m-1 in x. 

0f considerable interest are the zeros of the polynomials. Legendre 

shows that they are real, distinct, in (-1,1) and distriq,'ied symmetrically 
I 

with respect to the origin. For, since ~Pndx=O, with Pn not identically 
-J . 

zero, there exists at least one zero, say a1, of Pn in (-1,1). But 

Pn(al)=(-l)nPn(-al) and x2-a1 2 is ~ factor of Pni. Since j_: 0.L ... - .. ";>'f:..o..~{,l.t-'-. ._l ... ) F..-.2-tl)L =D) 

~~o..?""' "(. f1.-;1,~a.,.., ~ t-1 1 1) ..:....A- x..,-a., ~fA~ 'i 'P..,... .9-"" ..._ ~ ~ -~ ~A-=.!4vv, 

f 
1
(ll. ... _ .. ~;cx .... -Q ... ) ... ( x.. ... _,_ '-\

1 
q:r: lxJ.c= o ; and consequently P2m = (:L.,_- t.i ,.,.) < :t .... - 4 ,-.. ••• (:x.. .... -<t. .... ). 

I ). 'loy!J l,:i-._"" ~ .... 
-J 

From ( 2.2) it appears that x is a factor of P&mt-lil Hence t in this case 

{x(x,-~t;"){?L2-4;)--·C.x. ... -•~~1 ) f~-t 1 J.x: :::oo , from 'Which P2m-t-f = xb ... -c., ... )lx. ... -tt;-)."(x.:z.-~.;;..), 
-I 

From (2.7) and the result of differentiating (2.7) n-2 times with respect 

to x 1 Pn is identically zero if there is a multiple root or Pn in (-1,1). 

0 

25.) Legendre actually gives ;t ..... ("-\J,_ 
I e-"'- -t I) ! li'V\ ="'') 

f 'PVI'\'ltl'.tL.:X.: 0 I (M~t'> "'-+"'- o.ul.) 
Mi-t V'\.• 

-1 l.. (~)/ r:~.(k-"") '. (.-<.VI, ""'+"'~) 
For derivations of these and related integrals, see A.R. Forsyth• On the 
integraleJ'r:·r""&u. J'f;~"""e.t f'E ~J J'v · . ~I 1 I I l f- I 1' \) l{IJ.., f,' ><-- """~ J.t,~.) 

-J _, r L 1 _, 

Quart. Jour. of Math. 17(1880)37-46. 



Repeated differentiation of (2.7) leadsto some results interesting 

in themselves. Already ( p.lq). we .liave t 0 (,._. :t- "'-) 

' . r' . ttP. J.P., . 
(2.13) V\ll-l-f'l)[ Pv.-.Pv.lx.::.L,(I-.r') ,~_; rJ,_tl-x-=:: ?-~(~-t-t-1) 0--::"'-) 

_, :ZI'\--+1 
PP. &"~ & P... Differentiating (2.'7), (1-:x..,) JI.-1-'x. "J:i",_ -+L"'-'+zJCr-- 1J 7;G: =o · 

J.. s ,e·P 7 { J a A.. 
Multiplying by 1-x~ Ixl( 1 -)L"',_ rJ--t-".,.1~ -~+-.2.)\~-<-l t:J.-x · 

('d.~ J.. {c1 -,.,_),_d ... P .. 1 .!>(.:::- {v-+.,_X!"-'Jf
1 
C1-x~J ~-: & ~ &-x, 

But -J_, d.>L trJC. ti4,..J { 0 J(_vy..:t=-V\.J 
I J'l.f? ,_(? 

-(I- "').,_,tP.._ J""P..,]'-+f (,-"·f -Tf',.cJ~ ~&.x.-=- .2:.--- tH-+.2-f("'--tlhd"'--')Jr =V\.), 
1:. Tx J.Jt" _, _, 0'-'X. :;:1-"---fl 

Hence, { o (Vk--:\o'-J 

J 
1 l-x."~- 'l.- '!.:!.•"' d..,...P"' c).:x. = 2:_ L~ t :z...)\ 

(2.14) _
1
u > J.>L" -;r;:... 2"+' (.1-t-7-)! tl-1-\-:::::11). 

These formulas admit the generalization 

(2.15) f L1-)( ... J J.;;: ~ t>(_= ..3- lvt+h.)'· 
1 /t.. J_hP._ ~r. f 0 l,..._ ~II\-) 

-I ;-X :Zt---·H (ya -A)/ ('-"" '"""V\)J 

f l /1.- d ~ ( ) a.nd CJ-x. ... ) r; (xJ -;-h.Lx. -:::..o where G is defined as above- P•20 • 
-1 1\-h-1 t'-)1 ' 

These appear in Legendre's work and again in a paper by Ivory. 26 

In the latter, Ivory gives the generating function and differential equation c 

the Legendre Polynomials and -the differentiates repeatedly the differential 

equation, obtaining .1>.-tt E 
~t-d/1. ~ J. {( -..l--1-1 cL "} 

(2.16) (l'\--h..f..~+~t-+I)(I-1L') cJ.-x'l-+trx. !-:t .tfxH' =::o) 

27 
and the orthogonality property of the derivatives as in (2.15). He gives 

also the explicit expression 
J."-P r-:2._)( f {'--"-)(tn.-h-tJ ~<.-A-::t. 4--.-AJ(~~t-A-J)(~->\-?--)(.,_,..,__3) ~<--'>-

( ) 
-" - "- h--'t.----- X. -t-' )( ' 

2.17 &..>c"' -lv---"-)lVI!J"' :X. .2t~-1J .2·<.f·(-:J-h-l){:z..l.-'1) _ 

Ivory's interest is in using a series of differentiated· Legendre Polynomials 

to express the Laplace Coefficients. His expression was already known to LegE 

and Laplace in a more complex form (1.21). 

26.) J. Ivory, On the Attractions of an extensive Class of Spheroids, 
Phil. Trans. 102( 1812) 46-8 2. 

2'7.) A very si..Jiple proof of (2.15) is given by D.D. Heath. On Laplace's 
Coefficients and Functions, Quart. Jour. of Math. '1(1866)23-36. 



The moat remarkable simplification of the expression appeared in the 

' 27 
1813 thesis of Rodrigues. There for the first time is demonstrated the 

most compact representation of the Legendre Polynomials 
-~- J h (!_,__I) h. 

( 2.18) 1;. { Jd = h ! :L"' &. :X "'- • 

This expression has been variously attributed to Ivory, Jacobi, and Murphy, 

but it is clear that it appeared first in Rodrigues' work in the little known 
/ 

''Correspondance sur l'Ecole Polytechnique" published for only a period of 

three years. It is also evident that Ivory arrived independently at the 

same formula in 1824~ Further, Jacobi's work in Crelle's Journal fl1r 

Mathematik for 1827 indicates unfamiliarity with both preceding papers~9 

Although it is claim~ by overenthusiastic Englishmen that Murphy in hie 

treatise on electricity (1833) deduced the same results independently, this 

is not so evident in his work~ 

In Rodrigues' dissertation appears another important formula, 

~+"')'. Jw--"'(x ... -r)""' l"" n cL""-tncx.,_-1)"' 
( 2 19) - - J( -I) ) • ~- ... ;! .!x .... _,. - d. :.c '"-+"' 

which Ivory unquestionably would have derived from (2.17) had he been aware 

31 or ( 2.18). 

27.) o. Rodrigue~- M&moire sur l'attraction des sph6roides {Thesis) 
Corre spondance sur l'Ecole royale polytechnique 3(1816) 361-85. 

28.) J. Ivory - On the figure requisite to maintain the equilibrium of 
a homogeneous fluid mass that revolves upon an a.xie 1 Phil. Trans. 114( 1824)8~lfi0. 

29.) c.G.J. Jacobi - Ueber eine besondere Gattung algebr~isches 
Functionen, die aus der Entwichlung der Function (1•2x& +~"J.) -a ent stehen, 
Jour. fftr Math. 2(1827)223-6, Werlte 6(1891)21-5. · 

30.) R. Murphy - Elementary Principles of the theories of electricity, 
heat, and molecular actions, Cambridge 1833, p.7. 

31.)For proof of (2.19)see- J.W.L. Glaisher, On Rodrigues' Theorem, 
Mess. of Math. (2)9(1879)155-160; E.W.Hobson, Proof of Rodrigues' Theorem, 
Mess. of Math. ( 2)9(1879) 53-4; VI. Walton, Two Demonstrations of a Theorem due 
to Rodrigues, Quart. Jour. of Math. (1)15(1878)335-7; W.H.Hudson, On a 
Theorem due to Rodrigues, Mess. of Math. (2)7(1877)117. 



Rodrigues arrived at his results with some difficulty, but both Ivory and 

Jacobi reeort to the Lagr.-ange expansion of the generating expansion. Aesume 

that 1-'>'~ r::: '(i- ::b: z- f-'i:.. ... then 'Y-;:: :x. + ~ cL7"?:..t) • Consider Y as a function of x 
I I J (:t-..-/).._ 

and apply Lagrange's method, then 'Y-== x + 1.- t.(Jt"--rJ + v. :2-._ ~,_ ~ _,. • • ·; 

V I ..,.( ,_ I Jl '3c(_ (?£1--1)"' 
and 1-~ll-'"2:+-'l-,..::: 1-x-c-;;:.i! "-0- .2!i"l~ d1t- -·--· 

Differentiating with respect to x and dividing by -z, 

1 .L J.~ ...!.... !.. -e,. .t ... rx~::Y: __ . 
T ':0 y I- '2-X~+ ~~- -:::>I + 2- C: d.;x, + :l'. Z"' -P£x.z. 

from 'Which the remarkable form of the Legendre Polynomials as nth differential 

coefficients follows. 

Another exceedingly curious representation of the Legendre Polynomials 

was made known by Laplace in the "Paris Memoirs" of 1817; and it appears with 

a considerably revised proof in the final rolumes of "Meca.n.ique Celeste"(l825):2 

In the original memoir no formal proof is really presented, but a vague 

reference is made to previous work on probability integrals. This situation is 

only slightlr remedied in the "Mecanique Ceieste". However, adequate proof can 

• Thus 

, and comparing coefficients of ~. 1'!8 have 

32.) Laplace, P.s. - Memoires sur la figure de la Terre.Mem. de l'Ac. 
roy. dee. Sc. de Paris (2)2(1817). Oeuvres compl~tes 12(1898)415-459. 



1. '/-. 

The Laplace memoir is noteworthy also for a discussion of the behavior of 

Pn for large values of n, and its conclusion 

( 2.21) · f. {eoQ(1) rV 
1 ~ c~.-~...r (n.-1-·ld~- E.]. "' V~e l '+-

No estimate of the error is made, and some later writers, Todhunter notably, 33 

accepted the result with reluctance because it does not hold for 6-:0 and is 

unsatisfactory When Q is small, Which Laplace did not observe apparently. 

However, Laplace's result was verified by Cauchy in 1829 in a general treatment 

of definite integrals related to certain types of Lagrange expansions of which 

the Laplace integral is an examplel4 Todhunter's major objection is that 

Pn(cos Q) should approximate unity for 9=0. This difficulty was resolved by 

Sharpe, Ylho showed for what values of e (2.21) gave a good_ approximation and 

the nature of Pn(cos 6) when e does not have these values~5 

we give an exceedingly simple derivation of (2.21). The differential 

equation (2.7a) is somet~es written as 

tt.,.r ... + ~e ~ + 11\.(\.\.-+-IJ P"'"-::- o. 
Ml. ~9 

Assuming Pn of the form u coe ae + u' sin ae, where u and u' are functions 

of 9 and a.. =Y"'l~+l) 1 substituting in the differential equation, and equating 
tfM I (c{'l-.._1 d. I .. ) 

coefficients of sin a9 and cos ae, ..1 ;re-r~e.6t9-::o A. 't.U))... + iit~f}"/) 

Since 1/ a is so small 

A first approximation 

A. ... \ , __ ... I ( t:l1.1( J,u. A4-fr) 
~ -;te -t CA \.(~"' e- == -A: jji' ~ -+ li 4'V ' 

for very large n, the tenns on the right are neglected. 
M .f-1 1 

is thus lA.-= ~ > u'- - i.e., 
, 'i-4-9 - y~e 

33.) Todhunter, %.-·An Elementary Treatise on Laplace's Functions, 
tame• s Functions, and Be.JS.e( .. :'s Functions. London, Mac Millan & Co., (1875) Chap -m. 

34.) A. Cauchy- Mtmoire sur divers points d'Analyse, Mem. de l'Ac. roy. 
dee Sc. del'inst. de France (2)8(1829)101-129 (p.l20). 

35.) H.J. Sharpe - Note on Legendre's Coefficients, Quart. Jour. of Math. 
24(1890) 383;..6. 



Now (L :::Vv-c ~+•J r"\} V\ +-h. , ~ PIA rV t:.a ~ c.~-~.e- + ~ +?'). 

If n is odd, Pn~O when 9=="o/2, so 'i' ==- ~· Further, if n is even and 9::TT/2, 

'P, - (';2"")! . r_, ""'- ' ,r:r_ 
2W\. - ~~ 7 2-;. """' '= J - c ""'r;:; -= r -;n: , 

and (2.21) is established. 

The mGthod here given can be extended to more precise approximations 

as does Heine~6 who writes 

(2.·l.l<L} 'P"'{~e).-..~Vnrr:L~~L(l-~,.)~f(.__+-l.)e- -!fJ+ ;"' c.&te~[c"'-*~)i} -"!Ji.}] . 
. Laplace does not concern himself with the asymptotic behavior of Pn 

for values of x outside of (-1,1), but such an extension is easily made. 

Let ~ x:. ::: ~ + t > 'J.n and ;t Yx ... -1 ~ ~- f , hence t -= x + Vx.~-1 
I ~ ( ;;_ -X and -r= x-(x:r.-1 • Using T~ (1-f:c/,1. 1-y) 2. and proceeding 

as in (2.4), ~(x.)~ l·'3·;·{;1.:_-•>r~"'+ ~ ~"'-~ 1' 3 '"'(\o\-l) r"--+ ~:-V\.1 
>'\. '2.. I•(:Z.,.,-1) 1-''1.[2.>~.-/)(2.._ -!1) ~ -1- · -· + (!. j 

(2.22) - (?."'),I "-[ l•t~ -2 ] I [ 
- ~ ! } ;! 2 2.>1. ~ I + ~I) ~ + - .. /'\) t kIT { "' l + ~ ~ -~ . -· J 

( ) 
l ~)~ 

2e23 rv '{Wit f"'( 1- {- 2.. 

For x<~l, we can use the relation (2.3). 

One evident application of the Laplace result is to discussion of the 

behavior of terms in a. series of Legendre Polynomials. Such series, and 

more generally series of Laplace Coefficients, were considered carefully 

by Ivory37 in 1822. He repeats his earlier results38 concerning the 

expansion of an arbitrary function of the sines and cosines of two angles 

e and <p. Let/A:::cos e. then the given function may be developed in a. series 

f (~~<f)=- Uo + (jl + (j:L + ·-: 
in Which all the U1 s satisfy the Laplace differential equation (1.15), 

without difficulty if f(9,<P) is a. rational. integral function off', S..:V<fYi~;l. 

• This is his and Lagrange's previous correction 

36.) Heine, E. - Handbueh der Kugelfunktionen. 

37.) J. Ivory • i:R the expansion in series of the attraction of a Spheroid 
Phil. Trans. 112(1822~99-112. 

38.) See P. ·16. 



of Laplace's theorerJ9 

Poisson is concerned with the same problem in a paper extending some 

results on Fourier Series to series of Laplac$ Coefficients~ He proved 

again the result of Laplace, that the Laplace Coefficient is a rational 

integral function of f" 
1 

'It-)'-.,_ ~ 'f 

Which satiefiee the Laplace differential equation. Can any arbitrary 

function be expressed in series of such coefficients! Poisson believed 

with Laplace that the question should be answered in the affirmative. 

However, very obviously hie demonstration implies that t(e, c:p) be of class C1 • 

In 'oisson's paper the problem is also linked to the Laplace differential 

equation, and he raises the question of the determination of the general 

solution of the equation, which bad received only slight attention before him. 

Also, in order to discuss the behavior of terms in aeries of Legendre 

Polynomials, particularly in the neighborhood of their extreme values, 

he adapts Laplace's result (2.21): 

( 2. 24) ; 'P ( ~ ~ ) r-v {f;. [ C-.XJ. c e -~ J + ~.,_ c....:s-.J ( e - ~) + ('·. ) ._ ~ (e - ?jj_) -t ... ] . 
\'\ ..__ I le @ ¥·lb ~ 

Ivory's 1824 paper takes cognizance of the work of Poisson in attempt-

ing to prove Laplace's theorem, b~t that is not its most noted feature. 

It is chiefly know.n for its independent derivation of (2.18). This is also 

the case with Jacobi's article in the second volume of Crelle'e Journal. 

Jacobi gives an interesti11g consequence of Rodrigues' formula (2.19). 

f )( Jx (_x.::~--t)"""' 
Since · · · 'P~ &.1t·,. J.x ~ ,.,.. ! 2. .... ) 

_, (~'>"') _, 

an application of (2.19) yields 

Jt.. f)( A ~-11.)( l-.,1---1)1\ J 1\ p~ . .. r_ a.)l · --~)(. = ~ 
••• "·. _L "') ! &1 )l 1\. • 

-1 ll!\) _, \'~. 

39.) See p.l6-1/. 

40.) Poisson, s.n. - Addition au l~oire prec6dent• et au u(moire sur 
la mani~re d'exprimer les Fonctions par des Series de quantit's periodiques 
Jou~ de l'Ee. Polytechnique 19(1823)145-162. 



Furthermore, the polynomial associated with 
,!"" [(ll-a.)"(ll--8--)'j 

J. )(. IV 
bas the 

same properties as the Legendre Polynomial, only the interval of integra-

tion is now (a,b) instead ot (-l,l). In particular, the Legendre 

Polynomials are exactly those functions whose zeros are used by Gauss 

in his famous paper on evaluating definite integrals. This laat 

observation of Jacobi and his paper of the preceding year (1826) served 

to stimulate new interest in the whole questionpf Gaussian (so called• 

" mechanical") quadrature. 



SECTION III 

EARLY DEVELOPMENTS 1J:! GAUSS QUADRATURl!l 

The problem of quadrature is e saentially to approximate an integral 

by replacing the integrand curve with an approximating polygon in some 

convenient way as, for example, Simpson's rule. Thust to evaluate J!{x)dx 
c:v 

when f(x) is known for [)(11 O(.:L • ••• 1 D(,., n values of x in (a,b), Newton 

employs a polynomial of degree n-1 which coincides with f(x) for the 

given abscissas. Of course, the polynomial should approxL~te f(x) more 

closely with increasing n. The abscissas which Newton chose for various 

degrees were given by him in a table. Gauss obtained a closer approxima-

tion using a polynomial of the same degree and as many abscissas as did 

Newton. The abscissas in Gauss quadrature are the zeros of a polynomial 

of·the nth degree. If (a,b)~(-1,1), the polynomial is the Legendre Poly-

nomial and the general case can be correlated with the special case. for 
k I 

(3.1) 1(.-::o .6-~£1. -t X: k-~r...) 1-t()C)d.lC ::0 ~ ~4.1 f ( .(.. ~~-+ ~ ..6--;_"'-)e:t:i:" 
~ _, 

transforms (a, b) into ( -1 ,1). 

The first problem is to construct a polynomial which will coincide 

with the given function f(x) for n given values o:f x. Of all the functions 

which will coincide with the given function at (0(,, f ) , (oc~, f.) e•••, 

("1" .. ,j1to.) there is only one integraJ. function of degree n-1. IfJ'(x)s 

{x- or.,)(x-ot.J .... (x-d ... ), -.a use the Lagrange approximating polynomial 

[ 
tl JS:z. ft~ 1 

( 3e 2) F' (;t.) ;: <J' ( :L) (X _ «,) 9>'( o(,) + (l(. -<'t:o.) q>'( ex's.) -t- ... + (X -o<,.. )'f I( o<,,.)j' 

Certainly this function satisfies the conditions. If there were another 

such function, G(x), of degree n-1, F(x) would be identical with G(x) 

for the n values o<,, c(..2. • • • •, o<..,.; and so, F(x) is identical with G(x). 

