COMPTON BASSETT CHAPEL

A HISTORIC STRUCTURE REPORT

Derek Anderson
HISP 711
Masters Final Project

May 2013
ABSTRACT

Title of Document: COMPTON BASSETT CHAPEL: A HISTORIC STRUCTURE REPORT

Derek Nevin Anderson, Master of Historic Preservation, 2013

Directed By: Dr. Donald W. Linebaugh, Director, Historic Preservation Program

The purpose of this historic structure report was to investigate the eighteenth-century brick structure known as “the chapel,” located on the Compton Bassett property in Upper Marlboro, Maryland. All aspects of the chapel were investigated with the goal of providing treatment recommendations for this significant historic resource. At present, the chapel faces a number of serious structural issues that impact the preservation of the building.

The chapel was investigated thoroughly in an attempt to understand its history, account for all conditions affecting the structure, and devise the most appropriate treatment plan for the building. In conjunction with this investigation, documentary evidence was used to develop a historical context for the building. The result is a thorough building history and set of specifically tailored treatment recommendations that can be used as a guide for the development of a preservation-based management and treatment plan for the Compton Bassett chapel.
COMPTON BASSETT CHAPEL: A HISTORIC STRUCTURE REPORT

By

Derek Nevin Anderson

Master Final Project submitted to the Faculty of the Historic Preservation Program of the School of Architecture, Planning, and Preservation of the University of Maryland, College Park, in partial fulfillment of the requirements for the degree of Master of Historic Preservation 2013

Advisory Committee:
Dr. Donald W. Linebaugh, Chair
Dr. Dennis Pogue
Thomas Reinhart
Frederick Stachura, Esq.
Acknowledgements

I would like to thank all of those who have aided me during the completion of this project. I would like to express my sincere gratitude to Professor Donald W. Linebaugh, who has been supportive and encouraging throughout my time at the University of Maryland. I would like to thank Frederick Stachura for facilitating the relationship between The Maryland-National Capital Park and Planning Commission and the University of Maryland that afforded me the opportunity to complete this project. I would like to thank Mr. Thomas Reinhart for sharing his knowledge and expertise with me on a subject that is near to his heart. I would like to thank Professor Dennis Pogue for visiting the property with me on multiple occasions and for providing valuable insight after each of those visits. Finally, I would like to thank Mr. Michael Worthington for his work with the dendrochronology, and Dr. Carl Lounsbury for taking time out of a busy travel day to contribute his keen insight and years of experience to this project.

I would also like to extend my gratitude to my fellow Master of Historic Preservation students. Your support and friendship are what kept me going throughout my time at the University of Maryland. An even bigger thanks goes out to the Compton Bassett studio group, Caitlin Black, John Gentry, Caitlin Herrnstadt, Lori Murphy, Michael Robb, and Daniel Tana. Our semester of hard work is what initially peaked my interest in the Compton Bassett chapel, as well as provided much of the foundational work for this project.

Lastly, I would like to thank Cristina Moscoso for her support, her encouragement, and for accompanying me on site visits when I was in need of an assistant!
Table of Contents

<table>
<thead>
<tr>
<th>Acknowledgements</th>
<th>ii</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>iv</td>
</tr>
<tr>
<td>Chapter 1: Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 2: Developmental History</td>
<td>6</td>
</tr>
<tr>
<td>Chapter 3: Investigation of Building Systems</td>
<td>62</td>
</tr>
<tr>
<td>Chapter 4: Treatment Recommendations</td>
<td>101</td>
</tr>
<tr>
<td>Chapter 5: Conclusion</td>
<td>123</td>
</tr>
<tr>
<td>Bibliography</td>
<td>128</td>
</tr>
<tr>
<td>Appendix A: Measured Drawings</td>
<td>132</td>
</tr>
<tr>
<td>Appendix B: Chapel Dendrochronology Report</td>
<td>137</td>
</tr>
<tr>
<td>Appendix C: National Register Nomination</td>
<td>153</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ledger entry showing purchase of a “load of puncheons.”</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Signature of George H. Page on southeast gable wall in garret</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>Aerial view of Compton Bassett chapel</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>HABS photograph of southeast gable end and main facade (1936)</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>Brick bond pattern on northeast elevation</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>Glazed headers and ruled mortar joints on southwest elevation</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>Water table, along with bricked-in cellar window opening</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>Front entryway</td>
<td>21</td>
</tr>
<tr>
<td>8</td>
<td>Horizontal color difference in brickwork on either side of main entrance</td>
<td>21</td>
</tr>
<tr>
<td>10</td>
<td>Priest’s door in left side of northwest gable end</td>
<td>22</td>
</tr>
<tr>
<td>11</td>
<td>Exterior view of board-and-batten cellar door in northwest gable end</td>
<td>23</td>
</tr>
<tr>
<td>12</td>
<td>Distinction in brick bond pattern visible in southwest elevation</td>
<td>24</td>
</tr>
<tr>
<td>13</td>
<td>Example of chimney weatherings on first shoulder of chimney</td>
<td>25</td>
</tr>
<tr>
<td>14</td>
<td>HABS photograph of southeast gable end (1980s)</td>
<td>26</td>
</tr>
<tr>
<td>15</td>
<td>Interior view of cellar entrance</td>
<td>27</td>
</tr>
<tr>
<td>16</td>
<td>Underneath side of garret stair</td>
<td>28</td>
</tr>
<tr>
<td>17</td>
<td>Southeast cellar wall featuring relieving arch</td>
<td>29</td>
</tr>
<tr>
<td>18</td>
<td>Sanctuary/Nave floor framing</td>
<td>30</td>
</tr>
<tr>
<td>19</td>
<td>Patchwork in in northeast cellar wall</td>
<td>31</td>
</tr>
<tr>
<td>20</td>
<td>Sanctuary, enclosed by altar rail</td>
<td>32</td>
</tr>
<tr>
<td>21</td>
<td>Sanctuary on main floor of chapel (ca. late-19th century)</td>
<td>33</td>
</tr>
<tr>
<td>23</td>
<td>View of inside of garret stair door</td>
<td>34</td>
</tr>
<tr>
<td>22</td>
<td>Garret stair door leaning near opening</td>
<td>34</td>
</tr>
<tr>
<td>24</td>
<td>Northwest gable end of garret, unplastered modern lath on ceiling</td>
<td>36</td>
</tr>
<tr>
<td>25</td>
<td>Southeast gable end of garret</td>
<td>37</td>
</tr>
<tr>
<td>26</td>
<td>Northeast elevation of chapel (ca. late-nineteenth-century)</td>
<td>39</td>
</tr>
<tr>
<td>27</td>
<td>Sanctuary/nave floor joists in cella</td>
<td>41</td>
</tr>
<tr>
<td>28</td>
<td>Top plate on top of northeast wall</td>
<td>42</td>
</tr>
<tr>
<td>29</td>
<td>Segmental arch above window on southeast gable end</td>
<td>43</td>
</tr>
<tr>
<td>30</td>
<td>Flat jack arch visible above center-bay window in northeast elevation</td>
<td>44</td>
</tr>
<tr>
<td>31</td>
<td>View of wall where altar rail meets interior of northeast elevation</td>
<td>46</td>
</tr>
<tr>
<td>32</td>
<td>Queen closer bricks visible on southwest elevation</td>
<td>48</td>
</tr>
<tr>
<td>33</td>
<td>Interior view of southwest side cellar board-and-batten cellar window</td>
<td>51</td>
</tr>
<tr>
<td>34</td>
<td>Brick stitching above water table on northeast elevation</td>
<td>52</td>
</tr>
<tr>
<td>35</td>
<td>Brick cellar floor laid in herringbone pattern</td>
<td>53</td>
</tr>
<tr>
<td>36</td>
<td>Interior view showing where cellar door was raised</td>
<td>54</td>
</tr>
<tr>
<td>37</td>
<td>Eighteenth-century chair rail in sanctuary</td>
<td>55</td>
</tr>
<tr>
<td>38</td>
<td>Southwest casement window in southeast gable wall of garret</td>
<td>56</td>
</tr>
<tr>
<td>40</td>
<td>Efflorescence and brick deterioration on northwest cellar wall</td>
<td>64</td>
</tr>
<tr>
<td>39</td>
<td>Brick deterioration in the southeast corner of cellar</td>
<td>64</td>
</tr>
<tr>
<td>41</td>
<td>Bricked-in cellar window and wooden lintel in northeast cellar wall</td>
<td>65</td>
</tr>
<tr>
<td>42</td>
<td>Patching and cracking in the brickwork in southwest cellar wall</td>
<td>66</td>
</tr>
</tbody>
</table>
Figure 43. Large crack between chimney relieving arch and southeast gable wall. 67
Figure 44. Brick spalling and mortar deterioration around cellar door. 69
Figure 45. Cracking, spalling, and brick deterioration in and around chimney. 71
Figure 46. Cracking below and around southwest window on southeast gable end. 72
Figure 47. Oak floor joists and chimney trimmers near relieving arch. 73
Figure 48. Damaged tulip poplar joists under northwest portion of chapel. 74
Figure 49. Top of garret stair. 75
Figure 50. Hole in garret floor on southwest side of chimney. 76
Figure 51. Chapel roof framing at peak of southeast gable. 77
Figure 52. Interior of northeast cornice. 78
Figure 53. Interior view of southwest side cellar window. 79
Figure 54. Exterior view of southwest side cellar window. 79
Figure 56. Exterior view of northeast side cellar window. 80
Figure 55. Interior view of northeast cellar side window. 80
Figure 57. View of severely racked four-panel main entry door. 81
Figure 58. Interior of fanlight transom over main entryway. 82
Figure 59. Southwest window in southeast gable end. 83
Figure 60. Interior view of southeast-bay window on southwest elevation. 85
Figure 61. Exterior view of southeast-bay window on southwest elevation. 85
Figure 62. Interior view of bottom sash and sill of window on southwest elevation. 86
Figure 63. Interior view of six-over-six window in northwest gable end in garret. 87
Figure 64. Deteriorated garret casement window northeast of chimney. 88
Figure 65. Twentieth-century lath in sanctuary/nave. 89
Figure 66. Riven lath and early plaster in garret stair. 90
Figure 67. Deteriorated parging covering brick corbelling above firebox in garret. 91
Figure 68. Brickwork, water table, and left side of main entrance. 93
Figure 69. Large tree near northwest gable end of chapel. 97
Figure 70. Dirt coming over cellar threshold. 98
Figure 71. Glazed headers lining rake board on southeast gable. 105
Figure 72. HABS photograph of the main façade of chapel (1980s). 127
Chapter 1: Introduction

Problem Statement

The Roman Catholic chapel located on the Compton Bassett property is a structure that has evolved considerably, in both form and function, since its initial construction. The chapel was built by the Hill family, one of Prince George’s County’s most prominent Roman Catholic families, and served as the Hills’ private place of worship. As a result of its private construction, many aspects of the Compton Bassett chapel are not thoroughly documented. The structure’s size, appearance, layout, and function appear to have changed multiple times throughout the building’s existence. The result of these changes is that the building’s history is not entirely clear. In addition to intrinsic architectural value, there are links to local history as well. The religious strife associated with Catholicism in early Maryland, eighteenth- and nineteenth-century agricultural history, and African American history are all embodied in the Compton Bassett chapel.

The one story chapel is of brick construction, three bays wide, one pile deep, and anchored by a large brick chimney on the southeast gable end. The chapel is covered by a wooden gable roof, and features a finished garret and a full cellar with brick floor. The structure is oriented on a northwest by southeast axis, with the façade of the chapel facing northeast, which differs from the main house. The building is currently in a dilapidated state and is in need of immediate attention if the structure is to be retained for future use and interpretation. The purpose of this historic structure report is to determine how the Compton Bassett chapel, a unique
structure of historical, cultural, and religious significance, can be preserved in a manner that best supports the structure’s multiple values, leaving the chapel both useful and useable by the public, while ensuring that it meets the needs of the property owner, The Maryland-National Capital Park and Planning Commission (M-NCPDC). The evolution of the building, history of its use, current existing conditions, and future plans will all factor into determining the most appropriate treatment for the Compton Bassett chapel.

Project Scope

The scope of this project included a thorough investigation of the private Roman Catholic chapel located on the Compton Bassett property in Upper Marlboro, Maryland. The history of the building was investigated in conjunction with the larger historical context. The building’s current conditions, as well as any proposed use or interpretative plans, were combined to inform a set of treatment recommendations for the stabilization and preservation of the chapel.

About the Author

As a Master of Historic Preservation student at the University of Maryland, Derek Anderson is qualified to complete this work under the Secretary of the Interior’s Professional Qualification Standards. These qualifications are found under the Code of Federal Regulation, 36 CFR Part 61. In addition to this, the author brings to this project over ten years of professional experience in the construction industry, one year of experience as an intern with The Maryland-National Capital Park and
Planning Commission Historic Preservation Section, and a Bachelor of Arts in History and Political Science.

Methodology

The methodology employed during this project consisted of historical documentary research to build the historical context for the chapel, combined with an in-depth investigation and analysis of the building systems and site. Both primary and secondary sources were consulted, as were numerous experts with specialized knowledge of local and regional history, architectural history, and the history of Catholicism in the region. These experts included Dr. Carl Lounsbury of the Colonial Williamsburg Foundation, Thomas Reinhart, formerly of the Maryland Historical Trust and now with George Washington’s Mount Vernon, Dr. Dennis Pogue, formerly of George Washington’s Mount Vernon and now with the University of Maryland, Susan Pearl of the Prince George’s County Historical Society, and Gloria Wyvill Garner of St. Mary’s of the Assumption Catholic Church in Upper Marlboro, Maryland.

