ABSTRACT

Title of Document: Investigating the mechanism of the hydrogen peroxide photoproduction from chromophoric dissolved organic matter

Yi Zhang, Doctor of Philosophy, 2014

Directed By: Professor Neil Blough
Department of Chemistry

The photochemical pathways for \(H_2O_2 \) production from chromophore dissolved organic matter (CDOM) were investigated extensively, employing in part a selective sodium borohydride reduction method to examine the structural basis of the \(H_2O_2 \) formation. Estimates of the lifetime of possible \(H_2O_2 \) precursor(s) have been acquired by examining the dependence of \(H_2O_2 \) production rates on dioxygen concentration. The results suggest that \(H_2O_2 \) arises from intramolecular electron transfer from an excited singlet donor to a ground-state acceptor. Possible donors include substituted phenols, while possible acceptors included quinones, which unlike ketones/aldehydes are not irreversibly reduced by borohydride.

The relationship between the rate of \(H_2O_2 \) formation and the rate of formation of reducing intermediate(s) upon irradiation of CDOM was thoroughly investigated employing a molecular probe. The results obtained from the dependence of dioxygen concentration and wavelength indicate that approximate 90% of produced one-electron reducing intermediates is converted to superoxide. The stoichiometric ratio between the \(H_2O_2 \) and total reducing radicals suggests that 67% of the photochemically produced superoxide decays through oxidant sinks other than dismutation to \(H_2O_2 \).
The effect of adding external phenol electron donors on the H$_2$O$_2$ production rate was also examined. Substantially enhanced rates of H$_2$O$_2$ production were observed, which were substantially inhibited by borohydride reduction (40-50%), similar to the loss of TMP previously reported. In addition, H$_2$O$_2$ production rate increased as the dioxygen concentration decreased, consistent with reaction with a triplet state intermediate. The results all indicate that an additional pathway of H$_2$O$_2$ formation is introduced in the presence of sufficiently high concentrations of electron donors. Reaction between the phenol electron donors and the excited triplet states of aromatic ketones/aldehydes yields a ketyl radical that subsequently react with O$_2$ to form O$_2^-$ and then H$_2$O$_2$. The enhancement generally follows the reduction potential of the added phenols, as DMOP> MOP> PHE, with the exception of TMP. In the case of TMP, secondary radical reactions could be the cause of this difference.
INVESTIGATING THE MECHANISM OF THE HYDROGEN PEROXIDE PHOTOPRODUCTION FROM CHROMOPHORIC DISSOLVED ORGANIC MATTER

By

Yi Zhang

Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park, in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2014

Advisory Committee:
Professor Neil V. Blough, Chair/Advisor
Professor Catherine Fenselau
Professor Daniel E. Falvey
Professor Alice C. Mignerey
Professor Karen L. Prestegaard
Dedication

To my beloved family

Especially to my Dear Uncle Professor Cao, Liezhao for being standing behind me all the time

Wish you could see this from heaven
Acknowledgements

I would like to sincerely thank my advisor, Professor Neil V. Blough for his guidance, patience, encouragement, and support through my graduate career. From him, I have learned not only science knowledge, problem solving skills, but also methods of critical thinking, manner of preciseness, quality of patience and the most importantly, the spirit of pursuing for the truths, all of which will be truly valuable for my future career.

My sincere appreciation extends to my advisory committee members, Dr. Daniel Falvey, Dr. Catherine Fenselau, Professor Alice C. Mignerey and Professor Karen L. Prestegaard for their assistance and time.

I’d like to express my thanks to Dr. Mohamad Al-Sheikhly at the Department of Materials Science and Engineering, from whom I received help utilizing the Electron Paramagnetic Resonance to solve difficulties in my research.

I also would like to thank my friends and colleagues in the Blough research group, Dr. Rossana Del Vecchio, Dr. Jiahai Ma, Dr. Min Jia, Dr. Lynne Heighton, Andrea Andrew, Kelli Skioriski, Dan Baluha, Tara Schendorf, and Kevin Khoech for all the inspiring research discussions, as important as all those little causal talks keeping me fresh and alive. It meant everything for me always having your companies and supports around.

I thank my life mentor Professor Yuan Hu at USTC, China. Your excellent wisdom and generosity walk me through all the difficulties not only for my research, but life.

I thank my family and all my friends for their love and support. Thank you mother, your love and encouragement are my driving forces. This Ph. D is as much as yours as it is mine.
Table of Contents

Dedication .. ii
Acknowledgements ... iii
Table of Contents ... iv
List of Tables .. vii
List of Figures ... ix
List of Schemes ... xiv
List of Abbreviations .. xv

Chapter 1: Introduction ... 1
 1.1 Chromophoric dissolved organic matter (CDOM) .. 3
 1.2 CDOM optical properties and their structural basis ... 5
 1.3 CDOM photochemistry and its related structural basis 9
 1.4 Proposed H$_2$O$_2$ production pathways though photolysis of CDOM 13
 1.5 Detection methods for ROS ... 17
 1.5.1 Detection of H$_2$O$_2$.. 17
 1.5.2: Detection of photoproduced radicals capable of reducing O$_2$ to O$_2^-$ 19
 1.6 Purpose of This Study ... 22

Chapter 2: Investigating precursors for H$_2$O$_2$ production from photochemical reaction of CDOM .. 25
 2.1 Introduction ... 25
 2.2 Materials and Method ... 27
 2.2.1 Chemicals ... 27
 2.2.2 Experiment apparatus .. 29
 2.2.3 Borohydride reduction .. 31
 2.2.4 Hydrogen peroxide photoproduction rates (HPPR) 31
 2.2.5 Apparent monochromatic and polychromatic quantum yields 33
 2.3 Results .. 35
2.3.1 Borohydride reduction ... 35
2.3.2 Effect of borohydride reduction on HPPR and apparent quantum yields ... 36
2.3.3 Effect of dioxygen concentration on HPPR 41
2.3.4 Effect of triplet quenchers .. 48
2.4 Discussion ... 52

Chapter 3: Molecular probe measurements of the photochemical production of one electron reducing intermediates from chromophore dissolved organic matter: relation to H₂O₂ photochemical production ... 54
3.1 Introduction ... 54
3.2 Materials and Methods ... 59
 3.2.1 Chemicals .. 59
 3.2.2 Experiment Apparatus ... 59
 3.2.3 Detection of photoreductants ... 60
 3.2.4 Determination of the formation rates of photoreductants from HS 65
3.3 Results ... 66
 3.3.1 Detection of hydroxylamine formation 66
 3.3.2 Dependence of R_H on [O₂] ... 70
 3.3.3 Comparison between hydroxylamine and H₂O₂ formation rates and quantum yields .. 72
 3.3.5 Effect of borohydride reduction on R_H 76
3.4 Discussion ... 76

Chapter 4: Addition of Phenol Electron Donors Substantially Enhances the Rates of Hydrogen Peroxide Photoproduction by Humic Substances ... 78
4.1 Introduction ... 78
4.2 Materials and Method .. 80
 4.2.1 Chemicals .. 80
 4.2.2 Determination of hydrogen peroxide photoproduction rates (R_H₂O₂) and apparent quantum yields ... 81
4.3 Results ... 83
4.3.1 H$_2$O$_2$ enhancement by addition of TMP ..83
4.3.2 Oxygen dependence ..92

Chapter 5: Summary and Future Directions ..97
 5.1 Summary ...97
 5.2 Future work ...99

Appendix 1 ..101
Appendix 2 ..104
Bibliography ..106
List of Tables

Table 2-1: Values of specific absorbance coefficient at 350 nm (a*(350)), spectral slope (S) for unaltered and borohydride-reduced SRFA, SRHA, LAC* and C18 extracts from fresh water (FW) and shelf station (SS) from the Delaware Bay and Mid-Atlantic Bight... 30

Table 2-2: Polychromatic H2O2 quantum yields (ϕ) and difference quantum yield (Δϕ) for untreated and borohydride reduced LAC, SRHA, SRFA, and C-18 extracts from the Fresh Water and Shelf Stations. Rcx is the rate of light excitation, HPPR uncertainties were standard derivation from triplet measurements and ϕ uncertainties were propagated from determination of HPPR... 40

Table 2-3: Parameters obtained from fits of the data in Fig.2-5 to the expression. HPPR = aO2b + O2, where a (= kf) and b (=kdkO2). Lifetime of the intermediate is given by, τ =1kd = 1b×kO2, where kO2 is assumed to be1×10⁹ M⁻¹S⁻¹ (see text). Other conditions are as in Figure. 2-5... 44

Table 2-4: Hydrogen peroxide concentration and reacted 3apf measured after irradiation for SRFA, SRHA, LAC* and the Fresh Water station for 15 min under anaerobic condition.. 45

Table 3-1: Parameters obtained from fits of the data in Fig. 3-6 to the expression of RH = A3apB + 3ap, A = Rf, B= kO2O2 + kdk3ap... 69

Table 3-2: Slopes and kO2/k3ap values obtained from fits of the data in Fig. 3-7. 72

Table 3-3: Comparison of the RH with RH2O2 under monochromatic irradiation. RH and RH2O2 were obtained under the same irradiation conditions in the presence of 600 µM 3ap. Ratio represents RH/RH2O2. RH was obtained under anaerobic conditions while RH2O2 obtained in the presence of 250 µM O2... 73
Table 3- 4: Polychromatic quantum yield for humic samples and the quantum yields ratio between produced hydroxylmine and H$_2$O$_2$. STD stands for standard derivation acquired from three times measurement. ... 75

Table 3- 5: Effect of 500 mM NaCl on anaerobic hydroxylamine production rate for 10 mg/L SRFA spiked with [3ap].. 75

Table 4-1: Wavelength dependence of the slope (S), intercept, slope ratio and % inhibition by borohydride reduction (% I) acquired from linear regressions of the data in Fig. 4-1 for untreated SRFA (Su) and borohydride-reduced SRFA (Sr)............... 85

Table 4- 2: H$_2$O$_2$ polychromatic quantum yields for HS only (Φ_0) and for that in the presence of Phenols (Φ_p). Y_0 is the value of R_{H2O2} in the absence of the phenols at $[O_2]$ = 250 µM. Rex is the rate of light excitation. Φ_0 obtained from fitting value y_0. %I is the inhibition of enhancement due to borohydride reduction. EF is the enhance factor. Φ_p, which were obtained from $\phi_0 \times EF$. .. 90
List of Figure

Figure 1- 1: Proposed electronic interactions between electron donor (hydroxyl-aromatic moieties) and acceptors (A) within partially oxidized lignin fragment 4

Figure 1- 2: Proposed CT model for CDOM absorption. The shorter wavelength (<350 nm) is caused by sum of absorption of individual chromophores with the longer wavelength absorption tail (>350 nm) caused by the charge transfer interaction between donor-acceptor chromophores that produce the lower energy charge transfer bands. ... 8

Figure 1- 3: Possible redox reactions of quinone moieties with O$_2$ and O$_2^-$. Possible reactions depend on the structure and the reductant potentials of the quinone and semiquinone species... 11

Figure 1- 4: Chemiluminescence reactions of acridium etser with hydrogen peroxide. (Adopted from King, D.W.)100 ... 18

Figure 1- 5: Hydroxylamine formation via reaction of the nitroxide with photochemically generated one electron reducing-intermediates from CDOM........ 21

Figure 1- 6: Fluorescence change upon the nitroxide reaction with fluorescamine ... 22

Figure 2- 1: Absorption spectra of untreated and borohydride–reduced SRFA, SRHA, LAC* and C 18 extracts of Fresh Water (FW), Shelf Station (SS) obtained from Delaware Bay and Mid-Atlantic Bight. Samples are in phosphate buffer pH=7. SRFA, SRHA concentrations were 10mg L$^{-1}$. FW, SS and LAC* spectra are matched up with SRFA @350nm.. 28

Figure 2- 2: R(λ) for untreated and borohydride–reduced SRFA, SRHA, LAC* and C-18 extracts for the Fresh Water and Shelf Station (SS). Samples were in 0.01 M phosphate buffer pH=7. ... 34
Figure 2- 3: Wavelength dependence of the H$_2$O$_2$ production rate (HPPR) for untreated () and borohydride reduced () SRFA, SRHA, and C-18 extracts from the Fresh Water and Shelf Station at equivalent mass concentration (10 mg/L for SRFA and SRHA, TOC as 3.6 and 10.68 for the Fresh Water and Shelf Stations. All samples were in 10 mM phosphate buffer, pH =7.0)... 37

Figure 2- 4: Apparent monochromatic H$_2$O$_2$ quantum yields (ϕ) and difference quantum yields (Δϕ) () for untreated () and borohydride-reduced () 38

Figure 2- 5: Dependence of HPPR on dioxygen concentration for untreated () and borohydride-reduced () SRFA, SRHA, LAC* and the C-18 extract from Fresh Water station using the polychromatic source. The irradiance for LAC* and SRFA was lower than that for SRHA and the Fresh Water station.................................. 42

Figure 2- 6: The time dependence of 3apf fluorescence increase (ΔF= F(t)- F(0)) following the anaerobic addition of 3apf to SRFA, SRHA, LAC*, and the Fresh Water station, which had been previously irradiated for 15 min under anaerobic conditions. F(0) represents fluorescence of the 3apf and sample prior to irradiation, while F(t) is the fluorescence observed following addition of 3apf to the irradiated samples under anaerobic conditions (left panels). In control experiments (right panels), air was introduced for 2 mins prior to the addition of 3apf to the anaerobically-irradiated samples. ... 47

Figure 2- 7: Effects of sorbic acid (0 mM (),1mM () ; 5 mM ()) on H$_2$O$_2$ photo-production for untreated and borohydride reduced SRFA and SRHA under aerobic conditions employing the polychromatic source 49

Figure 2- 8: Effects of triplet quencher Cl (500mMCl-) and Br- (500mM) on H$_2$O$_2$ aerobic photo-production for untreated and borohydride-reduced SRFA
under aerobic conditions using the polychromatic source, () is the control without triplet quenchers .. 51

Figure 3- 1: Hydroxylamine formation via reaction of the nitrooxide with photochemically-generated one electron reducing-intermediates within CDOM 57

Figure 3- 2: Fluorescence change upon the nitrooxide reaction with fluorescamine ... 57

Figure 3- 3: EPR spectra of 3cp (top) and 3ap (bottom) (left panel) and the calibration curves constructed from the normalized double integral value (DI/N) (right panel). Both concentration of 3cp and 3ap were first determined from mass base. Because 3cp can be readily dried while 3ap is highly hydroscopic, 3cp was used as a primary standard. The 3ap concentration was then determined by DI/N comparison with the 3cp calibration .. 62

Figure 3- 4: HPLC chromatography of hydroxylamine production upon dithionite titration (left panel) and hydroxylamine calibration curves constructed from peak height (right panel). Top panels provide the chromatograms and calibration curve using dithionite as limiting reaction reagent, and the bottom panels from using 3ap as limiting reagent. ... 64

Figure 3- 5: Increase in hydroxylamine following irradiation of an anaerobic solution containing 10 mg/L SRFA and 600 µM 3ap. Left: black, before irradiation, red after 15 min irradiation. Right: Increase in RH with increasing [3ap] for 10 mg/L SRFA employing a 15 min anaerobic irradiation ... 66

Figure 3- 6: Dependence of RH (nM/s) on [3ap] for 5mg/L and 10 mg/L SRFA, SRHA and their corresponding borohydride reduced samples 67

Figure 3- 7: Dependence of RH on [O2] in the presence of 600 µM 3ap............... 70
Figure 3-8: Dependence of the ratio R_f/R_H on $[O_2]$ for untreated and reduced SRFA and SRHA in the presence of 600µM 3ap. ... 71

Figure 4-1: Wavelength dependence of $R_{H_2O_2}$ in the absence and presence of increasing [TMP] for untreated (black) and borohydride-reduced (red) SRFA. Samples were irradiated with a polychromatic source employing long-pass filters (325, 355 and 385 nm). Samples contained 10 mg/L SRFA in 10 mM phosphate buffer, pH =7.0. Error bars represent the standard derivation acquired from at least three measurements.. 84

Figure 4-2: Dependence of $R_{H_2O_2}$ on phenol concentration in air ([O$_2$] =250 µM) for untreated (•) and borohydride-reduced (○) SRFA, SRHA, and the C-18 extract from Lower Delaware Bay station using the polychromatic source. Error bars represent the standard derivation acquired from at least three measurements for SRFA SRHA and lower Bay sample. ... 87

Figure 4-3: Values (y_0, A and B) from the fits of the data from Fig. 4-2 using kinetic equation: $y=y_0+Ax/(B+x)$. y_0 stands for the $R_{H_2O_2}$ in the absence of phenols. A stands for the enhanced $R_{H_2O_2}$ in the presence of [phenol]; B is the concentration of phenol at which $R_{H_2O_2}$ reaches half its maximal value. Left panel: A (black; untreated, red; reduced) and y_0 (green; untreated, yellow; reduced). Right panel: B values (black; untreated, red; reduced). Errors are obtained from Fig. 4-2. ... 89

Figure 4-4: Dependence of $R_{H_2O_2}$ on dioxygen concentration for untreated (Black) and borohydride-reduce (Red) SRFA at the presence of 100 µM TMP using the polychromatic source. Controls: Green and yellow lines are $R_{H_2O_2}$ for SRFA and reduced SRFA respectively in the absence of TMP. ... 93

Figure 4-5: Dependence of $R_{H_2O_2}$ at fixed [TMP]= 100 µM for both untreated and borohydride reduced SRFA, SRHA, Lower Bay samples. Data were fit to the
equation 4-9 employing a nonlinear least-squares fitting routine using fixed values of

\[k_T = 6.6 \times 10^4 \text{ s}^{-1}; \quad k_Q = 2.0 \times 10^9 \text{ M}^{-1}\text{s}^{-1}; \quad k_{\text{TMP}} = 2.5 \times 10^9 \text{ M}^{-1}\text{s}^{-1}. \]
List of Scheme

Scheme 1- 1: Proposed CDOM primary and secondary photochemical reactions of CDOM. (Adapted from Sharpless and Blough)64 ... 10

Scheme 1- 2: The reactions (Rxn 2-6) from proposed precursors for superoxide and hydrogen peroxide formation86. 1CDOM* and 3CDOM* represent excited singlet and triplet states, respectively, of either electron donors (D) or acceptors (A) within the CDOM, while CDOM± represents a charge-separated species (D+A−) formed by electron transfer from a donor to an acceptor, and 1CDOM± represents the charge transfer states. ... 14

Scheme 1- 3: Possible superoxide and hydrogen peroxide production pathways in the presence of iron .. 16

Scheme 1- 4: Comparison between the reactions of nitroxides and O\textsubscript{2} with excited states and radicals. From reference 103.101 ... 20

Scheme 2- 1: The proposed precursors and reactions (Rxn 2-6) for superoxide and hydrogen peroxide formation86 .. 26