It is evident that t(x) coincides with f(x) at the n given points, 

( 3. 3) 

write ~ F(CO(i} 

+ (. x.) ...v g7(:x:) .2-~~- <><'d cr''(-< f) 
't -;:;J 

so we can 



J..tf. 

If f(x) is integrable and the conditions of approximation are fulfilled, 

i.e. t-)'0 3 Nc 3 lf(x)-F(x)\< e- for n>Ne and the abscissas such that 

I o<i-oli. 11< 1/n, then 
I I 

( 3. 4) f< x)dx rV £< x) dx • 

. Let (3.5) ,AJ·= f\ol;)f xc:p~':ji 
Whereupon jr(x)dx ""f_A1F( .xi). 

_, ~:::;1 

All this restricts the manner of choosing the o<. • s only in that 

I o< •. - t>l~·- ,I ___,. o 64.- 1'\. ~ ..o . 

In (-1 ,1), Cotes41 takes the o<.' s in an arithmetic progression, 

h-:.1..-i.+l ' h f ll c{,· == ~, and calculates the A s up to t e case or n= • Gauss quadra-

ture likewise uses o<' s symmetrically distributed with respect to the origin. 

Hence o< ..... ...,..;. -o<..,, oi1 >ot:z..>· .. >o<..._ • If n is odd, one o< is zero. The A's 

1\ I 1'\-1 I( ! ~ 
are similarly symmetrical, for c:pt>d :::(-1) Cf(-x.J, P(x) =&IJ P _,t,, ~ 

A = , I !' o/(x) JJC. == l-JJ"'-1!' ljJ(JCj Jx..- .::_!__ ~~ Cf(-:x) tl:)!. 
1\-"'+1 <f' ( o( ) )(- Dl. CDI(ol ) ,, ,__.., - a>'(ol ) )( + o1 

..,_ ..... +, -~ "'-~M-H J """ A.. -r-'-"~ J ..... -1 ......... 
I -1 

= _1 _ ( cpo.) J.~ == Al'vl-. 
o/t«.._J J ' ): - 0/ .... 

-I 

In any event, the degree of approximation depends on n, the nature of f(x), 

and the choice of the o<' s. Furthermore, 

(3.6) jiuJ.h. =A, F(o( 1 J +A;~..F(o<:~-J+ --·+-AkF("'"')= i_AiFcc~'I.J 
-t I 1_::1 

gives the true value of fcx)dx only when f(x) is of degree '& n-1. 

Suppose we were to seek the error. Set 
I 1\ 

(3.7) E({) = j f[Y.JJ.x- .IAi Floei). 
-1 7,-=./ 

Then E({,+f .• J= E'lt,lt-E.(f~)J a..-et E(l{f)=KE(.f). In particular, iffot.J=\o(.,-t-l(.xH(1x':y ... , we have 

E(f)= KI\E(->c.k)-r-i(~<+• [;.(x"'i-~ +---· 

More specially 

r, ..._ A "" A """' A """ (3.8) E(x'"')::: )( ch- ,~,- .2d.;L ---·- ~o< ..... 
-I 

Equating (3.8) to zero form.:0,1,2, ••• ,n-1 gives n linear equatiol'ls for 

41.) 'Hamnonia Mensurarum (1722). 



30. 

determining the A's which are likewise n in number. 

The achievement of Gauss was in showing that the degree of approxima-

tion could be made 2n by a proper choico of the abscissas, still in a 

symmetrical way. In this case, the error would be zero if the function 

approximated was a polynomial of degree 2n-l, :t,e,Elf)= 'K~ ... E'(L~")+-~"_.E,C.x.z.. .. ,J-+··· 

The o<.' s are none other than the zeros of the Legendre Polynomial of degree n. 

While this last fact was not immediately evident to Gauss, one can demon-

strata it in a straiehtforward faShion. 

polynomial Fn_1 (x) of degree n-1 built from n values of the ..c.'s, 

(r JL) _'F.,., l>t) f L~) - f.:., {JC) - ,._, r; 
(X.--1,)()--<.>.)···t:><-<><")- 'J'Ix.) = ~•+f,,c+ .. ·+t"·'x. ::= ".,<:!:). 

we seek E( r) = [,'crcJlJ-(,cx.)J .1.-x- == j'cyLilJ G"_,(x.J dJL == o. 
_, 

This is precisely {2.11), and ']'{x),Pn(x), within a constant factor. Thus 
I ~ 

only in the case of Gauss quadrature will [, t(:x)d.x_ = 'f;., Ai Fl..ot.i) 

hold exactly if f(x) is a polynomial of degree ~ -:L..--1 • And if' 

As the proble.m is solved originally by Gauss, no mention is made of 

Legendre Polynomials and the entire question is related to continued 

fractions and hypergeometric functione~2 An earlier paper of Gauss gives 

the continued fraction representation for a hypergeometric function~3 

The problem of quadrature is solved by writing log '+t as a hypergeometric 
1-t 

function and then as a continued fraction; and by taking for the abscissas 

42,) We reserve discussion of this aspect of Gaussian quadrature 
until we come to the work of Christoffel and others. 

43.) C.F. Gauss- Disquisitiones generales circa seriem infinitam 
~ ot.(o<.t-l)a(~+l) )(-.. ~(d+i)(d-+:J.}~C~+I)tf:L.})( 3 -f'··· 

1-t- I·'YX+ 1·.2. ·?"(7 -tl) + 1·.4·3 · -y(r+fJI +:l) 

pare prior, Comment. soc. reg. scient. Gotting 2(1813), Werke 3(1866)125-162, 



3/ . 

. the zeros of the denominators o:f' ·the successive convergents of the continued 

fraction~4 These convergents are listed, and it is obvious that they 

differ from the usual Legendre Polynomials only by constant factors. , 
In 1826, Jacobi45 like Gauss is concerned with evaluating jydt. 

i) 

After showing that the <><1 s should be the zeros of f( x), a polynomial of 

degroo n, he reduces the problem to finding a polynomial such that 

f 'r' k . 
<f{x)x dx-::.0 for k==O,l,2,.,..,n-l. Integrat~n~. by parts, he arrives at6 ~[:>th(t-.x.J'J 

olC.'' x ~ !TLx.J &.... ,._;t,1~c.Jr"'.ct.:x.-=o,._..,~='· 'Tt......t '1fyJ= M J..x"" . I. ·I Cfbclax··-clx. =nul.) where M must be constant if f(x) is to be or 
0 0 
(~ 46 

degree n. In 1827 1 he considers the interval {-1,1) and arrives at the 

nth differential coefficient form of the Legendre Polynomial as a solution 

' to the problem of finding a ~olynomial satisfying [,x><<fLx)cLx.--==o, K.-=o,,,z, .. ">"--1· 

This same problem is the concern of Rev. Murphy in a series of 

articles on the "inverse method" of de finite integrals~7 He defines 
I 

'-f'LK)= j <'f(-t.)-1}-<dl: = o for k=O,l,2, ..... ,n-1 and seeks to determine a 
i) 

polynomial satisfying this condition. Let 'PE!;J = Aki"'+-A..,_, {""-'-+ · .. t-A,t +-I, 
J A, Ak ? 

and 'I-'Ll()::: K+J + ~ +- ·· -t-~1 = ~ • Since 't-'L K) vanishes for k==O ,1, 2 , ••• ,n-1, 

P:= CK(K-l)Uz-)..) · ··(IC-""-t-1), Q.-;:::. {1-<.+i)O<+..z)--- (.1-< ... +v.+-/) 

Now c==(-l)n and the A' a can be found, giving 'fL-t). Observation of the 

I d"'[i"'U-t)"j 
polynomial term by term leads to 1'<:tJ= 1'\! <i-t~ 1 which is the 

-~ 
coefficient of zn in Q-~~(1-:Lt)+~~ '"' • Thus, within a constant factor 

the Legendre Polynomial, translated so that*=l-2t, is determined from 

the conditions on ~(K)• 

Mttrphy makes se·;erd applicatia:tHJ af the pely-nemials te problezu ef 

44.) C. F. Gauss - Methodus Nova Integralium Val ores per approximationem 
inveniendi, Comment. soc. reg. scient. Gott. E(l8l6), W8rke 3(1866)165-206. 

45.) C.G.J. Jacobi- Ueber Gauss' neue Methode, die Werthe der 
Integrals n!l.herungsweise zu finden, Jour. !tlr Math. 1' 1826) 301-8 
v.e rke 6 ( 1891) 3-11. ' 

46.) See P• ~u. 

47.) Rev. R. Murphy- On the Inverse Method of Definite Integrals with 
Physical Applications, Trans. Camb. Phil. s ( 
315-393. oc. 4 1833)353-408, 5(1835)113-148 

• 



Murphy makes several applications of the polynomials to problema 

of electrical pote.ntia.l on a sphere, and he discusses several properties 

of the zeros of the polynomials. These are based on a relation betv~en 

successive members of the sequence{'f'"£-t)}, which Murphy is not the first to 

produce. Gauss gave the continued fraction of which the {r._w} v.ere 

denominators of the successive convergents, and he also wrote the usual 

recurrence relation for the denominators of the eonvergents~ Thus 

Which can be independently derived from equating the coefficients of like 

powers of x in the easily verified differential equation satisfied by the 

generating function: 
-aT 

(1-::Z.x.:z:.-+-?~)-o:r+- L~-.t)T :::::= o. 

The Legendre Polynomials therefore form a sequence of Sturm functions, and 

the zeros of P n-l (x) separate those of P n<x) a11d are in turn separated 

by those of Pn_2(x). 

48.) Gauss-Nova Methoda ••• paragraph 17, 18, 19. 



sECTION IV 

§TYRM -. ~IOUVII.J.! 

