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Understanding fire sprinkler sprays fills a critical gap in the modeling of fire

suppression systems. Previous research has shown that a modeling framework con-

sisting of an instability model coupled with a stochastic transport model can paint

most of the sprinkler spray picture, but requires input in the form of the thickness

and velocity of unstable fluid sheets. The model outlined forgoes traditional CFD to

solve for water jet-deflector interactions, and instead describes the sheet formation

as a potential flow boundary value problem, utilizing a free surface formulation and

the superposition of the Green’s function. The resulting model allows for the deter-

mination of the complete flow field over a fire sprinkler head of arbitrary geometry

and input conditions. A hypothetical axisymmetric sprinkler is explored to provide

insight into the impact of sprinkler head geometry on local fluid as well as complete

spray behavior. The resulting flow splits, sheet thicknesses, and sheet velocities are

presented for various sprinkler head geometries.
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As area of deflector plate openings
f free-surface location
G Green’s function
G1 Green’s function with a plate at z = 0
G axisymmetric Green’s function
G∞ axisymmetric Green’s function with a plate at z = 0
J0 Bessel function of order zero
p pressure of fluid
ps static pressure of fluid
Rj radius of jet boundary
Rs radius of the centroid of the slot
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Rts arbitrary radius of tine stream boundary
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Ts slot sheet thickness
TT tine sheet thickness
Uj jet velocity
u radial velocity
v vertical velocity
Zj arbitrary height of jet boundary
z height
z0 source height
zs tine sheet thickness

Greek
α flow split
δ Dirac Delta function
λn Eigenvalue of the order zero Bessel function
θ angular spatial location
θs trajectory angle of slot sheets
θt trajectory angle of tine sheets
ρ fluid density
Φ perturbation potential
φ fluid potential
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Chapter 1: Introduction

1.1 Motivation

Sprinkler systems are a ubiquitous form of fire protection in the United States

with expanding adoption around the world. The performance of a sprinkler depends

on the spray generated by the sprinkler, the dispersion of the spray within the flames,

and the wetting of burning surfaces. Despite the widespread use of sprinklers, ana-

lytical models to predict their performance have yet to be developed. Each one of

these stages of sprinkler modeling involve complex transport processes which create

important modeling and measurement challenges. The transport processes respon-

sible for sprinkler performance are complex, not readily yielding to measurement or

analysis, making the development of analytical models difficult.

The possibility of accurately predicting water delivery with fire models, or

more ambitiously, of designing sprinklers with models to produce particular sprays,

has far reaching implications for suppression technology and engineering practices.

Previous research by Ren [1] has outlined a three part modeling framework by which

a typical sprinkler’s atomization mechanism can be predicted. Figure 1.1 shows

the three steps to predicting a sprinkler spray. First, a fluid jet impinges upon a

deflector of some geometry and is transformed into an array of fluid sheets which
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carry the flow of the sprinkler away from the deflector. Second, these sheets undergo

aerodynamic instabilities and break apart, first into ligaments and then droplets.

Third, the transport of these sheet fragments away from the deflector and outwards

into the environment are characterized.

Figure 1.1: An illustration of a three part model for sprinkler patternation and droplet for-
mation.

The first model, the sheet formation model, is particularly important to deter-

mining overall sprinkler performance. Research by Ren [2] developed scaling laws

governing drop formation based upon initial sheet properties. These sheet proper-
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ties are an output of the sheet formation model. Additional research by the author

has suggested that patternation and spread of the fragments, the primary goal of

the fragment transport model, are determined by patternation and thickness of the

initial sheets, also outputs of the sheet formation model. The sheet formation model

is then critically important to understanding total sprinkler behavior.

The goal of a sheet formation model is to take the initial conditions of a sprin-

kler (the total flow, pressure, and geometry) and to produce the initial conditions

for a sheet breakup model (sheet location, velocity, and thickness). With the ap-

propriate nondimensionalization, explored in Sec. 2.3, the model can be reduced to

solving for the sheet location, sheet trajectory angle, and sheet thickness.

The goal of the present research is to introduce a general scheme for predict-

ing sheet formation from the impingement of a jet onto a deflector and to provide

insight into how deflectors govern sprinkler spray behavior and represent an impor-

tant fundamental sub-model required for predicting the initial sprinkler spray. In

previous efforts by the author, a traditional computational fluid dynamics (CFD)

approach have been used in an attempt to characterize the sheet formation model.

In a traditional CFD approach tremendously detailed griding is required to resolve

the thin sheets (on the order of 50 microns). As a result, the computational expense

necessary to explore even a single sprinkler geometry is large. If an understanding

of the impacts of plate geometry on sheet formation are to be understood, a large

number of computations must be run.

A new and more efficient alternative formulation for the sprinkler head de-

flector flow problem is posed based on free streamline flow theory. A free surface
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describes the surface of a fluid that is subject to constant perpendicular normal

stress. The boundary between two homogeneous fluids; in this case, the imping-

ing water jet and the surrounding air, can be described as a constant pressure free

surface. Because of this constant pressure free surface description of the jet, it is

known that there is no flow normal to the jet boundary and thus the liquid-air

boundary is a free streamline. The essential notion is to make use of the fact that

a free surface model of the flow can be constructed, where all of the vorticity of

the flow is contained within the free surface, and the interior of the water jet as a

velocity potential. Using the potential flow assumptions, the fluid velocity potential

solutions can be reduced to a boundary value problem. Any solution obtained is an

exact solution of the inviscid potential flow equations, and the interior flow is an

exact solution of the Navier-Stokes equations. The resulting model is as accurate as

a CFD approach assuming the same assumptions and calculation precision.

One of the primary assumptions of the above model are that the inviscid

potential flow assumptions are valid for the domain of jet impinging on a sprinkler

head. In reality almost any fluid problem is non-conservative, but the impacts of

viscosity, surface tension, and turbulence are minor on the scales associated with a

sprinkler head. For the speed and length scales associated with sprinklers (on the

order of 0.01 m and 10 m/s, or a Reynolds number of 105) a viscous boundary layer

thickness of less than 5% of the total sheet thickness is expected, allowing viscous

effects to be neglected in the primary portion of the flow [3]. Viscous effects of slot

flow can be accounted for with a slot flow coefficient as outlined in Section 2.4. All

of the vorticity in the flow is captured in the free surface, a vortex sheet, with the
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internal flow remaining irrotational.

This is not to suggest that the impacts of viscosity, turbulence, and surface

tension are negligible for the sprinkler problem. Viscosity, surface tension, and

turbulent perturbations all play a large role in the sheet break up sub-model of the

sprinkler modeling framework, as discussed in work by Ren [2]. These effects are

unimportant, however, for the sheet formation model.

Simplifying the sprinkler sheet formation model to a boundary value problem

dramatically reduces the computational expense. This is the result of minimizing the

number of computations which must be run in order to determine a value of interest

within the domain. In traditional CFD, a solution is reached by solving for the total

flow at every point within a domain. For flows with small regions of interest, like the

thin fluid gas interface on a sprinkler head flow, this is a tremendously large number

of points. Additionally, these CFD formulations are unsteady, and in order to assure

instabilities do not affect the problem, even smaller time steps must be chosen. In a

boundary value problem formation, like the formulation to be used here, any point

in the domain can be solved for using only the values at the boundaries, as shown

in Fig. 1.2. The result is the ability to recover important sheet formation outputs:

like flow split (the fraction of the total flow which passes through the deflector, as

shown in Fig. 1.1) or sheet thickness.

By reducing the computational load, the parameter space for sprinkler head

geometry can be more thoroughly explored, and the impact of geometric parameters

on the sheet formation and ultimately the sprinkler spray can be more completely

understood.
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Figure 1.2: An illustration of the points and thus calculations required (blue points) to
recover a particular quanitity of interest (red points) for traditional CFD and the boundary
value approach outlined in this thesis.

1.2 Literature Review

A wealth of literature exists studying sprays of all formulations. Fire sprinklers

however are a fairly uncharacterized technology. The work outlined by the author

relies on an understanding of an only loosely connected body of work. First, an

important aspect is the general atomization mechanisms of sprays. Atomization in

sprinkler sprays in particular are not well explored, but a history of studying sprays

in general dates back centuries. An understanding of the parameters which control

atomization is necessary to inform the design of a model which will in turn provide

these parameters to determine spray characteristics. Second, previous deflector

models. Some limited work has been performed modeling deflectors in the past.