Scheme 3- 1: Comparison between the reactions of nitroxides and O\textsubscript{2} with excited states and radicals. From reference 103 .. 56
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOM</td>
<td>dissolved organic matter</td>
</tr>
<tr>
<td>CDOM</td>
<td>chromophoric dissolved organic matter</td>
</tr>
<tr>
<td>HS</td>
<td>humic substance</td>
</tr>
<tr>
<td>SRFA</td>
<td>Suwannee River Fulvic Acid</td>
</tr>
<tr>
<td>SRHA</td>
<td>Suwannee River Humic Acid</td>
</tr>
<tr>
<td>LAC</td>
<td>lignin, alkali-treated, carboxylated</td>
</tr>
<tr>
<td>LAC*</td>
<td>fraction of LAC having some retention time with SRFA</td>
</tr>
<tr>
<td>FW</td>
<td>fresh water</td>
</tr>
<tr>
<td>SS</td>
<td>shelf station</td>
</tr>
<tr>
<td>LB</td>
<td>lower bay</td>
</tr>
<tr>
<td>P</td>
<td>external electron donor</td>
</tr>
<tr>
<td>PHE</td>
<td>phenol</td>
</tr>
<tr>
<td>MOP</td>
<td>4-methoxyphenol</td>
</tr>
<tr>
<td>DMOP</td>
<td>3,4-dimethoxyphenol</td>
</tr>
<tr>
<td>TMP</td>
<td>2,4,6-trimethyphenol</td>
</tr>
<tr>
<td>EI</td>
<td>electronic interaction model</td>
</tr>
<tr>
<td>CT</td>
<td>charge transfer model</td>
</tr>
<tr>
<td>LMCT</td>
<td>ligand to metal charge transfer</td>
</tr>
<tr>
<td>SMIR</td>
<td>superoxide-mediated iron reduction</td>
</tr>
<tr>
<td>FIA</td>
<td>flow injection analysis</td>
</tr>
<tr>
<td>HPLC</td>
<td>high pressure liquid chromatography</td>
</tr>
<tr>
<td>EPR</td>
<td>electron paramagnetic resonance</td>
</tr>
</tbody>
</table>
DI/N normalized double integral
STD standard derivation
SOD superoxide dismutase
AE acridinium carboxlate trifluoromethane sulfonate
3ap 3-aminomethyl-2,2,5,5,-tetramethy-1-pyrrolydinyloxy
3apf fluorescamine derivatized 3ap
3cp 3-carbamoyl--2,2,5,5,-tetramethy-1-pyrrolydinyloxy
DMSO dimethyl sulfoxide
Br⁻ bromide ion
Cl⁻ chloride ion
φ apparent quantum yield
Δφ difference apparent quantum yield
R_{ex} rate of light excitation
I(λ) irradiance at wavelength λ
a(λ) absorbance coefficient
a*(λ) specific absorbance coefficient
HPPR hydrogen peroxide production rate
R_{H} hydroxylamine production rate
R_{H2O2} hydrogen peroxide production rate
k_{O2} rate constant for reaction with dioxygen
R_{f}(k_f) rate constant for intermediates formation
k_d(k_i) rate constant for relaxation to ground state
k_{3ap} rate constant for reaction with 3ap
PO$_2^-$ percentage of superoxide decay via other oxidation pathway
kp rate constant for physical quenching of triplet with external donor
kc rate constant for chemical quenching of triplet by external donor
k$_Q$ rate constant for quenching of triplet by dioxygen
krec rate constant for recombination of radical species
krxn rate constant for reaction to form products
ROS reactive oxygen species
1O$_2$ singlet oxygen
O$_2^-$ superoxide
H$_2$O$_2$ hydrogen peroxide
RO$_2$ peroxo radical
-OH hydroxyl radical
e$^-$ hydrated electron
1CDOM$^{\pm}$ CT states
CDOM$^{+/-}$ charge separated state
1CDOM* excited singlet state
3CDOM* excited triplet state
CDOM$^\cdot$ CDOM radical
Chapter 1: Introduction

Hydrogen peroxide (H_2O_2), one of the most common reactive oxygen species (ROS) formed in aquatic systems, is known to initiate radical/redox reactions either as an oxidant or a reductant. Using a sensitive scopoletin-peroxidase based fluorescence method, hydrogen peroxide in seawater was first reported in 1966 by Van Baalen and Marler. Later, the occurrence and concentration of H_2O_2 have been investigated extensively in rainwater, coastal and open-ocean waters, freshwaters and ground waters. Its ubiquitous presence in the aquatic environment can have substantial impacts on aquatic ecosystems, including: 1) influencing the cycling of carbon, sulfur, nitrogen within the hydrosphere, 2) altering biological accessibility of the trace metals, 3) removing aquatic pollutants and 4) converting pollutants into more toxic substance.

Because of its relatively small degradation rates (biological and the metal-mediated redox reactions) as compared with its larger photo-production rates, H_2O_2 usually accumulates to relatively high steady-state concentrations (nM in seawaters and µM in freshwaters), and is thus widely employed as an indicator of the photochemical reactivity of chromophoric dissolved organic matter (CDOM) within natural waters. The significant impact of H_2O_2 on the chemistry of natural water has lead to many studies over the past three decades, with great deal of effort devoted to understanding the mechanisms of its photochemical production in natural waters.

The fact that H_2O_2 in natural waters increases dramatically after brief exposure to sunlight indicates that this species is primarily produced through photochemical reactions of the light-absorbing component of dissolved organic
matter (DOM), known as chromophoric dissolved organic matter (CDOM).17,19 Observed linear correlations between the level of detected H$_2$O$_2$ and the CDOM absorbance provided evidence that photochemical reactions of CDOM are a primary source of H$_2$O$_2$.20,21,17 Other, more minor contributions have been found from such sources as wet deposition22,23 and microbial production.24,25 However, the nature of the photo-produced intermediates that reduces the dioxygen to form H$_2$O$_2$ is still an open question. A thorough understanding of the mechanism(s) of H$_2$O$_2$ photoproduction by CDOM in aquatic systems is essential.

In this thesis, H$_2$O$_2$ photochemical generation pathways from CDOM are thoroughly investigated. The structural basis for H$_2$O$_2$ photoproduction by CDOM is proposed, in which the CDOM photochemical properties and their relation to CDOM optical properties were examined by a selective chemical reduction method. To obtain a better understanding of the nature of the H$_2$O$_2$ precursors, the lifetimes of the intermediates were examined by measuring the [O$_2$] dependence of H$_2$O$_2$ production rates. A molecular probe for detecting radical/reducing intermediates was employed to estimate the production rates of the reducing intermediates acting as dioxygen reductants. The ratio between the levels of the detected one-electron reducing intermediates to photoproduced H$_2$O$_2$ was examined to investigate the overall stoichiometry between the production of radical/reducing intermediates and the formation of H$_2$O$_2$. The effects of adding external phenol electron donors on H$_2$O$_2$ production rates were further examined.
1.1 Chromophoric dissolved organic matter (CDOM)

CDOM, also known as gelbstoff or yellow substance, is the light absorbing and emitting component of bulk dissolved organic matter (DOM).\(^{26}\) It is a complex mixture of organic compounds formed via the degradation of terrestrial plant materials (primarily lignins, polyphenols, and tannins) and from aquatic sources.\(^{27,28}\) In fresh and coastal waters, terrestrially-derived humic substances (fulvic and humic acids) are thought to be the dominant CDOM component,\(^{29}\) flowing through rivers and estuaries into coastal shelves and then open oceans.\(^{30,31}\) Upon light absorption, the light absorbing moieties within CDOM serve as good shuttles, transferring either energy or electrons to the dissolved dioxygen to form reactive oxygen species (ROS),\(^{32-34}\) such as singlet oxygen (\(^{1}\text{O}_2\), energy transfer\(^{35}\)) or superoxide (\(\text{O}_2^{-}\), electron transfer\(^{36}\)). CDOM photolysis can also act to degrade refractory organic pollutants,\(^{37-39}\) to mediate trace metal redox reactions,\(^{40}\) and to degrade into inorganic carbon thus influencing the carbon cycle.\(^{41-43}\)

To gain a better understanding of structural basis of the photochemical reactions of CDOM, numerous spectroscopic techniques have been employed to probe the CDOM structures at molecular level, including pyrolysis-mass spectrometry, high and ultrahigh-resolution mass spectroscopy, \(^{13}\)C nuclear magnetic resonance spectroscopy, electron spin resonance spectroscopy, acidimetric titration, and electrochemistry.\(^{44-54}\) The results reveal that CDOM contains a diverse set of organic moieties including carboxylic acids and substituted phenols, aromatic ketones/aldehydes, quinones, carbohydrates, carboxyl-rich alicyclic molecules, as well as N-containing species.
Figure 1-1: Proposed electronic interactions between electron donor (hydroxyl-aromatic moieties) and acceptors (A) within partially oxidized lignin fragment.

(Long range interaction - excited state electron transfer;
Short range interaction - charge transfer)
1.2 CDOM optical properties and their structural basis

A fundamental tenet of photochemistry is that light must first be absorbed for a photochemical reaction to be initiated. Thus knowledge of the absorption spectra of CDOM is essential for an understanding of its photochemical reactions.

Terrestrial and marine CDOM both display rather unique absorption spectra that increase approximately exponentially toward shorter wavelengths with no discernible peaks. Spectra are often fitted to an exponential equation of the form $\alpha(\lambda) = \alpha(\lambda_0) e^{-S(\lambda-\lambda_0)}$. The exponent of this fit, spectra slope, S, characterizes how rapidly the absorption decreases with increasing wavelength.

Higher S values indicate a more rapid decline in absorption with increasing \(\lambda \) and a lower absorption contribution in the visible wavelengths. Another indicator of this decline is E2/E3 ratio, which represents the ratio of absorption at 254 nm to 365 nm.\(^{55}\) These CDOM optical indices have been used to relate the change in optical properties to changes in structure. For example, it has been shown that S usually increases with decreasing molecular size of CDOM.\(^{56}\) Photobleaching of CDOM in surface water also usually increases S and E2/E3 values, which suggests that photochemical reactions convert higher molecular weight CDOM into lower molecular weight species.\(^{55-58}\)

Two distinct structural models have been invoked to explain the observed optical spectra and photochemistry of CDOM, namely a superposition model\(^{59,60}\) and an electronic interaction model.\(^{61-63}\) A superposition model proposes that the optical properties derive from a simple sum of the absorption and emission spectra of an ensemble independent chromophores (electronically isolated) existing within CDOM.
In contrast, the electronic interaction model argues that the electronic interactions between chromophores give rise to the distinct optical properties of CDOM.

However, the superposition model cannot easily explain many of the observed optical and photochemical properties, including the exponentially decreasing long wavelength absorption tail, the continuously red-shifting fluorescence emission maxima, the monotonically decreasing fluorescence quantum yields and lifetimes across the visible wavelengths, and dependence of S on the molecular size.

In contrast, the electronic interaction model (EI) can largely account for the observed CDOM optical and photochemical properties; within this model, short-range charge transfer interactions between chromophores are of particular importance for CDOM optical properties (charge transfer model, CT). The CT model proposes that the short-wavelength absorbance (< 350) results primarily from the superposition of the donor and acceptor absorption, and the long-wavelength near UV and visible absorption tail results from short-range charge transfer interactions between the electron donors and acceptors to form charge transfer bands (>350 nm, Fig. 1-1 and Fig. 1-2). Possible electron acceptor moieties are carbonyl-containing species such as quinones and aromatic ketones/aldehydes arising from the partial oxidation of lignin precursors (A in Fig. 1-1), while possible electron donor moieties are hydroxy/methoxy-aromatic moieties.

The continuous red-shifting fluorescence emission maxima in the visible has been attributed to charge recombination luminescence arising from an ensemble of low-energy CT states populated by near UV and visible absorption. The monotonically decreasing fluorescence quantum yields and lifetimes with increasing
wavelength can be attributed to successively lower CT energies, in which the rate of non-radiative relaxation increases relative to the radiative rates thus leading to the lower fluorescence quantum yields and lifetimes. In addition, the decrease in S with increasing molecular size can be explained as resulting from the larger number of CT contacts that could form statistically within larger molecules of the size ensemble. Further, the increase of S produced by partial photobleaching can be attributed to the destruction of electron donors and acceptors contributing to the CT transitions.

Many of the photochemical properties of CDOM also can be interpreted readily within the CT model as discussed further below.
Figure 1-2: Proposed CT model for CDOM absorption. The shorter wavelength (<350 nm) is caused by sum of absorption of individual chromophores with the longer wavelength absorption tail (>350 nm) caused by the charge transfer interaction between donor-acceptor chromophores that produce the lower energy charge transfer bands.
1.3 CDOM photochemistry and its related structural basis

Since the 1980’s, numerous studies have shown that CDOM can act as a photochemical source of singlet dioxygen (1O$_2$), superoxide (O$_2^-$), hydrogen peroxide (H$_2$O$_2$), aqueous electron (e$^-$), hydroxyl radical (·OH) and organic radicals.68,69 These reactions are summarized in Scheme 1-1.64 Following the ground state excitation of CDOM, possible primary photochemical events include: 1) direct ejection of electrons, 2) formation of CT states (1CDOM$^{+/\cdot}$), or 3) formation of excited singlet states CDOM (1CDOM*). In competition with recombination back to ground state CDOM, 1CDOM* can undergo homolytic cleavage to either CDOM radicals (CDOM·), undergo electron transfer to form a charge separated state (CDOM$^{+/\cdot}$) or undergo intersystem crossing to form the triplet CDOM (3CDOM*). 3CDOM* can further undergo electron transfer to form a charge separated states (CDOM$^{+/\cdot}$), react with external donor (P) to relax back to the ground states.

The CDOM intermediates formed include CDOM·, CDOM$^{+/\cdot}$ and 3CDOM*, which are unstable and will react further with ambient redox species to initiate various photochemical reactions. In our case, these intermediates can react with dioxygen to produce various reactive oxygen species such as 1O$_2$, O$_2^-$, H$_2$O$_2$, ·OH, and proxy radical (RO$_2$). It has already been shown that 1O$_2$ is the product of the energy transfer between 3CDOM* and dioxygen. However, the exact intermediates and pathways giving rise to O$_2^-$ and subsequently H$_2$O$_2$ through O$_2^-$ disproportion is still not clear.
Scheme 1-1: Proposed CDOM primary and secondary photochemical reactions of CDOM. (Adapted from Sharpless and Blough)
Quinones within CDOM are frequently cited as important organic moieties responsible for its redox properties. Evidence for the presence of quinone moieties with CDOM include electron paramagnetic resonance (EPR) detection of semiquinone radicals and the results of the electrochemical measurements.

![Possible redox reactions of quinone moieties with O2 and O2-](image)

Figure 1-3: Possible redox reactions of quinone moieties with O2 and O2-. Possible reactions depend on the structure and the reductant potentials of the quinone and semiquinone species.

Garg et al employed disodium anthraquinone-2-6-disulfonate as model quinone sensitizer to simulate the H2O2 production from aquatic CDOM. However, different H2O2 production behavior was observed between irradiated humic substance and model quinones in the presence of DMSO, a hydroxyl radical scavenger. This result implies that the H2O2 production mechanism is far more complex for humic substance than for simple quinone compounds.

In order to test for the possible involvement of quinone and other carbonyl-containing moieties, such as (aromatic) ketones/ aldehydes as electron acceptors, as well as test for their possible involvement in CT transitions, reduction with sodium borohydride has been employed. Sodium borohydride can selectively reduce the carbonyl –containing electron acceptors within CDOM under anaerobic conditions.
For a variety of humic substance standards as well as natural water samples, the elimination of carbonyl containing groups by borohydride reduction leads to preferential loss of visible absorption that has been attributed to the elimination of the low energy CT transitions. In addition, substantially enhanced, blue-shifted fluorescence emission is observed after borohydride reduction, suggesting that the removal of electron acceptors eliminates donor quenching thereby increasing the local donor fluorescence.\(^7\)

Similar to CDOM optical absorption, apparent quantum yields and the rates of H\(_2\)O\(_2\) photoproduction determined for both natural waters and humic substance decrease rapidly with increasing wavelength, with the majority of H\(_2\)O\(_2\) production occurring at wavelengths between 290 and 400 nm\(^{21}\). A linear relationship was found between the quantum yields of H\(_2\)O\(_2\) and CDOM photobleaching for Elizabeth River samples, \(^{21}\)implying an intrinsic connection between the H\(_2\)O\(_2\) photoproduction and CDOM optical properties.\(^{66}\) The much faster decrease of H\(_2\)O\(_2\) photoproduction rates compared to the decrease of CDOM absorption indicates that the shorter wavelengths are far more efficient at photochemical producing ROS, hence higher apparent quantum efficiencies. However, a better understanding of the structural basis of CDOM optical properties, photochemical properties and the connection between the two is desirable.
1.4 Proposed \(\text{H}_2\text{O}_2 \) production pathways though photolysis of CDOM

Over the past twenty years, evidence has shown that the photoproduction of \(\text{H}_2\text{O}_2 \) by CDOM primarily arises from the formation of \(\text{O}_2^- \) and its subsequent dismutation (eqn. 1.1).

\[
2\text{O}_2^- + 2\text{H}^+ \rightarrow \text{H}_2\text{O}_2^- + \text{O}_2 \quad (1.1)
\]

Superoxide is thought to be formed via reaction between photochemically produced reductants and \(\text{O}_2 \).17,36,80,81 However, the nature of the reductants giving rise to \(\text{O}_2^- \), and thus \(\text{H}_2\text{O}_2 \), remains unclear. The possible photochemical pathways giving arise to the reductants from CDOM are proposed and discussed below (Scheme 1-2).

Both Darper and Crosby6 and Cooper and Zika82 have pointed out that photo-production of hydrated electrons from CDOM could produce \(\text{H}_2\text{O}_2 \) in both freshwaters and seawaters (Rxn. 2a,2b). However, work by Zepp82 at al first indicated that hydrated electrons are not produced at rates sufficient to account for the production of \(\text{H}_2\text{O}_2 \) detected in aquatic environment. Later, Thomas-Smith and Blough83 employing a steady state scavenger method provided further evidence that the low rates of production of hydrated electron is not sufficient for the overall production of \(\text{H}_2\text{O}_2 \) in most natural waters at wavelengths above \(\sim 315 \) nm, thus also excluding the hydrated electron as major precursor for \(\text{H}_2\text{O}_2 \).83
Scheme 1: The reactions (Rxn 2-6) from proposed precursors for superoxide and hydrogen peroxide formation. 1CDOM* and 3CDOM* represent excited singlet and triplet states, respectively, of either electron donors (D) or acceptors (A) within the CDOM, while CDOM$^\pm$ represents a charge-separated species (D$^+$A$^-$) formed by electron transfer from a donor to an acceptor, and 1CDOM$^\pm$ represents the charge transfer states.
Singlet dioxygen (94 kJ/mol), formed via energy transfer from the excited triplet states of CDOM (\(^3\text{CDOM} \)) to ground state dioxygen (\(^3\text{O}_2 \)) (Rxn. 3a), was proposed as a possible precursor for \(\text{O}_2^- \) (Rxn 3b). The quantum yields (\(\phi \)) for both \(^1\text{O}_2 \) and \(\text{O}_2^- \) exhibit a similar spectral dependence, but the \(\phi_{\text{H}_2\text{O}_2} \) is reported to be 100 times smaller than \(\phi_{^1\text{O}_2} \). Dalrymple et al. provided further evidence that the maximum contribution from \(^1\text{O}_2 \) to the total photoproduction of \(\text{H}_2\text{O}_2 \) was no more than 6%, indicating \(^1\text{O}_2 \) is largely unimportant as a \(\text{H}_2\text{O}_2 \) source.