Immediately above is one example of the application of the advances 

of Sturm to developments in the theory of Legendre Polynomials. It is 

only fitting to turn to the early volumes of Liouville's Journal and 

examine their pertinent contents. Prior to the founding of the Journal 

de Mathematiques, Liouville had already published a memoir on the 
~~~~~4-t..~~ 
(4.1) (a..}:'-{-.b:x.+cJ~,_-t-(&..x.+IL)~ -t ff -:::.0, (a:,J,., e, ,!, I>-,t ~....ct_) 

of which the Legendre differential equation is an example~9 Legendre 

gave the procedure for integrating ( 4.1) in the Case where ~Jt.'--t 6X+C... ::= \o(( r)L+r)~ 

but Liouville is concerned with equations in which this is not necessarily so. 

By means of generalized differentiation and integration he obtains a 

method for solving the equation. 

More important, however, are the papers which appeared in the first 

two volumes of Liouville's ow.n journal, containing Stu1~ and Liouville's 

analysis of the linear differential equation of second order. Sturm' a 

50 ~ ... v J.l/ 
first paper transformed the equation L(:t) ty.. .. -r M (K) r}.J<. + Ntx.J YC~J == o, 

in which L,M,N are known functions of x, continuous in [o;,~],such that L 

does not vanish in ~~fo] , into the equation 

( 4. 2) !x. { KL:L) ~~5 -T"' G(x.) VC.>'-) = 0 J 

J ~ .... )(. I 
where K(x) == .e. 1.. and b(.lt)=NK L are continuous functions of x in [<X,f] • 

If V=V'""'O at some point in [<><,fJ, V is identically zero. Sturm excludes 

this possibility, and thus V changes sign each time that it vanisheS in[e<,.eJ• 

49.) J. Liouville - Mfimoire sur 1' integration de 1 I equation 
\ Vl\;t-A.--i-"-1-t'f) 'f

11
-t {'\r""-+)1.)~1 + S~:: 0, a 1 I aide des differentielles a indiCeS 

quelconques, Jour. de 1 Ecole Polytech. 21(1832)163-136. 

SO.) C. Sturm- Memoire sur lee equations diff,rentiellea lin~aires 
du second ordre, Jour. de Math. (1)1(1836)106-186. 



The solution V depends on G, K and two arbitrary constants A and B. -The 

chief result of this paper is the Sturm Theorem: V will change sign more 

often, if K is decreased or G increased. 

Liouville applies Sturm' s re aul t s to the system 

(4.3a) ~:><-{~'5i~+('QJt-f)V:::o, 

f
d. v -""-v ::: 0 l..v. J( -::: o() 

J. )L l)' v 

'i£ +I-IV= o ~ )< ~~, 

( 4. 3b) 

where g, k, 1 are continuous functions of x in [0(}1, g>O and k)O in [otfl , 

~ and H non-negative constanta~1 This system occurred in his researches 

on the now of heat in a heterogeneous bar and attracted the attention of 

Poisson. For every r, there exists a solution of (4.3a}. And in order that 

(4.3b} hold, it is necessary that r be a root of a certain transcendental 

equation w(r)=O. Let the solutions be {vr(x~. Liouville seeks to show 

that the 

(4.4) 

summed over all the values of r satisfying the transcendental equation, is 

f(x) itself if x is in ["<',fl and f(x) is arbitrary~2 

First of all, the roots of ~-V{r):::O are infinite in number, all real, 

distinct, and positive, say 0 <r1<r2 < .. • <rm< ••• <rn< •••· Let v1 , V2' ••• 

corre epond to the r' s. Then 

( 4. 5) 1j3f 'v'WI 1/.. Jx_ =:: 0 (Wt * lA) · 
0( 

There are n-1 zeros of Vn in (o<,~) and they are distinct and eeparate the 

"" n zeros of vn-rl" Also, I. AJ.Vi , 1Jihere the A's are constants not all zero, 
~=""' 

51.) Liouville, J. - Memoire sur le developpement des fonctions ou 
parties de fonctions en series dont le divers termes sont assujettis a satisfaire 
une meme ~quation differentielle du second ordre contenant un parametre 
variable, Jour .. de Math. (1)1(1836)253-265. ' 

52.) The importance of the work of Liouville and Sturm from the standpoint 
of Legendre Polynomials is evident when the Legendre differential equation is 
viewed as a special case of (4.2) and (4.3). 



has at least m-1 roots and at most n-1 roots in (c(,,f3) but they are not necessarily 

distinct. Some of these properties are consequences of Sturm's prior memoir; 

others, as Liouville takes pains to make clear 1 are contained in a later Sturm 

memoir with which Liouville as editor and friend of Sturm was already f~­

iliar;3 As for the value of (4.4), he does not really prove the convergence 

of the series to f{x) but confuses the problem with that of finding the 

coefficients when f(x) is assumed to have an expansion in series of V' s. If 

an expansion for f{x) in series of V' s exists and is uniformly convergent for 

x in (ci,,BJ , 

\4.6) f(x)-=AoV 0+~ v1+. •• .+~Vi-r. • ._ = IArVr, 

J:'Jvifcx>h 
and ~ == f 1 v/ J.x. • 

Hence (4.4) yields f(x). But this does not prove that the expansion exists, 

co.nverge s, and has the value f( x). 

The Sturm memoir mentioned above gives the results quoted by Liouville;4 

The theory of the second order linear differential equation is extended. 

Bounds for the number of zeros of a solution in a given interval and for the 

distance between zeros are given. It is to be remarked that Sturm believes 

Liouville Showed that the solution could be obtained in the form of a 

convergent series. Quite correctly, Sturm maintained that Fourier and others 

generally con fused the problem of the possibility of expressing an arbitrary 

f(x) by a convergent series of the ~orm (4.6) with the problem of determining 

the coefficients when the expansion does exist. He declares that Liouville 
-

proved that the sum (4.4) 1 if it converges for all X in r•tJ t Can only be f(x). 

53.) Actually, most of these are proved in different ways than does 
sturm by Liouville in a succeeding memoir, :Demon strati on d' une the o reme du 
a Me sturm et re1ati f a une c1asse de fonctions transcendantes, Jour de Math. 
(1)1(1836)269-277. . 

54.) Sturm, c. - Memoire sur une elasse d'equations ~ dirrtrens 
partielles, Jour. de Math. {1)1(1836)373-444. 



Liouville's argument is insufficient for this conclusion. 

Apparently, both Liouville and Sturm shortly recognized this circumstance, 

for Liouville the next year wrote with dissatisfaction of his attempts to 

prove the convergence of (4.4) to f(x) unrestricted~5 He claims to have had 

a proof for some time that (4.4) can only converge to f(x) for x in~ 1f] if 

g,k, f(x) and their first and second derivatives are bounded in [o< 1 ,S]• Sturm 

had a1 so communicated a proof to him which is similar to the one he gives. 

As a matter of fact, after showing the absolute value of the nth term to be 

0(1/n2), Liouville concludes (4.4) is convergent. Nothing is done to show 

that it converges to f(x). 

Writing together in a point paper, Sturm and Liouville hasten to meet 

this difficulty;6 They seek the sum of (4.4), which they call F(x). They 

wish to prove that F(x)=f(x} under the assumption that f(x) is arbitrary 

but bounded. Before the demonstration goes far 1 virtually all the assumptions 

made by Liouville in his previous considerations are implicitly involvedt 

and even so, the proof is no more satisfactory. Liouville himself calls the 

57 proof not general enough. He points out that it demands that F(x),g,k 1 

have bounded second derivatives and that f(x) satisfy the conditions for V 

in (4. 3b). Although he distinguishes between the convergence and the sum 

55.) Liouville, J. - second M9moire sur le developpement des fonetions 
ou parties de fonctions en series dont lea divers termes sont assujettis a 
satisfaire a une meme equation differentielles du second ordre contenant 
un para.ntetre variable, Jour. de Math. ( 1) 2(1837)16-35. 

56.) Sturmt C. and Liouville, J • - Extrai t d 1 une Memoire dur le 
developpement des fonctions en series dont les differentes termes sont assujetti E 

a satisfaire a une meme equation differentie1le lineaire, contenant un 
parametre variable, Jour. de Math. (1)2(1837)220-235 (abstract, Comptes 
Rendus 4(1837) 675-7) 

57.) Liouville, J. - Troisi~me Memoire sur le developpement des 
fonctions ou parties de fonctions en series dont le divers termes sont 
assujettis a satisfaire a une meme equation diff(rentielle du second ordre 
contenant un parametre variable, Jour. de Math. (1)2(1837)418-436 {abstract, 
Compte s Rendus 5( 18 37) 205-7). 



of (4.4), he still maintains that when (4.4) is convergent its sum is f(x). 

The convergence of (4.4), he insists, holds for any bounded f(x); and f{x) may 

have "jumps" for one or more values of x. However, to show F(x)=f(x) it is 

necessary to exclude this possibility. Otherwise .ll'(x)==f(x) only for the 

points of continuity of f(x). The proof is not really valid. 

Thus, Sturm discussed the properties of a solution to the differential 

equation L(x)V"+ M(x) V1 -t- N(x)V= O, 

and showed that these properties are analogous to those of sim?s and cosines. 

And l,iouviJJ_e,, using these results, generalized Fourier Series, showing the 

relation between the expansion of a function in series of other functions 

and the properties of solutions of linear differentj.al equations of the second 

order. Their work is the basis for the theory of orthogonal functions, of 

which the clu.ssical orthogonal polynomials are a particular instance. T:t:'e 

Legendre Polynomials were the first of these latter to be presented in analysis. 



SECTION V 

INTEGRALS AND SERIES 

In the theory of Fourier Series, in the theory of series of vmich the 

coefficients are Legendre Polynomials or Laplace Coefficients. in the theory 

of the expansion of an arbitrary function in ter.ms of any other functions, 

there is always the fundamental question: What are the restrictions which 

must be imposed on the given function in order that the series one forms in 

a preassigned way should converge and should represent the given function! 

It is this question, limited to expansion in which the coefficients satisfy 

a linear differential equation of second order, 1mich concerned Liouville. 

After ehovn.ng that solutions of the linear di fferentia.l equation of second 

order resembled sines and cosines or exponentials in their behavior, he 

was led to consider the analog of the Fourier Series. 

Previously, the same question was considered by Poisson in the case of 
58 

Laplace Series. Poisson was aware of the relation of Laplace Series to 

Fourier Series, al'ld his work on Fourier Series encouraged him to attempt to 

improve the theory of Laplace Series as well. To him perhaps falls the 

honor for recognizing that the series may not represent the given function, 

although its coefficients are those one would have if the series did con-

verge and represent the 'function. !n his monumental work on the theory of 

heat. he apparently was aware of this posaibility!
9 

Poisson's analysis 

was directed to Showing that if the given function is of class c•, the 

Laplace Series converges and represents the function. While his proof 

does not meet the demands of modern rigor, the conclusions reached are in 

58. ) See P• 26. 

59.} S.D. Poisson - Theorie Ma.thematique de la Chaleur, (Paris• 
Bachelier 1837) t Chap. VIII, 212-32, (also Connaisaa.nee des Temps 1829, 1831). 



31. 

general valid. However~ his restrictions are more than is necessary to 

insure the result .. 

One phase of the problem is treated in a short note by Liouville on 

Legendre series~0 Liouville hae no difficulty sho~~ng on the basis of 

(2.12) that ~(x), a rational integral function of degree n in x, can be 
~ I 

represented by a finite eum rAiPi(x), where Ai, = :li;;'f 4-'Ct)P;Ct)&:t. 
J":OO -1 

But the significa..nt task is to show that if f(.x) is bounded and i:f' 

(5.1) 

exists and converges to F(x) for x in ~1.fj , then F(x)~f(x). Liouville 

multiplies (5.1) by Pn• and integrates term by term with respect to x from 

-1 to l, which is tantamount to assuming (5.1) uniformly convergent. By 
1 1 I 

virtue of (2.8), jF(x)Pn(x)dx = jr(x)Pn(x)dx. Thus j[F(x)-f'(x}] Pn(x}d~C _, -1 rl -1 

for all positive integral n, or equally well ) ~F(x)-:t'(x)] xndx=O. Now 
-I 

an earlier paper of Liouville asserts that F(x)-f(x)=O in this event~1 

This is his desired result. He also \rl.shes to show that if Sn is the eum 

of the first n terms of (5.1), then Sn·f(x) changes sign at leastn times 

in (-1, 1) , of utility perhaps in proving that.;~~ [Sn-f(x)] = o. 

No careful treatment of Laplace or Legendre Seri.es was really given 

62 
before Dirichlet. After a magnificent paper in which he gave the famous 

Dirichlet conditions and integrals tor Fourier Series, he turned his attention 

60.) J. Liouville, Sur la sommation d'une eerie, Jour. de Math. 
(1) 2(1637 )107-a. 

61) J. Liouville, :6-Solut~on d' une Probl~me d' Analyse, Jour. de Math. 
(1)2(1837)1-2. If j<f(x)x~x:::O for all integral k 1 cp(x) bounded and 

a.. 

defined in [a,b] • then <f(x)==O. Otherwise p (x) must change sign in 
(a, b) at least once. Suppose it changes sign~at o<11 o(lL• ••• , o< ..... 
Let 'V(x)=(x-o<l)(x-.,.J ..... (x-otj. Then J'Y(x) <f(x)dx~O, equality 

(J. 

holdi.ng only when f ( x)::O. 

62.) Dirichlet, P.L •• Sur lee series dont le termegeneral depend de 
deux angles,/et qui servent ~ exprimer des fonctions arbitrairos entre dee 
limites donnees. Jour. fUr Math. 17(1837)35-56. 



to Laplace Series. Let f(9, t.>) be an arbitrary function of the two angles 

e and w, where 0 ~e ~11' and 0 ~ c.N ~ 211' • Laplace asserts that the 

function can be represented by a series in which the general term is Yn• a 

rational integral function of degree n in cos e, sine ·cos w and sin9 • sinw, 

determined by 

Ivory and Lagrange pointed out the insufficiency of Laplace's reasoning, 

except for rational integral functions of coee, sine cos w and sinQ sinL..J. 

Poisson showed the assertion would hold if f{e,w) was of class C'. But 

it was Dirichlet who relaxed the restrictions so that continuous or die-

continuous functions could be represented by a Laplace Series. 

Dirichlet's attention is centered about showing the convergence and 

and 

where x=cos9·cos61+sin9·ain9~cos(~.>-l.:l1 ) and f(9 1 ,w 1 ) is bounded between the 

limits of integration. The approach is through a consideration of the 

order of magnitude of the terms in the series. In this connection, 

DiriChlet develops an entirely new d~finite integral representation 

of Pn (x). 

Thus he turns to the properties of Pn(x) itself, defining Pn(x) by 

means or the generating function. Several interesting expressions of 

Pn(cos e) are then given, all of which appear earlier in Murphy's 

63 
"Electricity". A trivial form, of course, is that in powers cf cos e 

obtained from (2.2). The expression involving cosines of multiples of e 

63.) See footnote P• ~~ 



Jf-1. 

we have already given (2.5). Suppose, however, that T~(l-2xz+z2 )-l/2 

LI~J<I) 

, whence 

( s. 4) 

These representations are not so important as the definite integral 

Now fn ( c.,.;..e)"" 

~ L~)-=­

f,,_c~~)::: 

Hence, 

~:\:o), 

l Ill~ o). 

them in Diric:hlet 1 s work. 

i~ 
, let .2: == e • Then 

64.) These formulas are derived differently by P. A. Hansen, 
Entwiclcelung der negativen und ungeraden._ Potenzen der Quadratwurzel der 
Function {n:'-+"-'"'-1~"-'(Ua.uC4"<.o'-\"'~u~v'e-w u)r 11

"', A.bhandl. k. st\ehs. 
Gee. dar Wiss. Le3pzig (math.) 2(1855)285-376. We use the hypergeometrie 
function form for brevity. 



Add (5.6a) and (5.6b), 

( 56 ) -o '{&~(v..+}2..)<%>~ I {1f~("'-t ~)cpdtp 
• • c .-.~ (Co--:1 & ) - - -t- -

" - 1T o '(icc:..- <\> - ec--o 9-j -rr e V 2.. c "-= a - uy.> .P) 

Multiply R by sin~ and S by cos ~and add, obtaining 
.>.. .:L 

( S.7a} 
(e <cb) . 

(9">4) 

Instead of considering Dirichlet's problem in regard to (5.2a) and 

65 
(5. 2b} 1 we restr~ct ourselves to the similar problec for the Legendre Seriee. 

We seek to show the convergence of (5.1) by proving the convergence of the 

dominating series 
J <>0 

DO I 

(5.8) I{2 ""a--+'J, .fCx) P._cx.Jcb:,]-:::: 
.,. -=-o 

-1_ J tu) I_ Q,_t-- +i) P"'( x)dx. . 
-I ._ =o 

First, v~ use the result already known to Legendre, that every rational 

integral function of x can be represented in a Legendre Series, to find the 

series for P~ 1 (x), a polynomial of degree n containing either only odd or 

only even powers of x, 
J f'kt I 'i) p 'j) 4- ' 
~ = D."' 1"' + ct..__.,_,__.,_ -t- tt,__* r"_.,_ -- · J 

2L"'-t">+lj'r_. J.P..+•cf:t. = ~:u ... --iJ+Irr .'P l'·_ :2(h-i)+lf't: &~-i ch. c.;,~) 
tt .. _,::: .. h-! Jy_ ~ 1. ,_, .. t.J_, 2, "''*' &!X. 

..., -1 -1 66 
Now Pn+lp n i is o! odd degree and f' 'P J 1 :::: 2 • hence a 1= 2(n-i)+l. Thus 

- ~>H 1-\-l _, n-

(5.9) 

Hence, 

65.) we apply Dirichlet's results to Legendre Series. The proofs here 
are variations of Darboux' s interpretation of Dirichlet's work. 

66.) Dirichlet was not aware of (5.9) which appears for the first time 
in Christoffel's disseration, "DJ Motu Permanenti Electriei·tatis in 
Corporibus Homogeneis" • Berlin 1856. He made use of identities built on 
his integral formulas (5.6) a.nd (5.ff). 



( 5.10) 

(5.J.l) 

Thus (5.8) yields 
I 

< 5.12) SV' "' ~ f + r1> ( tl !: ... 
_, 

and 

If f'(x) exists and is bounded, v.~ can integrate (5.12) by parts, 

43. 

I I 

sh.::.:: ~ [ fr X) ( t ... -t- RJ1
1
1- -k_ I, +1

(X) ( P.._T,+ P... )LK = fliJ - ~ 1 [t(.x-)L f?._+l t- ~ )&x. 
I 

To evaluate J f'<x.J(PHI+~)k , Dirichlet writes !or arbitrarily amallc>o,.. 
-I 

-1+€: .1-c 1 

. J+• L xJ lf.._..,,+ P,_.) &x + J -F 'o:) ( p,.,_-tl + 'P,.. )J-x_ + r,_~~ot(f:..-t:, -T /)"'- ) c!>L . 
-'I -1+6 

In the first and third integrals, lf'(x)l ~ k (a fixed positive constant), for 

f'(x) is bounded. We apply (2.6) also, obtaining 
. -1+~ I I -I+Ec J' / [,"LKl( P.,+,-t ~).tx + ~!~rxJCP"'t-t+ f;.)J.Jt ~ {1-t'o:.lll ~ .. ,+~\h+ ~~='{x>IIP~ ..... +-8-IJ.x. <.2Kt-+.2K6 =lf"K€: · 

