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Chapter 1: Introduction

1.1 Background

Sustainable growth is grervasivetopic in the world of urban planning. Along
with the increasen population, economy, and technology, urban development may
also bring in problems such as pollution and traffic congestehrank et al(1)
found that the congestion in US urban area
hours more and to purchase an extra 2.9 ©b
claimed that congestion cost in 40% urban areas wagound $121 billion in 2011,
which isfive times aghatin 1982 (in 2011 dollars). Even though the congestion peak
has remaired relatively stable during recent economic recession years, the total
congestion cost is othe rise because of the increase of commuters and freight
shippers irthe system. Byredictng the nation wouldexperiencea congestion cost

growmh impactfrom $121 billion(2011)to $199 billion in 2020 (in 2011 dollars).

In order tomake full use othis doubleedged sword releasingp e opl ebs dr ean
for modern urbarife with the minimalsocial and individuatost,it is necessary for
decision makers to have perspective on upcoming developmemell as policies
Transportation, whichincludes accessibility and mobility, is aeferential vital

measurement torbandevelopmentsTraffic ImpactAnalyss (TIAs) is atool that ha
1



historically beenused to evaluate the interplay between existing transportation
infrastructure with proposed transportation related policies anglansportation
elements ofland developmentprojects. TIAs can provide a large amount of
information that can assist with planning activiteasl policy adjustmentas well as

make immediate adjustments duriogg termplaming.

Over decades there have been numerous approaches to evaluateattteoimp
urbandevelopment®r demand management polic@s transportation infrastructure
The ultimategoals of these analyseare to convert land developmesipoliciesto
transportation demand/suppthanges foiTlAs. That is,1) based on locélegional
economicsituation demographiconditionand policiesthe employment, population,
and households the future can be estimated) thesesociatldemographidataand
policy assumptionsare thenincorporated intotransportation demand modets
behavior model$o obtainnewtraffic demand pattes)and3) with traffic assignment
models, thechanges irdemandarefinally reflected in roadwaysdowever, there is
still a weakness within current TIA on laritvelopmentinalysesand transportation
related policiesCurrent methods folIA represert traffic in a static phenomenon.
The methods donot adequately account fotraffic dynamics such aghe
building/discharging of traffic janand time-dependent travel times alomgportant
corridors Even though, dynamic traffic evaluation is conducted by Dynamic Traffic

Assignment (DTA) model, theursuitof a user equilibriumsolution (UE)ignores



behavior changes that may lead to peak spreading. In addition, it is hard for these

models to zoom in fodetailedanalysisin small areas, corridors, or evirersectios.

Meanwhile, various planning policies have been implemented in terms of urban
sustainable development, which includes expanding roadway capacity; emogurag

public transit; and imposing restrictioa on auto ownershipsage. These

countermeasures neglectdealwi t h peopl edbs desire for trav

periodssuch as AM/PM peak period\s Anthony mentioned2), traffic congestion

will not ameliorate untitravelerschange their dailyravel behaviors. An alternative

way to gradually inspire distributetlaffic demand is to popularize flexible work
scheduls. Traditionally, employees shoulik present at working places during some
specific daily hours (usually:@0 a.m.to 500 p.m). Although traditional working
policy resultsfrom severapatterngi,e,humanés common habit of
it encourages commuters to centralize their trips during peak hours. Compared with
the traditional 9 a.m. to 5 p.m. wohours, a flexible work schedule allows employees

to choose their prefexd arrival/departure times. For example, one flextime
situation,employees can arrive at offices anytime betweandL0 a.m. and leave for
home anytime betweenahd6 p.m.; orthey canselectone day offwithin weekdays

andfinish anadditional twehour®work per day for the rest 4 days

It is desirable and important for decision makers to understand the impact of

urban developments or transportation policies, or ¢bmbination of the. For



example, howcumulative land developmestalong the same corridor influence
regional traffic flow, and how purposed transportation related policiestshtlets
behavior.In a previousMaryland State Highway Administratio(SHA) research
project, theUniversity of Maryland(UMD) research team successfully developed a
mesoscopic model that integrates microscopic dynamic traffic simulation models and
travel behavior models for the Int@ounty Connector (ICC) corridor and a large
region around the ICC corridor. The study area in that propeatedthe 270 and
MD-355 (Rockville Pike) corridor between thd95 beltway and the ICOn terms of
more comprehensive TIAs, further developments areinedjéor this mesoscopic tool
to be utilized for this purposédn the first place, the new tool is expected with the
ability to capturedemand patterchangs such as peak spreadirapdroute changes
under cumulative land developmentklere, the wordicumulativéd meansthat the
traffic impact ofthe combination ofwo sector developmentslergerthan the sum of
the individualtraffic impact underboth thetwo developmentsSecondly behavior
models are required to betegratedto enhance the sensitivigf developments and

policies.

1.2 Research objectives

In previous research, a mesoscopic TIA appragatideveloped bythis UMD
research teanBoth microscopic simulation and travel behavior models are integrated

for the analysis ofegional traffic level of service (LOgnd behavior changeThe

research team also integmteh e Envi r onment al(EP®endssienct i on

A



estimatorMotor Vehicle Emission Simulator (MOVES)s a posprocessing module
for environmental analysig.he details of this previoysrojectvill be described in the

next chapter.

To take a further stephé main purpose of this research isctntinuously
develop the ICC mesoscopmsodel to deliver a integrated toofor: 1) cumulative
land development impact studylomg the $270/MD-355 corridor, as well asthe
White Flint areaand 2) the potential impact o flexible work schedule policyn

traveler®departure timehoiceas well as the traffic congestion mitigation

A number ofcumulative land development plahave been proposeong the
[-270/MD-355 corridorfor next20 to30 yearsThus, it is necessary and interesting to
adopt a tool to reflect traffic conditionsider a series of purposed plgns. regional
traffic impact; dynamic queueinghpactfor specific roadwaysgestination change
route choice for main corridor userand turning movement changet important
diverting intersectionsIn addition travel behavior models will be integrated into this
tool to make it capabl® recognizdoehavior shifts undaghesedevelopments asome
further policies. As an integrated model, it is interesting to gain perspective on how
travelers change their travel behavior undeflextime policy, which is another
feasible solution ofraffic congestion.The thesisaims tocapturehow travelerswill
shift theirtraveltimes under different levels diExibilities in their workingschedule

and how the behavior change will influence the traffic.



During thedevelopment othis integrated model, a number of existing models
and methodswvere reviewed. This included land development forecasting models,
traditionaland more advanced traffic demand modélsen the thesiselected DTA
models and positive departure tiroleoicemocdel for the integrationAlthough there
used to be challenges building the linkage between different malisishesis has

developed a convenient way and feasible tool for the whole analysis process.

In order to emphasis the value of this purpo3®dl tool, it requires several
features: 1) welincorporaed =land developmentodels making it sensitive tothe
changs of land use variables; 2) quido conductthe TIA, as well asdetailed

analysis inrsubareg and3) good integration with behavior rdels.

1.3 Contribution

There are two major contributions towards this thdsistly, this is anattempt
to develop a traffic demand and behavior analysis tool. Tritegration of
macroscopic land development forecasts, mesoscopic traffic simulation models,
microscopic traffic simulation models and agbated travel behavior models makes
the tool capableof conducing analysisfor both urban development and polc
scenarios. Onenajor advantage over current TIA models isaitslity to capture both
regional traffic congestion anihdividual level travel behavior changeBased on

dynamic mesoscopi®ynamic Traffic Assignment{TA), microscopic DTA and



behavior choice models, & possible tmbtaina dynamicview of upcoming impacts.

Secondly, this thesis attempts gainperceptiorabout travelei@eaction towards
urban developmentand flex work schedule policy. Unlike previous studies, an
agentbased approach is applie capture individual level behavior change.
Moreover the individual knowledge learning and decision making process is
specified and empirically modelé¢d understand thpotentialinfluenceof different
scenarioson dayto-day traffic dynamis. The DTA modd (DTALite or DynusT)is
integrated with this ageftased positive departure time choice mod8he
remarkable advantage of this integrated model islifity to provide a feedback
betweenindividual choice demand sideand sipply side networlperformanceThe
analyss in this thesis demonstrates the value of developing a software package for the

integrated model.