Though none of these models use the same methodology for predicting deflector

interactions they do provide insight into the process. Lastly, an understanding

of potential flow formulations, their applications, and limitations is critical to the

formation of this particular model. The model outlined in this thesis relies upon
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potential flow theory. Previous work utilizing potential flows to predict a variety of

fluid conditions informs the deflector model.

1.2.1 Atomization Mechanisms

The description of a liquid sheet is of critical importance to the determination

of sprinkler sprays because the properties of said sheet govern atomization and

droplet spread. When a narrow liquid stream is injected into a gaseous fluid, it

tends to break up into fragments due to surface tension and/or aerodynamic forces.

Atomization of liquid sheets was first studied by Savart [4] in 1833 who observed

break-up phenomena of radial expanding sheets produced by two co-axial colliding

jets. It was observed that when thin liquid sheets are generated in the atmosphere,

unstable sinuous waves are formed. Jet atomization was first studied by Rayleigh [5],

who found that if the ambient gas and liquid viscosity were neglected, the jet is most

susceptible to disturbances having wavelengths 1.43 times the jet circumference. A

more sophisticated model was developed by Weber [6] in 1931, including the effect

of liquid viscosity and density of the ambient gas.

Squire [7] first solved the linearized equation for parallel liquid sheet instability.

Hagerty and Shea [8] found that under normal operating conditions, the wavelength

is relatively large compared to the sheet thickness and their growth rates are con-

sequently greater than those of the alternative dilatational forms typical of the jet

atomization studied by Rayleigh. Dombrowski [9–11] studied the effect of ambient

density on drop formation in sheet based fan-spray nozzle experiments. Dombrowski
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determined the fastest growing wave (most unstable) that caused the sheet to break

up. For inviscid sheets, he determined the critical wavelength, λcrit = 4πσρaU
2,

where σ is the surface tension of liquid, ρa is the density of ambient gas, and U is

the characteristic velocity of the sheets. He also suggested an approach for determin-

ing the critical wavelength for viscous sheets. Li and Tankin [12], Huang [13], and

Clanet and Villermaux [14, 15] all studied the break-up of liquid sheets generated

by liquid jets impinging onto a small deflector.

Further research by Ren [1] studied the applicability of Dombrowski’s droplet

break up scheme to sprays generated by fire sprinkler nozzles. Ren divided the

process into a series of instability developments and growths. Fig. 1.1 shows this

proposed process. First sheets leaving the fire sprinkler deflector form. These sheets

develop instabilities and break apart, in a manner dictated by Dombrowski’s inviscid

wave growth equations, into ligaments. These ligaments in turn develop instabilities

by the Rayleigh instability mechanism and break apart into droplets. Through this

analysis Ren was able to develop scaling laws governing drop formation based upon

initial sheet properties. These scaling laws allow the determination of drop size

based upon initial sheet thickness.

1.2.2 Deflector Models

A few attempts have been made previously to attempt to model behavior on

a fire sprinkler head. Owing to the complex nature of sprinkler heads, and thus the

necessarily chaotic behavior flow impinging on these heads, dramatic simplifications
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have been necessary.

Schach [16] characterized the deflection of an axisymmetric water jet on a flat

plate perpendicular and oblique to the flow direction using the Prandtl hodograph

method. The free surface of the the outer jet was compared with previous exper-

imental measurements [17] represented by an empirical equation. The problem is

also discussed mathematically. In the paper a method for treating the flow using

potential flow assumptions is outlined. The method calls for the transformation of a

differential equation of the fluid potential into an integral equation for axisymetric

flow by superposition of a ring flow. Schach identifies the chief problem with the

formulated solution is the lack of a known shape for the free surface boundary (in

the paper referred to as the “jet edge”). For a true potential flow where all flow is

deflected by the plate, the flow approaches a hyperbola as approaches an infinite

radius. Further along the free surface the fluid has a constant speed equal to the

inlet speed.

Prahl [18], in 1988, attempted to calculate the discharge distribution for an ax-

isymmetric model of a fire sprinkler head. A non-dimensional description was used

which emphasized a sprinklers ability to evenly distribute spray over a maximum

possible floor area. The axisymmetric sprinkler used consisted of a jet impinging

normal to and at the center of a flat disk. From there mass conservation assump-

tions were utilized to approximate sheet thickness and velocity and the previously

mentioned Dombrowski model for sheet break up was used to understand droplet

formation. The model presented lends insight into the parameters of a sprinkler

spray but is overly simplistic, allowing for no flow to pass through the deflector
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plate as is characteristic of the canonical configuration.

Ren, in later unpublished work explored the usage of computational fluid dy-

namics (CFD) in the modeling of traditional pendant sprinkler heads. In a prelim-

inary study to address the challenge of locating the liquid-gas interface (and the

associated sheet thickness and velocity), the Volume of Fluid (VOF) method as

outlined in Hirt [19] was applied to a sprinkler-head simulation. The VOF method

is a simple but powerful approach designed with the goal of tracking the shape and

position of the interface during multi-phase CFD simulations. However, the compu-

tational burden to calculate the gas flow, liquid flow, and their interactions during

the CFD based sprinkler-head simulation was prohibitive owing to mesh require-

ments for resolution of the thin sheets (with typical grid sizes of tens of microns)

formed by the deflector (with typical sizes of tens of millimeters).

1.2.3 Potential Flow Formulations

There is a tremendous amount of literature describing the usage of potential

flow in solving two-dimensional free streamline flows dating back to the late nine-

teenth century. Potential flow describes a velocity field as the gradient of the scalar

velocity potential function. A potential flow is characterized by an irrotational ve-

locity field, a valid approximation for a number of cases. Two dimensional problems

have typically been addressed using the hodograph method, which uses the veloc-

ity components as independent variables. Several of these classical solutions are

described by Batchelor [3].
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These flows are typically characterized by the the fact that the solid boundaries

are composed of straight line segments, while the free surface is a streamline at a

constant pressure, or the arc of a circle in the hodograph plane. These qualities

make to relatively easy to determine the boundary shape in the hodograph plane,

and the fact that the velocity components are functions of a complex variable makes

conformal mapping a powerful tool in constructing the solution.

Bloomer [20] studied the incorporation of ring singularities in an axisymmetric

potential field. Bloomer found that a reasonable approximation of ring singularities

in a three-dimensional potential field having axial symmetry, by consideration of the

very much easier case of a similar two-dimensional potential function. It is seen that

the traces of these ring singularities on a plane through the axis of symmetry occur

at points corresponding to those of the singularities existing in the two-dimensional

plane when the axial velocity potential functions are the same.

Chang and Conly [21] constructed a potential flow solution describing seg-

mented jet deflectors. The solution was constructed for a series of inviscid, incom-

pressible, two-dimensional jets by a series of straight segments of arbitrary lengths

and angles. They used a Schwarz-Christoffel mapping, or a complex conformal trans-

formation, coupled with free streamline theory. Results showed good agreement

between the potential flow approximation and previous testing of several specific

cases.

In fire protection, Steckler, et. al. [22] studied fire induced flow through a

compartment doorway. Transformation into the hodograph plane was used to cal-

culate flow coefficients for smoke flow leaving the room, here posed as a inviscid,
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irrotational jet. Elcrat and Zanellli [23] also modeled invicid wakes past a normal

plate using a potential flow formulation. Here again flow solutions were reached

through transformation into the hodograph plane.

None of these formulations operate in precisely the same framework as the

sprinkler head model outlined below. In three dimensions the hodograph method

is no longer available, nor is the use of complex variable techniques. However, the

potential flow still satisfies the Laplace equation, and the free streamline is still a

constant pressure surface, allowing many of the approximations to still hold.