Other possible pathways include: 1) direct electron transfer to dioxygen from excited singlet (Rxn. 4a) or triplet states (Rxn. 4b), although reaction 4a is exceedingly unlikely due to the very short lifetimes of the singlet states, 67 2) the formation of reducing radical intermediates (A\(^-\)) through electron transfer between excited singlet (Rxn. 5a) or triplet state electron donors or acceptors (Rxn. 5b), 32, 87 3) the formation of reducing radical intermediates formed through direct excitation of charge-transfer transitions (Rxn. 6). In chapter 2, those possible reaction intermediates to \(\text{O}_2^- \) and thus \(\text{H}_2\text{O}_2 \) are examined.

Metals, such as Fe, are also a very common species in natural waters, and can have a significant impact on the aquatic redox environment. Metal ions can be reduced from a higher to lower redox states through two primary mechanisms: ligand-to-metal charge transfer (LMCT) and direct electron transfer from excited states. Other possible reduction pathways could come from interaction with oxidant ROS such as superoxide. In presence of superoxide, Fe (II) could rapidly be oxidized with a half-life of several minutes in oxic marine waters to Fe (III). Fe (III) could further reduce back to Fe (II) via photochemical superoxide–mediated iron.
reduction (SMIR) or ligand-to-metal charge transfer (LMCT) (Scheme 1-3). The oxidation process occurred between steady state Fe (II) with an oxidant, such as dioxygen, could produce superoxide as well as H_2O_2. However, for the studies reported in this thesis, only trace amounts of metal ions exist within the samples (< 1 µM), generation of H_2O_2 production from metal-related pathways is minor and is considered negligible in these studies.

\[
\begin{array}{ccc}
\text{CDOM} & \overset{\text{O}_2^-}{\longrightarrow} & \text{O}_2 \\
\downarrow & & \downarrow \\
\text{Fe} & \overset{\text{Fe (II)}}{\longrightarrow} & \overset{\text{Fe (III)}}{\longrightarrow} \text{CDOM}
\end{array}
\]

Scheme 1-3: Possible superoxide and hydrogen peroxide production pathways in the presence of iron.
1.5 Detection methods for ROS

1.5.1 Detection of H_2O_2

The detection of ROS is extremely challenging due to their reactivity, and thus in many cases, short lifetimes. Among all the aquatic ROS, H_2O_2, with lifetimes ranging from minutes to days and concentrations ranging from 10’s of nM to 10’s of µM, is considered the most stable. To measure H_2O_2, an acridinium ester (AE) based chemiluminescence method was employed. This method allows detection of H_2O_2 at nM to µM levels and excludes the possible fluorescence interference from naturally occurring chromophores, fluorophores, and organic peroxides, which is inevitable using the traditional colorimetric and fluorometric methods.

The mechanism of reaction of AE with H_2O_2 is shown in Figure 4. AE (I) is stable in acidic solutions, but rapidly hydrolyzes in base. In the presence of the peroxide anion (HOO-), AE forms an unstable dioxetane compound IV, which decays yielding N-methylacridone (V) and the emission of light at 470 nm, which is detected employing a photomultiplier tube (PMT). The H_2O_2 sample is introduced by a flow injection analysis (FIA) system. The linear range for FIA method covers the H_2O_2 concentrations ranging from ten’s of nM to µM. Catalase can be added to the analysis solutions 12 hrs before measurement to eliminate the possible background H_2O_2.96
Figure 1-4: Chemiluminescence reactions of acrdium etser with hydrogen peroxide.

(Adopted from King, D.W.)

\[k = 230 [OH^-] \text{ sec}^{-1} \]
\[k = 5 \times 10^4 [H_2O_2] \text{ sec}^{-1} \]
1.5.2: Detection of photoproduced radicals capable of reducing O$_2$ to O$_2^-$

The relative stability of H$_2$O$_2$ endows it as one reliable probe for estimating the net transfer of electrons from CDOM to dioxygen in natural waters. However, Zika and Petasne presented qualitative evidence that 24% to 41% of the photochemical produced O$_2^-$ does not lead to H$_2$O$_2$ formation.36 They employed the enzyme superoxide dismutase (SOD), which competes with other non-dismutation decay pathways, and favors the superoxide dismutation pathway.

Waite and Garg77 also provided evidence that significant fraction of the photoproduced O$_2^-$ is most likely lost through oxidation of O$_2^-$ to O$_2$ via other oxidative pathways in competition with the dismutation to H$_2$O$_2$.77 Understanding the stoichiometry between the H$_2$O$_2$ production and the photo-reductant production would provide key insights into O$_2^-$ formation and decay pathways and the factors affecting the net formation of H$_2$O$_2$. However, unlike H$_2$O$_2$ which is relatively stable, photoproduced reductants are highly reactive, giving rise to short lifetimes and low steady-state concentrations. Thus steady-state concentrations are often too low to be measured by spectroscopic methods (such as electron paramagnetic resonance spectroscopy), and their short lifetimes preclude measurement by direct chemical methods.

Indirect measurement of reducing intermediates using radical molecular probes is developed in this thesis (chapter 3). Di-tert-alkyl nitroxides are a very common class of molecular probes particularly suitable for examining the production of the radicals involved in CDOM photoreactions.$^{99-101}$ These stable nitroxide radicals can react rapidly with one-electron reductants with a high reaction constant ($\sim 10^8$
to $10^9 \text{ M}^{-1}\text{s}^{-1}$). In addition, having similar reactants potentials to dioxygen, nitroxides can compete with dioxygen for the photochemically-generated reducing species.99

Scheme 1-4: Comparison between the reactions of nitroxides and O$_2$ with excited states and radicals. From reference 99.99
In contrast to reaction with O$_2$, the product of this reaction is the relatively stable hydroxylamine. This one-electron reduction product can be sensitively monitored by the electron paramagnetic resonance spectrometry (EPR) via the loss of spin caused by the reduction of the paramagnetic nitroxide to the diamagnetic product.103

![Chemical Reaction Diagram]

Figure 1-5: Hydroxylamine formation via reaction of the nitroxide with photochemically generated one electron reducing-intermediates from CDOM

The sensitivity of the nitroxide method can be substantially improved by covalently linking the nitroxide to a fluorophore.104 Due to efficient intramolecular quenching of the fluorophore by the nitroxide, the fluorescence yield of the fluorophore is very low when coupled to the nitroxide. However, the intramolecular quenching is eliminated when the nitroxide is converted to a diamagnetic product through radical reactions, thus greatly enhancing the fluorescence (Figure 6). The enhanced fluorescence can thus be used as a very sensitive measure of radical scavenging, and when coupled with HPLC, offers better selectivity for detection of reducing-radicals.103
1.6 Purpose of This Study

Despite almost three decades of research, the precise mechanisms by which H$_2$O$_2$ is photoproduced by CDOM remain unclear. The aim of this thesis was to investigate the nature of the reducing intermediate(s) photochemically generated from CDOM in aqueous solutions and delineate the pathways of electron transfer between CDOM and ambient dioxygen that ultimately leads to the production of H$_2$O$_2$.

To achieve those objectives, a selective reduction method employing sodium borohydride was employed to probe the importance of (aromatic) ketone/aldehydes on H$_2$O$_2$ production. Removal of aromatic ketone/aldehydes moieties by borohydride reduction has been shown to change CDOM optical properties, such as decreasing the long wavelength absorption tail and cause a blue shift in the wavelength of fluorescence emission. If the aromatic ketone/ aldehydes electron acceptors have significant role in H$_2$O$_2$ production, the removal of such species would be expected to greatly reduce the H$_2$O$_2$ production rates.

The results of borohydride reduction on H$_2$O$_2$ production rate are presented in Chapter 2. Borohydride reduction did not greatly affect on H$_2$O$_2$ indicating that CT
transitions and aromatic ketone/ aldehydes do not play a significant role in H₂O₂ production.

The dependence of H₂O₂ photoproduction rates on dioxygen concentration can provide information on the lifetimes of the reducing intermediates. Within this model, O₂⁻ (and thus H₂O₂ via dismutation) could be produced through three possible pathways: 1) a very low efficiency reaction of O₂ with the short-lived charge-separated intermediates, 2) reaction of O₂ with a smaller fraction of longer-lived charge separated intermediates populated in competition with rapid recombination and, 3) reaction of O₂ with long-lived acceptor radicals (e.g. semiquinone or ketyl) produced intramolecular by electron- or hydrogen atom-transfer from excited states of endogenous (donor). In chapter 2, the trend of increasing H₂O₂ photoproduction with increasing [O₂], with rate saturation above [O₂] 250 µM suggests that it is more likely excited singlet state of electron donors transferring electrons to acceptors, with the reduced acceptors transferring the electrons to the ambient dioxygen, forming superoxide, and subsequently hydrogen peroxide.

Chapter 3 provides evidence that 3ap and dioxygen compete for similar pool of one electron reductants produced photochemically within HS. Evidence that supporting this idea includes 1) proportional decrease in R_H and R_H2O2 with increasing wavelength (Table 3-3), 2) suppression of R_H with increasing [O₂] due to competition for common intermediates, 3) largely unaffected (R_H2O2) or increase (R_H) rates upon borohydride reduction, indicating that charge transfer states or aromatic ketones/aldehydes are not directly involved in the formation of these reductants.
Rates and rate ratios of R_{H}/R_{H2O2} were also examined. The ratio of R_{H}/R_{H2O2} for untreated SRFA and SRHA employing monochromatic irradiation were 6, indicating a significant portion (67%) of O_2^- will decay by other oxidative sinks, such as light generated intermediates or CDOM itself. The observed higher ϕ_H/ϕ_{H2O2} ratio (13) employing polychromatic irradiations could be explained either as enhanced efficiency for hydroxylamine formation at longer wavelengths or use of polychromatic light could “activate” additional pathways for O_2^-/H_2O_2 removal. More work need to be done for the detailed explanation.

In chapter 4, the effect of adding an external phenol electron donor on the rate of H_2O_2 production was examined. Addition of phenols at concentrations in the 10’s to 100’s of micromolar substantially enhanced the rate of H_2O_2 production. Borohydride reduction significantly inhibited this enhancement. Decreasing $[O_2]$ to ~ 60 µM enhanced the rate of H_2O_2 production. Those results are consistent with the reaction of the electron donor with the excited triplet state of aromatic ketones/aldehydes to form a ketyl radical that subsequently reacts with O_2 to form O_2^- and then H_2O_2. Those results also indicated that an additional pathway of H_2O_2 formation is introduced in the presence of sufficiently high concentrations of electron donors of the appropriate redox potential.

Chapter 5 summarizes the results of this work and suggests future of the research.
Chapter 2: Investigating precursors for H$_2$O$_2$ production
from photochemical reaction of CDOM

2.1 Introduction

Light absorption by humic substances (HS) and chromophoric dissolved organic matter (CDOM) has long been known to generate hydrogen peroxide (H$_2$O$_2$) in natural waters.$^{1,17,19,32,105-107}$ Current evidence indicates that the photochemical formation of H$_2$O$_2$ arises primarily through the one-electron reduction of O$_2$ by photo-produced intermediates to produce superoxide (O$_2^-$)32,33 which subsequently undergoes dismutation, either catalyzed or un-catalyzed, to form H$_2$O$_2$ (Eqn.2.1).108

$$2O_2^- + 2H^+ \rightarrow H_2O_2 + O_2 \quad (2.1)$$

These two reactive oxygen species, O$_2^-$ and H$_2$O$_2$, can play a critical role in environmental redox reactions and metal ion speciation in natural waters,11,13,109,110 as well as in the production of hydroxyl radical (·OH) through Fenton chemistry.$^{111-115}$

Despite extensive research over the last 30 years, the mechanism by which O$_2$ is reduced photochemically to O$_2^-$ by HS and CDOM is still not known with certainty. A variety of possibilities exist in scheme 2-1.
Scheme 2-1: The proposed precursors and reactions (Rxn 2-6) for superoxide and hydrogen peroxide formation\(^{86}\)

\[
\begin{align*}
\text{CDOM} + h\nu & \rightarrow \text{CDOM}^{\ast} + e^- \quad \text{(2a)} \\
e^- + O_2 & \rightarrow O_2^- \quad \text{(2b)} \\
\text{CDOM} + h\nu & \rightarrow 3\text{CDOM}^\ast + O_2 \rightarrow 1\text{CDOM} + ^1\text{O}_2 \quad \text{(3a)} \\
^1\text{O}_2 + \text{CDOM} & \rightarrow \text{CDOM}^\ast + O_2^- \quad \text{(3b)} \\
\text{CDOM} + h\nu & \rightarrow 1\text{CDOM}^\ast + O_2 \rightarrow \text{CDOM}^\ast + O_2^- \quad \text{(4a)} \\
\downarrow & \quad \text{(4b)} \\
3\text{CDOM}^\ast + O_2 & \rightarrow \text{CDOM}^\ast + O_2^- \\
\text{CDOM} + h\nu & \rightarrow 1\text{CDOM}^\ast \rightarrow \text{CDOM}^\pm + O_2 \rightarrow \text{CDOM}^\ast + O_2^- \quad \text{(5a)} \\
\downarrow & \quad \text{(5b)} \\
3\text{CDOM}^\ast & \rightarrow \text{CDOM}^\pm + O_2 \rightarrow \text{CDOM}^\ast + O_2^- \\
\text{CDOM} + h\nu & \rightarrow 1\text{CDOM}^\pm + O_2 \rightarrow \text{CDOM}^\ast + O_2^- \quad \text{(6)}
\end{align*}
\]

Previous work has shown that photo-ionization to produce the hydrated electron (e\(^-\)) cannot account for the magnitude of the H\(_2\)O\(_2\) production (Rxn. 2), at least for wavelengths in the UV-A and visible.\(^{105,8,116,82}\) Similarly, work by Sharpless et al.\(^{85}\) and Cory et al.\(^{117}\) have shown that only a minor amount of H\(_2\)O\(_2\) is produced through the reduction of singlet dioxygen by CDOM (Rxn. 3), precluding the possibility that \(^1\text{O}_2\) serves as a major \textit{O}_2\(^-\) precursor.

Here we attempt to distinguish among the possible pathways by examining the effect of [O\(_2\)] and borohydride (NaBH\(_4\)) reduction on the rates and quantum yields of H\(_2\)O\(_2\) photo-production. Our results indicate that H\(_2\)O\(_2\) is most likely formed through a low efficiency intramolecular excited-state electron transfer process that produces
reducing radical intermediates, which then react with O$_2$ to produce O$_2^{-}$ and subsequently H$_2$O$_2$ (Rxn. 5a).

2.2 Materials and Method

2.2.1 Chemicals

Boric acid (99.999%), sodium chloride, sodium bromide, sodium phosphate, sodium dihydrogen phosphate, sodium carbonate, phosphoric acid, alkali extracted and carboxylated lignin (LAC), Sephadex G-10, G-25 and catalase were purchased from Sigma-Aldrich. Sodium dithionite and fluorescamine were purchased from Acros. Hydrogen peroxide (30%) and 3-amino-2,2,5,5,-tetramethyl-1-pyrrolidinyloxy (3ap) were purchased from Fisher. Fluorescamine-derivatized 3ap (3apf) was synthesized as previous reported. Suwannee River fulvic acid (SRFA) and Suwannee River humic acid (SRHA) were obtained from the International Humic Substance Society. Solid phase C$_{18}$ extracts from the Delaware River station (Fresh Water; 39.9N, -75.1 W), and shelf of the Middle Atlantic Bight (Shelf Station; 38.4N, -74.9W) were obtained in December 2006 and processed as previously reported. A fraction of LAC (LAC*) that had the same retention time as SRFA when passed through Sephadex G-25 column was also employed.

Concentrations of SRFA and SRHA used in this work were 10 mg/L. The C$_{18}$ extracts and LAC* samples were matched to the absorbance of a 10 mg/L SRFA at 350 nm (Fig 2-1). Water was obtained from a Milli-Q (MQ) purification system. All samples were prepared in 0.01M phosphate buffer (pH=7).
Figure 2-1: Absorption spectra of untreated and borohydride-reduced SRFA, SRHA, LAC* and C 18 extracts of Fresh Water (FW), Shelf Station (SS) obtained from Delaware Bay and Mid-Atlantic Bight. Samples are in phosphate buffer pH=7. SRFA, SRHA concentrations were 10mg L$^{-1}$. FW, SS and LAC* spectra are matched up with SRFA @350nm.
2.2.2 Experiment apparatus

Either a Hewlett-Packard 8425A or a Shimadzu 2401-PC spectrophotometer was employed to acquire UV-VIS absorption spectra. Absorption spectra for 10 mg/L samples, which were prepared in the pH 7 phosphate buffer solutions, were recorded using 1 cm cuvette over the range from 190 nm to 820 nm. All spectra were baseline subtracted from MQ water. A SLM Aminco AB2 spectrofluorometer was used to collect the 3apf emission spectra. The excitation wavelength was set at 390 nm and emission collected from 400-700 nm employing a 4 nm bandpass on both excitation and emission monochromators. A Shimadzu total organic analyzer (TOC-5000A) was employed to determine total organic carbon content. Specific absorption coefficients \(a^* \) were obtained by normalizing absorption coefficient \(a(\lambda) \) to organic carbon concentrations,

\[
a(\lambda) = \frac{2.303 \times A(\lambda)}{b}
\]

\[
a^*(\lambda) = \frac{a(\lambda)}{C}
\]

where \(A(\lambda) \) is the absorbance at a given wavelength, \(b \) is the pathlength in meters and \(C \) is the concentration of total organic carbon (TOC) in mg carbon L\(^{-1}\). \(a^* \) for all samples used in this study are provided in Table 2-1.
Table 2-1 Values of specific absorbance coefficient at 350 nm ($a^*(350)$), spectral slope (S) for unaltered and borohydride-reduced SRFA, SRHA, LAC* and C18 extracts from fresh water (FW) and shelf station (SS) from the Delaware Bay and Mid-Atlantic Bight.

