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There area variety of circumstances in which large numbers of people gather and
must disperseThese include, for example, carnivals, parades, and other situations
involving entrance to or exit froommomplex buildings sport stadiums, commercial
malls, and other tge of facilities Under these situations, people move on foot,
commonly, in groups. Other circumstances related to large crowds involve high
volumes of people waiting at transportation stations, airports, and other types of high
traffic generation pointdn these cases, a myriad of people need to be transported by
bus, train, or other vehicles. The phenomenoma¥ing in groups alsarises in these
vehicular trafficscenarie. For example, groups may travel together by carpooling or
ridesharing as a cestiving measurd.he movement ofignificant numbersf people

by automobile also occurs iemergency situations, such as transportiage
numbers ofcarless and mobilitympaired personffom the impacted area to shelters

duringevacuatiorof anurban aea



This dissertation addresses four optimization problems on the design of
facilities and/or operations to support efficiambvement of large numbers of people
who travel in groupsA variety of modeling approaches, includinglével and
nonlinear programming are applied to formulate the identified problems. These
formulations capture the complexity and diverse characteristics that arise from, for
example,grouping behavior, interaons in decisions by the system and its users,
inconvenience constraints for passengers, and interdependence of strategic and
operational decisions. These models aim to provide: (1) estimates of how individuals
and groups distribute themselves over thisvoek in crowd situations; (2) an optimal
configuration of the physical layout to support large crowd movement; (3) an efficient
fleet resource management tool for ridesharing services; and (4) tools for effective
regional disaster planning. A variety oblstion algorithms, includinga meta
heuristic schemseeking gurestrategy Nash equilibriupra multi-starttabu search
with sequentialquadraticprogramming procedurend constraint programming based
column generation are developed to solve the fortedl@roblems. All developed
models and solution methodologies were employed orwedt or carefully created

fictitious examples to demonstrate their effectiveness.
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Chapterl | nt roducti on

1.1 Introduction and Motivation

There are a variety of circumstances in which large numbers of people gather and
must disperse. These include, for example, carnivals, parades, shopping centers or
markets, inaugurationspck concerts, football games, and other situations involving
entrance to or exit fronsomplex buildingssport stadiums, commercial malland

other type of facilitiesUnder these situations, people move on foot emdnasse

Within the crowds, there argroups of people who wish to travel together. For
example, family members walk beside each other. Friendsli@aguedend to stay
together and maintain communication with each other while walking.

Other circumstances related to large crowds involgh kiblumes of people
waiting at transportation stations, airports, docks and other types of high traffic
generation points. In these casasnyriad of peopleeed to be transported by bus,
train, van, ship or other vehicles. The phenomenanafing in goups alsarises in
thesevehicular trafficscenarig. For example, a family will travel within the same
vehicleor larger groups will travel in a bub other cases, groups may travel together
by carpooling or ridesharing as a ceatiing measure.

The novement ofsignificantnumbes of people by automobile also occurs in
evacuating an urban region due to natwalhumanmade disasteevents,like
flooding, hurricanes,and industrialor nuclear accidentsTo reduce the adverse
consequences of these disess on humans, evacuating a large region by automobile,
which is the most commonly available evacuatioode, is often the most viable

response action for protecting the affected people. Howevbgnuareas often

1



involve large volume of carless evacueesnd a significant portion of them are
mobility-impaired Many of thesearlesspeoplerequire transporfrom the impacted

area to safe places, includirgielters. The evacuation planning consists of two
components. First, decide the locations of sheléerd assign people the shelters
(facility design), and second, dispatch available public transit vehicles transport them
to the shelters (operation design).

Optimal design of facilitieor facility locationsand operationshat support
the movement of lage numbers of peoplrecritical to public safety and efficiency.

In addition to the numerous disasters associated with crowding due to poor crowd and
evacuation management, efficient control and guidance of the movement of large
numbers of people can pide crucial support toward meeting ingress, egress and
safety goals. Furthermore, optimal design of efficient anddost ridesharing or
other mechanisms for moving individuals within a single vehicle can alleviate
congestion on the roadways emergeng situations, ptimal design ofshelter
locations and operations for evacuating large numberscarfiess and mobility
impaired personsare critical componers of evacuation planning foa large urban

area.

Modeling and decision support for these crewsted circumstances,
however, can be difficult, and related optimization problems are likely intractable.
This intractability is, in part, due to (1) existence of a complex physical environment
with interdependent passageways, (2) assembly of large numbgmople with
complicated, collective and heterogeneous behavi(8¥, interdependence and

interaction between decisions from different people who play different roles in the



system (crowd manager vs. system users, operators vs. passengers), andr@g the |
scale nature of the problem instances with significant demand for service within large
geographic regions, particularly as it relates to traffic and emergency events.

This dissertation will provide tools to support the efficient movement of large
numbers of people under a variety of situations. Specifically, mathematical models of
pedestrian movements in crowds are developed and optimization tools are proposed
to control crowd movement and prevent disorder from breaking out. The movement
of large numbrs of people to and from transportation stations (specifically airports)
through ridesharing services is addressed, supporting the movement of unrelated
persons in single vehicleBinally, optimal design of facilitiessbelterlocationand
allocatior) ard operations (routeand schedulesf paratransitvehicles) in a large
scale transtbased mass evacuation of an urban area is addressed

1.2 Specific Problems Addressed

The problems addressed in this dissertation arise from diverse, yet increasing

concerns irfacility and/or operations design for efficient movement of large numbers

of people. This section provides concise statements about each addressed problems.

The detailed problem descriptions, mathematical formulations and solution

approaches are given @hapters 2 through 5.

1.2.1Pedestrian Route Choice in Crowds
In large public gatherings, crowds are directed through passageways within the
facilities. The physical layout of these passageways provides a set of route options

from which pedestrians can chooserf i ngress or egress. A

pe



for an alternative route depends on the r
its attributes and the pedest rinadtonrs sensi
some attributes, like travedpeed, depend on the choices made by others who
simultaneously seek passage along the same radm®over, h the context of
crowd movement, groups must make a concerted effort to move together and not be
split apart.

Network optimizatioAdbased modelingral solution frameworkare proposed
for assessing pedestrian response to the
egress routes during large public gatherinigse frameworkgnvolve the modeling
and solution of a pedestrian assignment probl&éhese pproaches support the
movement of both individuals and groupsdistinction is made between two broadly
categorized group types: separable and clustered. The former can be, for example, a
group of friends/colleaguesvho have a predilection for staying togetheherein
each person within the group is free to make his or her own decision in response to
the physical environment. The latter describes groups that will not be separated, such
as parent and child. Such gpmdecisions and movements are crucial to developing
realistic models of pedestrian movem@damacher et al., 24; Qiu and Hu, 2010
The effects of separable and clustered group movements on flow distributions
through the physical layout are studied.

Two methodologies are proposed to model these effects: hastac user
equilibrium pedestrian assignment (SUE) approach to nemgedrable groups and an
n-player noncooperative game seekingparestrategy Nash equilibrium to model

clustered groupsA solution scheme that combines the method of successive aserage

C

t



with group movements is proposed for solving the SUE assignment &wbta
Response Dynamidsased Tabu Search procedisgroposedfor obtaining a pure
strategy Nash equilibrium for clustered groups.

Details of model formulations, solution approachas, well as esults of
numerical experimentsonductedto demonstrate the effectiveness of the proposed
methodologies and investigate the impact of groups on flow efficiereyprovided

in Chapter 2.

1.2.2Crowd Management in Large Public Gatherings
Effective crowd management during large public gatheringseisessary to enable
pedestrians to hawsccess to and from the venue and to ensure their sAfatymber
of previous studies focus on determining optimal routes tfie@ movement of
pedestrians through aivgn physical layoutAn alternativemanagement strategy
might be toreconfigurethe physicallayout to facilitate pedestrian movement in
pursuit of a particular goal. Such redesign can both limit pedestrian choice and
enhance or restrict capacity along routes to facilitate efficient movement and prevent
crowd crush or other unsafe situations. Changethe@ophysical layout might be
achieved through opening or closing gates/doorways, placing or removing barriers or
changing illumination intensity to coerce pedestrians along certain paths. No prior
work has suggested such an approach in the conterdwfl movement

In this dissertationthe problem of reconfiguring the physical layaitthe
facility to support efficient crowd movementonceptualized afkedesign for

Efficient Crowd Movement (RECM)s formulated as bi-level integer program. The



upperlevel seeks a reconfiguration of the physical layout that will minimize total
travel time incurred by system users (e.g. evacuees) given utility maximizing route
decisions that are taken by individuals in response to physical offerings in terms of
infrastricture at the lowelevel. The loweitlevel formulation seeks a pustrategy
Nash equilibrium that fills igroupingbehavior in crowds. A Mulstart Tabu Search
with Sequential Quadratic Programming procedure is proposed for solutions cf the bi
level Mixed Integer Program. This procedure guarantees a locally optimal solution to
this nonlinear program.

The details of formulation, numerical experiments on a hypothetical network
conducted to illustrate the proposed solution methodology and the insiglusidgs

are given in Chapter 3.

1.2.30ptimizing Ridesharing Services for Airport Access

Airports often have large numbers of departure and arrival passengers that can cause
congestion on roadways, environmental pollution, and greater difficulty accessing the
facility. Like traditional public transit, ridesharing can serve more than one pg@ssen

with one vehicle. Thust canaid inlimiting the volume of traffic, thereby reding
congestion and mitigatg environmental impactMoreover, ridesharing can provide
higher quality of service than traditional public transit through flexible routés a
schedules as well as door to door pigls and drojffs. Furthermore,aduced total
passengemiles traveled resulting from ridesharing and efficiently designed routes
can increase profitability of the service provider and aid in diminishing traffic

congestion along with its negative externalities, including environmental pollution.



The Airport Access Ridesharing Problem (AARP) is conceptualized in this
dissertation. TheAARP seeks tletermire a set of routes and schedules that meet
service quality, reource, labor and vehicle capacity constraints while minimizing
total cost in terms of vehicular use and toteggesin the context of airport
ridesharing serviceI’he AARP isformulated as a nonlinear, mixed integer program.
An exact solution approach p@lging constraint programming within aolumn
generation frameworlgs well as adaptations of two existing heurist&s, proposed
for its solution. Implementations of the mathematical program and proposed solution
approaches for three different operaéibpolicies aralsopresented.

The details of formulation, proposed solution approaches and numerical
experiments om realworld case study involving service records for one service day
of Supreme Airport Shuttle, Inout of Washington Dulles Internahal Airportare

given in Chapter 4.