The leading purposeof this thesisis to introduce andllustrate a theoretical
frameworkto understand traveldiseactiors towardsvarious management policies
urban developmentsand even road way incident&lthough departure time is the
only variable in traveler§ decision making process, thiesearchpresentsthe
feasiblity and necessityto include more behavior alternatives such as route choice,
mode choice, lane choice, etc. The combinatbueparture timevith other travel

behaviorscould be explored in future study.



1.4 Thesis outline

Theremaindetrof this thesis i®rganizedasfollows. Chapter 2mainly focuses on
the literature reviewing work of this thesis This will begin with regional land
development forecast modgels which boththe traditional four step modelsand
modern models will be introducelh this part, the auth@lso includes some previous
work to integrate DTA withbehavior models (2.1). In 2.2he review on behavior
foundation in DTA models will belescribed Then the author will talk about the
review of current transportation policies2.3 At lastin 2.4, the authowill review

the application of traffic simulation models on large scale networks

The Chapter 3 of this thesgocuments the model development, calibration, and
case study in the hope that this document can serve as a useful reference for
resarchers and practitionerfn 3.1, he largescale microscopic traffic simulation
model is described including a brief description of the methodologyOfgin
Destination QD) estimation and the calibration/validatiofhe emission estimation
model would also be introducedn 3.2 In 3.3 detailed calibration process is
introducedin a 24hour time framewhich includes basis data, methodology and
results.Thevalidation process and results are dsefly mentionedlIn 3.4, the case
study of the new tolfacility in Maryland is presented with various MOEs and
comparisons obtained from the calibrated simulation madded.experiences learnt
and challenges resolved when modeling and calibrating thisdaede 24hour traffic

simulation are discussedn the last sectionThe conclusions andiscussionsare
8



offeredin 3.5

The new approaches on cumulatieed developmenstudy will be shown in
Chapter 4.This chaptenincludes the major workand contribution irnthe thesis.4.1
will briefly talk about the regional planning mod@. more and moreprevalent
simulation based DTAodelerknown asDTAlite will be introduced4.2)and applied
for cumulative land development study addition, 4.2 will also include the
mesoscopic traffic simulatomodel in this thesisThe integrationprocessbetween
behavior model and DTA is describ&d 4.3 Thenin 4.4, an application of land
development impact analyss showed tademonstratéhe advanced features of this

proposed tool on capturing behavioctahnges and other traffic impacts.

The motivation and objective of Chapteis to explorethe potentialimpactof a
flexible work schedulepolicy on congestionmitigation The framework of this
approach will be introducedhich includesa positive depature time choicanodel
(5.1), theimprovemers (5.2),andits integration with mesoscopic simulatibased
DTA simulator (5.3). Thenin 5.4, a realworld applicationfor different levels of
flexible schedule scenariasgill be described. Both Chapter 4 and Chapter 5 are the
core of this thesisgConclusions and future work will be mentioned in the last chapter
on: 6.1, integrated tool for cumulative land develepinstudy; 6.2, flextime policy;

6.3, limitations and futurerorks.



Chapter 2Literature review

The literature review lapter consists of three part&rstly, | would love to
introduce the existing regional transportation modelBoth the capability and
limitation of theseregional planning and transportation forecasting models will be
discussedBased on the discussionwill claim the needs of an integrated model for
regional transportation modelin§econdly, since the goal of this thesis is to integrate
current simulabn based DTA models with agebased behavior models, the
difficulties and breakthroughs will be talked on the application of traffic simulation
models.Here,| only focused on the application on large scale networks betagise
purposed integrated modisl supposed to work in place of traditional transportation
forecasting models:inally, the behavior foundation of DTA models will be discussed
to explore the feasibility of this integrationwill talk about the basiassumptiorand
limitation of rational based traffic assignment theories, followed with some more

behaviomrealizzd models.

2.1 Reqional land usand transportatiormode$

It is unrealistic to model the change wban regionsn every relevant aspect
becausethey are highly complex entities. Despite thassociateddifficulties
researchers have produced a variety of mofigkscastinginterrelated processes of
urban change(3). Embodied in the concept of accessibility, it has been popular to

model urban chages with the interaction between transportatiofrastructure

10



improvement, land developments and the location of econautivities (3). The
interaction between spatial patterns of land use and transportation networks is referred

to transportatiofand useiinko (4).

It is usuallya double level problemvhen consideringand developmenpolicies
related TIAs. The upper level ighe urban planning and forecasting model, which
includes: 1) spatial interaction/gravibased model$4-9); 2) econometric models
(10-16); 3) microsimulation model$17-18), and agenbased model$19-21). The
lower level of urban development modeling is #s@ortation models, e.g. 1)
traditional fourstep models, also referred as 4b@sed model$22), 2) advanced
four-step models(23-25), and 3) tour/activity-based model426-28), 4) dynamic

traffic assignment mode(29-33).

Spatial interaction models and econometric models are usually linked with
four-step models for TIA$3). Thus, most only hee statictraffic equilibrium models
(34-36) which areincapable of capturinglynamictraffic performance. Iraddition
trip chainingand scheduling behavioboth of which are important fogstimating
demand responses to a variety of transportagtated policies are unableto be
modeled bythese models due tthe lack of a solid behavioral foundatio(87).
Microsimulation modelsand agenbased simulation models, on the other hand,
usually contain the concept ééctivity-based for traffic activities modelingWith
the emphasis on scheduling behavior, acthbgsed models theoreticalpromisea

11



stronger behavioral foundatidor demandmodeling They are expected tprovide
more accurate timdependent estimates of origiestination(O-D) demand than the
four-step modelThe integration between activitbased models andiynamic traffic
assignmentechniquesenforces this timelependnt advantage on both demand side

and supply sidé38-40).

However, two major reasons make behavior realisravailablefor most U.S.
urban ouncils of governmentgCOGSs): 1) there are only 11 activibased models in
practice, while most COGs awsing traditional or advanced featep nodels(37); 2)
even though DTA enhances the capabilityat@lysetraffic dynamics(41,46), it can
hardly capture behavior respses such as peak spread{dg). Following rational
behavioral rules most dynamictraffic assignment models assume travelers have
perfect network knowledg& hus, they are able to identify the alternative rowtgl
best payoff, and reach a Dynamic User Equilibrium (DUE) in the drgk
considerations of t r aown dimitatiorss havec nog baen i v e ar
incorporatedeven though r a v e | e r ysigproyemtd bie bonraled ibyt a series of

experimental studig@l2-44) (see 2.2 for more details)

Zhang et al integratepositive travel behavior mode(route choice model and
departure time choice modeakith DTA for a demand pattern studi@5-46), and
showed its application on largeale network But only a fraction ofthe whole
population is adopted with the behavior mod&b far there is still a gap in the

12



exploration ofthe integrated DTA models for land development impact studies. This
thesisis trying to fill this gap by illustrating a tool which is capable of conducting
urban development TIA from a dynamic and behavior realistic point of view. The
proposed tool successfully links the MWCOG planning model with a
behaviorintegrated DTA for TA under future land development. In addition, with
the adoption of a new DTA simulator DTALIt@7), the tool can conduct quick

analysis for both regional area and specific corridors where development happens.