<table>
<thead>
<tr>
<th>Irradiated samples</th>
<th>$a^*(350)$ m$^{-1}$ mg$^{-1}$ C L$^{-1}$</th>
<th>TOC=2.303A/(0.01a^*) mg C /L</th>
<th>S(nm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAC*</td>
<td>2.55</td>
<td>6.48</td>
<td>0.015</td>
</tr>
<tr>
<td>RELAC*</td>
<td>1.07</td>
<td>7.02</td>
<td>0.02</td>
</tr>
<tr>
<td>SRHA</td>
<td>3.0</td>
<td>6.40</td>
<td>0.012</td>
</tr>
<tr>
<td>RESRHA</td>
<td>1.76</td>
<td>7.40</td>
<td>0.015</td>
</tr>
<tr>
<td>SRFA</td>
<td>3.44</td>
<td>4.69</td>
<td>0.014</td>
</tr>
<tr>
<td>RESRFA</td>
<td>1.95</td>
<td>5.11</td>
<td>0.016</td>
</tr>
<tr>
<td>FW</td>
<td>3.28</td>
<td>3.60</td>
<td>0.013</td>
</tr>
<tr>
<td>REFW</td>
<td>1.758</td>
<td>3.60</td>
<td>0.016</td>
</tr>
<tr>
<td>SS</td>
<td>0.97</td>
<td>10.68</td>
<td>0.015</td>
</tr>
<tr>
<td>RESS</td>
<td>0.52</td>
<td>11.74</td>
<td>0.020</td>
</tr>
</tbody>
</table>
2.2.3 Borohydride reduction

Borohydride reduction was performed as described below. Known concentration of humic substance was transferred into a 1 cm cuvette (3 mL) and sparged with ultrapure N₂ for 10 minutes (anaerobic reduction). 25 folder mass excess sodium borohydride was added into the humic substance solution under continuously N₂ purging for 45 minutes. Maximum reduction (absorbance loss) is accomplished over this time period. The reduced sample was kept airtight (under anaerobic conditions) for 24 hours. During this time, the absorption spectra (loss) were continuously monitored by obtaining absorption spectra at various time intervals. The reduction was considered to be complete when no further change absorption spectra were observed.

2.2.4 Hydrogen peroxide photoproduction rates (HPPR)

A chemiluminescence-based flow injection analysis (FIA) was employed to determine [H₂O₂]. The chemiluminescence reagent, acridinium ester 10-methyl-9(p-formylphenyl)-acridiniumcarboxlatetrifluoromethanesulfonate (AE) was provided by Waterville Analytical Company. A 0.1 M Na₂CO₃ solution (pH = 11.2) was employed as previously recommended. The buffer solution, carrier water and AE were introduced into the reaction vessel using a peristaltic pump with flow rate of 10.9 ml/min, while samples for H₂O₂ analysis were introduced with plastic syringe. Mixing of AE and H₂O₂ samples in the reaction vessel yielded chemiluminescence signals, which were converted to H₂O₂ concentration employing a H₂O₂ calibration curve. The calibration curve was prepared daily and constructed from a stock 30% H₂O₂ solution, whose concentration was determined by H₂O₂ molar absorptivity.
and confirmed by a titrimetric method using KMnO$_4$. H$_2$O$_2$ concentration in the blank was recorded and subtracted from the reported values. Catalase was added to solutions after irradiation to test whether the observed signal was arising from H$_2$O$_2$ alone. All samples contacted only glass and Teflon to avoid possible contamination by adventitious trace metals. The H$_2$O$_2$ production rate (HPPR) was calculated from a linear regression of H$_2$O$_2$ yield over a 15 min irradiation.

For aerobic polychromatic irradiations, samples were held in 1 cm pathlength quartz cuvette and irradiated with a 300 watt xenon lamp employing a 325 nm long-pass cutoff filter. A 20 cm water jacket was placed between the sample cuvette and the light source to remove the IR. For monochromatic irradiations, the output of a 1000 W Hg-Xe lamp was passed through a Spectra Energy GM 252 monochromator (10 nm bandpass), and directed onto a 5 cm pathlength quartz cuvette containing the samples.

Anaerobic samples were held in 1 cm cuvette capped tightly with a Teflon lid and Critoseal, and prepared by bubbling N$_2$ into samples for 20 min, with the headspace then purged for 10 min prior to a 15 min irradiation. A dioxygen scrubber was mounted on N$_2$ tank to remove possible traces O$_2$ in N$_2$ tank.

Sodium dithionite (Na$_2$S$_2$O$_4$) was employed to check for O$_2$ leaks within this system. Using a gas tight syringe, 200 µM Na$_2$S$_2$O$_4$ was injected into 4 mL of anaerobic MQ water in the 1 cm cuvette, with the characteristic 315 nm absorption band of Na$_2$S$_2$O$_4$ monitored over time. Reaction of dioxygen with dithionite leads to the loss of this band, with this loss used as a sensitive monitor of O$_2$ leaks.
3apf was employed for quantifying the amount of radicals or reducing species remaining following irradiation under anaerobic conditions.99, 104, 121,102,103 A 300 µM 3apf stock was prepared by dissolving 3apf in 50 mM pH 8.4 boric buffer. Two hundred micro liters of the stock 3apf was injected with a gas tight syringe into samples (4 mL) immediately following irradiation, with fluorescence then monitored. Increases in fluorescence signal was converted to concentrations of reacted 3apf employing a calibration curve constructed from the fluorescence increases observed following reduction of known concentrations of 3apf with excess of Na\textsubscript{2}S\textsubscript{2}O\textsubscript{4}.102

2.2.5 Apparent monochromatic and polychromatic quantum yields

Apparent quantum yields, ϕ, were determined separately for the polychromatic and monochromatic sources. For polychromatic irradiations, ϕ were calculated using following expression,

$$
\phi = \frac{H_{PPR}}{R_{EX}} \quad (9)
$$

Where HPPR is the H\textsubscript{2}O\textsubscript{2} production rate, R_{EX} is the rate of light excitation,

$$
R_{EX} = \int_{190}^{820} a(\lambda) \times I(\lambda) d\lambda = \int_{190}^{820} R(\lambda) d\lambda \quad (10)
$$

and $a(\lambda)$ is the absorption coefficient of the sample, and $I(\lambda)$ is the irradiance at wavelength λ at the front face of the cuvette(photons cm-2 s-1), as measured with an Ocean Optics spectroradiometer.88 (Fig 2-2) R_{EX} has been converted to mole photons L-1s-1.
Figure 2-2: $R(\lambda)$ for untreated and borohydride-reduced SRFA, SRHA, LAC* and C-18 extracts for the Fresh Water and Shelf Station (SS). Samples were in 0.01 M phosphate buffer pH=7.
For the monochromatic irradiations, \(\phi (\lambda) \) were determined using the following equation:

\[
\phi = \frac{\text{HPPR}}{R_{\text{Ex}}} = \frac{\text{HPPR} \times L}{I_0(\lambda) \times (1 - 10^{-A(\lambda)})} \quad (11)
\]

where \(L \) is the path length of the cell (cm\(^{-1}\)), \(A \) is the absorbance, \((1 - 10^{-A})\) is the fraction of light absorbed by the sample solutions, and \(I_0 \) is the irradiance (photons \(\text{cm}^2 \cdot \text{s}^{-1} \)) acquired from the actinometric measurements. Actinometry was performed by the method of Hatchard and Parker.\(^{122,123}\) To obtain an estimate of the apparent quantum efficiency of the species eliminated by borohydride reduction. The difference quantum yield (\(\Delta \phi \)) was also calculated for the polychromatic and monochromatic irradiations respectively,\(^{88}\)

\[
\Delta \phi_{\text{polychromatic}} = \frac{(\text{HPPR}_{\text{sample}} - \text{HPPR}_{\text{reduced sample}})}{(R_{\text{Ex}}_{\text{sample}} - R_{\text{Ex}}_{\text{reduced sample}})} \quad (12)
\]

\[
\Delta \phi_{\text{monochromatic}} = \frac{\Delta \text{HPPR} \times L}{I_0 \times \Delta(1 - 10^{-A})} = \frac{(\text{HPPR}_{\text{sample}} - \text{HPPR}_{\text{reduced sample}}) \times L}{I_0 \times [(1 - 10^{-A})_{\text{sample}} - (1 - 10^{-A})_{\text{reduced sample}}]} \quad (13)
\]

2.3 Results

2.3.1 Borohydride reduction

Borohydride reduction was performed as previously described.\(^{78,88}\) The borohydride-reduced samples were further passed through the Sephadex G-10 column to remove the remaining borate and borohydride ions.\(^{78,88}\) The turmeric paper test\(^{124}\) and iodate titration method\(^{125}\) showed that borate ions were removed by this process, excluding possible borate ion interferences in the \(\text{H}_2\text{O}_2 \) detection. Upon re-introduction of dioxygen, any quinones previously reduced to hydroquinones by
borohydride under anaerobic conditions are expected to be reoxidized within 24 hours, and thus would not be removed by the reduction.78 Absorption losses upon reduction were identical to those reported previously.78,88 (Fig. 2-1)

The reversibility of reduction of carbonyl-containing groups was examined by re-introducing the dioxygen into the borohydride reduced samples. The results indicated that the hydroquinones are reversibly oxidized upon reintroduction of air, but not surprisingly alcohols are not. These results indicated that the aromatic ketones/ aldehydes are largely responsible for the optical changes.

2.3.2 Effect of borohyride reduction on HPPR and apparent quantum yields

As previously reported,78,88,126 borohydride reduction produces a substantial loss of absorption across the UV/VIS spectrum, but with preferential loss in the visible (Fig.2-1). These changes in the absorption spectra have been interpreted to result from the loss of charge transfer (CT) transitions in the visible and near-UV as a result of removing carbonyl-containing electron acceptors,66,78,88 and to the direct loss of absorption by ketone/aldehyde moieties in the ultraviolet.88

Despite the significant losses of absorption due to borohydride reduction, HPPR at three wavelengths across the UV (302,313, and 365nm) did not change substantially following reduction, with only slight decreases observed for SRFA and SRHA (~ 15%), no apparent decrease for the Shelf Station, and a slight increase for the Fresh Water station (Fig.2-3). Thus the loss of HPPR was observed to be small or negligible as compared with the loss of absorption.
Figure 2-3: Wavelength dependence of the H$_2$O$_2$ production rate (HPPR) for untreated (■) and borohydride reduced (□) SRFA, SRHA, and C-18 extracts from the Fresh Water and Shelf Station at equivalent mass concentration (10 mg/L for SRFA and SRHA, TOC as 3.6 and 10.68 for the Fresh Water and Shelf Stations. All samples were in 10 mM phosphate buffer, pH = 7.0)
Apparent monochromatic and polychromatic quantum yields reinforce this conclusion. Due to the small changes in HPPR and larger losses in absorption, monochromatic quantum yields at 302 nm and 313 nm increased by ~20-30 % for SRFA and the Fresh Water and Shelf Station following borohydride reduction, with smaller apparent increases in the quantum yield at 365 nm. In addition, the difference quantum yield, ΔΦ, exhibited values that were either close to zero or much smaller than the Φ of the untreated or borohydride-reduced samples, as would be expected for a loss of absorption that did not concomitantly affect HPPR (Fig. 2-4).

Figure 2-4: Apparent monochromatic H2O2 quantum yields (ϕ) and difference quantum yields (Δϕ) () for untreated () and borohydride-reduced () SRFA, SRHA and C-18 extracts from Fresh Water and Shelf Station. Other conditions as in Figure 2-3.
Apparent polychromatic quantum yields exhibited even larger increases following reduction, approximately doubling in all cases (Table 2-2), while $\Delta \Phi$ was very small, indistinguishable from zero with the uncertainties of the measurements (Table 2-2). The large increases in polychromatic quantum yields following reduction are attributed to the substantial losses of absorption in the visible and near UV (Fig. 2-1), where much less or no H$_2$O$_2$ is produced in either untreated or treated samples.19,127,128 The lower quantum yields observed for the polychromatic (Table 2-2) as compared to the monochromatic source at short wavelengths (Fig. 2-4) is a reflection of the relatively large decrease in the monochromatic quantum yields with increasing wavelength19,127,128 (Fig. 2-4), and the $R(\lambda)$ for the polychromatic source, which is weighted to the longer wavelengths in the UV-A and visible (Fig 2-2), where again, much less or no H$_2$O$_2$ is produced.
Table 2-2: Polychromatic H_2O_2 quantum yields (ϕ) and difference quantum yield ($\Delta\phi$) for untreated and borohydride reduced LAC, SRHA, SRFA, and C-18 extracts from the Fresh Water and Shelf Stations. R_{ex} is the rate of light excitation, HPPR uncertainties were standard derivation from triplet measurements and ϕ uncertainties were propagated from determination of HPPR.

<table>
<thead>
<tr>
<th>Sample</th>
<th>HPPR (M/s)($\times 10^{-9}$)</th>
<th>R_{ex} (mol/cm3/s)($\times 10^{-9}$)</th>
<th>ϕ($\times 10^{-4}$)</th>
<th>$\Delta\phi$($\times 10^{-4}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAC</td>
<td>2.06±0.27</td>
<td>2.29</td>
<td>8.99±1.21</td>
<td>1.74±2.2</td>
</tr>
<tr>
<td>REDUCED LAC</td>
<td>1.84±0.09</td>
<td>1.02</td>
<td>18.1±0.94</td>
<td></td>
</tr>
<tr>
<td>SRHA</td>
<td>1.41±0.07</td>
<td>3.68</td>
<td>3.82±0.27</td>
<td>0.54±0.72</td>
</tr>
<tr>
<td>Reduced SRHA</td>
<td>1.32±0.05</td>
<td>2.14</td>
<td>6.18±0.53</td>
<td></td>
</tr>
<tr>
<td>SRFA</td>
<td>1.23±0.07</td>
<td>2.43</td>
<td>5.08±0.19</td>
<td>0.49±0.57</td>
</tr>
<tr>
<td>Reduced SRFA</td>
<td>1.17±0.06</td>
<td>1.2</td>
<td>9.77±0.22</td>
<td></td>
</tr>
<tr>
<td>Fresh Water</td>
<td>1.13</td>
<td>1.95</td>
<td>5.81</td>
<td>2.94</td>
</tr>
<tr>
<td>Reduced Fresh water</td>
<td>0.88</td>
<td>1.1</td>
<td>8.03</td>
<td></td>
</tr>
<tr>
<td>Shelf station</td>
<td>0.76</td>
<td>1.91</td>
<td>4.04</td>
<td>-4.79</td>
</tr>
<tr>
<td>Reduced Shelf station</td>
<td>1.15</td>
<td>1.10</td>
<td>10.5</td>
<td></td>
</tr>
</tbody>
</table>
2.3.3 Effect of dioxygen concentration on HPPR

While HPPR increased with increasing [O$_2$] at [O$_2$] ≤ 300 µM, above [O$_2$] ~500 µM, HPPR became independent of [O$_2$], suggesting complete reaction with the O$_2$-reducing intermediates (Fig 2-4). Except for SRHA, the dependence of HPPR on [O$_2$] was very similar for both untreated and borohydride-reduced samples, suggesting that borohydride reduction did not affect significantly the lifetime of the intermediate(s) (see below).

This kinetic behavior is consistent with the photochemical formation of an intermediate, I, formed at rate, k_f, which reacts with O$_2$ at rate constant k_{O2}, to form O$_2^-$ (and subsequently H$_2$O$_2$), in competition with its relaxation to non-reactive species P$_{NR}$, formed with rate constant, k_d,

\[
\text{HPPR} = \frac{a [O_2]}{b + [O_2]} (16)
\]
Figure 2-5: Dependence of HPPR on dioxygen concentration for untreated (●) and borohydride-reduced (○) SRFA, SRHA, LAC* and the C-18 extract from Fresh Water station using the polychromatic source. The irradiance for LAC* and SRFA was lower than that for SRHA and the Fresh Water station.
Previous studies have provided evidence that O_2^- can back react with the HS to produce O_2 (Eqn. 14) in competition with disproportionation (Eqn. 1), 13,29 thus reducing the yield of H_2O_2.

As shown in the Appendix 1, if Eqn14 and 1 are both pseudo-first order reactions, only the yield (R_f) changes and not the O_2-dependence; the half-saturation value, k_d/k_{O2}, remains unchanged. In contrast, if Eqn1 is a second-order reaction while Eqn 14 is a pseudo-first order reaction, the branching ratio between Eqn 14 and 1 become O_2-dependent and an expression more complicated than Eqn. 16 is obtained (see appendix 1). However, employing previously published values of k_{dis} and k_{rec}, 19,77 we show that this effect exerts a negligible influence on the half-saturation value and thus that Eqn. 16 remains a valid approximation.

A non-linear least-squares fitting routine was employed to fit the data in Fig. 2-5 to Eqn.16, with parameters $a (= k_f)$ and $b (= \frac{k_d}{k_{O2}})$ provided in Table 2-3. Assuming a $k_{O2} \approx 10^9 M^{-1}s^{-1}$, a reasonable value for reaction of O_2 with either an excited triplet state (Rxn. 4b) 88 or a reducing radical intermediate (Rxn. 5,6), 129 calculated lifetimes ranged from 10 to 30 µs, and except for SRHA, did not change significantly following borohydrdride reduction. If k_{O2} for reaction with the intermediate is actually smaller, the corresponding lifetime of the intermediate clearly would be longer. Because k_{O2} for reaction with excited triplets and reducing radicals could be similar, these data alone cannot be used to discriminate between Rxns. 4 and 5.
Table 2-3: Parameters obtained from fits of the data in Fig.2-5 to the expression.

\[HPPR = \frac{a[O_2]}{b + [O_2]} \]

where \(a = k_f \) and \(b = \frac{k_d}{k_{O_2}} \). Lifetime of the intermediate is given by,

\[\tau = \frac{1}{k_d} \times \frac{1}{b \times k_{O_2}} \]

where \(k_{O_2} \) is assumed to be \(1 \times 10^9 \text{ M}^{-1} \text{ S}^{-1} \) (see text). Other conditions are as in Figure. 2-5.

<table>
<thead>
<tr>
<th></th>
<th>(a = k_f) (nM/min)</th>
<th>(b = \frac{k_d}{k_{O_2}}) (μM)</th>
<th>(\tau) (μs) = (\frac{1}{b \times k_{O_2}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAC*</td>
<td>57</td>
<td>43</td>
<td>23</td>
</tr>
<tr>
<td>Reduce LAC*</td>
<td>52</td>
<td>37</td>
<td>27</td>
</tr>
<tr>
<td>SRFA</td>
<td>28</td>
<td>34</td>
<td>29</td>
</tr>
<tr>
<td>Reduced SRFA</td>
<td>24</td>
<td>36</td>
<td>28</td>
</tr>
<tr>
<td>SRHA</td>
<td>152</td>
<td>76</td>
<td>13</td>
</tr>
<tr>
<td>Reduced SRHA</td>
<td>136</td>
<td>151</td>
<td>7</td>
</tr>
<tr>
<td>Fresh water</td>
<td>89</td>
<td>62</td>
<td>17</td>
</tr>
<tr>
<td>Reduced Fresh Water</td>
<td>69</td>
<td>46</td>
<td>22</td>
</tr>
</tbody>
</table>
Interestingly, HPPR was never completely eliminated with irradiation under N₂ (Fig.2-5), despite extensive tests employing dithionite that demonstrated anaerobic conditions were maintained. Because the introduction of O₂ during the H₂O₂ analysis could not be avoided, this H₂O₂ formation could result from the reaction of long-lived reductants formed during the anaerobic irradiation with the O₂ introduced during analysis. In fact, similar H₂O₂ concentrations were observed when the H₂O₂ analysis was performed immediately following sample irradiation and after waiting for thirty minutes under strictly anaerobic conditions, suggesting that this reductant pool was largely stable in the absence of O₂ (Table 2-4).

