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There are a variety of circumstances in which large numbers of people gather and 

must disperse. These include, for example, carnivals, parades, and other situations 

involving entrance to or exit from complex buildings, sport stadiums, commercial 

malls, and other type of facilities. Under these situations, people move on foot, 

commonly, in groups. Other circumstances related to large crowds involve high 

volumes of people waiting at transportation stations, airports, and other types of high 

traffic generation points. In these cases, a myriad of people need to be transported by 

bus, train, or other vehicles. The phenomenon of moving in groups also arises in these 

vehicular traffic scenarios. For example, groups may travel together by carpooling or 

ridesharing as a cost-saving measure. The movement of significant numbers of people 

by automobile also occurs in emergency situations, such as transporting large 

numbers of carless and mobility-impaired persons from the impacted area to shelters 

during evacuation of an urban area. 



  

This dissertation addresses four optimization problems on the design of 

facilities and/or operations to support efficient movement of large numbers of people 

who travel in groups. A variety of modeling approaches, including bi-level and 

nonlinear programming are applied to formulate the identified problems. These 

formulations capture the complexity and diverse characteristics that arise from, for 

example, grouping behavior, interactions in decisions by the system and its users, 

inconvenience constraints for passengers, and interdependence of strategic and 

operational decisions. These models aim to provide: (1) estimates of how individuals 

and groups distribute themselves over the network in crowd situations; (2) an optimal 

configuration of the physical layout to support large crowd movement; (3) an efficient 

fleet resource management tool for ridesharing services; and (4) tools for effective 

regional disaster planning. A variety of solution algorithms, including a meta-

heuristic scheme seeking a pure-strategy Nash equilibrium, a multi-start tabu search 

with sequential quadratic programming procedure, and constraint programming based 

column generation are developed to solve the formulated problems. All developed 

models and solution methodologies were employed on real-world or carefully created 

fictitious examples to demonstrate their effectiveness.  
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Chapter 1  Introduction 

1.1  Introduction and Motivation  

There are a variety of circumstances in which large numbers of people gather and 

must disperse. These include, for example, carnivals, parades, shopping centers or 

markets, inaugurations, rock concerts, football games, and other situations involving 

entrance to or exit from complex buildings, sport stadiums, commercial malls, and 

other type of facilities. Under these situations, people move on foot and en masse. 

Within the crowds, there are groups of people who wish to travel together. For 

example, family members walk beside each other. Friends or colleagues tend to stay 

together and maintain communication with each other while walking.  

Other circumstances related to large crowds involve high volumes of people 

waiting at transportation stations, airports, docks and other types of high traffic 

generation points. In these cases, a myriad of people need to be transported by bus, 

train, van, ship or other vehicles. The phenomenon of moving in groups also arises in 

these vehicular traffic scenarios. For example, a family will travel within the same 

vehicle or larger groups will travel in a bus. In other cases, groups may travel together 

by carpooling or ridesharing as a cost-saving measure.  

The movement of significant numbers of people by automobile also occurs in 

evacuating an urban region due to natural or human-made disaster events, like 

flooding, hurricanes, and industrial or nuclear accidents. To reduce the adverse 

consequences of these disasters on humans, evacuating a large region by automobile, 

which is the most commonly available evacuation mode, is often the most viable 

response action for protecting the affected people. However, urban areas often 
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involve large volumes of carless evacuees and a significant portion of them are 

mobility-impaired. Many of  these carless people require transport from the impacted 

area to safe places, including shelters. The evacuation planning consists of two 

components. First, decide the locations of shelters and assign people the shelters 

(facility design), and second, dispatch available public transit vehicles transport them 

to the shelters (operation design).  

Optimal design of facilities or facility locations and operations that support 

the movement of large numbers of people are critical to public safety and efficiency. 

In addition to the numerous disasters associated with crowding due to poor crowd and 

evacuation management, efficient control and guidance of the movement of large 

numbers of people can provide crucial support toward meeting ingress, egress and 

safety goals. Furthermore, optimal design of efficient and low-cost ridesharing or 

other mechanisms for moving individuals within a single vehicle can alleviate 

congestion on the roadways. In emergency situations, optimal design of shelter 

locations and operations for evacuating large numbers of carless and mobility-

impaired persons are critical components of evacuation planning for a large urban 

area.  

Modeling and decision support for these crowd-related circumstances, 

however, can be difficult, and related optimization problems are likely intractable. 

This intractability is, in part, due to (1) existence of a complex physical environment 

with interdependent passageways, (2) assembly of large numbers of people with 

complicated, collective and heterogeneous behaviors, (3) interdependence and 

interaction between decisions from different people who play different roles in the 
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system (crowd manager vs. system users, operators vs. passengers), and (4) the large-

scale nature of the problem instances with significant demand for service within large 

geographic regions, particularly as it relates to traffic and emergency events.  

This dissertation will provide tools to support the efficient movement of large 

numbers of people under a variety of situations. Specifically, mathematical models of 

pedestrian movements in crowds are developed and optimization tools are proposed 

to control crowd movement and prevent disorder from breaking out. The movement 

of large numbers of people to and from transportation stations (specifically airports) 

through ridesharing services is addressed, supporting the movement of unrelated 

persons in single vehicles. Finally, optimal design of facilities (shelter location and 

allocation) and operations (routes and schedules of paratransit vehicles) in a large-

scale transit-based mass evacuation of an urban area is addressed. 

1.2 Specific Problems Addressed 

The problems addressed in this dissertation arise from diverse, yet increasing 

concerns in facility and/or operations design for efficient movement of large numbers 

of people. This section provides concise statements about each addressed problems. 

The detailed problem descriptions, mathematical formulations and solution 

approaches are given in Chapters 2 through 5. 

 

1.2.1 Pedestrian Route Choice in Crowds 

In large public gatherings, crowds are directed through passageways within the 

facilities. The physical layout of these passageways provides a set of route options 

from which pedestrians can choose for ingress or egress. A pedestrianôs preference 
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for an alternative route depends on the routeôs utility and its utility depends both on 

its attributes and the pedestrianôs sensitivity to each such attribute type. In addition, 

some attributes, like travel speed, depend on the choices made by others who 

simultaneously seek passage along the same routes. Moreover, in the context of 

crowd movement, groups must make a concerted effort to move together and not be 

split apart. 

Network optimization-based modeling and solution frameworks are proposed 

for assessing pedestrian response to the physical layout of a venueôs ingress and 

egress routes during large public gatherings. The frameworks involve the modeling 

and solution of a pedestrian assignment problem. These approaches support the 

movement of both individuals and groups. A distinction is made between two broadly 

categorized group types: separable and clustered. The former can be, for example, a 

group of friends/colleagues who have a predilection for staying together, wherein 

each person within the group is free to make his or her own decision in response to 

the physical environment. The latter describes groups that will not be separated, such 

as parent and child. Such group decisions and movements are crucial to developing 

realistic models of pedestrian movement (Hamacher et al., 2011; Qiu and Hu, 2010). 

The effects of separable and clustered group movements on flow distributions 

through the physical layout are studied.  

Two methodologies are proposed to model these effects: a stochastic user 

equilibrium pedestrian assignment (SUE) approach to model separable groups and an 

n-player non-cooperative game seeking a pure-strategy Nash equilibrium to model 

clustered groups. A solution scheme that combines the method of successive averages 
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with group movements is proposed for solving the SUE assignment and a Best 

Response Dynamics-based Tabu Search procedure is proposed for obtaining a pure 

strategy Nash equilibrium for clustered groups. 

Details of model formulations, solution approaches, as well as results of 

numerical experiments conducted to demonstrate the effectiveness of the proposed 

methodologies and investigate the impact of groups on flow efficiency, are provided 

in Chapter 2. 

 

1.2.2 Crowd Management in Large Public Gatherings 

Effective crowd management during large public gatherings is necessary to enable 

pedestrians to have access to and from the venue and to ensure their safety. A number 

of previous studies focus on determining optimal routes for the movement of 

pedestrians through a given physical layout. An alternative management strategy 

might be to reconfigure the physical layout to facilitate pedestrian movement in 

pursuit of a particular goal. Such redesign can both limit pedestrian choice and 

enhance or restrict capacity along routes to facilitate efficient movement and prevent 

crowd crush or other unsafe situations. Changes to the physical layout might be 

achieved through opening or closing gates/doorways, placing or removing barriers or 

changing illumination intensity to coerce pedestrians along certain paths. No prior 

work has suggested such an approach in the context of crowd movement. 

In this dissertation, the problem of reconfiguring the physical layout of the 

facility to support efficient crowd movement, conceptualized as Redesign for 

Efficient Crowd Movement (RECM), is formulated as a bi-level integer program. The 
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upper-level seeks a reconfiguration of the physical layout that will minimize total 

travel time incurred by system users (e.g. evacuees) given utility maximizing route 

decisions that are taken by individuals in response to physical offerings in terms of 

infrastructure at the lower-level. The lower-level formulation seeks a pure-strategy 

Nash equilibrium that fills in grouping behavior in crowds. A Multi-start Tabu Search 

with Sequential Quadratic Programming procedure is proposed for solutions of the bi-

level Mixed Integer Program. This procedure guarantees a locally optimal solution to 

this nonlinear program.  

The details of formulation, numerical experiments on a hypothetical network 

conducted to illustrate the proposed solution methodology and the insights it provides 

are given in Chapter 3. 

 

1.2.3 Optimizing Ridesharing Services for Airport Access  

Airports often have large numbers of departure and arrival passengers that can cause 

congestion on roadways, environmental pollution, and greater difficulty accessing the 

facility. Like traditional public transit, ridesharing can serve more than one passenger 

with one vehicle. Thus, it can aid in limit ing the volume of traffic, thereby reducing 

congestion and mitigating environmental impact. Moreover, ridesharing can provide 

higher quality of service than traditional public transit through flexible routes and 

schedules as well as door to door pick-ups and drop-offs. Furthermore, reduced total 

passenger-miles traveled resulting from ridesharing and efficiently designed routes 

can increase profitability of the service provider and aid in diminishing traffic 

congestion along with its negative externalities, including environmental pollution.  
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The Airport Access Ridesharing Problem (AARP) is conceptualized in this 

dissertation. TheAARP seeks to determine a set of routes and schedules that meet 

service quality, resource, labor and vehicle capacity constraints while minimizing 

total cost in terms of vehicular use and total wages in the context of airport 

ridesharing services. The AARP is formulated as a nonlinear, mixed integer program. 

An exact solution approach applying constraint programming within a column 

generation framework, as well as adaptations of two existing heuristics, are proposed 

for its solution. Implementations of the mathematical program and proposed solution 

approaches for three different operational policies are also presented.  

The details of formulation, proposed solution approaches and numerical 

experiments on a real-world case study involving service records for one service day 

of Supreme Airport Shuttle, Inc. out of Washington Dulles International Airport are 

given in Chapter 4. 

 

1.2.4 Facility and Operations Design for Mass Evacuation Planning 

This dissertation addresses the problem of providing safe locations for mobility-

impaired persons in an evacuation and the transportation for these persons from their 

homes to such facilities. To state and local governments, important issues for 

facilities and operations in an mass evacuation planning associated with mobility-

impaired population include: (1) how many and where shelters should be opened to 

this population, (2) to which shelter each mobility-impaired evacuee should be 

assigned, and (3) how to optimally dispatch and route paratransit vehicles to serve 
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this population. No prior analytical models have been proposed in the literature to 

help the government with decision-making on these critical issues. 

To fill this gap, the Sheltering and Paratransit Evacuation Problem (SPEP) is 

studied. The SPEP is formulated as a mixed integer program. The problem consists of 

two interdependent and integrated subproblems: 1) Capacitated Shelter Location-

Allocation Problem (CSLAP) and 2) Multi-depot Pickup and Delivery Problem 

(MPDP). To solve a large-scale instance of the SPEP, a tabu search metaheuristic is 

proposed.  

Details of the problem conceptualization and formulation, as well as the 

proposed tabu search algorithm and numerical experiments on a real-world case study 

involving hurricane evacuation planning for New York City, are given in Chapter 5. 

 

1.3 Contributions 

Address vital aspects in the design of facilities and operations to support the 

movement of large numbers of people. This dissertation seeks to provide tools that 

can be used for: (1) Estimating the distribution of groups and individuals over the 

physical layout network, considering that people move in groups. (2) Redesigning the 

physical layout to facilitate crowd movement in pursuit of a particular goal, 

considering both goals of the system and the users. (3) Optimally and efficiently 

matching passengers to vehicles, and routing and scheduling their trips for an airport 

ridesharing service operation system. (4) Optimally locating and assigning shelters 

and optimally routing and scheduling available paratransit vehicles to support 

mobility-impaired populations in a large-scale regional evacuation. 
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Develop optimization models for these identified problems. Mathematical models are 

proposed and optimization problems are formulated. These models capture the 

complexity and diverse characteristics that arise from, for example, grouping 

behavior, interactions in decisions by the system and its users, inconvenience 

constraints for passengers, and interdependence of strategic and operational decisions. 