As for the middle integral, from Laplace's asymptotic form {2.21), for pre-

as::~igned t- and } -= t/ o 3 vt > N6) ~ \f...L){.> I<.) as long as jxj < I - G 
l-IE;: / 

Thus .IS"'-ftl)l <'fKt;;-t- J 2K)d.x-.<..tfi((E:+"l'J)= '?KE:; rV\>N£ ' 
-lt-E: ./ '} 

Hence (5.12) converges to f(l). 

Actually, Dirichlet proves the convergence or (5.1) in the case when f(x) 

has at most a finite number of finite discontinuities in [-1, 1] und a finite 

number or maxima and minima. In the above discussion, the points of dis­

continuity and the extrema can be isolated. Let them be 2.,, ~2.1 ~ 3 , ---, Q_r · 

Then (5.12) becomes 

[JQI p.,.. [J., j'] s... -::: ±- + 1 + ... -t- -:f. + f (X) ( ph 1+-1 -t ~I) J.x ' 
- r 1, r~, 1'f' 

and in each interval of integration f(x) is monotone and continuous. Here 

Dirichlet seems to imply f'(x) exists in each subinterval. If r'(x) is also 

bounded in each subinterval, he immediately integrates by parts, obtaining 

.,.1- jQl+l ~ (fi+t 
sl'\ =- ~ l- .f (X) c P._ t-1-t r"' 1 - ± l- L -F 1

(X)( f'v. ~It-~) ,P. )(_ ( 0 0-== -I) R P"'' =- I ) ' 
l;o 1,: 'o-=.fl:fi ;;J 

In the limit as n~oo, the first sum reduces to~{+o>["~>~I/J+~u)J--fc~r)[l>"'~-, 1 )t?~o-H]}==f(r) 

as long as f(x) has only finite discontinuities and in view of (2.3) and 

(2.21). As for the second sum, exclusive of the integral over fl, -l+E-] 

and l:l-E:, 1] , all the other integrals vanish as n ~oo, if f' (x) is bounded. 



And now, the excluded integrals can be treated as we treated the similar 

integrals in the simpler case. Thus, again s _,.r(l). n 

If f'(x) is unbounded at finite many points, we can isolate these as 

well. In carrying the above through, we must consider specially the inter-

vals (~-,,\(+)) {i-::1_.,2)- .. >t) in which f'(x) is unbounded at ki• If there 
() >o) 

are only finite many maxj.ma and minima of f(x), we can arrive at a subdivision 

of ( K1-'?) K.i +-!)} such that f' (x) does not change sign in any subinterval of 

( K'1-?> K'1V))• Thus K·+J l<i 
I(, I( . i.·-?{1.-;·>p. JK; fKi+"lJA+j ' Ar:> f ·+;;] 

~[{ 1+ f i+J]f't,t)(pl1+t+t)c.h.=±[f :_ J. -t-···r + .+ +···+ "+ .f't>L)(f...._t-,+PI.,)d..x., 
l(t--, 1(

1
• K;--, t<i-'J, 1<.;-"?tt- 1(, K,-+ }•' 1(1 Js 

Again, all the integrals vanish, excluding those over [l(i-"'J") K..-J and lK1 > \(i + )n.fJ 

We have~ 1f ~; 1 tl~) ( r~ .. ,-r P")&,c 1-~- ~I r.1~7;lft-+t +P.J J,:l < I+ { K-t:- o)- f(l(i -,_,.lj +lfc \{i+ ),.'!",)- tCI<'-; +o)l . 
K',-lJ,., 1(, 

Thus, if for an arbitrarily smeJ.l ~)owe can select an;,,~,..,t-1 SO small that this 

last quantity be less thanE:;, Dirichlet's theorem will hold. This is possible, 

for f(x) is continuous both to the right and to the left of k1 , bounded, and 

both lim f(l(,: +L ) and lim f( 1<'1-..t-..) exist. 
)......, 0 1.. -"?0 -l+f. 

and 

Todhunter raised the 
I f fIt){.) ( p,_ +I+ P,.,_ ) J :X. 

1- E; 

objection that the integrals [ -f'unCPI-'I-+-I+-i?. )&?C. 
-I 

could not be dismissed as lightly as Dirichlet did. 6'1 

The basis of his objection is the use of ( 2. 21) to show £{)c)_,..,. o li-d Vl _,..of"- x.t ±I• 

He distrusts Laplace's formula~ e.s we have remarked (p.ut), because it does 

not hold. for x:::: ±I and is not a good approximation f'or x in the neighborhood 

of !"I. However, it ia clear that with a preassigned ~>-o • however small• 

the argument (p.43) is perfectly valid. This is all we need to assert. 

67.) Todhunter, I., An Elementary Treatise on Laplace's Functions, 
Lame'• s Functions, and Bessel's Functions, London. MacMillan and Co., 
1875, Cap. XI, paragraph 152. 



Before we continue with equestions of convergence of Legendre Series, 

it would be well to return to eome further formal developmenti The most 

68 interesting of these are due to Jacobi. Not only does he compare 

s-,.(..,_"-".c..~x.)_ l-t)"'-':z."",.,_! ~ ( "')"'-.Y.., 
vV - (~I'\.) I, d_')(··· I- X 

with the Legendre Polynomial given as an nth differential coefficient, but 

he also introduces some transfor.mations of definite integrals which lead 

him from 
rr 

/; 

~0/IAg.JA) 

~:1-"l: c..<>~+ -r"' 
0 

to a new integral formula for P n• Poisson had 

already discussed a simila.r integral and its relation to Legendre's elliptic 

These preliminary works are only of relevance in that in them 

is contained the theory of the transformations used to obtain the Jacobi .. 
70 

Integral Formula, 

Perhaps the simplest way to arrive at this formula is to begin with 

Ju -V"IA-"-v"l < lv I; 

where v /u is real. Then 

11 .tc::j> ±'ll :::= -I-1T 

[ I -x~-±: l0='1 ~ cp == Y 1- J.n+ Z:'- :l (1- :l.~{~)+ti)"2. · 
Choose z so large that I ~11 x I"~ Cc"" 4>1 > 1 ( o -§ q, ~ 1T) • Expand both sides 

68.) C.G.H. Jacobi• F.ormula transforma.tionis integraliUin definitorum, 
Jour. r~ Math. 15(1836)1-38. 

69.) Poisson, S.D., Suite du M~moire eur 1es int~grales d6finies, 
Jour. de l'Ec. Polytech., 17(1815) 612-631. 

70 .. ) Cl•G•J• .Je.cobi, Ueber: die Entw.icke1ung des Ausdrueks 
· (cc·-;l.-4._~<-'[op"'e.y.,<f-+~o.J~<f~Llr-e1J] +(.{'f-~""' 

J ourn. f. Math. 26(1843)81-8'7. ;- Sopra le fun :doni di Laplace ehe risultano 
della sviluppo dell' espreseione {oA..."-Utt<.'[~w~c:p -!:'~ w-:.-.. '.f' ~ l ~-e') + ~<''}+ ... 
Gior.n. Arcadico di Scienze (~oma) 98(1844)59-66. 



in descending powers of z and equate coefflcients of like powers, 

J
-rr- cl cP 

'R()L) = ± ~ (x ±- Y0=-t c.= cf't·H • 
v 

The question of sign ariees. Since Pn(l)~l. the upper sign must be taken. 

Similarly, Pn ( ·l)==( -l) and the lower sign is taken. In fact 

(5.13) 
I (rr .l.:j:> 

~( )t) -;:: + ....,- -, --'---'----) ... -.-:-, 
1 I 0 \ )(. -!:_ l' IC~--;- 4:J cp 

(x > o) 

11 .{<b 
r .. ot) -= - ..L r -+' 

TT J o ( x. ±:. vy:-:c,- CiP <ij Lx < o) 

Both JELCobi and Heine '7l write 
lt\J '1.. ~ ......... """-

/. I'\. I ,t h. "' :2. ' (X- -I) .,_ A:.. ( .,_. )"' ...:c -1- V'}(,..-J c..r-> <P) ::::= 
2 

... ,. ( ,t,, ... tx?·-t) + :1"" (;;:;"' ~! ~ """-¢> "-:i." ...... Y- -I · 

The coefficient of cosmcp multiplied by a constant Heine calls the associated 

Legendre function l: ( X..)_, i.e. 

(5.14) 
r. . 'I J "+-"" 

r:c~J = 1.!"-W\.p Q:"'-,J~ ~)t"'t- .... c:x..~-,)~ 
() V\) ! 

satisfying the orthogonality property 

I {0 ( 5.15) f -p "' P.. 11 J l( 
__ , ~Cx..) ,_Ct.) ,_,c.. .. = l-tJ,.,..~-"")'. C.~-<+~'>-){ 2,.."'"(~-.!t 
- ~==Jt.). 

~ [~1'\.)!] z. 

Heine and Neumann give recurrence relations for these functions, relating 

or relating • They also write concerning 

the relation of La.m6 Functions to Legendre Polynomials, but we shall not be ., 

concerned with thie subjectr2 

'70.) Heine, E. - Berlin Dissertation (1842)15-18, Ueber einige Aufgaben, 
welche auf partielle Differentialgleichungen fflhren, Jour. f. Math. 
26(1843)185-216. 

'7le) Todhunter (see P• #ff) threats this in an elementary and adequate 
fashion. see also E. Heine, Handbuch der Kugelfunctionen, vol. I, pw-259, 
and F. Neumann, Beitrlge zur Kegelfunktionen, ~· 73. 



SECTION VI 

SOME GENERALIZATIONS 

While generalizations of the Legendre Polynomials are beyond the 

domain of the present work, a brief consideration of the most important 

developments ie not out of place. The method of generalization has been 

standard. Some one of the avenues of approach to the deveiopment of 

_Legendre Polynomials ie considered in a more general fonn. For example 1 

one could consider, asdid Liouville and Sturm, the Legendre differential 

equation nnd from it pass to the general linear differential equation of 

seeo1'ld order with variable coefficients. obtaining in this way the theory 

of orthogonal functions. One could observe, further, that the Legendre 

differential equation is a particular case of the type considered by 

Liouville in (4.1). Ae a matter of fact, this equation has often been 

taken as the point of departure in the development of the theory of 

'12 
classical orthogonal polynomials. 

Just sucl1 an extension appears in an 1843 work of Jacobi, post­

humously published in 1859 by Heine! 3 In this instance, Jacobi considers 

the Legendre differential equation to be a special case of the hyper-

geometric differential equation, 

x:.(l- x-) ~,, +( r- ("' -t-f +1) :e.] 'cf' - <>t',.s 'J = 0. 

72.) see Holmgren, H., Sur l'int~gration de l'equation differentielle 
C~-tk;~,.:t..-t-CA,X ... )~J'' +(!t,+.t.,x.)tt'+ tt,'* = o, 
Kongl. Svenska Vetenskaps-Atad. Handle ( 2)7 (1868)#gpp58t 
E. Routh, On some Properties of certain Solutions of a Differential 
Equation of the Second Order, Proc. Lond. Math. See. 16(1884)245-261; 
G. Humbert, Sltr l'equation diffe'rentielle lineatres du second ordre, 
Jour. de 11Ee. Polytech. (1)48(1880)207..;228; J.A. Shohat 1 Theorie 
/" gen6rale des polynomes orthgonaux de Tche~chef, Mem. des Sc. Math. 

66(1934)31-3. ' 

73.) C.G.J. Jacobi, Untersuchungen \lber die Diff'erentialgleichungen 
der hypergeometrischen Reihe, Jour. f. Math.~ 56(1859)149-165. 



W& have already written (8.3). In another form, it becomes 

(6.1) 

Jacobi 

(6.2) 

These must be considered aa more than mere extension of his observations con-

earning sin (narc cos x) (p. 1-£" ). In fact, there is defined a sequence 

of polynomials satisfying the orthogonality property 

I I ot 1 ol _y {,0 (~""' "+"'-) 
J J x.. - (t-x..) d:L ::: r (o{>'Y-1) o( >o) J 

o I>\ " ;(1'1) ::j:.O ~:::~A) 

(6. 3) 

and a hypergeometric differential equation as well. These are the famous 

Jacobi Polynomials. 

One could equally well generalize the generating function (2.1). As a 

particular instance, Jacobi considers the coefficient of zn in the expansion 

( 
"l. -v //! "- .).)( of 1-lx.-~ *';c) -= £- r: C..., x.) • In hyp&rgeometric form 

~0 

(Ei.4) rve:x)-::: (?.J)-tf'l-1)1..-:: 1 _ 2 .:2v-+l) t-x.). 
'-"h ~v'l I 'l VI.) V+JI\ 1 ~ 2 

/, 1\' '14 
The polynomial C~(~) has been considered carefully by Most. He gives the 

orthogonality property. 
I {b ~~~ 

(6.5) f U-x?-f--h.c~c~Jc~cdk == tLh.)~D lw-._~Y\)· 
_, 75 

These polynomials satisfy the differential equation 

d-vCv d. C 17 

(6.6) 0- x'') d.x.~- ( 1-t-.:2~?) J; +- 1-1( \II +;l~>) c: ==- o j 

and hence, one can use series of them in the same manner as Fourier Series. 

74.) R. Most. Ueber die Differentialgleichungen der Kugelfunctionen, 
Jour. f. Math. '0(1869)163-8. 

'15.) R.R. Webb, on Legendre's Coefficients, Mess. of Math. 
(2)9(1879)125-6. 



JH. 
( \) V-+• v'-+.2 Most gives also relations anulogous to 3.9) bet•en CV1 J CVI 1 C 111 

and also bet'WE!en c:) ch~l-t) c~-1-'1._ • A peculiar representation for 
76 

C~ {_ 'i-) appears in a note by Glaiaher, 

( 6. '7) c: {X-)= 
\ rob v-I - (I- X")-(; (- f_ )"' - x>-~-1-------- -" t -e J )t _£__ tuL- . 

V1/(v-l)( o 

The polynomials c::(t) are frequently and unjustly called Gegenbauer Poly-

nomials. Ge~enbauer, however, is responsible for considerable investigation 

into their propertie~'7 

and writes 

76.) J.w.L. Glaisher, Notes on I,aplace• s Coefficients, Proc. Londe 
Math. Soc. 6(1875)126-136. 

77.) L. Gegenbauer, Generalizzazione di Alcune Relazioni conten~te-nella 
nota del Prof. Modara. "Sui polinomii di Legendre", Rend. Circe Mat. Palermo 
12(1898)21-22. - Generalizzazione di aleuni teoremi intorno alle funzioni 
sferiche eontenuti in una Nota del Prof. Paci• Rend. Circ. Mat. Palermo 
13(1899)92-4. i) 

For further consideration of c:cx) 1 "P" (JL)of any degree n, any order y , 

Md any argument,.f-L' (n and v rational and )"--- real or complex) see 
E.W. Hobson- On a type of spherical harmonics of unrestricted degree, order, 
and argument, Phil. Trans. (A)l87(1896)443-531. 

78.) Escary, M. - Sur les fonctions qui naissent du d~veloppement de 
1 1 expression ( 1 ~ 2.otx + cC'·oc.'·t ¥ 1 

, Comptes Rendus 86(18'78)114-6 1 

1451-3. I here correct some errors in the formulas given by Escary. 

Escary, ~ - G6neralisations des fonctions JUde Legendre, Jour. de Mathe 
(3)5(1879}47-68. 

The results of Escary are more than mere generalizations of Gegenbauer 
Polynomials. Escary gives recurrence relations involving his functions for 
varying v as well as for varying n. He discusses quite completely the zeros 
of his polynomials, giving various sepa~tion theorems and bounds for the 
maximum and minimum zeros. He also treats the problem of the number of 
zeros ot certain linear combinations of his functions. Concerning this 

. latter problem, his results are much like those of Laguerre in the case of 
Legendre Polynomials, W-hich we shall soon discuss in the next section. 



E:D. 

This leads then to a generalized Legendre Polynomial with real and distinct 

roots in (-a.a), satisfying (p._'l--:t.."),(- ?.-x(ki-rl)~'+ v.( ~-t-t-2R..-+I)( =OJ 

and V\ C v - ( 2"' --1 :J Q -I) )( t v + l v-. -1 .:J_.e_ -1) a.....,_ C' :_ = o > 
h "'_, . :1.. 

f
u.. p ( 0 (V>- -:fh) 

and such that -o.- ~: ('~ ( "-'-1r') d.i--:::: l t(~->) > lJ0-- == "'). 

Hein~9 uses the generating function log( I- -:2-x 7::: +:f) to obtain the sequence 

{cos (n are cos x>} • Pincherl~0 obtains nev: functions as coefficients of 

- ~ 
the ascending powers of t in (--t"!>- 3·b<.. +I ) ::~.... • 

More general differential equations of type (4.1) and more general 
oO 

generating functions <fCx.,~) == L ~ .... tcx..J are not alone in leading to 
0 

extensions. With Jacobi, we can consider more general nth differential 
tl"' c<_ ~ -(3 ( 

coefficients ,h£"'{bc-"-) (x. -I,.) S • Further, we can seek a sequence of 

polynomials satisfying an orthogonality property; 

(6.9) Ikrl:x.)12.t:x)JCW\.1x-::: D (~.Nt= o)/);21 ... ,rt-J)) 
a.. 

p(x) being a function Which does not change sign in {a,b) and Pn(x) being 

a polynomial of degree n. The latter is often taken as the foundation or 

the theory of orthogonal polynomials in general~1 

Another type or extension is due primarily to Her.mite, who considers 

f ti .1> h . bl 82 unc ons o 1 more t an one varJ..a e. For nth differential coefficient he 

d.~'~ ( "2 ... ) 1'1. 

d x.oi.J.~13 :X +"1 -I 
d d. 1'\ ( "Z.- ... )"" 

an th.''\A1,4 6. X + ;l!:~Lf +C-~ -I ; • 
(CX: +j3-::: V\) 

uses 

) ~\ 
79. Heine, E.- Die speciellen Lameschen Funetionen.erster Art von 

beliebiger Ordnung, Jour. f. Math. 62(1863) 110-141. See also c. Hermite -
tettre AM. P. Gordan, Math. Annalen 10(1876)287-8. 

80.) s. Pincherle - Memorie Istituto Bologna (5)1(1890)337·369. 

81.) J • Shohat - Mem. des Sciences Math. 66(1934)7-8. 
/ . / . 

82.) c. Hermite - Sur quelques developpemente en series de fonctions 
de plusieurs variables, Comptes Rendus 60(1865)370-St 432-440• 461-6, 
51:?.-8. Extrai t d' une lettre a M. Borchardt 1 Jour. f. Math. 64(1865) 294-6. 



Like~se, the generating function is extended to 

A ..,_-
I - '2c.x.- 1 ~ ~ +t<...""-+ .&-

where J J uol,l 01) s- J.>c ~ -= 0 

Subsequently, he proves that 

t>O (I L ar>(k o.,....A) 
t><~=ll r 

(.l, .-~ 1 .,_ ~ I J ot +(3 -=t- Y-t ~ ). 

{ v .... , . .J is generated by 
-}: 

{1 - 2<t-.t-- '). «r ~- a._'· ( I - t.f) + :2,J, Jl. d + h 'Lll - :L ,_J] ~ 
I J w.+.,. ""-*'"' 

where · V ~ 1. 1. "' 1) 
'·· -:::: ... 1 11'"'+"' -;--;+"\X -+~ - • 
... ) .... ~·' t\ ' ~ J{. 

!>"/. 

The orthogonality properties, upper and lower bounds, and the expansion of 

functions in aeries of these polynomials of two variables an considered. 

Extensions have been made to a higher number o! variables and to the complex 

domain. 
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SECTION VII 

l'UR.THER FOIUIAL PROPERTIES 

we come .now to a further development of the formal :properties of the 

Legendre Polynomials. We shall see that almost without exception every new 

development was related to the then current problems in Gauss quadrature or 

Legendre Series. Although we will here treat the properties apart from 

their applications, we do not intend to neglect referring to their sig-

ni :f'iea.nce. 

The remarkable properties of Legendre Polynomials thru which Jacobi 

revived interest in Gauss quadrature, \W have already considered (p. 31 ). 

we saw how the orthogonality property led Jacobi to the nth differential 

coefficient form of the Legendre Polynomial~ 
/ 

This same property led Rouche 

also to a new representation of the :polynomials~ 3 Every function_ of 

x, Vn(x) 1 rational and integral or degree nt which satisfies the relation 

(7.1) j 1
.x-I(V'rlt:xJJx. =o C 1-{:::o, I,:ZJ --·,1-.-l), _, 

differs from the Legendre Polynomial Pn(x) only by an arbitrary constant. 

A 1- A )1\-1 "" If we seek to determine Vn ::::= A111 -+ A.,._,>c + k-:l..~ + ·- · + 'x +X- 1 

it is sufficient to determine the A's by then linear equations resulting 
I {0 U< a-M.) 

from (7.1). If we let o<'.,(= l J x Kch. -= ~-~-~ (K~) 1 the system of 
, I 

equations is · 
A ol. + A .,( +--·;--A,o<..,_,+o<.._=o 

k " "-,-, ' 

(7. 2) Avo.o<, ,_ A-...,_, o<.,_ t-- _. -t A, o<...._ + ot-,.+,-= o 

. . , - . . . . ~ . . 

A rJ. +A o<.,..+-- ·+ A.,z:J-.._:t+-~. _,=o. 
't'\ h-1 \'\-I ..... "" 

The determinant of the coefficients is 

\

o(o o{, o(,._ , '. o<,_, 
<><:, ... ,. o(' o(.._ 

~"-' p(,_ ol._+,--' ''i'::z. .. -:1. 

(7. 3) .. ):;.-.... -

/ 
· 83.) E. Rouche - Sur les fonctions Xn de Legendre, Compte a Rendus 

47(1858) 917-921. 



53. 

Sol.ving for the A's, and substituting in the expression for Vn, we obtain 

(7.4) 
()(I <>(. ...... <>< .... 

0(.,_ o<3>•'. O(ll1-f1 

c;::::(k.. O(k-H ••. o<"l-k-1 

.:X. )(. 'Z-- • • • )(.r.. 

Thus the Legendre Polynomial Pn• ,rl'lich is within a constant factor equal 

to Vn• can be written as the quotient of two determinants~4 

These determinants can/be given still another form when we consider P
2
n 

and P2n+l separately. Because P2n is an even function of~. (7.2)becomes 

\ ( • .2. a..) 

from which 

(7.5) 

Similarly, 