Table 2-4 Hydrogen peroxide concentration and reacted 3apf measured after irradiation for SRFA, SRHA, LAC* and the Fresh Water station for 15 min under anaerobic condition.

<table>
<thead>
<tr>
<th>Samples</th>
<th>[H₂O₂] measured immediately following a 15 min irradiation under anaerobic conditions (nM)</th>
<th>[H₂O₂] measured 30 mins after a 15 min irradiation under anaerobic conditions (nM)</th>
<th>Reacted 3-apf measured at 50 min following a 15 min irradiation under anaerobic conditions (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRFA</td>
<td>234 ±35</td>
<td>257</td>
<td>322</td>
</tr>
<tr>
<td>SRHA</td>
<td>201 ±46</td>
<td>298</td>
<td>400</td>
</tr>
<tr>
<td>Fresh Water</td>
<td>214 ±40</td>
<td>284</td>
<td>476</td>
</tr>
<tr>
<td>LAC*</td>
<td>351 ±70</td>
<td>253</td>
<td>392</td>
</tr>
</tbody>
</table>
To test this possibility further, we employed the nitroxide, 3apf. Nitroxides have been shown previously to compete with O\textsubscript{2} for reducing radicals.99,102,103 Introduction of 14µM 3apf into anaerobic samples following irradiation lead to a significant fluorescence increase over the course of 50 minutes, indicative of a nitroxide reaction to produce a diamagnetic product.104,130 In contrast, introduction of air for 2 minutes prior to the introduction of 3apf eliminated this fluorescence increase (Fig 2-6). Further, no changes in fluorescence were observed following the addition of 3apf to un-irradiated samples either in the presence or absence of air.

Based on the observed fluorescence increases after 50 minutes (Fig.2-6), estimates of the reductant levels produced following 15 minutes of irradiation under anaerobic conditions were obtained (Table 2-4) and were found to be in similar magnitude to the H\textsubscript{2}O\textsubscript{2} concentrations measured under those same conditions (200 to 300 nM).
Figure 2-6: The time dependence of 3apf fluorescence increase ($\Delta F = F(t) - F(0)$) following the anaerobic addition of 3apf to SRFA, SRHA, LAC*, and the Fresh Water station, which had been previously irradiated for 15 min under anaerobic conditions. $F(0)$ represents fluorescence of the 3apf and sample prior to irradiation, while $F(t)$ is the fluorescence observed following addition of 3apf to the irradiated samples under anaerobic conditions (left panels). In control experiments (right panels), air was introduced for 2 mins prior to the addition of 3apf to the anaerobically-irradiated samples.
2.3.4 Effect of triplet quenchers

To test directly for the involvement of excited triplet states in the formation of H₂O₂ (Rxn. 4b), the triplet quenchers Cl⁻ and Br⁻ [131-136] and sorbic acid [35, 137, 138] were employed. Adding sorbic acid up to a concentration of 5 mM produced at best only ~25% decrease in H₂O₂ production for both untreated and borohydride-reduced samples (Fig. 2-7). Assuming a rate constant of \(3.6 \times 10^9 \text{ M}^{-1} \text{s}^{-1} \) for triplet quenching by sorbic acid, [137] the lifetime of the triplet would be reduced to 56 ns at a sorbic acid concentration of 5 mM. This lifetime is ~400-fold lower than the estimated lifetime of the intermediate (~20 μs, see above), and thus complete loss of HPPR would be expected under this condition, if the direct reaction of excited triplet states with dioxygen was the principal pathway producing \(\text{O}_2^- \) (Rxn. 4b).
Figure 2-7: Effects of sorbic acid (0 mM (●), 1 mM (○), 5 mM (▲)) on H$_2$O$_2$ photo-production for untreated and borohydride reduced SRFA and SRHA under aerobic conditions employing the polychromatic source.

The conclusion that Rxn 4b is not a significant source of H$_2$O$_2$ was also supported by the results of Br$^-$ and Cl$^-$ addition. In fact, addition of Cl$^-$ and Br$^-$ at 500 mM to untreated SRFA lead to an ~20% and 50% increase in H$_2$O$_2$ production, respectively, while the borohydride-reduced sample showed no change (Figure 2-8). Chloride and particularly bromide ions are known to quench effectively oxidizing triplets such as those of ketones through a CT mechanism. Because no enhancement of H$_2$O$_2$ production was observed following borohydride reduction, we speculate that this enhanced production, particularly in the case of Br$^-$, arises through the reaction of aromatic ketone triplet states with Br$^-$ to form the ketyl radical.
which subsequently reacts with O$_2$ to form O$_2^-$:

\[
C\text{R} \text{R} \text{O}^* + \text{Br}^- \rightarrow C\text{R} \text{R} \text{O}^- \text{Br}^- + \text{H}^+ + \text{Br}^- \quad \text{(17)}
\]

\[
C\text{R} \text{R} \text{O}^- \text{H} + O_2 \rightarrow C\text{R} \text{R} \text{O}^- + O_2 + \text{H}^* \quad \text{(18)}
\]

Although most quinone triplets are also quenched effectively by Cl$^-$ and Br$^-$ and at least in some cases, appear to produce the semiquinone at high halide concentrations,131 the absence of HPPR enhancement following borohydride reduction, in which any hydroquinones formed are expected to be reversibly oxidized to quinones,78,141 suggests that quinones do not contribute to this process (Eqns. 17, 18)
Figure 2-8: Effects of triplet quencher Cl (500mMCl-) and Br- (500mM) on H₂O₂ aerobic photo-production for untreated and borohydride-reduced SRFA under aerobic conditions using the polychromatic source, () is the control without triplet quenchers.
2.4 Discussion

This work clearly demonstrates that the loss of UV and visible absorption following borohydride reduction does not largely affect HPPR (Fig. 2-3, Table 2-1). Thus, monochromatic and polychromatic quantum yields for H$_2$O$_2$ photoproduction concomitantly increase (Fig. 2-4, Table 2-2). These results show that direct excitation of near-UV and visible absorption, previously assigned to CT states, does not lead to significant H$_2$O$_2$ production (Rxn.6). Instead, previous evidence suggests that these CT states relax very rapidly to the ground state through recombination, as illustrated by the exceedingly short excited state life times (sub-nanosecond) observed in the visible by time-resolved fluorescence measurements,$^{67, 89}$ as well as by the rapid decrease in apparent H$_2$O$_2$ quantum yields with increasing wavelength$^{19, 127, 128}$ (Fig 2-4). Similarly, (aromatic) ketones/aldehydes do not appear to play a significant role in H$_2$O$_2$ production, except possibly in cases where external donors (eg., Br$^-$) are capable of intercepting the (oxidizing) triplet states of these species142 (Fig. 2-8; see also reference 63).

A significant contribution to H$_2$O$_2$ formation through a direct reaction of O$_2$ with the triplet states of electron donors (Rxn. 4b) also appears highly unlikely. Although the production of H$_2$O$_2$ does decrease slightly with addition of 1 to 5 mM sorbic acid, the rates remain far higher than one would predict based on the rate constant for triplet quenching by sorbic acid137 ($\sim 10^9$ M$^{-1}$s$^{-1}$). Further, a past study99 employing nitroxides, which are highly effective triplet (and singlet) quenchers$^{99, 143, 144}$ as well as radical/reductant traps,104 showed no evidence of a decrease in the rates of radical/reductant formation at high nitroxide and O$_2$.
concentrations,99 implying that the lifetimes of the excited state species giving rise to the radical/reducing intermediates are very short-lived, consistent with excited singlet states.99 Moreover, this pathway (Rxn. 4b) cannot be operative in the formation of the long-lived radical/reducing intermediates generated under anaerobic conditions (Fig. 2-5, Table 2-3).

Instead, intramolecular electron transfer from an excited singlet donor to a ground-state acceptor appears far more likely (Rxn.5a). Possible donors include substituted phenols, while possible acceptors included quinones, which unlike ketones/aldehydes are not irreversibly reduced by borohydride.78 Although electron transfer to a short-lived excited state electron acceptors, eg.,quinones, from a ground-state donor cannot be completely excluded, one might expect significant \(\text{H}_2\text{O}_2 \) photoproduction rates at visible wavelengths where some quinones do absorb, contrary to the experimental evidence.

In summary, this work suggests that \(\text{H}_2\text{O}_2 \) is formed primarily through a low-efficiency intramolecular excited state electron transfer process that produces reducing (radical) intermediates, which then react with \(\text{O}_2 \) to form \(\text{O}_2^- \) and subsequently \(\text{H}_2\text{O}_2 \). Both a shorter-lived reductant pool (10’s of microseconds) and a longer-lived reductant pool (many minutes in the absence of \(\text{O}_2 \)) were observed to be produced photochemically.
Chapter 3: Molecular probe measurements of the photochemical production of one electron reducing intermediates from chromophore dissolved organic matter: relation to \(\text{H}_2\text{O}_2 \) photochemical production.

3.1 Introduction

Over the past 30 years, chromophoric dissolved organic matter (CDOM) has been shown to generate a variety of reactive intermediates upon irradiation with UV and near-visible light. In aerobic waters, those species can react with dioxygen to produce various reactive oxygen species (ROS), including superoxide, hydrogen peroxide, singlet dioxygen, peroxy radicals, and organic peroxides. Among the ROS generated, the photochemical production of \(\text{H}_2\text{O}_2 \) has been one of the most intensively investigated due to its significant environmental importance. This species can affect the trace metal geochemical cycling and impact the photochemical and thermal degradation of natural and anthropogenic organic compounds in aquatic systems. In addition, as a relatively stable ROS, detection of the photoproduced \(\text{H}_2\text{O}_2 \) can serve as an informative measure of the transfer of electrons from the organic matter pool to dioxygen, allowing estimates of the net photochemical oxidation.

Past work has presented evidence that \(\text{H}_2\text{O}_2 \) primarily arises through the dismutation of superoxide, the one-electron reduction product of dioxygen.\(^{17,36,80,81}\) Petasne and Zika,\(^{36}\) employing the enzyme, superoxide dismutase (SOD), to catalyze this dismutation, obtained evidence that 24-41% of the generated superoxide flux did not lead to the \(\text{H}_2\text{O}_2 \) formation. Waite and coworkers further argued that the
contribution of oxidative sinks of O_2^-, which do not lead to H_2O_2 production, are
~1.7-fold greater than that previous proposed by Petasne and Zika.77 Zhang et al.145
later provided evidence that superoxide is formed primarily via reactions with
reduced electron acceptors within CDOM generated by intramolecular electron
transfer between excited singlet-state electron donors and a ground-state electron
acceptors.

A closer look at the stoichiometric relationship between H_2O_2 formation and
the production of O_2^- reducing intermediates would allow a better understanding of
the mechanism(s) of radical formation and the reactions leading to the net H_2O_2
production.

Here we employed the molecular probe, 3-amino-2,2,5,5,-tetramethy-1-
pyrroldinylmxyloxy (3ap), to examine the rates of formation of one-electron reducing
intermediates photochemically generated from CDOM. Having a similar reactivity to
dioxygen,146,147 this stable nitroxide radical can react rapidly with one-electron
reductants to produce a relatively stable final product, the hydroxylamine, and thus
may allow quantification of the O_2^- reactive reducing intermediates in the absence of
dioxygen (Scheme 3-1).99
Scheme 3-1: Comparison between the reactions of nitrooxides and O₂ with excited states and radicals. From reference 103.
Figure 3-1: Hydroxylamine formation via reaction of the nitroxide with photochemically-generated one electron reducing-intermediates within CDOM

For the detection of the hydroxylamine, products of the photochemical reaction are first coupled with fluorescamine. While the fluorescence yield of fluorescamine-derivatized 3ap is very low due to efficient intramolecular quenching, reactions forming the hydroxylamine and other diamagnetic products eliminate this quenching and thus substantially increase the fluorescence. The enhanced fluorescence can be used as a very sensitive means of radical detection when coupled with HPLC, offers a reliable quantitative measurement of the reductant generation.

Figure 3-2: Fluorescence change upon the nitroxide reaction with fluorescamine
If 3ap and O₂ compete for the same pool of reducing intermediates, the presence of dioxygen should lead to a decrease in the rate of hydroxylamine formation. By examining the effect of [O₂] on the initial rate of hydroxylamine formation, estimates of the relative rate constants for O₂ and 3ap reaction with those reducing intermediates can be obtained, as well as estimates of the formation rates of the intermediates. These rates can then be compared with the rate of H₂O₂ formation to examine the stoichiometric relationship between the reduction of O₂⁻ and generated H₂O₂ formation.
3.2 Materials and Methods:

3.2.1 Chemicals

Boric acid, sodium chloride, sodium phosphate, sodium dihydrogen phosphate, fluorescamine and 3-carbamoyl-2,2,5,5,-tetramethy-1-pyrrolydinyloxy (3cp) were purchased from Sigma- Aldrich. The nitroxide probe, 3-amino-2,2,5,5,-tetramethy-1-pyrrolydinyloxy (3ap) and sodium dithionite were purchased from Acros. Acetic acid, phosphoric acid and HPLC grade methanol were obtained from Fisher. Suwannee River fulvic acid (SRFA) and Suwannee River humic acid (SRHA) were obtained from the International Humic Substance Society. Pure water for all experiments was obtained from a Millipore Milli-Q system.

3.2.2 Experiment Apparatus

Hewlett-Packard 8425A spectrophotometer was employed to acquire UV/VIS absorption spectra. Absorption spectra over the range of 190 to 820 nm for 5 and 10 mg/L samples were recorded using 1 cm cuvette referenced to the solvent. The HPLC consisted of Dionex Model P580 pump, 4 µm C-18 reversed-phase packing column (from Waters) and a 50 µL injection loop. All separations are performed at room temperature. The fluorescence detector used was a Hitachi model L7480 set at 390 nm (excitation) and 490 nm (emission). The mobile phase consisted of 55% methanol and 45% acetate buffer (50 mM, pH= 4.0).

EPR spectra were record on a Bruker BioSpin GmbH instrument. Standard instrument settings were: microwave frequency, 9.42 GHz; power, 2.00 mW; modulation amplitude, 1.0 G; modulation frequency 100 KHz; time constant, 10.24
ms. Samples were drawn into 50 µL capillaries, which were then sealed with Critoseal and placed inside 3 mm diameter quartz EPR tubes.

Borohydride reduction of samples were performed employing a 25-fold mass excess of borohydride. H₂O₂ measurements were performed using a chemical luminescence based flow injection method as previously described.

3.2.3. Detection of photoreductants

Humic substance (HS) samples at concentrations of either 5 or 10 mg/L were prepared in 50 mM borate buffer (pH = 8.0), with different concentrations of 3ap added to these solutions. For the polychromatic irradiations, a 300 W xenon arc lamp combined with a 325 nm long-pass cutoff filter was employed to approximate solar spectrum. A 20 cm water jacket was placed in front of the light source to remove infrared irradiation. Monochromatic irradiations were performed using 1000 W Hg-Xe lamp and a Spectral Energy GM 252 monochromator set to a 20 nm band pass. Samples were held in a 1 cm pathlength, Teflon-capped quartz cuvette. Differing dioxygen concentrations, ranging from 0 to 1250 µM, were achieved by mixing of N₂, O₂ or air with a rotameter, with the solutions purged with the appropriate gas mixture for 20 min prior to irradiation.

Following irradiation of 3ap, 200 µL of this solution was withdrawn with a gas-tight syringe, and derivatized via addition of 50 µL of a 5 mM stock fluorescamine solution in a Teflon container with vigorously mixing. The stock fluorescamine solution was prepared daily in acetonitrile and stored in the dark at
room temperature. The hydroxylamine was separated by HPLC and detected fluorometrically.

Because 3ap is highly hygroscopic, concentrations of 3ap were determined by paramagnetic resonance spectroscopy (EPR) using 3cp as a primary standard. The concentration of the stock 3cp solution was determined from the mass of 3cp. Lower concentrations were obtained by serial dilution of this stock. Concentrations of 3ap were first tentatively determined based on mass. The concentration was then determined accurately by the comparison of normalized double integral value (DI/N) of 3ap to that of 3cp.

The molar absorptivity of 3ap at 316 nm (12.5 M⁻¹cm⁻¹) was determined by the comparison with the stock 3ap concentration, and the molar absorptivity obtained was employed to acquire 3ap concentrations. (Fig. 3-1) All the EPR solutions were prepared in pH=8 borate buffer.
Figure 3- 3: EPR spectra of 3cp (top) and 3ap (bottom) (left panel) and the calibration curves constructed from the normalized double integral value (DI/N) (right panel). Both concentration of 3cp and 3ap were first determined from mass base. Because 3cp can be readily dried while 3ap is highly hygroscopic, 3cp was used as a primary standard. The 3ap concentration was then determined by DI/N comparison with the 3cp calibration.
The amount of hydroxylamine produced was determined from hydroxylamine calibration curves constructed through anoxic titrations employing dithionite as a reductant (Fig. 3-4). Two types of hydroxylamine calibrations were examined, with either dithionite (top left) or 3ap (bottom left) as the limiting reagent. Stock dithionite concentrations were determined from the molar absorptivity at 316 nm (8000 M cm$^{-1}$). 148,149 3ap concentrations were determined as previously described above (Fig. 3-3).

Stock concentrations of limiting reagent were determined from their molar absorptivities. Right panels are calibration curves constructed from peak height values (top dithionite $y=1607+127895x$, bottom 3ap; $y= -9494+68900x$). Because dithionite provides two reducing equivalents, the slope is twice as high when dithionite is the limiting reagent. All the curves were baseline subtracted from the control samples before reduction.
Figure 3-4: HPLC chromatography of hydroxylamine production upon dithionite titration (left panel) and hydroxylamine calibration curves constructed from peak height (right panel). Top panels provide the chromatograms and calibration curve using dithionite as limiting reaction reagent, and the bottom panels from using 3ap as limiting reagent.
3.2.4 Determination of the formation rates of photoreductants from humic substance

The net hydroxylamine production rate \(R_H \) was calculated using equation 3.1,

\[
R_H = \frac{T_{15} - T_0}{15 \text{ min}}
\]

(3.1)

where \(T_0 \) is the derivatized product yield from samples of HS spiked with \([3ap]\) before irradiation (blank), and \(T_{15} \) is the yield at the end of 15 min irradiation.

Apparent quantum yields for polychromatic irradiations, \(\phi \) were calculated using the following expression,

\[
\phi = \frac{R_H}{R_{EX}}
\]

(3.2)

where \(R_{EX} \) is the rate of light excitation

\[
R_{EX} = \int_{190}^{820} a(\lambda) \times I(\lambda) d\lambda
\]

(3.3)

\(a(\lambda) \) is the absorption coefficient of the sample, and \(I(\lambda) \) is the irradiance at wavelength \(\lambda \) (photons cm\(^{-2}\) s\(^{-1}\)), as measured with an Ocean Optics spectroradiometer. \(R_{EX} \) has been converted to mole photons L\(^{-1}\) s\(^{-1}\).