In addition, Michael Worthington performed dendrochronology on the chapel with the goal of dating the building’s wooden framing members in order to better understand the evolution of the structure through time. John Sines, a historic masonry expert with George Washington’s Mount Vernon, was consulted in order to help formulate treatment recommendations for the conservation and repair of the chapel’s deteriorating masonry. The author also attended a lime mortar at masonry
workshop given by the Menokin Foundation in Warsaw, Virginia, in order to broaden his understanding of lime mortars and their preservation and repair.

The information gathered during the research and investigative phase of the project was used to develop treatment recommendations for the chapel’s preservation. Additional factors that influenced recommendations for the chapel were the presence, or in this case, absence of any future plans for the building and property, financial resources available to be dedicated to the chapel, and external pressures affecting the Compton Bassett property.

Administrative Information

The Compton Bassett chapel is located at 16508 Marlboro Pike, Upper Marlboro, Maryland 20772. The parcel of land on which the chapel is located, is owned by The Maryland-National Capital Park and Planning Commission (M-NCPPC). The Compton Bassett property was purchased from its former owner, Robert Beale Sasscer, in two separate parcels. The first portion was purchased on December 13, 2002, and contained 188.14 acres or land.1 The second tract, which contains the chapel, the house and most of the other outbuilding, was purchased on April 29, 2010, and contained a total of 63.39 acres.2

The Compton Bassett property was purchased by M-NCPPC in order that its land along the Patuxent River may be incorporated into the larger Patuxent River Park, a green infrastructure initiative with the goal of protecting natural resources.

1 Prince George’s County Land Records, Liber 16658, Folio 280.
2 Prince George’s County Land Records, Liber 31660, Folio 192.
along the Patuxent River. The primary historic structures on the site, including the main dwelling house, chapel, dairy, and smokehouse, are designated as Historic Sites on the Prince George’s County Inventory of Historic Sites, and are regulated under Subtitle 29 (Historic Preservation Ordinance) of the Prince George’s County Code. In addition to the county designation, these resources are listed on the National Register of Historic Places.

3 Derek Anderson, Caitlin Black, Caitlin Herrnstadt, John Gentry, Lori Murphy, Michael Robb, and Daniel Tana, “Compton Bassett: Balancing Preservation and Change” (Master of Historic Preservation studio project, University of Maryland, 2012), 17.
4 National Register of Historic Places, Compton Bassett, Upper Marlboro, Prince George’s County, Maryland, National Register # 83002959.
Chapter 2: Developmental History

Historical Background and Context

The state of Maryland was founded as a proprietary, or for-profit colony, by the Calvert family of England in the seventeenth century. In 1629, Charles Calvert, the first Lord Baltimore, lobbied King Charles I for a royal charter to establish a proprietary colony in the New World. Charles Calvert died before this charter was granted, and on June 22, 1632, the proprietary charter for the colony of Maryland was granted to his son, Cecelius Calvert.5 Settlers traveling aboard two ships, the Ark and the Dove, landed in what is now St. Mary’s City, Maryland, on March 27, 1634. In addition to extracting a profit from their new colony, the Calverts hoped to provide Catholics with a home in which they could live free from religious persecution; the Calverts themselves were Roman Catholics.

Although Maryland was not established as a Roman Catholic colony, the Proprietor established laws protecting the religious freedom of all members of the Christian faith.6 This protection was primarily intended for the colony’s Roman Catholic population who had faced years of persecution in England. The Society of Jesus, known more commonly as the Jesuits, opened the first permanent church in Maryland at St. Mary’s City ca. 1670; they had been giving Mass in less formal settings until this point.7 The issue of religious persecution is a central theme for this project as it factors directly into the construction of private family chapels throughout the colony, such as the one at Compton Bassett.

6 Ibid.
7 Hardy, “Papists in a Protestant Age,” 553.
Throughout the mid-seventeenth century, religious tensions grew between Roman Catholics and Protestants, both in England and abroad in the colonies. As settlers continue to arrive, Catholics quickly became a minority in colonial Maryland. Despite this, Catholics held many of the most influential positions in The Proprietor’s Office. Even post-1689, when Catholics were prohibited from holding public office, “positions in the private proprietary establishment remained open to them.”

Their control over the survey and land granting offices in particular allowed Catholics in positions of power exert influence in the form of who was awarded certain desirable tracts of land.

Protestant fear of “growing popery” fueled civil, political, and religious conflict within Maryland throughout the seventeenth century. These fears were worsened by political tensions in England, personal disputes, and political wrangling. In 1689, coinciding with the Glorious Revolution in England, the crown revoked the Lords Baltimore’s proprietary charter for the colony of Maryland; an agent of the crown was appointed to govern the colony. This decision stemmed largely from the tensions that existed between Maryland’s Protestant and Roman Catholic factions. In 1692, “the Act for the Service of Almighty God and the establishment of the Protestant Religion within this Province” established Protestantism as Maryland’s official religion, making it illegal for Roman Catholics to publicly practice their faith, hold public offices, practice law, or even teach children. The church at Saint Mary’s City was permanently shuttered in 1704.

8 Hardy, “Papists in a Protestant Age,” 5.
9 Brugger, Maryland: A Middle Temperament, 52.
10 Hardy, “Papists in a Protestant Age,” 553.
In 1693, shortly after the institution of Protestantism, Clement Hill Jr. immigrated to Maryland in order to live with his uncle, Clement Hill. In September 1696, Clement Hill Jr. married Anne Darnall, daughter of Colonel Henry Darnall, one of the most prominent and influential Roman Catholics in Maryland. Clement Hill Jr. moved to Woodyard, the Darnall’s family estate, in order to live with his new bride and manage the Woodyard plantation while Colonel Darnall was in England. When Colonel Darnall returned from England in 1696, he brought with him a commission from the Lord Proprietor for Surveyor General of the Western Shore. Clement Hill Jr. was awarded this commission, ultimately allowing him to survey and patent the Compton Bassett property on July 19, 1699.

In 1700, Clement Hill Jr. constructed a dwelling for his family at Compton Bassett. While the appearance of this early structure is unknown, it was possibly a post-in-ground building. From the early to the mid-seventeenth century onward, Clement Hill Jr. grew Compton Bassett into a successful tobacco plantation. In 1743, Clement Hill Jr. died and his wife was granted a life estate. Upon her death the property passed to their son, Clement Hill III. The original dwelling house was destroyed by fire ca. 1771. Dendrochronology has revealed that the trees comprising the roof of the current main house were likely felled sometime between November 1787 and May 1788, meaning that the current main house was built sometime during

11 Effie Gwynn Bowie, Across the years in Prince George's County; A Genealogical and Biographical History of Some Prince George's County, Maryland and Allied Families, (Richmond: Garrett and Massie, 1947), 426.
12 Ibid.
13 Ibid.
14 Ibid
15 Prince George’s County, Maryland, Land Records Office, Patent Record CC4, p. 161.
16 Bowie, Across the years in Prince George's County), 427.
17 Bowie, Across the years in Prince George's County, 428.
or after the winter of 1787-88.18 This considerable gap between the destruction of the first house and the building of the current one has some bearing on the theories surrounding the possible construction history of the chapel. These theories will be discussed in greater detail below.

The date of construction for the chapel has traditionally been ca. 1740.19 This would have meant that the building was commissioned by Clement Hill Jr. and Anne Darnall, both of whom were devout Roman Catholics. The prohibition of public Catholic worship, along with the Jesuits’ inability to fund the construction of churches, necessitated the establishment of a network of chapels and Mass rooms that were constructed and maintained by private individuals on private lands. Mass rooms were merely rooms that were used for liturgical services. These services were conducted by a circuit of Jesuit priests who traveled through the colony. The chapel at Compton Bassett was always thought to have been an example of one of these private Roman Catholic worship spaces, however, the physical investigation and historical documentary research conducted as a part of this project has demonstrated otherwise.

The earliest known documentary evidence of religious functions conducted at Compton Bassett is in a letter that mentions religious services at “Hills at Marlboro” in correspondence between Anne Cooke and Clement Hill of Marlborough, dated January 25, 1773.20 In this letter Cooke explains that she has asked Reverend

18 Michael Worthington, telephone interview by author, Silver Spring, MD, April 25, 2013.
19 National Register of Historic Places, Compton Bassett, Upper Marlboro, Prince George’s County, Maryland, National Register # 83002959.
20 Anne Cooke to Clement Hill III, January 25, 1773, Hill Family Papers, Maryland Historical Society, Baltimore, MD.
Thomas Digges to meet her at Hill’s and “kep Church.” A second reference to religious activities on the Compton Bassett property is a reference on a sermon given by a Jesuit priest named Bernard Diderich. Traveling priests often noted the date and location at which a particular Mass was offered for record-keeping purposes. In this case it is noted that a sermon was given at “Hill’s” in November 1775.

Dendrochronology on the chapel indicates that the oak timbers in what is believed to be the earliest portion of the building were felled in the spring of 1779. The inconsistency of the accepted documentary record and recent dendrochronology has prompted a major reevaluation of the chapel’s history and the chronology of its construction. Several potential explanations for this inconsistency exist, including the possibility that Mass was being offered in a different building on the property, or in a Mass room in the house. With regard to the floor joists in the cellar, evidence has been found in the historical record to support the dendro-date. An entry in one of Clement Hill III’s account books shows him buying a load of puncheons, or half

21 Anne Cooke to Clement Hill III, January 25, 1773, Hill Family Papers, Maryland Historical Society, Baltimore, MD.
22 Hardy, “Papists in a Protestant Age,” 575.
23 Ibid.
25 An in depth explanation of the building history and evolution of the chapel is provided in the section of this report titled “Chronology of Construction.”
round timbers that were often used in flooring, along with several other types of wood, on January 10, 1779.26

In 1782, Clement Hill III died and his house and property were devised to his son, Clement Hill IV the same year.27 In 1807, Clement Hill IV died and his wife received a lifetime estate; upon her death the property was devised to his son, Dr. William Hill.28 In 1814, Commodore Joshua Barney scuttled his flotilla in the Patuxent River just north of the Compton Bassett property, one of the more notable events associated with the War of 1812.29 Major General Robert Ross, who was in pursuit of Commodore Barney, offloaded his troops at the Compton Bassett landing on the Patuxent River and temporarily occupied the main house as a part of his march towards Bladensburg. This event culminated with the Battle of Bladensburg and ultimately the sacking of Washington, D.C.30 Historical accounts suggest that the family might have found shelter in the chapel while the main house was occupied.31

In 1823, Dr. William Hill died and his wife received a lifetime estate; upon her death, the property, then called Woodland, was devised to their son, William Beanes Hill.32 In 1890, William Beanes Hill, Esq. died, leaving the property to his daughter, Esther G. Hill.33 As is the case with much of the chapel’s history, what happened in the latter part of the nineteenth century remains unclear.

26 Clement Hill Account Book, January, 1773, Hill Family Papers, Maryland Historical Society, Baltimore, MD.
28 Bowie, Across the Years in Prince George's County, 434.
30 Ibid.
31 Ibid.
32 Bowie, Across the Years in Prince George's County, 442.
33 Bowie, Across the Years in Prince George's County, 445.
One account suggests that in 1895, Esther G. Hill conveyed the cross and tabernacle from the chapel to Reverend Charles Trinkhaus of St. Mary’s Church in Upper Marlboro, “that they might be properly cared for, the chapel being in bad repair.”34 This seems unlikely given the fact that Reverend Charles Trinkhaus was not ordained as a priest until 1897, and did not become a parishioner of St. Mary’s until July 1, 1897.35 Another source suggests that the tabernacle was given to the Georgetown Visitation Preparatory School in Washington, D.C., and might possibly still be in use there today.36 This institution was contacted with regard to this matter, but did not respond to the inquiry.

On May 23, 1892, a man named George H. Page signed the plaster in the garret to the right of the chimney, using a pencil, just above one of the casement windows that pierces the gable. In 1880, the Tenth Census of the United States recorded a 57-year old carpenter named George Page living in Tioga County, Pennsylvania.37 Twenty years later, at the time of the 1900 census, a 72-year old Pennsylvania born man named George Page, identified as a “fencer,” is recorded as living in Queen Anne, Prince George’s County, Maryland.38 Although the ages are slightly off, it is possible that this is the same man. It is unclear whether this is the George H. Page that signed his name in the garret of the chapel, however, it is possible that he was living on the Compton Bassett property and working as a carpenter or tenant farmer. If a positive identification could be made, further

34 Bowie, Across the Years in Prince George's County, 427.
36 Gloria Wyvill Garner, telephone interview by author, Upper Marlboro, MD, April 5, 2013.
37 United States of America, Bureau of the Census, Tenth Census of the Unled States, 1880, Washington, D.C.: National Archives and Records Administration, 1880, T9, 1,454 rolls.
38 United States of America, Bureau of the Census, Twelfth Census of the Unled States, 1900, Washington, D.C.: National Archives and Records Administration, 1900, T623, 1854 rolls.
information about the history and use of the chapel, along with any repairs that were made to the building in the late-nineteenth century might be possible.