A variety of modeling approaches, including bi-level and nonlinear programming are 

applied to formulate the identified problems. These models aim to provide: (1) 

estimates of how individuals and groups distribute themselves over the network in 

crowd situations; (2) an optimal configuration of the physical layout to support large 

crowd movement; (3) an efficient fleet resource management tool for ridesharing 

services; and (4) tools for effective regional disaster planning. 

Provide conceptual framework and specific methodological procedures for solution 

of identified optimization problems. A variety of solution algorithms, including a 

meta-heuristic scheme seeking a pure-strategy Nash equilibrium, a multi-start tabu 

search with sequential quadratic programming procedure, and constraint 

programming based column generation are developed to solve the formulated 

problems. All developed models and solution methodologies were employed on real-

world or carefully created fictitious examples to demonstrate their effectiveness. 

1.4 Dissertation organization 

The remainder of this dissertation is organized into five chapters. Chapter 2 presents 

the modeling and solution frameworks of pedestrian route choice in crowds, while 

Chapters 3 through 5 address the RECM, AARP and SPEP, respectively. Finally, 

conclusions and extensions for future research are given in Chapter 6.  
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Chapter 2  Pedestrian Route Choice in Crowds  

2.1  Introduction  

Large gatherings of people arise for a variety of purposes and may be held in a 

myriad of venues, including for example, complex buildings, transportation stations, 

sports stadiums, commercial malls, and other type of facilities. In such gatherings, 

crowds are directed through passageways within the facilities. The physical layout of 

these passageways provides a set of route options from which pedestrians can choose 

for ingress or egress. The speed with which a pedestrian will move through the 

passageway depends on its physical capacity, the personôs physical well-being, and 

the number of other pedestrians utilizing it at the same time. The time for ingress or 

egress to or from the event depends on the series of choices the pedestrian makes in 

navigating the physical layout and competition with other pedestrians for passageway 

capacities. A pedestrianôs preference for an alternative route depends on the routeôs 

utility and its utility depends both on its attributes and the pedestrianôs sensitivity to 

each such attribute type. Moreover, some attributes, like travel speed, are affected by 

the choices made by competing system users. The selection of a route is assumed to 

be rational, meaning that the pedestrian will choose the route with the maximum 

utility based on his/her preference function. The overall problem of estimating which 

routes all travelers will take is known as a traffic assignment problem, and is referred 

to as a Pedestrian Route Choice in Crowds (PRCC) problem in this context.  

The concept of route choice in vehicular traffic flow is well developed. 

Pedestrians, however, have more degrees of freedom in movement and often move en 

masse, or in groups. Such groups arise in vehicular traffic scenarios, but these groups 
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are typically housed within a single vehicle. For example, a family will travel within 

the same car or larger groups will travel in a bus. These groups, thus, will never be 

faced with the possibility of being split apart. Others who seek to access the venue 

together but in different vehicles will often need to be willing to meet at the 

destination. In the context of pedestrian movement, however, groups must make a 

concerted effort to move together and not be split apart. For example, parents will not 

wish to be separated from their children. Thus, while each person within the family is 

an individual (i.e. a unit of flow) and is free to make his or her own decisions in 

response to directives from crowd managers or the physical layout, any effective 

crowd management plan must facilitate the movement of all members of the family as 

a group. That is, the group must be permitted to stay together and accommodations 

must be made to support this group movement. In this chapter, a distinction is made 

between two broadly categorized group types: separable and clustered (Aveni, 1977). 

The former can be, for example, a group of friends/colleagues who have a 

predilection for staying together, but each person within the group is free to make his 

or her own decision in response to the physical environment. It is likely but not 

guaranteed that individuals in this group type will travel together. The latter describes 

groups that will not be separated, such as parent and child. Such group decisions and 

movements are crucial to developing realistic models of pedestrian movement 

(Hamacher et al., 2011; Qiu and Hu, 2010). 

This chapter describes a network optimization-based modeling and solution 

framework for estimating pedestrian flows within a network representation of a 

physical environment. Movements by individuals and groups must be captured in the 
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flows produced by this method. That is, the framework involves the modeling and 

solution of a pedestrian assignment problem.  

Before proceeding to descriptions of these two modeling approaches, traffic 

assignment problem is briefly reviewed, followed by general introduction to utility 

maximization concepts in the context of route choice. 

2.2  Traffic  Assignment Problem  

Assignment problems for vehicular traffic have received enormous attention in the 

literature. The majority of traffic assignment models seek user equilibrium (UE) 

solutions, where no traveler can select an alternative path with higher utility by 

unilaterally switching routes (Sheffi, 1985). Deterministic user equilibrium (DUE) 

and stochastic user equilibrium (SUE) models are two common UE approaches. DUE 

assumes that travelers have perfect information on the performance of all alternative 

routes when choosing a route. SUE, on the other hand, presumes that each user makes 

his/her selection of a route based on perceived features of the alternatives. It is 

generally accepted that SUE approaches provide more realistic predictions of traveler 

route choice behavior (Chen and Alfa, 1991). Both modeling approaches assume that 

travelers are homogenous in terms of their preference functions. And both assign 

travelers to paths probabilistically, with higher likelihood of choosing a path with 

higher utility. That is, the frequency of path use can be set by the probability of its 

selection.  

An alternative approach might be to employ a Nash equilibrium based 

methodology. Both pure- and mixed-strategy Nash equilibriums have been considered 

in the context of vehicular traffic assignment (Rosenthal, 1973a, b). In (Rosenthal, 
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1973a, b), players have their own preference functions. Formulations seeking such 

equilibriums involve concepts of non-cooperative games. In these prior works, group 

behavior is not considered and, therefore, the developed models and algorithms for 

traffic assignment cannot be applied directly in the movement of pedestrians where 

group behavior must be considered. One reason for this is that the marginal impact of 

the decision of one flow unit in pedestrian assignment where group behavior is 

modeled must account for the impact of group size.  

Several works in the context of vehicular traffic take the heterogeneity of 

users into consideration. For example, the assignment problem for multiclass user 

traffic networks is considered in (Huang and Li, 2007; Nagurney, 2000). In this 

multiclass user equilibrium problem, each class of travelers (e.g. trucks, buses, 

passenger cars) has an individual preference function and each class makes decisions 

based on path utilities derived from this function. Travelers are assigned to paths 

probabilistically, as in DUE and SUE methods, again with higher likelihood of 

choosing a route with higher utility. Users in the same class will have the same 

probability of selecting route alternatives. Thus, the multiclass user equilibrium 

assignment method does not guarantee that members in the same class will make the 

same decisions.  

While there is a significant body of work existing in the vehicular traffic 

assignment area, these works cannot be directly extended for use in modeling 

clustering (or group) behavior as is required for many pedestrian traffic assignment 

contexts. On the contrary, within the literature on pedestrian modeling, numerous 

works consider group behavior. The majority use simulation and often involve a 
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leader and set of followers (e.g. (Qiu and Hu, 2010)). In an alternative network flow-

based approach, Hamacher et al. (2011) incorporate group movements in solving a 

dynamic quickest cluster flow problem. However, travel times are not flow-dependent 

and thus competition among travelers for limited capacity is not considered. 

In this chapter, the effects of separable and clustered group movements on 

flow distributions through the physical layout are studied. Two methodologies are 

proposed to model these effects: an SUE pedestrian assignment approach to model 

separable groups and an n-player non-cooperative game seeking a pure-strategy Nash 

equilibrium to model clustered groups. In terms of separable groups, all group 

members are assumed to have identical (homogenous) preference functions, but as 

mentioned previously, they behave independently. In terms of clustered groups, all 

members of the same group make the same route decision. Note that the SUE 

pedestrian assignment problem used to model separable groups can be reformulated 

as a game in which a mixed-strategy Nash equilibrium is sought (Devarajan, 1981). 

In this game, each player represents a single pedestrian.  The solution produces the 

probability that each player chooses each strategy (i.e. route), producing the fraction 

of total flow distributed over the network. Numerical experiments were conducted to 

demonstrate the impact of pedestrian route choice under both separable and clustered 

group situations on movement efficiency within the venueôs physical layout.  

2.3 Utility Maximization in Route Choice 

Route choice, sometimes referred to as wayfinding, involves choosing an option from 

a finite set of alternative routes for given origin-destination (O-D) pairs. The concept 

of route choice in vehicular traffic is well developed (Bovy and Stern, 1990). Utility 
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maximization-based discrete choice models are widely used to model route decisions 

by drivers. The basic assumption underlying this model is that a travelerôs preference 

for each alternative route can be described by a utility (or disutility) that is a function 

of the attributes of the alternative routes and sensitivity parameters of the traveler to 

these attributes (Sheffi, 1985). The traveler is assumed to choose the route with 

maximum utility (or minimum disutility).  

In the context of pedestrians, a number of works consider pedestrian route 

choice behavior (Al -Gadhi, 1996; Antonini et al., 2006; Bierlaire and Robin, 2009; 

Hoogendoorn and Bovy, 2004a; Løvås, 1998). A couple of these works employ utility 

maximization-based choice models (Antonini et al., 2006; Bierlaire and Robin, 2009; 

Hoogendoorn and Bovy, 2004a). Pedestrians are very sensitive to route characteristics 

that are related to physical effort, such as walking distance, walking time and the 

exertion involved in climbing stairs or ramps. As discussed in (Daamen et al., 2005; 

Seneviratne and Morrall, 1985), walking distance and time are the most important 

route attributes in pedestrian route choice. Furthermore, in discrete choice models, the 

independence of irrelevant alternatives property is assumed to hold. The concept of 

path size factor proposed in (Ben-Akiva and Bierlaire, 1999) is adopted herein to deal 

with overlap in alternative routes due to the sharing of arcs.  

In the next section, two types of utility functions that incorporate these 

elements (group size, travel distance, travel time and overlap) are proposed for 

separable and clustered groups. The pedestrian route choice problems involving 

separable and clustered groups are formulated as an SUE assignment problem and n-
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player non-cooperative game seeking a pure-strategy Nash equilibrium, respectively. 

Solution methodologies for obtaining flows for each problem class are also provided.  

2.4  Two Proposed Approaches to Determine Pedestrian Routes 

In this section, the pedestrian assignment problems involving separable and clustered 

groups are formulated as an SUE assignment problem and n-player non-cooperative 

game seeking a pure-strategy Nash equilibrium, respectively. Solution methodologies 

for obtaining flows for each problem class are also provided. 

2.4.1  Preliminaries 

The physical layout is represented by a network ( , )G N A= , where N  is a set of 

nodes representing locations at which decisions can be taken, and A  is a set of 

directed arcs connecting the nodes. The arcs represent passageways along which 

movement is possible. Let ,O D NÍ be the set of origins and destinations, respectively. 

Each arc a AÍ  has an associated length al , capacity ac , and a nonnegative travel 

time ( , )a a at x c , which is a continuously differentiable and strictly increasing function 

of arc flow ax  and capacity ac . The BPR-based form (Branston, 1976) is adopted: 

0 2( , ) [1 ( ) ]       ,a
a a a a a

a

x
t x c t k a A

c
= Ö + " Í                             (2-1) 

where ak  is a coefficient that scales the rate at which congestion increases with time, 

and 
0
at  denotes free-flow travel time. For free-flow speed av , 

0
at  

can be calculated as 

in equation (2-2). 

0 /       .a a at l v a A= " Í                                                   (2-2) 
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For specific O-D pair ,w WÍ where W is the set of O-D pairs, there is a set of 

groups of pedestrians ( 1,..., )w wG g G=  and set of routes connecting O-D pair w, 

( 1,..., )w wR r R= . Let 
g
wS denote the size of group wg GÍ  between pair w.  

Further, let ,  r r
w wf T and 

r
wL  denote the flow, travel time and distance on route 

wr RÍ  for pair w, respectively. According to the route-arc incidence relationships, 

route travel time and distance on route r connecting pair w can be written as in 

equations (2-3) and (2-4), respectively. 

,         ,r r a
w a w w

a A

L l r R w Wd
Í

= Ö " Í Íä                                    (2-3) 

,( ) ( )        ,r r r a
w w a a w w

a A

T f t x r R w Wd
Í

= Ö " Í Íä ,                             (2-4) 

where
,r a

wd equals 1 if route r passes through arc a, and 0 otherwise.  