1.2.4 Research Objectives

The goal of the present research is to outline a new general formulation by

which sheet formation on a sprinkler head can be predicted. Further, this research

seeks to understand the fundamental impact of sprinkler head geometry on funda-

mental parameters of a fire sprinkler, namely flow split, fluid sheet thickness, and

sheet velocity. This formulation will be demonstrated through the example of an

axisymmetric sprinkler with a ring slot penetration. The modeling approach for the

potential flow formulation follows.
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Chapter 2: Modeling Approach

2.1 Potential Flow Formulation

In three dimensions the hodograph method for solving potential flows is no

longer available, nor is the use of complex variable techniques. However, the po-

tential flow still satisfies the Laplace’s equation and the free streamline remains a

constant pressure surface. The free streamlines separating the water jet from the

surrounding air are taken to be vortex sheets and the air is assumed to be at rest.

The following method relies on the existence of a Green’s function satisfying the

potential flow equation and appropriate boundary and symmetry conditions. In

mathematics, a Green’s function is a specific type of function used to solve inhomo-

geneous differential equations. It is a function which transforms a boundary value

of a function into the function’s response to the boundary value across all space.

Physically the Green’s function may be thought of as a weighting function or a

propagator function. G(~r, ~r0) gives the effect of a unit point source ar ~r0 producing

a potential at ~r, as in Fig. 2.1.

The formulation of the boundary value problem in terms of an appropriate

characteristic Green’s function reduces the problem to the determination of the

shape of the free surface and the outflow conditions on the deflector plate. The
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(a) (b)

Figure 2.1: A contour plot (a) and streamlines (b) of a Green’s function (G1), with a no flow
condition across the radial axis, with a source r0 = 1.0 and z0 = 0.5.

boundary conditions required for definition of the Green’s functions are dictated by

the description of the sprinkler geometry and the nature of the incoming flow.

The general nature of the model presented in this study provides the capabil-

ity of capturing the critical sheet behavior for fire sprinklers of almost any design

complexity. It shares the advantage of the VOF method in being able to precisely

capture interface location as well as the ability of the CFD model to exactly model

the fluid flow. It achieves both of these goals with relatively minimal computational

burden.
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2.2 Mathematical Model

To begin development of the mathematical model, the problem is posed in

cylindrical coordinates as follows. The spatial location is given as

~r = (x, y, z) = (r cos θ, r sin θ, z) (2.1)

and a source location given as

~r0 = (x0, y0, z0) = (r0 cos θ0, r0 sin θ0, z0). (2.2)

The starting point of the mathematical formulation is the assumption that,

because of the size and speeds associated with sprinkler heads (a Reynold’s number

of Re = 105), the effects of gravity and boundary layers can be disregarded. We

can then define an impinging jet velocity field, ~u(~r), which can be described as a

potential flow satisfying the equation

∇2φ (~r) = 0, where ~u (~r) = ∇φ (~r) . (2.3)

The velocity, ~u (~r), is always perpendicular to the isocontours of φ (~r). The

gauge pressure, ptotal − p∞, is determined by the gravity free Bernoulli equation

given by

ptotal − p∞ =
u2

2
+
v2

2
+
ps
ρ

= constant = U2
j /2. (2.4)
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where Uj is the velocity of the impinging jet.

Having established these preliminaries, the sprinkler boundary value problem

can now be formulated. By definition, the Green’s function is a solution to

∇2G (~r, ~r0) = δ (~r − ~r0) . (2.5)

Here δ denotes the Dirac Delta function in three spatial dimensions. The Dirac

Delta function has the funamental property that

∫
f(x)δ(x− a)dx = f(a). (2.6)

We can thus consider that φ(~r) can be defined by the volume integral

φ(~r) =
∫
φ(~r0)δ (~r − ~r0) d~r0. (2.7)

From Eqs. 2.3, 2.5, and 2.7, φ(~r) can be defined as the integral

φ(~r) =
∫ [

φ(~r0)∇2G (~r, ~r0)−∇2φ(~r0)G (~r, ~r0)
]
d3~r0 (2.8)

The integral above is taken over the entire volume of the flow being solved. In the

general case, this volume includes the jet bounded by the inlet, its free-surface, and

the deflector that it impinges on. It is important to note that this formulation by

itself assumes nothing about the geometry of the problem.
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Second, φ(~r) can be written in the form

φ (~r) =
∫
∇ · [φ (~r0) ∇G (~r, ~r0)−∇φ (~r0)G (~r, ~r0)] d

3~r0. (2.9)

Using the divergence theorem, the above can be rewritten as

φ (~r) =
∮ [

φ (~rs)
∂G

∂n
(~r, ~rs)−G (~r, ~rs)

∂φ

∂n
(~rs)

]
d2s. (2.10)

The integral in Eq. 2.10 is taken over the surface which bounds the volume

of interest. Here, n̂ is the local coordinate unit normal to the bounding surface

pointing outward from the volume and ~rs points along that surface.

This result is very general and assumes nothing about the specific boundary

conditions or the shape of the boundaries that are needed to obtain it. To proceed

further it is necessary to specify the information available to formulate a specific

boundary value problem relevant to the sprinkler jet impingement on a given de-

flector plate. The unknowns are, as mentioned above, the values of φ(~r) along the

boundaries or the fluid velocity normal to the boundaries. The choice of Green’s

function will be considered next.

The starting point is the observation that the simplest Green’s function satis-

fying Eq. 2.5, denoted here by G0 (~r, ro, θo, zo), is

G0 (~r, ro, θo, zo) = − 1

4π

1

|~r − ~ro|
= − 1

4π

1√
r2 + r2o − 2rro cos(θ − θo) + (z − zo)2

.

(2.11)
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This solution satisfies Eq. 2.5, but is not particularly useful. There exist a variety

of solutions to Eq. 2.5, all of which are acceptable Green’s functions for use in the

solution of Eq. 2.10. A simple modification can be made for the case of a planar

barrier located at z0 = 0, a reasonable approximation to a sprinkler deflector. The

appropriate Green’s function is then

G1 (~r, ro, θo, zo) = G0 (~r, ro, θo, zo) +G0 (~r, ro, θo, −zo) . (2.12)

The new solution still satisfies Eq. 2.5 and also satisfies the condition of no

normal gradient at the surface zo = 0. Figure 2.1 shows G1 for a source located

at r0 = 1, z0 = 0.5. Because the velocity component normal to the barrier either

vanishes or is prescribed everywhere, the first term in Eq. 2.9 vanishes along the

deflector boundary allowing the integral along the deflector boundary to be solved

with only knowledge of the Green’s function and the velocity normal to the deflector

plate.

The Green’s function can be further modified depending on the specific prob-

lem being considered. The particular choice of Green’s function provides a limited

amount of constraint to the problem. The remainder of the constraint will follow

from the boundary conditions chosen and will reflect the geometry of the specific

problem. In order to generally explore the impact of changing boundary conditions

the major simplification of an axisymmetric flow pattern will be introduced in the

following section.
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2.3 Axisymmetric Model

The full form of the boundary value problem is quite general and can be

applied to complex boundary shapes. This complexity can make explaining the

modeling approach difficult and obscure the impact of essential sprinkler geometric

features. In an effort to provide insight into the impact of variations of the boundary

conditions, as well as to clarify the general formulation of the boundary problem, a

non-dimensional axisymmetric model will be demonstrated next.

Before proceeding to explore the boundary conditions, it is useful to introduce

the dimensionless variables

φ = UjRjφ̃(r̃, z̃), r̃ = r/Rj, z̃ = z/Rj, ũ =
∂φ̃

∂r̃
, ṽ =

∂φ̃

∂z̃
. (2.13)

The tilde notation will be dropped for the remainder of the paper for the convenience

of the vector notation. Owing to this non-dimensionalization Rj = 1 and Uj = 1.

The axially symmetric form of the potential flow equation is given by

1

r

∂

∂r

(
r
∂φ

∂r

)
+
∂2φ

∂z2
= 0. (2.14)

The axisymmetric model suggested here is posed as follows: an inviscid, ver-

tical jet with radius Rj impinges upon a horizontal deflector plate. A ring opening

with centroid Rs and total area As is located in the deflector plate. Here both slot

centroid, Rs, and slot area, As, are non-dimensionalized by the impinging jet radius

and area, Rj and πR2
j , respectively. The nondimensional slot width, ∆R, can than
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(a) (b)

Figure 2.2: An axisymmetric jet impinging upon a normal plate with a ring slot penetration
and on the right a diagram highlighting the boundary locations (1-4), the variable parameters
(Rs and As), the asymptotic jet region (top), the asymptotic tine region (right), and the
turning region (dashed arrow) of the free surface.

be given by ∆R = As/2Rs. In a typical sprinkler head, slot penetrations in the de-

flector plate have some angular dependence. In the axisymmetric model suggested

the discrete openings in the actual plate are smeared out uniformly with respect to

the angular coordinate, θ, and the radial location and width of the smeared locations

are chosen to match the last two parameters mentioned above. By assuming the flow

pattern to be axially symmetric, some of the geometric effects induced by the details

of the deflector plate geometry are lost, but the impact of the general geometry of

slots is preserved. Figure 2.2(a) shows an image of an axisymmetric sprinkler and

Fig.2.2(b) shows the definition of Rs and As for this general axisymmetric case.