In 1900, Esther G. Hill died and the house and property passed to her niece, Mary Dixon Beale Sasscer, the wife of Dr. Reverdy Sasscer.39 It was at this time that the Compton Bassett property passed from the Hill family to the Sasscer family. When Dr. Reverdy Sasscer died ca. 1949, the property was devised to his son, Dr. Robert Sasscer.40 In the 1980s, following the death of Dr. Robert Sasscer, the Compton Bassett property passed to his son, Robert Beale Sasscer Jr.41 It was Robert Sasscer, Jr. who conveyed the property to The Maryland-National Capital Park and Planning Commission in two transactions, the first in 2003 and the second in 2010.42

The Hill family was very prominent in colonial Maryland, particularly in the Upper Marlboro area of Prince George’s County. As with many plantation owners in colonial Maryland, the Hills were heavily invested in tobacco cultivation and exportation. While the crop selection at Compton Bassett diversified over time,

39 Bowie, Across the Years in Prince George's County, 445.
40 Gloria Wyvill Garner, personal correspondence, received April 20, 2013.
41 Unknown author, Compton Bassett Site Visit, Upper Marlboro, MD, July 25, 2012.
42 Maryland Department of Assessment and Taxation, District - 03 Account Number – 0235291.
42 Maryland Department of Assessment and Taxation, District - 03 Account Number – 0235275.
tobacco cultivation dominated the landscape for many generations, as was common in the larger Prince George’s County. The Hill family’s position in local society did not wane, but in fact grew as time progressed.

The Hill family’s social prominence allowed them to maintain their influence throughout the eighteenth and nineteenth centuries. Hill family members held public offices including that of Surveyor General of the Western Shore and Judge of the Orphans Court, and worked in prominent professions such as medicine and law. The Sasscers, who came to own the property at the end of the nineteenth century, were equally as prominent as the Hills. The Sasscer owners of Compton Bassett included prominent doctors and politicians. Despite a certain amount of divestment in agriculture, crops continued to be grown on the Compton Bassett property and were a major part of the landscape into the twenty-first century.

Architectural Context

Building Typology

The Compton Bassett chapel is representative of a unique building type that developed as a result of a very specific set of circumstances. Although the social, political, and religious sanctions that led to the construction of private chapels in Maryland were addressed above, it is valuable to spend a little more time exploring the rarity of this building type. Although the dearth of documentary evidence speaking to the Compton Bassett chapel in particular makes this discussion problematic, a general explanation of the building type is both warranted and useful.
As colonists spread out from St. Mary’s City in the years after the Ark and the Dove landed in Maryland, Roman Catholic chapels and in-house Mass rooms began to emerge throughout the colony. These worship spaces were of great importance to the Catholic community because of the lack of parishes in the colony. Such places became even more important after the prohibition of public Catholic worship in 1692. The Roman Catholics in colonial Maryland were ministered to by a circuit of traveling Jesuit priests. While some chapels were maintained by the Jesuits prior to the prohibition of public Catholic worship, these churches were few and far between; the churches at St. Mary’s City and White Marsh are probably the two best known examples.\(^{43}\) Priests relied primarily upon prominent members of the Roman Catholic community to provide them with safe places to offer Mass.

Dedicated Mass rooms, or rooms that could be converted into a Mass room, were probably the most common spaces for conducting Mass in these rural communities. This could be either a room that held a few essential liturgical items, or a dedicated room or wing in a house. One fine example of an in-house chapel is the one located in a wing of the large five-part-plan house, Poplar Hill on His Lordship’s Kindness.\(^{44}\) Constructing a freestanding chapel was an extraordinary expense and a considerable risk, for fear of retaliation on the part of the royal government. As a result, few were constructed. It is unclear exactly how many freestanding pre-revolutionary Roman Catholic chapels existed in colonial Maryland. There were at times as many as fifty “chapels” available at which Roman Catholics could worship,

\(^{43}\) Hardy, “Papists in a Protestant Age,” Appendix B: Catholic Chapels in Colonial Maryland.
\(^{44}\) Derek Anderson, Site Visit to Poplar Hill on His Lordship’s Kindness, December 2012.
however, it is often times unclear which of these were simply Mass rooms, which
were attached chapels, and which were freestanding chapels.45

The chapel at Compton Bassett was long thought to be an early example of a
private freestanding chapel in Prince George’s County. However, rather than being
purpose-built as a chapel, it appears that the chapel at Compton Bassett, was built as a
plantation office or house and then converted into a chapel in the early nineteenth
century. This early nineteenth-century date is based on the interior architectural
details found within the building.

Architectural Description

Building Site

The chapel is sited on raised ground approximately 100 feet south of the
southern corner of the main house. The chapel is oriented on a northwest by
southeast axis, with the main façade facing northeast. Man-made terraces fall away
from the chapel to the south and to the southeast; the date of these terraces is
unknown. A twentieth-century concrete garage stands immediately to the northwest
of the building, and the remains of a tenant house lie to the east. The stumps of two
large trees that were recently removed remain in front of the chapel.

45 Hardy, “Papists in a Protestant Age,” Appendix B: Catholic Chapels in Colonial Maryland.
Exterior

The one-story chapel at Compton Bassett measures approximately 26 by 18 feet and sits on a raised cellar distinguished by a simple unornamented brick water table on the northeast elevation and southeast gable end of the building; the northwest gable end and southwest elevation do not have a water table. The chapel is of load-bearing brick construction laid in a variety of bonds; it is decorated with randomly placed glazed headers and ruled mortar joints. The structure is three bays wide, one pile deep, and is anchored by a large exterior brick end chimney on the southeast gable. It has a steeply pitched side-gable roof clad with wooden shingles; the roof covers a finished garret living quarter.
The northeast elevation of the chapel, which serves as the main façade, is three bays wide and features a simple box cornice that is repeated on the rear elevation as well; the bays are not spaced symmetrically across the facade. The left-bay contains a wooden, nine-over-nine, hung sash window capped by a segmental arch and surrounded by a simple wooden frame; the masonry in this portion of the chapel was laid in English bond. The center-bay of the façade also has a wooden, nine-over-nine, hung sash window with a simple wooden surround, however, this opening is capped by a flat jack arch. The coursings of English bond cease at the southeast side of the center window opening and a distinct line, accompanied by

46 See Appendix A for the floor plan of the sanctuary/nave.
queen closer bricks, can be discerned running from the cornice to the water table; this change does not occur below the water table.

Below the water table the coursings of English bond continue until approximately four feet from the northwest gable end. Below the water table, offset slightly to the left of the center-bay, is a three foot wide former basement window that has been bricked-in with approximately eleven courses of stretcher laid bricks; this opening is capped by a flat jack arch on the exterior. It is possible that this seam in the brick bond continued below the water table at some point in time, however, any evidence of this was destroyed during the construction of this window opening.
The right-bay of the façade contains a four-panel wooden door that is accessed via four wooden steps rising from a small poured concrete slab. This door serves as the primary entrance into the chapel and is framed by two simple wooden pilasters with cove molding run around the edges. This door is capped by a Federal style four-light fanlight transom that is missing all of its glazing and muntins; a semi-circular brick arch can be seen around the exterior of the fanlight transom. A faint horizontal line in the brickwork extends outwards on either side of the transom light; the cause of this line was indeterminate. It is possibly just the result of different exterior paint treatments, but could also be indicative of an earlier change to the building.
The northwest gable end of the chapel was constructed without following a consistent brick bond pattern. It contains a large number of partial bricks, features
randomly placed glazed headers, and was built without the decorative water table found on the main façade and opposite gable end. At the peak of the gable there is a single wooden, six-over-six, hung sash window with a simple wooden surround and no arch. A single large S-shaped iron shutter-dog is placed immediately to the bottom right of this window opening; no shutters remain in place anywhere on the chapel, nor is there any evidence of shutters having previously been installed.

A six-panel wooden door pierces the far left side of the gable end, one foot from the corner. This door is approximately three feet off the ground and currently has no access stair. This door is known as the priest’s door and provides access directly into the garret stair. This door has no decorative surround, only a simple wooden jamb, and functions as a secondary entrance to the chapel providing access to living quarters in the garret. The door is capped by a flat jack arch and does not appear to have been inserted at a later date.
In the center of the gable wall at ground level is the entrance that provides access into the cellar. The cellar door is a board-and-batten door that is comprised of three wooden planks held together with horizontally placed battens on the back of the door; the lower of the three battens is missing. The cellar door has two large hand wrought iron strap hinges hung on pintles anchored into the wooden door jamb. Evidence in the interior brickwork suggests that this door was raised between one and two feet sometime after this gable end was finished. Prior to this the cellar likely featured either a bulkhead entrance, or this same door hanging at this lower level flanked by brick cheek walls. There is evidence of at least two separate locksets being installed on this door, one of which was a wooden box-lock.

Figure 11. Exterior view of board-and-batten cellar door in northwest gable end (Photo by author).
The southwestern elevation of the chapel contains three bays, the southeastern two of which are in line with the corresponding southeastern two bays on the opposite elevation. All three of these bays contain wooden, nine-over-nine, hung sash windows with identical simple wooden jambs. The cornice on the rear elevation of the chapel is identical to the one found on the façade. The windows in both the left- and center-bays of the rear elevation are capped by flat jack arches. The window in the right-bay is capped by a segmental arch, as is the case with the corresponding window on the façade. The brickwork in the right-bay of the chapel was laid in English bond, which corresponds to the bay opposite it on the façade. At the southeast side of the center-bay window the coursings of English bond stop and change to an inconsistent amalgamation of brick bonds featuring both whole and broken bricks.

While there is no water table on this side of the chapel, the English bond continues towards the northwest gable end below the level at which the water table is found on the façade and southeast gable end. This English bond pattern ceases...
approximately four feet from the northwest gable end; this is similar to what is found on the main façade.

The southeast gable end of the chapel was laid entirely in English bond and is anchored by a large exterior brick chimney placed in the center of the gable. The chimney stack tapers inwards twice, featuring beautifully laid weatherings at the first shoulder. The chimney is capped by a simple projecting course of bricks. This gable end exhibits a higher degree of ornamentation than its counterpart, featuring a stepped line of glazed headers rising with the ridge line of the roof. The brick water table found on the façade of the building also continues on this end.

Two small barred board-and-batten cellar windows pierce the foundation wall below the water table on either side of the chimney. Two wooden, nine-over-nine, hung sash windows capped by segmental arches also pierce the gable end and are symmetrically placed on either side of the chimney; these windows are at the level of
the sanctuary windows on the front and rear elevations. Two symmetrically placed four-light casement windows pierce the wall on either side of the chimney at the garret level, allowing light and ventilation into this space. These windows have simple wooden surrounds and no arches, which is evidence that they were added later.

Figure 14. Photograph of southeast gable end (HABS 1980s).

Cellar

The entrance to the cellar is located in the northwest gable end of the chapel. Three wooden steps descend to a very decorative handmade brick floor laid in a herringbone pattern. The aperture for this doorway was raised at some point and formerly extended all the way to the floor. The board-and-batten door in this
opening is built of well-weathered wood, and features chamfers on the battens and clench hand wrought nails to hold it together.
The underside of the garret stair is visible above the entrance to the cellar. This area has been framed in and lathed in order to shield the hole in the floor from view from the sanctuary and nave. Early plaster applied to riven lath, attached with hand-headed cut nails, remains in place on the underside of this stair, evidencing the time when this area was open to the sanctuary/nave level.

Figure 16. Underneath side of garret stair (Photo by author).
The southeast cellar wall, which is opposite the entrance, is dominated by a large chimney base with a relieving arch built to support the weight of the chimney. This arch is flanked on either side by small symmetrically placed board-and-batten cellar windows. The window to the southwest of the relieving arch appears to be earlier and features pit-sawn lumber with chamfered edges on the battens, clenched wrought nails, and hinges on the right side of the jamb. The northeast window appears to have been replaced and features sash-sawn lumber and modern hinges mounted on the lintel rather than the right side of the jamb. The southwest window is similar in construction to the cellar door and probably dates to the same build period.

Figure 17. Southeast cellar wall featuring relieving arch and flanked by board-and-batten cellar windows (Photo by author).
Most of the sanctuary-level floor joists consist of large timbers that have been sistered with two by eight inch, non-pressure treated, twentieth-century pine lumber. The walls of the cellar are constructed of brick laid primarily in English bond. The northwest gable wall and northwestern three to four feet of the northeast and southwest elevation walls were laid without a consistent brick bond using many broken bricks; this is similar to what was seen on the exterior. A large oak sill caps the masonry on the southern half of both the northeast and southwest cellar walls. The terminus of this sill on the northeast and southwest cellar walls corresponds with the change in brick bond from English bond to a random brick bond on the exterior of the northeast and southwest elevation walls. The five southeastern most sanctuary floor joists rest upon this oak sill, rather than directly upon the masonry foundation walls. These joists are quarter-sawn oak timbers that were hand-hewn and pit-sawn; they likely began as oak puncheons (see above). The bays in between these joists (on top of the sill), were filled in with a rowlock course of bricks and excess mortar.

Figure 18. Sanctuary/Nave floor framing. Note bricked-in cellar window to the left (Photo by author).
Small portions of an identical oak sill were used in the southeast wall on either side of the chimney base in order to provide a mortise to catch the tenons on the ends of the chimney trimmers.

The remaining floor joists are of tulip poplar and are pocketed directly into the brickwork. These joists were hand-hewn and pit-sawn as well, but have been squared completely. The bricked-in aperture at the cellar level in the northeast elevation is visible on the interior side of this wall as well. Approximately eleven courses of stretcher bricks fill the opening and are capped by a layer of slate and a wooden lintel. Approximately three feet in from the northwest gable wall, two large patches comprised of bricks and large amount of cement-based mortar, are nearly symmetrically placed in the northeast and southwest cellar walls. The symmetry of these patches, along with the presence of closer bricks, raises some questions regarding the history of the building that will be discussed in the following section.