1.2.4Facility and Operations Design forMass Evacuation Planning

This dissertation addresses the problem of providing safe locations for mobility
impaired persons in an evacuation and the transportation for these persons from their
homes to such facilities. To state and local governments, important issues for
facilities and operations in an mass evacuation planning associatednwiitity-
impairedpopulation include: (1) how many and where shelters should be opened to
this population, (2) to which shelter eaamobility-impaired evacuee should be

assigned, and (3) how taptimally dispatch and route paratransit vehicles to serve



this population. No prior analytical models have been proposed in the literature to
help the government with decisiomaking on these critical issues.

To fill this gap, the Sheltering and Paras#rEvacuation Problem (SPEP) is
studied. The SPEP is formulated as a mixed integer program. The problem consists of
two interdependent and integrated subproblems: 1) Capacitated Shelter l-ocation
Allocation Problem (CSLAP) and 2) Multlepot Pickup and Detery Problem
(MPDP). To solve a largscale instance of the SPEP, a tabu search metaheuristic is
proposed.

Details of the problem conceptualization and formulation, as well as the
proposed tabu search algorithm ananerical experiments amreatworld case study

involving hurricane evacuation planning for New York Caye given in Chapter.5

1.3 Contributions

Address vital aspects in the design of facilities and operations to support the
movement of large numbers of peoflbis dissertation seeks to prde tools that

can be used for: (1) Estimating the distribution of groups and individuals over the
physical layout network, considering that people move in groups. (2) Redesigning the
physical layout to facilitate crowdnovement in pursuit of a particulagoal
considering both goals of the system and the users. (3) Optimally and efficiently
matching passengers to vehicles, and routing and scheduling their trips for an airport
ridesharing service operation system. (4) Optimally locating and assigningrshelte
and optimally routing and scheduling available paratransit vehicles to support

mobility-impairedpopulations in a largecale regional evacuation.



Develop optimization models for these identified problévteghematical models are
proposed and optimizath problems are formulated. These models capture the
complexity and diverse characteristics that arise frdam, example, grouping
behavior interactions in decisions by the system and its users, inconvenience
constraints for passengers, and interdeperedehstrategic and operational decisions.

A variety of modeling approaches, includinglével and nonlinear programming are
applied to formulate the identified problemBhese models aim to providél)
estimates of how individuals and groups distribiteniselves over the network in
crowd situations; (2) an optimal configuration of the physical layout to support large
crowd movement; (3) an efficient fleet resource management tool for ridesharing
services; and (4) tools for effective regional disastanpiay.

Provide conceptual framework and specific methodological procedures for solution
of identified optimization problem#\ variety of solution algorithms, including
metaheuristic schemaeeking apurestrategy Nash equilibriupma multi-start tabu
search with sequential quadratic programming procedure and constraint
programming based column generation are developed to solve the formulated
problems. All developed models and solution methodologies were employed-on real
world or carefully created ficidus examples to demonstrate their effectiveness.

1.4 Dissertation organization

The remainder of this dissertation is organized into five chapters. Chapter 2 presents
the modeling and solution frameworks of pedestrian route choice in crowds, while
Chapters 3hrough 5 address the RECM, AARP and SPEP, respectively. Finally,

conclusions and extensions for future research are given in Chapter 6.



Chapter2 PedesRoutaem Choice in Cro

2.1 Introduction

Large gatherings of people arise for a variety of purposes and mdneltd in a
myriad of venues, including for example, complex buildings, transportation stations,
sports stadiums, commercial malls, and other type of facilities. In such gatherings,
crowds are directed through passageways within the facilities. The gHgymat of
these passageways provides a set of route options from which pedestrians can choose
for ingress or egress. The speed with which a pedestrian will move through the
passageway depends on its physheingdd capacit
the number of other pedestrians utilizing it at the same time. The time for ingress or
egress to or from the event depends on the series of choices the pedestrian makes in
navigating the physical layout and competition with other pedestrians for passagew
capacities. A pedestrianbés preference for
utility and its wutility depends both on it
each such attribute type. Moreover, some attributes, like travel speedfeated by
the choices made by competing system users. The selection of a route is assumed to
be rational, meaning that the pedestrian will choose the route with the maximum
utility based on his/her preference function. The overall problem of estimatiat w
routes alltravelerswill take is known as a traffic assignment problem, and is referred
to as aPedestriarRoute Choice in Crowds (PRC@)oblem in this context.

The concept of route choice in vehicular traffic flow is well developed.
Pedestrians, however, have more degrees of freedom in movement andamféean

masse, or in groupsSuch groups arise in vehicular traficenaris, but these groups

10



are typicallyhoused within a single vehicle. For example, a family will travel within
the same car or larger groups will travel in a bus. These groups, thus, will never be
faced with the possibility of being split apart. Others who seek to access the venue
together butin different vehicles will often need to be willing to meet at the
destination. In the context of pedestrian movement, however, groups must make a
concerted effort to move together and not be split apart. For example, parents will not
wish to beseparatedrom their children. Thus, while each person within the family is
an individual (i.e. a unit of flow) and is free to make his or her own decisions in
response to directives from crowd managers or the physical layout, any effective
crowd management plan stufacilitate the movement of all members of the family as
a group. That is, the group must be permitted to stay together and accommodations
must be made to support this grampvementlin this chapter a distinction is made
between two broadly categorizgtbup types: separable and clustef&deni, 1977.
The former can be, for example, a group faends/colleagueswho have a
predilection for staying togethdsut each person within the group is free to make his
or her own decision in response to the physical enment. It is likely but not
guaranteed that individuals in this group type will travel together. The latter describes
groups that will not be separated, such as parent and child. Such group decisions and
movements are crucial to developing realistic modgfispedestrian movement
(Hamacher et al., 201 Qiu and Hu, 2010

This chapterdescribesa network optimizatiofbased modeling and solution
framework for estimating pedestrian flows within a network representation of a

physical environment. Movements by individuals and groups must be captutes i
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flows produced by this method. That is, the framework involves the modeling and
solution of a pedestrian assignment problem.

Before proceeding to descriptions of these two modeling approaches, traffic
assignment problem is briefly reviewed, followkd general introduction to utility

maximization concepts in the context of route choice.
2.2 Traffic AssignmentProblem

Assignment problems for vehicular traffic have received enormous attention in the
literature. The majority of traffic assignment modeéels user equilibrium (UE)
solutions, whex no traveler can select an alternative path with higiiéty by
unilaterally switching route (Sheffi, 1985. Deterministic user equilibrium (DUE)
and stochastic user equilibrium (SUE) modelstene commonUE approache DUE
assumes that travelers have perfect information on the performancelbéraative
routes when choosing a route. SUE, on the other hand, presumes that each user makes
his/her selection of a route based on perceived features of the alternatives. It is
generally accepted that SUE approaches provide more realistic predictioegetdr
route choice behaviqChen and Alfa, 1991 Both modeling approaches assume that
travelers are homogenous in terms of their preference functions. And both assign
travelers to paths probabilistically, with higher likelihood of choosing a path with
higher utility. That is, the frequency of path use can be set by the probability of its
selection.

An alternative approach might be to employ a Nash equilibrium based
methodology. Both pureand mixedstrategy Nash equilibriums have been considered

in the context of vehidar traffic assignmengRosenthal, 1973&). In (Rosenthal,
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1973a b), players have their own preference functions. Formulations seeking such
equilibriums involve concepts of narooperative games. In these prior works, group
behavior is not considered and, #fere, the developed models and algorithms for
traffic assignment cannot be applied directly in the movement of pedestrians where
group behavior must be considered. One reason for this is that the marginal impact of
the decision of one flow unit in pedeatr assignment where group behavior is
modeled must account for the impact of group size.

Several works in the context of vehicular traffic take the heterogeneity of
users into consideration. For example, the assignment problem for multiclass user
traffic networks is considered i(Huang and Li, 2007Nagurney, 2000 In this
multiclass user equilibrium problem, each class of travelers (e.g. trucks, buses,
passenger cars) has an individual preference function and each class makes decisions
based on path utilities derived from ghiunction. Travelers are assigned to paths
probabilistically, as in DUE and SUE methods, again with higher likelihood of
choosing a route with higher utility. Users in the same class will have the same
probability of selecting route alternativeshus, tle multiclass user equilibrium
assignment method does not guarantee that members in the same class will make the
same decisions.

While there is a significant body of work existing in the vehicular traffic
assignment area, these works cannot be directlgndetd for use in modeling
clustering (or group) behavior as is required for many pedestrian traffic assignment
contexts. On the contrary, within the literature on pedestrian modeling, numerous

works consider group behavior. The majority use simulation citeh involve a
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leader and set of followe(g.g.(Qiu and Hu, 201)). In an alternative networkdv-
based approach, Hamacher et(2D1]) incorporate group movements in solving a
dynamic quickest cluster flow problem. Howeveayvel times are not flowlependent
and thus competition among travelers for limited capacity is not considered.

In this chapter, the effects of separable and clustered group movements on
flow distributions through the physical layout are studied. Two nuetlogies are
proposed to model these effects: an SUE pedestrian assignment approach to model
separable groups and asplayer norcooperative game seeking a psteategy Nash
equilibrium to model clustered groups. In terms of separable groups, all group
members are assumed to have identical (homogenous) preference functions, but as
mentioned previously, they behave independently. In terms of clustered groups, all
members of the same group make the same route deciéata. that he SUE
pedestrian assignmeproblemused to model separable grouga be reformulated
as a game in which a mixesrategy Nash equilibrium sought(Devarajan, 1981
In this game, each player represeatsingle pedestrian. The solution produces the
probability that each player chooses each strategy (i.e. route), producing the fraction
of total flow distributed over the networklumerical expgmentswere conductetb
demonstratéhe impact ofpedestrianaute choice under both separable and clustered
group situations on movement efficiency withintteevu e 6 s physi cal | ayou

2.3 Utility Maximization in Route Choice

Route choice, sometimes refat® as wayfinding, involves choosing an option from
a finite set of alternative routes for given origiastination (GD) pairs. The concept

of route choice in vehicular traffic is well develop@bvy and Stern, 1990Utility
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maximizationbased discrete choice models are widely used to model route decisions

by drivers. The basic assumption underl yin
for each alternative route can be described by a utility (or disutilityjgretunction

of the attributes of the alternative routes and sensitivity parameters of the traveler to

these attributegSheffi, 1985. The traveler is assumed to choose the route with

maximum utility (or minimum disutility).