The boundary conditions of φ (~rs) and its normal gradient, n̂ · ∇φ (~rs), ap-

pearing in Eq. 2.10, are independent of θ. All of the bounding surfaces are now

figures of revolution, and the only quantities containing an angular dependence are

the Green’s function and its normal derivative.

The goal of a sheet formation model is to take the initial conditions of a sprin-
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kler (the total flow, pressure, and geometry) and to produce the initial conditions for

sheet breakup model (sheet location, velocity, and thickness). With the appropriate

nondimensionalization the model can be reduced to solving for the sheet location,

sheet trajectory angle, and sheet thickness. Here sheet initial location is found at

the edge of the deflector, RD for the tine sheet, and at the slot radius location,

Rs for the slot sheet. Because we are assuming potential flow, the fluid sheet ve-

locity magnitude is simply 1, and the only defining quantity for sheet velocity is

sheet trajectory angle, θt and θs, for the tine and slot sheet respectively. The sheet

thickness can be nondimensionalized, like the other quantities, as T = T/Rj, where

nondimensional tine sheet thickness can be shown to be given by

Tt =
1− α
2RD

, (2.15)

and slot sheet thickness by

Ts =
α

2Rs

, (2.16)

where α is the flow split, or the fraction of the total flow which pases through the

deflector plate.

Figure 2.3 shows the general inputs and outputs of the sheet formation model,

as well as the method of solution, in which pressure and flow split are iteratively

solved for (explored in Sec. 3.1).

Before we begin exploring boundary conditions specific to the axisymmetric

model, it is important to explore the assumptions implicit in this model. The ax-
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Figure 2.3: The sheet formation model transforms the sprinkler geometry, Rs and As, into
sheet trajectory, θtraj and thickness, T , the necessary inputs for the sheet breakup model.

isymmetric model itself extends infinitely in height and radial extent, and is suitable

for a slot of any size. A true sprinkler does not. A true sprinkler has a finite de-

flector, and small regular slots. In order to implement our boundary conditions, the

following assumptions about applicability must be made:

1. The deflector radius, RD, must be sufficiently large so that fluid behavior can

be treated as asymptotic.

2. The deflector radius, RD, must be sufficiently small, so that viscous effects are

minimal.

3. The slot width, ∆R, must be sufficiently small so that the small orifice ap-

proximation holds.

Condition 1 can be shown to be true through asymptotic analysis of the tine

stream (Eq. 2.37) for r > 2. The validity of condition 2 has been previously outlined,

and condition 3 will be explored in Sec. 2.4.
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In order to outline the boundary conditions it is first neccesary to choose a

suitable Green’s function. Because we are examining an axisymmetric case, the only

quantity that depends on angle is the Green’s function. The axisymmetric Green’s

function can be achieved by angularly integrating the Green’s function presented in

Eq. 2.11. The result takes the form

G (~r, ro, zo) = − 1

4π

∫ 2π

0

1√
r2 + r2o − 2rro cos(θ − θo) + (z − zo)2

dθo. (2.17)

The quantity, G, physically represents a ring source of fluid situated at r = ro,

z = zo. The Green’s function can then be rewritten as

G (~r, ro, zo) = − 1

π
√

(r + ro)2 + (z − zo)2

∫ π/2

0

(
1− 4rro

(r + ro)2 + (z − zo)2
sin2(θ)

)−1/2
dθ.

(2.18)

This function can be evaluated in terms of the complete Elliptic Integrals of

the first kind, denoted as K(m) where

K(m) =
∫ π/2

0

(
1−m sin2(θ)

)−1/2
dθ. (2.19)

The Green’s function being rewritten as

G (~r, ro, zo) = − 1

π
√

(r + ro)2 + (z − zo)2
K (m) (2.20)
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where

m =
4rro

(r + ro)2 + (z − zo)2
. (2.21)

This axisymmetric Green’s function can again be refined by posing the no

penetration condition at z = 0 as demonstrated in Eq. 2.12 with the form

G1 (~r, ro, zo) = G (~r, ro, zo) + G (~r, ro, −zo) . (2.22)

Similar to G, G1 represents a ring source situated at r = ro, z = zo but located

in a semi-infinite space bounded below by the plane z = 0. Figure 2.1 shows a plot

of this Green’s function and the streamlines generated from this Green’s function

(∇G1) with a source at r0 = 1.0 and z0 = 0.5.

The task now remains to define the boundary conditions. There are four

bounding surfaces as shown in Fig. 2.2(b) and described as the

• Jet, an inlet disk of radius Rj located at a given height, Zj;

• Free Surface, the bounding free streamline surface. This surface can be divided

into three regions. The asymptotic jet free surface, the asymptotic tine stream

free surface, and the turning region which connects the two;

• Tine Stream, a vertical cylinder of radius Rts and height zs (the vertical dis-

tance between the bounding free streamline and the deflector plate) where the

flow that does not pass through the deflector plate exits;
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• Deflector, the horizontal deflector plate where flow passes through the ring

opening with centroid Rs and total area As.

2.3.1 Bounding Surfaces

Because of the formulation of the problem as a surface integral, each individual

boundary can be evaluated individually, and summed to construct the entire integral

as

φ(~r) = φj(~r) + φfs(~r) + φts(~r) + φd(~r), (2.23)

where φj(~r), φfs(~r), φts(~r), and φd(~r) correspond to the integral φ(~r), as de-

fined in Eq. 2.10, evaluated on the surface of the inlet jet, free stream, tine stream,

and deflector plate, respectively. Because of the inviscid nature of the flow, the dis-

tance at which the inlet jet and the tine stream barriers are evaluated is arbitrary.

At a sufficient distance from the deflector plate and the vertical axis, respectively,

the flow on both of these boundaries converges to some asymptotic behavior.

The impinging jet can be imagined as a circular cylinder of radius Rj with a

downward speed Uj extending to infinity. Thus, as z → ∞, φ → −Ujz. Similarly,

the deflector plate with the specified opening governed by Rs and As extends so it

occupies the entire plane z = 0. The jet thickness then approaches 0 as r →∞. It

is worth noting that all analytical solutions for free jet problems described in the

literature are posed as infinite domain problems. This has not prevented their use

in the study of problems in a finite domain.

It is helpful to construct a global mass balance to quantify how the flow enter-
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ing through the inlet jet leaves the deflector. The inlet volume flow is dimensionally

quantified as πR2
jUj, or non dimensionally as simply π. A fraction, α, or the flow

split, of this flow leaves the domain in the slot stream through one or more holes in

the deflector plate. The remaining fraction, 1−α, is trapped between the surface of

the deflector and the ambient air. Because the ambient pressure remains constant,

the speed of the radially moving tine stream must also be Uj. Thus, if we let z

denote the thickness of the tine stream, conservation of mass requires that

(1− α)πR2
jUj = 2πrzsUj, (2.24)

or non-dimensionally,

rzs =
(1− α)

2
. (2.25)

The shape of the of the asymptotic streamline leaving the deflector is then a hyper-

bola whose thickness is determined by the fraction of mass flow passing through the

plate or the flow split. The flow split must be determined as a part of the solution

to the problem.