2.4.2  Pedestrian Assignment with Separable Groups  

An SUE-based assignment formulation in which separable groups can be modeled is 

given in program (P1). The skeleton of the formulation is from (Fisk, 1980). This 

formulation is expanded to address group movements. Thus, group assignment and 

group flow conservation are added as in (P1). 

(P1)                   1 0

1
min     ( ) ln

a

w

x r r
a w w

a A w W r R

Z u ( )d f f
ɗ

w w
Í Í Í

= + Öä ä äñ
x

x                 (2-5) 

s.t.         
,                ,

w

g r g
w w w

r R

f S g G w W
Í

= " Í Íä                          (2-6) 

, ,               , ,

w

g g r r a
a w w w

r R

x f a A g G w Wd
Í

= " Í Í Íä                (2-7) 
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w

g
a a

w W g G

x x a A
Í Í

= " Íä ä                                           (2-8) 

, 0         , , ,g r
w w wf g G r R w W² " Í Í Í                                  (2-9) 

where ( )au Öis the disutility on arc a, 
,g r

wf  is the flow of group g on route r between 

O-D pair w, and 
g
ax  is the flow of group g on arc a. Objective function (2-5) seeks to 

minimize the perceived disutility subject to flow conservation constraints (2-6)-(2-8). 

Constraints (2-9) restrict path flows to be non-negative. Note that the objective 

function does not have any intuitive economic or behavioral interpretation. It is only a 

mathematical structure that is used to solve the SUE problem. 

Due to its closed form, a logit-based route choice model has been widely 

employed in computing SUE flows. In a logit-bsed route choice model, flows along 

the routes are proportionally assigned to routes according to their corresponding 

utility. The perceived disutility of route r to each individual in group g between O-D 

pair w is given in equation (2-10), 

, , ,     , , ,g r g g r g r
w w w w odU u g G r R w Wq e=- Ö + " Í Í Í             (2-10) 

where 
,g r

wu  denotes the measured disutility of route r to each individual in group g 

between O-D pair w, gq is positive scaling parameter indicating disutility perception 

variations between perceived disutility and real disutility (a higher gq means a 

smaller variation), and 
,g r

we is a random term presenting the perception errors which 

are assumed to be independent Gumbel distributed with mean zero. 

At SUE equilibrium, the probability of group g choosing route r between pair 

w can be calculated as in equation (2-11): 
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,
,

,

exp( )
     , , .

exp( )

w

g g r
g r w
w w wg g k

w

k R

u
p g G r R w W

u

q

q
Í

- Ö
= " Í Í Í

- Öä
           (2-11) 

From conservation of flow constraints (2-6), flow associated with group g and 

assigned to route r between O-D pair w,
, ,g r

wf  can be deduced through equation (2-

12). 

, ,       , , .g r g g r
w w w w wf S p g G r R w W= Ö " Í Í Í                        (2-12) 

Arc flows can be deduced from route flows through equations (2-7) and (2-8). 

From subsection 2.3, the measured disutility, 
, ,g r

wu  is further expressed as in 

equation (2-13). 

, ln( )    , , ,g r g g g
w r r r w wu L T PS g G r R w Wa b g= + + " Í Í Í       (2-13) 

where , ,g g ga b gare parameters of walking distance, walking time and path size 

factor of group g, respectively, and represents the preference (sensitivity) of group g 

to these attributes. rPS  is the path size factor of route r proposed by (Ben-Akiva and 

Bierlaire, 1999):  

1
,a

r
r aa r

l
PS

L NÍ

=ä                                                       (2-14) 

where a is index of an element arc of the route, and aN is the number of alternative 

routes that pass through arc a.  

Substituting equations (2-3) and (2-4) into equation (2-13), 

, , ,w wg G r R w W" Í Í Í  leads to equation (2-15): 
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, ,

,

[ ( )] ln( )

      ( ) ln( ),

g r g g r a g
w a a a w r

a A

g r a g
a a w r

a A

u l t x PS

u x PS

a b d g

d g

Í

Í

= + Ö +

= Ö +

ä

ä
                        (2-15) 

where ( )g
a au x denotes the disutility of group g on arc a, which is a function of arc 

flow, ax . Then the arc disutility ( )a au x in Equation (2-5) can be expressed by: 

( ) ( )              .

w

g g
a a a a

w W g G

u x u x a A
Í Í

= " Íä ä                            (2-16) 

2.4.3  Pedestrian Assignment with Clustered Groups  

For clustered groups, the disutility of each route r connecting O-D pair w to group g 

can be expressed as in equation (2-17). 

, ( , ) [ ( )]     , , ,g r g r g g r g r r
w w w w w w w w wS f S L T f g G r R w Wu l c= Ö + " Í Í Í       (2-17) 

where , ( )g r
wu Örepresents the disutility of route r for group g with O-D pair w. It is a 

function of group size, g
wS , route distance,

 
r
wL , and walking time, 

r
wT . gl and 

gc are 

parameters indicating group g's sensitivity to walking distance and time, respectively.  

Let decision variable ,g r
wx  equal 1 if group g chooses route r for O-D pair w, 

and 0 otherwise. Flow along route r for O-D pair w, r
wf , is the sum of the sizes of 

groups that choose the route: 

,    ,

w

r g g r
w w w w

g G

f S r R w Wx
Í

= Ö " Í Íä .                               (2-18) 

From Equations (2-3) and (2-4), for each , , ,w wg G r R w WÍ Í Í equation (2-17) 

can be rewritten as equation (2-19). 
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, , ,

,

, ,

( , ) [ ( )  ] 

                    =  [ ( )]   

                    = ( ) ,       

g r g r g g r a g r a
w w w w a w a a w

a A a A

g g g r a
w a a a w

a A

g a r a
w a w

a r

S f S l t x

S l t x

x

u l d c d

l c d

u d

Í Í

Í

Í

= Ö + Ö

Ö + Ö

Ö

ä ä

ä

ä

                   (2-19) 

where 
, ( )g a

w axu
 
measures the disutility incurred by group g using arc a. 

The assignment of clustered groups to routes can be formulated as in program 

(P2). Program (P2) seeks (objective (2-20)) the set of path flows over all O-D pairs 

with the minimum total disutility (weighted by group size). Derived from equations 

(2-8) and (2-18), constraints (2-21) relate arc flows to path flows, thus, ensuring flow 

conversation. Constraints (2-22) force each group to choose one route. Binary 

restrictions are guaranteed through constraints (2-23). 

(P2)                    
,min     [ ( )]  

w w

g r a
w g a g a a w

w W r R g G a A

S l t xa b d
Í Í Í Í

Ö + Öä ä ä ä                 (2-20) 

s.t.         
, ,       

w w

g g r r a
a w w w

w W r R g G

x S a Ax d
Í Í Í

= Ö Ö " Íä ä ä                  (2-21) 

, 1          ,

w

g r
w w

r R

g G w Wx
Í

= " Í Íä                              (2-22) 

, 0 or 1         , ,g r
w w wg G r R w Wx = " Í Í Í                (2-23) 

Program (P2) can be viewed as an n-player, pure-strategy, non-cooperative 

game, where each group is a player, and the possible routes between each O-D pair 

form the strategy space. It must be shown that at least one pure-strategy Nash 

equilibrium for the game modeled as (P2) exists and that the optimal solution to (P2) 

is a pure-strategy Nash equilibrium, i.e. the solution to (P2) is the equilibrium with 
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smallest total disutility. Proof of this is as follows. The proof builds directly on a 

related proof given in (Rosenthal, 1973a, b). 

Theorem: There exists at least one solution to (P2) that achieves a pure-strategy Nash 

equilibrium. Additionally, such an equilibrium is achieved by the optimal solution to 

(P2). 

Proof: Since x=0 is a feasible solution to (P2), a feasible solution to (P2) always exist. 

Let , *{ }g r
wx be the optimal solution to (P2), and *{ }ax be the associated link flows. 

Assume that , *{ }g r
wx  

does not result in an equilibrium. Then, it must be possible for 

some group wp GÍ  traveling between w along a route 1 wr RÍ  to reduce its disutility 

by switching routes to some other route 2 wr RÍ . By Equation (2-19), 

2 1 1 2

, * , *

( ) ( ) ( ) ( )

( , , ) ( , , )p a p p a
w a a w a a w a a a a

a r a r a r a r

l x S c y l x c yu u
Í Æ Î Í Æ Î

+ + < +ä ä .          (2-24) 

Let ,{ }g r
wx ¡denote the resulting solution to (P2) given that group p switches 

from route r1 to route r2.  

, *
2

, , *
1

, *

1,  if ,

1, if ,

     otherwise      

g r
w

g r g r
w w

g r
w

g p r r

g p r r

x

x x

x

ë + = =
îî¡= - = =ì
î
îí

                                     (2-25) 

Link flow
 
{ }ax ¡ is updated accordingly: 

*
2 1

*
1 2

*

, if  and 

, if  and 

,              otherwise

p
a w

p
a a w

a

x S a r a r

x x S a r a r

x

ë + Í Î
îî

¡= - Í Îì
î
îí

                                 (2-26) 

Let 1
cr = 1wR r-  and 2

cr = 2wR r- . Given updated link flows, it can be shown that 
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1 2 1 2

2 1

1 2

,

, *

, *

, *

,

( ) ( )

( ) ( )

( ) ( )

( , , )

( , , )

   ( , , )

   ( , , )

w w

C C
w

w

w

g a
w a a a a

g a
w a a a a

pg a
w a a a aod

g a p
w a a w a a

g a
w

w W r R g G a r

w W g G a r r r r

w W g G a r a r

w W g G a r a r

g G a A

l x c y

l x c y

l x S c y

l x S c y

u

u

u

u

u

Í Í Í Í

Í Í Í Æ Ç Æ

Í Í Í Æ Î

Í Í Í Æ Î

Í Í

¡ +

= +

+ + +

+ - +

=

ä ä ä ä

ä ä ä

ä ä ä

ä ä ä

ä
2 1

1 2

* , *

, *

, * ,

( ) ( )

( ) ( )

( , , ) ( , , )

     ( , , )

( , , ) ( , )

w w

w w w w

p a p
a a a a w a a w a a

p a
w a a a a

g a g r g r
w a a a a w w w

w W r R a r a r

a r a r

w W r R g G a A w W r R g G

l x c y l x S c y

l x c y

l x c y S f

u

u

u u

Í Í Í Æ Î

Í Æ Î

Í Í Í Í Í Í Í

+ + + +

- +

< + =

ä ä ä ä

ä

ä ä ä ä ä ä ä

 

This contradicts the assumption that , *{ }g r
wx  is the optimal solution to (L). || 

 

2.5 Solution Schemes to Determine Chosen Routes 

The solution approaches to programs (P1) and (P2) both begin with the generation of 

an efficient route set (Sheffi, 1985) for each O-D pair. It is presumed, as in (Bovy and 

Stern, 1990), that when faced with a route decision, a traveler selects his/her route 

from a limited choice set. Since complete enumeration of all possible routes is 

impractical and given that most people do not consider all alternatives in making their 

decisions, only the efficient route set is considered. 

2.5.1 Efficient Route Set Definition 

Based on [4], an efficient route is defined as a route passing only through efficient 

arcs, and an efficient arc is defined as follows. For each arc a connecting i to j, if 

r(i)<r(j), for r(k) the shortest distance from the origin to node k, and s(i)>s(j), for s(k) 

the shortest distance from k to the destination, then arc a is efficient (eff(i,j)=1); 
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otherwise, it is inefficient (eff(i,j)=0). The efficient routes,  , between each O-D pair 

w are obtained with a depth-first-search (DFS) on the network of efficient arcs (i.e. 

the subgraph  , where  is the set of efficient arcs). Routes with cycles are not 

generated, because by definition any efficient arc transports travelers to locations that 

are further from the origin and closer to the destination. 

2.5.2 Solution Approach for Program (P1) 

The Method of Successive Averages (MSA) (Sheffi, 1985) has been successfully 

used in solving various stochastic user equilibrium problems. In this chapter, a 

solution scheme that combines the MSA with group movements is proposed for 

solving the SUE assignment. The main procedure of MSA is given below. 

Step 0: Initialization.  For each , ,wg G w WÍ Í  use equations (2-11) and (2-12) to 

perform a logit assignment based on the initial disutility, 
 [0](0),g

au a A" Í . The result 

of this assignment is a set of route flows 
,  [0]g r

wf , .wr R" Í  Generate initial arc flows

[1] , ,ax a A" Í  through equations (2-7) and (2-8) and set iteration count n=1. 

Step 1: Update. According to current arc flows
[ ] ,n
ax a A" Í , update the arc disutility, 

 [ ] [ ]( ), , ,g n n
a a wu x a A g G w W" Í Í Í. 