In the context of pedestriam a number of works consider pedestrian route
choice behaviofAl-Gadhi, 1996 Antonini et al., 2006 Bierlaire and Robin, 2009
Hoogemoorn and Bovy, 20044a/&, 1998). A couple of these works employility
maximizationbased choice mode{gntonini et al., 2006Bierlaire and Robin, 2009
Hoogendoorn and Bovy, 2004&edestrians are very sensitive to route characteristics
that are related to phkical effort, such as walking distance, walking time and the
exertion involved in climbing stairs or rampss discussed ifDaamen et al., 2005
Seneviratne and Morrall, 1985wvalking distanceand time are the most important
route attributes in pedestrian route choice. Furthernmoiscrete choice models, the
independence of irrelevant alternatives propertgssumed to holdThe concept of
path size factor proposed ([Ben-Akiva and Bierlaire, 1990is adopted herein to deal
with overlap in alternative routekie to the sharing of arcs.

In the next section, two types of utility functions that incorporate these
elements (group size, travel distance, travel time and overlap) are proposed for
separable and clustered groups. The pedestrian route choice probietsng

separable and clustered groups are formulated as an SUE assignment problem and n
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player noncooperative game seeking a psteategy Nash equilibrium, respectively.

Solution methodologies for obtaining flows for each problem class are also grovide
2.4 Two Proposed Approaches to Determine Pedestrian Routes

In this section, the pedestrian assignment problems involving separable and clustered
groups are formulated as an SUE assignment problem-ata/&r norcooperative
game seeking a pusgrategy Nish equilibrium, respectively. Solution methodologies

for obtaining flows for each problem class are also provided.
2.4.1 Preliminaries
The physical layout is represented by a netw@rk (N, A, where N is a set of

nodesrepresenting locations at which decisions can be taken,Aarsda set of
directedarcs connecting the node3he arcs represent passageways along which

movement is possibléetO, DI Nbe the set of origins ardestinations, respectiye
Each arcal A has an associated length, capacityc,, and a nonnegative travel
timet, (X,, C;), Which is a continuously differentiable arsdrictly increasingunction

of arcflow x, andcapacityc, . The BPRbased forn{Branston, 1976is adopted:
t =0 [ kyl2)? " 21
X C) =G 1D k2T a” A (2-1)
a

wherek, is a coefficient that scales the rate at which congestion increases with time,

andtg denotes fredlow travel time. For fredlow speedyv,, tg can be calcalted as
in equation (22).

t0=l,/v, 'a IA (2-2)
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For specific OD pair wi W, whereW is the set of €D pairs, there is a set of

groups of pedestrian@w(g:1,...,|G\N|) and set of routes connectingID pair w,
Ru(r=1....]Ry|). Let SJ denote the sizef groupgi G, between paiw.

Further, &t f, T;,and L], denote the flowtravel time and distance on route

ri R, for pairw, respectively. According to the rougec incidence relationships,

route travel time and distance on routeonnecting paiw can be written as in

equations Z-3) and R-4), respectively.

Ly=al. &7 r' Ryw Wi (2-3)
a A
Tw(fi) = & ta(xx) &3 " Ri,w W, (2-4)
a A

whered|,? equals 1 if route passes through as; and 0 otherwise.

2.4.2 PedestrianAssignmentwith Separable Groups

An SUEbased assignment formulation in which separable groups can be modeled is
given in program (P1). The skeleton of the formulation is f(&isk, 1980. This
formulation is expanded to address group movements. Thus, group assignment and

group flow conservation are added as in (P1).

(P1) min Z6)= 4 f nwdwe 4 At 1or, (2-5)
X d A wiw r iR
st. g f'=s "g IG, w W (2-6)
MR,
xI=8 a2 'a IAg G, w W (2-7)
MR,
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=a ax "a IA (2-8)
w W gi G,

fg'20 g G, 5 Ryw W (2-9)
whereu, (Qis the disutility on arc afJ" is the flow of groupg on router between

O-D pairw, and x{ is the flow of group on arca. Objective function 2-5) seeks to

minimize the perceived disutility subjectflow conservation constraint2-6)-(2-8).
Constraints Z-9) restrict path flows to be namegative. Note that the objective
function does not have any intuitive economic or bairal interpretation. It is only a
mathematical structure that is used to solve the SUE problem.

Due to its closed form, a loditased route choice model has been widely
employed in computing SUE flow# a logitbsed route choice model, flows along
the routes are proportionally assigned to routes according to their corresponding
utility. The perceived disutility of route r to each individual in grapipetween GD

pairw is given in equation2t10),
Usg'=¢%u@’ & g G, Raw W (2-10)
whereud" denotes the measured disutility of routeo each individual in groug

between @D pairw, g9is positive scaling parameter indicating disutility perception
variations between perceived disutility and reidutility (a higher g% means a
smaller variation), an@&y " is a random term presenting the perception errors which

are assumed to be independent Gumbel distributed with mean zero.
At SUE equilibrium, the probability of groupchoosing route between pair

w can be calculated as in equati@nl(l):
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9.1 — expc g% @)
a exptq® 63%)
KR,

"9 IG,,r R,,w W (2-11)

From conservation of flow constraints-§2, flow associated with groug and
assigned to route between @D pairw, fJ'", can be deduced through equation (2
12).
fo'=sy & g d.r RLw w (2-12)
Arc flows can be deduced from route flows through equati@13 and 2-8).
From subseion 2.3, he measured disutility)'", is further expressed as in
equation (213).
uy'=a’l, +8T #Yn(PS) g G.r Rlw W (213
wherea¥, #, %are parameters of walking distance, walking time and path size

factor of groupg, respectivelyandrepresergthe preference (sensitivitgf groupg

to these attributePS is the path size factor of routgproposed byBen-Akiva and

Bierlaire, 1999:
PS = a a _— (2-14)
al

wherea is index of an element arc of the route, agis the number of alternative

routes that pass through ac
Substituting equations {2 and (24) into equation (23),

"giG,r IR,w W, leads to equation {25):
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ug' =4 [a%, +Bt(x)] @ Yo(PS)
2 A ) (2-15)
=a ul ) d? FInPs)

al A
whereud (x,) denotes the disutility of groug on arca, which is a function of arc

flow, x,. Then the arc disutility, (x,) in Equation (25) can be expressed by:

U (%)=& auw0d) "a 1A (2-16)

w W gi G,
2.4.3 PedestrianAssignmentwith Clustered Groups

For clustered groupshe disutility of each route connecting @D pairw to groupg

can be expressed as in equatioil T2
USSR EKOP L, AT 9" Ghr Riw W (217)
where u$" (Prepresents the disutility of routefor groupg with O-D pairw. It is a

function of group size§?, route distancel.,,, and walking timeT,, . / 9 and cYare
parameters indicating grogfs sensitivity to walking distance and time, respectively.

Let decision variablec'" equal 1 if groupy chooses route for O-D pair w,

and 0 otherwise. Flow along routdfor O-D pairw, f, , is the sum ofhe sizes of

groups that choose the route:

fu=a St &' " R,w W {28)

g G,
From Equations2-3) and @-4), for eachgi G,,r I R,, w W, equation @-17)

can berewritten asequation (219).

20



WS =G OPA LI Ay A
a A

al A
=4 VO, +0t % )1 P (2-19)
a A
A Uy P
ar

Whereuv%'a(xa) measures thdisutility incurred by groupg usingarca.

The assignmertf clustered groups to routean be formulated as program
(P2). Program (P2keeks(objective (220)) the set of path flows over all-D pairs
with the minimum total disutility (weighted by group size). Derived fregqmations
(2-8) and @-18), constraints2-21) relatearcflows to path flows, thus, ensuring flow
conversation. Constraint2-2) force each group to choose one route. Binary

restrictions are guaranteed through constrafi&3).

(PZ) min a a a a?/qagla %ta(xa)] @ (2'20)
WWriR giG alA
st.  %=84 a a4 § a's (2-21)
wWriR, giG,
a ' =1 9 Gy w W (2-22)
MR,
x2'=0o0r1 9 G, r R,w W (2-23)

Program(P2) can be viewed as anplayer, purestrategy, nofcooperative
game, whereah group is a player, and the possible routes between eBchaD
form the strategy spacdt must be shown that at least one pst@ategy Nash
equilibrium for the game modeled as JRXists and that the aptal solution to P2

is a purestrategy Nash equilibrium, i.e. the solution R is the equilibrium with
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smallest total disutility. Proof of this is as follows. The proof builds directly on a
related proof given ifRosenthal, 1973#&).
Theorem:There exists at least one solution R&)(that achieves a pusrategy Nash

equilibrium. Additionally, such an equilibrium is achieveg the optimal solution to

(P2.

Proof: Sincex=0 is a feasible solution td’@), a feasible solution tdP@) always exist.

Let {x2'} " be the optimal solution toP@), and{x} be the associated link flows.

Assume tha{xv%’r}* does not result in an equilibrium. Then, it must be possible for
some grouppi G, traveling betweenv along a route; i R, to reduce its disutilit

by switching routes to some other rowé R,. By Equation 2-19),

A uMaxarshic ) < A dflaxaca W e-24)
(al 1) Aa i) (a i) (£r)

Let {x?'} idenote the resulting solution t&2) given that grougp switches

from router; to router-.

&I +1, ifg =p,r B
xﬁ‘iz? 7 4ifg pr s (2-25)
x3™  otherwise

—) —)

Link flow {x} i is updated accordingly:

éx, +Sh,if ai panda g
X =Txa -SP,if a ifanda § (2-26)
)

*

i Xa otherwise

Let =R, -  andry =R, - . Given updated link flows, it can be shown that

22



a a a @& (axwcatya

WWrIR, glG, al

=4 a A  ud(aXaCa Wa)
WWglGa (n &) Of )

ta a4 | a uwlilaxa Sha w)
WWglG,(als) @ §)

+ a a. i a R Uv%la(lalx’; 'SVF\J/'Ca 'ya)
WWglG,(alp) @ 3)

=8 &4 A48 ud%.xaCatya) * a ubP(lax, Sheca W

wWriR,dl G,al A (alp) @@ P
T a . Uve’ada’X;’Ca #,)
(al n) Aa Irp)
< a- a- a- ,é%a(la’x;ca Wa) = ) a ) a ] (ST, 1)
WWrIR, glG, a lA wWr R g @

This contradicts the assumption tiaf '} " is the optimal solution to (L). ||

2.5 Solution Schemes t®etermine Chosen Routes

The solutionapproacheso programs (P1) and (P2) both begin with the generation of
an efficient route sgSheffi, 1989 for each GD pair. It is presumed, as (Bovy and
Stern, 199) that when faced with a route decision, a traveler selects his/her route
from a limited choice set. Sinceomplete enumeration of all possible routes is
impractical and given that most people do not consider all alternatives in making their
decisions, only the efficient route set is considered.