For the monochromatic irradiations, \(\phi (\lambda) \) were determined using the following equation:

\[
\phi = \frac{\text{HPPR}}{R_{EX}} = \frac{\text{HPPR} \times L}{I_0(\lambda) \times (1 - 10^{-A(\lambda)})}
\]

(3.4)

where, \(L \) is the path length of the cell (cm\(^{-1}\)), \(A \) is the absorbance, and \((1 - 10^{-A}) \) is the fraction of light absorbed by the sample solutions.
3.3 Results

3.3.1 Detection of hydroxylamine formation

Irradiation of SRFA under anoxic condition in the presence of 3ap results in the formation of hydroxylamine, with the initial rate of hydroxylamine formation R_H, increase with increasing 3ap concentration (Fig. 3-4). The hydroxylamine was not observed in the absence of either 3ap or HS. Further, no hydroxylamine formation was observed with irradiation of 3ap in the presence of 100 mM phenol. This result excludes hydroxylamine formation through reaction with the hydrated electron from phenol photoionization under the employed light field, and also precludes hydrogen atom abstraction from phenols by the excited state nitroxide. 150 R_H increased in an approximately linear fashion with SRFA and SRHA concentration (Fig. 3-4 right, Fig. 3-5), indicating that the humic substances are responsible for the photo-produced hydroxylamine.

Figure 3- 5: Increase in hydroxylamine following irradiation of an anaerobic solution containing 10 mg/L SRFA and 600 µM 3ap. Left: black, before irradiation, red after 15 min irradiation. Right: Increase in R_H with increasing [3ap] for 10 mg/L SRFA employing a 15 min anaerobic irradiation.
Above 200-300 µM 3ap, R_H appeared to saturate (Fig.3-6), suggesting complete trapping of the reducing intermediate(s). This result is consistent with a competition between the reaction of 3ap with the reducing species and their loss through recombination. (Scheme 3.2)

![Figure 3-6: Dependence of R_H (nM/s) on [3ap] for 5mg/L and 10 mg/L SRFA, SRHA and their corresponding borohydride reduced samples (Black line: $O_2 = 0$ µM, Red Line $O_2 = 50$ µM, Blue Line $O_2 = 250$µM)]
At [dioxygen] = 50 µM, RH decreased for both SRFA and SRHA, consistent with 3ap and dioxygen competing for the same reducing intermediates. This behavior can be understood within the following simple reaction scheme:

\[
\begin{align*}
R_f & \to *1 \\
& \frac{k_{O2}}{[O_2]} \quad O_2^* \\
& \frac{k_{3ap}}{[3ap]} \quad \text{hydroxylamine} \\
& k_d \quad \text{NR}
\end{align*}
\]

where the dependence of RH on [3ap] and [O2] is provided by the following expression:

\[
R_H = \left(\frac{d[H]}{dt} \right) = \frac{R_f [3ap]}{(k_d + k_{O2} [O_2]) + [3ap]} = \frac{ax}{b + x} \quad (3.8)
\]

A nonlinear least squares fitting routine was employed to fit the data in Fig. 3-6 to Equation 3.1, with the parameter, A =Rf and B=(k_d+k_{O2} [O_2])/k_{3ap}, provided in Table 3.1.

At [O2] = 0 µM, B0 = k_d/k_{3ap}, thus k_d = B0×k_{3p}, while at [O2] = 50 µM, \(\frac{k_{O2}}{k_{3ap}} = \frac{(B_{50}-B_0)}{50} \).

Values of \(\frac{k_{O2}}{k_{3ap}} \) for untreated SRFA and SRHA are roughly 10, implying that dioxygen reacts with the reducing intermediate much faster than 3ap (Table 3-1).

Fitting RH in the presence of 250 µM dioxygen is far less informative, owing to the substantial quenching of intermediate(s) at this high dioxygen concentration. (See below)
Table 3-1: Parameters obtained from fits of the data in Fig. 3-6 to the expression of

\[R_H = \frac{A[3ap]}{B+[3ap]} \]

\[A = Rf, \quad B = \frac{kO2[O2]+kd}{k3ap} \]

B values obtained at 0 and 50 µM dioxygen as

\[B_0 = \frac{kd}{k3ap}, \quad \text{and} \quad B_{50} = \frac{kO2[50]+kd}{k3ap} \]; \(kO2/k_{3ap} \) are obtained as \(\frac{B_{50} - B_0}{50 \mu M} \).

<table>
<thead>
<tr>
<th>Parameter A (nM/s)</th>
<th>Parameter B µM</th>
<th>(k_{O2}/k_{3ap})</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 mg/L SRFA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(O_2=0)</td>
<td>11</td>
<td>109</td>
</tr>
<tr>
<td>(O_2=50)</td>
<td>13</td>
<td>515</td>
</tr>
<tr>
<td>5 mg/L SRHA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(O_2=0)</td>
<td>13</td>
<td>252</td>
</tr>
<tr>
<td>(O_2=50)</td>
<td>16</td>
<td>868</td>
</tr>
<tr>
<td>10 mg/L SRFA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(O_2=0)</td>
<td>29</td>
<td>67</td>
</tr>
<tr>
<td>(O_2=50)</td>
<td>21</td>
<td>417</td>
</tr>
<tr>
<td>10 mg/L SRHA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(O_2=0)</td>
<td>34</td>
<td>108</td>
</tr>
<tr>
<td>(O_2=50)</td>
<td>23</td>
<td>469</td>
</tr>
<tr>
<td>10 mg/L Reduced SRFA</td>
<td>47</td>
<td>215</td>
</tr>
<tr>
<td>10 mg/L Reduced SRHA</td>
<td>54</td>
<td>91</td>
</tr>
</tbody>
</table>
3.3.2 Dependence of R_H on [O$_2$]

At [3ap] = 600 µM and [O$_2$] <250 µM, R_H decreases rapidly with increasing [O$_2$] (Fig. 3-7) further indicating a direct competition between 3ap and dioxygen for the same pool of reducing intermediates. However, significant values of R_H (2-4 nM/s) remained even under high [O$_2$] (250-1250 µM), as can also be seen in Fig. 3-6. The remaining R_H at high [O$_2$] (>250 µM) appears to reflect a reductant pool that is far more reactive with 3ap than with dioxygen.

Figure 3- 7: Dependence of R_H on [O$_2$] in the presence of 600 µM 3ap.
These two pools are more readily observed when the data are plotted in the following form, rearranged from Eqn.3.1,

\[
\frac{R_f}{R_H} = 1 + \frac{k_d + k_{o2} \times [O_2]}{k_{3ap}} \times \frac{1}{[3ap]} = 1 + \frac{k_d}{k_{3ap}[3ap]} + \frac{k_{o2}}{k_{3ap}[3ap]} [O_2] \tag{3.2}
\]

where the slope represents \(\frac{k_{o2}}{k_{3ap}[3ap]} \). (Fig. 3-8)

![Figure 3-8: Dependence of the ratio Rf/RH on [O2] for untreated and reduced SRFA and SRHA in the presence of 600µM 3ap.](image)

The slopes acquired for \([O_2] < 250 \mu M\) are clearly larger than those for \([O_2] > 250 \mu M\) (Table 3-2), indicating two pools of reducing intermediates, one of which
reacts much faster with O$_2$ than 3ap (< 250 µM O$_2$) and one that reacts with 3ap far faster than O$_2$ (> 250 µM).

Table 3-2: Slopes and $\frac{k_{O2}}{k_{3ap}}$ values obtained from fits of the data in Fig. 3-7 to the expression of $\frac{R_f}{R_H} = 1 + \frac{k_d+k_{O2}[O_2]}{k_{3ap}[3ap]} \times \frac{1}{[3ap]} = 1 + \frac{k_d}{k_{3ap}[3ap]} + \frac{k_{O2}}{k_{3ap}[3ap]} [O_2]$. Slope represents $\frac{k_{O2}}{k_{3ap}[3ap]}$, where [3ap] is 600 µM. Errors are obtained from the standard error of slope.

<table>
<thead>
<tr>
<th>Rf/ RH</th>
<th>Slope ×10^{-2} [O2]<250 µM</th>
<th>Slope ×10^{-2} [O2]>250 µM</th>
<th>k_{O2}/k_{3ap}</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRFA</td>
<td>1.7 ± 0.23</td>
<td>0.16 ± 0.12</td>
<td>9.9</td>
</tr>
<tr>
<td>SRHA</td>
<td>1.3 ± 0.20</td>
<td>0.2 ± 0.03</td>
<td>9.7</td>
</tr>
<tr>
<td>RESRFA</td>
<td>1.6 ± 0.18</td>
<td>0.05 ± 0.04</td>
<td>7.9</td>
</tr>
<tr>
<td>RESRHA</td>
<td>2.1 ± 0.4</td>
<td>0.48 ± 0.25</td>
<td>12.6</td>
</tr>
</tbody>
</table>

The k_{O2}/k_{3ap} values obtained from the slope when [O$_2$] < 250 µM for untreated SRFA and SRHA are very similar in magnitude to the previous values obtained from the fits to the data in Fig. 3-6 (~ 10), providing further evidence that the largest pool of reductant reacts with dioxygen with rate constant that is far larger than 3ap. At [O$_2$] > 250 µM, the k_{O2}/k_{3ap} are less than 1 for both SRFA and SRHA, suggesting that 3ap reacts faster with this pool than O$_2$.

3.3.3 Comparison between hydroxylamine and H$_2$O$_2$ formation rates and quantum yields.

In the presence of 600 µM 3ap but absence of dioxygen, R_{H} for untreated SRFA and SRHA decreased proportionally to R_{H2O2} with increasing wavelength.
(chapter 2). This result is consistent with conclusion that the hydroxylamine and H\textsubscript{2}O\textsubscript{2} compete for a common set of photo reductants145

Table 3- 3: Comparison of the R\textsubscript{H} with R\textsubscript{H2O2} under monochromatic irradiation. R\textsubscript{H} and R\textsubscript{H2O2} were obtained under the same irradiation conditions in the presence of 600 µM 3ap. Ratio represents R\textsubscript{H}/R\textsubscript{H2O2}. R\textsubscript{H} was obtained under anaerobic conditions while R\textsubscript{H2O2} obtained in the presence of 250 µM O\textsubscript{2}.

<table>
<thead>
<tr>
<th></th>
<th>302 nm</th>
<th></th>
<th>313 nm</th>
<th></th>
<th>365 nm</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SRFA</td>
<td>SRHA</td>
<td>RESRFA</td>
<td>RESRHA</td>
<td>SRFA</td>
<td>SRHA</td>
</tr>
<tr>
<td>H2O2 nM/s</td>
<td>2.2</td>
<td>2.0</td>
<td>1.8</td>
<td>2.1</td>
<td>1.7</td>
<td>1.4</td>
</tr>
<tr>
<td>Hydroxylamine (nM/s)</td>
<td>14.4</td>
<td>10.9</td>
<td>18.3</td>
<td>12.4</td>
<td>10.2</td>
<td>7.8</td>
</tr>
<tr>
<td>ratio</td>
<td>6.6</td>
<td>5.5</td>
<td>10.2</td>
<td>5.8</td>
<td>6.0</td>
<td>5.6</td>
</tr>
</tbody>
</table>

However, substantially higher values were observed for R\textsubscript{H} than R\textsubscript{H2O2}, producing a ratio of R\textsubscript{H}/R\textsubscript{H2O2} of approximately six. If every reducing equivalent trapped by 3ap was also trapped by O\textsubscript{2} to form O\textsubscript{2}-, which then dismutated to H\textsubscript{2}O\textsubscript{2}, a ratio of two would be expected at the concentrations of 3ap and O\textsubscript{2} employed in this comparison (600 µM and 250 µM respectively); complete trapping of reducing equivalents by both probes would be anticipated (in this regime of rate saturation).

Thus this result implies that a significant fraction of O\textsubscript{2}- (and possible H\textsubscript{2}O\textsubscript{2}) may be lost through secondary reaction pathways. In the case of O\textsubscript{2}-, this pathway must be oxidative, because a reductive pathway would lead to H\textsubscript{2}O\textsubscript{2}. Assuming only this oxidative pathway of O\textsubscript{2}-, a simple calculation is presented as below

\[
\frac{R_{H}}{R_{H2O2}} = \frac{R_{O2^{-}(total)}}{\sum[R_{O2^{-}(total)}(1 - P_{O2^{-}(oxidative)})]} = 6
\]
where P_{O_2} is the percentage of superoxide decay via oxidative pathway other than dismutation to H_2O_2, which is calculated to be 67%.

This value is higher than that reported by Petasne and Zika, but is consistent with that reported by Garg et al.

However, a comparison between the polychromatic quantum yields obtained for the hydroxylamine (ϕ_H) and for H_2O_2 ($\phi_{H_2O_2}$) exhibits an even larger ratio with $\phi_H/\phi_{H_2O_2} \sim 13$ for untreated SRFA and SRHA. The origin of this difference between the results from the monochromatic and polychromatic experiments is still unclear. One possible explanation is that the efficiency for hydroxylamine formation extends to larger wavelength in the near UV and blue portion of this visible, where R_{EX} is larger. Alternatively, the use of polychromatic light could “activate” additional pathways for O_2/H_2O_2 removal. A third possibility is that 3ap is reacting with a large pool of photo-reductants that do not react with O_2, although this seems highly unlikely on the basis of the 3ap/O_2 competition experiments (Fig.3-6, Fig.3-7), in which $R_{H(1250)}/R_{H(0)}$ is around 0.1, indicating that about 10% of R_H maybe nonreactive with O_2.
Table 3- 4: Polychromatic quantum yield for humic samples and the quantum yields ratio between produced hydroxylmine and H$_2$O$_2$. STD stands for standard derivation acquired from three times measurement.

<table>
<thead>
<tr>
<th>polychromatic Rate</th>
<th>Irradiance</th>
<th>Quantum yields Φ_{H}</th>
<th>Φ_{H2O2}</th>
<th>Φ_{H}/Φ_{H2O2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum yield</td>
<td>$\times10^{-8}$ M/s</td>
<td>$\times10^{-9}$ M/s</td>
<td>$\times10^{-3}$</td>
<td>$\times10^{-4}$</td>
</tr>
<tr>
<td>SRFA</td>
<td>1.6 ± 0.7</td>
<td>2.4E-09</td>
<td>6.8 ± 1.3</td>
<td>5.1 ± 0.2</td>
</tr>
<tr>
<td>SRHA</td>
<td>1.8 ± 0.7</td>
<td>4.0E-09</td>
<td>4.4 ± 1.2</td>
<td>3.8 ± 0.3</td>
</tr>
<tr>
<td>ReSRFA</td>
<td>2.5 ± 1.1</td>
<td>1.0E-09</td>
<td>25 ± 5.8</td>
<td>9.8 ± 0.3</td>
</tr>
<tr>
<td>ReSRHA</td>
<td>2.6 ± 0.9</td>
<td>2.0E-09</td>
<td>13 ± 4.1</td>
<td>6.2 ± 0.5</td>
</tr>
</tbody>
</table>

Past work has shown evidence that electrostatic effects can substantially enhance the trapping efficiency by nitrooxide. Because humic substances are negatively charged, while 3ap is positively charged enhanced rates of trapping can occur.

To test for this possibility, R_H was measured for SRFA in the presence of 500 mM NaCl at two 3ap concentrations. While R_H was only slightly reduced at 150 µM 3ap, it was almost halved at 600 µM 3ap. This electrostatic effect may explain in part the high R_H observed, although this fairly large electrostatic contribution does not show up in an obvious fashion in the data presented in Fig. 3-7.

Table 3- 5: Effect of 500 mM NaCl on anaerobic hydroxylamine production rate for 10 mg/L SRFA spiked with [3ap]

<table>
<thead>
<tr>
<th>H production rate M/s $\times10^{-11}$</th>
<th>150 µM 3ap</th>
<th>600 µM 3ap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>average rate</td>
<td>std</td>
</tr>
<tr>
<td>SRFA no salt</td>
<td>1.24</td>
<td>0.21</td>
</tr>
<tr>
<td>SRFA + salt</td>
<td>1.00</td>
<td>0.41</td>
</tr>
</tbody>
</table>
3.3.5 Effect of borohydride reduction on R_H

In all cases, borohydride reduction led to an approximately 20% increase in R_H, while R_H2O2 stayed approximately the same or slightly increased following reduction (Chapter 2). This produces a significant increase in apparent quantum yields for both processes, due to the additional loss of absorption following reduction. Thus, the removal of aromatic ketones/aldehydes and charge transfer contacts does not largely affect R_H2O2 and slightly enhance R_H, indicating that these species can not be involved substantially in either process.

The kinetic behavior for both untreated and reduced humic substance are consistent with reaction 3.5-3.7 which photochemical formation of intermediate I, formed at the rate of R_f, which can react either with dioxygen to form O_2^- (thus H_2O_2) or with 3ap to hydroxylamine, in competition with its relaxation to nonreactive species NR, formed with rate constant k_d.

In addition, for both SRFA and SRHA, the reduced samples displayed a similar 3ap and dioxygen as untreated samples, suggesting that reduction does not change the intermediates’ lifetime dramatically, which is also similar to the H_2O_2 precursors, indicating the borohydride reduction does not largely affect the precursors for both R_H and R_H2O2.

3.4 Discussion

This work has provided evidence that 3ap and dioxygen compete for similar pools of one electron reductants produced photochemically within HS. Evidence that supports this idea includes 1) proportional decrease in R_H and R_H2O2 with increasing
wavelength (Table 3-3), 2) suppression of R_{HH} with increasing [O$_2$] due to competition of common intermediates, 3) largely unaffected (R_{H2O2}) or increase (R_{HH}) rates upon borohydride reduction, indicating that charge transfer states or aromatic ketones/aldehydes are not directly involved in the formation of these photoreductants.