2.3.1.1 Jet

Now considering the region z � 1 far from the deflector plate. The presence

of the plate creates a perturbation that retards and expands the jet, deflecting the

boundary in the process. The dimensionless potential at this jet boundary can be
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represented as

φjet(r, z) = −z + Φ(r, z). (2.26)

The appropriate boundary conditions for the perturbation potential, Φ(r, z) are

lim Φ(r, z →∞) = 0 (2.27)

and

(−1 +
∂Φ

∂z

)2

+

(
∂Φ

∂r

)2
 = 1. (2.28)

The first condition requires that the perturbation to the jet flow vanish suf-

ficiently far from the plate while the second arises from the requirement that the

pressure and thus the jet speed be uniform at the jet free surface. Neglecting the

quadratically small terms, the second condition can be simplified to the linearized

form

∂Φ

∂z
(1, z) = 0. (2.29)

From Eq.2.3 and the boundary conditions, Eqs. 2.27 and 2.29, any solution

for Φ(r, z) can be written as

Φ(r, z) =
∑

AnJ0(λnr)exp(−λnz) (2.30)

where An are some series of undetermined constants, J0 are the Bessel functions of
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order zero and λn are a set of eigenvalues corresponding to the Bessel function such

that J0(λn) = 0. Because each subsequent eigenvalue increases by approximately π,

the subsequent exponential terms can be shown to decrease by more than an order

of magnitude, thus only the first term in the series above is important. As a result

the asymptotic solution on the jet can now be completed.

The jet velocity normal to the jet boundary is given by the derivative of Eq.

2.30 with respect to z

vjet(r, z) =
∂Φ(r, z)

∂z
= −1− A0λ0J1(λ0r)exp(−λ0z) (2.31)

and an asymptotic free streamline, or the free streamline which passes through the

jet radius, Rj = 1, has the shape

r = 1− A0J1(λ0)exp(−λ0z). (2.32)

From the Eqs. 2.30 - 2.32, the boundary integral, φj(~r), can now be evaluated

at the inlet, a horizontal plane located a non-dimensional distance Zj above the

deflector plate.

φj(r, z) =
∫ Rj

0
r0(φjet(r0, Zj)G1(~r, r0, Zj)− vjet(r0, Zj)

∂G1(~r, r0, Zj)
∂z

)dr0 (2.33)
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2.3.1.2 Free Surface

The chief problem for the general solution to the proposed boundary value

problem is selecting an appropriate shape for the free-surface boundary. An approx-

imation of the surface as a combination of hyperbolas is a reasonable one for the

axisymmetric ring slot case. Using the criteria that the non-dimensional free surface

must approach r = 1 as z → ∞ and z(r) = (1 − α)/2r as r → ∞ the free-surface

can be approximated as

z = f(r) =
A

1− r
+
B

r
. (2.34)

where A and B are constants chosen for continuity with the jet and tine stream

boundaries.

Assessing the boundary integral, φfs(~r), is simplified greatly by the require-

ment that there is no normal flow to the free-surface. The fluid potential on the

surface increases linearly with arclength, because the magnitude of the speed in the

tangential direction is always 1. The integral is assessed from r0 = 1, or the radius

of the jet, to r0 = Rts, or the arbitrary location of the tine stream boundary, along

the curve bounded by the free-surface equation given in Eq. 2.34. φfs(~r) can be

written as

φfs(~r) =
∫ Rts

1
r0φ(r0, f(r0))

∂G1(~r, r0, f(r0))

∂n
dr0 (2.35)

where ∂G1/∂n can be found by the following

∂G1/∂n = ∇G1 · n̂ (2.36)
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where n̂ is the unit normal to the free-surface at any given r0, and G1 is given by

Eq. 2.22.

2.3.1.3 Tine Stream

The impact of the next boundary, φts(~r), is now considered. In the region near

the plate, r � 1, as r →∞, the radially expanding jet thins. Since the speed of the

jet is fixed by the requirement of constant pressure, the limiting form of the solution

for large r must be φ→ Ujr, as shown by Eq. 2.24. This is not, however, a solution

for an axisymmetric fluid potential, given in Eq. 2.14. The requirement given by

Eq. 2.24 can be satisfied by posing the solution to the axisymmetric fluid potential

in this region as a descending series, with the leading term, r. The solution for the

velocity potential in this region takes the form of an infinite series

φtine(r, z) = r + F1(z)/r + F2(z)/r3 + ... (2.37)

where F1(z) and F2(z) are functions which are chosen to satisfy Eq. 2.14 and the

free surface boundary conditions. Enforcing the boundary condition that as the tine

stream moves radially outward vertical velocity tends to zero, or v(r, 0) = 0, gives

F1(z) = −z2/2! + c and F2(z) = z4/4! + d. (2.38)

Note that this form of the solution restricts its validity to a region of r greater

than the radial location of the slot in the deflector plate. The above constants c

30



and d are determined from the requirement that the speed is constant at the free

surface. To accomplish this, the equation for the free surface must also be expanded

into a descending series in r as

z(r) = (1− α)/2r + b/r3 + ... (2.39)

This introduces another constant, b. The solution for φtine given by Eq. 2.37 must

also be made consistent with the shape of the free surface. The results yield that

b = c = 0 and d = −(1 − α)2/4. This result holds no matter what fraction of

the mass flow passes through the plate, subject to the caveat that the domain of

applicability lies outside the opening in the plate.

This boundary is evaluated at the arbitrary radius of the plate, r0 = Rts, with

the integral spanning 0 < z0 < zs, where zs is the height of the sheet above the

deflector plate given by z (Rts) from Eq. 2.39.

φts(r, z) =
∫ zs

0
r0(φtine(Rts, z0)G1(~r,Rts, z0)− vjet(Rts, z0)

∂G1(~r,Rts, z0)

∂z
)dz0 (2.40)

2.3.1.4 Deflector

The final boundary, the deflector, is evaluated at z0 = 0 and spans 0 < r0 <

Rts. Because of the choice of Green’s function, ∂G1/∂n is equal to 0 at all z = 0. The

term, ∂φ/∂n is also equal to 0 at all points where there is no penetration through
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the boundary. As a result, the integral, φd(~r), can be written as

φd(~r) =
∫ Rts

0
r0v(r0, 0)G1(~r, r0, 0)dr0, (2.41)

where v(r0) is the profile of flow through the ring opening with centroid Rs and total

area As. This flow profile can be assessed based upon the typical results of 2D slot

flow, discussed in section 2.4. Using the static pressure at the location of the slot

as calculated from Bernoulli’s equation in Eq. 2.4, a total slot flow, v(r0, 0), can be

determined.

The above integrals can be summed following Eq. 2.23 to calculate the full

potential φ (~r) and the corresponding flow split, α. From α, the sheet thicknesses,

TT and TS, and trajectories, θT and θS, can be determined.

2.4 Slot Flow

The flow through the deflector plate, or the slot flow, is an important compo-

nent in the picture of total flow. A challenge is predicting how much of the total

flow passes through a slot. When exiting a slot, the velocity of the free streamlines

bounding the slot stream can be found from Bernoulli’s equation, as given in Eq.

2.4.

The free surface of the slot stream must have a gauge pressure of 0, or a

velocity magnitude equal to the velocity magnitude of the jet free surface. The

velocity normal to the slot, v(Rs, 0), can than be calculated from the horizontal

velocity at the slot, u(Rs, 0), as
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v(Rs, 0) =
√

1− u(Rs, 0)2. (2.42)

Because the exit is not a smooth, well contoured nozzle, but rather a flat plate,

the width of the slot stream will be less than the width of the slot opening. This

vena contracta effect is a result of the inability of the fluid to turn the sharp corner of

the flow [3]. Because the streamlines in the exit plane are curved the pressure across

them is not constant. We are not interested in the details of this flow pattern, but

only total flow through the slot. The assumption of a uniform velocity with straight

streamlines are not valid at the exit plane, but are valid in the plane of the vena

contracta [24].

A flow coefficient, Cd, can be used to calculate the ratio between the idealized

mass flow, ṁi, given by Bernoulli, and the actual mass flow through a slot, ṁa, as

Cd =
ṁa

ṁi

. (2.43)

In general a flow coefficient accounts for all of the physics not included in the

ideal flow model; for example, contraction, turbulence, and viscous effects. The

value of Cd is well explored for the case of a small slot, as in the case of an orifice

plate. In Leinhard [24] this value is given as

Cd =
π

π + 2
. (2.44)

This is the slot coefficient for small, sharp edged orifices. For an orifice plate,
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(a) (b)

Figure 2.4: In order for the small slot flow assumptions to hold the size of the orifice must
be much less than 1. In a typical sprinkler(a) this corresponds to requiring that θslot/2π � 1,
where θslot is the angular extent of a single slot and for the axisymmetric sprinkler(b) requiring
∆R/Rs � 1.

this requirement is given by Ro/Rj � 1, where Ro is the radius of the orifice and Rj

is the radius of the flow approaching the orifice [24]. An analogy can be made for a

standard sprinkler by requiring that θslot/2π � 1, where θslot is the angular extent

of a single slot and similarly to the case of the axisymmetric sprinkler by requiring

∆R/Rs � 1. Figure 2.4(a) shows a typical sprinkler and 2.4(b) the axisymmetric

sprinkler meeting the narrow slot requirement.