2.5.1Efficient Route Set Definition

Based orn4], an efficient route iglefined as a route passing only through efficient
arcs, and an efficient arc is defined as follows. For each arc a connecting i to j, if
r(i)<r(j), for r(k) the shortest distance from the origin to node k, and s(i)>s(j), for s(k)

the shortest distance frok to the destination, then arc a is efficient (eff(i,j)=1);

23



otherwise, it is inefficient (eff(i,j)=0). The efficient routes, , between eadh ir

w are obtained with a depfhist-search (DFS) on the network of efficient arcs (i.e.

the subgraph , wdre is the set of efficient arcs). Routes with cycles are not
generated, because by definition any efficient arc transports travelers to locations that
are further from the origin and closer to the destination.

2.5.2Solution Approach for Program (P1)

The Methad of SuccessiveAverages (MSA) (Sheffi, 1983 has been successfully
used in solving various stochastic user equilibrium problems. Inctiepter a
solution scheme that combines the MSA with group movements is proposed for

solving the SUE assignment. The main procedure of MSA is given below.

Step O: Initialization. For eachgi G,,wIi W, use equations ¢21) and (212) to
perform a logit assignment based on the initial disutililgl,[ol (0)," al A. The result
of this assignment is a set of route flok$'" (O I R,. Generate initial arc flows
XE]," a | A through equations ¢2) and (28) and set iteration count1.

Step 1:Update.According to current arc flowéo‘”] " al A, update the arc disutility,
Wit ai AgiG, w W

Step 2:Find direction. For eactgi G, wi W, perform a logit assignment based on

currentdisutilityu$ [M(&1)," ai A, andfind auxiliaryarcflow d{"," a A

Step 3:Move.Compute new arc flow aé”ﬂ] = )Jar] €1/ n)(cﬁa'j L(ah ), a A
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Step 4: Convergence check Compute gag" = § ‘d;] S ‘/ 350 . f
a A al A

gad”] ¢ k , stop otherwise, n=n+1 = 0.001, and go to step 1.

2.5.3Solution Approach for Program (P2)
To solve program (P2}he Best Response DynamiBased Tabu Search procedure
proposed by(Sureka and Wurman, 20p5or obtaining a pure strategy Nash

equilibrium in normal form games in the context Combinatorial Auctions is adapted.
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Step 1- initialize current solution, X, , empty
tabu list, T, and set Iter=0

VJ Iter:=lter+1

choose and remove a group, g, from Gw }4

Step 2- compare current route choice for group g, Cg , with best
route choice given other groupsdselections, By(x,)

Next group

A

No
Y

Step 4- set Bg(xp) to Cg and get new
No sol UtiOaneW D

Step 5-
is Xnew tabu ?

Step 6- choose next best

Yes» route and set as Bg(xp)

No
v

Step 7- add x; into tabu list and set
X0 = MNew

ep 8- al groups
considered ?

Yes

ep 9- termination
criterion met ?

Yes
v

Step 10- output solution

End

Figure 2-1 Flowchart of TS Algorithm for Program (P2)
In solving problem P2, the best response (choice) is defined as the route

chosen by a group that minimizes total disutility. This differs from the definition of
the best response in Sureka and Wur manbés a
explores thes!| uti on space to find the best resp

payoff. This difference is important, because the use of the total disutility reduces the
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search space, eliminating the need for an exhaustive search. A flowchart of the
proposed methodsi provided inFigure 2-1, followed by details of important
procedural steps.

1) Initialization

Randomly generate starting (current) solutigna G,,® R,, *Wmatrix with elements

of 0 and 1. According to constrair?-2) in problem P2), each row inx,includes

only one 1. All other entries are 0. For example, one possible solution to a specific O

D pair whee 4 groups choose 3 routes can be expressed as

representing the selection of route 1 by groups 1 and 2 and route 3 by groups 3 and 4.
No group chooses route 2.

Initialize tabu list,T, as empty. The tabu list is a list of magscrepresenting
visited solutions. The length of the tabu liBt,s a predefined fixed numberT=10).
For each iteration (indicated Bter), all groups explore route options, choosing the
best route given the route choices of other groups.
2) Finding the best route
Selection of a best route is made once for each group as follows. Randomly choose

group, g. Let the route chosen by grogpin the current solution K&;. The best

choice of group, By (%) » under the @rrent solutionx, can be obtained through
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exploration of the route choice space of grgupor group 1 in the above example, to

find B (xp) , the objective function is evaluated for the following 3 solutions.

0
0

=

0 0

0

BB RO
B = O O
S
I
BB RO B

If x3is the solution with the minimum total disutility, (x,) = 3. After exploration

of the route choice space, if groggannot find a better solution.€iCg = Bg(x;) ),
move to the next group. If it is able to find a better solution@y€. Bg(xy) ), replace

Cy by Bg(xp) forming new solutionnew.

3) Checking tabu

Check if x,¢,,IS tabu. If yes, choose the route with the next lowest total disutility. If

not, add the current solution to the tabu list and set the current solution to the new
solution.
4) Termination criteria
If all groups are able to obtain their first choice routes, i.e.
Cg = Bg(xp), "9 iG,, w W then terminate; otherwise, begin the next iteration.

While even a locally optimal solution to problefZ is not guaranteed, the
resulting solution will be an equilibrium solution. That m® group can unilaterally
switch routes to reduce the total disutility of travel. Numerical experience indicates

that just a few iterations are required to achieve convergence.
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2.6 Computational Experiments

2.6.1 Experimental Design
The efficiencies and differees between flows generated by modeling and solution
methodologies designed for separable and clustered group behaviors are investigated

on an illustrative example network representation of a facility layout.

12
. Destination

g'

Destination

Figure 2-2 Network Configuration
The network consists df4 nodes, 22 ar@nd 4 QD pairs as portrayed iRigure2-2.

The capacity of each arciigdicated in the network. With the exception of arcs 4, 12
and 14, all arcs are assumed to have a length of 100 meters. Arcs 4, 12 and 14 are 200

meters in length. The freflow speed is set be 1.42m{Bhalmann and Musse, 2007

and coefficienk, = 0.008 for travel the calculations.

To explore the effects of separable ahgstered groups on flow distributions
overthenetwork, fourgrouping scenariolésted inTable2-1 are consideredscenario

1 is an extreme case stenario2, where all pedestriarbelong to the same group.
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Scenario Ian be viewed as an extreme casscehariod, where each group consis

of only one individual.

Table 2-1. Experiment Scenarios

scen|Al | pedestrians are treated a
Separ 1 al | i ndividuals have the same
Al pedestrian can be divided
groulscen o )
5 of one or more individual s; p
heterogeneous, but homogeneou
scenlEach pedestrianand ®whaetweHbaash
3 preference function.
Clust Al pedestrian can be divided
grou|lscenfof one or more individuals; p
4 heterogeneous, but homogeneou
within a group will stay toge

Table2-2 gives thedemand information for each-D pair. For scenarios 2 and 4, it is
assumed that for each- pair there are @ groups each with group size randomly

chosen on the intervél, 40]. The preference parameters for each group in scenario 2

were generated incrementally, whilé in scenarios 3 and 4 is randomly generated

between 0 and 1 and? =1 - P. Scenarios 1 and 3 have the same total demand
(indicated in the @ column inTable2-2). In scenario 1a% =0.053 69 =0.535,

99 =3.475,and ¢° =1.050, computed from the average values of similar parameters

in scenario 2.
Table 2-2 Demand for Each OD Pair
. scen . scena
scenar|o4 scenar|04
oD |g |5 oD |g |
U pe | d® & | & U pe | F | &

1200.0/0.03.d0.00.]0. 1] 7]0.0/0.03.d0.d0.] 0.«
223 0.0/0.13.d0.d0.]0. 2 |27 0.0/0.13.d0.d0.]0."
1 3129 0.0/0.13.10.do.1o.|] ! [3[16/0.0/0.13.10.q0.] 0.
if 4 23 0.0/0.43.4d0.d0.]0. ifl’ 4119 0.0/0.43.170.d0.] 0.
519 0.0/0.43.40.d0.]0. 5122 0.0/0.43.40.d0.] 0."
(40 6[2850.0[0.d3.40.go.[0.| z[6[270.0[0.83.40.g0.[0.
7 [210.0/0.33.40.d0.]0. 7 28 0.0/0.33.30.d0.]0.-
8 40 0.0/0.43.90.d0.]0. 830 0.0/0.43.390.d0.]0. ¢
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Logit-based SUE assignment is employed @taining solutions under

scenarios 1 and 2, while the Best Response DynaBaised Tabu Search procedure

is used to address theptlayer norcooperative games of scenarios 3 and 4. Results

are discussed in the next section.

2.6.2Resultsand Analysis

Table2-3 gives the efficient routes for eachDpair.

Table 2-3 Efficient Routes Set for Each GD Pair

Rout e
1Y2Y5Y6Y10VY1

1Y2Y5Y9Y10V1

1Y2Y5Y9Y13V1
1Y2Y6Y10VY14

1Y4Y5Y6Y10V1

nd
1
2
3

4
5

O-D

1-1 4

Rout e
1Y2Y5Y6Y10Y
1Y2Y5Y6VY11

1Y2Y5Y9Y10Y
1yY2vY6Y10VY11

1Y2vY6Y11

n d
1
2
3

4
5

O-D

1-11
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6 |1Y4V5Y6V10V 6 |1Y4V5Y0V10V1
7 [1Y4V5Y6V11 7 [1Y4V5Y0V13V1
8 |1Y4V5Y90V10V 8 [1Y4V8VYOV1i0V1
9 [1Y4V8vYoviov 9 [1Y4V8vVoviavi
10 |[1V4Y8Y12Y13V

T |3V49Y5V6Y10V T |3V4Y5Y6V10V1
2 |3V4V59Y6V11 2 |3VY4V5Y9V10V1
3 |3Y4V5Y9V10VY 3 |3Y4V5Y9V13V1
4 |3V4avV8voviovV 4 |3Vavsvoviovi
5 |3V7Y8YO0V10VY 5 |3VY4V8VYOV13vi
311 3l A6 T3vavevizviay
7 |3V7V8vVovViovi