However, the rates and quantum efficiencies of hydroxylamine formation were significantly higher than those obtained for H$_2$O$_2$ under the same condition. The ratio of R_{HH}/R_{H2O2} for untreated SRFA and SRHA employing monochromatic irradiation were 6, while the ratio of ϕ_H/ϕ_{H2O2} employing polychromatic irradiations were ~13. Although the higher value of R_{HH} may in part be a result of the enhanced trapping of intermediates by 3ap relative to O$_2$ due to an electrostatic effect, this effect could at most account for about half of the observed values. These results suggest that a significant portion of O$_2^-$, and possibly H$_2$O$_2$ may be lost through secondary reaction with other light generated intermediates.
Chapter 4: Addition of Phenol Electron Donors

Substantially Enhances the Rates of Hydrogen Peroxide Photoproduction by Humic Substances

4.1 Introduction:

Hydrogen peroxide (H$_2$O$_2$) is found ubiquitously in surface waters where it is produced primarily via photochemical reactions of chromophoric dissolved organic matter (CDOM) and humic substances (HS).1,2,17 H$_2$O$_2$ has long been known to be of significant environmental importance,13,25,151 affecting the speciation and biological availability of metals as well as contributing to the degradation of natural and anthropogenic organic compounds.119,142 The photochemical formation of H$_2$O$_2$ is known to arise principally from either the catalyzed or un-catalyzed dismutation of superoxide (O$_2^-$, Eqn. 4.1),108 which is generated through the one-electron reduction of O$_2$ by photoproduced intermediates within the CDOM.107

$$2O_2^- + 2H^+ \rightarrow H_2O_2 + O_2$$ (4.1)

Besides minor contributions from pathways involving singlet dioxygen117 and the hydrated electron116,152,153 recent work suggests that the formation of H$_2$O$_2$ is initiated primarily through an intramolecular electron transfer reaction between short-lived excited states of electron donors, possibly phenols or methoxylated-phenols, and ground states acceptors, possible quinones or other acceptors within the CDOM.145 Reaction of O$_2$ with the reduced acceptors then produces O$_2^-$, which subsequently dismutates to H$_2$O$_2$.
However, H$_2$O$_2$ could also be formed through an additional pathway in the presence of sufficiently high concentrations of appropriate external electron donors such as phenols. Canonica et al.39,154 first proposed that the photochemical degradation of phenols could proceed through their reaction with excited triplet states of the aromatic ketones within the CDOM to produce initially a phenoxy radical and a ketyl radical (Scheme 4-1). Canonica et al.154 further proposed that the phenoxy radical would then react to form products thus leading to the loss of the phenol, while the ketyl radical would react with ambient dioxygen and be oxidized back to the ketone while concomitantly producing superoxide and subsequently H$_2$O$_2$ through dismutation (Eqn. 4.1).

Scheme 4-1: H$_2$O$_2$ production via the photosensitized oxidation of phenols

Later work by Golanoski et al.88 provided direct evidence that the triplet states of ketones/aldehydes were indeed involved in the photosensitized loss of 2,4,6-trimethylphenol (TMP), while a study by Auger et al.142 further indicated that these reactions could act as a photocatalytic cycle in which aromatic ketones (and possibly quinones) could act as electron shuttles for transporting electrons from appropriate donors (eg., TMP) to O$_2$, thus generating H$_2$O$_2$. Other electron donors that are capable of reacting with the oxidizing triplet states of HS could also be involved in this
reaction sequence.155,156 However, direct evidence of enhanced H\textsubscript{2}O\textsubscript{2} production by this mechanism has yet to be obtained.

To test this idea, we examined the effect of a series of added phenol electron donors on the rates and mechanisms of H\textsubscript{2}O\textsubscript{2} formation for both untreated and sodium borohydride reduced HS samples. The results provide strong evidence that H\textsubscript{2}O\textsubscript{2} can be generated through an additional pathway in presence of sufficiently high concentrations of these donors via reaction with the excited triplet states of aromatic ketones/aldehydes and possibly of other species such as quinones.

4.2 Materials and Method
4.2.1 Chemicals

Sodium phosphate, sodium dihydrogen phosphate, sodium hydroxide and Sephadex G-10 were purchased from Sigma-Aldrich. Phenol (PHE, Merck, 98%), 4-methoxylphenol (MOP, Fluka, 97%), 3,4-dimethoxylphenol (DMOP, Aldrich, 99%) and 2,4,6-trimethylphenol (TMP, Fluka, 99%) were used as received. Hydrogen peroxide (30%) was purchased from Fisher. Suwannee River fulvic acid (SRFA) and Suwannee River humic acid (SRHA) were obtained from the International Humic Substance Society. The C-18 extract from the Delaware Bay (99°N, -75.13° W) was obtained in Oct 2006 and processed as previously reported.157 Sodium borohydride was obtained from Aldrich.

Borohydride reduction was performed as previously described,78,88 with the exception that a 25-fold excess of borohydride was employed. For the photochemical experiments, samples were prepared in 10 mM phosphate buffer (pH=7) at a concentration of 10 mg/L for SRFA and SRHA, while the absorbance of the C\textsubscript{18}
extract at 350 nm was matched to that of 10 mg/L SRFA. All phenol stock solutions were prepared fresh daily in phosphate buffer. Phenol concentrations were varied from 0 to 1000 µM in the photochemical samples. Water was obtained from a Milli-Q purification system. A Shimadzu 2401-PC spectrophotometer was employed to acquire UV-VIS absorption spectra. Absorption spectra were recorded using 1 cm cuvette over the range from 190 nm to 820 nm. All spectra were referenced to MQ water.

4.2.2 Determination of hydrogen peroxide photoproduction rates ($R_{H_2O_2}$) and apparent quantum yields

A chemiluminescence-based flow injection analysis (FIA) was employed to determine [H$_2$O$_2$]. The chemiluminescence reagent, acridinium ester (AE), was provided by Waterville Analytical Company. A 0.1 M Na$_2$CO$_3$ solution (pH= 11.2) was employed as reaction pH buffer. Carrier water was treated with 3 mg/L catalase over night before use to eliminate background H$_2$O$_2$. Sample H$_2$O$_2$ is unaffected by the added catalase because the reaction time for H$_2$O$_2$ and AE is less than 20 s, while the half-life of H$_2$O$_2$ in 3 mg/L catalase is ~15 min. The buffer solution, carrier water and AE were introduced into the reaction vessel using a peristaltic pump with flow rate of 10.9 ml/min, while samples for H$_2$O$_2$ analysis were introduced by a syringe. Hydrogen peroxide concentrations were calibrated daily by dilution of a 30% H$_2$O$_2$ stock solution, whose concentration was determined by H$_2$O$_2$ molar absorptivity, and confirmed by a titrimetric method using KMnO$_4$. Calibration curves of [H$_2$O$_2$] in the presence of increasing concentrations of the phenols (0 to 1 mM) showed no evidence of significant interference. Catalase was added to solutions after irradiation
to ensure that the observed signal was arising from H$_2$O$_2$ alone. All samples contacted only glass and Teflon to avoid possible contamination by adventitious trace metals.

The output from a 300 watt xenon arc lamp, after passage through a 20 cm water jacket and a 325 nm long-pass filter (50% transmission wavelength), was employed for irradiation. Additional long-pass filters (355 and 385 nm) were employed to examine the wavelength dependence of the H$_2$O$_2$ production rate. Samples containing differing concentrations of phenols were held in 1 cm pathlength quartz cuvette. Any background of hydrogen peroxide in the phosphate buffer was substracted. Hydrogen peroxide production rates, R_{H2O2}, were obtained from a linear regression of [H$_2$O$_2$] versus time over a 10 min irradiation period employing 3 min sampling intervals (4 points). Samples containing differing phenol concentrations (up to 1 mM) in the absence of HS showed no evidence of significant dark H$_2$O$_2$ production over the 10 min irradiation period. Except for DMOP, irradiation of the phenols alone did not lead to H$_2$O$_2$ production over this same period. In the case of DMOP, the background rate was small with respect to the rates observed in the presence of the HS (<10%), and was substracted from the observed rate for each phenol concentration.

All gases were obtained from Airgas (ultra high purity). Differing dioxygen concentrations (0 to 1250 µM) were achieved by bubbling pure N$_2$, air or dioxygen gas (98%), or mixtures of these gases obtained using a rotameter, through samples contained in 1-cm cuvette capped with a Teflon lid and vented with a fine needle. Samples were first purged for 20 minutes with the desired gas or gas mixture, with the headspace then purged for an additional ten minutes prior to sealing the cuvette.
Samples were immediately irradiated for an appropriate time period and subsequently analyzed for [H₂O₂]. A dioxygen scrubber was mounted on N₂ tank to remove traces of O₂ in N₂ tank to ensure anoxic conditions were attained under N₂ purging. Polychromatic quantum yields for H₂O₂ production in the absence of phenols, ϕ₀, were calculated using the following expression,

$$\phi_0 = \frac{R_{H_2O_2}}{R_{EX}}$$ \hspace{1cm} (4.2)

where $R_{H_2O_2}$ is the H₂O₂ production rate in the absence of phenols, R_{EX} is the rate of light excitation,

$$R_{EX} = \int_{190}^{820} a(\lambda) \times I(\lambda) \, d\lambda = \int_{190}^{820} R(\lambda) \, d\lambda$$ \hspace{1cm} (4.3)

where $a(\lambda)$ is the absorption coefficient of the sample, and $I(\lambda)$ is the irradiance at wavelength λ at the front face of the cuvette, as measured with an Ocean Optics spectroradiometer.

4.3 Results

4.3.1 H₂O₂ enhancement by addition of TMP

Addition of increasing concentrations of TMP to untreated SRFA samples substantially enhanced $R_{H_2O_2}$, increasing this rate by as much as 2-fold by 100 µM TMP (Fig. 4-1). At [TMP] ≤ 100 µM, $R_{H_2O_2}$ appeared to increase linearly (Fig. 4-1). Although borohydride reduction of SRFA did not largely affect $R_{H_2O_2}$ in the absence of TMP as was observed previously (Fig. 4-1; Table 4-1), this treatment did substantially decrease the $R_{H_2O_2}$ values at [TMP] ≤ 100 µM;
Figure 4-1: Wavelength dependence of \(R_{\text{H}_2\text{O}_2} \) in the absence and presence of increasing [TMP] for untreated (black) and borohydride-reduced (red) SRFA. Samples were irradiated with a polychromatic source employing long-pass filters (325, 355 and 385 nm). Samples contained 10 mg/L SRFA in 10 mM phosphate buffer, pH =7.0. Error bars represent the standard derivation acquired from at least three measurements.

However, the rates observed following borohydride reduction did not return to those observed in the absence of TMP. This inhibition by borohydride reduction of the enhancement of \(R_{\text{H}_2\text{O}_2} \) in the presence of TMP was estimated from the expression,

\[
\% I = (1 - \left(\frac{S_r}{S_u} \right)) \times 100
\]

(eqn 4.4)

where \(S_r \) and \(S_u \) are the slopes obtained from Fig. 4-1 for borohydride-reduced and untreated SRFA, respectively (Table 4-1).
Table 4-1: Wavelength dependence of the slope (S), intercept, slope ratio and % inhibition by borohydride reduction (% I) acquired from linear regressions of the data in Fig. 4-1 for untreated SRFA (Su) and borohydride-reduced SRFA (Sr).

<table>
<thead>
<tr>
<th></th>
<th>Intercept (Su (E-5) (s-1))</th>
<th>Slope (Su (E-5) (s-1))</th>
<th>Intercept (Sr (E-5) (s-1))</th>
<th>Slope (Sr (E-5) (s-1))</th>
<th>Slope ratio</th>
<th>% I</th>
</tr>
</thead>
<tbody>
<tr>
<td>325nm</td>
<td>0.87±0.01</td>
<td>0.94±0.03</td>
<td>0.81±0.03</td>
<td>0.40±0.05</td>
<td>0.42</td>
<td>57.6</td>
</tr>
<tr>
<td>355nm</td>
<td>0.58±0.004</td>
<td>0.70±0.007</td>
<td>0.48±0.02</td>
<td>0.32±0.03</td>
<td>0.46</td>
<td>53.8</td>
</tr>
<tr>
<td>385nm</td>
<td>0.29±0.023</td>
<td>0.58±0.05</td>
<td>0.27±0.02</td>
<td>0.33±0.03</td>
<td>0.57</td>
<td>42.8</td>
</tr>
</tbody>
</table>

The degree of inhibition following borohydride reduction (~40-60 %) is very similar to that previously observed for the inhibition of the photosensitized loss of TMP by SRFA over this same range of TMP concentration (~50%). This result provides evidence that (aromatic) ketones/aldehydes are involved in the enhanced production of H₂O₂ in the presence of TMP consistent with Scheme 4-1. This result shows further that a new route for H₂O₂ photoproduction can be introduced when sufficiently high concentrations of appropriate external electron donors are present.

Evidence for two distinct mechanisms of H₂O₂ photoproduction in the presence and absence of TMP is also provided by the wavelength dependence of the slopes and intercepts, respectively (Fig.4-1, Table 4-1). In the absence of TMP, R₄H₂O₂ (intercepts) decrease by a factor of ~3 when the wavelength of the long-pass filter is increased from 325 to 385 nm, independent of borohydride reduction (Table 4-1). In contrast, the slopes decrease by only ~40% over this same wavelength range for the untreated sample, and by only ~18% in the borohydride-reduced sample, leading to an ~15% decrease in the % inhibition by borohydride reduction over this wavelength range (Table 4-1). These results suggest that 1) the enhanced R₄H₂O₂ observed in the
presence of TMP extends to longer wavelengths in the UVA than that observed for
direct H₂O₂ photoproduction, and 2) there appears to be slightly less inhibition by
borohydride reduction at the longer wavelengths in the UVA. Both observations
provide evidence of a wavelength dependence that differs for the direct and enhanced
routes of H₂O₂ photoproduction.

Substantially enhanced values of R₁H₂O₂ were also observed for SRFA, SRHA
and the Lower Delaware Bay sample in the presence of PHE, DMOP, MOP and TMP
(Fig. 4-2). At higher concentrations of these phenols, above roughly 200-300 µM,
evidence for saturation of R₁H₂O₂ was observed, suggestive of a quantitative reaction of
the phenols with transient intermediate(s) at high concentration, with the products of
this reaction ultimately producing hydrogen peroxide (Scheme 4-1). As with SRFA
(Fig. 4-1), borohydride reduction of the HS significantly decreased the values of
R₁H₂O₂, but clearly did not eliminate the enhancement (Fig.4-1, Fig.4-2).
Figure 4-2: Dependence of $R_{H_2O_2}$ on phenol concentration in air ([O$_2$] = 250 µM) for untreated (●) and borohydride-reduced (○) SRFA, SRHA, and the C-18 extract from Lower Delaware Bay station using the polychromatic source. Error bars represent the standard derivation acquired from at least three measurements for SRFA SRHA and lower Bay sample.

As an empirical means of quantifying the dependencies of $R_{H_2O_2}$ on phenol concentrations, the curves in Fig. 4.2 for both untreated and borohydride-reduced samples were fit to Eqn. 4.5 using a non-linear least squares fitting routine,

$$R_{H_2O_2} = y_0 + \frac{A[phenol]}{B + [phenol]} \quad (4.5)$$

where y_0 is the value of $R_{H_2O_2}$ in the absence of the phenols at [O$_2$] = 250 µM, A is maximum value of the enhanced $R_{H_2O_2}$ attained at high phenol concentration, and B is
concentration of the phenols at which $R_{\text{H}_2\text{O}_2}$ reaches half of its maximum value (A) (Fig. 4-3). Estimates of the enhancement factor, EF, were calculated from the relation,

$$EF = A/yo \quad (4.6)$$

while estimates for the % inhibition of enhancement due to borohydride reduction (%I) were obtained from the relation,

$$%I = (1-((A_r-yo)/(A_u-yo)) x 100 \quad (4.7)$$

where A_u and A_r are the values of A for untreated and borohydride-reduced samples, respectively. Estimates of the polychromatic quantum yields under saturating [phenol], ϕ_P, were obtained from,

$$\phi_P = \phi_0 \times EF \quad (4.8)$$

where ϕ_0 is the polychromatic quantum yield for H_2O_2 photoproduction in the absence of the phenols for either untreated or borohydride-reduced samples (see Materials and Methods) (Table 4-2).
Figure 4- 3: Values (y_0, A and B) from the fits of the data from Fig. 4-2 using kinetic equation: $y=y_0+Ax/(B+x)$. y_0 stands for the R_{H2O2} in the absence of phenols. A stands for the enhanced R_{H2O2} in the presence of [phenol]; B is the concentration of phenol at which R_{H2O2} reaches half its maximal value. Left panel: A (black; untreated, red; reduced) and y_0 (green; untreated, yellow; reduced). Right panel: B values (black; untreated, red; reduced). Errors are obtained from Fig. 4-2.
Table 4-2: H$_2$O$_2$ polychromatic quantum yields for HS only (Φ_0) and for that in the presence of Phenols (Φ_p). Y_0 is the value of R_{H2O2} in the absence of the phenols at [O$_2$] = 250 µM. Rex is the rate of light excitation. Φ_0 obtained from fitting value y_0. %I is the inhibition of enhancement due to borohydride reduction. EF is the enhance factor. Φ_p, which were obtained from $\phi_0 \times EF$.

<table>
<thead>
<tr>
<th></th>
<th>Y_0</th>
<th>Rex</th>
<th>ϕ_0</th>
<th>%I</th>
<th>EF</th>
<th>ϕ_p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E-9 M/S</td>
<td>E-6 M/s</td>
<td>E-4</td>
<td></td>
<td></td>
<td>E-3</td>
</tr>
<tr>
<td>SRFA</td>
<td>1.1±0.1</td>
<td>1.8</td>
<td>6.2</td>
<td>PHE</td>
<td>4.4</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MOP</td>
<td>5.0</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TMP</td>
<td>3.1</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DMOP</td>
<td>9.4</td>
<td>5.8</td>
</tr>
<tr>
<td>ReSRFA</td>
<td>1.1±0.3</td>
<td>1.2</td>
<td>9.2</td>
<td>PHE</td>
<td>51</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MOP</td>
<td>35</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TMP</td>
<td>48</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DOMP</td>
<td>34</td>
<td>6.7</td>
</tr>
<tr>
<td>SRHA</td>
<td>1.3±0.4</td>
<td>2.6</td>
<td>5.0</td>
<td>PHE</td>
<td>3.2</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MOP</td>
<td>4.2</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TMP</td>
<td>2.9</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DMOP</td>
<td>7.8</td>
<td>3.9</td>
</tr>
<tr>
<td>RESRHA</td>
<td>1.2±0.3</td>
<td>1.4</td>
<td>8.7</td>
<td>PHE</td>
<td>54</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MOP</td>
<td>61</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TMP</td>
<td>56</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DMOP</td>
<td>48</td>
<td>4.1</td>
</tr>
<tr>
<td>LB</td>
<td>0.9±0.3</td>
<td>2.8</td>
<td>3.4</td>
<td>PHE</td>
<td>8.2</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MOP</td>
<td>5.4</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TMP</td>
<td>3.8</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DMOP</td>
<td>14.9</td>
<td>5.1</td>
</tr>
</tbody>
</table>
The values of y_0 obtained from the fitting of data in Fig. 4-2 were consistent with those acquired directly (Fig. 4-1, Tables 4-1, 4-2). Values of EF ranged from a low of \sim3 for TMP to a high of \sim15 for DMOP, and were lower in the borohydride-reduced samples owing to the inhibition produced by reduction (Table 4-2). Values of EF increased in the order SRHA<SRFA<LB, a trend similar to that previously observed for the rates of photosensitized TMP loss.\(^{88}\) Except for TMP, both untreated and borohydride-reduced samples exhibited a general trend of increasing EF and ϕ_p with decreasing oxidation potential of the phenol (Fig. 4-3, Table 4-2), suggesting higher H$_2$O$_2$ yields in the presence of better electron donors. Interestingly, the values of ϕ_p for the untreated and borohydride-reduced samples were quite similar due to an approximately proportional loss in R$_{H2O2}$ and R$_{ex}$ following borohydride reduction. Similar results have been observed previously in the sensitized loss of TMP\(^{88}\) and sensitized 1O$_2$ formation\(^{85}\) following borohydride reduction of aquatic HS.