2.2 Application of LargeScale Traffic Simuladn

Microscopic traffic simulation has gradually proved a powerful tool in
transportation researcfihis trend moves slowly towardargescale applications
while the technology advancement makes the computational burden of microscopic
simulation of less @ancern. From 1990s, most applications wenecorridor analysis
problemsevaluatingqueue spillback, weaving, incidents, and signal con(®a).
Toledo et al.(68) presented a case study of a medium sineulation model(298
nodes and 618 links) in Irvine, Californiahe model wasalibratedby comparing
observed and simulatestnsor counts for every time interval of 15 minut@snilar
studies were conducted butne of them ever dealt with largeale network$69-70).
Here the term ofilarge scal® indicates a scale that spatially covers multiple corridors
and temporally covers multiple time periods. Rakha et(&l) constructedand
calibrated a 2our largescale micresimulation model (3365 nodes and 7926 links)

for the Salt Lakemetropolitanregion. He applied théll -or-Nothing (AON) traffic

13



assignmentlgorithm for model calibration Although theexecutiontime is short,
AON is unrealisticin capturing varying traffic dynamic. Jha et @12) developed a
largescale microscopic traffic simulation model for the entire Des Moines
metropolitan areaJhaapplied aroute choiceand simulationbasedassignmento
calibrate time dependent OD ma#sfor 7:15 to 8:30a.m.and 4:15 to 5:3@.m. The

ti me scal delwasmuch bnzaliethanRakhé. Thisis reasonable because
simulationbased assignment required higdmputationcostin largescale network
Balakrishna et al(73) adopted DTA and conductedthe simultaneous calibration of a
micro-simulation modelwith some 1,700 links foLower Westchester County, New
York. In Balakrishné& study, various measures of calibration goodness were used.
Smith et al.(74) represented the most recent attempts in laogde microscopic

simulation.

Research gap exists idargescale network calibration and simulation
applications. While the spatial dimensions of the existing research sometimes involve
large and complex network systems, very few studies calibrate and simulate multiple
time periods. As the pediour demand @ws and spreads to other time period,
traveler&commuting departure time decision, as well as the aggregate peak spreading
effect, become one crucial behavior response to excessivenpaakongestion and
time-varying toll policy. Zhang et al(46) recently studied peak spreading using a
microscopic simulation modeTlhe study is limited by only allowing departure time
shifts within the extended AM peak houkdnder this context, a 2dour model is

14



necessary in order tmimulate withinday behavior chareg more realisticallyin the
future when behavior/demand models are available to be integrated into the modeling

framework

Studiesthat applymicroscopic traffic simulation models to obtain MOEs for
planning and management arsufficienty seen inliteratures. ¥rious performance
measuresn different levels were developed tjuantify theimpactsof transportation
planning or managmentscenarios. Vehicle miles traveled (VMT) is an important
MOE that indicates both auto usage demand and congesti@h IChoo (75)
investigated the impact of telecommuting the VM T through a multivariate time
series analysis of aggregate nationwide data. Nasri and Z{@@gapplied a
multilevel mixedeffect regression model to study the impact of land use pattern on
the VMT. Similarly, measures such awverage trip time, average trip length, vehicle
hours traveled (VHT), and gravityased accessibilitywhich can be obtained from
travel demand mode{77-78), can also reflect regiondédvel performanceAlthough
theseMOEs are capabl® evaluate theystem more detailed measuresnecessary
for a better understanding of impacts on specific and smaller study andlean thus
highlight the capability of a microscopic simulation modstvel of Service (LOS)
provedto be a vital tool for agencies ¢onsider a wider range of mitigation measures
for congestion andgrowth (79). With graded evaluation, LOS can reflect fsdlale
information for freeway/arterial corridor evaluation, such as vehicle mobility and
driver pychological comfortWhile thae is an increasingoncern on environmental
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issues, measures ofemission estimation and fuel consumption have been
indispensablén project planning evaluatio® number of studies have been carried
out to link emission estiation models to traffic demand modelaaset a. (80)
calculatedthe total VMT and emission of carbon dioxide and analyzed greenhouse
gases (GHG) reduction inoth a single transit zone and whole region in Chicago.
Similarly, Chenet al.(81) analyzed the change of mode shares, VMT and GHG on
different land use development policieAs a strong tool for capturing traffic
dynamics, microscopic traffic simulation models are able to generate all these MOEs

as well as link with post processing net&lsuch as emission estimation models

In previous work a 24hour largescale microscopitraffic simulation modeand
a case study in Maryland adeveloped The analysis differs from other papers in
several ways. Firstly, ree timevarying toll facility, three freeway corridors, and a
total number of 7,121 linkend 3521 nodes consist of our modéligh-resolute
roadway/intersection geometry and a complete set of signal timing information for a
total number of 466 signalized intersections havenbenplemented in the model
followed by a careful calibration procedure. Very few other studies have attempted a
simulation of the scale and extent of the simulation in this study. Secondly, the study
employs multiple data sources for validation and catibn. An independent process
that comparesimulated and observed corridor travel timegeizeen done for model
validationafter the model isalibrated usin@4-hour field counts datahirdly, acase
study onthe newly built toll facility in Maryland tas beerconducted to investigate
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the beforeandafter effect with various networkevel, corridoflevel, and

freewaylevel performance measuresfter the simulationEnvironmental Protection

Agency (EPA)OG6s Motor Vehi c(B3isilegiatedasiaon Si mu
post processing mod#ir the estimation of environmental impacts. This is among the

first attempts t o -bcalerkiscrBseopia saffivedigtiSns.t o | ar g e

2.3 Behaviorfoundation in DTA

The concept of DTA was proposed in 1978 by Merchant and Nemh@r3er
who tried to model traffic dynamically in a discretized tisedting. Merchant and
Nembauseformulatel DTA as adeterministic fixed-demand, singlelestination, and
singlecommodity poblem, System Optimal (SO) probleA/.number of studies have
beenconductedabout DTA (details can be found &), and researchers at that time
were more interested in the analytical flexibility and convenience in DTA, such as the
requirement of fifirst-in-first-outd, multiple-destinations, thefholding-bacldo of

vehicles on links, and how to represent Ipgcformance88).

Janson(89) attempted to seek the temporal static equilibrium in terms of
experienced path travel times for usérhis attempt at ggying User Equilibrium
(UE) to DTA can be regarded as a behavior foundation in this study@&fedlost
DTA models applied Deterministic User Equilibrium $tochastic User Equilibrium
(SUE) as their solution§39). The behavior foundation of both DUE and SUE is based

on rationalbehaviortheory(90). Rational behavior theory was first proposed in 1947
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in economicy91), which assumed: 1) the set of alternatives are open to choice; 2)
utility is a function of alterni@ve, and alternative is chosen with preferenogering
among utility. In the condition of DUE, traveleisexperienced travel times are
determined , and travelers have perfect information. The travel times are the same in
all routes so that travelers shathe same preference and no traveler would find
another route with shorter experienced travel t{8®. While in SUE, travelers no
longer have perfect informatiom.o modelfimperfecd information, a random error
component is added to the utility (tratiehe), and travelers are assumed to minimize
their perceivedravel time.The assumed distribution of the error component results in
different preference among travelers as well as different assignment models (i.e.

Normaldistribution for Probit modelGumbeldistribution for Logit model)90).

One further progress with SUE over DUE is the way it generates the selection of
alternative routes(90). The consideration of partial choice severcame the
behaviorally unrealistian previous DUEapproack (Williams and Ortuzar 1982)
However, SUE is still based on utility maximization, and it does recbgnize

historical dependencies odute searchingehavior(90).

Another approach is Bounded Rational User Equilibrium (BRUE) developed by
Mahmassani and Chang (93). BRUE is founded on Simém famous
boundedrationality assumption and associated satisficing decision (@@slinstead
of seeking necessarily optimal alternative with the maximal utility, BRUE tries to
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seek an acceptable alternative satisfactory to the travelelerms of a bounded
rational based departure time choice model)ratifference Band (IB) of tolerable
schedule delay (SD) is applied to model if a SD is acceptable by traveler. IB is
allowed b be indifferent among people, which enhances the capability of modeling
heterogeneouessamong individuals. However, the process of alternative departure
time searching is only modeled usipgeferredarrival time subtracting perspective

travel time, wheth lackswayfinding behavioratealism(90, 95).