8 |3V7V8VOV1i3vi

9 |3V7vVevi2viay

10 [3V7Y12V13VY14

Table 2-4 shows the arc flows by scenario. Similar arc flow resultsskparable
single (scenario 1) and separable variabiee groups (scenario.Zfhis is because
scenario 1 relies on parametésken from the average of parameter values assigned
in scenario 2- each pedestrian in scenario 1 will have identical parameter values.
Note that the total travel time under the lageenario (2) islightly lower than that
underthe former scenario (1)This is because pedestrians in scenario 1 assign the
same utility to every path. Thus, the lowest utility paths will be highly sought after
and, therefore, highly congested. The greater variability in parameter settings of
scenario 2 cause the pedestriemslisperse over a larger number of routes, reducing
total travel time. A greater difference between arc flows exists between-single
pedestrian groups (scenario 3) and clustered varg@bdegroups (scenario 4). The
total travel time under scenario 3 nsuch lower than that under scenario 4. The
reason is that individuals in scenario 3 have greater flexibility compared with those in

scenario 4.
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Table 2-4 Flows for Scenarios

scenar i ( scenar.i scenar.i scenari
Ar | Xg |Ar | Xg |Ar | Xg |Ar | Xg |Ar | Xg |Ar | Xg |Ar | Xg | Ar | X,
1 (341216 1 |34|12/16| 1 (341216 1 |[35| 12|18
2 40| 13/19] 2 (40| 13|19 2 |41|13/19| 2 |39] 13|17
3121|114/ 81 3 |21| 14|, 81| 3 (21|14, 84| 3 |24| 14| 84
4 112|15/38| 4 |12|15/38| 4 (12| 15/38| 4 |11|15/34
5 |137|16/14| 5 |37|16|/14] 5 (36| 16|15 5 |38 16/15
6 |27 17/50| 6 (27| 17,50 6 |28 1749 6 |[26| 17|49
7 |44 18/13| 7 (441813 7 |43|18/13| 7 |45] 18|12
8 |33]19/58| 8 |33(19/58| 8 [34|19|58| 8 |32| 19|56
9 |41 20|28 9 (41| 20{28| 9 |41 20({28| 9 |43 20|29
10/25|21{22]|10{25| 21|22 10{24| 21|23|10/26| 2123
11|37 22{36| 1137|2236 11{36|22|37|11/36| 2235
TT 1,268, 5 1,268, 0 1,271, 2 1,275, 9¢
*TT=a % Ax)
a A

Figure 2-3 (a)-(d) shows the distributionof flows by groupover route alternative
between each @ pair for the scenario involvingseparable variablsize groups
(scenario 2)Consider for example Fi@. (d). 10 efficient routes exist f@-D pair 3-

14. Of individuals in group 20, approximately 70% chose Route 10, while only 10%
of group 1 chose a common route. For group 1, chosgtes are evenly distributed
over all efficientoptions. This differs from group 20 in whiche majority of
individuals close the same route and other routes are chosen by very few individuals.
This can be attributed to differences in group preference function parameters, i.e.
individual sensitivity ® route attributesGr oup 16s par ameter s
Thus, route choice is almost random, since individuals are not very sensitive to route
attributes. Parameter settings for group 20 are more significant, which is also
reflected in the route deassis. Also contributing to these differences in route choice
between groups 1 and 20 is that the value &dr group 1, indicating the level of
discrepancy between actual and perceived utility, is smaller than for group 20. The

smaller the value ofy, the larger the difference between perceived and measured
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disutilities. Similar patterns in flow distribution over routes can be observed for other

O-D pairs.

Percentage Percentage
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%  100%
: s B
xxxxx
: eemoveeus e B
]
5 XXRX 5
L i !
wu.]:.u_uﬂ
7 e St 7
! TSR
a e 20X X0 ; o
u ooy £
& Ty 6
13 xx 13
I )
15 e 15
< '
17 ™ . 17
19 ~n ‘ 19
3
# Route 1% Route 211 Route 3% Route 4% Route 511 Route 6 = Route 7 Route 8w Route 9 = Route 1x Route 211 Route 3 Route 4% Route 51 Route 6= Route 7> Route 8% Route 9 Route 10
(a) -OD 1 (b) -OD 1
Percentage Percentage
0%  10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0% 10% % 40%  50%  60%  70%  80%  90%  100%
1 1 - AN |
E’rrrr-"nn)'.)'.)'.)'
3 3 Ixxxx - /
5 5 j‘(vvv E Ju Juzn».r.r]‘
AR, - |
; 7 Ko " |
AR R R 54545
a9 o 9 - .
3 811 e .
su 8 [
13 13 7
s
15 15 pemsmsonn e }
17 17 !
ot A8 P 55555 A 55 A 5 )
19 19 armnnnnn iy
v d
®Route 1 % Route 2 1 Route 3 = Route 4 #Route 5 = Route 1% Route 211 Route 3% Route 4z Route 51 Route 6= Route 7x Route 82 Route 9% Route 10
(c) -OD 3 (d) -oB 3

Figure 2-3 Distribution of Groups over Routes by GD Pair for Scenario 2

The distribution of flows for clustered variakdeze groups (scenario 4) is
depicted inFigure 2-4. Although the same group size is used in scenario 4 as in
scenario 2, each group gure2-4 selects only one route drnhere is no group that

can decrease its total incurred disutility by unilaterally switching routes.

Group Size
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Figure 2-4 Distribution of Groups over Routesby O-D Pair for Scenario 4

2.7 Conclusions andExtensions

In this chapterpedestrian route choice is modeled using a traffic assignment type of
framework. Methods for estimating the distribution of groups and individuals over
Aef ficient o r otbdgraupss, séparable and @lustergdp &es proposed.
These methods employ formulations using lgised SUE assignment and a pure
strategy Nash equilibrium game for separable and clustered groups, respectively.
Solution methodologies for solving problems soniulated involves an MSA with
groups procedure (for solution to the SUE assignment of separable groups) and a
metaheuristic scheme based on best response dynamic and tabu search (to find the
purestrategy Nash equilibrium of the game formulated for ehest groups). The
conceptual framework, and specific models and corresponding solution schemes were
tested on an illustrative example. The results from the experiments show the
effectiveness and efficiency of the proposed approaches.

There are a number directions in which the proposed models and solution
approaches might be extended. For example, in dhépter the parameters are

assumed to be homogeneous within a group. In reality, however, the parameters
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associated with each group might follow a wlgttion over individuals. This
heterogeneity within each group can be further explored with the proposed models
and solution schemes. Furthermore, in thiapter pedestrians make decisions based

on routebased performance and once a route is seledtasl,assumed that each
pedestrian will follow the route in its entirety. The developed model and solution
methodology might be extended to address a dynamic pedestrian assignment problem,
where physical changes in the network and user goals affect theabgtiand choice

of routes.
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Chapter3Cr owd Management in Large

3.1 Introduction

Effective management of pedestrian movement during large public gatherings can
provide crucial support toward meeting pedestrian access and safetyAgosiated

in Chapter 2large public gatherings are held in a variety of venues. Poor execution
of crowd management within these venues can frustrate the peoplerowd by
thwarting their goals. At the extreme, poor crowd management has caused many
instances of crowd crush, injuries and fatalities involving high volumes of people in a
wide array of circumstances, ranging from rock concerts and sales eventesatstor
the offering of free food and clothing. A few specific examples where better crowd
management may have saved lives include:1979 Who concert in Ohio in which

11 people perished, the 1989 U.K. Hillsborough Stadium sporting event where 96
deaths mg have been prevented, 362 deaths resulting in the 2006 Hajj in Saudi
Arabia, and the 2010 incident in Northern India where 63 people perished while
seeking free food and clothing at a tempteaddition, in some circumstances, such

as in the event of fi, explosion, occurrence of natural or hunraduced disaster
event, or crowd violence, wetlesigned systems for moving large crowds quickly are
needed to support quick egress from dangerous situations.

The majority of works related to crowd managemerppse methods for
modeling crowd movements during emergency evacuation. Such models can be used
to quantify the performance, in terms of measures like evacuation time, of a given
facility's architectural layout during such an event. These models cdmohdly

categorized as: fluid dynamitmsed approaché€olomio and Rosini, 2005Hughes,
37
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2002, optimization and network floskased method&Choi et al., 1988Fahy, 1994,

and simulatiorbased techniques, which include rblesed method®lue and Adler,

200% Helbing, 199%, agentbased modelindShi et al., 200p and virtual reality
(Shih & al., 2000. Additional information can be found ifGwynne et al., 1999
Kuligowski and Peacock, 2002heng et al., 20090ther works, including for
example (Hoogendoorn and Bovy, 200¢bfocus on simulation of pedestrian
movement under neemergency situations. Whether created to support agalysi
emergency or neemergency situations, techniques described in these works are
designed for use in evaluation of, for example, architectural designs and other
elements of the physical layout. They do not provide strategies for managing the
crowd.

Tecmiques have been proposed to support crowd management. In the context
of pedestrian movement, these techniques determine optimal routes to which
pedestrians should be guided within an existing physical environment. Route
guidance is created through netwantimizationbased methods. Simplistic, static
methodologies based on minimum cost network flows have been developed, e.g.
(Yamada, 1996 More sophisticated techniques that capture problem dynamics, time
dependencies and other problem characteristige baen proposed specifically for
building evacuatior{Cai et al., 2001lMamada et aJ 2003. A variety of objectives
have been considered, including for example maximizing throughput by a given end
time (Miller-Hooks and Sorrel, 200&nd maximizing theminimum probability of
arrival at an exit for any evacu¢®pasanon and Millerooks, 2008 Other works

hawe considered the role of re@ne information in updating routing instructions
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(Miller-Hooks and Krauthammer, 200TChen and MilleitHooks (2008 developed a
dynamic network flonbased model that forces instructions to reflect how shared
information will be used. A review of optimization teatpmes proposed for use in
building and regional evacuation is provided (lHamacher and Tjandra, 2002
Relevant networloptimizationbased techniques developed for regional evacuation
are described ifKimms and Bretschneider, 201Unlike the simulation and fluid
dynamicsbased methods that are used in modeling pedestrianemant,
optimizationbased techniques provide strategies for pushing flow through the
network to achieve system optimal performance.
Related techniques have been proposed for use in guiding vehicular traffic in
both emergency and na@mergency circumstaaes. See, for exampléesting et al.,
2008 Liu et al., 200y. Dynamic traffic management approaches, such as ramp
metering, adaptive speed limits, and provision of-tiea information, are widely
used to support efficient vehicular traffic movement during peak traffic flow. These
strategies are also used in emergency evacuation scenarios. Although tools developed
for vehicular evacuation have relevance, there are significant distinctions in behavior
and degrees of freedom between vehicular and pedestrian modes that make direct
application of traffic tools insufficient for use in the pedestrian environment.
Approaches discussed thus far focus on influencing the movement of
pedestrians through a givehysical layout. An alternative might be teconfigure
the physicalayoutto facilitate pedestrian movement in pursuit of a particular goal.
Suchreconfigurationcan both limit pedestrian choice and enhance or restrict capacity

along routes to facilitate efficient movement and prevent crowd crush or other unsafe
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situations. Changes to the physical layout might be achieved through opening or
closing gates/doorwaysplacing or removing barriers or changing illumination
intensity to coerce pedestrians along certain paths. No prior work has suggested such
an approach in the context of pedestrian movement; howeeennfiguring
methodologies, such as the use of colivaf have been proposed for evacuation by
automobile. Se@Abdelgawad and Abdulhai, 20Dfbr a review.