![Figure 19. Patchwork in northeast cellar wall (Photo by author).](image)
Sanctuary and Nave

The main floor of the chapel is organized into two distinct areas: the sanctuary and the nave. The northwestern two bays of the chapel serve as the nave, while the southeastern bay functions as the sanctuary. The window sash in the sanctuary are all recessed approximately one foot into the walls and feature wooden sills and surrounds with a beaded, split fascia, elaborated with an ogee; the backband is an ogee with an astragal. While all seven window surrounds are identical, the construction methods used to install them are not. Certain parts of the sanctuary and nave were remodeled in the twentieth century, evidenced by circular-sawn wooden lath attached with wire nails on the ceiling and garret stair enclosure. The sanctuary/nave has a twentieth-century pine tongue-and-groove floor with floor boards that are approximately 2 ⅜ inches wide.

Figure 20. Sanctuary, enclosed by altar rail, containing the chapel’s altar (Photo by author).
The sanctuary contains an altar that sits on a platform raised by two steps and separated from the nave by a wooden altar rail with a simple rounded handrail and square balusters; the altar is flanked on either side by choirs that formerly held choir benches. While the benches themselves are now missing, ghost marks indicate their former location, as do three of the bench supports that remain. The chimneybreast and firebox is positioned immediately behind the altar and protrudes from the wall. This design results in a chimney that is in a sense both an interior and exterior chimney.47 The brickwork immediately around the firebox opening is clearly not original and now bevels outwards, nearly forming a flange around the opening of the firebox. The chimney lacks any mantle or adornment, and a historic photograph reveals that the firebox was bricked-in and the entire chimneybreast covered by parging during the period when the building was used as a chapel.

47 See Appendix A for floor plan of sanctuary/nave.

Figure 21. Ca. late-19th century photograph showing sanctuary, altar rail, and raised altar on main floor of chapel. Firebox parged over behind altar (Maryland Historical Society, [SFF]).
The entryway to the garret stair is located in the northern corner of the nave, immediately to the northwest of the main entrance. The door jamb surround on the entrance to the garret stair features the same molding as the sanctuary/nave window surrounds. This molding dates to the early nineteenth century. A wooden six-panel door, which is now detached, but remains inside the chapel, once hung in this doorway in order to conceal the garret stair. This door features a very high degree of decoration including wood graining and black paint outlining the panels on the side that faces the interior of the stair. The fact that this decoration faces inwards suggests that the door might have been used elsewhere prior to being installed in the chapel. The door is strikingly similar to the doors found on the interior of Pleasant Hills, another of Prince George’s County’s designated Historic Sites that is located nearby.
Stair

A narrow, steeply pitched, stair rises to the garret from the nave. The stairway features twelve treads, with the last three winding to the southeast to meet the garret floor (see Figure 49). The first nine stair treads have been replaced, while the last three are well-worn and obviously original. Although the stair is enclosed from ceiling to floor, the underside of the stair was originally open to the sanctuary/nave. The stair can be accessed both from the nave and the exterior priest’s door located in the northwest gable wall, which allowed access to the garret without entering the sacred space of the chapel. This design feature of the chapel’s spatial layout is one most significant and unique aspects of the chapel. It be discussed in the Significance and Integrity section following the Chronology of Construction.

Garret

The chapel contains a garret with two foot tall knee walls running along the northeast and southwest walls, and a fireplace in the southeast gable wall. A wooden balustrade with square balusters and a handrail identical to the altar rail encloses the top of the stair opening at the garret level. A single wooden, six-over-six, hung sash window with a one by six inch wooden surround pierces the northwest gable end; the bottom of this window is just below the level of the garret floor. The sash is ill-fitting and is not original to this jamb. Two distinct layers of plaster are visible in multiple places on this gable end wall.
The garret itself is finished with twentieth-century circular sawn wooden lath that was never plastered. There is a fireplace at the southeastern gable end of the garret that protrudes from the wall in a manner similar to the sanctuary level; above the firebox it corbels back towards the wall as it rises towards the ceiling.48 The fireplace surround features no mantle, however, one wooden bracket remains above the fireplace indicating that a wooden shelf historically functioned as a mantle. A brick hearth remains in place stretching approximately two feet out into the room.

This gable end is plastered with what appears to be early plaster, probably matching the earlier coat found in the sanctuary/nave and the stair. The lathing nails in this area are hand-headed cut nails that match those found in the garret stair. The chimney is flanked on either side by matching four-light casement windows that open

48 See Appendix A floor plan of the Garret.
inward. These windows have no decorative surround and were punched into this wall at a later date. The garret has a tongue-and-groove floor with 2 ⅜ inch wide pine floorboards that are identical to those in the sanctuary/nave.

Figure 25. Southeast gable end of garret, fireplace in center flanked by four-light casement windows (Photo by author).

Chronology of Construction

This section provides an in-depth explanation of the chronology of construction, physical evolution, and spatial configuration of the Compton Bassett chapel. This building chronology is the result of a meticulous investigation of the structure. From garret to cellar, every accessible building feature was considered in an attempt to arrive at the most accurate history of the building. Documentary evidence contributed as an equally important source of information when it was
available. Many of the building features described in this section relate to the
description that was laid out in more detail in the Architectural Description.

Dendrochronology was used to date select wooden framing members of the
chapel. While an important source, not all wooden members could be dendro-dated
because very specific conditions must be present in order for a date to be extracted.
In the case of the chapel, only one section of the wooden framing was datable using
dendrochronology; this work was completed by Michael Worthington of the Oxford
Tree-Ring Laboratory on February 21, 2013.49

Numerous experts in the field of architectural history were consulted as part of
the investigatory phase of this project. Dr. Carl Lounsbury of the Colonial
Williamsburg Foundation, Mr. Thomas Reinhart, formerly of the Maryland Historical
Trust and now with George Washington’s Mount Vernon, and Dr. Dennis Pogue,
formerly of George Washington’s Mount Vernon and now with the University of
Maryland, all lent their expertise to this project. Their observations were weighed
carefully and interpreted with the help of additional written sources on the subject of
architectural history.50 The result of this investigation is an enhanced understanding
of the building history of the chapel.

49 See Appendix B for the dendrochronology report for the Compton Bassett chapel, as well as an
expanded explanation of dendrochronology and how sample are taken and processed.
50 See bibliography for a complete list of sources.
Because of the complex and confusing nature of this resource, certain aspects of the building’s history remain unclear. All avenues of investigation were exhausted short of deconstructing the entire structure, yet not all potentially informative components of the building were able to be studied. The result is that we may never know precisely how or why the chapel evolved as it did. What follows is an explanation of the best-supported theories for the evolution of the chapel. These theories were developed over the course of this project as investigation continued and new evidence became available. When preservation/restoration activities commence it would be beneficial to resume this investigation, as this work may potentially bring new evidence to light. This includes bringing back Michael Worthington for additional dendrochronology on potentially datable pieces of wood.

Figure 26. Ca. late-19th century photograph of northeast elevation (Maryland Historical Society, SVF).

51 Many of the chapel’s exterior features were not able to be examined in great detail, or even viewed clearly, due to the large white tarp that is currently covering the entire building.
An Evolving Building

Only a brief examination of the chapel is necessary in order to recognize that the building was constructed in multiple periods, rather than as a single composition. Discovering exactly how the building evolved is far more difficult. Because of the odd orientation of the chapel in relation to the main house, it is valuable to discuss the siting of the building as a precursor to discussing the theories regarding the evolution of the building itself.

The chapel is oriented on a northwest by southeast axis, with the façade of the chapel facing northeast. The main house is oriented on an east-west axis with the main façade facing due east towards the Patuxent River. The reason for these different orientations is unknown at this point. One theory is that the chapel was oriented in relation to the former main dwelling house that burned ca. 1771, however, with the help of dendrochronology we now know that if the ca. 1771 date of destruction is correct, the original house was gone before the chapel was constructed. This of course relies upon the given date of destruction being correct, which may not be the case, however until further investigation is completed we are without an alternative. If the burn date is correct, alternative explanations for the chapel’s orientation must be considered.

Considering the close temporal proximity in which the chapel and the current main house were constructed (approximately eight years), it is possible that the chapel was sited in the place that it is as a small part of a larger plan for the layout of the Compton Bassett plantation. Both George Washington’s Mount Vernon and Lord Fairfax’s Belvoir Manor are known to have featured flanking dependencies on
the main approach to the house set on an off-axis. Another brick dependency is said to have existed to the north of the main Compton Bassett house, and it is possible that this building corresponded to the chapel in size and position. If this theory were accurate, the corresponding brick dependency would have fallen somewhere in the area of the terrace gardens northeast of the main house. These gardens have not been dated and could potentially be a nineteenth-century modification to the property. While this is an intriguing idea to consider, further research, including archaeological investigation, is necessary to push it past the point of speculation.

The first theory for the evolution of the chapel itself is that it began as a small, one bay building, approximately 12 feet wide by 18 feet deep, which included only the southeast portion of the structure and the chimney. This would have limited the building to the portion of the chapel that is laid in English bond from cellar to cornice. As such, the chapel would have been expanded at a later date into the structure that exists today. Evidence suggests that this expansion could have occurred in two possible phases.

![Image of sanctuary/nave floor joists in cellar. Far right joist is quarter-sawn oak timber, while the three to the left are tulip-poplar (Photo by author).](image-url)
A considerable amount of evidence exists within the building to support this theory of phased construction, most notably the distinct change in construction methods that occurs at the center-bay. Both the brickwork and wooden framing methods change considerably at the southeast edge of the center-bay windows. The brick coursing in this area switches from an English bond pattern to an inconsistent bond without a pattern (see Figure 12 and Figure 32). Changes in the method by which the building was framed also occur in the area of this center bay. In the aggregate, these changes are visible on the exterior of the building, as well as in the cellar, garret, and interior of the cornice.

The sanctuary/nave level floor joists under the southeastern half of the floor were laid on top of a wooden sill (see Figure 18 and Figure 47). These joists are hand-hewn and pit-sawn oak puncheons that have been split into quarter-round timbers; the sills are oak and are pit-sawn as well. These joists were dendro-dated as
having a felling date in the spring of 1779.52 This date was further confirmed by an entry in one of Clement Hill III’s ledger books recording the purchase of puncheons (see Figure 1). The remainder of the sanctuary/nave level floor joists are hand-hewn and pit-sawn as well, but are tulip poplar. These joists are more cleanly processed, being completely squared, and have been pocketed directly into the masonry walls (see Figure 48). A change in the framing where the sanctuary/nave ceiling meets the roof, particularly near the back of the cornice, is noticeable as well (see Figure 28). This occurs at the same point in the building as the change in brickwork.

\textit{Figure 29. Segmental arch above window on northeast side of the chimney in southeast gable end (Photo by author).}

The sanctuary/nave ceiling joists are hand-hewn and pit-sawn tulip poplar and are notched around a large top plate near the cornice (see Figure 28). On the northeast side of the building, the remains of a tenon can be seen on the end of this top plate where this change occurs. This indicates that this is likely where the plate

52 Worthington and Seiter, \textit{The Tree-Ring Dating of Compton Bassett Chapel}, 1.
ended originally. The aggregate of this evidence is that there are three major changes in building methods all occurring at essentially the same point in the building. These changes span from the cellar to the garret and serve as strong evidence for the chapel having ended in this location when originally constructed.

In addition to these three major changes in construction methods, several stylistic changes are present that also support this theory. Queen closer bricks line the southeast side of the center-bay on both the northeast and southwest elevations. These bricks are indicative of either the end of the wall, or a large aperture such as a door (the possibility that it was a door will be addressed later in this section). Also, the window arches on all of the main apertures in this portion of the building are segmental arches, an architectural element that, like English bond, is consistent with an earlier construction period (see Figure 29). The apertures on the later portion of the building are all flat jack arches (see Figure 30).

Figure 30. Flat jack arch visible above center-bay window in northeast elevation (Photo by author).
There is also a noticeable difference in brick size and mortar composition in the English bond portion of the building. The bricks are larger and contain more impurities, as is common with earlier hand-made bricks; the mortar is softer and contains less finely processed particulate. Moving beyond the southeast side of the center bay the brickwork changes dramatically. No consistent bond pattern can be discerned, a condition that worsens towards the northwest gable end. The bricks change in size as well.

Although larger bricks can be found in these areas, most in this portion are smaller and were laid with a harder mortar that contains more finely processed particulate. The arches that support the brickwork above the window openings in the northwest two bays are all flat jack arches, rather than segmental arches as were seen in the earlier portion of the building (see Figure 30 in comparison with Figure 29).

The evidence discussed thus far strongly supports the argument that the chapel began as a structure that was 12 feet wide by 18 feet deep. However, despite the seemingly overwhelming evidence in support of this theory, additional complexities, as well as a lack of certain key pieces of evidence, suggests that this initial assessment is possibly incorrect. Primarily, the lack of any evidence of a return for where the original end wall would have met the inside of the northeast and southwest walls (see Figure 31 – in between windows). Not only is there no discernable evidence of where the original gable wall would have been keyed into the northeast and southwest elevation walls, a wooden nailing block is recessed into the northeast wall at nearly the exact point where the corner of the walls would have been formed; intact plaster prevented the opposite wall from being examined. Archaeological investigation,
particularly in the cellar, has the potential to reveal evidence that is currently absent above ground, such as the remains of an earlier gable wall.