This requirement, and the definition of ∆R, limits the choice of sprinkler

geometries to any situation where

As
2R2

s

� 1. (2.45)

.

Total flow through the slot can than be approximated as flow of a uniform
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velocity, as given by Eq. 2.42. Ideal mass flow through the slot is simply

ṁi = ρAsv(Rs, 0), (2.46)

where ρ is the fluid density, As is the slot area, and the velocity normal to the

slot opening, v(Rs, 0), as given by Eq.2.42. Actual flow, as given by Eq. 2.43, is

then

ṁa = CdρAsv(Rs, 0). (2.47)

In the non-dimensional formulation, the total mass flow is simply UjAj = 1. The

flow split is then given as

α = CdAsv(Rs, 0). (2.48)

The next task is to discuss the implementation of the model.
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Chapter 3: Modeling Implementation

The mathematical model outlined in the above chapter is quite general and

even with the simplifying assumptions has no analytic solution. Even the much nar-

rower axisymmetric model with asymptotic boundary conditions has no analytical

solution and relies on a numerical solution to calculate the result. Early research

by Schach, who outlined a similar potential model of a jet impinging on a deflector

with no slot, stated that there was no way for the integrals posed to be solved [16] .

Fortunately, there have been tremendous advancements in computational power and

formulations. The following chapter outlines the methodology by which the integral

equations of the preceding mathematical model were solved. Additionally, some of

the techniques for verifying the performance of the model and assessing error, both

numerical and otherwise, are outlined.

3.1 Computation

The solution of the axisymmetric model outlined in section 2.3 relies on the

summing of the integrals constructed from the boundary conditions of the potential

flow and a Green’s function chosen to be representative of a source within the

problem’s constraints. However, the full details of the boundary conditions of the
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potential flow are not known. In particular, it is impossible to know a priori the

shape of the free surface, the height of the tine stream, or the static pressure which

drives and determines flow through the slot. It is possible, however, to approximate

a general form for these boundary conditions which can vary based upon a specific

parameter.

For calculations performed within this thesis the parameter chosen was α, the

flow split, or the ratio of flow through the deflector to total flow. Figure 2.2 outlines

the boundaries that are integrated over and the regions of the flow. The asymptotic

jet boundary and the jet free surface boundary, or the portion of the free surface

distant from the deflector plate, are independent of flow split. For a given flow split

the height of the tine stream is precisely specified and thus the asymptotic tine

stream boundary and the tine stream free surface are also completely determined.

The turning region free surface, or the region of the free surface which connects the

jet free surface and the tine stream free surface, is assumed to be a hyperbola with

end points corresponding to the interior ends of the jet free surface and the tine free

surface, and is thus also determined from a specified flow split. The only remaining

boundary is the deflector plate boundary. The only information necessary for the

solution of the deflector plate boundary is the velocity above the slot. This however

cannot be known without first solving for the full potential by summing the integrals

above, which includes the integral along the deflector plate boundary. Additionally,

the flow split necessary for the other boundaries is, in turn, determined by the total

flow through the deflector plate.

The solution to this problem is an iterative solution method. Figure 3.1 con-
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tains a flow chart which outlines the simplified iterative process by which the correct

potential flow can be solved for. First, the general parameters of the problem, such

as slot area and slot radius are specified. A flow split is than approximated, and

used to inform the boundary integrals. Next the appropriate Green’s function and

gradients are specified. The boundary integrals are then numerically solved to yield

the velocity on the plate. This velocity, coupled with a slot flow coefficient and slot

area allows for the calculation of flow through the slot and thus the calculation of

a new flow split. This flow split then can be used to inform the boundary integrals

again. This process repeats until a convergence is reached.

Figure 3.1: A simplified rendering of the iterative process used to converge upon the true
flow split and potential flow for a given slot configuration (As and Rs).

The result is a potential flow corresponding to a specific axisymmetric scenario

with given slot radius and area. The calculations performed in this thesis were

performed using Wolfram Mathematica. Each boundary integral was calculated

using the NIntegrate function, with specified option of AccuracyGoal = 3, and
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using the Automatic method with SymbolicProcessing=0. NIntegrate is a built in

function within the Mathematica framework which numerically integrates a specified

integral. These methods were chosen to strike a balance between calculation speed

and overall accuracy. The justification for these choices is explored in section 3.3.

3.2 Error Assessment

The results calculated using the model above are for an idealized sprinkler: a

sprinkler completely following potential flow models without the effects of turbulence

or viscosity, one that does not allow for atomization (on the sprinkler deflector itself),

and one that does not correspond to to any existing sprinkler. There are three

possible sources of error in a model such as this. First, errors in the assumptions

of the model relative to the reality of the situation. These errors would be found

through comparison with experiment. Because there is no existing sprinkler with

this ideal geometry described, validation of the model has not been performed.

Second, there are numerical errors associated with numerically evaluating integrals

in the way proposed. Lastly, there is the error introduced by the assumption of the

location of the free surface or of other boundary conditions.This last error is most

likely to manifest in errors of speed along the free surface boundary.

3.2.1 Experimental Error

Some experimental data does in fact exist which explores an axisymmetric jet

impinging upon a normal deflector plate. Experiments performed by Labus [25]
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measured the shape of the free surface of an impinging jet. The experiments were

quite limited in scope however, and do not contain any information regarding the

cases of interest for our experiments, namely the cases where some fraction of the

flow passes through the deflector plate. These results can be compared to the trivial

solution where the flow split, α = 0, but do not provide much insight into the

accuracy of the model in the general case.

Figure 3.2 show the experimental data compared to the predicted solution for

the case mentioned above. Qualitatively strong agreement is seen and a mean per-

centage difference of 5.3% can be calculated between the experimental and predicted

data points. We can expect errors associated with the free surface speed to be of a

comparable magnitude, between 5 - 15%.

Figure 3.2: The experimental data (circles) taken by Labus [25] closely coincides with the
predicted free surface shape for the α = 0 case, with a mean percentage difference of 5.3%.
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3.2.2 Numerical Error

Assessment of the numerical error can be performed through direct compar-

ison of specified fluid potential to calculated fluid potential. This direct compar-

ison method is available in known solutions, namely the limited examples of the

asymptotic tine and asymptotic jet boundaries. By constructing a boundary inte-

gral around the asymptotic jet or asymptotic tine region, and comparing calculated

fluid potential to known fluid potential, the accuracy of the model can be assessed.

These boundary integrals can be considered about the shaded regions indicated in

Fig. 2.2. Potential error is given as

ε =

∣∣∣∣∣φcalc. − φtrueφtrue

∣∣∣∣∣ (3.1)

where φcalc. is the calculated fluid potential and φtrue is the specified fluid potential.

Figure 3.3 shows error, ε, as well as velocity error, εv, mentioned in the follow-

ing section, at a number of points along the centerline of the asymptotic regions.

The velocity potential method of error assessment shows a very low mean error, on

the order of 10−5. This error can be taken as the numerical error inherent in the

method. It is important to note that the error increases dramatically at the bound-

aries themselves as the boundaries are singularities. The low mean value of error

provides verification of the codes ability to evaluate the numerically posed integrals.

Figure 3.4 show the potential flow over a narrow region of the asymptotic jet (a)

and asymptotic tine sheet (b).
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Figure 3.3: The potential error ε for the asymptotic jet (thick solid) and asymptotic tine sheet
(thin solid) as well as the free surface velocity error, εv, for the asymptotic jet(thick dashed)
and asymptotic tine sheet (thin dashed) for a number of points with increasing distance from
the boundary singularity.