In this chapter a network optimizatiofbased methodology that seeks the
optimal reconfiguration of a physicérchitectural)ayoutto support efficient crowd
movement during large events is proposed. This methodology takes into
consideration pedestrian response to route offerings as controlled through the
architectural design. Further, it incorporates findings from the social ssiemze
psychological studies ogrouping behavioin crowds(Aveni, 1977 Qiu and Hu,

2010. That is, the methodology recognizes that families, friends and emergent groups

will act together, and eurol strategies that separate such groups will be ineffective.

This approach seeks a system opti mal sol u
however, it explicitly recognizes the utility maximizing behavior of individuals in the

crowd as is consistent thi user equilibrium. In contrast to prior fluid dynamizssed

techniques that model aggregate pedestrian flows, often requiring extraordinary
computational effort to solve embedded differential equations, the proposed approach
captures individual movementand goals with significaly reduced computational

time. Alternative simulatiorbased methodologies offer an ability to replicate

complex behaviors, but do not provide guidance; rather, they support performance

assessment given chosen guidance mechanishes proposed technique builds on
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concepts of network optimization, but accounts for behavioral norms often only
included in computationally expensive simulatizaised approaches.

A bi-level integer program ipresented that, at the upgevel, seeks a
reconfiguration of the physical design that will minimize total travel time incurred by
system users (e.g. evacuees) given route decisions that are taken by individuals in
response to physical offerings in terms of the infrastrucatirhe lowetlevel. The
lower-level formulation seeks a pustrategy Nash equilibrium that respects gingp
behavior.The general overview and mathematical program is presented in detail in
section 2 In Section3, the btlevel program is reformulated as a nonlinear integer
singlelevel program for which determination of a globally optimal solution is
formidable. Thus, a Mulistart Tabu Search with Sequential Quadratic Programming
(MTS-SQP) procedure is proposed for its solution. This procedure is desierithesl
section.Numerical experiments were conducted on a hypothetical example to assess
this technique. Results of these experiments are given in Sdcti@onclusions and
directions for future work are discussed in Secton
3.2 Problem Overview
The general structure ahe proposed Hievel program(Stackelberg Leadéfollower
program)for the problem of reconfiguring physical layout to support efficient crowd
movement, referred to herein as tReconfigurefor Efficient Crowd Movement

(RECM) Problem, is depicted Figure3-1.
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Figure 3-1 Overview of the RECM Problem

The uppetlevel describes a network design problem whose decision variables
represent actions in terms of system reconfiguration that the leader (i.e. crowd
manager) might take to optimize network performance (e.g. minimizing total travel
time or maximizinghroughput). The lowelevel is a purestrategy Nash equilibrium
pedestrian assignment problem in which the followers (i.e. pedestrians in the crowd)
are presumed to follow paths that minimize disutility in terms of related path
characteristics. Solutioat the uppetevel provides optimal measures for changing
configuration of the network through, for example, opening or closing
doorways/gates, changing the capacity of passageways through use of barriers,
closing or opening new passageways, changing itlation to accentuate a route,
and removing interactions between persons in the crowd through implementation of
lanes from the uppdevel. Given the network configuration determined in the upper
level, solution at the lowdevel predicts the flow alonghé passageways assuming

that pedestrians will choose their paths to minimize disutility. Predictions of network
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flows from the loweilevel provide input to the uppéevel problem, creating
interaction between levels.

This btlevel approach permits the wheling of objectives of both the crowd
manager and pedestrians in the crowd. However, thevei structure gives priority
to the uppetevel objective, thus, providing suitable designs frahe crowd
manager's perspectiwghile simultaneously recognizinthpat the individuals in the
crowd will exploit the configuration so as to achieve their own selfish objectives
(goals). Prioritization is given to the objective of the crowd manager to encourage
system efficient designs. The route choice behaviors tHEwfathe goals are
described mathematically in the behavior model component.

Details of the bievel formulation of the RECM Problem are provided next.
3.3 The Upper-Level Problem
Consider a network representation of the physical environn®s{N, A , where N
is the set of nodesepresenting locations at which decisions must be taken in regard
to movement andAis the set of directed arcs connecting the nadgsesenting

passageways along which mawent is possibleLetO,Di N be the set of origins
and destinations, respectivelfach arcal A has an associated length, initial

capacityc, , arc flow,x,, potentialchange in capacity,, and nonnegative travel
time,t, (X5, C,+ Ya) - As discussed ifSchomborg et al., 20)11n the context of

macroscopic modeling of pedestrian and vehicular traffic, a similar structure for the

velocity-density fundamental diagram for each can be utilized; only the parameter
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values will differ. For a fixed value of, +Y,, a BPRbasedtravel time function

(Branston, 1976with assumed parameters is adopted:

ty (X Cat Vo) =2 [10) k2 )e] a "A (3-1)
Cat Ya
wherekj is a coefficient scaling the rate with which congestiwreases travel time,
e is a parameterk, and e would require calibration using data from actual

observations, antf denotes fredlow travel time along linka. For freeflow walking

speed,v, , t0 can be calculated as:

t0=1,/v, a IA. (3-2)

This approach supports the use of alternative equations that capture the

relationship between travéine and density.

Let X=X, %...%.. )M) be the wvector of link flows and
Y=Y Yo Vg )m) be the change in capacity vector. Capacity expansion for a

link is limited by physical barriers. For each liak, A, cyP denotes the uppdimit

of capacity on linka. A nonnegative per unit cody,, is imposedfor any change

made to capacity of link. This unit cost may reflect, for example, resources required
to open or @se the link, or may be the monetary cost of providing additional
capacity. A budge3, is imposed to limit such effort or monetary spending. The

upperlevel problem is formulated with this notation as follows.

L) min Zxy)=a % @0 W) (3-3)
a A
s.t. abdy (3-4)
aA
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a ¥a=0 (3-5)
a A

O¢c, #, ¢P, a' A (3-6)
Objective function(3-3) seeks an optimal vectgr that minimizes the total

travel time required to ship a givdlow x over the networky obtained from the
upperlevel problem is employed in setting at the lowetlevel. Constraint(3-4)

ensures that incurred costs required for the chosen changes in arc capacities do not
exceed the budget. The absolute valug/.pis used, becausg, can take positive or

negative values. The budgB,is set sufficiently large to accommodate total changes.
The total available spads forcedto remain fixedthroughConstraint(3-5). When a
capacity increase is warranted in one section of the layout, a decrease in capacity
elsewhere is required, since space is fixed. This constraint can be omitted in
circumstances in which space assentiallyunlimited. Constraintg3-6) guarantee

that link capacities remain within their lower and upper limits.
3.4 The Lower-Level Problem

For agiven uppeilevel design, expressed in terms of design vegttie lowerlevel

is a traffic (pedestrian) assignment problerekagg the vector of link flowsx that
minimizes disutility for all pedestrians. The disutility of each route to each user
depends on user preference characteristics and the performance attributes on each
route. The performance on each route further depends on the number of pedestrians
who choose each passageway. That is, when many pedestrians use a particular
passageway, travel time along the passageway will increase, rendering it less
desirable. Additionally, many pedestrians travel in groups and, thus, will seek the

same route for thegroups. The pedestrian assignment problem is modeled as-a pure
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strategy Nash equilibrium assignment problem. The use of thesprategy approach
permits the modeling of this critical grouping behavior.
3.4.1Route Choice and Group Behavior
The process of saiéng a route involves choosing an option from a finite set of
alternative routes with the desired origin and destination. The selection of a route by a
pedestrian is sometimes referred to as wayfinding (Bavy and Stern, 1990 A
number of works consider route choice behavior (or wayfinding) in the context of
crowds (Bierlaire and Robin, 2009.avd&, 1998). A small portion of these works
(Antonini et al., 2006 Hoogendoorn and Bovy, 2004bpply utility maximization
theory forthe purpose of forecasting route decisions. This approach is widely used to
model route choice for vehicular traffic. A review is provided Bovy and Stern,
1990. The basic assumption underlying thes@ chc e model s i s that
preference for each potential alternative can be described by a mathematical function
of the route's utility (or disutility). The utility of a path in a pedestrian network is
derived from attributes of distance, time, reqdiphysical effort, safety, and physical
appeal, among others. The preference function on those attributes is indivualized. The
preference function is formulated to capture the relative importance of each attribute
for the user. Pedestrian sensitivitiesstich attributes are discusseqaamen et al.,
2005 Seneviratne and Morrall, 1985 hese works suggest thaalking distance and
time are the most important route attributes in route choice.

Some attributes, such as travel time, depend on the number of users. In
general, the greater the number of users choosing a route, the greater its travel time.

Thus, routechoice models are often embedded within a traffic assignment model that
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seeks an assignment of vehicles to the network based on congkgiendent route
utilities so as to achieve a user equilibrium. An equilibrium is reached when no user
can improve hg/her performance in terms of route utilities by unilaterally switching
routes. The majority of traffic assignment models in the literature seek such user
equilibrium (UE) solutions. A deterministic user equilibrium (DUE) model presumes
perfect knowledge fahe performance of all alternative routes and all users perceive
route performance in an identical manner. To provide greater realism, stochastic user
equilibrium (SUE) models have been suggested in which each user is presumed to
have only probabilistilnformation about the route choices and each has his/her own
utility function regarding route performan¢gheffi, 1989.

Users in UE approaches (DUE or SUE) are treated either continuously or as
individuals. No mechanism exists to support group behavior (e.g. desire by a family,
group of friends/colleagues or emergent groups to travel en masse). Such group
behavior, howeveiis common and can have significant impact on crowd movement.
Even if each member of a group has the same utility function within the employed
route choice methodology, there is no guarantee that members of the group will be
assigned to the same path.