One possible explanation for this lack of evidence is that when this first portion of the building was constructed it consisted of three brick walls (those that are laid in English bond), and one frame wall (the northwest elevation). The frame wall could have been built this way with the plan of expanding the building in the future; it could have also contained the entrance to the building. While this could potentially account for the lack of a wall return on the inside of the northeast and southwest elevation walls, there is little concrete evidence to support this scenario. Furthermore, there are also few, if any, known examples of this building type.
Another problematic issue with the theory that the building was originally only 12 feet wide by 18 feet deep is that the English bond foundation appears to be continuous up until about four feet from the northwest gable end of the building; it does not break at the same point as the wall above. Furthermore, no closer bricks can be found below the water table near the center-bay indicating that this was the end of the building. As mentioned, queen closers remain in place above the water table on both sides. While the installation of the bricked-in cellar window below the water table would have necessitated the removal of the closer bricks on the southeast elevation, they are also not found on the southwest elevation where the brickwork is apparently undisturbed (see Figure 32).

Given the continuous construction of the foundation, it seems odd that if the chapel did indeed begin as a smaller building, those performing the later work would have taken the care to tie the new portion of the foundation into the existing in well-laid English bond, but then continued with the brickwork above the water table in such an undisciplined manner. If they took the care to lay bricks in English bond pattern below the water table, why would they not have continued this pattern above the water table where their work was most visible? The fact that the bricked-in cellar window spans this joint could possibly account for this peculiarity, but again, this evidence is far from conclusive. With this in mind, an alternative theory can be proposed.

Rather than beginning as a one-bay structure that was approximately 12 feet wide by 18 feet deep, the chapel might have instead begun as a three-bay structure measuring approximately 22 feet wide by 18 feet deep, with a center entrance on both
the northeast and southwest elevations. These center entrances would have been where the center-bay windows are now. This three-bay building could have been used as either a dwelling house, possibly for the family between the time when the original house burnt and when the current house was constructed, or as a plantation office or store. However, as the original house is said to have burned ca. 1771, the eight-year gap is problematic; thus the ca. 1771 date may be incorrect. Perhaps the original house burned closer to 1779, rather than ca. 1771 when it is thought to have burned. If this building was in fact used as a house, it would have likely been this larger structure, rather than a building that was only 12 feet wide by 18 feet deep.

This theory could explain several of the problematic issues that exist with regard to the suggestion that the chapel began as the smaller one bay building. There would of course be no evidence of a return wall between the southeast- and center-
bays because the building would not have ended there. What has been interpreted by some as the end of the building might have actually been one side of the center door opening on both the northeast and southwest elevations. Queen closers were used on the sides of the door and window openings, as well as at the end of a building. This theory fits with the fact that the closers cease at the top of the water table, and could also explain the absence of closers in the foundation wall below the water table on the southwest elevation of the building where the brickwork appears undisturbed.

In the cellar, a few closer bricks were found approximately three feet from the northwest gable wall on both the northeast and southwest cellar walls. The presence of these closers could support the theory that the building ended at that point, rather than at the center bay. There is heavy patching in this area as well (see Figure 19 and Figure 42). One explanation for the presence of such extensive repairs in the same spot on both the northeast and southwest cellar walls is that a wall was removed and the return covered up in order to extend the basement an additional three to four feet, resulting in the current building, which would have been just enough to add the garret stair. This wall could have either been the original gable wall, or simply a dividing wall in the basement. It is difficult to confirm this notion because the patching has wiped out any additional evidence of this change. There were no closer bricks found on the exterior of the building in this area above ground level.

The most pressing question with regard to this theory is that if the building did indeed begin as a three-bay structure that was only slightly smaller, why would the masons have chosen to dismantle the majority of the structure, leaving only the foundation and one third of the building intact above the water table in order to
expand the building? It would have been far more efficient to either maintain the central entrance to the building, or to simply brick in the bottom of the center door openings in order to convert them into windows. The height of these potential former-door openings also seems oddly high, as door openings did not usually extend from water table to cornice.

Dismantling and then rebuilding a majority of the building does not seem logical and is generally not how building modifications were completed. Taking the path of least resistance with regard to altering a building was the most common way to accomplish a change. The only conceivable explanation for this would be that at some point, perhaps in the process of extending the northwest gable end, the northwestern portion of the building collapsed. There is of course no direct evidence speaking to such a collapse so at present this remains little more than speculation. Furthermore, while a collapse would explain the change in brickwork, it does not explain the change in construction methods and materials manifest in the sanctuary/nave floor joists.

A final theory that is being considered is that the building was initially constructed as a half brick/half frame structure that was about 22 feet wide by 18 feet deep, and set upon a continuous brick foundation laid in an English bond pattern. In this scenario the southeast 12 feet of the structure would have been of brick laid in English bond, and the remainder of the building would have been built as a frame structure or covered porch. Again, this could have potentially been done because plans were already laid to expand the building into a larger structure soon thereafter.
However, this theory still fails to address the dramatic change in construction methods that are present in the sanctuary/nave floor system.

The building would have been expanded at some point in order to accommodate the garret stair (resulting in the building that currently exists), which could explain the presence of closers in this area of the basement. However, it seems unlikely that those doing the work would have replaced more than half of the floor joists as a part of this work. It is possible that if these joists were under a wooden structure of some kind they could have rotted at a quicker rate, however, there is no physical evidence to confirm or deny this.

Despite the confusing nature of many aspects of the chapel, some general information about the evolution of the building was discovered with a high degree of certainty. While these observations may not definitively solve the outstanding questions regarding the evolution of the building, it is still quite useful to discuss any building trait that contributed to the chapel’s current appearance.

Several of the window apertures in the chapel were clearly added at a later

![Figure 33. Interior view of southwest side board-and-batten cellar window (Photo by author).]
date. The two board-and-batten cellar windows on either side of the chimney relieving arch are not original to the building. The bricks on either side of these apertures were cut into the wall in order to create these openings. There are also no supporting arches spanning these openings. These openings do appear to have been added quite early though, as the boards comprising the wooden windows are pit-sawn and joined with clenched wrought nails, both of which are early techniques. This evidence suggests that they were likely added in the late eighteenth or early nineteenth century.

The bricked-in cellar window was also added at a later date, however, it is less clear when this window was added. Its placement spans the dividing line between what are thought to be the chapel’s two major construction periods. If the building was indeed expanded from a smaller 12 feet wide by 18 feet deep structure, this window was added after the foundation was expanded. It is possible that this window could account for how careful the masons were when tying together the two periods.
in the foundations. Even if the foundation was constructed all at one time, it is unlikely that this aperture was original because it is supported by a flat jack arch rather than a segmental arch, which dates it after the period of English bond construction.

The cellar door was raised at some point to the level at which it currently sits; the cellar opening now protruded above the level of the main floor. This work was likely done in the early-to-mid-twentieth century and necessitated the enclosure of the back of the garret stair with sawn lath. Prior to being raised, the cellar door would have extended up to the bottom of the sanctuary/nave floor joists; the door would have been reached via a bulkhead entrance, or possibly the same board-and-batten door that is installed currently, but with cheek walls extending outwards on either side of the opening. Archaeology could help confirm or deny this theory.

The herringbone floor in the cellar looks as though it was installed all at one time rather than being expanded as the building grew. This means that the early configuration of the chapel likely featured a dirt floor in the cellar. If this is the case

Figure 35. Brick cellar floor laid in herringbone pattern, thought to be laid continuously rather than expanded as chapel grew (Photo by author).
there is great potential for archaeological investigation in this area, particularly around the joints in the building. This floor is a very fine architectural detail and suggests that either the goods that were being kept in this area were quite valuable, or this was a public space of some sort. Considering that the Hills opened stores and ran a port at Hill’s Landing, this space might have been used in a similar fashion.

Based on the finished underside of the stair, the backside of the garret stair was at one time open to the nave. Ghost marks from where the baseboard previously

Figure 36. Interior view of cellar door showing where brickwork was altered in order to raise the door. This is clearly visible behind wooden steps, and at the top and bottom of the opening (Photo by author).
ran along the inside of the gable wall also confirms configuration this. As mentioned, this modification was made in order to conceal the hole that was created in the floor when the cellar door was raised to its current level (see Figure 15).

One small piece of chair rail remains in place on the southwest side of the southeast gable wall. It is approximately six inches long and is situated between the southwest side of the protruding chimney breast and the gable window in that area. The board has a reddish brown coat of paint, but shows some evidence of additional paint colors underneath. This small piece of double beaded chair rail appears to date to the eighteenth century, which would mean that it predates the window and door surrounds in the sanctuary/nave. This is valuable piece of evidence because it provides some insight into how the space might have been decorated when it was originally constructed. Having a chair rail in this area would have been unnecessary if the space was already being used as a chapel. Wooden nailing blocks recessed into the brick remain in place in other walls around the room at a similar height to this

Figure 37. Eighteenth-century chair rail in between chimney breast and southwest window in southeast elevation in sanctuary/nave (Photo by author).
chair rail; these suggest that this chair rail continued around the entire room.

Several changes are noticeable in the garret as well. The garret window openings on either side of the firebox appear to have been added after the initial construction of the building and have no supporting arches. While it is unclear when they were added, they appear to be later than the board-and-batten cellar windows. This assessment is based on the presence of hand-headed cut nails rather than wrought nails in the window surrounds. The work was likely done around the same time that the main floor of the chapel was re-trimmed, as similar nails were found in both areas. It is unclear when the window opening in the opposite gable was added because a thorough examination of the exterior was not possible. The window sash
are ill-fitting and are clearly not original to that opening.

The sizes of window muntins throughout the chapel were measured as a part of this architectural investigation.53 Based on their profiles, the casement windows in the garret appear to be the oldest windows in the building. Their muntins are very thick, in contrast to the more elongated muntins that are often seen in Federal period windows. The sanctuary/nave window muntins are all the same and appear to date to the early nineteenth century. The six-over-six sash window in the northwest end of the garret was measured as well, however, the sash is not original to the opening and therefore can tell us little about when this opening was created.

While it was not possible to come to a conclusion about the exact evolution of the building, considerable progress was made in understanding its history. The theories discussed are all supported by evidence, however, certain aspects of each theory raised further questions about their validity. Some of these questions can hopefully be answered when parts of the building are more exposed during preservation and/or restoration activities. Archaeology also has the potential to clarify some of these questions through the discovery of features such as builders’ trenches, trash middens, and from the artifact assemblages around the building. The benefits of doing archaeology are discussed in greater detail in a later section.

53 All molding profiles for the chapel are located in Appendix A after the floor plans of each level of the building.
History of Use

While this structure is most commonly known as a chapel, it is likely that the building was not built for this use. Rather, it was converted to a chapel at a later date, most likely in the early nineteenth century, around twenty to thirty years after its initial construction. Prior to this transition the structure likely functioned as either a plantation office or a small dwelling house. The dendrochronology performed on the main house has opened up the possibility that the Hill family themselves might have lived in this building before the current main house was built. That said, the 1798 Federal Direct Tax lists “an old frame house, 50 x 20 feet, very much out of repair,” as being on the property, possibly arguing again the Hill family using the chapel as a residence.

The lack of documentary evidence addressing the building’s history has made it difficult to come to a conclusion about the previous use(s) of the building. While several possibilities exist, speculation without evidence could result in misleading conclusions. Archaeology has great potential to clarify issues surrounding any former uses of the building, as well as dates for these uses. Perhaps more so than any other area, archaeological investigation can speak directly to what sorts of activities would have taken place within, and immediately around, the building.

54 This assumption is based on the relative dates that have been attributed to the molding profiles found throughout the sanctuary/nave level of the chapel.
55 Prince George’s County, Maryland, *1798 Federal Direct Tax for Prince George’s County Maryland*, transcribed by Mary Haley-Amen, 2010.
Significance and Integrity

The Compton Bassett chapel is a very significant historic resource with a high level of integrity. Although it may not have been purpose built as a chapel, the building has the ability to speak to the history of Catholicism in the region, and the history of the landed gentry in early Prince George’s County. The form, layout, and spatial qualities of the building also lend themselves to the chapel’s high level of significance; particularly because of some of the unique aspects of the chapel’s layout.

The intact nature of the structure’s most significant contributing elements, such as the priest’s door, altar rail, sanctuary, choir bays, and altar, as well as the garret living quarters, all contribute to the chapel’s high level of integrity. In addition, the building’s largely intact environmental setting, as well as its relationship to the other historic resources on site contribute to the high level of integrity.

Significance

While the Compton Bassett property was added to the National Register of Historic Places in December 1976, the chapel alone can be found to meet three of the criteria used to evaluate historic sites for inclusion in the National Register of Historic Places. The chapel has a strong association with important historical events in colonial and post-colonial Maryland, most notably its association with the constraints placed upon Catholics in the area even as late as two years prior to the conclusion of

56 National Register of Historic Places, Compton Bassett, Upper Marlboro, Prince George’s County, Maryland, National Register # 83002959.
the American Revolution; it has a strong War of 1812 context as well (Criterion A).57

The chapel is associated with the socially prominent and influential Hill family (Criterion B).58 Perhaps the most significant aspect of the Compton Bassett chapel is its distinctive design characteristics related to its use as a private family Roman Catholic chapel (Criterion C).59 While all criteria for inclusion in the National Register are important, Criterion C has particular relevance and warrants further discussion below.

Architectural historian Thomas Reinhart has noted that the layout and design of the Compton Bassett chapel,

“represents a well-designed response to the unusual circumstances of Catholics in Maryland throughout the eighteenth and early nineteenth centuries. Due to the illegal status of the Roman Catholicism under British rule... Mass rooms in private homes and free-standing Mass houses... often contain(ed) living space for circuit-riding priests; in particularly rural areas this arrangement is found as late as the 1830s and 1840s.”60

As one of the only remaining intact examples of this building type, the significance of the Compton Bassett chapel cannot be understated. As the floor plan of the chapel demonstrates, the building was equipped with a separate door that provided access to the garret living quarters without passing through the sacred space.61 A separate door then provided access into the sanctuary/nave. This allowed the priest to vest and enter the chapel directly from his quarters, preventing him from having to exit the building and reenter through the front entryway when Mass was being offered.