In order to improve théehavior realismin DTA, Behavior User Equilibrium
(BUE) was developed by Zhan(P2). BUE is based on the positiv&earch,
Information, Learning. & KnowledgeS(LK) theory that haswercome the limitations
of rationality theory discussedreviously The historicalydependentmodeling is
achieved by adoptingBayesian learningp update traveleémetwork knowledge and
subjective beliefs. Traveler&nowledge and beliefs are applied to determine their
subjective search gain and perceived search cost, which will decide whether or not to
conduct a new round of search and decisRule based searchingcreass the ease
of observingi ndi vi du aihgs liehawea®hé isearching process of one
individual will stop if theperceived search cosikceeds the expected gain from an
additional searchThe BUE is reached on a network when all users stapching for
alternative routes The BUE has morerealigic assumptions about wayfinding
behavior and empirical derivation of behavioral ru(@6). Zhang claimed that the
BUE meets theequirementto more accurately predicbehavioral responses i
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complex decision environmenthis thesis implied thdeparture time choice model

under SILK theory. Details can be accessed in Section 5.1.
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Chapter 31CC 24Hour Simulation Model

3.1 Model development

Supported by Maryland State Highway Administration (SHA), a simulation
model was developed, in which all the freeway2710, F495, 95 and 1370), major
arterials (e.g. MD355, MD97, MD650, MD28), most minor arterials, and some
important local streetsn the central and eastern Montgomery County and the
northwestern Prince George's Counfythe State of Marylandre included (Figre
3.1). With sucha largescak network the simulationmodel could capture the impact
of several new developments within tlaeea, e.g. the new under construction toll
road: the Inter County Connector (ICC); tBeeatSeneca Science Corridor (GSSC)

in West Gaithersburghe military base in Fort Mead46).

Microscopc traffic simulator TransModelewas selectedor the modeling
Transmodele(83) hasa well-developed interfaceith geographic information system
(GI1S), which isconvenientdealing with various data sources of a lasgale network
The simulated network was developeith the accuracy satellite mges provided by
Google Earth and conformations to the true geometry of links and intersedtins
completed network has fmal size of 7,121 links and,%21 nodeswhich includes

three freeway corridors and one tiwarying tolling facility.
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Figure 3.1 ICC Microsimulation Network

In OD estimation procedure the Metropolitan Washington Council of
Government (MWCOG) planning modelas used as the basisM\WCOG includes
27,743 links, 10,505 nodes, andI® Traffic AnalysisZones (TAZs) while thecase
study contains 162 TAZ centroidathin MWCOG area39 externalkcentroids were
divided through which the subetwork is connected with the rest of the MWCOG
model.With the application oGradient ProjectioiGP) pathbased trHic assignment
algorithm (84), hourly simulation OD has been extracted forh®dir period by
applying the method developed in the autbprevious work(46). Important steps of
obtaining the OD are as follows:

1. Conduct asignment ofHOV using the GP algorithm;
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2. Conduct assignment of trucks by excluding HOV lanes and keep the path
flow of HOV;

3. With the path flow of HOV and trucks, conduct the assignment of SOV;

4. Compare the difference between the shortest and longest OD travel time, if
anyme exeedsthe predeterminethresholdpack to step 1;

5. Assignpath flow betweerexternalstations and centroids to corresponding

OD pair based on the path within the study area.

After deriving 24hour OD,comprehensivealibration is conducted gdjustng
the timdy OD matrix to match the spatial and temporal traffic pattern with field
observationsThefBefore IC® network is used for calibration since all the observed
data was detected before the construction of I€ffer calibration, the model was
validated with the comparison between observed and simulated travel times on some
major corridors. More detailed calibration and validation work would be discussed in

next section.

3.2PEA MOVES

Another highlight of this study is the application Mbtor Vehicle Emissions
Simulator (MOVES)as a posprocessing module to process simulation outputs and
estimate emissions. MOVES is a reliable tool in emission estimdéeeloped by the
Environmental Protection Agency (EP£2). Compared with other models, ®WVES

has a couple of advantages. For example, it has a strong linkage with emission related
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database for the whole United States which makes the calculationcomorenien

(82).

MOVES model isdesigned with different estimation scales: nation level, oun
level and link level scale for micro analysis. this study, county level estimation is
selected, whichcalculats the emissionand energy consumptioeffort in one
specifiedareaduring a given period of timeSimulated results and other data sources
are required for county level estimation. These data requirements are described as
follows:

1. Total VMT, available directly from simulated resullts

2. The ratio of different vehicle types, obtained frtdm regional planning model
(i.,e. MWCOG modelyersion 2.2)

3. The ratios of different road types, obtained from segments datan the
simulation model

4. Average speed distribution, calculated from the simulated counts and average
speeds for every segment

5. Vehicle age distribution and populai. This has been obtained from
20072008 TPB/BMC Household Travel Survey, whelaly number of trips, trip
production per household and number of vehicles per household are used to estimate
population

6. Meteorology data (temperature and humidity), pdsit weather websif&@ he
Weather Channe]
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7. Fuelformations are set as default.
After processindghese de, MOVES estimateemissions such gseenhouse gas
emissions, particular matters(PM), and energy consumption within the whole

network and the goesponding timeeriod

3.3Model Calibration and Validation

3.3.1Model Calibration

As mentioned in the literature review, model calibration turns out to be the most
time-consuming andcritical step in model developmenBefore we move to
calibration, complete 24hour signal timing information for the 466 signalized
intersections is obtained from SHA and local department of transportation and then
implemented in the simulation modeh this paper, 2hour field counts data from
SHA are used for modekltibration. The data comes from 24 freeway and 38 local
arterial sensors (red dotskiigure 3.1), and are collected for multiple days. From the
hourly OD, the calibration algorithm (details are listed(4®)) evaluates demand
adjustment factot;,; associated with each pattbetween an OD pair j and for a

given time period by using the following equation:

a :éais(ij,r,t)zii,ralglzal-'_ IT%rat)/(fe\t +'%J'Q”v) (3.1)

ijrt =

A i iy Zira

whereij denotes OD pair from originto destination); r s R(ij, t) whereR denotes
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the complete set of all used paths of OD padt timet; S(ij, r, t) denotes the link set
of pathr at timet. F,; denotes the actual link flow on link at time t; f,; denotes
simulated link flow on link a at time ad;;»: denotes travel time from origirto link
a starting at time tgj;a: IS an indicator which equals 1 & y ij, t) and 0

otherwise.

When attempting to conduct the calibration onh®ir period at a time, the
modefs DTA run time tends to be extremelong becauseduring the first few
iterations the assignment gridlocks the network and considerably slows the simulation.
Thus, the authors address this by dividing thelayl study period into 6 syteriods:
early morning (G 6 a.m.), a.m. peak (69 a.m.), midday 1 (9 a.m.1 p.m.), midday
2 (1-4 p.m.)p.m. peak (4 7 p.m.)andnight (7 p.mto 0 a.m.)andcalibrating them
separatly. The simulation state of the traffic condition by the end of eackpsubd
is saved as an initial state loaded to the simulation of nexpeubd to make the

simulation continuous anmmbnsistent

Various performance measures have been appliechtoate the accuracy of the
match between field data and simulated caunts

1. Root Mean Square Deviation (RMSE)

RMSE=\/%§ () - RxO)y (32)

i=1

2.Normalized Root Mean Squared Error (NRMSE)
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3. Pearson correlatiocoefficient (PCC)

NG Fx0)2 - B ix")

i=1

T
B,
@)
I

B B

(3.4)
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[NA F(x)2- (BTN &X' { &x )T

i=1 i 1=

whereN is the number of independent set data to be compafr@ﬁ,) and E(Xm)
denotesthe observed and simulated count at sens&MSE reflects the absolute
deviation of countsNRMSE indicates theelative deviation, where observed counts

are weighted by volume; PCC is a measurement indicating the correlation between
field counts and simulated countb.r’ = 1, the model is exagtlpredicting the test

data, whiler? = 0 indicatesthere isno correlation between the model results and the

field measurements.

Finishing the calibration the performance measurefemonstrate a good
calibration result (Tabl&.1). RMSE indicates thaverage difference of counts was
595.2 for freeway stations, and 493.4 for all the stations dtrezage counts on
freewaystationsand allstations are 4,349 and 2,247 respectively). NRMSE shows the
convergence®f normalized relative errors for both freeyvand all sensor stations are
12.95% and 16.77% respectively. The PCC results also imply that simulated counts
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conform to the observed counts with high accuracy.