The problem of predicting route choice given the impact of user interactions
on link performance can be treated as gplayer norcooperative game in which
players selfishly choose strategies from their own strategy(lsatsie and Marcotte,

1985. The payoff for each player depends on his/her chosen strategy, as well as on
the strategies chosen by others. The solution of such a game in which there is a finite

number & players will result in a mixedtrategy Nash equilibrium. In the context of
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traffic assignment, travelers correspond to the players in the game. The strategy set is
composed of the available potential routes from origin to destination. Payoff is gained
through quality route performance.

A mixed-strategy Nash equilibrium presumes that decisions taken by each
player in the rplayer game have identical impact on strategy performance. Such an
approach, therefore, cannot account for the impact of group motenidus, an
player, purestrategy Nash equilibrium gan@@osenthal, 1973&) is proposed herein
that can capture the impact @roup behavior. When a pustrategy Nash
equilibrium is achieved, each player, representing a group composed of one or more
pedestrians, cannot benefit from unilaterally switching strategies (or routes).

In applying the concept of pustrategy Nash equidrium in this context of
crowd management, a number of assumptions are required: (1) the crowd consists of
a finite number of groups, the members of which will travel together; (2) preference
functions may be heterogeneous across groups, but are homaegeasmng
members of the same group; (3) groups behave rationally, choosing a route that
minimizes disutility for the group; (4) all groups make their route choice decisions
simultaneously Bierlaire a Robin, 2009 and the ultimate choice depends on the
choice of competing groups; and (5) link disutility is additive.

3.4.2Formulation

Foran GD pair, wi W, Wthe set of @D pairs, there ar&,(9=1,...]G,|) groups

of pedestriasand R,(r =1,...|R,| Jroutes.Let S, denote the size of groug,i G,,

which can be as small as one. For eacthe disutility of each routefor groupg can

be expressed as:

48



(S, =9 @,6L 4T o Gr Riww (37
whereud'" (Prepresents the disutility of routefor groupg with O-D pair w. The

disutility of route r between @D pair w is a function of group siz&?, the

corresponding route distanck},, and walking time]T; . Walking time, T, , is a

function of the flow on route, f, . 44 and bg are parameters inghting groupg's
sensitivity to walking distance and time, respectively.

Let lowerlevel decision variablec'" equal 1 if groupy chooses route for

O-D pairw, and 0 otherwise. Flow along routdor O-D pairw, f, , is computed

from the sum of group sizes of groups that choose the route:

fu= &8 St &" " R,w W 8)
g Gy

From the incidence relationship of links and routes, walking distance and
walking time on rater between paiw can be further written as in Equatiorg&9)

and @-10), respectively.

Lv=ala. &7 r" Rlyw W (39)
a A
To(fa) = & ta(Xa Ca +Y2) ofF r'"Riw W, (3-10)
a A

whereq(,® equals 1 if route passes througlink a, and 0 otherwise. Flow on lird,

X5, IS given as:

x,=a af,a? a' A. (3-11)

w W riR,
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From Equations3-9) and 8-10), for eaclgi G,,r I R,, w IW,Equation 8-

7) can be writtems:

WS )= 9 BA LA AU G W K

:a S/?/o‘fgla +Q)ta ((a Ca Ya )] rﬁfj (3'12)
a A

AU IE Xa Cat Y, )
a A

whereUJ'®(l,, X4, C,+ Y,) measures the disutility incurred by grogipsing linka.
The lowerlevel problem can, thus, be formulated as binary, nonlinear, integer

program (L):

L mn § a a &dgh HtaXaCa W @ (3-13)

wWwriR, gig, aliA

st %=4 a a4 ¢ as (3-14)
wWriR, gig,
a xy' =1 9 G, w W (3-15)
MR,
x2"=0or1 9 G,r R, w W (3-16)

Objective function 3-13) seekghe set of path flows over all-D pairs with
the minimum total disutility (weighted by group size). Derived from Equatig«® (
and @-11), constraints X14) relate link flows to path flows, thus, ensuring flow
conservation. Constraints3-(5) force eada group to choose one route. Binary
restrictions are guaranteed through constraBss).

The optimal solution to (L) is a pwsrategy Nash equilibrium attaining the

smallest total disutility, proof of which is provided in subsection 2.4.3. Notehbed t
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might be several pusstrategy Nash equilibria for the game. Problem (L) seeks the

one with the smallest total disutility.
3.5 Single-Level Reformulation

Similar bilevel modeling approaches have been employed in vehicular transport
network design appations.Chiou (2005 developed a gradiefitased methodology

to obtain the KarusKuhn-Tucker (KKT) points required for converting thelbvel
program to a single mixed integer programming (MIBao et a[2005 employed a
generalized Benders decomposition method for a similar problemulfation. A
similar btlevel mathematical model is used to make decisions related to increasing or
decreasing link capacities (Karoonsoontawong and Waller, 2Q0€apacity change
decisions are fed to a simulation model designed to capture traffiamilgs
Comparison between solutions obtained by MIP reformulation with heuristic
approaches is made. While there are similarities between these models and the RECM
model, these existing solution methodologies cannot be directly applied, in part
because detmination of the KKT conditions associated with (L) are difficult to
derive due in part to the inclusion of binary decision variables, which are needed for
the determination of link flows. Thus, an alternative solution methodology is
proposed herein.

In the RECM problem, a Stackelberg game is played between the leader
(crowd manager in (U)) and follower (pedestrians in the crowd in (L)). In essence, the
game is played out in such a way that the leader chooses a solution for (U) that
minimizes his/her objetive function given that the followers, after observing the

| eader6s actions, wil!/l respond rational
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optimization problem is difficult. However, the RECM problem can be reduced to a
singlelevel program in with the loweflevel program (L) is incorporated within the
constraints of (U). This approach of convertingilevel program to a singlevel
program in this way is described(Bard, 1998. This singlelevel form of the RECM

problem is given by program (SL):

(SL) min Zxy)= 8 % Q0 G W) (3-17)
a A

s.t. Constraints §-4), (3-5), and 8-6)
Xy - Lower(g +y) & d £ (3-19
Objective function 3-17) seeks vectorx andy that minimize total travel time,
subject to budget3(4) and capacity 85) and 8-6)) limitations. Link flows x
associated with vectoy are implicitly derived from the solution of problem (L),

which is expressed withihower(\) in Equation 8-18). Lower(\) returnssolution
matrix {xJ"} .
3.6 Solution Methodology

Program(SL) is a nonlinear mixed integer program with nonlinear objective function
and nonlinear constraints. Solution approaches exist that can guarantee a global
optimum for nonlinear programs possessing specific characteristics, like convexity, or
that can beshown to possess certain properties. No solution methodology with
applicability to program (SL) exists that can guarantee a global optimum. Instead, a
solution methodology is presented herein that guarantees a locally optimal solution
and takes advantagé global search strategies to increase the likelihood of finding

the globally optimal solution. Specifically, the proposed methodology embeds an
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exact Sequential Quadratic Programmir{§QP) procedure within a tabu search
environment.

This approach buildsrothe solution frameworks of two work&Chelouah
and Siarry, 200) and (Chen et al., 2008 Chelouah and Siarry (2000) proposed a
tabu searcibased(Glover and Taillard, 1993metaheustic, called the Enhanced
Continuous Tabu Search (ECTS) algorithm, with the goal of obtaining a global
optimum for unconstrained optimization problems. Chen et al. (2008) extended
Chelouah and Siarry's continuous tabu search (CTS) approach for codstreitie
programs. They employ a methodology based on Lagrangian relaxation in which a
term involving the square of each constraint is included and penalized in the objective
function. The procedure aims to minimize this term to produce a feasible solution.
SQP is used to produce such feasible solutions. A 4smalit strategy involving
exploration around a current best solution within concentric hygmangles is
employed within the diversification stage of the CTS. This procedure produces a set
of startirg points for the SQP, leading to a set of likely feasible solutions. The best

solution among this set is chosen and the rstdtit procedure is repeated.
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Step 1-Preprocessing and I nitialization:
generate efficient route sets; initialize starting
point, Xq, and parameters

I

Step 2- Force Feasibility: use SQP to obtain alocal optimal
solution, Xy' and objective value, Zy' update best solution
Xpest= Xo' @nd best objective Zest=2Zo'

N
y

Step 3- Diversification: generate candidate solution
Set, X qng Within the exploration region of X, .

I

Step 4- Intensification: for each X 5,4, Use SQP to
obtain alocal optimal solution, Xnew and
corresponding objective function set, Z,..,

I

Step 5- sort X, @cording to
objective values and select first
element, Xnewbes

can

Step 10- select next element in X ey 1

Step 6- aspiration
satisfied?

Step 9- iS X e

No
Yes fully scanned?

v

Step 7- update best known
objective,z, .;, and solution, X,

Yes
h 4
Step 12- expand tabu Step 11- set best known solution
list to first element in tabu list

v
Step 14- output optimal
S0lUtiONX o With Zp oo

End

Figure 3-2 Flowchart of the MST-SQP Procedure
The proposed methodology for solving the RECM problem employs a similar

framework as i(Chen et al., 2008 involving a multistart SQP procedure within a
CTS framework. Moreover, an adaptatioh concentric hyperectangles structure
developed in (Teh and Rangaiah, 2003) is embedded within this framework. However,
instead of relaxing the constraints and seeking a set of feasible solutions from which
the optimal solution can be obtained, the ioad)constrained math program is solved

directly by SQP. Additionally, a secondary tabu search methodology is employed
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within the proposed methodology (during identification and intensification stages) to
evaluateLower(\). This poposed approach is referred to herein as the Mtatt

Tabu method with SQP (MS3QP).Figure 3-2 provides a flowchart of the steps of

the main procedure. Details it$ key steps follow.

3.6.1Preprocessing and Initialization (Step 1)

The procedure begins with the generation of an efficient route set (Sheffi, 1985) for
each QD pair. It is presumed, as (Bovy and Stern, 1990that when facedith a

route decision, a traveler selects his/her route from a limited choice set. The more
comprehensive the choice set, the more likely he/she will choose the optimal route
given his/her goals. Since complete enumeration of all possible routes istiogbrac
and given that most people do not consider all alternatives in making their decisions,
only the efficient route set is considered
defined as a route passing only through efficient arcs, and an efficerg defined

as follows. For each aieconnecting to j, if r(i)<r(j), for r(k) the shortest distance
from the origin to nodé, ands(i)>s(j), for s(k) the shortest distance frokto the
destination, then ara is efficient (eff{,j)=1); otherwisejt is inefficient (efff,j)=0).