58 Ibid.
59 Ibid.
61 See Appendix A for floor plan of sanctuary/nave.
In addition to its specific design layout and spatial function, the chapel also contains both eighteenth- and nineteenth-century building techniques and architectural features. These are extremely significant in and of themselves and include, but are not limited to, historic brickwork and masonry, hand-hewn timbers, framing techniques, and early molding and trim work. The aggregate of these various levels of significance is that the Compton Bassett chapel is a very important structure.

Integrity

The Compton Bassett chapel has a high level of integrity meeting the requirements for all seven aspects of integrity required for listing on the National Register of Historic Places. The building retains its integrity of location, design, setting, materials, workmanship, feeling, and association. The location of the chapel is original, with the building never having been moved; thus it maintains its integrity of location. While the building has undergone considerable work over the years, the integrity of the sanctuary and nave layout and design have not been modified to any great degree. The rural setting in which the chapel was built remains relatively intact, as do a majority of the original materials with which the building was constructed. Because so much of the original fabric remains, a sense of the chapel’s workmanship can easily be understood. The integrity of feeling that is conveyed by the chapel remains intact as well, an aspect that is helped greatly by the fact that the chapel retains its integrity of association with the surrounding buildings on the Compton Bassett property.

Chapter 3: Investigation of Building Systems

Existing Conditions

The materials that comprise the chapel’s structural system are in poor condition. The effects of deferred maintenance and inappropriate repairs were exacerbated by the earthquake that affected the Mid-Atlantic region on August 23, 2011. The assessment of the chapel will begin with the masonry structural systems, starting at the level of the cellar and moving up to the roof line. An investigation of the chapel’s wooden framing systems will follow, and the condition of the chapel’s fenestration will be examined in detail. Finally, the interior finish and decorative elements will be addressed. Treatment recommendations are provided in the ensuing chapter.

Masonry Structural Systems

Cellar / Foundation Walls

The herringbone pattern brick cellar floor remains in good condition (see Figure 2.31). The floor does not appear to have any loose bricks, nor have many of the bricks spalled or deteriorated to any significant degree. Select bricks may need to be rotated or replaced, however, this is only necessary in a few areas.

The cellar walls, which serve as the foundation for the chapel, range in condition from good to poor. Large cracks, spalling brick, and deteriorating repairs are visible in all of the cellar’s walls. The effects of rising damp have been exacerbated by the use of Portland cement-based mortars that introduced an
inappropriate material to the building. 63 The result has been a dramatic deterioration of the chapel’s masonry systems.

Portland cement-based mortars came into widespread use in the early twentieth century; they are harder than historical lime-based mortars.64 Unlike lime-based mortars, which allow water to pass back and forth through it without damaging the building or masonry, cement-based mortars are not water-permeable, and form a moisture barrier that forces moisture to pass through the brick itself instead.65 This results in the conditions of efflorescence and spalling that can drastically affect the integrity of the masonry. Efflorescence and brick spalling are the result of moisture and salt crystals being forced through the brick. The efflorescence is the visible accumulation of the salts, whereas the spalling results from the salts expanding inside the bricks and breaking apart the material which comprises the brick.66 In the chapel, this problem is not only found in the cellar, but affects a large amount of the structure’s masonry.

63 John Sines, site visit with author, (Compton Bassett, Upper Marlboro, MD, February 9, 2013).
65 Ibid.
66 Ibid.
The northwest cellar wall is in fair to poor condition. This wall suffers from cracking and basal erosion, as well as brick spalling caused by rising damp.67 Because the brick bond of this wall appears to have been poorly constructed from the start, without any regular pattern, it has not held up well. The wall has suffered further deterioration as a result of rising damp.

67 Basal erosion is a form of deterioration in which the base of the wall has deteriorated through erosion. This significantly weakens the wall and can leave the brick courses above unsupported.
The northeast cellar wall is in poor condition. This wall suffers from significant basal erosion and very serious brick spalling resulting from rising damp and previously completed improper repairs. Major cracks in this wall span from the lower portion near the floor all the way to the sanctuary floor above. Large portions of the wall are also covered with a combination of efflorescence and mildew, giving the wall a white tint. The bricked-in window opening in the center of the wall appears to be in fair condition but needs to be repointed; it looks as though it was never properly pointed. The row of slate that was laid as a moisture barrier between the top course of the patch and the wooden lintel above is in good condition; the lintel shows signs of water damage but is in good condition as well. Additional patching below this former opening is in poor condition. There is a large vertical concrete patch, along with some particularly serious basal erosion, approximately three feet back from the northwest cellar wall. The entire cellar wall needs to be repointed.

Figure 41. Bricked-in cellar window and wooden lintel above in northeast cellar wall (Photo by author).
The southwest cellar wall is in poor condition as well, suffering from significant basal erosion, brick spalling, cracking, and a high level of moisture damage (even more so than the opposite wall). The additional moisture damage resulted from a hedge of boxwood that was planted too close (approximately one foot), from the exterior of this wall. While the hedge itself was removed in February 2013, the root systems of these plants remain in place and are still holding moisture against this foundation wall; they have penetrated the brick wall in some areas. This wall contains a vertically-oriented patch approximately one foot in width and approximately three feet back from the northwest wall. These patches were made using a cement-based mortar and are surrounded by severe basal erosion and brick spalling. This patch corresponds to the patch found on the opposite wall.

![Patching and cracking in the brickwork in southwest cellar wall. Improper cement can be seen where it was used in this patch, roots from Boxwood hedge have grown through wall towards floor level (Photo by author).]
The southeast gable end wall of the cellar is in poor condition. This wall is dominated by the large relieving arch that is supporting the weight of the chimney (see Figure 17). While the relieving arch appears to be in good condition, and show no evidence of decay or improper mortar replacement, a gap as large as four inches has developed between the backside of the top of the relieving arch and the gable wall/chimney base.

![Figure 43. Large crack that has opened between chimney relieving arch and southeast gable end wall (Photo by author).](image)

The masonry around the board-and-batten cellar windows on either side of the relieving arch is in poor condition. These apertures are not original and were executed poorly; they now feature high levels of spalling and cracking. The small one inch thick board used as a lintel over the opening to the southwest of the arch has become dislodged and is now allowing the bricks to collapse into the opening (see Figure 33). This collapse will worsen with time if left unaddressed.
Exterior Walls

The walls of the chapel above grade level are in varying states of disrepair. Several places have been damaged by serious cracking and brick spalling that now threatens the structural integrity of the chapel. The entire structure is in need of a considerable amount of brick replacement and repointing using period appropriate lime-based mortar.68 As is the case in the cellar, these problems stem from a combination of deferred maintenance, improper repairs, and damage caused by the August 23, 2011, earthquake. It is important to note that while the earthquake negatively affected the chapel, the building was in a compromised state prior to this event due to this combination of improper repairs and deferred maintenance.

The main façade of the chapel (northeast elevation) is in fair to poor condition, exhibiting serious cracking, spalling, and mortar deterioration in several areas. Previously completed repointing jobs using inappropriate mortar can be seen across this entire elevation, but primarily on the northwest side. Brick deterioration on the façade extends from below the water table up to the cornice line; however, it is generally worse in the lower portion of the building. These problems in the lower portion of the building are consistent with the theory that rising damp has been the catalyst for deterioration. The amount of water moving through the bricks lessens as it rises higher from the ground, hence, decreasing the deterioration that is seen.69

The northwestern gable end of the chapel is in poor condition. This is primarily a result of the extensive amount of brick spalling in the lower portion of this elevation. The lack of a consistent brick bond, combined with poorly executed

68 John Sines, site visit, (February 9, 2013).
69 Ibid.
repairs, has left this wall without any semblance of a deliberate brick bond pattern; nearly half of the bricks used in this elevation are partial rather than whole bricks. This deterioration extends from ground level up to the ridge line, however, is far worse towards ground level. Conditions are similar to those found on the façade.

The southwest elevation of the chapel is in very poor condition, exhibiting serious deterioration towards the northwest corner. As with the other elevations, this deterioration worsens towards ground level, with bricks remaining in good to fair

Figure 44. Brick spalling and mortar deterioration in northwest gable end around cellar door (Photo by author).
condition towards the cornice line in certain areas. This is particularly true towards the southeast gable end. Many of these upper areas have never been repointed using improper mortar, which has helped the masonry to remain in good condition; this is particularly true on the portion of the chapel associated with the first era of construction. The boxwood hedge that was planted adjacent to this elevation was allowed to grow too large and was leaning on the chapel wall until recently. These plantings contributed to the deterioration of this elevation by trapping moisture against the foundation and wall.

The southeast gable end of the chapel is in extremely poor condition. Large portions of masonry have fallen out completely where the chimney is keyed into the wall on either side; this is the result of deferred maintenance and the recent earthquake (see Figure 45 and Figure 46). The two corners of this gable wall remain in good to fair condition, as does the upper portion of the wall and chimney stack. Unfortunately, both the base of the chimney stack and central portion of wall, from the top of the windows downwards, will likely need to be dismantled and rebuilt as a result of the high degree of deterioration.70

The lower portion of the chimney has deteriorated to such a degree that it is now deflecting several inches and is in immediate danger of collapse; this is in large part the result of the August 23, 2011, earthquake. The chimney stack also contains a large vertical crack running directly up the center of the base of the chimney. The result of this is that the chimney is deflecting along a horizontal axis away from the building, as well as along a vertical axis splitting the chimney itself. The two sanctuary level windows flanking the chimney are surrounded by extensive cracking.

70 John Sines, site visit, (February 9, 2013).
The stability of the corners will hopefully allow the rebuilding work to begin at the outside edge of each of the sanctuary level window and extend upward and inwards to below the first weathering on the chimney, as well as downward towards ground level. The upper portion of the gable appears to be in stable condition and can
be approached more conservatively if a support system can be designed to stabilize this upper area while the lower portion is being rebuilt. The line of glazed headers running parallel with the rake boards are in good condition as well; all possible care should be taken to retain this important decorative element.

Wood Framing Systems

Sanctuary Floor System

A significant amount of the wood comprising the sanctuary/nave flooring system is in poor condition. The first five floor joists coming out from the southeast gable wall, along with the chimney trimmers, are quarter-sawn oak joists and are in good to fair condition; these joists were hand-hewn and pit-sawn. These joists exhibit evidence of a prior powderpost beetle infestation, however, core samples that were taken show that this damage is largely superficial. These beetles were confined to the

Figure 46. Cracking below and around southwest window on southeast gable end (Photo by author).
layer of sap wood and as a result did not compromise the structural integrity of these timbers. One or two joists have rotten ends and may need to be sistered.

The remaining sanctuary floor joists are of tulip poplar rather than oak. These joists were hand-hewn and pit-sawn as well and are thought to be associated with a second period of construction on the chapel. Tulip poplar is less insect and rot resistant and has therefore degraded at a much quicker rate. Several of these joists are nearing complete failure and will likely need to be replaced. Many of these joists were sistered in the early-to-mid-twentieth century with two by eight inch pine which has helped prevent the total collapse of the nave floor. A large timber was also placed vertically in this area, in the northwest corner of the cellar, in order to serve as a jack to support the weakened floor (see Figure 48).
The floor boards in the sanctuary/nave were replaced in the early-to-mid-twentieth century with 2 ⅜ inch wide tongue-and-groove pine flooring. While much of the floor remains intact, it has failed completely in several areas leaving large holes opening directly into the cellar. Examples of this include the area immediately inside of the main entrance, at the foot of the garret stair, and on either side of the chimney and altar (see Figure 48). The aggregate of these problems is that the sanctuary/nave floor is in very poor condition and will need to be completely replaced. The fact that it is not original makes this an easier decision.

Garret Stair

The wood that comprises the garret stair appears to be in stable condition despite significant evidence of powderpost beetles in the studs that were used to enclose the underside of the staircase at the sanctuary/nave level. A thorough
examination of the stair stringers was not possible due to the fact that the stair remains enclosed in plaster and lath. All that is visible are the feet of the stair stringers, which are in fair condition. The treads and risers of the stairs vary in condition because all but three were replaced in the early-to-mid-twentieth century. The replacement treads are in good condition, while the three original treads are in good to fair condition.

Garret Floor System

The floor of the garret is in fair condition. The flooring was replaced with the same modern tongue-and-groove pine flooring used on the main floor and varies greatly in condition throughout the room. The floor is in good condition near the stair landing, while in the southeast corner the floor has rotted away completely. As with
the sanctuary floor this is a result of the complete failure of the roof directly above
this area.

The garret floor joists remain concealed and could not be examined
thoroughly at this time. However, there are a few exposed areas where the framing
could be assessed in greater detail. A variety of wood is present, evidence of repairs
completed throughout the life of the building. To the right of the chimney, where the
floor has rotted through completely, the ends of the joists are no longer attached to the
masonry wall and are hanging freely (see Figure 50). These joists are made of tulip
poplar; one is spliced with a piece of one by six inch beaded baseboard (see Figure
50). The floor joists were also examined through small openings in the plaster lath on
both knee-walls. The joists visible through these viewing ports were of tulip poplar
and yellow pine, and have been sistered in places where they had deteriorated previously (see Figure 52).