A:J.K -<o -t- A2,._,_.':>~.J.. + ··· +A:o."'~--'1. t- <><,;~."' = o 

Az.._oi.,_+A,...._.t<>(.,_.L __ ..... A o< + o< :::::a 
T ., I "1- :1.Y\. :LY\-f"3J 

I I _I_ 
3 5' .2-~o +I 

I I I I 
3 ~ 7 ~3 

1 - - . . . - --. 
iZ' I I I ___!._ z;::, ::l .. tl ;:;;-.;:3 . . . /.ffi-J 

J(z Jt'~--.. x::l.. ... 

-5 I I I 
<;- 7 J.-.+3 

I l. I _,_ 
1'- ... 'I "1 :z. ... -t-S 

== Z, ~ . j_ - _-,_- . . I 

.2~ .. ~- ••• ~ 

x.'> ... ')(.~+1 

These formulas can be verified §. Ros·terior,!. Multiply each determinant by 
k . 

x and integrate from -1 to 1. For k==Opl.,2, ... m .. J., "Rhere m is the degree of 

the polynomials, the integration will produce two like rows in the determinant. 

Thus, the orthogonality property will be satisfied with the vaniShing or the 

determinant. 

From ·the· theory of determinants, Rouch( is able to write still oth•r 

representations for Pn(x). 

('f.6) 'f:cx .. )-==- -
1 

" At 

..<, -<>~b )C.. 

c<,. - o(, )(. 

For example, 
~ .. -o<,:x.. o<,.-~>~k_,x. I 

o("'-t' - o<"' L • 

«_,_,__I- .oo;. .. ~ 

/ 
84.} Rouehe does not remark that it is essential to prove that ..6.n::f-O 

which he. fails to do. Actually A"' > o, for it is the discriminant of a 
positive definite form. (See Shohat, J. - Mem. des Sc. Math. 66(1934)p.19 • 

.. : -

t 



Another determinant for Pn(x) appears in a memoir by Glaisher~ 5 In a 

prev:tous note~6 be establishe a the interesting equality 

('i.'f) ~ ~--i. )(, (-r/'(~) == I'\! ( ~ 
1\./ 0 0 { 0 (!"- e-<td..) 

to 2" (i!J" xl--l) l"'- ~) > 

and from this, he obtains 

0 0 ..... 

0 )(_ 0--·" 
{tx"-1) )t,_ \~)X I ' ' ' . ' 

(1,~) -pi'\. 0 
1 0) x" (iJ :C, , --::1--

I· 3 ,_ If \i) J.3 (D,: 
,__ ..... 

2-lf (x"-1) )(_ 

.;' \f) xf C' 3 
0 )C ,J J( ' •. '' 

.... 

~h)~ Jt 
(in the first column ·l;he 2rth term is 0 and the (2r+l)th term is .2?-"(~t!).,_ (:x-.,-1) j 

in the other columna, ·the coefficients are the binomial coefficients and the 

law is evident). 

Glaisher is also rosponsible for another peculiar relatiog7 Christoffel 

and Bauer gave (5 .. 'fl9 simultaneously in 1858. Later the expression of p~)(x) 

i.n a finite Legendre Series \vas given. Glaisher considers the rth integral of 

p
11

(x). The result is a sum flr.AJ.Pi in which the coefficients are formed 
i-:"- ,._ 

according to a complex law. 

Tbe similar problem of expressing the product of any two Legendre Poly-

nomials by means of a Legendre Series led also to some curious integrals, in 

which the .integrand consisted of ·the product of three Legendre Polynomials. 

By making use of the recurrence relation (3.9) and the explicit expression for 

the polynomials• Adams attempts to set up all inductio.n vhieh will lead him to 

85.) J.W.L. Glaisher, Expressions for Laplace's Coefficients, Bernoullian and 
Eulerian Numbers, etc.; as Determinants, Mess. of Math. (2)6(1877)49-63. 

8 6. } See Glai she r P• 'fLi f!. 

87.) J.W.L. Glaisher - Formulae for the rth Integral of a Legendrian 
Coefficient and of the Logarithm Integral, Mess. of Math. {2)12(1883)120-5. 



a a the desired expression for PmPn• His efforts are successful, but his method 

cannot compare in simplicity with that of Todhun~r~9 

There is a great number of fo~ulas relating the elements of the 

sequence {r,(x.~. some of these we have already considered (2.19)• (3.9), 

(5.10)e There are also many integral relations involving Legendre Polynomials. 

From several of these relatio.ns it is possible to obtain results applicable 

to number theory and to combinatorial analysis; others are useful in the study 

of Legendre series. 'rhese formulas are, however, so nur~erous and, on the 

whole, their derivations are so devoid of mathematical subtlety that there 

is nothing to be gained from reviewing several hundred such relations. It 

will suffice to remark that in a series of memoirs Catalan has produced 

approximately three hundred such relations. These memoirs a:r%
0 

a. Memoire sur lee fonctions ~de Legendre (1881), 

b. Note sur les fonctions Xn de Legendre (1882), 

c. Sur las fonctions Xn· de Legendre (Second Memoire) (1882), 

fl. Sur 1e s f oncti on s ~ de Legendre ( Troi sieme M~moire) ( 188 6) , 

e. seconde Note sur les fonctiol'ls ~ (1889) t 

f. Nouvelles proprietes des fonctions Xn (avec Supplement) (1889}, 

g. Sur quelques formulas d'Analyse (1893) 

h. Sur lea polynomea de Legendre, d'Hermite, et de Polignac (1893). 

88.) J. c. Adams- On the expression of the product of any two Legendre's 
coefficients by means of a Series of Legendre' a Coefficients, Proc. Roy. 
soc. Lond. 27(1878)63-71. 

89.) I. Todhunter- Note on Legendre' a Coefficients, Proc. Roy. Soc. 

Lon dOll 27 (1878) 381-3. 

90.) More detailed references are given in the bibliography. 
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As an example of a relation useful in combinatorial analysis, we 

range over all integral values such that o/,-t-f3-f:Y=·r1.·, 

of solutions oi o<. -+(3+Y -::::VL • Now from (5.9) 

, so we have not only the solution of the 

partition problem but also the multinomial expansion 

( 
"3 31 ,.,_ 3 

I+~+~,_+~+···)::: ;-3z. +lot+ JO:z-+ ·-· •. 

kmong the diverse expressions of Pn appear 

('1.9) 'Ph.:::: ; ... fl-1 ,~,~) r~~~))(_"-"\= :&:- f_l--t)t (~f'c 1-t-x.(- ~(t-x)~ 
~~· i~o 

{k is either n/2 or (n-1)/2 according as n is even or odd) and 

{ ) 'P.. hLI'\.-.!.) lvl,. ) h(""-l)(n.-~)(""-3) t\-1/-(! . "):z.. 
'710 -.x.""- ,)( (!-"""'+. X. -;;(_ _ ... 

• h - ;1. .,_ ,.. ·:1. '2.- 'f-'Z- • 

If ('7~10) and ·the latter part of ('1.9) are equated and the coefficients 

compared, we obtain I -r (7):~--t- (_~f\-· · ·+(;_,f+t-= (~) ~ 

Another property of the Legendre Polynomial is due to Bauer?1 

:trrom (6.1) 
VIL"·fi)(X-1) (r.-t)V\L"'--\'I)( .... +~IfX_-1)7.. ... A 1"')t~')~--· 

(7 .ll} 1'~->t.x.):::- I -1- ----;-;:- -;i:" t' ,.,., 2, \ . .,._ + + ., \ :L > 

(,._) 0-"-+l)l~-ll+..l.)· -· (VI.+h.) _ {!-.-t-h)~ 
where AVI:::: lt-t.!)J.. -~-h)\ n!Jt.!. 

Alh.) 
Since .... can be considered to be the number of pennutations of n+r things 

OJu._, 

of -mich n-r,_ of one kind, r of another kind, and r of still another kind, 

all the A's are integers. Thus the coefficients of the explicit form for 

the Legendre Polynomial have only powers of two in their denominators. 

Bauer also pr~es that if xis an odd integer, Pn(x) and all its derivatives 

as well as J;:(x)dx are integers. 
-I 

91.) G. Bauer - Bemerk11ngen t1'oer zahlentheoretische Eigenschaften dar 
Legendra'schen Polynome, Sitzungsber. k. bay Alt. Wiss. \math. - phys.) 
zu Munchen 24(1894)343-359. 



l. 

There are other algebraic theorems which are more signi fican·~. The fir,st 

of these is in regard to the discriminant of the equation Pn(x)-::oO. Stieltjea 

demonstrates that the expression 
IV 

(7 .12> ( 1-fi'> u- ~;)-. -(1- ~:) n (~I( -~.t).,., 
~ 1l; I 
.fl-t..t 

is maximized if the ; 1 s are 

obtained for the expression is 

92 
the zeros of Pn(x) • 

.:l.*. 3b. '-1-g· .. 1-\:l+v 

3'· 5'~ 71 ... (:ln-1)~-1 > 

and the discriminant of Pn(x)=O is then 
:J.., ·3<1·, 4h ... n7A,...-:J. 

~-S'~. 7r ... (::tn-l):z..t-3 .• 

The value then 

of all the equations of degree n with real zeros all in 

(-1,1) 
1 

that 1!lhieh has the maximum discriminant is Vn(x)=O where 
o<> ' ").. 3 lo\-"'). 4 lo'\1 

{1- :t.x.?+~.,. = I_ V"'l:L) 1:....,. 
0 

1·:2. •3 --·(k-~. 2.. ·3'·4 '"!-"\ 
• This discriminant has the value 1 •. 3 ~. r;>. 1 1. . . "'-"_ 3;"n-3 · 

When n is very great, the relation of this discriminant to that of Pnlx):::-0 is 

about • 
93 

These results are verified by Hilbert. 

There are many theorems coi'lcerning the zeros of Pn(x). We have seen 

already that these zeros are all real, dis·tinct, and in (-l,l); that they 

separate the zeros of Pn-rl and are in turn separated by those of Pn-1" 

Tehebycheff goes further and states ~ very general theorem for certain classes 

f 1 . al 94 wh t . t f . o po ynom1 a, ich When pu 1n enns o Legendre Polynomials results ~n 

( b) if 1-; < !)_,_ (A, -o...)"-~' Pn having a zero il'l a, t,..L:x. l &..,c.. = ~ rr T . 
--Anather theorem, similarly interpreted, asserts the existence of a zero of 

Pn in [-t , -t±{}l:~~~fJ1Vbere the sign of the readieal is opposite to that 

of Pn(t)/Pn'(t). 

92.) T.J. Stieltjes- Sur quelques theoremes d'Algebre, Comptes Rendus 
100(1885)439-440. 

93.) D. Hilbert -Ueber die Discriminante der im End1ichen abbrechenden 
hypergeometrischen Reihe, Jour. f. Math. 103(1888)337-345. 

· 94.) P. Tschebichei' - Sur les fonctions qui diffe'rent le moins possible de 
zero, Jour. de Math. (2)19(1874)3 19-346. 



Theorems on the upper bound of the zeros of Pn(x) are due to Laguerre~5 

I! F(x) is a polynomial of degree n in x with all its zeros real and distinct, 

and if F(x) satisfies the linear differential equations 

( '7.14) {I..C)C> ~" + M < x) ~' + N (x.) lj :;::: o 

L. d''"-+ u.: -t-M) f-+- ( .NI '-+.N) ~ '+ N '~ = o, 

then the polynomial 

vi11en x is a zero of F( x). If we can find the maximum value of x which will 

make Jt(x) ? 0, we can find an upper bound for the zeros of F(x). This is 

the problem Laguerre solves for Legendre Polynomials. In this case 
2 (\ 1'\[1'\ '2.+.;)-) 'l. 

L=x -1, M=2x, N:-n(n...-1) and Jt.<~) =-<t--+~·)(l/1.-1)- n.-l x. · 

Therefore, the absolute value of the greatest zero of Pn is less than or 
I 

equal to (n-1) {~:~:2-)}12- • We can obtain an even better approximation by 

considering separately P2m and P2m+l• In the former case, Laguerre finds 

that the absolute values of the zeros of P2m lie between two positive roots 

of W'-+.:2. hr-1f + .2m(~M+I) ( xlf -x.') +-Co >L Lf_ tf-xl. -t-2 =- o. 
lf(!>"- I) 

In the latter case, the absolute value of the zeros of P2m+l lie between 

two positive roots of ~;~ ,/~:x. "--:,/ + :2."'-( ~-+ '3)lx If-_ x"') + 1 0)( if_ J;).x. :;._ +-b =- o · 

One can see more briefly that x,)kt the greatest zero of Pn• approaches 

one very rapidly as n increases. Newton's approximation applied at x=l 

results in 

Let the zeros of Pn be (I>) x,,.,_>r.t,.->x3,.,.> ···)xl{,n.>·-·)x~~.,,...(>-1). 

More complex considerations lead Stieltjes96 to an approximation for xk,n• 

96.) E. Laguerre - Sur les equations alg~briques dont le premier membra 
satisfait a une equation differentielle lineaire du second ordre, Comptea 
Rendus 90(1880)809-812. 

96.) T.J. Stieltjes - Sur les polynomes de Legendre t Ann. Fac. sc. 
Toulouse 4(1890)Gl-l7. 
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He finds I I I ~ (4. __ K._-~')_rr 
)t ""-' -- :L~-

1(,"- .((2~<4-1) .Lf,_-+- ::t. 

Laguerre97 also points out that if 

('7.16) 

then the number of zeros of F(x) Which are greater than or equal to one 

is at most equal to the number of variations in the ordered set 

• > A K. • Obviously, if there are no variations in the set, 

the theorem holds bee au se \P n ( x)\ ~ 1 for x ~ 1. We assume the theorem 

true if there are v-1 variations in the sequence { Al} • We now seek an 

inductive process. Suppose there are v variations in the seq_yence. 
Ft~) I 

consider ~) which vanishes at the same time as F(x) and remains finite 
~ J. f ~ 1 -f (.:.<..) 

and continuous for all x ~ 1. Set ll.JL 1. t. tJ:.l = -plhJ 
\ "'l 

• 
Then Rolle's Theorem states that (I) ~ ( f)+l, ·mere (J) represents the 

number of zeros of F(x) which are greater than or equal to 1. Also, 
1 .k_ \ r I 

-flrl ~ ~. F'l>l)- ~- f(x)-=== _t: Ai (t ~-- ..,. ~.) · 
l 1 J=- I ~ l ~ 1 3 

From (2.7) 

in that the coefficient of Ph. is zero and all those preceding it 
1. 

preserve the same sign as the corresponding A's, While all those following 

it have their signs opposite to the corresponding A's. Consequently, 
. 2 

( ip ) ~ v·l· Applying Rolle's Theorem for x~l to ( x -1) f( x) • we obtain 

(f)~ (f) and hence (F)~ v. 

9,.) E. Laguerre ~ Sur une propri~te des polynomes Pn de Legendre, 
Comptes Rendus 9l(l88.0)849-851. 
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(, 0. 

There are some obvious extensions. If \~ wish to consider the number 

of zeros of F(x) which are ~ -1, we seek the number of variations of the 
n. 

sequence {83 where Bi = (-1) 
7 Ai • If all the zeros are real• ~ can 

determine the minimum number of zeros in (-1,1). If the sequence of non­

negative integers { rt;t has lacunae • their extent gives bounds on the number 

of zeros 'VIi!ich are imaginary or in (-1,1). For example, if a term is 

missing il'l the sequence of the P' s used to form F(x) and if the neighboring 

terms are of the same sign, the equation has at least two zeros imaginary or 

in (-1,1). 

Bounds for ~ n, the kth greatest zero of Pn, have also been given 
• 

first by Brun~8 and then improved by Markoff
9

• The derivation of Stieltjes 

f b ~ it . 1" . t 100 S •' is pre era le lOr s a1mp 1c~ Y• tielw~OI proceeds on the basis of 

some theorem on quadratic fo~ Ria paper contains a. most peculiar 

dynamical problem. closely associated with the results to be obtained. If' 

at -1 and 1 011- ·~he x-uie are situated point masses o< and j3 respectively 

(both positive), if there are n material points of unit mass which move 

freely on the x-acis between -1 and 1, Etlld if aXJY two points act upon each 

other with Newtonian forces, then there will be a unique position of 

equilibrium for the n points between -1 and 1. If their abscissas are 

denoted by xa > x2 > •. •• > Xn• then the x' s are zeros of 4> (x), s. polynomial 

of degree n in x satisfying the linear differential equation 

98.) Bruns, H. - Zur Theorie der Kugelfunctionen, Jour. f. Math. 
90(1881)322-8. 

99.) A. Markoff .. Sur las raeines de certaines equations, Math Ann. 
2'! (1886)177-182. 

100.) T. J. Stieltjes - Sur les racj.nes de l'e'quation ¥0• Acta Math. 
9(1886) 385-400. 
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Furthermore, the x' s are shown to be continuous functions ofot. and f • 

If d. ~f t '1_=--Xn-i+l (with x h+l == 0 if n is odd). For o<-== i and f3 -= _i we 
;;:;-

have the Legendre differential equation 

( 2.7) 

for o<==3/4 andp=t and for<'<;-i andp = 3/4, 

('1.18) 

{7.19) 

-" _, . . -
~-1-')cp +LI-.::.l.x..).::f.+ Mlk.+l)<:\:>==0 

we obtain respectively 

o..-..L 

- -I = 
~ -X") 4> 11

- ll + :l)(.) f + V>.(\1\. +I) <t> = tJ • 

In view of the dynamical relations, one might presume that the zeros of the 

solution. of ('7.18) will be closer than the zeros of Pn to 1. Similarly, 

the zeros of the solution of (7.19) should be closer than the zeros of Pn to -1. 

Solutions of (7.18) and (7.19) are respectively 

with zeros at 

c..o<ltlt-.+-\;._)GAI:-~L] _i. 
~cl- '+' 

c.= r :l .occ_ ~ ~J 

(?..,:-I )'If = 
xi-= U4-~ ~ ::t{ ::::. 

w....t( ..... +-\;..) <it>.<:: U-d >L] 
~[ ~GAc.~xJ 

.2 i "II 
~~, respectively. 

Stieltjes proves, by considering the x' s as functions of 0\ and j3 , that 

actually 
( ':l i - 1 )Tr _ = :2 ~ rr 

~ --~-::x·>X· )"X·=~--
,_....+1 't 1·,Y\ 1. ~+I • 

This result was already known to Bruns• 

Even more remarkable are restrictions imposed by Markoff. Stielt3es 

arrives independently at the same result by considering (7.17) for~~t and 

(?>--::; t and for 0(""' 3/4 and f = 3/4, for wbieh we have respectively 

( '7. 20) (!- :;(_ ') f It - X. \j/' T' 11\.'2 o/ :::c 0 a-.cL 
=::::11 ==, -;:::::. 

(7. 21) Q- )(...,.)LV -?X. y; +- VI( 1-\.4-.:L) LV == 0 . 

Solutions of (7.20) and (7~21) are 

and the corresponding zeros are 

Again from dynamical considerations, one might presume that the zeros of 
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= \}) and '\1' will be symmetric with respect to the origin, that the positive 

zeros of ~ will be closer to 1 and the negative zeros of ~ closer to -1 

than the corresponding zeros of P n• that the positive zeros of l..f' will be 

closer to -1 and the negative zeros of l:ii closer to 1 than the corresponding 

zeros of P n• Stieltje s actually establishes this striking property. Thus 

.).rr = 
(7. 22) 

i 
~ <(. ')( • ..:.~ 

;I.A-f 
·~ 'X > 0. 

~ -:::. ::: (.4""'L --.;:-;- 1T - "' "J"' "-
... , .. 

n+l 

,(.·rr 
~~ \....._ 

~.;.-1 
~ ""'""",~ 

<.. 0. 
Gr<J.. > ")(. ;> = (..q<2... -lT = AI"' ~ ...... ' Yl+l 

It vlill be wise to recall that 

and 

if n:::2m+l, 1 >x,,., > ')(._,,.. '> ···>?<-,"'>?C...._+,, .. = o > 'JC-.-~o-..," )'' ·~-x ... ,"' > - 1 • Note also that if 

and r. >! . 
.... " J 

if and 

Very often new representations for Pn(x) led to discovery of new properties 

of the Legendro Polynomials. We have already discussed the Laplace Integral 

(2.20), the Jacobi Integral (5.13) and the Dirichlet Integral (5.6) • From 

the latter. Mehler has deduced a further integral~Ol 

If (5.6a) and (5.6b) are added, 

(5.6c) 
..Lfe (A"CI. (vr+~)t/Jd¢ 

r. lC/1.. &J = rr 
.... 0 Vi(4J<1¢- C<r"S) 

While the result of subtraction ie 
-' J e UJ-0.- (~ +~) ¢ d ¢ - _,· r.,. ~ r~+iJ¢ d¢ 

0 -=. 7T Tf ), 
o V2(c-of;-t:.J1<3e) · e JJ..(C¥:111- c.r>~J 

As a consequence. Pn(cos 9) permits two new representations, 
. 7- r e- c.-u-a- r •d· -':J ¢ J ¢ 

('7 "-3 } ? ( c..c-o e) ~ - J • • .., a "' . - -rr o v :L(~ ~ _ ~ e) 

(7.23b) v ... c~e}:::. %-f.,.. ,-.:....(~+-kJrJ;d.~ . 
8 V-z.. c ~ e- (_qo ¢J 

Very similar to these is an integral which Catal.d02 der1Tel froa the 

101.) F.G. Mehler- Notiz Uber Dirichlet'schen Integralausdrllcke fur 
Kugelfunotion Pn(cos 9} und Uber eine analoge Integralfor.m !dr die 
Cylinderfunction J(x), Math. Anna. 5(1872)141-4. 

102.) See P• 55 a. 
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we neglect the imaginary part of the integrand, obtaining 

"+' J "" ~ n (! (}.A 

P·- ( en ol ) = z_7T ~ ()(. "+' -;::=r.t::=::::===:::==::::. 
~ 0 Cr<t f> v~ ._ol. - ~ ~ f 