Table 3. 1 24-Hour Calibration Results

RMSE NRMSE (%) PCC

Time Period Freeway All Freeway All Freeway All
Average 595.2 493.4 12.95 16.77 0.927 0.974
0:00to 100 72.3 101.2 6.59 14.52 0.978 0.980
1:00to 200 106.7 86.5 15.58 20.02 0.923 0.974
2:00to 300 99.0 74.4 17.61 21.06 0.886 0.966
3:00to 4:00 94.9 77.8 15.14 19.79 0.914 0.976
4:00to 5.00 195.9 155.3 14.40 18.16 0.946 0.982
5:00to 6:00 390.9 366.2 9.36 13.90 0.973 0.984
6:00to 7:00 899.5 650.5 14.05 15.80 0.918 0.976
7:00to 800 1,108.7 871.6 16.28 19.54 0.877 0.964
8:00to 900 1,030.8 844.8 15.33 19.14 0.881 0.962
9:00to 1000 1,134.1 847.1 17.85 20.56 0.866 0.957
10:00to 11:00 805.8 585.1 13.99 15.81 0.921 0.977
11:00to 1200 613.6 507.1 11.08 14.21 0.924 0.980
12:00to 1300 513.2 498.8 8.99 13.52 0.946 0.983
13:00to 1400 562.5 507.5 9.59 13.41 0.954 0.984
14:00to 1500 986.0 758.3 14.57 17.42 0.910 0.977
15:00to 1600 1,128.2 901.4 16.18 19.95 0.877 0.964
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16:00to 17.00 861.7 750.6 13.13 17.40 0.930 0.967

17:00to 1800 794.2 782.6 12.46 18.44 0.943 0.967
18:00to 1900 756.8 705.5 11.93 16.90 0.958 0.975
19:00to 2G00 560.4 486.5 10.05 13.45 0.956 0.980
20:00to 21:00 563.2 445.2 12.92 15.76 0.927 0.974
21:00to 2200 460.0 384.9 11.95 15.46 0.949 0.977
22:00to 2300 329.3 273.4 10.83 14.05 0.939 0.980
23:.00to 0.00 216.9 179.7 10.93 14.19 0.947 0.981

Figure 3.2 plots he final comparison of field and simulated traffic count ddta
all counting stations. After numerous rounds of error checking and calibration, the
model appears to do a reasonably good jalepticating observed conditions.dgt of
the comparison points conform to tlagonal line. This implies anaccurate

calibrated model to simulate transportation planning scenarios.
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Figure 3. 2 ICC Microsimulation Network

3.3.2Model Validation

The calibration results have demonstrated ¢basistencyof the simulation
model withthe field measurements most freeways and major arterials. The authors
further validate the mod&l performance with an independent validation process.
SHA collected corridetevel travel timesisingprobe vehicleduring theAM peak and
PM peak periods. This paper employs this dataset as an independent validation dataset.
A total number of 12 corridors (6 routes with both directions) have been included in
this validation to inspect the modelconsistencyThe corridors areh®own as the

yellow curves in Figre3.1.
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As shownin Table 3.2, the overall differencedvetween simulated and observed
travel times ard.2.6% and 11.2%or AM Peakand PMPeak, respectively. Validation
results indicate thatthe modelcalibratedby field counts dataperforns well on
corridor travel timesFurthermorethe validation of link level travel speed can also be

conducted once given related data.

Table 3. 2 Validation results for AM Peak and PM Peak

AM Peak PM Peak

Corridor Direction  Simulated Observed 12.6% Simulated Observed 11.2%

Names Time (min.) Time (min.) Difference Time (min.) Time (min.) Difference
MD182 NB 13.9 15.3 -9.3% 17.4 14.0 24.0%
SB 18.5 17.5 5.7% 115 12.8 -10.1%
MD28 EB 20.4 16.9 20.7% 21.9 22.3 -1.9%
WB 26.2 23.9 9.6% 22.7 20.0 13.26
MD355 NB 18.0 23.0 -21.8% 245 30.3 -19.2%
SB 23.1 27.0 -14.5% 23.7 25.1 5.4%
MD650 NB 18.1 17.1 5.8% 20.1 19.3 4.0%
SB 16.8 19.5 13.9% 17.4 16.9 3.0%
MD97 NB 15.2 12.8 18.8% 17.4 14.2 22.2%
SB 15.1 17.2 -12.1% 14.7 14.0 5.2%
us29 NB 14.1 13.8 2.2% 18.9 20.7 -8.6%
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SB 32.7 27.9 17.2% 15.4 131 17.1%

3.4 CaseSudy of Inter-CountyConnectoy Maryland

With the calibrated and validated model, the study aims at comprehensively
investigating thempacts of a new toll road, MR200 the inteicounty connector (ICC,
the orange link in Figre 3.1), on the overall traffic condition as well as the
environmentin Maryland ICC wasbuilt since2011,and now it is being expanded
towards northeastern D.€onnecing a dense and mixed development urban area in
Montgomery CountyPrince George's CountgndBaltimore metropolitan and BWI
airport arealCC is publicly expected to serve as a tisaving alternative route for
the already high travel demand in $keareas. How ICC could improve traffic safety
and mitigate emissions pollutions is of research interekisorder to analyze various
MOEs before and after ICC, both the traffic performances with ICC and without ICC
are compared by microscopic traffic silation. Taking advantage of the Z¥bur
large-scale microscopic traffic simulation model, MOEs on different levels of details
are evaluated in this section. For example, the regional level evaluation, the corridor
and freeway level analysi€omprehensivdMOEs for multiple time scales not only
reveal the impacts of ICC, but also demonstratectygability of the microscopic
traffic simulation model for dynamic pattern studies, traffic management and policy

analyss.

33



3.4.1Regional Level Impacts

The regionallevel MOEs include VMT, VHT, delay per vehicle mile, stop time
per mile, and average speed. These MOEs provide a general vision of Rletvabrk
travel mobility and traffic congestion. The timrarying average delay analysis can be
employed to captre travel dynamic and potentially used to evaluate broader peak
spreading effect and departure time choice. Taldess@mmarizs the traffic impacts
of ICC at the regional levelFor the early AM and night period, there is olovious
difference between éhtwo scenariosThis maybe due tdhelight demandearly AM
only taking up only8% of the whole dag demanyl Most congestion mitigation
effects are captured during the day time, especially the PM Peak. In terms of average
delay per vehicle mile, thentroduction of ICC causes a reduction of 7.62%. Better
traffic condition is proven in ICC scenario from fewer dedad faster speed in the

table.

Table 3. 3 Comparisons of th&wo Scenarios using thRegionalLevel MOEs

Early AM AM Peak Mid-Day PM Peak Night

0T 6a.m. 67 9a.m. 97 4 p.m. 471 7 p.m. 77 0a.m.

VMT (kmi)  Before ICC  1,061.2 2,265.4 4,589.9 2,671.3 2,536.5
After ICC 1,052.0 2,291.7 4,596.8 2,722.9 2,515.4
(% change) -0.87 1.16 0.15 1.93 -0.83

VHT (k hrs)  Before ICC 25.6 75.0 143.1 115.8 76.4
After ICC 25.4 74.9 139.2 112.2 74.2
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(% change) -0.78 -0.13 -2.73 -3.11 -2.88

Avg. Delay  Before ICC 30.4 61.4 54.3 97.1 50.2
(sec/mi) After ICC 30.7 60.3 51.7 89.7 48.3
(% change) 0.99 -1.79 -4.79 -7.62 -3.78

Avg. Stop Before ICC 15.6 28.8 25.5 38.5 23.1
Time After ICC 15.4 26.4 24.9 35.6 21.3
(sec/mi) (% change) -1.28 -8.33 -2.35 -7.53 -7.79
Avg. Speed Before ICC 41.5 30.2 32.1 23.1 33.2
(mi/hr) After ICC 41.4 30.6 33 24.3 33.9
(% change) -0.24 1.32 2.80 5.19 2.11

Figure 3.3 illustrates the average delay per network miles to better visualize the
impact of ICC. From 8 a.m. to 1 p.m. and from 5 to.®.pICC helps reduce delay

per mile by 6 seconds on average.
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By integrating EPA6s MOVES model
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able to estimate environmental impact of ICC. The emissions and fuel consumptions

before and after ICC ammparedn Table3.4. In general, with the@nprovementof
regionaltraffic condition such as faster speed and less conge$tio@p scenario
indicates a smaller emission rate on GHG, and highergy utilization ratio The
most significant energy saving a@HG mitigation happes in PM Peak periodThe

total savings on fuel energy consumptioer milecan be as large &90 percent

while the total reduction orarbon dioxideper mile reaches 1.67 percent. For

Particular Matters and othejaseous pollutast the most sigricant improvement

occurs in peak hourgor instance, PM10 can be reduced by 1.39 percent during PM

Peak period.