Except for TMP, which exhibited consistently higher values of B (Fig. 4-3), the untreated HS samples exhibited no clearly identifiable trends in B across the different phenols, with all values falling within the range from \sim200 to 600 µM. Assuming that the values of B are determined only by the competition between phenol and O$_2$ for reaction with the triplet states (see below),\(^{154,155}\) dividing the value of B by [O$_2$] (=250 µM) provides the rate constant ratio of O$_2$ to phenol reaction. Values of this rate constant ratio, which varies from \sim 0.8 for DMOP to \sim 3 for TMP, are within the range expected for reaction with aromatic ketone triplet states.\(^{154,155}\)

However, these results are still somewhat surprising, since one might anticipate a systematic decrease in B with decreasing oxidation potential of the
phenol owing to more rapid reaction with the triplet relative to triplet quenching by dioxygen.154,155 However, this interpretation may be too simplistic owing to potential secondary reactions of the phenoxy radicals, including possible reactions with co-produced $O_2^{-}154$ and possibly H_2O_2.

Indeed, the fact that the estimated values of ϕ_p for SRFA ($1.9x10^{-3}$) and SRHA ($1.5x10^{-3}$) in the presence of saturating [TMP] (Table 4-2) are at least 5- to 10-fold smaller than the apparent polychromatic quantum yields for the photosensitized loss of TMP ($2.0x10^{-2}$ and $5.3x10^{-3}$ for SRFA and SRHA, respectively; Table 1 in Ref. 88) implies a substantial loss of O_2^{-} and/or H_2O_2 through secondary reactions (see further below).

As with the untreated samples, no clearly discernable trends in B were observed for the differing phenols following borohydride reduction. Borohydride reduction appeared to increase B for SRFA with some phenols, while not largely changing it for SRHA (Fig. 4-3).

4.3.2 Oxygen dependence

Further evidence for the participation of ketone/aldehyde triplet states in the enhanced photoproduction of H_2O_2 was provided by the dioxygen dependence of R_{H2O2} in the presence of TMP (Fig.4-4). At [TMP]=100 μM, decreasing the [O$_2$] from 1.2 mM to 50 μM leads to an ~3- to 4-fold increase in R_{H2O2} in all samples examined; R_{H2O2} then dropped to near-zero under anoxic conditions. Borohydride reduction inhibited the increase in R_{H2O2}, but did not entirely eliminate it. By comparison, in the absence of phenols, R_{H2O2} decreased with decreasing [O$_2$] and was largely unaffected by borohydride reduction (Fig.4-4).145 Within the uncertainties, these variations with
[O₂] in the presence of TMP are essentially indistinguishable from those previously reported for the sensitized loss of TMP for untreated and borohydride reduced samples and provide compelling evidence for the involvement of ketone/aldehyde triplet states in this process. However, as in that study, the incomplete loss of enhancement under borohydride reduction suggests that their remains another pool of oxidizing triplets.

![Graph](image)

Figure 4-4: Dependence of R_{H2O2} on dioxygen concentration for untreated (Black) and borohydride-reduce (Red) SRFA at the presence of 100 μM TMP using the polychromatic source. Controls: Green and yellow lines are R_{H2O2} for SRFA and reduced SRFA respectively in the absence of TMP.
As with the photo-sensitized loss of 2,4,6-trimethoxy phenol, those results can be understood within the following reaction scheme.

\[
\begin{align*}
\text{O}_2 & \xrightarrow{k_Q} 1\text{C} + \text{O}_2 \\
\text{1C} & \xrightarrow{k_T} 1\text{C} + \text{heat} \\
\text{1C} + \text{TMP} & \xrightarrow{k_p} 1\text{C} + \text{TMP} \\
\cdot \text{CH} + \cdot \text{TMP} & \xrightarrow{k_{REC}} \cdot \text{CH} + \cdot \text{TMP} \\
\cdot \text{CH} + \cdot \text{TMP} & \xrightarrow{k_{RECON}} \cdot \text{CH} + \cdot \text{TMP} \\
\cdot \text{CH} + \text{O}_2 & \xrightarrow{k_{RXN}} \text{O}_2 \\
\text{O}_2 & \xrightarrow{k_{DIS}} \text{H}_2\text{O}_2
\end{align*}
\]

These reactions lead to the following expression that relates \(R_{H2O2} \) to the \([\text{O}_2]\) and \([\text{TMP}]\),

\[
R_{H2O2} = \frac{d_{H2O2}}{dt} = \frac{0.5k_f \varphi k_{TMP}[\text{TMP}]}{\left(k_T + k_Q[\text{O}_2] + k_{TMP}[\text{TMP}]\right)} \times \frac{1}{1 + \frac{k_{REC}}{k_{RXN}} \times \frac{1}{[\text{O}_2]} } \tag{4.9}
\]

where \(k_c + k_p = k_{TMP} \), \(\varphi = k_c/(k_c + k_p) \), and \(k_{REC} = k_{RECOM}[\text{TMP}] \) (see Appendix 2 for derivation).

Employing the values for the rate constants (\(k_T \), \(k_Q \), and \(k_{TMP} \)) and the rate constant ratio (\(k_{REC}/k_{RXN} \)) previously acquired by Golanoski et al. through fitting of the dioxygen dependence of photosensitized TMP loss, a non-linear least-squares
fitting routine was used to fit the dioxygen dependence of $R_{\text{H}_2\text{O}_2}$, but allowing only the product, $0.5 \, k_f \phi$, to vary (Fig. 4.5). Considering that only one adjustable parameter was allowed, the fits are quite good and establish that one set of kinetic parameters can explain reasonably well the dependence of both H_2O_2 production and TMP loss on $[\text{O}_2]$. Note however, that the magnitudes of the product, $0.5 \, k_f \phi$, for H_2O_2 production are significantly smaller those found by Golanoski et al. for TMP loss under comparable experimental conditions, suggesting again that a significant portion of the O_2/H$_2$O$_2$ produced may be consumed in secondary reactions.

Figure 4-5: Dependence of $R_{\text{H}_2\text{O}_2}$ at fixed [TMP]= 100 µM for both untreated and borohydride reduced SRFA, SRHA, Lower Bay samples. Data were fit to the equation 4-9 employing a nonlinear least-squares fitting routine using fixed values of $k_T = 6.6 \times 10^4 \, \text{s}^{-1}$, $k_Q = 2.0 \times 10^9 \, \text{M}^{-1}\text{s}^{-1}$, $k_{\text{TMP}} = 2.5 \times 10^9 \, \text{M}^{-1}\text{s}^{-1}$.
This work has clearly demonstrated that the rate of H_2O_2 photoproduction by HS can be substantially enhanced in the presence of sufficiently high concentrations of appropriate electron donors. The effects of borohydride reduction and [O$_2$] on RH_2O_2 are consistent with the reaction mechanism shown in Scheme 4-1, although the incomplete loss of the enhanced RH_2O_2 following borohydride reduction suggests that there remains another pool of oxidizing triplets as was observed previously for TMP loss.88
Chapter 5: Summary and Future Directions

5.1 Summary

Key aspects of the mechanisms of the photochemical \(\text{H}_2\text{O}_2 \) production from aquatic humic substance have been addressed in this thesis. Borohydride reduction, which selectively removes the aromatic ketone moieties from CDOM irreversibly, does not substantially affect the ratio of \(\text{H}_2\text{O}_2 \) production, indicating that charge transfer states or aromatic ketones/aldehydes are unlikely to be directly involved with \(\text{H}_2\text{O}_2 \) production. The tens of microsecond lifetime of the \(\text{H}_2\text{O}_2 \) precursor estimated from the dioxygen dependence of \(R_{\text{H}_2\text{O}_2} \) could be due to either triplet states or a reductant formed by excited state electron transfer. However, obtained evidence by the use of chloride ion and sorbic acid, triplet quenchers, indicates that triplet states are unlikely to be the precursor of produced \(\text{H}_2\text{O}_2 \).

This work indicates that \(\text{H}_2\text{O}_2 \) is primarily formed via a low efficiency intramolecular electron transfer from excited singlet donors to ground state acceptors. Based on previous research, possible donors are substituted phenols or methoxyl phenols and possible acceptors include quinones, which unlike ketones and aldehydes, are not irreversibly reduced by borohydride.

A simple, highly-sensitive method was employed for detecting one-electron reducing intermediates produced by irradiation of CDOM. The molecular probe 3ap employed acts as one-electron acceptor similar to dioxygen, and has been shown to compete with dioxygen to form stable hydroxylamine. The rate of the photo production of the reducing intermediates can be detected by probe 3ap in the absent of dioxygen and monitored by the HPLC with a fluorescence detector when formed.
hydroxylamine coupled with fluorescamine. The dependence of R_{H} on $[O_2]$ argues that <10% of total detected one electron reducing intermediates is nonreactive to dioxygen. Further examining on the stoichiometry ratio of indirect measurement of superoxide and direct measurement H_2O_2 monochromatically propose that 67% percentage of superoxide decay through other oxidation pathways rather than bimolecular dismutation to H_2O_2 under monochromatic irradiation conditions. This ratio is slightly higher than Waite’s previous work.

The substantial enhancement of H_2O_2 production rate in the presence of added phenol donor is consistent with the reaction of the phenol with triplet states at aromatic ketone/aldehydes form ketyl radicals, which substantially react with O_2 to form superoxide. Evidence that support this interpretation includes 1) an increase in H_2O_2 production rates with decreasing $[O_2]$, 2) ability to fit the dependence of R_{H2O2} on $[O_2]$ with parameters previously obtained from the sensitized loss of TMP, 3) a substantial loss in the rate of H_2O_2 production following borohydride reduction.

However, the incomplete loss of the enhancement in R_{H2O2} following borohydride reduction argues that there remains another pool of oxidizing triplet as in the case of photosensitized loss of TMP.

Finally, substantial different between the quantum efficiency of the photosensitized loss of TMP and the quantum efficiency of H_2O_2 production suggests that secondary reactions may consume a significant portion of the O_2/H_2O_2 that is produced.
5.2 Future work

The quantum yield of H₂O₂ monochromatic wavelength dependence has been investigated in Chapter 2. Monochromatic decreasing of the quantum yield as irradiation wavelength increase is consistent with decreasing yield of the produced excited singlet donor, which is considered as the precursor of H₂O₂ from humic substance. However, the HS photosensitization efficiency wavelength dependence for H₂O₂ production in the presence of external donor has not been investigated and need further investigation. In addition, Comparison between polychromatic H₂O₂ production quantum yields with that of monochromatic in the presence of external donors is likely to provide additional useful information.

The HS sensitized reaction between electron donor phenols to dioxygen has been investigated in Chapter 4, and the possible scheme has been proposed that the triplet states of aromatic ketones moieties are involved as electron accepting species. However, whether the aromatic ketones moieties are serving as catalytic shuttle transferring electron from external electron donating species, such as phenols, to oxidant such as dioxygen is still not known. More work need to be done to probe the redox reversibility properies of triplet states intermediates of humic substance.

Ratasuk⁷⁴ has employed cyclic oxidation and reduction method to structurally characterize and quantify the electron carrying capacity of reversible redox sites present in humic substance. They argued that the ratio of non-quinone structure to quinone structure of redox sites is 1:2. Our results that the photosensitization capacity (H₂O₂ production) of the humic samples employed were not fully eliminated upon
borohydride reduction requires more work for probing the other possible excited redox moieties besides quinones as possible photo-reductant.
Appendix 1

The effect of O_2^- back reaction and disproportionation on the O_2^- dependence of the hydrogen peroxide production rate ($R_{H_2O_2}$)

Branching ratio effect of superoxide back reaction on the kinetic scheme of oxygen dependence of hydrogen peroxide production rate

1: Without considering branching ratio, the $R_{H_2O_2}$ is expressed as below as simple fit:

$$R_{H_2O_2} = \left[\frac{d [H_2O_2]}{dt} \right]_0 = K_r [ROS] [O_2] = \frac{R_f k_{O_2} [O_2]}{2 (k_d + k_{O_2} [O_2])} = \frac{R_f [O_2]}{2 (k_{REC} [O_2] + [O_2])}$$

\[= \frac{a [O_2]}{2 (b + [O_2])} \]

2: With considering the back reaction K_{REC} and superoxide disumuation K_{DIS} as $FIRST ORDER$ reaction, the is $R_{H_2O_2}$ modified as:

$$R_{H_2O_2} = \left[\frac{d [H_2O_2]}{dt} \right]_0 = \frac{K_{DIS} R_f k_{O_2} [O_2]}{2 (K_{DIS} + K_{REC}) (k_d + k_{O_2} [O_2])}$$

\[= \frac{K_{DIS} R_f [O_2]}{2 (K_{DIS} + K_{REC}) (k_{d} + [O_2])} = \frac{a [O_2]}{2 (b + [O_2])} \ast \frac{K_{DIS}}{(K_{DIS} + K_{REC})} \]
This will not effect the oxygen dependence curve as well as half saturating concentration.

3: With considering the back reaction K_{REC} and superoxide disumuation K_{DIS} as **SECOND ORDER** reaction, the is R_{H2O2} modified as :

$$R_{H2O2} = \left[\frac{d [H_2O_2]}{dt} \right]_0 =$$

$$\frac{1}{2} \left[\frac{R_f k_{O2}[O_2]}{(k_d + k_{O2}[O_2])} + \frac{K_{REC}^2}{K_{DIS}} \left(1 - \sqrt{1 + \frac{2R_f k_{O2}[O_2]K_{DIS}}{(k_d + k_{O2}[O_2])K_{REC}^2}} \right) \right]$$

$$= \frac{1}{2} \left[\frac{a [O_2]}{(b + [O_2])} + \frac{K_{REC}^2}{K_{DIS}} \left(1 - \sqrt{1 + \frac{2a [O_2]K_{DIS}}{(b + [O_2])K_{REC}^2}} \right) \right]$$

For sample SRFA, curve fitting provide initial value for $a=0.48$, $b=34.36$. If we define $\frac{K_{REC}^2}{K_{DIS}}$ as c, varies c value from 0.01 to 10 to see the impact of c on the curve shape. The results are listed below:

SRFA oxygen dependence when chaning ratio $c= \frac{R_{REC}^2}{R_{DIS}}$ from 0.01 to 10

The half saturation dependence as :
Half saturation concentration dependence on ratio $c= \frac{R_{REC}^2}{R_{DIS}}$ from 0.01 to 10

![Graph showing half saturation concentration dependence on ratio $c= \frac{R_{REC}^2}{R_{DIS}}$ from 0.01 to 10.](image)

When applying the $R_{REC} = 5.4 \times 10^{-4}$ to $9.3 \times 10^{-3} \text{ s}^{-1}$, $36, 77$ and $R_{DIS} = 6 \times 10^5 \text{ M}^{-1} \text{s}^{-1}$ at PH = 7, the R_{REC}^2 is $(4.86 \times 10^{-13} - 14.4 \times 10^{-11})$. Giving the curve below when comparing with simple fit without considering the branching ratio. Half saturation stays the same under above conditions (33 µM)

SRFA oxygen dependence simple fit and $c= \frac{R_{REC}^2}{R_{DIS}}$ from 4.86×10^{-13} - 14.4×10^{-11}

![Graph showing SRFA oxygen dependence simple fit and $c= \frac{R_{REC}^2}{R_{DIS}}$ from 4.86×10^{-13} - 14.4×10^{-11}.](image)

Since the back reaction rate constant are so small, this branching ratio does not shift the dependence as well as the half saturation with any significance.
Appendix 2

Derivation of Equation 4.9

Above scheme shows the transformation of a ground state chromophore, 1C, to a triplet excited state chromophore, $^3C^*$ with rate of formation of the excited triplet state k_f under a constant flux of photons from irradiation. Transformation of $^3C^*$ to the ground state can occur through quenching by molecular oxygen (O_2) at rate k_Q (Eqn.SI1), radiationless transition to the ground state at rate k_T (Eqn. SI2), and physical or chemical reaction with the external donor with rate k_p and k_C, respectively (Eqn. SI3-4). The radical intermediates produced by reaction SI4 can recombine at rate k_{RECON} (Eqn.SI5) or be further oxidized by molecular oxygen to form superoxide rate k_{RXN}, and subsequently hydrogen peroxide (Eqn.SI6).

From above scheme, the $R_{H_2O_2}$ can be expressed as

$$R_{H_2O_2} = \frac{d_{H_2O_2}}{dt} = 0.5 \frac{d_{O_2^-}}{dt} = 0.5k_{RXN}[\cdot CH][O_2]$$ \hspace{1cm} (SI7)
The steady state concentration of the radical $\cdot CH$ is shown in Eqn SI8

$$0 = \frac{d_{\cdot CH}}{dt} = k_c \cdot^3 C^* [TMP] \cdot CH - (k_{RECOM} \cdot TMP + Rrxn[O_2]) \cdot CH$$ \hspace{1cm} (SI8)$$

$$\cdot CH = \frac{k_c [TMP] [^3 C^*]}{(k_{RECOM} \cdot TMP + Rrxn[O_2])}$$ \hspace{1cm} (SI9)$$

where the steady state concentration of the excited triplet state chromophore is given by Eqn. SI10,

$$0 = \frac{d[^3 C^*]}{dt} = k_f - k_Q[O_2][^3 C^*] - k_T[^3 C^*] - k_p[TMP][^3 C^*]$$

$$[^3 C^*] = \frac{k_f}{k_T + k_Q[O_2] + (k_p + k_c)[TMP]}$$ \hspace{1cm} (SI10)$$

(SI11)

Eqn 12 is derived by substitutions of equation SI9 and SI11 into equation SI7,

$$\frac{d_{H2O2}}{dt} = 0.5 \frac{d_{O_2^-}}{dt} = \frac{0.5 k_f k_c k_{RXN}[O_2][TMP]}{(k_T + k_Q[O_2] + (k_p + k_c)[TMP])(k_{RECOM} \cdot TMP + Rrxn[O_2])}$$ \hspace{1cm} (SI12)$$

The branching ratio for the chemical and physical reaction of TMP with $^3 C^*$ can be represented by $\frac{k_c}{(k_p + k_c)}$, where the sum of the reaction is defined as the total rate constant for TMP reaction, such that $k_{TMP} = k_c + k_p$. The terms $k_{RECOM} \cdot TMP$ are combined into a simple lifetime term k_{REC}, with the resulting expression is shown in equation SI13.

$$\frac{d_{H2O2}}{dt} = 0.5 \frac{d_{O_2^-}}{dt} = \frac{0.5 k_f \varphi k_{TMP} [TMP]}{(k_T + k_Q[O_2] + k_{TMP}[TMP])} \times \frac{1}{1 + \frac{k_{REC}}{k_{RXN}} \times \frac{1}{[O_2]}}$$ \hspace{1cm} (SI12)$$
Bibliography

63. Ariese, F.; van Assema, S.; Gooijer, C.; Bruccoleri, A.; Langford, C., Comparison of Laurentian Fulvic Acid luminescence with that of the hydroquinone/quinone model