Let o< .,_ ~ , f::: ~ ; this last integral becomes 

{ 7 • 24) 'P ( Lr<l e ) == .b.. c.c--a. ~"~-+ ' o J lk 41<1- 11 -f: -;::::::::.J..=¢=======-
" -;_ IT 2: o 4-o"•' cjJ V 4( C-r3'/J-~ 1J) 

--s:. 
Still other de finite integral representations have been given by 

Laurent;03 His results are based on Cauchy's Residue Theorem. Let 
\ 

f( z)-::: Z:" +' VI- :LH-+-t-2-
• Where n is a positive integer. Jf( z)dz 

c. 
We seek 

taken around a small circle with the center at the origin. Now 
o>O p,( 

f(z)-= -;+, -== k ~,_,;.+, , and the residue of f(z) at the origin is thus 

Pn• Consequently, 

( 7. 25) o (x)-= _I_ J 
I " -:LIT A. t 

(.i';..l)~ 
Similarly, Laurent shows that the residue of f{z) =- t~-x)"+t at 

I J"' (')( '--1 ) "' 
- " • Thus VI! h- l :C>--1)" 

V~ (](,)-:: .J_ _I s (i:-X)"'-t-1 J=t: 
r .. 21T"- .,_... 3' (7. 26) 

taken around a small circle with center at 

Z=X is 

Laurent's paper is distinguished in several other respects. He derives 

many know.n results without giving credit to the original authors. For 

example, he considers anew the convergence of the generating function ex­

pansion (2.1). Writing x=y+~, the generating function becomes 
_J_ I -1 " 

f 2.) ).. - -.. ( r-) '-
1= LI-2'X~+l! =- (1-t.-~) 1----g-

103.) M. H. Laurent- M~moire sur les fonctions de Legendre, Jour. de 
Math. (3)1(1875) 373-398. 



If /z\ I y\~1 and lz/y/c::.l, the expansion ofT is- convergent. Thus if' l.<l is 

the minimum of {1YI , ll/yl1 and l z I <w, the condition is met. This is equivalent 

to z varying in side a circle of radius w with the origin as center, while x 

varie 9 in aide an ellipse having and 

for semi-axes and foci at !.1. The totality of ellipses for varying w form a 

homofocal !a...'llily. This result is actually due to Neumann:-04 

One of Laurent's moat interesting results is a relation between Legendre 

Polynomials and Bessel's Functions. We can write Murphy's Series 

(s.s> 17 .. (l-trO&) = ~~ .. t L'- ( ~r~ .. ~ +t~J .. ~., ~- .. 1. 
How, lim eos2n 9/2-=l ( E 'S.. e:!:: :rr-eo, l!o>o arbitrarily ernal1). We consider then 

the series in tangents of the half angle. If x:cos a, y-=- ~:; 

- _!_-::_L and X - I+.Y 

2/ 2 set Y=-Z (2n) 

, the series becomes 

)
2- '11)>-- 2- ('I )'1. ~ I - l ~ j + L"- ~ - J J + · 

and the series is 
"-- z '1- ( I ) 'l-. ~ b ( J_ ).._ ( :2..)L _z. __ + 1-- - 1- 1-- -+. -

I - "- ( I') t. 'I ( . 1) ,__ 11 -;;;---( I).._ .... "" 2_ • 2. 2, ,__ 3. 

Thus, for n very large 
t l- t"-) 

('7.21) Pn l ~'-~=t .. 
Where Jo(z) is the Bessel function of zero order. This result differs somewhat 

\ 

from Laurent• e and it is Laurent who is in errore 

we can arrive at a smilar result by still another method:os From 

Laplace's integral 

(2.20) 

Let 

104.) c. Neumann- Ueber die Entwickelung einer FUnction mit imaginlrem 
Argument na~~ den Kugelfunctionen, Halle, 1862 {Thesis). (See Heine, Haundbuch 
der Kugelfunctionen, vol. I, p.40). 

105.) J. Strutt (Lord Rayleigh) - On the relation between the Functions of 
Laplace and Bessel, Proc. Lond. Math. Soc. 9(1878)61-4. 
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15 ~ ~('l:C/.Jt1Jti¢=7TJ;(r:). ~P.,{t!t-:~...-I;,(i). 

Previously, we have had asymptotic expressions for the Legendre Poly-

nomial given by Laplace (2.21), by Hei~e (2.2la), and by Poisson (2.24). 

A skillful paper by Bonnet adds still another expression:
06 

The method 

where E ~ & ~ 1f- fi J E:- > 0 

function of 9 and n. 

arbitrarily s:nall, and p is a. bounded 

The results of Bonnet are verified by Darboux and considerably improve~?' 
First of all, Darboux shows that the error in Laplace's formula (2.21) is 

( 7. 29) 

(7. 30) 

(7.31) 

{OL.9 '-IT; p, p', p" finite). These formulas are of considerable importance 

in Darboux' s treatment of Legendre Series, and we shall return to them later. 
;e -t -LII)--1. Lt- e•'llr-i.(-1:-- -e-.t'IJ)_.!.l... 

Let T -=:: ( i - e ) ( t - e -= _ ~ . . 8 . . J~ . . e ...t ~ -
· e d~ "'" " ,.,._.. 

{-€-~ i-~ d h f Now . . -=. 1 + 2 . ~ 9 , an t ere ore ,8 p ] 
2,..,.,.......e. _!_ " • ..1 i8):z. t-e') 

ft.-eu'J ~L _, -t-e'l!)+..!.:l{'"-:--e. - ... +c-,/H .. -1 .. 1'-u(-.-.-6 +···) 
-r"-::. . . I "'it . 6 ~4 2A.P"-<'8 2·'/- ... r~,.J ~~to-. 

I V'J./o. ,...,..!;) ,.,.. ,.,...... 

Whence, for very large n, ] 

) 
H·S"· .. 1211-U ' JU<Z.LC"+t)e-1!:']-.!.~(.Alt"-.Ue+~+.!.i 1·3 )C,ri[(t~-,U6+lf]-· · · 

( t'[ • 3Z) f., ( C-<r<Z B ""'l' ~.lf.b . . . 2~ l}:z.p...:...el If 2.l1.. .. -• .Hh.h-•)fu..-3 

106.) • Sur le dbveloppament des fonctions an ~ries ordonn,es suivant les 
fonctions x et Y , Jour. de Math. {1)17(1852)265-300. The paper includes 
a misstatemint. finder Theorem VIII, Bonnet asserts that the Legendre dif­
ferential equation determines P n ( !lt) to within a constant factor. This is not 
true, as we shall see, when we present the Legendre function of the second kind. 

10'7.) G. Darboux - Memoire sur 1' approximation des fonctions de tres-grands 
't / , nombres, et sur une class e endue de developpements en aerie, Jou~ de Math. 

(3)4(1878)377-416. See also p c,s ff.; G. Ascoli- Sulle serie f'o AnXn• 
An.na1i di Mat. (2)7(1875)258-344 verifies Bonnet's result also. 



This formula is a particular achievement, for if the approximation is taken 

to a finite number of tenns, the error is always of the order of the first 

ter.m neglected; and if p terms are taken, the error then will be of the 

I 

order of ~ • I:t' only the first term is considered, w obtain 

, ) ~ (_if;l_ [c V1 +-*-Je- ~] 'P., \. C-<r:J f:t ~ V VI rr;;:::::-e 'f- / 

since I·'!>·Y· ··(J .... -1) I 

~·'f·~~--;) A/ J.,rr by Stirling's Formula. This result is the 

same as that o :t' Laplace ( 2. 21) • 

Bruns108and Heine109 concern themselves with the behavior of P
0

(cos 9) 

as n -'? oo • If o.<:... &<-TT 1 f.,(c.rJIJ)...:, o; but suppose that Q is not fixed but ap .. 

proaehe s zero w.i th n -?co • In this case, Bruns shows that P0 (cos Q)~ 0 

as n -'> -
( -h) v :=:: o( c<: ..- and further this will be true 

even if • In short I as long as ne ~ OD as n -7>.,.., 
' 

Pn · (eo s e) ___,. o. Both Bruns and Heine use the Mehler-Dirichlet Integral to 

obtain the result 1 but we can use equally well 

(5. 3) 

(7. 33) 

whence 

(7. 34) 

From this last result, Giuliani
110 

obtains the theorems of Heine and BrWls. 

108.) See P• 1.0 if 

109.) E. Heine .. Ueber die Kugel:t'unction P0 (cos i) fUr ein unendlichen n, 
Jour. f. Math. 90(1881) 329-331. 

110.) G. Giuliani- Sopra la funzione P0 (cos () per n in:t'inito, 
Gior. di Mat. 22(1884) 236·9. 



. 111 
As Frisehauf po~nts out, the convergence of Legendre series depends on 

the fact that P n (cos e)_,. 0 as n --7 oa • 

stieltjes~12 too, was interested in the nature of Pn(cos Q) for large n .. 

He obtains a series comparable to that of Darboux, 
"-" 'J{ r. l) -,r] r(. J)' 3-,J 2. .. [Cn+-f:)~-strJ ] 

(7 35 )f. )_'1-:t. (~t~. ~l(.,+._B-- .,._ (.vot.L!tt+ 2 ~-- /d ~ .. v. 
• ..,{W;;~Il -11' 'f- +- '1- t--- + ... . 

(2.11f-f)! V:<~l) ~(2>1+3) VT;:;;:::iiJJ 7.•lf (2.tt+Y(:tk+S){(2..,.,.;..B)'; 

This aeries converges and represents P0 (cos 9) vmen 2sin Q > 1, i.e. 

It further has the peculiar property that if the first p 

tenns of the series are taken, the error is in absolute value less than 

twice the tp+l)th term in Which the cosine is rep1aeed by unity in the 

name rat or. 

Callandreau has proved the results of Darboux and Stie1tjes in a 

different way and examined the remainder of the Darboux expression~13 

The integral related to the Bessel Function is 

J (") == 1 (-?t) = .1- f rr e _.;.')( 1-C<J_~ J. cJ 
0 . 0 "Tr " J 

and we can writE> for p>O 

111.) J. Friechauf- Zur Tbeorie der Kugelfunctionen, Jour. f. Math. 
107(1890)87-8. 

112.) T.J. Stieltjes - Sur la valeur asymptotique des polynomes de 
Legendre, Comptes Rendus 110(1890)1026-~~ Sur las polynomes de Legendre, 
Ann. Fac. Sc. Toulouse (1)4(1690)Gl-17. 

113.) O. Callandreau - Sur le calcul des polynomes Xh(cos 9) de 
Legendre pour lea grandes valeurs de n, Bull des Sei ~{ath. (2)15(1891)121-4. 



If p ::::cos 9 and b::: ein e, we have the Jacobi Integral on the right and 

P~ ((.q<leJ =- ~ too e-x'-<>"'9 J'o (?<. ~8) -x.Yl J. rx.. 

On the basis of this and Poisson's expansion (2.24) which is essentially 

J
0
(e), Callundreau announces a theorem. The remainder of the Darboux ex-

· L..l.+ ~--rr- < ... -p-l.)e' 
· d th 1 rt of fl e J. 'i' "~- l. '

1 ' 
pansion can be eonsJ.dere as e rea pa 

of which the affix falls inside the circle with center at the origin and 

radius equal to the absolute value of the (p~l~th term (and in the fourth 

quadran·~ if cos e > 0)~ By this ....e are enabled to say something about the 

sign of the remainder as well. 
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sECTION VIII 

IN~RPOLATION ~~D MECHANICAL QUADRATUPE 

It is rather surprising that, just as there was a lapse of fifteen years 

between Gauss' paper on evaluating definite integrals and Jacobi's revival 

of interest in Gauss quadrature, there was once again, after the three 

memoirs of Murphy, a period of more than fifteen years in which no apparent 

progress was made in the problem of evaluating definite integrals by means of 

Gauss quadrature. There were at best a few attempts to apply the results of 

114 
Jacobi and Murphy to specific problems. 

It is Tchebycheff who heralded the development of the modern theory of 

interpolation and mechanical quadrature. With Tchebycheff' s early memoirs 

we shall not be concerned in any detail. It will be sufficient to remark 

the nature of the problems solved. His first two papers deal with the 

development of the sum in continued fractions,. 

where ~0 , x1 , ••• , 'n are n+l real and distinct numbers for ~bich w(x) is 
115 

a defined, non-vanishing weight function. The continued fraction develoP-

Jnent has as the denominators or the successive convergents a sequence of 

functions f~..: (~J). The sequence is distinguished by the fact that, among 

all the functions of the same degree hav.img the same coefficient for the 

highest power o:f' x, the sequence of '-fl 's renders minimum the sum 

114.) .For gfa:mple, F. Neumann, "Uber eine neue Eigensehaf't der 
Laplacesehen Y( und ihre An~~ndung zur analytischen Darstel1ung derjenigen 
Ph!nomene 1 \~lche Functio'nen der geographischen L!lnge und Brei te sind* 
Astron. Nachr. 15(1838)313-324 (reprint Math. Annalen 14(1879)567-576). 

1l5e) l Tchebichev - Sur une formula d'Analyse• Bull. Ac. !mp. :sc. 
st. Petersbourg (phys. -wath.) 13(1853)210-211; Extrait d'une M~moire sur 
les fractions continues, ibid, 287-208. 



That the problem is related to interpolation and quadrature problems 

of the kind with which we are ~ore immediately concerned is a little more 

116 
evident from a third paper. In the latter, f(x), a rational integral 

function of degree n in x Whose value is known for Xo• xl, x2 , ·····~ 

(n+l real and diatinct values of x), is ~~itten by the method of Lagrange as 

f L (?<) f(11;) L (!'-) =- ('X -'X"){~-x.)(?C-x.,_) ._ .. (?<--x ... J. 
f L:x) -==- L tx- -x, )L.' ex~) ; 

,<=0 

)"\ ;', \'\... 

Also +l-f;) = t' fo .-j:( 'X...) - ~ .,_ 1/J, (X) k ~~ ( ?t,;)f(x) + ~J <1-'-~J.x~ 1/12. (;,~)N~;.)+ ... J 

where the q's are the coefficients of x in the Q's of the continued 

~ ~ rij~ + ... 
3 I 

and '-P/l. {-x) fraction + + development of L. --;::;,. 
.i=o 

is the denominator of the rth convergent. If only the first m tenns of this 

approximation are taken, f(x) is approximated by a polynomie~ of degree m-1, 

and this approximation will be best in the sense of least squares, if the 

kno-..m values f'(x0 ), f(x1 ) •••••: f(xn>. are considered to be of equal weight. 
11'7 

The problems are solved in great detail by first Tchebycheff · and 
116 

then Hermite. 

A systematic exposition of the use of series of the denominators of 

the convergents of a continued fraction development to approximate a given 

..-119 function is given by Rouche. Before describing his work in detail, we 

will mention the general nature of hie results. Let f(x) be a polynomial of 

degree n in x, and F(x) a polynomial of degree m+l in x with zeros at 

.f- C><·) f(x) .,._ -f'; 
x0 , x.., x2, •••, xm and m 2 n. Denote . --~ by pi. then -- C:.:L.- · 

.L • F'(X,.:) • F(x) .<-=-o 1C-)c~· 

116.) P. Tchebichev, Sur une fo:rmule d'Analyse, Jour. f. Math. 
5 3(1857 )123-5. 

11'7.) P. Tchebichef', Surles fractions continues, Jour. de Math .. 
( 2) 3(1858) 289-323. 

il8.) c. Hermite - Sur !'interpolation, Comptes Rendus, (~(1859)62-57. 
(F. Brioschi, Intorno ad una formo1a di interpolazione, Annali di sc. Mat. 
e Fis. (1) 2(1859)132-4• reviews the work of Tchebycheff and Hermite). 

/ / t fondLoftS l . 
119.) E. Rouche, Memoire sur le developpement des~en series ordonnees 

suivant. les denominateurs des reduites d'une fraction continue, Comptes Rendus 
46(1858)1221-4, Jour. de l'Ee. Plytech. (1)3'7(1856)1-34. 
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Form the Sturm sequence 
f:=Q-~ 
-f I f 

i--Q -~~ R
1

- .,_ R
1 

~- Q - ,,, 
I< L- ? R2... 

;; R .. 
1\.,_.,_ Q --
~::."' R,_, 

and the continued fraction 

flit) ') 1) - J) -
(8.2) Ftl-l-=- rQ.,- fQ'L I Q~ 

. -- - rk+,· 
Rouche'e demonstrations demand that Ri be a polynomial of degree n·i, 

Q
1 

of degree m-n+1 and· all the other Q' s linear. Write 

'R .... -= .f\.; ')lv<-"- + ... 
·""'-ilr'\+1 

Q, =::. ~I ~ +. 

Q,._ = ~ ... .,_ ~ k;. 

Let N~Dk be the kth convergent of (8.2). then Nk is a polynomial of 

degree k-l and Dk is of degree m-n+l+k-l~m-n+k. Given ~1 values 

tffxo) cp (;<,) cf{)(.._)/ ... f(-,...,..) of ct>£1-) , a polynomial of degree m, we seek to 
J ) ' 

develop this function in series of' D's and to study the properties of 

this expansion.. We shall see that there are essentially two cases. For 

m=n, there will exist a solution 

(8.3) cf(1) "" f [ 6H• Dk. (?<)~0 '-p..: j)k l~;..) q?(?(_.)] 
K-::.o 

For m>n, the D'e will depend on an excess number of linear equations and 

the problem will be "overdetermined". 

The most fruitful discussion comes from seeking an approximation 

which 1iill be best in the sense of least squares, considering the Cf(X,:)' s 

to be equally v~ighted. In this case, of all the rational functions Which 

lead to series giving exact representations of Cf("i.) (m -=-n), the fraction 
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)... ~ ( )\ constant) has the follovi'i.ng property: If in 
FW ~ ~ 

(8.4) lf(x.)::: f0&k+r j)k (x)f_ l)k(-x,:) q?(f(;~ 
~::.o ,1.-o 

we take only the first r+l terms (r arbitrary), we obtain an approximation 
A ...,._ 

(8.5) t (1-):: L [) 61<+1 DK (JC)?. PK('X,:) f (,:J] 
K""O ,1.':.0 

'Which is such that the sum i_ ['fl!A)-l(?CA.~'l... is minimum. This is the 
~""0 ...... -'-result obtained by Tchebycheff in the ease of >.-= 1 

for F'bc) 
I="( >c) 

~L_ ")( - )C,; 
;..~o 

and (8.4) becomes ~ 

(e. o) cp c ~J -=- b [ bH' Dk (~J { DR h· ,) cR (~.:Jl . 
If the given x' s are equally spa~d, i.o., ~-.x1_1 = o/tt~~ in f::-1,1] , 

.x,....:_. __L F ' ( }<) - _y_:._. _L ~ 2::_ _I - -::o. ..l ('I ~ =: J_ ~ 2!::-L • 
consider Y...~oo VY'I F l?<J - ~-v--7oo 2 ~ ,...._ ')(-'X,.: 2..~ 1 'i:.-:J 2. ,~-a 'X-

1 

Then, we consider the continued fraction de;elopment oft log ?;.-::,' of 

Which the denominators of the convergents are Legendre Polynomials.. In this 

ease, (8.6) becomes 

Cf(-y.) = Z.l 2.k:l pK(x)l,l ~L-1::) Pl'l{-t)tLt]:::::fuA~ PI<.. (8.7) 
f<=oo 

One could easily show that such an approximation is best in the sense of 

least squares. 

Let us seek now the relations regarding the rational fraction and its 

continued fraction. 

Let 

s . 
2.. 

• ~uJ +( 

s. 
s, 

.) 
Sw-1 

$.., · · ' :):l. -..l -I 

'\( ... 

Tk(x) is a polynomial of degree w • In its expansion on the last row, 

d~J< +"' J,t,k +7-':clAt<. + . + rv..l JAI<. 

T ( ) -- ,.. d.S -- . . " ti-S 
K ')( -::. J. S.., w+ I J..S..,+l. J r.al 

Replace x by xi, multiply by p1x~ and sum. Then 
'3o ~~ .. S.., 

s, 52.. 

(e. a) 
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_For i"-=w, this gives 
.-. ~ 

(8.9) [" t .. -x~ 1:{ll~) -=:: b.l<. 
;.::o 

, the last determinant will contain 

twice the ro\'1! s s s s r- , r- _,_ , J ,..,._ + ,_, 0 ° • J r+ w 
, therefore 

....... 

(8.10) I_ t,.: "<"" It< b ,; ) = o 
,l"::.O 

Furthermore, 

(8.11) R I<-= f 0 D,.,_- F· Nl<. 

From (8.1) end (8.2) this is obviously true for k~l,2. In general 

R.._-= R.;,_
1 

Q.A.- ~.<-?... from (S.l); D.4 =D,;._,Q,.:. -'D;- ... 

. and N,; = N~-r Q,.: - N;,_'L from well kno11m continued fraction relationships • 

me s """"' R = -f·D..;-,- F· N~-1 u· as .......... ,;.-c 
• Now 

Hence, R;, = .f ·D..<. - F · N; and (8.11) follows from an obvious indue-

tion. Since F ("ll,;:)-=- o , 

A knovm result in the theory of rational fractions is 

(8.1
'!1) ~ ~k ( '>''-) ~ ~- 0 

r<K lx;.) _' 11. 1"" 

F '(?<;.) - A 1 
o;; . bo pt ('~,.;.) A -

(rk• A constants; A is coefficient of highest power of x in F); by virtue 

of (8.12) t-his becomes . 
...... ~ 

(8.14) ~ i',.:Dr<l')(,\)t'f..;.=o 
)."= 0 

'l'be se w -t-1 relations determine the w+ 1 coefficients of Dk(x) 

Which is of degree w • Now (8.9) ru~d (8.10) determine Tk(x) which is 

also of degree w , and it is clear that Tk(x) differs from Dk(x) only by 

a constant factor. In fact 
- _, Jlt<. 41<-1 .... + 

D ('X)::. j_ /1.,.. Tk (7<.) - A D.K 'X • 

K A Ll,"' (8.15) 
Further, write {8.11) for k·l and k, multiply the first by Dk and the 

second by DJc-l, subtract to eliminate r. Thus 

R D - R,< Pk - 1 :::: F OJ1._ 1>,.~,- tJk-1 D ... ) -:::. F 
1<-1 I< I 



the parenthetic quantity in the middle expression reducing to unity by a well 