Roof System

The wooden framing of the chapel roof was replaced in the early-to-mid-twentieth century using modern building materials. The roof is in fair to poor condition and should be one of the main priorities during stabilization efforts. While the shingles and shingle nailers have failed completely in multiple areas, the central and northwest portions of the framing appear to be in fair condition. Once the shingles have been removed a more thorough inspection will be possible to determine which framing members need to be replaced.

Figure 51. Chapel roof framing at peak of southeast gable (Photo by author).
The interior of the cornice was inspected visually through the small holes in the knee walls. A false plate was installed on top of the garret floor joists in order to provide framing for the cornice line on the northeast and southwest elevations of the chapel. While this framing is exposed during the repair of the roof, the cornice should be inspected further as well. This will allow for a more complete assessment of conditions, and clarify the chronology of construction.

Fenestration

Cellar

The fenestration at the cellar level consists of the cellar entry door and the board-and-batten cellar windows flanking the relieving arch on the southeast gable wall. The cellar door is in fair condition and appears as though it can be retained and conserved rather than replaced. The planks comprising the door show some signs of

Figure 52. Interior of northeast cornice. False plate completely rotted away on right side of picture (Photo by author).
rot and deterioration towards the bottom, however, they do not appear to be too rotten to be conserved. There are several holes in the planks, providing evidence of where at least two previous locksets and/or hasps were installed; the metal portion of a wooden box lock is still in place on the door. Both the wooden door surround and wooden threshold appear to be in good condition as well. The door hangs on two large wrought iron strap hinges, the bottom of which has become detached from the door; this hinge has been saved and can be reattached (see Figure 11 and Figure 15).

The two small board-and-batten windows in the opposite gable wall are in fair condition. Wood rot and general deterioration is present in several areas; this is also true of the wooden bars and other exterior components. The window in the southwest side opening is original (the opening itself is not original). It is well-made and is in better condition than its opposite which was replaced at some point. As with the cellar entry door, these windows do not appear to have deteriorated beyond the point of repair and should be conserved rather than replaced. These apertures were built without support arches and may require engineering to stabilize them.
Sanctuary

The fenestration on the sanctuary level consists of the main entry door and seven wooden, nine-over-nine, hung sash windows. The four-panel wooden door that hangs in the entryway of the chapel is in poor condition. The bottom rail of the door has become detached, and the bottom several inches of each side rail show signs of rot (see Figure 9). Because the bottom rail of this door has been saved, it can potentially be reattached (see Figure 57). If not, it can be duplicated. Because the bottom rail has become detached, the intact portion of the door has sagged considerably, allowing the door to become racked and substantially out of square.
The door surround, including the fanlight transom, is in poor condition. The glazing and all of the muntins have fallen out of the transom light; a one by four inch board has been nailed across this fan light opening in order to help the fan light framing retain its shape. The wooden trim on the interior and exterior of the surround

Figure 57. View of severely racked four-panel main entry door. Detached bottom rail has been leaned against it to show how door would have looked intact (Photo by author).
appears to be in fair condition and should be able to be conserved and left in place (see Figure 9).

![Image of interior of fanlight transom over main entryway](image)

Figure 58. Interior of fanlight transom over main entryway (Photo by author).

The center-bay and southeast-bay windows on the northeast elevation both appear to be in fair condition. It looks as though the sash can be conserved rather than replaced, and the window sills look as though they can be saved as well. Both windows show evidence of sun and water damage on the interior and exterior. In select locations small wooden sash members, such as muntins, might require duplication and replacement if they have deteriorated. The surrounds of these windows will need to be examined closely once the sash have been removed in order to make a good assessment of their condition. At present, the southeast-bay window is covered with ivy that is contributing to the damage of the sash and surround. While the windows need to be reglazed, no window panes are missing or in need of replacement; many panes appear to be original (see Figure 61).
The two windows flanking the fireplace are in fair to poor condition. The southwest window sill is in poor condition and will need to be replaced, and the upper sash is partially dislodged from the jamb. All wood, including the sash, sill, and surround, show signs of water damage; no window panes are missing from either sash. The damage to this window is the result of a hole in the roof directly above.

Figure 59. Southwest window in southeast gable end (Photo by author).
The northeast window surround has not deteriorated nearly to the degree of its counterpart, however, the sash shows considerable evidence of insect damage (nearly all of the chapel windows have been damaged by carpenter bees). As with all of the windows in the chapel, sun and water damage have been exacerbated by the lack of proper maintenance, which together are largely responsible for the deterioration of this window. No window panes are missing from either of these windows and many panes appear to be original. This window is in fair condition.

The windows on the southwest elevation of the building are in worse condition than the rest of the windows on the sanctuary level. The window in the southeast-bay is in very poor condition. The leak in the roof directly above this window is largely responsible for its deteriorated state; the overgrown boxwood and wisteria vines on the rear elevation of the chapel also contributed to this deterioration. The window surround and window sill both suffer from significant rot and deterioration; the top of this surround is collapsing into the opening. While parts of the surround will need to be replaced, such as the sill, the window sash are in better condition and can possibly be conserved; no window panes are missing.
The center-bay window is in fair condition and should be able to be conserved and retained. The sash, surround, and sill all suffer from sun, water, and insect damage, and wisteria vines have been allowed to grow into the building through cracks between the two sash. No window panes are missing from this window.

The northwest window is in fair to poor condition, with most of the damage confined to the lower sash. The window surround appears to be in good condition, however, the bottom rail of the lower sash is quite rotten and may need to be replaced. The rot on this lower rail is visible on the exterior of the sash as well. The window sill suffers from water and sun damage as well as rot, and may need to be replaced. No window panes are missing from this sash.
Garret

The condition of the windows in the garret ranges from fair to poor. The wooden, six-over-six, hung sash window in the northwest gable end is in fair condition and looks as though it is not suffering from any major rot or deterioration. There are signs of sun and water damage, as is the case with all of the windows in the chapel. This damage, which is largely superficial, appears to be the extent of the problems facing this window. The top sash is missing one window pane, as is this bottom sash.
The two four-light casement windows flanking the chimney on the opposite gable end are in fair to poor condition. The window to the southwest of the chimney appears to be in fair condition, showing only signs of water and sun damage, along with normal wear and tear. The sash does not appear to be rotten or seriously compromised in any way. The window jamb looks to be in fair condition as well (see Figure 63. Interior view of six-over-six window in northwest gable end in garret (Photo by author).)
Figure 38). The window on the northeast side of the chimney is in poor condition and will likely need to be replaced. All of the muntins are missing from this window sash, as is the lower corner of the sash where the bottom and side rails meet. The jamb itself appears to be in fair condition and should be able to be retained. As with the board-and-batten cellar window openings, the structural integrity of these window openings should be evaluated because they lack supporting arches.
Interior Finish and Decorative Elements

Sanctuary

The plasterwork in the sanctuary is in poor condition and is detaching from the walls, with the worse deterioration occurring on the northeast and southeast walls (see Figure 31). Also on the northeast and southeast walls, an earlier layer of finish plaster can be seen underneath the later coat that currently covers the majority of the chapel walls. This older coat has several large gouge marks in its finish coat from where it was intentionally gouged and chipped in order to ensure that the later plaster that was applied over top of it adhered properly.

Figure 65. Twentieth-century lath in sanctuary/nave. Lath and framing enclosing back of garret stair visible on right (Photo by author).
The sanctuary/nave ceiling was re-lathed in the early-to-mid-twentieth century with circular sawn wooden lath, however, no plaster was ever applied. The same is true of the lath that encases the back of the garret stair from floor to ceiling in the nave area of the chapel.

Garret Stair

The interior walls of the stair, as well as the underside of the stair, retain much of their nineteenth-century plaster finish; this plaster is in poor condition but may be able to be conserved. This plaster was applied to riven lath that was nailed with hand-headed cut nails and is now falling off the wall in some places. While some of this plaster might be conserved and retained, a significant portion is in poor condition and will need to be replaced.

![Figure 66. Riven lath (applied with hand-headed cut nails), and early plaster in garret stair (Photo by author).](image)
Garret

The garret was re-lathed in the early-to-mid-twentieth century, however, no plaster was ever applied (see Figure 24 and Figure 25). Bundles of unused lath still remain in the garret from where work on the chapel was stopped prior to completion. The result is a nearly perfectly lathed room with no trace of a plaster finish. Other than where the ceiling has fallen through to the right of the chimney, the lath is in good condition and could be used if the decision were made to finish the room; that is not the recommendation of this report.

The plaster on the gable end walls of the garret is in a similar condition to the plaster found on the sanctuary level walls. Plaster from multiple periods is visible in select areas (see Figure 24). The plaster on the southeast gable wall is in poor condition, most of it having fallen off over the years due to the roof leak overhead (see Figure 25). Riven lath remains in place above the casement windows on either side of the chimney (see Figure 25). The parging above and around the firebox remains intact, however, it too is in poor condition at this time.
The plaster on the northwest gable wall is in good to fair condition and could be retained if conserved properly. Multiple eras of plaster are visible, including a large patch job using what appears to be cement-based mortar in the upper right corner of the wall (see Figure 24).

Materials Analysis

This section closely examines the materials that were used during the construction of the chapel. This is particularly important for a building like the Compton Bassett chapel because the complex history of the building has resulted in a structure with materials from several different periods. Many of these materials do not always work well next to each other.

Masonry Analysis

Brickwork

The brickwork of the chapel appears to have been laid in three periods. The sizes and material composition of the bricks differs in each of these phases. In the earliest period of the chapel, which includes the southeast bay and the majority of the foundation walls, the bricks were laid in an English bond. The bricks are early handmade bricks that measure approximately 8 ½ inches by 4 inches by 2 ½ inches in size. Bricks from different eras can be found in this section as well from where they have been inserted during various repairs over the years.

71 Bricks sizes recorded for this section of the report were recorded by measuring several bricks from each section of the building and using the most commonly occurring size.
In what is believed to be the second period of brickwork, which spans from approximately the southeastern side of the center-bay above the water table up until to approximately 4 feet from the northwest gable end, the bricks are laid in a random pattern that loosely resembles an inconsistent variation of Common bond. These bricks are handmade as well, but are smaller in size, measuring approximately 7 ½ - 9 inches by 4 inches by 2 inches. These bricks are slightly darker in color than those found in the earliest period of brickwork. The bricks in this area are better-formed and the walls contain a higher number of modern bricks that were inserted during repair work.

Figure 68. Brickwork, water table, and left side of main entrance on northeast elevation of chapel (Photo by author).

72 Bricks sizes recorded for this section of the report were recorded by measuring several bricks from each section of the building and using the most commonly occurring size.
The final distinguishable phase of brickwork comprises the last 4 feet of the northwest end of the front and rear elevation, as well as in the northwest gable end, from cellar floor to the peak of the gable. The brickwork in this section was laid in an even more random manner, lacking any regular bond pattern. The bricks in this section vary in size to such a degree that no useful average can be obtained, with bricks measuring anywhere from 8 ½ inches by 4 ¾ inches by 2 inches down to several partial and broken bricks that were reused during the construction; approximately half of the bricks in this section are incomplete. This section contains both hand-made and modern machine-made bricks.

Mortar

The composition of the mortar varies greatly throughout the chapel. In the first era of brickwork the mortar is quite soft and contains large pieces of unevenly processed aggregate such as partial oyster shells and small rocks. This section of the chapel exhibits some evidence of repointing with modern cement-based mortar, but to a much lower degree than what is found on the rest of the building. This almost certainly results from the fact that this portion was constructed more carefully and with a higher degree of skill initially.

The second period of the brickwork has a much higher degree of mortar replacement; both with later lime-based mortars, and modern cement-based mortar. Close examination of what appears to be the original mortar reveals it to be more finely processed and harder in composition than its counterpart in the first period of the building.
In the last period of brickwork, the bricks were laid with a mortar that is similar the mortar found in the second period of construction. This section of the building contains the highest degree of mortar replacement with improper cement-based mortars. Several different generations of mortar can be seen ranging from early lime-based mortar to modern Portland cement-based mortar. The high degree of deterioration is in large part a result of how poorly this section of the building was constructed initially. The lack of any brick bond pattern, as well as the use of so many incomplete and broken bricks, resulted in a wall that was weaker than it should have been.

Plaster

The plasterwork on the interior of the chapel ranges considerably in material composition. It dates to what appears to be two distinct phases of plastering. Other than a few small patches, all of the plaster found inside the chapel is lime-based plaster. A chemical analysis of the plaster in the chapel is necessary in order to determine the exact material composition of the plaster from each of these layers.

Paint

Paint samples should be taken from different places throughout the chapel so that paint analysis can be completed. In addition to interior paint from the walls, paint from different moldings (from different eras), doors, and the lime wash that has been applied to the exterior of the building should all be analyzed. This work has the potential to reveal a great deal about the history of the building. Paint analysis should be done prior to the commencement of work on the chapel.
Wood Analysis

Wood Typology

Multiple species of wood were used during the construction, expansion, and remodeling of the chapel. The sanctuary/nave floor joists, which are visible from cellar, are made of both old growth oak and tulip poplar. The first five floor joists closest to the chimney base, as well as the chimney trimmers on either side of the relieving arch, are all oak. The sill plate on which these joists are resting, and the lintel over the bricked up window below the façade water table are also of oak. The remaining joists that comprise the sanctuary floor are of tulip poplar, sistered in many places with twentieth-century yellow pine lumber.

Moving upwards, the tongue-and-groove flooring of the sanctuary floor is pine; the same wood flooring is found in the garret as well. The riven lath found throughout the chapel appears to be oak, while the sawn lath appears to be pine. The trim in the sanctuary/nave level of the chapel appears to have been made from a softer wood such as fir.