Table 3. 4 Comparisons of the two scenarios using emissions and fuel consumptions

Emission

Early AM AM Peak Mid -Day PM Peak

Night
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Per Vehicle 07 6 a.m. 617 9 p.m. 97 4 p.m. 47 7 p.m. 77 0 p.m.

Mile Befor After Befor After Befor After Befor After Befor After

e ICC e ICC e ICC e ICC e ICC

ICC ICC ICC ICC ICC

GHG emissions

CO,(9) 369.4 369.7 386.5 384.4 3685 368.1 387.8 381.4 3585 359.8

NO, (mg) 551.3 551.5 529.8 528.1 615.0 611.6 600.7 593.6 545.7 545.9

CH4(mg) 1593 1599 34.76 34.49 33.94 3358 34.12 33.31 26.39 26.58

Poisonous emissions

NH;(mg) 30.81 30.77 29.99 29.79 30.70 30.07 30.30 30.14 30.11 29.91

CO (9) 6.098 6.120 10.17 10.10 10.61 10.51 10.70 10.48 8.795 8.827

SO, (mQ) 727 727 752 748 717 716 754 741 6.95 6.99

Particulate matter (PM) contamination

Total 2535 2543 27.67 2758 2796 2784 2798 2759 2514 2536

PM10(mg)

Total 23.51 2359 2553 2544 2578 25.67 2579 2544 23.18 23.38

PM2.5(mg)

Energy consumption

Petrol 4890. 4894. 5111. 5083. 4873. 4868. 5128. 5043. 4741. 4758.
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Energy 6 6 6 3 8 5 3 1 0 2

(KJ)

Fossil 5136. 5141. 5377. 5347. 5127. 5122. 5395. 5306. 4988. 5006.

Energy 9 0 2 4 5 0 8 2 0 1

(KJ)

3.4.2Corridor Level Impacts

ICC leads to positive impacts on overall traffienditionas well as emissian
control The model can further evaluate performances of different corridors. Corridor
LOS maps make itonvenient to spatially assess congestion level and guaject
planningand managementThe LOS maps of PM Peak period before and after ICC
are displayed in Figre 3.4 as an example of corridor levahalysis LOS A, B and C
mean free and stablencongstedflow; D is an indicator of approaching unstable

flow; E means the flow is operating at capacity; F suggests a breakdown flow.

LOS of all the freewaysarteriak werepresengd. Predicted by the model, ICC
would affed traffic on neighboring and crossing arterials as well agpénallellinks.
For example, the neighboring traffic conditions on b and MD182 southbound
are improved. Meanwhile, initially heavy congestion on segments of the parallel
corridors (MD355, 1-270, and t495) has been mitigated to some ext&¥hile for
some arterials such as 29, MD-182, the north bound congestion gets worse,

simulated traffic is observed ggrow as more vehicles now access these segments via
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ICC corridor. The model suggssmore vehicles have beélivertedfrom MD-355
and F495/195 corridor, the most severely congested corridors in D.C. metropolitan
area, to ICC heading northern sulbban areas during PM Peak. Next subsection

presents a freewdgvel spacdime analysis o 1-495 to study this impact in depth.
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Figure 3. 4 LOS map before and after ICC
3.4.3Freeway Link Level

The unique features of Z#bur simulation allow the authors to conduct a
within-day freewaylevel analysis on ighway congestion assessment, traffic speed,
and LOS Before the construction of ICG4195, the Capital Beltway, has long been a
highly congested corridor which carries intead interstate travel demand from, via,
and to the states of Mdand, Virginia, and Washington D.@nce fully operational,
ICC is believed to serve as an alternative corridor to remit congestid95 To
better understand the impact of ICC o@95, comparison betweempacetime
diagrans of speedis conductedFigure 3.5). As the model predicts, ICC would cause
noticeable effects to remit congestion level e405. A Spatialcomparison implies
that the most significant improvements 6495 East Bound are at the joints 2710

(3.2 mi in Fig 5(a) and 5(b)), Nd355 (4.2 mi), and-B5 (10.2 mi). Most significant
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effects take places during PM Peak (the most congested peried9%nHB, caused

by tidal commuting phenomenon in the area), while AM Peak anelMidalso show

noticeableimprovement. This beforandafter comparison implies an important role

of ICC in mitigating +495 congestion. In the future, this analysis can also be extended

to other arterial/freeway corridor scenarios, and similar analysis for intersection queue

length can also be carried. Congtiadto the length of the article, these analyses are

not included in this paper.
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Figure 3. 5 1-495 BB spacetime diagram of speed for the two scenarios
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3.5Discussiomnd Conclusion

A number of practical challenges emerge during the development of this
multi-period largescale microscopic traffic simulation model. Some of these issues
and discussions are presented in the following subsections, along with the limitations

of these approaches.

35.1Data Collection

Developing a largascale microscopic simulation model with multiple time
periods requires umaginableamount of detailed data. Firstly, building the network
of this scale requigesignificant amount of workload andoordinaton. A great
guantityof GIS data isndispensabléo make sure the location of nodes and links, and
the lane numbers on each segment. §hemetryshape ofparticular areas (e.g.
mergingor separahg of freeway and ramps) should be further examined to avoid
even small geometry errors (which could be extremely troublesome). An early attempt
of directly converting the network of the metropolitan of Washington (MWCOG)
regional planning model was proven not successful since the planning model network
does not defia number of lanes for all links and has rough intersection geometry. In
addition, adjusting the location and timing of signals also requoasiderablg¢ime:
all the 466 signalized intersections in our model were consisted with thesifyelal

timing.

Secondly, availabletraffic data like counts, speeds and travel times are often
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insufficientto avoid the inconformity from the traffic pattern in realityl his type of
problems makeit difficult to refine model calibration and validatiohhese problems

are Wiquitousamong microscopic traffic simulation modeling, and may lead to more
serious troubles for large scale netwofK8). Jhaclaimed that available data can be
uncoordinated and cause more inconsistencies because they may be collected and
measurd by various agencies with different devices at different tinresghis study,

we face difficulties when trying to obtain counts data for dff€ scenario.
Relatively new field data is not readily available and maintained by different agencies.
Once thedata sources are complete, the calibration and analysis can be further

justified.

3.5.2Computational Time Issue

With strong dependence on technology suchcasputer configurationthe
development and calibration of microscopic traffic simulation modélslarge scale

networks can be time consuming.

In this study, neither advancedmputationatechnologynor simplified method
is dispensableto demonstratethe applicability of micresimulation model to a
largescale, multipleperiod network scenariddaving a huge network with over
2,150,000 trips (alday period), the simulation model running -2dur DTA
demonstratedglow performancevenon an Intel Xeon 24Core CPU serverwith 12
GB memory This computational difficulty is addressed by dividing timwation

periodinto 6 subperiods asdescribedin model calibration section. Thus, the time
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spending ordynamictraffic assignment for a complete iteration of calibration has
been greatly shorteneBven sothe comprehensive calibration framewoekuired a
number of iterationsThe NRMSE of field traffic counts came tacanvergenceafter
around 8 iterations for each separate period, leadiaggooximatea total number of

400 hours fothewhole calibration task.

3.5.3Network Gridlock Causedy Small Errors

Single bottleneck at important intersections or merging areas may cause the
entire network to become gridlocked/hen developingand calibrating the model,
varioussmall errors were found which could lead to unreasonable bottlenduse
issues are picked out and emphasized for microscopic studies. They may seem trivial

but cancause serious problem for simulation.