3.2.3 Free Surface Speed

In addition to direct comparison of fluid potential, other outputs of the model

can be compared with expected values. The potential flow model necessitates that

the free streamline bounding the upper layer of the water flow must have a constant

velocity magnitude of one. Because the true value of this velocity magnitude is

known, and the velocity magnitude in calculated results can be found, this becomes

the most promising candidate for a general method of assessing model error.

It is important to note however that error calculated based upon the free sur-

face speed will in almost all cases be greater than the error in the velocity potential
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(a) (b)

Figure 3.4: The asymptotic potential in the Jet (a) and Tine Sheet (b) can be numerically
solved for in the same way as the global axisymmetric solution. Error of this numerical solution
can be seen in Fig. 3.3.

as a result of error propagation through the derivative of the velocity function. Here

error can be assessed locally, or as a mean error for the entire free surface.

The velocity error can be given by

εv =

∣∣∣∣∣
√
u2 + v2 − 1

1

∣∣∣∣∣ (3.2)

where u and v are the non-dimensional velocities in the r and z directions, respec-

tively.

Figure 3.3 shows a plot of the true error and velocity error near the free surface

for a number of points along the length of the free surface for both the asymptotic

jet and asymptotic tine stream regions. It can be seen that the velocity error is

substantially higher than the potential error in all cases, on the order of 10−3.

Because this error is calculated for a known case, where all the boundary
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conditions are fully understood, it can also be viewed as a numerical error associated

with the model. Error assessment of the results presented in the next chapter were

performed using the velocity error method.

3.3 Numerical Strategies

The problem as stated uses the sum of several integrals over an infinite domain

to calculate the value of some arbitrary point within that domain. Unfortunately,

these integrals do not have an explicit solution and must be solved numerically.

Further, in order to complete the boundary integral by summing over the entire

domain, the two far boundaries of the jet and tine stream (at r = Rts and z = Zj),

must be solved for at a finite distance. The goal while making these approximations

is to minimize overall error.

First, because the integrals must be solved numerically, the numerical inte-

gration scheme must be chosen appropriately. Mathematica’s NIntegrate function

offers a number of adaptive and non-adaptve schemes. Figure 3.5 shows the true

error in the asymptotic jet case for three integration strategies, “Global Adaptive”,

“Monte Carlo”, and ”Trapezoidal”. ”GlobalAdaptive” reaches the required preci-

sion and accuracy goals of the integral estimate by the recursive bisection of the

subregion with the largest error estimate into two halves and computes the integral

for each half. Mathematica’s default integration strategy, “Global Adaptive”, shows

far and away the lowest error, and is the integration strategy chosen for the work

performed in this thesis. A global adaptive strategy reaches the required precision
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and accuracy goals of the integral estimate by recursive bisection of the subregion

with the largest error estimate into two halves, and computes integral and error

estimates for each half.

Figure 3.5: The true error in the asymptotic jet region for ”Global Adaptive” (thick solid),
”MonteCarloRule” (thick dashed), and ”Trapezoidal” (thin solid) integration methods in Math-
ematica’s NIntegrate function.

The other source of potential error to consider is the impact of the location

of our jet and tine sheet boundaries (at z = Zj and r = Rts) as well as the width

of our asymptotic regions. Figure 3.6 shows the posistion of the bounding surfaces

for the asymptotic regions spanning in the jet from χZj < z < Zj and in the tine

sheet from χRts < r < Rts, where χ is some fraction which defines turning region

span. The boundaries are thus as follows. The asymptotic jet boundary exists at

z = Zj. The asymptotic jet free surface from χZj < z < Zj. The turning region

free surface spans from z = χ ∗ Zj to r = χ ∗ Rts. The asymptotic tine sheet free

surface spans from χRts < r < Rts. The asymptotic tine sheet exists at r = Rts.
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Lastly, the deflector boundary spans from 0 < r < Rts.

Figure 3.6: The asymptotic region definitions adapted from Fig 2.2(b) incorporating the
parameter χ which scales the span of the turning region of the free surface.

Figure 3.7 shows the mean of the velocity error (Eq. 3.2) for a number of cases

for a number of values of Zj and Rts(a) and χ(b). As a result of these calculations,

the values of Zj = Rts = 10.0 and χ = 0.6 were chosen because they produced

the minimum average error. The optimum posistioning here suggests that there

exists an ideal balance between when the asymptotic assumptions hold and when

the turning region assumptions hold. This discussion is continued further in section

4.3.
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(a) (b)

Figure 3.7: Mean velocity error for a number of slot configurations for varying values of
Zj = Rts(a) and χ(b). The combination with the lowest overall error is chosen for numerical
calculations
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Chapter 4: Modeling Results

The following chapter contains the predictions made using the axisymmetric

deflector model outlined in the preceding chapters as well as an error analysis and

justification for the chosen parameters. The result of of calculating a potential flow

for a given set of slot/deflector condition is a complete picture of the flow field on

this deflector. Figure 4.1(a) shows a non-dimensional contour plot of fluid potential

and streamlines over a narrow region near the deflector and the impinging jet. The

potential shown is for the case where As = 0.0 with a resulting flow split of α = 0.0

or a case in which no flow passes through the plate. Figure 4.1(b) highlights the

change in the dominant feature of the potential flow, the free surface shape, and

the dependence upon flow split, α. The shape of the free surface is the dominant

feature in determining pressure along the plate, and thus total flow through a slot

of a given configuration. Figure 4.2 shows the full fluid potential and streamlines

over the bounds on integration for an axisymmetric case with no slot. It should be

noted here that the asymptotic regions extend from r = 6 to r = 10 and from z = 6

to z = 10, and the turning region stretches between these two portions. The choice

of the value Zj = Rts = 10 and χ = 0.6 is explored in Sec. 3.3.

The potential flow results are dependent entirely upon the configuration of the
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(a) (b)

Figure 4.1: Contour plot of non-dimensional fluid potential and stream lines for an axisym-
metric deflector (a) and free surface shape for α = 0.0, 0.5, and 1.0 (b), respectively, from top
to bottom.

slot, or the non-dimensional values of As and Rs.

4.1 Flow Split Predictions

The flow split, α, has been mentioned a number of times throughout this

thesis but its importance bares reiterating. To begin, the flow split is among the

most telling individual numbers when we discuss characterization of a sprinkler head.

The flow split is the fraction of water which passes through the deflector relative

to the total flow of the deflector. Put another way, the flow split characterizes the

fraction of water that is thrown “mostly downward”, the water that makes up the

bulk of a sprinklers momentum, and the water delivered to the protected space

immediately beneath the sprinkler head. The complement of the flow split, (1−α),

in turn characterizes the water that is thrown outward, the fraction of the flow which
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Figure 4.2: Contour plot of non-dimensional fluid potential and stream lines for an axisym-
metric deflector with no slot (α = 0.0). The asymptotic region extend from r = 6 to r = 10
and from z = 6 to z = 10, and the turning region stretches between these two portions .

does little for a sprinklers total momentum, and the water that is spread to cover the

full range of the sprinkler spray. In a simplistic deflector, such as the axisymmetric

sprinkler that has been discussed, the flow split (paired with the total flow rate and

orifice size) is enough to completely characterize the sheet thickness and velocity

for the fluid sheets leaving the deflector. This information in turn is sufficient to
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predict drop size, drop distribution [2], and in effect all of the information necessary

to completely characterize sprinkler spray.

Further, flow split is the number we have iterated over, and converged upon,

within our axisymmetric model. It makes sense then to look at the impact of flow

split on our model and the impact of the model parameters on the calculated flow

split. The axisymmetric model allows slot parameters to be changed and explores

the impact of Rs, the slot radius and As, the slot area. Figure 4.3(b) shows the

impact of varying these parameters on flow split. It can be observed that as the

area of the slot increases, so too does the flow split. This is expected as a greater

portion of the slot is capable of flowing through a larger gap. As the slot radius

increases the flow split decreases, meaning a greater portion of the flow is deflected

by the deflector. When we look at the static pressure, ps, along the deflector plate,

as in Fig. 4.3(a), this too makes sense. Figure 4.3(a) shows the non-dimensional

static pressure (a maximum value of 1) at the deflector plate vs. radius for flat plate

with no slot. As we move radially outwards along the deflector plate we see the

static pressure, or the ability of the flow to force flow through the slot, decreases.