Step 2: Find direction. For each , ,wg G w WÍ Í  perform a logit assignment based on 

current disutility
 [ ] [ ]( ),g n n

a au x a A" Í , and find auxiliary arc flow
[ ] ,n
ad a A" Í . 

Step 3: Move. Compute new arc flow as 
[ 1] [ ] [ ] [ ](1/ )( ),n n n n
a a a ax x n d x a A+ = + - " Í. 
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Step 4: Convergence check. Compute [ ] [ ] [ ] [ ]n n n n
a a a

a A a A

gap d x x
Í Í

= -ä ä . If

[ ]ngap k¢ , stop; otherwise, n=n+1,k= 0.001, and go to step 1. 

2.5.3 Solution Approach for Program (P2) 

To solve program (P2), the Best Response Dynamics-Based Tabu Search procedure 

proposed by (Sureka and Wurman, 2005) for obtaining a pure strategy Nash 

equilibrium in normal form games in the context Combinatorial Auctions is adapted. 
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Figure 2-1 Flowchart of TS Algorithm for  Program (P2) 

In solving problem (P2), the best response (choice) is defined as the route 

chosen by a group that minimizes total disutility. This differs from the definition of 

the best response in Sureka and Wurmanôs approach, where each player exhaustively 

explores the solution space to find the best response that maximizes each playerôs 

payoff. This difference is important, because the use of the total disutility reduces the 

Step 9- termination 

criterion met ?

Step 10- output solution   

Yes

End

Step 1- initialize current solution,     , empty 

tabu list,    , and set Iter=0
0x

Step 2- compare current route choice for group g,      , with best 

route choice given other groupsô selections,              

T

gC

0( )gB x

Step 3- is

  0( ) ?g gB Cx =
Next groupYes

Step 4- set             to        and get new 

solution  
gC0( )gB x

No

newx

Step 5- 

is           tabu ?newx

Step 6- choose next best 

route and set as  

 

Yes
0( )gB x

Step 7- add       into tabu list and set

    

No

0x

0 : newx x=

Step 8- all groups 

considered ?

Yes

No

No

Iter:=Iter+1  

choose and remove a group, g, from  wG
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search space, eliminating the need for an exhaustive search. A flowchart of the 

proposed method is provided in Figure 2-1, followed by details of important 

procedural steps. 

1) Initialization  

Randomly generate starting (current) solution0x , a w wG R W³ ³matrix with elements 

of 0 and 1. According to constraint (2-22) in problem (P2), each row in 0x includes 

only one 1. All other entries are 0. For example, one possible solution to a specific O-

D pair where 4 groups choose 3 routes can be expressed as 

0

1 0 0

1 0 0
   ,

0 0 1

0 0 1

x

è ø
é ù
é ù=
é ù
é ù
ê ú

 

representing the selection of route 1 by groups 1 and 2 and route 3 by groups 3 and 4. 

No group chooses route 2. 

Initialize tabu list, T, as empty. The tabu list is a list of matrices representing 

visited solutions. The length of the tabu list, T, is a predefined fixed number (nT=10). 

For each iteration (indicated by Iter), all groups explore route options, choosing the 

best route given the route choices of other groups. 

2) Finding the best route 

Selection of a best route is made once for each group as follows. Randomly choose 

group, g. Let the route chosen by group g in the current solution begC . The best 

choice of group g, 0( )gB x , under the current solution, x0, can be obtained through 
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exploration of the route choice space of group g. For group 1 in the above example, to 

find 1 0( )B x , the objective function is evaluated for the following 3 solutions. 

1
0

1 0 0

1 0 0

0 0 1

0 0 1

x

è ø
é ù
é ù=
é ù
é ù
ê ú

, 2
0

0 1 0

1 0 0

0 0 1

0 0 1

x

è ø
é ù
é ù=
é ù
é ù
ê ú

and 3
0

0 0 1

1 0 0

0 0 1

0 0 1

x

è ø
é ù
é ù=
é ù
é ù
ê ú

 

If 3
0x is the solution with the minimum total disutility, 1 0( ) 3B x = . After exploration 

of the route choice space, if group g cannot find a better solution (i.e. 0( )g gC B x= ), 

move to the next group. If it is able to find a better solution (i.e. 0( )g gC B x¸ ), replace 

gC  by 0( )gB x
 
forming new solution newx . 

3) Checking tabu 

Check if newx is tabu. If yes, choose the route with the next lowest total disutility. If 

not, add the current solution to the tabu list and set the current solution to the new 

solution.  

4) Termination criteria  

If all groups are able to obtain their first choice routes, i.e. 

0( ), , ,g g wC B g G w Wx= " Í Í then terminate; otherwise, begin the next iteration. 

While even a locally optimal solution to problem (P2) is not guaranteed, the 

resulting solution will be an equilibrium solution. That is, no group can unilaterally 

switch routes to reduce the total disutility of travel. Numerical experience indicates 

that just a few iterations are required to achieve convergence. 
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2.6 Computational Experiments 

2.6.1  Experimental Design 

The efficiencies and differences between flows generated by modeling and solution 

methodologies designed for separable and clustered group behaviors are investigated 

on an illustrative example network representation of a facility layout. 

 

Figure 2-2 Network Configuration  

The network consists of 14 nodes, 22 arcs and 4 O-D pairs as portrayed in Figure 2-2. 

The capacity of each arc is indicated in the network. With the exception of arcs 4, 12 

and 14, all arcs are assumed to have a length of 100 meters. Arcs 4, 12 and 14 are 200 

meters in length. The free-flow speed is set be 1.42m/s (Thalmann and Musse, 2007) 

and coefficient ak = 0.008 for travel time calculations.  

To explore the effects of separable and clustered groups on flow distributions 

over the network, four grouping scenarios listed in Table 2-1 are considered. Scenario 

1 is an extreme case of scenario 2, where all pedestrians belong to the same group. 
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Scenario 3 can be viewed as an extreme case of scenario 4, where each group consists 

of only one individual. 

Table 2-1.Experiment Scenarios 

Separable 

groups 

scenario 

1 

All pedestrians are treated as members of one single large group and 

all individuals have the same preference parameters. 

scenario 

2 

All pedestrian can be divided into a finite number of groups composed 

of one or more individuals; preferences between groups are 

heterogeneous, but homogeneous within each group. 

Clustered 

groups 

scenario 

3 

Each pedestrian is viewed as a group and each has his/her own 

preference function. 

scenario 

4 

All pedestrian can be divided into a finite number of groups composed 

of one or more individuals; preferences between groups are 

heterogeneous, but homogeneous within each group; individuals 

within a group will stay together. 

 

Table 2-2 gives the demand information for each O-D pair. For scenarios 2 and 4, it is 

assumed that for each O-D pair there are 20 groups each with group size randomly 

chosen on the interval [1, 40]. The preference parameters for each group in scenario 2 

were generated incrementally, while gl  in scenarios 3 and 4 is randomly generated 

between 0 and 1 and 1g gc l= - . Scenarios 1 and 3 have the same total demand 

(indicated in the O-D column in Table 2-2).  In scenario 1, 0.053,ga = 0.535,gb =

3.475,gg =  and 1.050,gq =  computed from the average values of similar parameters 

in scenario 2. 

Table 2-2 Demand for Each O-D Pair 

O-D g Sg 
scenario 2 

scenario

4 O-D g Sg 
scenario 2 

scenario 

4 

Ŭg ɓg ɔg ɗg ɚg ɢg Ŭg ɓg ɔg ɗg ɚg ɢg 

1 
to  

11 

 
(400) 

1 20 0.005 0.05 3.00 0.01 0.5 0.5 

1 
to 

14 

 
(350) 

1 7 0.005 0.05 3.00 0.01 0.4 0.6 

2 23 0.010 0.10 3.05 0.02 0.7 0.3 2 27 0.010 0.10 3.05 0.02 0.3 0.7 

3 29 0.015 0.15 3.10 0.03 0.3 0.7 3 16 0.015 0.15 3.10 0.03 0.6 0.4 

4 23 0.020 0.20 3.15 0.04 0.2 0.8 4 19 0.020 0.20 3.15 0.04 0.6 0.4 

5 19 0.025 0.25 3.20 0.05 0.4 0.6 5 22 0.025 0.25 3.20 0.05 0.3 0.7 

6 25 0.030 0.30 3.25 0.06 0.6 0.4 6 27 0.030 0.30 3.25 0.06 0.1 0.9 

7 21 0.035 0.35 3.30 0.07 0.5 0.5 7 28 0.035 0.35 3.30 0.07 0.6 0.4 

8 40 0.040 0.40 3.35 0.08 0.4 0.6 8 30 0.040 0.40 3.35 0.08 0.1 0.9 
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9 15 0.045 0.45 3.40 0.09 0.7 0.3 9 21 0.045 0.45 3.40 0.09 0.7 0.3 

10 1 0.050 0.50 3.45 0.10 0.7 0.3 10 16 0.050 0.50 3.45 0.10 0.2 0.8 

11 14 0.055 0.55 3.50 0.11 0.3 0.7 11 16 0.055 0.55 3.50 0.11 0.8 0.2 

12 30 0.060 0.60 3.55 0.12 0.3 0.7 12 1 0.060 0.60 3.55 0.12 0.1 0.9 

13 12 0.065 0.65 3.60 0.13 0.6 0.4 13 14 0.065 0.65 3.60 0.13 0.5 0.5 

14 30 0.070 0.70 3.65 0.14 0.7 0.3 14 18 0.070 0.70 3.65 0.14 0.3 0.7 

15 4 0.075 0.75 3.70 0.15 0.5 0.5 15 10 0.075 0.75 3.70 0.15 0.4 0.6 

16 18 0.080 0.80 3.75 0.16 0.8 0.2 16 11 0.080 0.80 3.75 0.16 0.2 0.8 

17 22 0.085 0.85 3.80 0.17 0.2 0.8 17 18 0.085 0.85 3.80 0.17 0.8 0.2 

18 14 0.090 0.90 3.85 0.18 0.6 0.4 18 1 0.090 0.90 3.85 0.18 0.2 0.8 

19 24 0.095 0.95 3.90 0.19 0.2 0.8 19 18 0.095 0.95 3.90 0.19 0.1 0.9 

20 16 0.100 1.00 3.95 0.20 0.3 0.7 20 30 0.100 1.00 3.95 0.20 0.5 0.5 

3 

to 
11 

 

(350) 

1 18 0.005 0.05 3.00 0.01 0.8 0.2 

3 

to 
14 

 

(300) 

1 10 0.005 0.05 3.00 0.01 0.2 0.8 

2 29 0.010 0.10 3.05 0.02 0.8 0.2 2 13 0.010 0.10 3.05 0.02 0.7 0.3 

3 29 0.015 0.15 3.10 0.03 0.8 0.2 3 16 0.015 0.15 3.10 0.03 0.1 0.9 

4 15 0.020 0.20 3.15 0.04 0.2 0.8 4 13 0.020 0.20 3.15 0.04 0.7 0.3 

5 27 0.025 0.25 3.20 0.05 0.4 0.6 5 19 0.025 0.25 3.20 0.05 0.8 0.2 

6 20 0.030 0.30 3.25 0.06 0.4 0.6 6 18 0.030 0.30 3.25 0.06 0.5 0.5 

7 17 0.035 0.35 3.30 0.07 0.3 0.7 7 29 0.035 0.35 3.30 0.07 0.5 0.5 

8 20 0.040 0.40 3.35 0.08 0.1 0.9 8 24 0.040 0.40 3.35 0.08 0.0 1.0 

9 19 0.045 0.45 3.40 0.09 0.6 0.4 9 28 0.045 0.45 3.40 0.09 0.4 0.6 

10 6 0.050 0.50 3.45 0.10 0.2 0.8 10 6 0.050 0.50 3.45 0.10 0.3 0.7 

11 19 0.055 0.55 3.50 0.11 0.6 0.4 11 12 0.055 0.55 3.50 0.11 0.7 0.3 

12 27 0.060 0.60 3.55 0.12 0.5 0.5 12 17 0.060 0.60 3.55 0.12 0.4 0.6 

13 8 0.065 0.65 3.60 0.13 0.2 0.8 13 15 0.065 0.65 3.60 0.13 0.8 0.2 

14 1 0.070 0.70 3.65 0.14 0.3 0.7 14 9 0.070 0.70 3.65 0.14 0.3 0.7 

15 20 0.075 0.75 3.70 0.15 0.6 0.4 15 20 0.075 0.75 3.70 0.15 0.8 0.2 

16 22 0.080 0.80 3.75 0.16 0.2 0.8 16 28 0.080 0.80 3.75 0.16 0.3 0.7 

17 21 0.085 0.85 3.80 0.17 0.8 0.2 17 8 0.085 0.85 3.80 0.17 0.8 0.2 

18 7 0.090 0.90 3.85 0.18 0.2 0.8 18 1 0.090 0.90 3.85 0.18 0.7 0.3 

19 23 0.095 0.95 3.90 0.19 0.3 0.7 19 8 0.095 0.95 3.90 0.19 0.3 0.7 

20 2 0.100 1.00 3.95 0.20 0.1 0.9 20 6 0.100 1.00 3.95 0.20 0.2 0.8 

 

Logit-based SUE assignment is employed for obtaining solutions under 

scenarios 1 and 2, while the Best Response Dynamics-Based Tabu Search procedure 

is used to address the n-player non-cooperative games of scenarios 3 and 4. Results 

are discussed in the next section. 