1 Missing important local linkslt is time-consumingto include every local
street within the study area. As a tradeoff, this may lead to insufficient network supply
especially during the peak hourBeing a microscopic study restricting the link
volume/capacity ratioa consideable amount of travel demarslqueued outside of
the network and results in unrealistic delaise author8parallel study which applies
DynusT mesoscopic DTA also experiences a similar issue. This pajoeitizes
different locations using average delay measure and then inducdasplete set of
local links at the most congested regions in the study @heésincreases the network

supply at critical regions and effectively mitigates the gridlock.
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1 Signal timing problemsLimited real signal data may cause unrealistic and
seriouscongestionOptimizing the signals is not feasible given the size of the network.
The papeemploys realvorld signaldataof all intersectionsA compromise when the
actual signal data are not available can be using Synchro or similar programs to
optimize the signal timing plan based upon the field turning movement information

(Smith et al. 2008).

1 Lane connectarand intersection geometry problemsin simulation, lane
connectors and intersection geometry problems can cause the fact that the queue
spillback block the path of other crossing vehicles at the intersection unrealistically

and thus result in unreasonable congestion.

3.5.4Conclusion and Closing Remarks

1 This study develops a Zbur largescale network microscopic traffic
simulation model fonorth Washington, DC metropolitan arddne model consisisf
over 7,000 links, 3,500 nodes, over 40,000 OD pairs, and over 2 million vehicles.
Three freeway corridors, one new tolled highway, and all major/minor arterials are
included in the simulatiometwork. In addition, more than 400 intersections are

signalized to simulateealdynamic signal control.

1 Reatworld signal timing information for all 466 signalized intersections has
been obtained and implemented in order that the simulation model represents the

actual situation. Thencomprehensivecalibration has been conducted for the
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robustnesandreliabiity of the model. 24our field counts at 62 sensor stations data
are considered as calibration base. Then simulésed DTA is applied to obtain
simulated counts. To make the simulated couats/ergeto the observed counts, OD
adjustments and signalptimization are appliedWwith some 2,150,000 demand of
trips, the NRMSE comes to 16.77%. An independent validation has also been done
via comparing simulated and observed corridor travel times. Through the
time-consuming process of calibration/validatioh largescale microscopic traffic
simulation models, challenges, important lessons, and the way to address these

challenges have been learnt and offered for discussion.

1 Another highlight of this paper is the emissions estimation using simulation
outputsand EP& MOVES simulatorCounty-level emission estimation has been
conducted foenvironmentaimpact analysis of ICCWith the unique capabilities of
the model developed in this research, various key conclusions on the policy
implications of ICCtolling can be drawn from the simulation case stughlowing
the prediction of the model, ICC would save as much as 6 seconds per vehicle mile
during peak hourdt also cuts down GHG emissions rate and energy consuming rate
by 1.67% and 3.90% at most.oiF corridor level, ICC has benign affeced
neighboring arterials such as MI32, MD-97 and MD650. Based on our simulation
analysis ICC alsohas some noticeable and beneficial impacts on the performance of
[-495, especially during the two pebkur perod. The case study demonstrated the
value of largescale multipleperiod microscopic simulation model for project
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planning evaluation.

1 The work contributes to the larggecale microscopic simulation research
literature with a 24hour model application aralbeforeandafter case study of a new
tolled freeway (ICC). It contributes to the practice with empirical experiences and
suggestions for future applicationdmportant issues such as data needs,
computational burden, and simulation gridlocks are disduss®l addressed. In
particular, microscopic simulation network is moricongestiblée as the
volume/capacity ratio is restricted and each vehicle is simulated. Network gridlocks
should be carefully dealt with before the calibration. Otherwise it is hasiaridy if,
for instance, an underestimated simulation count is caused by insufficient OD demand
or by the gridlocks. MOEs on different levels have been obtained for the case study to
investigate the impact of ICC on dynamic traffic patterns. As one dethestudies
that link the traffic simulation with emissions models such as MOVES, the paper
demonstrates the feasibility of employing popular emission simulator as
postprocessor to analyze environmental impacts using simulation outputs. The model
can beapplied in a wide range of policy analysis, control and management, and
decisionmaking processes. With the -Béur traffic simulation, withirday and
day-to-day behavior dynamics can be researched once-bgeatl dynamic behavior
models are linked or iegrated. This is a promising research direction to

microscopically, dynamically, and behaviorally forecast the future.
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Chapter 4Cumulative land development analysis tool

4.1 From Land Development Mod& Simulation Model

In the metropolitanVashingtonDC area, there is a regionalbnningand traffic
demand model namedhe Metropolitan WashingtonCouncil of Governmend
(MWCOG) planning model However, the transportation model of MWCOG is a
trip-based fousstep model, which can hardly acquirthe dynamic/behavior
interaction between traffic activities and transportatiofrastructure To gain a
dynamic perspective on travel behavior change dukard development, such as
route and departure time shifts, the land development model of MWE&OGdS8.2
Cooperative Forecasting modei$ integrated with DTALite. The Round 8.2
CooperativeForecasting model estimatg®pulation, households, and employment
for theentireMWCOG area ora Traffic Analysis ZoneTAZ) level. Theseland use
dataare convertedto regional ODvia the MWCOG transportation demand model
The data hub feature of DTALite makes it applicable tavea and importthe
MWCOG traffic networkto mesoscopic simulation moderhen regionalOD is
derived for the study area based on traffssignment and subarea cut procedure in

DTALite.

The land developmeiind transportatioomprovemeninformationwas obtained

from MWCOG regional planning model. We applied the 2010 MWCOG static OD as
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the travel demand for the basase and the 2030 stiatOD asthe demand for future
case.One major effort to integratthese static OO0 our mesoscopic simulation
model is thetime dependenOD estimation.The dynamic OD is estimated from
previous approach. Zhang et al. proposed a Gradient Projection (GP) algorithm based
systematic approach to derive subarea OD from regional OD n{d8)xIn this

thesis, this process was taken placed by appRgnfarea ato procedure in DTALIte.

That is, the whole transportation network of the regi@@hningmodel (MWCOG)

is coded in DTALite.After the assignment of regional seed OD to the network,

DTALite is camble toderivesulb-OD cut for the study area.

When the tatic subOD is obtained, the overall OD is divided into
time-dependent OD based on traffic volume. For example, if the statit©Bufor
AM Peak period (6:00 a.m. to 9:00 a.m.) is derived from regional OD, we need to
calculate the sum of field traffic hdy volume data from the sensor stations for 6:00
to 7:.00 a.m., 7:00 to 8:00. a.m., and 8:00 to 9:00 a.m. respectively. Then, the

time-dependent OD would be estimated based on the following equations:

a= v ii{6-7,7 88 % (4.1)
V6-7+V7-8 -I\/SQ

p,x=a-P,.,ii {6-7,7 88 D jk S (4.2)

]

where a, is the factor by time periog V. is the sum of field traffic hourly volume

data from the sensor stations during time periogi,, is the timedependent OD
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pair from TAZ j to TAZ k during time periotf P, is the static OD pair from j to k,
S is the set of TAZs in the networRhis simplified OD estimation process ignored
the difference of time factors among different OD pdgch simplification method
was used for the lack of ground traffic data for such a megeork After the
estimation of time dependent OEgmprehensiv®©D calibration and validation were

conducted to enhance the robustness of the model.

4.2 Introduction of DTALIite

DTALite is a light-weighted, open sourcsimulation basednesoscopidDTA
package(47). The fidata hub feature allows DTALite toimport network files or
transportation project files from a number of on fashion software, i.e. DYNASMART,

andArcGIS.