These resultant dependencies provide insight into the impact of these two

critical parameters, area and radius of the slots, on the performance of a sprinkler

head. Further insight can be gained by examining the formula for calculating the

flow split. Flow split, α = CdvslotAs. Cd is a function of the small slot assumption,

and is always a constant value of approximately 0.61. The area of the slot, As,

serves as an additional weighting factor. The normal velocity to the slot, vslot,

is determined entirely by the location of the slot geometry. Because of the small
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(a) (b)

Figure 4.3: The calculated static pressure along the plate (a) for a case with no slot (solid line)
and a slot at Rs = 2 (dashed line) and the flow splits resulting from various slot configurations
(b) with As = 1.0, 0.5, and 0.1, respectively from top to bottom.

slot assumptions, vslot is not change dramatically for differing slot areas. This can

be seen in Fig. 4.4, which shows the flow split normalized by area for the three

different slot areas. The flow split for any given slot radius, Rs, is approximately

equal regardless of slot area, As. Slot normal velocity, vslot, must range between 0

and 1, within the non-dimensional formulation. Consequently, flow split is bounded

between 0 and CdAs.

4.2 Fluid Sheet Predictions

The key output of the sheet formation model are the thicknesses and trajecto-

ries of the tine and slot sheets. These quantities provide the necessary input to the
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Figure 4.4: The calculated value of flow split, α, normalized by slot area, As, with each curve
representing different slot areas. Because α = CdvslotAs, and vslot must vary between 0 and
1, the flow split normalized by slot area varies between 0 and Cd.

sheet breakup and fragment transport model which serve to describe the remainder

of the sprinkler behavior. Equations 2.15 and 2.16 describe the thickness of the tine

sheet and the slot sheet, respectively.

Figure 4.5 shows the behavior of the slot and tine sheet relative to slot radius,

Rs, and deflector radius, RD, respectively, for a few flow splits.Slot sheets are shown

in black while tine sheets are shown in red. The thick line, the dashed line, and the

thin line correspond to flow splits of α = 0.2, 0.4, and 0.6, respectively. Figure 4.5a

shows the behavior of the sheet thicknesses, Ts and Tt. For both slot and tine sheet

sheet thickness decreases with increasing slot and deflector plate radius. As flow

split, α, increases, the slot sheet thickness increases and the tine sheet thickness
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decreases. Figure 4.5b shows the behavior of sheet trajectory, θs and θt. For the slot

sheets, sheet trajectory is the same regardless of flow split. These trajectories vary

from 155◦ measured from the north pole of the sprinkler to 115◦. The tine sheet

trajectories are at much more shallow angles relative to the plate, all only slightly

more than 90◦, or approximately horizontal.

(a) (b)

Figure 4.5: The slot and tine sheet relative to slot radius, Rs, and deflector radius, RD,
respectively, for a few flow splits.Slot sheets are shown in black while tine sheets are shown in
red. The thick line, the dashed line, and the thin line correspond to flow splits of α = 0.2,
0.4, and 0.6, respectively.

4.3 Error

Assessing the error in the model presented is a slight challenge, as discussed in

section 3.2. It is obvious from visual inspection of the potential flow and the stream
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lines in Fig. 4.1(a) that there are some minor errors. In the figure there are stream

lines that cross in and out of the free surface, indication of an incorrect free surface

shape. The direct measurement of this error is not available in the full axisymmetric

mode because the exact potential function of the flow is the same unknown we are

solving for.

The alternate method of error assessment that we instead turn to is the mag-

nitude of error in the free stream velocity magnitude. This error is calculated at

a number of points using equation 3.2 and is then presented as a mean value rep-

resenting an approximated average error for the particular case. Figure 4.6 show

the mean error calculated in this manor for a number of calculated cases, and is

compared to the flow split. The mean error for all of the cases is approximately 7%,

in the range predicted suggested earlier stemming from free surface shape.

There are a number of potential sources of error in the axisymmetric model.

Numerical error inherent in the numerical calculation of the integrals was discussed

in section 3.2 and is substantially smaller than the value of error calculated above.

As a result, it is reasonable to attribute the error not to the numerical solution

method, but rather to errors in the specified boundary conditions.

The most likely candidate is the shape of the free surface. This is the boundary

condition about which we have the least information and which has the strongest

impact on the total potential behavior. Figure 3.2 also highlights the discrepancy

between the prescribed and experimentally calculate free-surface shape. This error

is minor, but has a mean error on the same order as the error calculated in all cases

using the free stream velocity magnitude method.
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Figure 4.6: The calculated value of error along the free surface vs the flow split for a number
of axisymmetric cases.

Another potential source of error stems from the slot flow coefficients. The

small slot assumptions break down in limiting cases, and may cause predicted flow

splits to differ from true flow splits.

A last source of error comes from the break down of the asymptotic tine sheet

solution in extreme cases. For cases of low flow split, where most of the water does

not pass through the plate, we would expect the tine sheet to converge upon its

asymptotic behavior only at very large radii.

On the whole, the error calculated in this manner is minor. A true error, or

deviation from actual behavior, requires experimental validation. A summary of,

the implications of, and future work for, this model follow.
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Chapter 5: Conclusions and Future Work

The mathematical model presented above provides a method for determining

the free surface flow field on a perforated deflector plate. By posing the flow im-

pinging on the sprinkler as a potential flow boundary value problem, and applying

appropriate boundary conditions and selected Green’s functions, the fluid-gas inter-

face location can be determined along with the full deflector flow field. The general

nature of this method provides the capability to capture all of the essential features

of complex geometries found in typical fire sprinklers, at a fraction of the computa-

tional cost of a traditional CFD calculation. This reduction in computataional cost

allows the quick exploration of the governing parameters for fire sprinkler head flow.

The hypothetical axisymmetric case explored in this study exemplifies the

impact of geometric details of the sprinkler (and their associated boundary values)

on the deflector flow. Specifically, the impact of slot area and slot centroid radius on

the sprinkler head flow split was demonstrated in this study, as well as the impact

of this geometry on fluid sheet thickness and trajectory. This flow split is critical

as the sheet topology (i.e. location, thickness, and velocity), which governs initial

spray details, is completely determined from this quantity. The model developed

in this study is capable of capturing this fundamental sheet formation behavior
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quantitatively with only minimal computational burden.

The potential to completely predict fire sprinkler sprays opens the door for

large advancements. If sprinkler sprays can be predicted, than sprinklers can be

designed rather than just tested. If sprinkler sprays can be predicted, than models

can account for the impact of sprinkler spray performance. Predicting sprinkler

performance is a large piece in the fire protection engineering puzzle and predicting

the impingement of a jet on a sprinkler head is a large portion of prediciting sprinkler

performance. The sprinkler head deflector flow model is an essential component

of a high-fidelity modeling framework capable of completely describing the initial

sprinkler spray.

Further work on this problem includes additional model development, the

expansion to capture the periodic geometry (i.e. tines and slots) typical of real fire

sprinklers, experimental validation, and incorporation into the complete sprinkler

model as outlined in Fig. 1.1.

A large amount of future work is required to expand this model into a useful

component of sprinkler design. To begin, large improvements in error could be ex-

pected with the incorporation of an adaptive free surface shape model. The present

model for free surface shape is only a first order approximation. By adapting the

free surface shape to reflect calculated conditions the total potential flow predictions

could be dramatically improved. An adaptive shape for the free surface is also a

necessary component to a three dimensional version of the sprinkler deflector model.

A typical fire sprinkler head has a periodic geometry of slots and tines that is not

well represented by the ring slot formulation explored above. An expansion to three
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dimesions would improve the usefulness of the entire model.

Validation, in addition the the verifcation performed in section 3.2, would be

useful for affirming the results of the presented model. Experimental measurement

of a ring slot sprinkler could serve to lend further insight into the shape of the free

surface, the deviation from potential flow, as well as measurements of flow splits for

a number of slot configurations.

Lastly, the sprinkler deflector model is merely the first portion of a complete

model. The flow splits and sheet characteristics determined by deflector models are

an essential component to determining droplet size within the sheet breakup model

and fragment distribution in the fragment transport model. With a complete model

of sprinkler behavior, further insight into sprinkler design and sprinkler performance

can be gained.
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