 

2.6.2 Results and Analysis 

Table 2-3 gives the efficient routes for each O-D pair. 

Table 2-3 Efficient Routes Set for Each O-D Pair 

O-D Index Route O-D  Index Route 

1-11 

1 1Ÿ2Ÿ5Ÿ6Ÿ10Ÿ11 

1-14 

1 1Ÿ2Ÿ5Ÿ6Ÿ10Ÿ14 

2 1Ÿ2Ÿ5Ÿ6Ÿ11 2 1Ÿ2Ÿ5Ÿ9Ÿ10Ÿ14 

3 1Ÿ2Ÿ5Ÿ9Ÿ10Ÿ11 3 1Ÿ2Ÿ5Ÿ9Ÿ13Ÿ14 

4 1Ÿ2Ÿ6Ÿ10Ÿ11 4 1Ÿ2Ÿ6Ÿ10Ÿ14 

5 1Ÿ2Ÿ6Ÿ11 5 1Ÿ4Ÿ5Ÿ6Ÿ10Ÿ14 
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6 1Ÿ4Ÿ5Ÿ6Ÿ10Ÿ11 6 1Ÿ4Ÿ5Ÿ9Ÿ10Ÿ14 

7 1Ÿ4Ÿ5Ÿ6Ÿ11 7 1Ÿ4Ÿ5Ÿ9Ÿ13Ÿ14 

8 1Ÿ4Ÿ5Ÿ9Ÿ10Ÿ11 8 1Ÿ4Ÿ8Ÿ9Ÿ10Ÿ14 

9 1Ÿ4Ÿ8Ÿ9Ÿ10Ÿ11 9 1Ÿ4Ÿ8Ÿ9Ÿ13Ÿ14 

  10 1Ÿ4Ÿ8Ÿ12Ÿ13Ÿ14 

3-11 

1 3Ÿ4Ÿ5Ÿ6Ÿ10Ÿ11 

3-14 

1 3Ÿ4Ÿ5Ÿ6Ÿ10Ÿ14 

2 3Ÿ4Ÿ5Ÿ6Ÿ11 2 3Ÿ4Ÿ5Ÿ9Ÿ10Ÿ14 

3 3Ÿ4Ÿ5Ÿ9Ÿ10Ÿ11 3 3Ÿ4Ÿ5Ÿ9Ÿ13Ÿ14 

4 3Ÿ4Ÿ8Ÿ9Ÿ10Ÿ11 4 3Ÿ4Ÿ8Ÿ9Ÿ10Ÿ14 

5 3Ÿ7Ÿ8Ÿ9Ÿ10Ÿ11 5 3Ÿ4Ÿ8Ÿ9Ÿ13Ÿ14 

  6 3Ÿ4Ÿ8Ÿ12Ÿ13Ÿ14 

  7 3Ÿ7Ÿ8Ÿ9Ÿ10Ÿ14 

  8 3Ÿ7Ÿ8Ÿ9Ÿ13Ÿ14 

  9 3Ÿ7Ÿ8Ÿ12Ÿ13Ÿ14 

  10 3Ÿ7Ÿ12Ÿ13Ÿ14 

 

Table 2-4 shows the arc flows by scenario. Similar arc flow results for separable 

single- (scenario 1) and separable variable-size groups (scenario 2). This is because 

scenario 1 relies on parameters taken from the average of parameter values assigned 

in scenario 2 - each pedestrian in scenario 1 will have identical parameter values. 

Note that the total travel time under the latter scenario (2) is slightly lower than that 

under the former scenario (1). This is because pedestrians in scenario 1 assign the 

same utility to every path. Thus, the lowest utility paths will be highly sought after 

and, therefore, highly congested. The greater variability in parameter settings of 

scenario 2 cause the pedestrians to disperse over a larger number of routes, reducing 

total travel time. A greater difference between arc flows exists between single-

pedestrian groups (scenario 3) and clustered variable-size groups (scenario 4). The 

total travel time under scenario 3 is much lower than that under scenario 4. The 

reason is that individuals in scenario 3 have greater flexibility compared with those in 

scenario 4. 
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Table 2-4 Flows for Scenarios 

 scenario 1 scenario 2 scenario 3 scenario 4
 

Arc xa Arc xa Arc xa Arc xa Arc xa Arc xa Arc xa Arc xa 

1 342 12 165 1 341 12 165 1 340 12 164 1 357 12 187 

2 408 13 192 2 409 13 191 2 410 13 197 2 393 13 179 

3 217 14 81 3 217 14 81 3 219 14 84 3 243 14 84 

4 124 15 381 4 124 15 380 4 121 15 387 4 114 15 348 

5 378 16 148 5 378 16 148 5 369 16 154 5 387 16 152 

6 272 17 502 6 272 17 501 6 281 17 498 6 263 17 494 

7 449 18 134 7 449 18 134 7 435 18 132 7 459 18 120 

8 337 19 585 8 337 19 585 8 344 19 586 8 321 19 563 

9 411 20 287 9 411 20 287 9 411 20 280 9 436 20 294 

10 255 21 228 10 255 21 229 10 243 21 238 10 266 21 236 

11 370 22 363 11 370 22 363 11 368 22 370 11 363 22 356 

TT 1,268,507 1,268,050 1,271,253 1,275,991 

* ( )a a a

a A

TT x t x
Í

= Öä  

Figure 2-3 (a)-(d) shows the distribution of flows by group over route alternatives 

between each O-D pair for the scenario involving separable variable-size groups 

(scenario 2). Consider for example Fig. 2 (d). 10 efficient routes exist for O-D pair 3-

14. Of individuals in group 20, approximately 70% chose Route 10, while only 10% 

of group 1 chose a common route. For group 1, chosen routes are evenly distributed 

over all efficient options. This differs from group 20 in which the majority of 

individuals chose the same route and other routes are chosen by very few individuals. 

This can be attributed to differences in group preference function parameters, i.e. 

individual sensitivity to route attributes. Group 1ôs parameters are all very small. 

Thus, route choice is almost random, since individuals are not very sensitive to route 

attributes. Parameter settings for group 20 are more significant, which is also 

reflected in the route decisions.  Also contributing to these differences in route choice 

between groups 1 and 20 is that the value of q for group 1, indicating the level of 

discrepancy between actual and perceived utility, is smaller than for group 20. The 

smaller the value of q, the larger the difference between perceived and measured 
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disutilities. Similar patterns in flow distribution over routes can be observed for other 

O-D pairs. 

 
(a) OD 1-11 

 
(b) OD 1-14 

 
(c) OD 3-11 

 
(d) OD 3-14 

Figure 2-3 Distribution of Groups over Routes by O-D Pair for Scenario 2 

 

The distribution of flows for clustered variable-size groups (scenario 4) is 

depicted in Figure 2-4. Although the same group size is used in scenario 4 as in 

scenario 2, each group in Figure 2-4 selects only one route and there is no group that 

can decrease its total incurred disutility by unilaterally switching routes. 

 
(a) OD 1-11  

(b) OD 1-14 
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(c) OD 3-11 

 
(d) OD 3-14 

Figure 2-4 Distribution of Groups over Routes by O-D Pair for Scenario 4 

 

2.7 Conclusions and Extensions 

In this chapter, pedestrian route choice is modeled using a traffic assignment type of 

framework. Methods for estimating the distribution of groups and individuals over 

ñefficientò routes for two types of groups, separable and clustered, are proposed. 

These methods employ formulations using logit-based SUE assignment and a pure-

strategy Nash equilibrium game for separable and clustered groups, respectively. 

Solution methodologies for solving problems so formulated involves an MSA with 

groups procedure (for solution to the SUE assignment of separable groups) and a 

meta-heuristic scheme based on best response dynamic and tabu search (to find the 

pure-strategy Nash equilibrium of the game formulated for clustered groups). The 

conceptual framework, and specific models and corresponding solution schemes were 

tested on an illustrative example. The results from the experiments show the 

effectiveness and efficiency of the proposed approaches. 

There are a number of directions in which the proposed models and solution 

approaches might be extended. For example, in this chapter, the parameters are 

assumed to be homogeneous within a group. In reality, however, the parameters 
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associated with each group might follow a distribution over individuals. This 

heterogeneity within each group can be further explored with the proposed models 

and solution schemes. Furthermore, in this chapter, pedestrians make decisions based 

on route-based performance and once a route is selected, it is assumed that each 

pedestrian will follow the route in its entirety. The developed model and solution 

methodology might be extended to address a dynamic pedestrian assignment problem, 

where physical changes in the network and user goals affect the optimality and choice 

of routes. 
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Chapter 3  Crowd Management in Large Public Gatherings 

3.1  Introduction  

Effective management of pedestrian movement during large public gatherings can 

provide crucial support toward meeting pedestrian access and safety goals. As stated 

in Chapter 2, large public gatherings are held in a variety of venues. Poor execution 

of crowd management within these venues can frustrate the people in a crowd by 

thwarting their goals. At the extreme, poor crowd management has caused many 

instances of crowd crush, injuries and fatalities involving high volumes of people in a 

wide array of circumstances, ranging from rock concerts and sales events at stores to 

the offering of free food and clothing. A few specific examples where better crowd 

management may have saved lives include: the 1979 Who concert in Ohio in which 

11 people perished, the 1989 U.K. Hillsborough Stadium sporting event where 96 

deaths may have been prevented, 362 deaths resulting in the 2006 Hajj in Saudi 

Arabia, and the 2010 incident in Northern India where 63 people perished while 

seeking free food and clothing at a temple. In addition, in some circumstances, such 

as in the event of fire, explosion, occurrence of natural or human-induced disaster 

event, or crowd violence, well-designed systems for moving large crowds quickly are 

needed to support quick egress from dangerous situations.  

The majority of works related to crowd management propose methods for 

modeling crowd movements during emergency evacuation. Such models can be used 

to quantify the performance, in terms of measures like evacuation time, of a given 

facility's architectural layout during such an event. These models can be broadly 

categorized as: fluid dynamics-based approaches (Colombo and Rosini, 2005; Hughes, 
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2002), optimization and network flow-based methods (Choi et al., 1988; Fahy, 1994), 

and simulation-based techniques, which include rule-based methods (Blue and Adler, 

2001; Helbing, 1995), agent-based modeling (Shi et al., 2009) and virtual reality 

(Shih et al., 2000). Additional information can be found in (Gwynne et al., 1999; 

Kuligowski and Peacock, 2005; Zheng et al., 2009) Other works, including for 

example (Hoogendoorn and Bovy, 2004b), focus on simulation of pedestrian 

movement under non-emergency situations. Whether created to support analysis in 

emergency or non-emergency situations, techniques described in these works are 

designed for use in evaluation of, for example, architectural designs and other 

elements of the physical layout. They do not provide strategies for managing the 

crowd. 

Techniques have been proposed to support crowd management. In the context 

of pedestrian movement, these techniques determine optimal routes to which 

pedestrians should be guided within an existing physical environment. Route 

guidance is created through network optimization-based methods. Simplistic, static 

methodologies based on minimum cost network flows have been developed, e.g. 

(Yamada, 1996). More sophisticated techniques that capture problem dynamics, time-

dependencies and other problem characteristics have been proposed specifically for 

building evacuation (Cai et al., 2001; Mamada et al., 2003). A variety of objectives 

have been considered, including for example maximizing throughput by a given end 

time (Miller -Hooks and Sorrel, 2008) and maximizing the minimum probability of 

arrival at an exit for any evacuee (Opasanon and Miller-Hooks, 2008). Other works 

have considered the role of real-time information in updating routing instructions 
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(Miller -Hooks and Krauthammer, 2007). Chen and Miller-Hooks (2008) developed a 

dynamic network flow-based model that forces instructions to reflect how shared 

information will be used. A review of optimization techniques proposed for use in 

building and regional evacuation is provided in (Hamacher and Tjandra, 2002). 