The traffic models in DTALIite are wpuebasedmodels point queue model,
spatialqueuemodel andN e w e sinhplifisd kinematic wave mod€B5). Point queue
model assumes all the vehicles are queued at the end point of\@liek.a vehicle is
loaded to a link, it will travel at the speed limit until it reaches the end point of this
link. Then, the remaining capacity would determine whether this vehicle would pass
or queue at the linklhere is no spatial constrains in point gaenodel. Batial queue
model adds a spatial queue constrain in point queue model, in which a link has a
restore capacity defined by jam density multiplying number of lanes and then multiply

link length.
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Newell's simplifiel kinenmatic wave modealses cumiative arrival/departure
volume to model traffic on road wayBhe partial differential equation (equation 2) is

applied to determine the spreading of traffic jam (traffic evawth O speed and jam

density):

dg  dk
o dt (X 1) (4.3

where ¢ is the volume, k is density, x is the spatial location, t is time, and g is the
generation functionBased on the definition of ware speed, the change of cumulative

volume and the cumulative volume change dmk are

dN(x 1) =53k

(4.9

"08 Qo
g +0
'I'Cé_OI

dN = Kok N (4.5

where | is thelength and N is the number of lanes. In order to speed up traffic
assignment, as well as avoid unrealistic gridlock in early iterations, in DTALIite, the

first few iterations of DTA will be performed opoint queue model, and then on

Newell's simplifiel model.
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The simplified traffic model allows DTALite to conduct high speed simulation.
Another high light of DTALIte is ageriased modeling: the travel information of
everyindividual traveler (i.e. departure time, origin, destination, travel time, and route)

is recorded as output, and it can also be loaded as input for simulation.

4.3 Mesoscopic Traffic Modelnd Model Calibration

Many DTA integrated traffic simulatorge.g., DYNASMART, TRANSIMS,
DynusT, and DTALite (85)) have been used in previous studié6). They are all
endowed with good features for real world applications, and there msensus
superiority of any simulatorTALite is selected for three main reasons: 1) it is a
light-weight mesoscopisimulatorwith parallel computingor rapid simulaibns; 2)
the embedded OD calibration system and subarea cut systers dfitaitedanalysis
for specific subareagnd 3) agentbasedmodelingis supported for the integration

with behavior models.

Supported by SHA, a mesoscogicnulation model thaincludesall freeways,
mostmajorminor arterials andsomelocal connectorstreetss developed for thall
of Montgomery County, Maryland The major commuting corridors:2[70, North
[-495 and MD355 are located in the middle of this study area (Fiydje The
simulation network, which contains 470 TAZs, 5481 links and 1921 nodes, are

directly imported and cut frothe MWCOG traffic demand model.
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Figure 4. 1 Mesoscopic Network

The OD is jointly calibratedand validatedvith hourly volume data provided by
160 sensors from SHA trdfic monitoring systemand 20072008 TPB/BMC
Household Travel Surve§map see Figure 4.ZJhe calibration and validation results
are shown in Figure 4.3 and Figure 4.4. In Figure 4.3, each point represeihima
sensor. In Figure 4.4he blue linedenoteshe cumulative demand rate (cumulative
demand divided by total demand from 6:00 to09f0r the base case in tiETALite
simulation modelwhile the red dash linéenotesthe cumulative demand rate in

Figurel 2007#2008 TPB/BMC Household Travel Survey
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Figure 4. 2 2007-2008 TPB/BMCHousehold Travel SurveySample Map
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Figure 4. 3 Validation Results

Figure 4. 4 2007-2008 TPB/BMC Household Travel Survegample Map

4 4 Integration with Behavior Model

In this study,an agentbased positive departure time choice model is integrated

with DTALite for behavior analysisThe model was developed by Zhang and Xiong
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(65), andsimulates the goal, knowledge, learning, and search ability of the travelers in
the system. Basedn a sries ofthe learning searchingorocess and behavior rules,
the model attempts to estimate hopeoplelogically behave rather thaa rational

utility maximization. After modeling travelebsbehavior change the ndividual
decisiors are aggregated fottravel demand analysisThe framework of positive
departure timehoicemodel will be introduced in 5.1. Moreethils of this model are

availablein literature(46) and(65).

The integration flowchart is shown in Figu#e3 The agentbased modeling
startsfrom the static OD estimated vihe MWCOG planning modelThis regional
planningOD is loaded into DTALitefor regionallevel assignment, after which the
subarea OD can be cut and calibrated through its own procetheeprocess to
estimate dynamic holyr OD is discussed ifi a d d i worka Im artler to calculate
travel ersod C udymaric assigemeiptse initialyy rappéed to pursue
dynamic user equilibriunirhis provideg r a v eurrenttravél timeand routesThe
routes are required to Icalate free flow travel time (FFTTas traveler§subjective
believed ideal travel timé'he subjective believed ideal travel time and current travel
time will be used in positive model (see 5.Heterogeneity ighen embeddedy
synthesizing these travelers with sedemographic variables including: income,
gender, flexibility of arrival times, search cost, eftie population is synthesized
based 020072008 TPB/BMC Household Travel Survdynder the initialization,
dynamic asignment is adoptedgainto simulatethe daily traffic for knowledge
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l earning pr oexpesienceis Updated mtheepositide model.Every

traveler learns their travel experience from DTA resulisy makea departure time
choice followingpositive departure time choice mod@.1). The iterative loops of
departure time modeling would not finish until onlgraall numbeof individuals are

still searching for alternative departure times.

MWCOG DTALite Positive Model
Development Dynamic OD Knowledge
Forecasting Slit Updating
] /
N A 4
i 9
Static OD Subarea Cut & Searching
Calibration
. . No s
Population Assignment |44 Convergence Switching
Synthesizing -
DUE Assignment Simulation
FFTT Calculatingy, Begins LConvergence
N
s Initial Situation End

Figure 4. 5 Flowchart of thdntegratedviodel

In the thesis, the population wagnthesizedbased on2007-2008 TPB/BMC
Household Travel Surveylhe study area of the survey is shown in Figdre
Several socicdemographic variablesuch asincome, gender, flexibijt of arrival
times were used in search ruia positive model and the distributions of these
variables are the same wig®072008 TPB/BMC Household Travel Survekalbe
4.1 17 Table 43 show the comparison between the survey sample set and the
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synthesizeghopulation for cumulative land development analysis (2010).

The assignment of agedocicdemographic variables was conducted using the
random number function in MatlabFirstly, several boundary numbers were
calculated based on @B TPB/BMC surveyThese boundary numbers represented
the cumulativefrequency of different attributes. Secondly, for each agent, three
random numbers were generated based on which theGagerame level, gender,
and flexibility of arrival time were assigned. Take genderaa example: in 008
TPB/BMC survey, 47% of the population in the study area is male (table 4.2). Then
the boundary number of gender is 0.47, if an agent gets a random number between 0
to 0.47, the agent will be assigned as a male; while if the randorharus between

0.47 and 1, the agent will be assigned as a female.

Table 4. 1 Income for Synthesized & Survey Population

Income 20072008 TPB/BMC Thesis Scenarid??010

Household Travel Survey

0¢ 29,999 1,806 (11.6%) 49,638(11.6%)
30,000¢ 59,999 3,405 (22.9%) 97,230 (22.8%)
60,000¢ 124,999 5,996 (42.8%) 183,501 (43.0%)
125,000- more 3,158 (22.7%) 96,588 (22.6%)

Table 4. 2 Gender for Synthesized & Survey Population

Gender 20072008 TPB/BMC ThesisScenario 2010
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Household Travel Survey

Male

14,582 (47.0%)

200,997 (47.1%)

Female

16,748 (53.0%)

225,961 (52.9%)

Table 4. 3 Schedule Flexibilityfor Synthesized & Survey Population

Flexibility of Arrival

20072008TPB/BMC

ThesisScenario 2010

Time Household Travel Survey
Flexible 9707 (29.1%) 124,831 (29.2%)
Not Flexible 21623 (70.9%) 302,127 (70.8%)

4.5Land Development Impact on Dynamic Traveler Behavior

This section illustrates a land development case studyheigoroposed tool.
Forecasted by MWCO& planning model, the population and employment of
Montgomery County will increase by 18.6% and 24 #Xpectivelyin 20 year (2010

to 2030) as shown in Figuregl.4 (a) and (b). Meanwhile, a number of land

development plans are taking plaagroundingthe [-270 and MD35%orridors The

long term change makes it necessary for urban planners to focus aediothevel

mobility andcorridor-level travel behavior changes.
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Figure 4. 6 Land Use Changes 202030
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