The efficient routesR,, between each D pair w are obtained with a depfirst-

search (DFS) on the network of efficient arcs (i.e. the subgGpHN, A), where

Aiis the set of efficient arcs). Routes with cycles are not generated, because by
definition any efficient arc transports travelers to locations that are further from the

origin and closer to the destination.
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Once the efficient route set is generataalinitial starting pointX,, must be
chosenX, consists of two vectors: link flow and capacity change To produceXo,
the elements of andy are chosen randomly given restrictions on their bounds.

The aspiration, tabu and termination criteria employed herein are adopted
directly from(Chen et al., 2008 These criteria are summarized for completeness.
Aspiration criterion
Any candidate dation that has the best objective value of all discovered solutions
will become the best solution regardless of its tabu status.

Tabu list

A list of solutions, each of which is given by a pair of vectarg)( considered in the
lastn iterations (the talotenure) of the tabu search procedure is maintained. Thus, an
explicit memory approach is used. The best found solution obtained thus far will not
enter the tabu list, unless it is identified twice, until a better solution is found. This
construction of te tabu list prevents revisiting of solutions within the iterations
associated with its tabu tenure. A solution may be removed from the tabu list
prematurely if no neighboring solution of the best solution outperforms the best

solution. A solution is tabif

tabu
Hx - X!

¢y ' 12,..n (3-19)

wherexﬁab”is thej™ solution in the tabu list ankp is defined in equation3¢21) of

subgction3.6.3.
Termination criteria
When either a predefined maximum number of iteratimma predefined maximum

number of iterations without improvement is reached, the procedure terminates.
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Parameter settings

The tabu parameters were tuned through initial experiments. The best foumgssetti
and the settings that will be used in the remainder ofChapter are: maximum
iteration number = 50; maximum number of iterations without improvement = 10;
number of candidate solution points to be explored = 10; tabu tenure = 20
3.6.2Force Feasibility (Step 2)

Using X, obtained from step 1 iRigure3-2 as the starting point, SQP is employed to
find the corresponding locally optimal solutioh§ with objective vale Z § for
program SL. The best known solutioXhes; and objective valueZyes; are set toX §
and Z § respectively. The SQP algorithm requires evaluatioh.aer() within
Equations 8-18). Details of the process to solve the lowarel problem are
discussed isubsection2.5.3

3.6.3Diversification (Step 3)

1
Xbést

X2

X,e

Figure 3-3 Hyper-rectangles adapted from(Chelouah and Siarry, 20p0
A diversification strategy generates a set of candidate solutions withinplueation

space of the current best solutidfes: That is, the diversification process involves a
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multi-start strategy, where a set of candidate solution points, given byXagrayare
randomly generated around the current best solution. The solution space around the
current solution, as defined {€helouah and Siarry, 20p@nd(Teh and Rangaiah,
2003, is partitioned by a set of concentric hypectangles. The structure of hyper
rectangles around,esin two dimensions is illustrated figure3-3. The relationship
between the radii of concentric hypectangles is expressed as

h =20,k 172,.N_q - (3-20)

h,=0.01 OB LB)/2 (3-21)
whereNcang is number of candidate solutiorts, is the halfwidth of the innemost
rectangle, and UB and LB are the upgard lowerbound vectors oX, respectively.

In exploration of solution points within a vicinity oKpes; ONe candidate
solution is randomly generated within each region enclosed by two adjacent hyper
rectangles (the innermost region is enclosed only by the-moet hypeirectangle).
3.6.4Intensification (Step 4)

The candidate solution points generated in the diversification stage are not guaranteed
to be feasible for (SL). Thus, they are used as starting points for the SQP algorithm
through which neighboring feasible solutions are obtained. The intetisifica
process seeks a set of such feasible solutionsHigeee 3-4), employing SQP for

each such starting point. An updated candidate solution ¥ga)s generated.

Intensification starts with selecting th& dlementX, of X.anggenerated in the
diversification process. X is tabu, then the process is applied to the next element in
Xeang If X is not tabu and it is feasibl& and its objective faction valueZ, are

directly added into the new feasible solution Sét., and objective setZnew
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respectively; otherwise, (SL) is solved through SQP uXiag the starting point and
resulting locally optimal solutioX dvith corresponding objectivealueZ 6X @ndZ 6
will be added intoX,ew and Zyew respectively. This process is repeated until all
elements oK.anghave been investigated.

After obtaining a new feasible séf;, it is sorted in nondecreasing order
according to objective values. Thest (first) new feasible solutiofewbesiS Selected.
The aspiration criterion is used to update the best known solution. If the aspiration
criterion is satisfied (i.€Znewbest Zbes), then the best known solutiofpeswill switch
to Xnhewbes@Nd the best known objectivByesiwill change toZnewnest The previous best
solution will be placed in the tabu list. Termination criteria will be assessed. If one of
the termination criteria is met, the procedure stops; otherwise, continue to the next
iteration. If the aspiration criterion is not satisfied, the subsequent elemeKgsyin
cannot be better thafhewbest and the tabu criterion will be checked for all elements in
Xnew If @ny is not tabu, it will be placed in the tabu list. If all of elemeni%, iy are
tabu, the first element in the tabu list will be selected as the best known solution. The
tabu list aids in preventing the search from being trapped at a local solthie SQP
algorithm requires evaluation dfower(\) within Equations $-18). Details of the

process to solve the lowsvel problem are discussedsabsectior2.5.3
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Step 3-generate candidate solution
set, X

cand

Intensification

select next element,

R X, of Xcand
A
J— |steaS|bIe’7 O—J

I
I
I
I
I
I
I
I
| Icompute objective value Z solve SL by SQP using X asinitial solution, obtain
I
I
I
I
I
I
I

new feasible solution Xdand Z6

add X to new solution set, Xnew, and add X6to new solution set, Xnew, and
Z 10 Set Znew Z06t0 set Znew
I

is X thelast element
in Xcand?

Step 5- sort Xnew according to
objective values

Figure 3-4 Flowchart of Intensification Process (Step 4)

3.7 Numerical Experiments

3.7.1 Experiment Design

To investigate the efficiency of the proposed model and solution methodology, the
MTS-SQP procedure with embedded TS algorithm for solutidrowafer(\) is applied

on a numerical example consistingldf nodes, 22 linkand 4 QD pairs, as shown in
Figure 3-5. The example network is acyclititowever, the methodology supports

solution in networks with cycles.
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Destination

Figure 3-5 Test Network Configuration
As indicated inFigure 3-5, some links begin with zero capacity. An increase

in capacity from zero is akin to opening or constructing the link. Detailed information

of the network is listed inrable 3-1. The freeflow speed is set to be 1.42m/s
(Thalmann and Musse, 200and coefficienk, = 0.0008 for travel time calculations.

The total budget B is 1500 cost units.

Table 3-1 Network Information

Linly(m tg( s| Cq| by | P LI la(m tg( s| Ca | by | cUP
1 100 70. 10| 3 50 13 100 70. 10| 3 50
2 100 70. 20| 3 50 14 200140, O 5 50
3 100 70. 10| 3 50 15 100 70. 20| 3 50
4 200140, O 5 50 16 100 70. 10| 3 50
5 100 70. 20 3 501 17| 100 70. 20l 3 50
6 100 70. 10| 3 50| 18| 100 70. 10/ 3 50
7 100 70. 20 3 50 19| 100 70. 20l 3 50
8 100 70. 20 3 50| 20| 100 70. 20l 3 50
9 100 70. 20 3 50 21| 100 70. 10 3 50
10| 100 70. 20 3 501 22| 100 70. 10/ 3 50
11 100 70. 20| 3 50| 23 100 70. 10| 3 50
12 200140, O 5 50| 24 200140, O 5 50

Table 3-2 gives the demand information for eachDOpair. There are 20

groups of pedestrians for eachDDOpair. The group size is uniformly chosen on the
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interval [1, 30]. Traveling distance sensitivity parametéris uniformly distributed
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The proposed MSBQP procedure with embedded TS algorithm was coded in the
MATLAB 2010a environment and run on a personal computer with Intel(R) CPU
3.10GHz and 4.0GB RAM. The procedure takes advantage of an existing SQP tool
available within the Optimizain Toolbox of MATLAB (Coleman et al., 1999

3.7.2 Results and Analysis

Table 3-3 gives the set of 34 efficient routes among the fotld @airs. Three links

with no prior capacity are included. The distances required to traverse the routes are

identical with 500 m.

Table 3-3 Routes Set for Each GD Pair

OD| I nd Rout e O-D Il nd Rout e
1 1Y2Y5Y6Y10VY 1 1Y2Y5Y6Y10VY1
2* [1Y2Y5Y6VY11 2 1Y2Y5Y9Y10VY1
3 1Y2Y5Y9Y10VY 3 1Y2Y5Y9Y13VY1
4* |1Y2Y6Y10Y11 4* |1Y2Y6Y10Y14
111 5* J1Y2Y6VL1 _ 1,,, 5 |1Y4YS5Y6V1O0YL
6 1Y4Y5Y6Y10Y 6 1Y4Y5Y9Y10V1
7* [1Y4Y5Y6VY11 7 1Y4Y5Y9Y13VY1
8 1Y4Y5Y9Y10VY 8 1Y4Y8Y9Y10V1
9 1Y4Y8Y9Y10VY 9 1Y4Y8Y9Y13VY1
10 |1Y4Y8Y12Y13Y
1 3Y4Y5Y6Y10Y 1 3Y4Y5Y6Y10VY1
2* [3Y4Y5Y6VY11 2 3Y4Y5Y9Y10V1
3 3Y4Y5Y9VY10Y 3 3Y4Y5Y9Y13V1
4 3Ya4vYs8vyYovioY 4 3Y4Y8Y9Y10V1
5 3Yzvysavyovioy 5 3Y4Y8Y9Y13VY1
1l 3145 3Y4vY8VY12Y13Y
7 3Y7yYsvyovy1iovi
8 3Y7Y8vY9ovy13V1
9 3Y7z7yY8vy12vY13Y
10*[3Y7Y12VY13VY14

* indicates that a link thadriginally had zero capacity is included within the route

Assignment Results before Reconfiguration
Convergence to an equilibrium solution with total disutility of 600,000 is obtained
after 7 iterations of evaluation abwer (1) for the original network design, requiring

3.84 CPU seconds in total, as showikigure3-6.
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Figure 3-6 Convergerce Process of Lowetevel Solution Algorithm
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Figure 3-7 Distribution of Groups over Routes by O-D Pair before
Reconfiguration

Solution of the lowetevel problem is obtained for the existing system configuration.
Figure 3-7 shows the distribution of groups over the route options between each of

the OD pairs. Notethat no group is assigned to a route with any link with zero
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