known contin~ed fraction property. Using (8.15). equate the coefficients 

of the highest power of x{xw-.+\ nett). 'men 

But the coefficient of x in Qk+l ie~he coefficient of x in ~-1/~, and eo 

(8-.16) q = ll~<-1 - Jlk. lll<-r- A~ At< 
Ol<+l Jl - fl."- - .fl2. A. 

.... k. 1<. --· 

·In' particular, for ~ the coefficient of the highest power ot' x ie that of 

the highest power of x in F/f. If we let a be the coefficient of the 

bighe st power of x in f'( x) , we have q1 = A/ a. 

We now exhibit a most important property of the D1 s. Froa (8.13) and 

(8.15), for h ... k two integers between 0 and m+l, 
~ ;"\ ( . ) Rl<. ClC..:) J_ n 2.. Ate-• 
L Yt< "1A -= A ... l'k. 
,.i:o F' l'l-;.) ~"'-

::: \) (-x) Rkt"'_.> = () 
~o ..t.. ;. F'(')(_.) 
'"-

By virtue of (8.12) and (8.16) these become 

(8.1'7a) 
""' .,_ I 

'> -VJ. I) ('X~) ::::. - ) 
4- ,-~ k 11<+1 
4-=0 6 

""'" (S.l'lb) ?- i';. Pi.. 0'_.) ~ .... (lC;) :::. o 
,1.-;.u -. f('X~} 

J:v-en for h~. (8.l7b) holds •. For k::.O, (8.17a) is ;.'f:o f'("JC;) and 0 or 
. . 

a/A according as n<.m or n-:::.m. 'l'hus (8.l7a) is true for k=-0 and n::: m also. 

~ now seek to represent a rational integral function by a eeries of 

polynomials, .. :which are denominators of the convergent& of a continued 

• • +1 value a of cfl1CJ 

a rational integral function of degree m1 e.nd the contiAued fraction 

· developnent from which we obtain the sequence { Dk(x)} • W. write 

t 

d""' IA.o 1). ('-)+ v.., D, ('X)+ .•. + ""., J>,. tx) where ~~ = f/()4) {-'-: o., '~ ... ., • ··J"'-> 

Suppoee n< m. . we ce.n then write 

{ 

14.
0 

D11 l ) 0 ) + v.., 0, ()'0 ) + ... + "'-.,. D .. lx.)-= </)C;co) 

iAo0
0
(1,) +~, !>,~'lC,)~ · • · +""_:- ') ... (~,)= '#(Y.,) 

.. ·l'l( )+") (7C-)+ •.. +IA .. l>,.,C"x-)=-'ft~ .... ) 
l.lo Yo ~ I I . 

an overdetermined system of au-1 equations ill n+l unknowns (m > n). 'II ou. 

impose 1 ··however, some added conditions, say that the approximation bl blet :lJl 
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't". 

in the .usual way, setting 
,)_[}.._ .l.JL - - - - J 

(8.11) 
- -::.<J -- -oJ 

.) "'-o ) d- ..._' 

. " 

Let 

-(8.20) 

).~0 

and (8.19) then gives a system of nTl linear equations 
(o) II) (2.) . (") 

lt 0 S. +u., J.., + tA. 1 S0 + ... "+u.,.. Jo = lfe 
{D) (o) (' (>.) (0\) 

ko J, +IAI s, +1A2. dl + • . +I.A .. ~~ -=lTI 

for determining the u' s, the n+l coefficients of the series. 

The case of more immediate ·interest occurs When n:m. In this case, 

. multiply each y1 by Pil\(xt) and sum on i, then 
- ~ I . f -p;. Dk ()C,;) '{?(~ .. ) = u.K j.'f:... D,.._ ... (~;.)-f'A. =- 61<+-1 U.k.. 

by virtue of (8.1'7). Hence. the result previously announced iD (8.3) w1U 

be obtained. How is this related to the best approximation in the 
.;._ 

of least squares! If we take [ Lt 1, p • ..(:xJ (hL. m) to approximate 
1<-=o . 

the coefficients 

(8.22) 
I< "'-o 

I ..... 
f/Jf~) I 

depend ~n all m+l values of '{J('"1-) • but the approximation will ill general not 

be. best in the. sense of least squares. In order to achieve the latter1 we 

must take the u• s as in (e. 23.). The same is true for f(x)= .A I'' (x), i.e. 
t;). 

the rational fraction ;.. F'(x)/F(x), in.W1ich·fi =). and cf~ ::.c (k.¢J)•. 

Then (8.2~ reduces to IAK = lT .... / g<"'> .• ... 



n. 

We are now ready to seek the more intimate relations of the preceding 

discussion to Legendre Polynomials. Gauss
120 

had already given the con-

tinued fraction associated wi. th the hyperge'ometric function, and had 

Itt 
written log t--t 

2 
2tF(t,l 1 3/2, t ). We are going to prove that 

the denominators of the oonvergents of this continued fraction develoP-

ment differ from Legendre Polynomials only by constant factors. we recall 

first that 

(3.9) ( 111 +r)'P
11

+
1

- (2-"'+r)rxP"+VlP,.._,=o 
1 

P0 -:::I.J P,=x 

completely determines the Legendre Polynomials. Now the continued fraction 

has convergents Y,.: -=- ITo I_ ..r;)- - . __ ~·l. 
w~.· Iw:: rt;, JW5 

We list some well known continued fraction relations which will be helpful 

v)\ == LAT., -' v"' -, - v--.. _, v .... -" , 
\.r ....... w. - .r: w .. -<.) vv..,= """"'-' ..,_, M-t 

v-. _i v-u v-, 
----.--+ w.w, w,w.,_ 

I I lfl, -:=- - 4- - + -v, Y, v~ 

w .. w..,._H 

have the convergent a Ni/Di. Then 

f\/11. +I D .. - N.._ D .. +, = I) 

Q-.-+1 

+ ... 

Further, Gauss gives 
I) tl.o tl} - kol ii j - ~.1 f.f. ) -

F ( rJ) I) ~) t) "'- " - " t. r,---' 
.) 

Let t -= 1/ x, this be c orne s 

j ~rl> U:_!_ .= I ) -
::1.... --- -r 1c.-1 r>: N-

'RJ3. ' 
~-·7 

')( 

~ ·3 i~; 
S•'1 - .... 

I 

) 

120.) The discussion here resembles in its basic form that of Gass 
(see p ~' ). There are, of' course. important embellishments, for Gauss 
was apparently unaware of the relation of his results to Legendre Polynomials. 



(8.25) 

77· 

=!:!.. 
D 

for n odd. 

and so 

in (d., (3) be equidistant abscissas. Then 

)....:.-. --_I-f_ (} ()-; ){ y: ;.._+,- 'X;.)-=- J_ s fS (; l~) th--. 
~">--~"" f-~ _.l-::o (3-._ -<. 

.>. f L"') _ ..L F '(><-)"' ~ .J... ~ • 
and qt D, arising from Fr'1-J- ...... fl-.J 7 ...... x-l<..: 

(8.4} becomes ~ 

'f (~) ~ [ L j HI D, (x) L: :,_ v. (>,) 'I' r,,~ . 
K=o .<~o (8.26) 

where q 

~ assume, of course, that the expression converges and represents the 

function. 

(8.27) 
The mean square error, if only the first r+l terms of (8.26) are taken • 

I 

This expression is minimum and has ~S [tf("~-)- !,J1.J,c is -f;::[Lf(-;x_J_-~(\ (1C~n~. 
_,. 

_, 

Similarly, if Sr(x) is the sum of the first r +l terms 
as limit as m -? ()" • 

of (8. 2'7) t then, among all the rational and integral functions {z~ of x of 
, I ]~ 

the saJlle d.egree • Sr(x) is the one which minimizes _n__-=- J [r(>IJ<)- l:. ~ • 
-I 

121.) Other proof given by: 
Hermite. C. - Extrait d'une lettre addressee a F. Gomes 'l'eixeirat Jour. de 

cienciae Math. e Astron. 6(1885)61•4, Oeuvres 4(191~)169-l~l. 
Catalan apparently believed no proof had ever been given. Most authors 

considered it obvious from the work of Gause. Catalan gives a formal 

proof (see P• !:JS '.) • 



122 
!he proof is simple. Since Z is a rational integral function of degree r, 

set 
Jl. 

Z -= ];o AnPn• The condition 

f I [ Cf (t< ) - t: J p" h =- o 

for minimum is ;ft::.a ("=- o, 1
12., · -~ rt.), 

I rL 

or J [Cffx.)- ~ A._ P"] P~ ~ =-o. 
_, "= 0 

-I 

In view of the orthogonality property of Legendre Polynomials, this bScomes 

)' f('f-)P~h-=- ~A ... or .fL .. = ~f'r"l:xJef(x)tf-1.. Hence the z 
-1 2_11..+1 ~ _, 

pertaining to the minimum is of the form t:. ~ f ['~1 P.,t~<J{ rf}[tJ'P ... L-tJ&]=5/t.(x). 
. ~~ I 

The orthogonality property upon which the proof depends could be obtained, 

it may be remarked, :f'rora the limiting case of (8.17} for fli =- l/m and 

. 2. 
-'X;.-== -l+..t~ L.A"-v,,,•r--,~)as m---7'e<>, if we make use of the relations which 

Returning now to the earlier discussion of Gauss quadrature (Section III), 

we can extend the results there obtained so that the role of the continued 
I 

')(+J 
fraction development 0 r log 'X-/ 

when f(x) was known for ot,, a~._, 
I "-

( 3. 6) t +- I'!-) h ==- ~' A.< f l o( -') 

is more obvious. We evaluated J f(x}dx, 
-t 

all in (-1.1), by writing 

where 

(3.5) 
A A ;. -}-----:- f I 'P" (J<) h 
. f., ( o(A-) _, ')(.- "'-..: 

and the error function is 

f ( ~--) -=)I ,... ..... H - i A,< 
-1 ).""-/ (a. a) 

'l\.. /};._ 

l f log ~ +_ 1
1 

- -1: f;-, r."-- d._. .... 

"Ule coefficient of t - 2
k-l will be 

-J' P,..IIIJ-P,...(-t.J~ 
(s.28) \f'L-t)- _, -x--t ' 

Then A·=~ • 

is expanded in descending powers of t, 

precisely E(x2k). Let 
t/J ( • - J I I'., (1<} tHt r .<A) - . _, '1<- o<;.. 

Now 'II {-f) is a rational integral function 
" P:("'..:) 

degree n .. l; and oft of therefore, by the method of Lagrange, 

122.) One is given by Plarr, G. • Note sur une propriete commune aux 
s&ries dont le terme g~n~ral depend des fonetions Xn de Legendre, ou des eo sinus et sinus des multiples de la variable, Comptes Rendus 44( 185'7) 984-6. 
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By virtue of the symmetry of the rX. 'sand A's (see P• 1. 'i'), An-m+l =Am and 
..... A. 

• Thus 'fl L-1:: J = P.. (-t:J?. +:+:. also. Adding this to . ,....,, .. ~ A. 

for 1/J(+::) , ~ have 1/.1(-t.) = -t P,.. l.CJ f., -L"--~:-
tbe preceding expression 

Tb E( 
2k -2k-l 

• us x ) is the coefficient of t 

j:__0l_ 
P..,.L-t) 

and '_}Jj±l_ -:=. t [ ~; .._ 
. P ... £-1::) i~r t-o<;. 

in descending powers of t. -t +I 
in the expansion of log ~ 

Before we rewrite this result, we introduce another function, Qn(x), 

~icb is the solution of the Legendre differential equation in descending 

powers of x. It has the representation 

(8.29) 

If the equation for Qn is rwltiplied by Pn and subtracted from the product 

of Qn and the equation for Pn, we obtain 

(I- 'X z.) ~ { P 
11 

Q ~ - Q ~ P.,'} -= ~ ?t: { 1" Q .,
1

- Q .. P; } 
2 

rl I ;1 p I ....!:S_ 
and there fore, P., ~ .... - ~... .. -=- x--- 1 

• Divide this last result by Pn 1 

_L Q'- !b-v·- J- J ~1. =o _}:___ .. P,,'- "'- rf'l. 1 1'.._ J (7<'--I}P.,"" • Hence 
P.... h J[ c, c I B.: \ ~~ l 

Q 
- kv f = /<.'P. --+ ..__2:..-+= .._+L-" - r.._ (x'--t) P,..,_ " 'K-f X.+t '- (x-a<;) .< 'X.-o(.; 

and B! = o. Thus 
1 

Comparison with (8.29) will 

justify taking k =- -1 and k' = 0, and writing 

I
oo 4 { -'~- "X+-J 

(
e.30) Q = r .... ,_ =- .L P ..... '1\) ___ cr--- R ... (x). 

"' .... " (X. -t) P.. 2. "- I 

This Qn is the Legendre function of the second kind. 

Heine123 already knew that if -- is developed in increasing powers 
')(--/::-

~S#Y Heine, E. - Theorie der Anziehung eines Ellip:s.9i:ds:, Jour r. 
Math. 42(1851)?0-62. 



of t/x, the po"'\6rs of t replaced by their expressions in Legendre Series 

(2.12)
1 

and the whole series collected according to the indices of the Legendre 

Polynomials, then 
..a 

(8.31} _]_ = L {-;._v,+l) P ... Lt) Q., (;x) /-1::- Vt2.__r /> /{{- Jx.,__r j. 
:x-t: Vl-"-0 J 

MUltiply both sides of (8.31) by Pn(t) and integrate ~~th respect to t, 

) 
- I ('I P .... ( t) J+ 

(e. 32 Q"' r)C.) _ 2:.. ~' x _ t. 

by virtue of the orthogonality property of Pn.
124 

Now 
Q ('1- J-=- J_ J ' ~ J;f" - ..L f f P ... lx). - p" {-f.) J:;f 

., 2.. -I X --1::: 2. -r -x - t-

(8. 33) Q () """ J._ ,p (~)iMl ~+I _ _1_ 5' p..._(~)-f"'(-tJ J.;t 
,., )< 2 .. ·-a -x-1 2. ..L -1 ')(.- A;: 

by comparison with (8.30) 

( r ( p ~ ( X) - 'f' ..._ ( .t-) ,_/ 

R (;1') --=-- - p. 
"' :z_... _, ')(--/:;-

and thus, 

(8. 34) 

Finally v~ write ']I J;f 
L("f:)-=-:L_, x-t 

(8. 35) Q h ( )() = 'P "- ()C. ) L (r- ) - R v- ( X) ) 

We showed that E(x2k) is the coefficient of t- 2
k-l in the expansion of 

f: +-I ..f-'l-1::) log 7=1 - P,. (t) in descending powers of t. From (8.28), we see 

that 'fLi)=2..f?.-....Li:) • Thus, E(x2k) isthe coefficient of t .. zk-l 

in 2Qn (t)/Pn (t). In Gauss quadrature all the preceding coefficients must 

vanish, and the leading term in Qn(t) is therefore that in t-n-l. We may 

also remark that the denomir1ators of the convergents cf the continued 

fraction development of L(x) are the polynomials whose zeros we use in 

Gaussian quadrature. 

Let us return to (8.30) and use the fact that P and Q satisfy (2.7) 1 , n n 

then En satisfies ~ { (xL-t)R: 1-== "'- t"'+')t' ..... -2.. 'P~ 
Note also that Rn like '-1-tl'-) is a polynomial of degree n-1, and (8.34) wows 

124.) J. Neumann• Entwickelung der in elliptiechen Coordinate~ 
ausgedrUckten reciproken Entfernung zweier Puncte in Reihen, welche nach den 
Laplaceschen Y tortschreiten; und lnwendung dieser Reihen zur Bestimmung 
dee magnetisch~n Suztandes eine s Rotations--Ellipsoids, welcher durch 
vertheilende Kr!tte erregt ist, Jour. f. Math. 37(1846)21-50. 
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that ~ (x):::. (-l)n-ll\t (-x). The Legendre Series for -Rn is thus 

If this is put in the differential equation for Rn and (5.9) used to elimin-

and 

(8.36) 
<;_2.11-1 p :l..11-S"p + .2_1-\-'f P. + . . ·] R" (X)-= 2L~ .,._, + 3(n-1) "-> S{tJ.-~ ... -s 

125 126 
Tbie is the result given by Christoffel and Bauer • Bauer also gives 

n-1 r p , { 0 ( .....__ ~ 
C 3'7) } " .,_~ _, j R P ~ == r.~-s. R.,t)C;-= i"io )\-,;. ) _, "'' ..__,__c -1.-,..---,X-.. -..,.+1) <;:"'-"'}- ~) 
and this can be used to evaluate I, PnfnPqdx and to obtain P.n in a Legendre 

Series.-

In his paper on Gauss quadrature, Christoffel gives a startling ~ation 

formula, of fundamental importance in the theory of Legendre Series. 

and 

sum this and the series on the right will telescope, 

(a. 38) l._ (;_"-,) P,. lx) fJU= (::~> [r ... ~, l)I.J 'P.,_ l-t)- 'P "'+' (-t) P ... b<)] . 
,i=a 

This is the famous C}'l.risto ffel Summation Formulae 

It would be well to consider some steps which •re taken to generalize 

Gaussian quadrature. In this respect, Mehle~27considers an analytic 

function f'(x) -= 6o +"-,'X +-A-.,_ 'X""+-. · · and seeks to evaluate a de finite 

.. 
125.) .E. B. Christo !felt Uber die Gaussische Quadratur und eine 

Verallgemeinerung dereelben, Jour. f. Math. 55(1858)61-82. 

126.) G. Bauer, Bemerkungen llber Reihen nach Kugelfunktionen und ins­
besondere auch uber Reihen, ~lche nach Produkten oder Quadraten von Kugel­
funktionen, Sitzber. k. bay. Ak. Wies. Nunchen (math. - phys.) 5(1875)247-272. 

· 127.) Mehler, F.8., Bemerkungen zur Theorie der meehanischen Quadratur, 
Jour. fUr Math. 63(1864)152-7. 



integral by a mechanical quadrature 
I <a. 39 > l, f 1 x ) ( , - x r" ( , + -r- /.... H- "' A , +- t .,.(, J + A')_ f.£ o( ,._ ) + - -- + t1 ... + c"" ... ) . 

( ~ andr > -1), where w(x) =(1-)()>- (J.+'X)r v.~e will call the weight 

function and the A's and ot... 's are to be detennined in such a \"iay as to 

obtain absolute precision if f(x) is a polynomial of degree ~ 2n-l, 

the error in general being E(f)-=- o.~._H'X'""')-i-4...,_.._+, £(ox.._,...._,)+·-·. The procedure 

in the solution is identical with that used in Section III. We take a 

and write the Lagrange 

Interpolation Polynomial for f(x), 
J "'- ()<) f' (.,.(..:) 
(x:- o<;) J' (o<;.) 

" 

Then the A's in (8.39) have the form J' j"'f-,.J(r-xl(r+x),v.~ 
-1 'X- o( A~ == .r"' (ot,) 

If we specify absolute precision in the case of f(x) of degree 2n-l 1 we may 

write :f'(x) = Jn(x)Q(x) +-R(x), Q and R of degree n•l and R( o(_.:_ ) = :f'( ot,.._:), 

Jn( el~ )-:.Oe 

S
' )o. )'-'- tJ If (!-'X) (t+-x.} Jl'l(x)"l<..'"~,.o (1<=--o,r.-<../--·~.,__,) ~ 

-I 

f I k >'\ 

5 v (y_) + (')() ~ """ 5' {( (:X) ..,.. (y;) 4-=- "?= A;. R ( o(,.: ) "'" L A i. f (at;) 
-1 _, AO.f A""l ) 

•• desired result. But this condition will be met only i:f' the 1• 11 are 

Jacobi Polynomials and the o<' s are .zeros of these polynomials (see t· Y-7 ) 

In the case or Mehler, J r~>-=- ,· ot"'[(,--x)"'+.>o (t+')()"+r] 
k. (t-x/'(l+x),... h"" 

to within a constant factor. We can obtain results analogous to (a. 33), 

· r' J.,{i)w-(l:J J~ lt)-T"('lC) J' vlt> .1.+ R b.,r wri tingK (l<>-=-; Jt, ~ ... (>J:J... " w-ltJll.tand 1< .. ()() ~ 'J,JlC) t- - ,Jt). 
J " _, 'X.-t _, .f: - ")1.. -1 "')C-. ' 

Of course, Jacobi had already considered the case where w{x)= (r-')("f ~ 
lj 1 128 

in which event the o{.' s should be zeros o£ cos L(n+l) are cos x_.~ • 

Remarkably enough, it turns out that the A•s are all equal in this case, 

128.) See P• f~ ff and F. Tisserand - Sur l'interpolation, Comptes 
Rendus 68(1869)1101-4. Other special w(x) leading to Hermite and Laguerre 
Polynomials appear in the works of Hermite, Tchebycheff, Stieltjes, 
laurent and others. We shall treat the t•~qes~ion more abstractly in the 
manner of Stieltjese 
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simplifying computation considerably and making the quadrature 

s ( .J.._bl th = lT ;- ..P{ ~ J.ATT n)' 
_, ~ "'-+' f;-0 2.[11-tf} 

The notions developed here are perfectly general. we can consider a 
A-

weight function w(x)?.. 0 and integrable in [a, bJ and such that [ w(x)dx 
"-

has a meaning. Fur·t.her, we require that w(x) > 0 in some finite subinterval 
+-

of ~,bl , so that ~w(x)dx> o. Here, VJe deal with (a,b] finite. 

First 11\6 seek a polynomial o! degree n, Xn(x):::. x"'+c..,A"-'+-- .. +-"--" , 

such that 

(8.40a) 

If we let , we get n linear equations to 

determine the a's, 

We can solve for the a's and there will consequently exist a ~ satisfy• 

ing the orthogonality property (8.40a) 1 if the determi11ant of the ~' s, i.e. 

of the coefficients of the a's in the linear system, does not vanish. 

129 
Stieltjes actually proves that this determinant is positive. We can 

restate (8.40a), writing 

S..t-
(8.40b) ,_ vr !J<) X ..... G-., -• l")( J k = O 

(8.40e) J: w- 1-r-J K.-- 2,__ h-== o 

'ftle.ae conditions determine Xn (x) 

(Gn-l an arbitrary polynomial of) 
degree n-l 

uniquely.to within a constant factor. 

The .zeros of Xn are all real, distinct and in ( a,b), the proof 

following the pattern of the Legendre ease ( p. ~o ). .Also, there exists 

a recurrence relation analogous to (3.9). For • let X - ("x- c ) K =- I( (v} ~ &-'\ -t M -I "\ 

being constants. Thus, 

1~.4tJ T.J. Stieltjes - Quelques recherches sur la th&orie des quadratures 
dites mecaniques, Ann. Sc. l'Ec. Norm. Sup. (3)1(1884)409-426. 
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(8.4le.) 
KY1-= (x-c..._,)X .. _,- ,\._,_,X .. _,_, X,= 'X-c.,.)X:z==(x-c,y"Z.,->., 

Multiplying (8. 41) 

(e. 4lb) 

by w(x)X , integrating 
n-l 

and applying (8.40), ., obtain 

f-t- -r:. x.:-_, v--(x) rH 
1).. 

J £...X. "2.. I.JT (y..) h 
,.. k -I 

Similarly~ multiplying by w(x)Xn-Z' sillce xX =X +G n-1 n n-1' 

J :- X .. ->·r (><.) ~ 
_A.,_,==- r· >o 