Relevant network optimization-based techniques developed for regional evacuation 

are described in (Kimms and Bretschneider, 2011). Unlike the simulation and fluid 

dynamics-based methods that are used in modeling pedestrian movement, 

optimization-based techniques provide strategies for pushing flow through the 

network to achieve system optimal performance.  

Related techniques have been proposed for use in guiding vehicular traffic in 

both emergency and non-emergency circumstances. See, for example, (Kesting et al., 

2008; Liu et al., 2007). Dynamic traffic management approaches, such as ramp 

metering, adaptive speed limits, and provision of real-time information, are widely 

used to support efficient vehicular traffic movement during peak traffic flow. These 

strategies are also used in emergency evacuation scenarios. Although tools developed 

for vehicular evacuation have relevance, there are significant distinctions in behavior 

and degrees of freedom between vehicular and pedestrian modes that make direct 

application of traffic tools insufficient for use in the pedestrian environment. 

Approaches discussed thus far focus on influencing the movement of 

pedestrians through a given physical layout. An alternative might be to reconfigure 

the physical layout to facilitate pedestrian movement in pursuit of a particular goal. 

Such reconfiguration can both limit pedestrian choice and enhance or restrict capacity 

along routes to facilitate efficient movement and prevent crowd crush or other unsafe 
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situations. Changes to the physical layout might be achieved through opening or 

closing gates/doorways, placing or removing barriers or changing illumination 

intensity to coerce pedestrians along certain paths. No prior work has suggested such 

an approach in the context of pedestrian movement; however, reconfiguring 

methodologies, such as the use of contraflow, have been proposed for evacuation by 

automobile. See (Abdelgawad and Abdulhai, 2009) for a review. 

In this chapter, a network optimization-based methodology that seeks the 

optimal reconfiguration of a physical (architectural) layout to support efficient crowd 

movement during large events is proposed. This methodology takes into 

consideration pedestrian response to route offerings as controlled through the 

architectural design. Further, it incorporates findings from the social sciences and 

psychological studies on grouping behavior in crowds (Aveni, 1977; Qiu and Hu, 

2010). That is, the methodology recognizes that families, friends and emergent groups 

will act together, and control strategies that separate such groups will be ineffective. 

This approach seeks a system optimal solution based the crowd managerôs goals; 

however, it explicitly recognizes the utility maximizing behavior of individuals in the 

crowd as is consistent with user equilibrium. In contrast to prior fluid dynamics-based 

techniques that model aggregate pedestrian flows, often requiring extraordinary 

computational effort to solve embedded differential equations, the proposed approach 

captures individual movements and goals with significantly reduced computational 

time. Alternative simulation-based methodologies offer an ability to replicate 

complex behaviors, but do not provide guidance; rather, they support performance 

assessment given chosen guidance mechanisms. The proposed technique builds on 
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concepts of network optimization, but accounts for behavioral norms often only 

included in computationally expensive simulation-based approaches. 

A bi-level integer program is presented that, at the upper-level, seeks a 

reconfiguration of the physical design that will minimize total travel time incurred by 

system users (e.g. evacuees) given route decisions that are taken by individuals in 

response to physical offerings in terms of the infrastructure at the lower-level. The 

lower-level formulation seeks a pure-strategy Nash equilibrium that respects grouping 

behavior. The general overview and mathematical program is presented in detail in 

section 2. In Section 3, the bi-level program is reformulated as a nonlinear integer 

single-level program for which determination of a globally optimal solution is 

formidable. Thus, a Multi-start Tabu Search with Sequential Quadratic Programming 

(MTS-SQP) procedure is proposed for its solution. This procedure is described in this 

section. Numerical experiments were conducted on a hypothetical example to assess 

this technique. Results of these experiments are given in Section 4. Conclusions and 

directions for future work are discussed in Section 5. 

3.2  Problem Overview 

The general structure of the proposed bi-level program (Stackelberg Leader-Follower 

program) for the problem of reconfiguring physical layout to support efficient crowd 

movement, referred to herein as the Reconfigure for Efficient Crowd Movement 

(RECM) Problem, is depicted in Figure 3-1.  
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Figure 3-1 Overview of the RECM Problem  

The upper-level describes a network design problem whose decision variables 

represent actions in terms of system reconfiguration that the leader (i.e. crowd 

manager) might take to optimize network performance (e.g. minimizing total travel 

time or maximizing throughput). The lower-level is a pure-strategy Nash equilibrium 

pedestrian assignment problem in which the followers (i.e. pedestrians in the crowd) 

are presumed to follow paths that minimize disutility in terms of related path 

characteristics. Solution at the upper-level provides optimal measures for changing 

configuration of the network through, for example, opening or closing 

doorways/gates, changing the capacity of passageways through use of barriers, 

closing or opening new passageways, changing illumination to accentuate a route, 

and removing interactions between persons in the crowd through implementation of 

lanes from the upper-level. Given the network configuration determined in the upper-

level, solution at the lower-level predicts the flow along the passageways assuming 

that pedestrians will choose their paths to minimize disutility. Predictions of network 
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flows from the lower-level provide input to the upper-level problem, creating 

interaction between levels.  

This bi-level approach permits the modeling of objectives of both the crowd 

manager and pedestrians in the crowd. However, the bi-level structure gives priority 

to the upper-level objective, thus, providing suitable designs from the crowd 

manager's perspective while simultaneously recognizing that the individuals in the 

crowd will exploit the configuration so as to achieve their own selfish objectives 

(goals). Prioritization is given to the objective of the crowd manager to encourage 

system efficient designs. The route choice behaviors that follow the goals are 

described mathematically in the behavior model component.  

Details of the bi-level formulation of the RECM Problem are provided next. 

3.3  The Upper-Level Problem 

Consider a network representation of the physical environment, ( )N,AG= , where N

is the set of nodes, representing locations at which decisions must be taken in regard 

to movement and A is the set of directed arcs connecting the nodes representing 

passageways along which movement is possible. Let NDO Í, be the set of origins 

and destinations, respectively. Each arc AaÍ  has an associated length, la, initial 

capacity, ac , arc flow, ax , potential change in capacity,ay , and nonnegative travel 

time, ( , )a a a at x c y+ . As discussed in (Schomborg et al., 2011) in the context of 

macroscopic modeling of pedestrian and vehicular traffic, a similar structure for the 

velocity-density fundamental diagram for each can be utilized; only the parameter 
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values will differ. For a fixed value of a ac y+ , a BPR-based travel time function 

(Branston, 1976) with assumed parameters is adopted: 

0( , ) [1 ( ) ]         ea
a a a a a a

a a

x
t x c y t k a A

c y
+ = Ö + " Í

+
                  (3-1) 

where ak is a coefficient scaling the rate with which congestion increases travel time, 

e is a parameter. ak  and e would require calibration using data from actual 

observations, and 0
at  

denotes free-flow travel time along link a. For free-flow walking 

speed,
 av , 0

at  can be calculated as: 

0 /          a a at l v a A= " Í.                                             (3-2) 

This approach supports the use of alternative equations that capture the 

relationship between travel time and density. 

Let 1 2( , )a Ax x x x=x  be the vector of link flows and 

1 2( , )a Ay y y y=y
 
be the change in capacity vector. Capacity expansion for a 

link is limited by physical barriers. For each link,a AÍ , up
ac denotes the upper-limit 

of capacity on link a. A non-negative per unit cost,ab , is imposed for any change 

made to capacity of link a. This unit cost may reflect, for example, resources required 

to open or close the link, or may be the monetary cost of providing additional 

capacity. A budget,B , is imposed to limit such effort or monetary spending. The 

upper-level problem is formulated with this notation as follows. 

(U)                          min  ( , )  ( , )a a a a a

a A

Z x t x c y
Í

= Ö +äx y                                      (3-3) 

 s.t.              a a

a A

b y B
Í

Ö ¢ä                                                              (3-4) 
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0a

a A

y
Í

=ä                                                                  (3-5) 

0 , up
a a ac y c a A¢ + ¢ " Í                                          (3-6) 

Objective function (3-3) seeks an optimal vector y that minimizes the total 

travel time required to ship a given flow x over the network. y obtained from the 

upper-level problem is employed in setting x at the lower-level. Constraint (3-4) 

ensures that incurred costs required for the chosen changes in arc capacities do not 

exceed the budget. The absolute value of ay
 
is used, because ay

 
can take positive or 

negative values. The budget, B, is set sufficiently large to accommodate total changes. 

The total available space is forced to remain fixed through Constraint (3-5). When a 

capacity increase is warranted in one section of the layout, a decrease in capacity 

elsewhere is required, since space is fixed. This constraint can be omitted in 

circumstances in which space is essentially unlimited. Constraints (3-6) guarantee 

that link capacities remain within their lower and upper limits.  

3.4  The Lower-Level Problem 

For a given upper-level design, expressed in terms of design vector y, the lower-level 

is a traffic (pedestrian) assignment problem seeking the vector of link flows x that 

minimizes disutility for all pedestrians. The disutility of each route to each user 

depends on user preference characteristics and the performance attributes on each 

route. The performance on each route further depends on the number of pedestrians 

who choose each passageway. That is, when many pedestrians use a particular 

passageway, travel time along the passageway will increase, rendering it less 

desirable. Additionally, many pedestrians travel in groups and, thus, will seek the 

same route for their groups. The pedestrian assignment problem is modeled as a pure-
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strategy Nash equilibrium assignment problem. The use of the pure-strategy approach 

permits the modeling of this critical grouping behavior. 

3.4.1 Route Choice and Group Behavior 

The process of selecting a route involves choosing an option from a finite set of 

alternative routes with the desired origin and destination. The selection of a route by a 

pedestrian is sometimes referred to as wayfinding (e.g. (Bovy and Stern, 1990)). A 

number of works consider route choice behavior (or wayfinding) in the context of 

crowds (Bierlaire and Robin, 2009; Løvås, 1998). A small portion of these works 

(Antonini et al., 2006; Hoogendoorn and Bovy, 2004b) apply utility maximization 

theory for the purpose of forecasting route decisions. This approach is widely used to 

model route choice for vehicular traffic. A review is provided in (Bovy and Stern, 

1990). The basic assumption underlying these choice models is that a travelerôs 

preference for each potential alternative can be described by a mathematical function 

of the route's utility (or disutility). The utility of a path in a pedestrian network is 

derived from attributes of distance, time, required physical effort, safety, and physical 

appeal, among others. The preference function on those attributes is indivualized. The 

preference function is formulated to capture the relative importance of each attribute 

for the user. Pedestrian sensitivities to such attributes are discussed in (Daamen et al., 

2005; Seneviratne and Morrall, 1985). These works suggest that walking distance and 

time are the most important route attributes in route choice. 

Some attributes, such as travel time, depend on the number of users. In 

general, the greater the number of users choosing a route, the greater its travel time. 

Thus, route choice models are often embedded within a traffic assignment model that 
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seeks an assignment of vehicles to the network based on congestion-dependent route 

utilities so as to achieve a user equilibrium. An equilibrium is reached when no user 

can improve his/her performance in terms of route utilities by unilaterally switching 

routes. The majority of traffic assignment models in the literature seek such user 

equilibrium (UE) solutions. A deterministic user equilibrium (DUE) model presumes 

perfect knowledge of the performance of all alternative routes and all users perceive 

route performance in an identical manner. To provide greater realism, stochastic user 

equilibrium (SUE) models have been suggested in which each user is presumed to 

have only probabilistic information about the route choices and each has his/her own 

utility function regarding route performance (Sheffi, 1985).  

Users in UE approaches (DUE or SUE) are treated either continuously or as 

individuals. No mechanism exists to support group behavior (e.g. desire by a family, 

group of friends/colleagues or emergent groups to travel en masse). Such group 

behavior, however, is common and can have significant impact on crowd movement. 

Even if each member of a group has the same utility function within the employed 

route choice methodology, there is no guarantee that members of the group will be 

assigned to the same path.  

The problem of predicting route choice given the impact of user interactions 

on link performance can be treated as an n-player non-cooperative game in which 

players selfishly choose strategies from their own strategy sets (Haurie and Marcotte, 

1985). The payoff for each player depends on his/her chosen strategy, as well as on 

the strategies chosen by others. The solution of such a game in which there is a finite 

number of players will result in a mixed-strategy Nash equilibrium. In the context of 
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traffic assignment, travelers correspond to the players in the game. The strategy set is 

composed of the available potential routes from origin to destination. Payoff is gained 

through quality route performance.  

A mixed-strategy Nash equilibrium presumes that decisions taken by each 

player in the n-player game have identical impact on strategy performance. Such an 

approach, therefore, cannot account for the impact of group movements. Thus, an n-

player, pure-strategy Nash equilibrium game (Rosenthal, 1973a, b) is proposed herein 

that can capture the impact of group behavior. When a pure-strategy Nash 

equilibrium is achieved, each player, representing a group composed of one or more 

pedestrians, cannot benefit from unilaterally switching strategies (or routes). 