J .... ..,. X.,~-.. v- (,c;J ~ 

(8e41C) 

The conditions (8.41) completely determine the sequence of the X's. Fra.m 

(8.41) it is also clear that we have a set of Sturm functions, and the 

zeros of Xn-l separate those of Xn and are in term separated by those of 

As for the application to mechanical quadrature, let f(x) be a polynomial 

0 r degree 2n-l t and 
iJ_:L_ lJ + ~ r ... - ,_, x: .... where U and V 

are of degree n-1. 

because of (8. 40b). 

Let x, > -x .... > · · · "> -x~ be the zeros of X • then 
~ v.,_,(?C;) -X ( L ..fC"1...:J n 

v. ('x) = K" (")() '-- (x- ')< ·) v' {')(.) - .... 'X) ._ uc.-'X·)Y' b··) 
\'\-1 .A=f ,.. A~ I' A-t 1'1. -~ A 

k ~ [ f -{,. X .. (X) v-l-,:) h J ;: 
Consequently, I._ f(:)() vrh.) k = ~ flx;) .... ("X- "X;.) X~():,:.) ::: ~ A-; f f~ .. :) 
N~ that the A's are completely independent of f(x). Thus, we can 

evaluate the A's i'or f(x)'"'-[;:~~r by writingJ;tJ!:~]~=I~~~~~tA{l~'t~J~ >o 
1 . ... 1 , '"' L~ , 

As a result, Ai "> 0
9 

By taking f{x) -=-l, it is clear that fA; =J..Ir.._,-(.,.J k . ..... , 

And in general, 

(8.42) 

~ ... 

+ 11 1~ > ~. ~,.r(X) Mt 
A,+A'l..+-··· N, J(.. 

')(,..,.., 
A,+ A 1. +- . . . -1- A/<. < t w-('1-) h. 

In the case of Gauss quadrature • where -- 1 "'-'X,~ 'lC :z. < · · · < X~ <. I 

are the zeros of the Legendre Polynomial, these become 

-1+A 1 +A2..+··· +A,..:."' ~1<. 
-r +A 1 -1-A~ +- ···+At<.<- '?Ct<+l 



as. 

Again in the case of Gauss quadrature, the zeros of P0 are in 

• 

Then applying quadrature to an arbitrary integrable function f(x), we have 

J 1

ft)(.Jt.4,.... ft, +rx,J +A'-1. +w .. ) + ... +A ... .ff-x ... J 
-I 

where ~ represents also the length of the kth subinterval of f.l,iJ and 

'1t is a point in this interval. Thus, the quadrature formula bee ome s in 

S
, ~ 

this sense a Riemann sum, and f(x)dx = lim L Aj_f(x.), A.---7 0 as 
-1 -.-70<> _..,, J. -,. 

n.->'oa • 
J. 

that if 

In order to substantiate that Ai-7 0 as n-;.oo1 Stiel tje s proves 
t3 

(oo<,~) is any subinterval or {a,b) ror which fw<x)dx > o, 
.c 

then ..3 n > N 3 a zero of X lies in (-< ~~> ; and hence, llti-x .. _,1.-,o 
n ' ~ -

"~<k.+l 

Ak < f w(x)dx. Since Ak is a continuous 
)( I<• '· 

asn~oo. From(8.42), 

function of the limits of integration and \x. -x.. \-? 0, then A.,~ 0 k+l k-1 K 

as n __., 00 • This result holds for general mechanical quadrature. 

We might ask .mather the error in the quadrature formula is de­

eraased with increasing n. The answer is definitely in the affirmative. 

Let f(x) be a function satisfying conditions so that it can be represented 
'-tt-l 00 

by a Legendre series, fCx).,.. ~8.: P..:Cx)+I: 13..:P txJ:) +Ru, . 
... ~., ,_.,. A ~"' I 

where G > 0 3 ii > N e 3 \ R2ri \ < €: • Apply quadrature to f( x) , 
f "- I " I ...._ s fl')(>h-[A~+r,;~)=S si._h-~ A~s::>. ... {~<;_) +£ ~'J. .... H. -L. A;. f'J. ... (xJ. 

-1 A.""'l -1 .o.-r I "''' 

But s
2

n is a polynomial of degree 2n-1, and its quadrature is exact; thus, 

the first two terms on the right vanish. Now for a preassigned, 

arbitrarily snall C>O 3 n>N~; :~IR2~<€ 1 i.e. lJ,~Zndxl<lf:and 
.... >\. J' , " I ~I ~R2n(xi))<cf;;~ -::::€ _,dx== 2E. Thus I !,t< x)dx- r. ~ r<~>l £. .(: I 

and the error approaches zero as n -Y oo ~ 30 

, 130.) This result of' Stieltjes (§u.r l',valuation approchee dee 
integrales, Comptas Rendus 97(1883)740-2) is readily extensible to the 
general case where w(x) is not .necessarily 1 and (a,b) not necessarily 
(-l,l). 



We have already seen how Gauss quadrature was related to the con-

tinued fraction development of L{x) of {8.35). We might ask Whether there 
' 

are not similar relations of general mechanical quadrature. At any rate, 

one might suspect that in the work of Stieltjes and Tchebycheff some 

such relations would invariablf' appear. In a more general ease~ 31 let 
~ k k ' f v.r(i)J;I- _ ~ ;-, 1!:_.:_ , •. 'J_ f~•,J o..,Cr-)-X .. (i),.J.lLLU .. W (~J=-f X".,(-t.}w-ifJ..M" 

)_ ()1.) ~ - +---;:. -t- _, + J[_,.. IN . -t -HJ~ J ., ---- . 
i'- X- t ?< "X 'X. "' ?c- .._ x _-( 

Then, a."s in (8.35), Wn(x); =X
11
(x)L(x)-Zn(x). Again, as before, zn is a 

polynomial of degree n-1. If L(x) is expanded in descending powers of 

x, the integral part of LX is evidently Z and the terms in the n n 

negative powers of x form Wn• In the Legendre case Qn begins not with 

1/x but with x-n-1. The same condition imposed here leads to the 
)r-

orthogonality property fA. XnGn ... 1w(x) dx = 0 and the fact that all the 

roots of X are real, distinct and in (a,b), separate those of X 
1 n ~ 

are are separated by those of X • Finally, the quadrature formula 
n-1 

an exact formula if f(x) is a polynomial of' degree ~ 2n-1. Christoffel 
....... 

[
x" Cx) X" .. ' l -t:J-X"' WY,.._, (l(j B \ X.,· (,:J"!~ (LJ 

shows that X I -XijZ 1= a B 1 and =a. ... ,._, L --
n-1 n n- n n- ')( -t- i.::.o "-; 8..: 

n 
Where a is the coefficient of x in X and B 

1 
is the coefficient of ·-n n n-

x-n in Wn-1• These can be compared with the earlier Christoffel Swm-

mation Formula. But even more to the poi11t is the continued fraction 

development wri·tten by Stieltjes, J_ {~)..,. 1-~ - ~,j - I~ - ~ - ... 
Jr-Co VX:r, x.-r:... l x-<~ 

13J..) Christoffel, E. B. - Sur une clasae particuliere de fonotions 
entieres et de fractions continues, Annali di Mat. (2)8(1877)1-lOt 
T.J. Stieltjes - Sur 1 1 evaluation approchae des integrales, Comptee 
Rendus 97(1883)798-9. 



with eonvergents Nk/Dk given by 

l-lo =o 

N 1 ""' }. o 
N'.L:::. (91.- c.,)N,- ), flo 

N ~ Cx- r, ) tv., - ~... N., - 1 
>1+1 

Do -::I 
D,:: 'lC 

.P~:o l?f- c,) 1>,- ). 1 P0 

Thus, the D's form really the sequence of the X's ~~d theN's are 

actually the Z' s. 

n. 

These results V~Sre in a measure known earlier and may be obtained 
132 

much differently. For example, Humbert showed that the equation of 

Liouville 

( 4. 1) ( d '): 2- + b }C. + () 'j 
11 + ( d 'X + ft ) ~ I + f :J = 0 

has polynomial 
SJ vH:.)dJ 

solutions which are denominators of the convergents of 

where and are the zeros or ax2
-t bx-H: and 

.. ')(- t 

sdx+rt. J.,t 
...,..(?C) ::::; I e ax~+bx-t-c. ~~>~b~+c • Orthogonality of the denominators of 

the convergents and their applicability to quadrature ir1 (o/.1 (3) would 

follow immediately. b 
. 133 

Some notable examples may e gJ.ven: 
I 

I 
l.. ( 13)- (-1 1) ..,-l~J:::: ( r--x._)- -,_ 

(2.) 

t J- 'X 2-) '1 •r - 'f. d + 1'1 d '= 0 ) .{,I( - I ' • 

0 'J.-'-' 'TT • 

Y -::::: ·, _., ("' (V'.t.. t..c<> ?() ry.. ,;. -:. ~ =r,::- ) 
"' ......,_ J I 

) 

,

1 

1 ( o( ~) :;:. (- I, I) V ( Y ) ::.. ( 1- ')( ,_ ) -... 

(t-'X.,_ ';:}- 31C'J -~-~(1'\'f-2-)J-= 0 ) w ) 

(1) 

~[l"'-+r) fYV. t:10'!C] "Tf' 
X =. ) I)( A -= U<l. 11+1 

"' J 1- X'-

A peculiar generalization of mechanical quadrature to evaluating 

definite double integrals has also been made. 

-~!' ('X.,_h,.-•) 
due to Hermite obtained from _ rz and 

cH.P 

J.,3;2. )) G. Humbert, Sur 1' 'quation di t' f~rentielle lineaire du second 
ordre

1 
Jour. de l'Ec. Polytech. (1)48(1880)207-228. 

133.) See A. Berger- Sur l'~valuation a-oproch'e des int,grales definies 
simples, Nova Acta reg. Soc. se. Upsaliensis ( 3)16(1893}#4, pp. 52. 

134.) H. Bourget, Sur une extension de la methode de quadrature de 
Gauss, Comptes Rendus 126(1898)634-6t P. Appell, Sur una elasse de polynomes 
Ann. Fae. sc. Toulouse (1)4(1890)Hl-20. • 



SECTION tX 

LEGENDRE SERIES 

In Section V we discussed Legendre series to some extent, ebieny 

in the course of reviewing the work of Dirichlet. we proved then that 

if f(x) has at most finite many points of finite discontinuity and finite 

many maxima and minima in tl,ll , it could be represented by a Legendre 

series Which would converge and represent the function. Dirichlet had 

established this result in the case of Fourier Series, but his work 

on I.egendre serie a was not quite so sati sf act ory; and the proof' we 

gave was an extension of Darboux' s interpretation of Dirichlet's 

results. 

Here, •'liS are going to consider some minor considerations first. 

Legendre already knew that any integral power of x can be expanded in a 

Legendre Series. Consequently, any rational integral function can be 

expanded in a Legendre Series. Even more than that, if f(x) has a 

power series representation, it can be expanded in a Legendre Series. 

Cayley considered the expansion in this case and gave relations between 

the coe ffi eient s in the power series and the coefficients in the 

Legendre Series by means of a symbolic operator.
135 

Echols put the 

relations in determinant form. 136 Echols even writes the coefficients 

of the Legendre Series and the remainder after n tenns in determinant 

form:Jl Curiously enough, if f(x) is a hypergeometric function, its 

135.} A. Cayley, On the expansion of Integral Functions in a 
Series of Laplace's Coefficients, Carob. and Dublin Math. Jour. 
3(1848)120-1. 

136.) W.H. Echols, On certain determinant forms and their applica­
tions, Annals of Math. 7(1892)11-59. 

la'Te) w. H. Echols, On the expansion or an arbitrary function in 
terms of Laplace's Functions, Annals of Math. 12(1898-9)164-9. 



expansion in Legendre Series has coefficients which are hypergeometrie 

functions also. But such considerations are not those Which will occupy us. 

Our chief concern will be in examining attempts to minimize the re stric-

tiona on f(x) and to set up necessary and sufficient conditions for the 

existence and convergence of a Legendre Series. 

we have already pointed out (see P•· · 4g ) that if f'(x) does permit 

of representation by a Legendre series in f:l, 1] , and if' the series 

converges uniformly and represents the function 1 then the eoe f'f'icients 

can be obtained from , 
(
9.1) A :::. 2.~+1 J fCx) r ... (X) )...y. 

11 ;I._ _, 

Also, we have shown (p.·n,7i) that if the first r terms of the series are 

taken, Sr will approximate :f'(x) best in the sense of least squares if the 

A's are chosen as in (9.1) •. we are going to ~ow that as r increases, 

the A's will still be chosen in the same way and the approximation will 

and J will be clearly less i:f the negative terms are nun(,erically greater. 

Thus, if we take more tenns, J will not increase; and if the Legendre 

Series doe a not terminate, 
I . :;. ~ ;_ /),;-.. f + r~) ~ ~ t D ---v:;; 

-I 

J will decrease. Note also that, since 
(>o :l Fl;,'l-

holds regardless of the value of r 1 2: ~ 
)."0 

converges. 

Another question which ~.can settle quickly enough is that of the 
Oo 

uniquene as or the expansion :f( x) ::::. J;D A1P i • The expansion of !( x) in a 



<>"" 

Legendre Series is possible in only one way. For, if f(x) = L B P 
i i ,r.~o 

also~ then the coefficients in the expansion of zero would be ~-Bi • 

and A.= B.. Further, if F(x)=f [~ P" lxJ L' P,.,t-Of (iJM] 
~ ~ b 

- 1...,~..+-, 0 -= 0 - ~· 

and the Legendre Series is uniformly convergent in fl,ll, then F(x)==-f(x). 

The first to attempt to improve Dirichlet's results was Bonnet.138 

His work is based on an asymptotic expression (p. t.s) first given by 

• The latter is 

used in deriying the asymptotic expansion. Although f(x) is permitted to 

have at most finite many discontinuities in [:-1,1] , it may not be dis­

continuous nor have more than finite many extrema in [:-1, -1-+ el or 

~- E, ij • Since Bonnet's result is no real improvement of the work of 

Section V, we will enter into no detail concerning his methods. 

Dini was another who failed to do as well with Legendre 5eries as 

with Fourier Serias.139 In fact, his work was completed and modified by 

Heine.l40 However, Dini does give, for perhaps thefirst time, a rigorous 

treatment of the q..._,uestion of differentiation and integration of Legendre 

lQ 1~ 
Series. Darboux adopts essentially the same point of view as Dini. 

138.) see P• f.S' ff. 

139.) Dini, u., Sopra le aerie di funzioni sferiche, Ann. di Mat. 
(2)6{1874)112-140, 208-225. 

140.) E. Heine, Handbueh der Kugelfunktionen, 2nd ed., vol. 1(1818)43~ 
vol. 2{1881) 361. 

141.) u. Dini, Serie di Fourier e a1tre rappresentazioni anali tiche 
delle funzioni di una variabile rea1e, Pisa, 1880. 

142.) G. Darboux, Sur les s'ries dont le terme g6ri'eral depend de 
deux a.rf1'gles et qui servant ~ exprimer des f'onctions arbitraires entre 
des limi'tes donn6es, Jour. de Math. (2)19{1874)1-19. 

71872 



9/. 

In the case of Darboux, (5.12), we have already shown that if f(x) 

is bounded, continuous except for finite many points, and has a bounded 

derivative except for finite many points, then lim S = !(1). If f(x) 
\'1.~= n 

is unbounded within the limits of integration, we have a new difficulty. 

Darboux' s contribution consists of relaxing the conditions on f( x) so 

that it may have at most finite many points of infinite discontinuity. 

It will be no less general to consider a single point ~ in {-1,1). 

In this case, Darboux writes (5.12) as 

S -== J. Jn-F(I1).i..[f .. ( c.c-oeJ +- r.._+, (~ e~ d.B 
"' 2. {) dll 

where F(e) = f(cos 9), and uses his approximation formulas (p. los- ). 

Let e
0 

be the value of Q for Which F(Q) becomes infinite. Darboux writes 

F(Q)~r1(9)-t-F2(e), where r 1 is 70ero outside of (fJ,-"'/,J o,-~--~1.. ) (';1)"1,_ 

two positive numbers) and F2 is finite for Q =90 • Then 
.jB.+h J. \"It' J. ) s = J_ F {8) T ( P ... ;-P .. +,)de. +l.. J F. (6)-r;;-(P ... +P ...... , JA; 

11 2.. e • -l] , , ""e :z. o .._ -

For n ~eo , the second integral approaches r 2(o) or F(O). The 

approximation formulas transform the first integral into 

.fH f 6o+1'!._ ,-:-;;-Vrr F, (e) ,.:--[u, +-k.J e- ':;] vc..vt- 1 J.ff 
6b- ?, 

If r
1 

(Q) is of the order ~ !}'; , this last integral will approach zero 
143 

as n increases. Later the resuUs are extended. Then f(x) will be 

developable in a Legendre Series if the integrals have a meaning; if f(x) 

is unbounded at x
0

, it remains less than O(n 31t,t) ; this condition must 

also be met at ± 1. It is interesting that Darboux hlieved his con-

ditions to be necessary as well as sufficient, for satisfactory necessary 

conditions for neither Fourier nor Legendre Series have ever been given. 

143.} G. Darboux, Memoire sur l'approximation des fonctions, Jour. 
de Math. ( 3) 4(1878) 5-56, 377-416; Compte s Rendus 82(18'16) 365-S, 404-6. 



Integration by parts of (5.12) is not essential to the attainment of 

the results. If (-l,i) can be broken up into subintervals in each of which 

f(x) is continuous and monotone, we can separate the integral of {5.12) 

into a sum of integrals over these subintervals and make use of the second 

mean value theorem of Integral Calculus. The proof will go through as be fore, 

and this is the method usually used today in treating Dirichlet's conditions. 

Dirichlet limited himself to functions with finite many extrema. 

Lipschitz showed, in the ease of Fourier Series, that f(x) may have infinitly 

many extrema. Concerning the latter problem. du Bois Raymond gave examples 

of functions with infinitely many extrema not having Fourier expansions. 

The theory of Legendre Series in these respects lagged behind the theory of 

Fourier Series. Dirichlet requires at most finite many points of finite 

discontinuity. Darboux 

remain finite in number 

permits infinite discontinuities as long as they 

and provided that S'r(x)dx is bounded. Today we _, 

usually say -F(x) satisfies "Dirichlet's Conditions" if f(x) has a finite 

number of infinite discontinuities in tl, 1] ; if, when arbitrarily small 

neighborhoods of the points of discontinuity are excluded, f(x) is bounded 

in the remainder of the interval; if the remainder can be broken up into 

a finite number of open subintel"Y'als in each of U'lieh f(x) is monotone; 

' and finally, if the integral r f(x)dx is absolutely convergent. 
-· 

In Jordan's "Cours d' Analyse" is a statement that f{x) vd.ll have a 

Legendre Series for x::. x
0 

in (-1 .1) if it i:s continuous at and in the 

neighborhood of x
0 

and if it is of bounded variation.
144 

Jordan's 

conditions for Fourier Series applied to Legendre Series would require the 

I 

144.) c. Jordan, Cours d'Analyse de l'Ecole Polyteehnique, Gauthier-
Villars, Pans, (1894) vol. 2, PP• 245-260. 



existence and absolute convergence of 
I 

S f( ~:t)dx as well as bounded 
-r 

variation in the neighborhood of an interior point. Continuity is 

non-~ssential .. Such an extension to Legendre Series by Jordan has 

not, to the best of our knowledge • been made during the period with 

1ili,cl:lll. \'16 are dealing .. 

It may seem rather arbitrary to stop our investigations suddenly 

with the end of the nineteenth century. And it is no doubt true 

that, particularly in the theory of Legendre Series, major develop­

ments have appeared during the last thirty-five years. (One might 

place in the forefront· the work of Fe jer. )· At the same time, it is 

exceedingly doubtful ~ether a study of the properties of the 

Legendre Polynomials should be so much dissociated from a study of 

the properties of Orthogonal Polynomials in general, as we have done. 

Such an approach to the literature of the last thirty-five years 

would involve considerable difficulty. Particularly in the theory 

of Legendre Series has it become of dubious value to dissociate 

the polynomials from orthogonal functions. And perhaps, we have 

already pressed the development of the theory of Legendre Polynomials 

beyond the point Where it ie justifiably separable from the theory 

of Orthogonal Polynomials. For these reasons, we do not take on 

further problems. 
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