In applying the concept of pure-strategy Nash equilibrium in this context of 

crowd management, a number of assumptions are required: (1) the crowd consists of 

a finite number of groups, the members of which will travel together; (2) preference 

functions may be heterogeneous across groups, but are homogeneous among 

members of the same group; (3) groups behave rationally, choosing a route that 

minimizes disutility for the group; (4) all groups make their route choice decisions 

simultaneously (Bierlaire and Robin, 2009) and the ultimate choice depends on the 

choice of competing groups; and (5) link disutility is additive. 

3.4.2 Formulation  

For an O-D pair, w WÍ , W the set of O-D pairs, there are ( 1,..., )w wG g G=  groups 

of pedestrians and ( 1,..., )w wR r R= routes. Let 
g
wS denote the size of group, wg GÍ , 

which can be as small as one. For each w, the disutility of each route r for group g can 

be expressed as: 
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, ( , ) [ ( )]   , , ,g r g r g r r r
w w w w g w g w w w wu S f S L T f g G r R w Wa b= Ö + " Í Í Í         (3-7) 

where , ( )g r
wu Örepresents the disutility of route r for group g with O-D pair w. The 

disutility of route r between O-D pair w is a function of group size,gwS , the 

corresponding route distance,
 

r
wL , and walking time, 

r
wT . Walking time, 

r
wT , is a 

function of the flow on route r, r
wf . ga  and

 gb are parameters indicating group g's 

sensitivity to walking distance and time, respectively. 

Let lower-level decision variable ,g r
wx  equal 1 if group g chooses route r for 

O-D pair w, and 0 otherwise. Flow along route r for O-D pair w, r
wf , is computed 

from the sum of group sizes of groups that choose the route: 

,    ,

w

r g g r
w w w w

g G

f S r R w Wx
Í

= Ö " Í Íä .                               (3-8) 

From the incidence relationship of links and routes, walking distance and 

walking time on route r between pair w can be further written as in Equations (3-9) 

and (3-10), respectively. 

,         ,r r a
w a w w

a A

L l r R w Wd
Í

= Ö " Í Íä                               (3-9) 

,( ) ( , )       , ,r r r a
w w a a a a w w

a A

T f t x c y r R w Wd
Í

= + Ö " Í Íä                     (3-10) 

where ,r a
wd equals 1 if route r passes through link a, and 0 otherwise. Flow on link a,

ax , is given as: 

,              

w

r r a
a w w

w W r R

x f a Ad
Í Í

= Ö " Íä ä .                          (3-11) 
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From Equations (3-9) and (3-10), for each , , ,w wg G r R w WÍ Í Í Equation (3-

7) can be written as: 

, , ,

,

,

( , ) [ ( , ) ]

                    = [ ( , )]

                    = ( , , )

g r g r g r a r a
w w w w g a w g a a a a w

a A a A

g r a
w g a g a a a a w

a A

g a
w a a a a

a A

u S f S l t x c y

S l t x c y

u l x c y

a d b d

a b d

Í Í

Í

Í

= Ö + + Ö

Ö + + Ö

+

ä ä

ä

ä

               (3-12) 

where 
, ( , , )g a

w a a a au l x c y+
 
measures the disutility incurred by group g using link a. 

The lower-level problem can, thus, be formulated as binary, nonlinear, integer 

program (L): 

(L)      
,min     [ ( , )]  

w w

g r a
w g a g a a a a w

w W r R g G a A

S l t x c ya b d
Í Í Í Í

Ö + + Öä ä ä ä            (3-13) 

s.t.         
, ,       

w w

g g r r a
a w w w

w W r R g G

x S a Ax d
Í Í Í

= Ö Ö " Íä ä ä                      (3-14) 

, 1                      ,

w

g r
w w

r R

g G w Wx
Í

= " Í Íä                          (3-15) 

, 0 or 1            , ,g r
w w wg G r R w Wx = " Í Í Í                      (3-16) 

Objective function (3-13) seeks the set of path flows over all O-D pairs with 

the minimum total disutility (weighted by group size). Derived from Equations (3-8) 

and (3-11), constraints (3-14) relate link flows to path flows, thus, ensuring flow 

conservation. Constraints (3-15) force each group to choose one route. Binary 

restrictions are guaranteed through constraints (3-16). 

The optimal solution to (L) is a pure-strategy Nash equilibrium attaining the 

smallest total disutility, proof of which is provided in subsection 2.4.3. Note that there 
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might be several pure-strategy Nash equilibria for the game. Problem (L) seeks the 

one with the smallest total disutility.  

3.5  Single-Level Reformulation 

Similar bi-level modeling approaches have been employed in vehicular transport 

network design applications. Chiou (2005) developed a gradient-based methodology 

to obtain the Karush-Kuhn-Tucker (KKT) points required for converting the bi-level 

program to a single mixed integer programming (MIP). Gao et al.(2005) employed a 

generalized Benders decomposition method for a similar problem formulation. A 

similar bi-level mathematical model is used to make decisions related to increasing or 

decreasing link capacities in (Karoonsoontawong and Waller, 2006). Capacity change 

decisions are fed to a simulation model designed to capture traffic dynamics. 

Comparison between solutions obtained by MIP reformulation with heuristic 

approaches is made. While there are similarities between these models and the RECM 

model, these existing solution methodologies cannot be directly applied, in part 

because determination of the KKT conditions associated with (L) are difficult to 

derive due in part to the inclusion of binary decision variables, which are needed for 

the determination of link flows. Thus, an alternative solution methodology is 

proposed herein. 

In the RECM problem, a Stackelberg game is played between the leader 

(crowd manager in (U)) and follower (pedestrians in the crowd in (L)). In essence, the 

game is played out in such a way that the leader chooses a solution for (U) that 

minimizes his/her objective function given that the followers, after observing the 

leaderôs actions, will respond rationally and selfishly. Direct solution of this bilevel 
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optimization problem is difficult. However, the RECM problem can be reduced to a 

single-level program in which the lower-level program (L) is incorporated within the 

constraints of (U). This approach of converting a bilevel program to a single-level 

program in this way is described in (Bard, 1998). This single-level form of the RECM 

problem is given by program (SL):   

 (SL)                      min   ( , ) ( , )a a a a a

a A

Z x t x c y
Í

= Ö +äx y                                 (3-17) 

s.t.          Constraints (3-4), (3-5), and (3-6) 

 ( ) 0       a a ax Lower c y a A- + = " Í                     (3-18) 

Objective function (3-17) seeks vectors x and y that minimize total travel time, 

subject to budget (3-4) and capacity ((3-5) and (3-6)) limitations. Link flows x 

associated with vector y are implicitly derived from the solution of problem (L), 

which is expressed within Lower(Ö) in Equation (3-18). Lower(Ö) returns solution 

matrix { ,g r
wx } .  

3.6 Solution Methodology 

Program (SL) is a nonlinear mixed integer program with nonlinear objective function 

and nonlinear constraints. Solution approaches exist that can guarantee a global 

optimum for nonlinear programs possessing specific characteristics, like convexity, or 

that can be shown to possess certain properties. No solution methodology with 

applicability to program (SL) exists that can guarantee a global optimum. Instead, a 

solution methodology is presented herein that guarantees a locally optimal solution 

and takes advantage of global search strategies to increase the likelihood of finding 

the globally optimal solution. Specifically, the proposed methodology embeds an 
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exact Sequential Quadratic Programming (SQP) procedure within a tabu search 

environment. 

This approach builds on the solution frameworks of two works: (Chelouah 

and Siarry, 2000) and (Chen et al., 2008). Chelouah and Siarry (2000) proposed a 

tabu search-based (Glover and Taillard, 1993) metaheuristic, called the Enhanced 

Continuous Tabu Search (ECTS) algorithm, with the goal of obtaining a global 

optimum for unconstrained optimization problems. Chen et al. (2008) extended 

Chelouah and Siarry's continuous tabu search (CTS) approach for constrained math 

programs. They employ a methodology based on Lagrangian relaxation in which a 

term involving the square of each constraint is included and penalized in the objective 

function. The procedure aims to minimize this term to produce a feasible solution. 

SQP is used to produce such feasible solutions. A multi-start strategy involving 

exploration around a current best solution within concentric hyper-rectangles is 

employed within the diversification stage of the CTS. This procedure produces a set 

of starting points for the SQP, leading to a set of likely feasible solutions. The best 

solution among this set is chosen and the multi-start procedure is repeated.  
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Figure 3-2 Flowchart of the MST-SQP Procedure 

The proposed methodology for solving the RECM problem employs a similar 

framework as in (Chen et al., 2008), involving a multi-start SQP procedure within a 

CTS framework. Moreover, an adaptation of concentric hyper-rectangles structure 

developed in (Teh and Rangaiah, 2003) is embedded within this framework. However, 

instead of relaxing the constraints and seeking a set of feasible solutions from which 

the optimal solution can be obtained, the original constrained math program is solved 

directly by SQP. Additionally, a secondary tabu search methodology is employed 
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within the proposed methodology (during identification and intensification stages) to 

evaluate Lower(Ö). This proposed approach is referred to herein as the Multi-start 

Tabu method with SQP (MST-SQP). Figure 3-2 provides a flowchart of the steps of 

the main procedure. Details of its key steps follow. 

3.6.1 Preprocessing and Initialization (Step 1) 

The procedure begins with the generation of an efficient route set (Sheffi, 1985) for 

each O-D pair. It is presumed, as in (Bovy and Stern, 1990), that when faced with a 

route decision, a traveler selects his/her route from a limited choice set. The more 

comprehensive the choice set, the more likely he/she will choose the optimal route 

given his/her goals. Since complete enumeration of all possible routes is impractical 

and given that most people do not consider all alternatives in making their decisions, 

only the efficient route set is considered. Based on Sheffiôs work, an efficient route is 

defined as a route passing only through efficient arcs, and an efficient arc is defined 

as follows. For each arc a connecting i to j, if r(i)<r(j), for r(k) the shortest distance 

from the origin to node k, and s(i)>s(j), for s(k) the shortest distance from k to the 

destination, then arc a is efficient (eff(i,j)=1); otherwise, it is inefficient (eff(i,j)=0). 

The efficient routes, 
wR , between each O-D pair w are obtained with a depth-first-

search (DFS) on the network of efficient arcs (i.e. the subgraph ( )N,A¡ ¡G = , where 

A¡is the set of efficient arcs). Routes with cycles are not generated, because by 

definition any efficient arc transports travelers to locations that are further from the 

origin and closer to the destination. 
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Once the efficient route set is generated, an initial starting point, X0, must be 

chosen. X0 consists of two vectors: link flow x and capacity change y. To produce X0, 

the elements of x and y are chosen randomly given restrictions on their bounds.  

The aspiration, tabu and termination criteria employed herein are adopted 

directly from (Chen et al., 2008). These criteria are summarized for completeness.  

Aspiration criterion  

Any candidate solution that has the best objective value of all discovered solutions 

will become the best solution regardless of its tabu status. 

Tabu list 

A list of solutions, each of which is given by a pair of vectors (x,y), considered in the 

last n iterations (the tabu tenure) of the tabu search procedure is maintained. Thus, an 

explicit memory approach is used. The best found solution obtained thus far will not 

enter the tabu list, unless it is identified twice, until a better solution is found. This 

construction of the tabu list prevents revisiting of solutions within the iterations 

associated with its tabu tenure. A solution may be removed from the tabu list 

prematurely if no neighboring solution of the best solution outperforms the best 

solution. A solution is tabu if 

0    1,2,...,   ,tabu
jX X h j n- ¢ " =                                    (3-19) 

where tabu
jX is the j

th
 solution in the tabu list and h0 is defined in equation (3-21) of 

subsection 3.6.3. 

Termination criteria  

When either a predefined maximum number of iterations or a predefined maximum 

number of iterations without improvement is reached, the procedure terminates. 
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Parameter settings 

The tabu parameters were tuned through initial experiments. The best found settings, 

and the settings that will be used in the remainder of the Chapter, are: maximum 

iteration number = 50; maximum number of iterations without improvement = 10; 

number of candidate solution points to be explored = 10; tabu tenure = 20. 

3.6.2 Force Feasibility (Step 2) 

Using X0 obtained from step 1 in Figure 3-2 as the starting point, SQP is employed to 

find the corresponding locally optimal solution Xô0 with objective value Zô0 for 

program SL. The best known solution, Xbest, and objective value, Zbest, are set to Xô0 

and Zô0, respectively. The SQP algorithm requires evaluation of Lower(Ö) within 

Equations (3-18). Details of the process to solve the lower-level problem are 

discussed in subsection 2.5.3. 

3.6.3 Diversification (Step 3) 

 

Figure 3-3 Hyper-rectangles adapted from (Chelouah and Siarry, 2000) 

A diversification strategy generates a set of candidate solutions within the exploration 

space of the current best solution, Xbest. That is, the diversification process involves a 

Xbest

h0

h1

h2

h3

X1

X2

X3

X4



 

 58 

 

multi-start strategy, where a set of candidate solution points, given by array Xcand, are 

randomly generated around the current best solution. The solution space around the 

current solution, as defined in (Chelouah and Siarry, 2000) and (Teh and Rangaiah, 

2003), is partitioned by a set of concentric hyper-rectangles. The structure of hyper-

rectangles around Xbest in two dimensions is illustrated in Figure 3-3. The relationship 

between the radii of concentric hyper-rectangles is expressed as 

12 , 1,2,... 1k k candh h k N-= Ö = -                                        (3-20) 

0 0.01 ( ) / 2h UB LB= Ö -                                                    (3-21) 

where Ncand is number of candidate solutions, h0 is the half-width of the inner-most 

rectangle, and UB and LB are the upper- and lower-bound vectors of X, respectively. 

In exploration of solution points within a vicinity of Xbest, one candidate 

solution is randomly generated within each region enclosed by two adjacent hyper-

rectangles (the innermost region is enclosed only by the inner-most hyper-rectangle). 

3.6.4 Intensification (Step 4) 

The candidate solution points generated in the diversification stage are not guaranteed 

to be feasible for (SL). Thus, they are used as starting points for the SQP algorithm 

through which neighboring feasible solutions are obtained. The intensification 

process seeks a set of such feasible solutions (see Figure 3-4), employing SQP for 

each such starting point. An updated candidate solution array Xcand is generated.  

Intensification starts with selecting the 1
st
 element, X, of Xcand generated in the 

diversification process. If X is tabu, then the process is applied to the next element in 

Xcand. If X is not tabu and it is feasible, X and its objective function value Z, are 

directly added into the new feasible solution set, Xnew, and objective set, Znew, 
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respectively; otherwise, (SL) is solved through SQP using X as the starting point and 

resulting locally optimal solution Xô with corresponding objective value Zô. Xô and Zô 

will be added into Xnew and Znew, respectively. This process is repeated until all 

elements of Xcand have been investigated. 

After obtaining a new feasible set, Xnew, it is sorted in nondecreasing order 

according to objective values. The best (first) new feasible solution Xnewbest is selected. 

The aspiration criterion is used to update the best known solution. If the aspiration 

criterion is satisfied (i.e. Znewbest< Zbest), then the best known solution Xbest will switch 

to Xnewbest and the best known objective Zbest will change to Znewbest. The previous best 

solution will be placed in the tabu list. Termination criteria will be assessed. If one of 

the termination criteria is met, the procedure stops; otherwise, continue to the next 

iteration. If the aspiration criterion is not satisfied, the subsequent elements in Xnew 

cannot be better than Xnewbest, and the tabu criterion will be checked for all elements in 

Xnew. If any is not tabu, it will be placed in the tabu list. If all of elements in Xnew are 

tabu, the first element in the tabu list will be selected as the best known solution. The 

tabu list aids in preventing the search from being trapped at a local solution. The SQP 

algorithm requires evaluation of Lower(Ö) within Equations (3-18). Details of the 

process to solve the lower-level problem are discussed in subsection 2.5.3. 
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Figure 3-4 Flowchart of Intensification Process (Step 4) 

 

3.7  Numerical Experiments 

3.7.1  Experiment Design 

To investigate the efficiency of the proposed model and solution methodology, the 

MTS-SQP procedure with embedded TS algorithm for solution of Lower(Ö) is applied 

on a numerical example consisting of 14 nodes, 22 links and 4 O-D pairs, as shown in 

Figure 3-5. The example network is acyclic; however, the methodology supports 

solution in networks with cycles. 
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Figure 3-5 Test Network Configuration 

As indicated in Figure 3-5, some links begin with zero capacity. An increase 

in capacity from zero is akin to opening or constructing the link. Detailed information 

of the network is listed in Table 3-1. The free-flow speed is set to be 1.42m/s 

(Thalmann and Musse, 2007) and coefficient ak = 0.0008 for travel time calculations. 

The total budget B is 1500 cost units. 

Table 3-1 Network Information  

Link al (m) 
0
at (s) ac  ab  up

ac
 
Link al (m) 

0
at (s) ac  ab  up

ac
 

1 100 70.42 10 3 50 13 100 70.42 10 3 50 

2 100 70.42 20 3 50 14 200 140.85 0 5 50 

3 100 70.42 10 3 50 15 100 70.42 20 3 50 

4 200 140.85 0 5 50 16 100 70.42 10 3 50 

5 100 70.42 20 3 50 17 100 70.42 20 3 50 

6 100 70.42 10 3 50 18 100 70.42 10 3 50 

7 100 70.42 20 3 50 19 100 70.42 20 3 50 

8 100 70.42 20 3 50 20 100 70.42 20 3 50 

9 100 70.42 20 3 50 21 100 70.42 10 3 50 

10 100 70.42 20 3 50 22 100 70.42 10 3 50 

11 100 70.42 20 3 50 23 100 70.42 10 3 50 

12 200 140.85 0 5 50 24 200 140.85 0 5 50 

 

Table 3-2 gives the demand information for each O-D pair. There are 20 

groups of pedestrians for each O-D pair. The group size is uniformly chosen on the 
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interval [1, 30]. Traveling distance sensitivity parameter ga is uniformly distributed 

between 0 and 1 and travel time sensitivity parameter 1g gb a= - . 

Table 3-2 Demand for Each O-D Pair 

O-D pair Group Size ga (/m) 
gb (/s) O-D pair Group Size ga (/m) 

gb  (/s) 

1-11 

1 10 0.5 0.5 

1-14 

1 7 0.4 0.6 

2 12 0.7 0.3 2 27 0.3 0.7 

3 29 0.3 0.7 3 16 0.6 0.4 

4 23 0.2 0.8 4 19 0.6 0.4 

5 19 0.4 0.6 5 22 0.3 0.7 

6 4 0.6 0.4 6 27 0.1 0.9 

7 10 0.5 0.5 7 28 0.6 0.4 

8 25 0.4 0.6 8 30 0.1 0.9 

9 15 0.7 0.3 9 21 0.7 0.3 

10 1 0.7 0.3 10 16 0.2 0.8 

11 14 0.3 0.7 11 16 0.8 0.2 

12 30 0.3 0.7 12 1 0.1 0.9 

13 12 0.6 0.4 13 14 0.5 0.5 

14 30 0.7 0.3 14 18 0.3 0.7 

15 4 0.5 0.5 15 10 0.4 0.6 

16 18 0.8 0.2 16 11 0.2 0.8 

17 22 0.2 0.8 17 18 0.8 0.2 

18 14 0.6 0.4 18 1 0.2 0.8 

19 13 0.2 0.8 19 4 0.1 0.9 

20 16 0.3 0.7 20 30 0.5 0.5 

2-11 

1 18 0.8 0.2 

2-14 

1 10 0.2 0.8 

2 29 0.8 0.2 2 13 0.7 0.3 

3 29 0.8 0.2 3 16 0.1 0.9 

4 15 0.2 0.8 4 13 0.7 0.3 

5 27 0.4 0.6 5 19 0.8 0.2 

6 7 0.4 0.6 6 18 0.5 0.5 

7 17 0.3 0.7 7 9 0.5 0.5 

8 20 0.1 0.9 8 4 0.0 1.0 

9 19 0.6 0.4 9 28 0.4 0.6 

10 6 0.2 0.8 10 6 0.3 0.7 

11 19 0.6 0.4 11 2 0.7 0.3 

12 27 0.5 0.5 12 17 0.4 0.6 

13 8 0.2 0.8 13 2 0.8 0.2 

14 1 0.3 0.7 14 9 0.3 0.7 

15 20 0.6 0.4 15 20 0.8 0.2 

16 22 0.2 0.8 16 28 0.3 0.7 

17 21 0.8 0.2 17 1 0.8 0.2 

18 7 0.2 0.8 18 3 0.7 0.3 

19 23 0.3 0.7 19 8 0.3 0.7 

20 2 0.1 0.9 20 4 0.2 0.8 
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The proposed MST-SQP procedure with embedded TS algorithm was coded in the 

MATLAB 2010a environment and run on a personal computer with Intel(R) CPU 

3.10GHz and 4.0GB RAM. The procedure takes advantage of an existing SQP tool 

available within the Optimization Toolbox of MATLAB (Coleman et al., 1999). 

3.7.2  Results and Analysis 

Table 3-3 gives the set of 34 efficient routes among the four O-D pairs. Three links 

with no prior capacity are included. The distances required to traverse the routes are 

identical with 500 m. 

Table 3-3 Routes Set for Each O-D Pair 

O-D Index Route O-D  Index Route 

1-11 

1 1Ÿ2Ÿ5Ÿ6Ÿ10Ÿ11 

1-14 

1 1Ÿ2Ÿ5Ÿ6Ÿ10Ÿ14 

2* 1Ÿ2Ÿ5Ÿ6Ÿ11 2 1Ÿ2Ÿ5Ÿ9Ÿ10Ÿ14 

3 1Ÿ2Ÿ5Ÿ9Ÿ10Ÿ11 3 1Ÿ2Ÿ5Ÿ9Ÿ13Ÿ14 

4* 1Ÿ2Ÿ6Ÿ10Ÿ11 4* 1Ÿ2Ÿ6Ÿ10Ÿ14 

5* 1Ÿ2Ÿ6Ÿ11 5 1Ÿ4Ÿ5Ÿ6Ÿ10Ÿ14 

6 1Ÿ4Ÿ5Ÿ6Ÿ10Ÿ11 6 1Ÿ4Ÿ5Ÿ9Ÿ10Ÿ14 

7* 1Ÿ4Ÿ5Ÿ6Ÿ11 7 1Ÿ4Ÿ5Ÿ9Ÿ13Ÿ14 

8 1Ÿ4Ÿ5Ÿ9Ÿ10Ÿ11 8 1Ÿ4Ÿ8Ÿ9Ÿ10Ÿ14 

9 1Ÿ4Ÿ8Ÿ9Ÿ10Ÿ11 9 1Ÿ4Ÿ8Ÿ9Ÿ13Ÿ14 

  10 1Ÿ4Ÿ8Ÿ12Ÿ13Ÿ14 

3-11 

1 3Ÿ4Ÿ5Ÿ6Ÿ10Ÿ11 

3-14 

1 3Ÿ4Ÿ5Ÿ6Ÿ10Ÿ14 

2* 3Ÿ4Ÿ5Ÿ6Ÿ11 2 3Ÿ4Ÿ5Ÿ9Ÿ10Ÿ14 

3 3Ÿ4Ÿ5Ÿ9Ÿ10Ÿ11 3 3Ÿ4Ÿ5Ÿ9Ÿ13Ÿ14 

4 3Ÿ4Ÿ8Ÿ9Ÿ10Ÿ11 4 3Ÿ4Ÿ8Ÿ9Ÿ10Ÿ14 

5 3Ÿ7Ÿ8Ÿ9Ÿ10Ÿ11 5 3Ÿ4Ÿ8Ÿ9Ÿ13Ÿ14 

  6 3Ÿ4Ÿ8Ÿ12Ÿ13Ÿ14 

  7 3Ÿ7Ÿ8Ÿ9Ÿ10Ÿ14 

  8 3Ÿ7Ÿ8Ÿ9Ÿ13Ÿ14 

  9 3Ÿ7Ÿ8Ÿ12Ÿ13Ÿ14 

  10* 3Ÿ7Ÿ12Ÿ13Ÿ14 

* indicates that a link that originally had zero capacity is included within the route 

Assignment Results before Reconfiguration 

Convergence to an equilibrium solution with total disutility of 600,000 is obtained 

after 7 iterations of evaluation of Lower (Ö) for the original network design, requiring 

3.84 CPU seconds in total, as shown in Figure 3-6. 
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Figure 3-6 Convergence Process of Lower-Level Solution Algorithm 

 

(a) OD 1-11 

 

(b) OD 1-14 

 

(c) OD 2-11 

 

(d) OD 2-14 

Figure 3-7 Distribution of Groups over Routes by O-D Pair before 

Reconfiguration 

Solution of the lower-level problem is obtained for the existing system configuration. 

Figure 3-7 shows the distribution of groups over the route options between each of 

the O-D pairs. Note that no group is assigned to a route with any link with zero 
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