The garret floor/sanctuary and nave ceiling framing is a combination of materials because it has been repaired at multiple times in the past. Joists are made from tulip poplar and yellow pine, and there is even a piece of reused baseboard inserted upside down as a sister to one of the joists. Additional framing members and nonstructural members are made of pine, fir, tulip poplar, and possibly oak.

The roof system, replaced in the early-to-mid-twentieth century, is made of circular sawn dimensional yellow pine lumber. Some older pieces of tulip poplar were reused as well.
Environmental Pressures

While many of the issues facing the chapel stem from a combination of deferred maintenance, improper repairs, and the age of the building, several issues also exists that are related to environmental pressures facing the building. Prior to M-NCPPC’s acquisition of the property, two large trees were allowed to grow until substantial branches overhung the chapel. It is likely that these trees contributed to the degradation of the chapel roof, which in turn allowed the interior of the chapel to fall further into disrepair. While these trees have since been removed, there are other close trees that must continue to be well maintained in order to make sure that they do not encroach on the building.

Until recently, a boxwood hedge lined the southwest elevation of the chapel (visible under tarp on right side of Figure 69). While this hedge has since been removed, the root systems of the plants are still in place and are holding water against
the foundation of the building. This is contributing to the deterioration of the brickwork in the cellar. The root systems of these bushes should be removed in order to improve drainage on this side of the building. This work should be done as a part of the larger archaeological investigation around the building. The deterioration caused by this boxwood hedge was not limited to the subterranean level. The brickwork above ground level, as well as certain wooden elements including the window sash, surrounds, and cornice line also suffered considerable deterioration. These bushes enabled wisteria vines to grow onto the building as well, assisting in the deterioration of the window sash and surrounds, cornice, and brickwork.

The grading around the building is generally adequate, however, it should be studied carefully and improved where necessary in order to assist water in draining away from the chapel. Archaeological investigation should accompany this work.

Figure 70. Interior view of dirt coming over cellar threshold. Indicative of the need for possible regrading around building (Photo by author).
Previously Completed Work

Pre-M-NCPPC Acquisition

A significant amount of work has been undertaken on the chapel during the twentieth century. The twentieth century has been set apart from the rest of the building’s history because it is during this period that improper materials were likely introduced to the building. In the eighteenth and nineteenth centuries, material would have more likely been replaced in-kind without any detrimental effects on the building. Due to the fact that no records are available with regard to a repair history, an analysis of the materials in the building, aided by a comparison of photographs from different eras has helped inform this section of the report.

During the twentieth century, the floor boards were replaced with modern pine tongue-and-groove flooring. Much of the building was also re-lathed in preparation for plasterwork that was never completed. It is clear that no plasterwork was undertaken during this time because the areas that were re-lathed show no evidence of ever having received plaster. The framing was also replaced and/or reinforced in several areas during the twentieth century; the sanctuary floor system and roof framing system are two examples. This work was almost certainly done at multiple periods rather than all at one time. The exterior masonry was repointed, and the building envelope was generally tidied up and put into good working order on multiple occasions throughout the twentieth century. While this work improved the appearance and condition of the chapel at that time, much of it ultimately contributed to the deterioration of the building because improper materials were used.
Post-M-NCPPC Acquisition

No significant work has been undertaken on the chapel since M-NCPPC’s acquisition of the Compton Bassett property. The two large trees in front of the building were removed sometime in 2010. A large tarp was draped over the building shortly thereafter as a way to slow deterioration caused by the roof failure (see Figure 69). In February 2013, the large boxwood hedge was removed from along the southwest elevation of the building. Furniture and deteriorated personal items that had been stored in the building for several years were removed in April 2013 as a part of the management efforts associated with the general cleanup of the larger Compton Bassett property.
Chapter 4: Treatment Recommendations

Recommended Treatment Approach

The management and interpretation of the Compton Bassett chapel requires the adoption of a primary treatment approach to the building. The accepted set of guidelines for formulating such an approach is the Secretary of the Interior’s Standards for the Treatment of Historic Properties, which outlines four treatment philosophies: *Preservation, Rehabilitation, Restoration,* and *Reconstruction.* A *preservation* approach places an emphasis on maintaining as much of the original building fabric as possible, while simultaneously considering the physical alterations, additions, and other changes that have occurred to a building or site over time as contributing to the overall narrative as a historic property. *Rehabilitation,* in contrast, is designed to adapt a building or landscape for a new use and could include the modification or replacement of building elements that have degraded beyond repair. A *restoration* approach returns a site to a specific period, dictating what is retained and what is eliminated. Finally, *reconstruction,* intended for historic sites where key structures have been lost, involves the reconstruction of structures that are no longer extant based on historical evidence.73

Primary Treatment Approach

Considering the current condition of the Compton Bassett chapel, as well as the lack of any formal plans for the use, interpretation, or restoration of the building, a

preservation-based treatment approach is most appropriate for the building at this time. Preservation protects the significance and integrity of the chapel, which is critical given the building’s designation on both the National Register of Historic Places and as a Prince George’s County Historic Site. The Compton Bassett chapel retains a high level of integrity, and this approach places an emphasis on retaining the building’s historic fabric. Preservation provides a sound approach that addresses the declining condition of the building, while allowing for future uses and the development of interpretive programs.

A preservation-based approach was also recommended as the most appropriate treatment for the larger Compton Bassett cultural landscape as part of a cultural landscape study of the property conducted by the University of Maryland’s Historic Preservation Program in 2012.74 Coordinating these two treatment approaches will allow for a similar management plan to be developed for the chapel, its environmental setting, and Compton Bassett’s other interrelated historic resources. The chapel derives its significance from a variety of elements, including but not limited to its religious significance, local and regional history, and its architecture and spatial design layout and use.75

While the Compton Bassett chapel retains a high level of historic fabric, this fabric has become increasingly threatened due to the deteriorating condition of the building. Future plans for the chapel must prioritize the conservation of historic fabric, and include both short-term and long-term maintenance activities for the building. To ensure the retention of the chapel’s high level of integrity, a long-term

A preservation-based management plan should be developed. Such a plan would be designed to maintain and protect this valuable historic resource, fulfill the requirements of the county historic preservation ordinance, and plan for the future interpretation of the site.

Several additional benefits emerge from adopting a preservation-based site management plan. Funding can be targeted to the chapel as one of the most significant elements of the larger Compton Bassett cultural landscape. Furthermore, a preservation-based approach allows for flexibility in site planning and the development of future interpretive programs. Following the stabilization and preservation of the building, the chapel could then be restored or rehabilitated if funding becomes available. A preservation-based approach facilitates the stabilization and repair of the building’s structural elements, laying the foundation for future restorative work, and making it possible for the public to safely visit the site.

Treatment Actions

Prioritization of Tasks

Work on the Compton Bassett chapel should be prioritized in order to ensure that tasks are undertaken in the most appropriate and effective manner. Operating in this way will make certain that the building is properly stabilized before long-term preservation activities commence. These tasks below have been organized in accordance with this approach. The section entitled “Stabilization” is set apart from the larger “Preservation” section as a way of delineating these two different scopes of
work. The first must be addressed immediately, while the latter is associated with the more holistic long-term goal of preserving the building.

Because no decision has been made about returning the chapel to an earlier time period, this report has adopted a conservative approach with regard to the replacement of wooden framing members with more materials that might be more traditionally appropriate. This is particularly relevant in an area such as the roof system where almost all of the historic fabric has been removed. In situations such as these, the recommendation would be to replace in-kind rather than to attempt to speculate about the type of wood that was used originally. This approach is in keeping with the preservation management philosophy that is suggested for the chapel, respecting changes that have occurred over time. If the decision is made to restore the chapel to a particular time period prior to the commencement of the work described in this report, this approach should be reevaluated at that time. On a very important note, all preservation work on the chapel should be undertaken by individuals with documented experience and expertise working on historic structures.

Chapel Stabilization

The southeast gable wall of the chapel is very unstable and is in need of immediate stabilization efforts. The masonry throughout the lower portion of this wall, including the chimney but excluding the corners of the building, has reached a critical point of deterioration. The effects of improper repairs and deferred maintenance were greatly exacerbated by the August 23, 2011 earthquake. If left untreated this wall is very likely to collapse in the near future. While the collapse of
any of the chapel’s walls would represent a serious loss, the loss of this wall in particular would have an extremely detrimental effect on the building’s significance and integrity.

The southeast gable end of the chapel is one of the oldest portions of the building and contains some of the finest architectural details. The brickwork in particular is very well executed in this area; the glazed headers lining the rake boards and the chimney weatherings are two examples of the high quality of this workmanship. In addition to the exterior architectural details, this end of the chapel contains the sanctuary, altar, altar rail, and choirs, all of which remain intact and should be treated with great care. A collapse in this area of the building would likely destroy many of these significant elements.

Figure 71. Glazed headers lining rake board on northeast side of southeast gable end (Photo by author).
While all four elevations of the chapel contain areas of substantial deterioration, the southeast gable wall is by far the most critical. The northeast, northwest, and southeast elevations are all in need of considerable attention, but appear to be stable and are not deflecting noticeably; the same cannot be said about the southeast gable wall. A bracing system to support and stabilize the wall should be designed and installed immediately.

Because of the complex nature of deteriorating historic masonry, a structural engineer with extensive experience with this medium should be consulted and tasked with designing a support and stabilization system for this wall. A system of diagonal wooden bracing seems as though it would be appropriate if it could be sensitively installed against the wall. The diagonal braces should be set into the ground and attached to horizontal cross members spanning the wall in order to spread the support evenly throughout the wall. This work should be undertaken as the first priority. Care should also be taken to investigate and protect any archaeological resources located in the areas where ground disturbance will be taking place.76

Chapel Preservation

Following the stabilization of the southeast gable wall, the preservation of the chapel should commence in a methodical and deliberate manner with the goal of preserving the building for future interpretation and use. While the masonry walls of the chapel are in poor condition in several areas, the deteriorating roof system is the second most critical element of the building in need of repair.

76 See later section entitled “Protection of Archaeological Resources” for additional recommendations regarding archaeological resources.
Roof System

The chapel roof is in extremely poor condition and has failed in several areas. As a result it needs to be replaced as soon as possible. The large white tarp that was placed over the building upon M-NCPPC’s acquisition of the property has helped halt the deterioration resulting from the failed roof, however, the tarp itself is creating additional problems and needs to be quickly removed. The longer this tarp remains in place, the more additional damage it could potentially cause. The tarp is made of a non-breathable material and is adding considerable weight to the building; it is also serving as an excuse to prolong actually fixing the roof system. This tarp should be removed sooner rather than later. Removal of the tarp should simultaneously allow and necessitate the commencement of full-scale preservation efforts on the chapel.

All of the wooden shingles that are currently in place should be removed in order to allow for a complete and thorough inspection of the shingle nailers and framing below. Any rotten framing members should be replaced in-kind. Because of the integrated nature of the roof framing system, this work should include the inspection and repair of the soffit and cornice as well. Due to the weight load that will be placed on the building by this roof work, it is necessary to ensure that the stabilization of the southeast gable wall has taken place prior to the commencement of any roof repair activities. The southeast gable wall, along with the failed roof system, are the two most critical aspects of the chapel’s deterioration.

After the framing system has been inspected and repaired, rotten shingle nailers should be replaced in-kind. Felt paper or plastic underlayment should not be used between the shingles and the nailers. Wooden shingles must remain open on the
underside so that the material can breathe properly and dry out from beneath if it becomes wet. Failure to allow for this will result in the quicker deterioration of the newly installed roofing.

After all necessary repairs to the framing, cornice, and shingle nailers have been completed, the shingles should be replaced with wooden shingles that match, in form and size, those that are currently in place; Western Red Cedar is a good option for the material. While this wood is not historically native to this area of the country, it is generally accepted as suitable to mimic regionally appropriate wooden shingles. If Western Red Cedar shingles are used these shingles should be secured with stainless steel nails due to the corrosive nature of the wood. The chimney should be flashed with copper or lead flashing; the masons repairing the brickwork should be consulted during the flashing process to ensure that the flashing process is coordinated with their repairs.

All roof work should be performed by a roofing company with experience replacing wooden shingle roofs on historic buildings. These materials require a considerably different installation process than modern asphalt shingles, and if installed by a company or individual who is not knowledgeable about this process, a substandard installation job will likely result. When the roof system is removed an architectural historian should be afforded the opportunity to inspect the roof system for any evidence that might aid in understanding the history of the building.
The repair of the roof system as described above will necessitate the removal of the tarp that is covering the chapel. Although the removal of the tarp will re-expose the chapel to further damage from the elements because of the deteriorated state of the doors and windows, it should absolutely be seen as a positive step for the building. Considering this, all exterior doors and windows in the chapel must receive expedited treatment as well. A tradesman specializing in historic window repair should be brought in to conduct a thorough inspection and assessment of each window. The board-and-batten cellar windows could be inspected by the same individual, but could also potentially fall under the purview of carpentry, rather than window repair, because they are not glazed.

The specialist who is consulted should provide a detailed assessment of each of the seven sanctuary/nave windows, the fanlight transom, and the three windows in the garret. The specialists should receive explicit instructions that conservation and repair, rather than replacement of historic fabric, is preferred wherever possible. Each sash should be removed, conserved, and restored completely. This should include the removal of old paint, repair of damaged wooden elements, repainting using a high quality primer and final coat, and then re-glazing prior to reinstallation. Paint analysis should take place prior to beginning this work because the information will be lost afterwards. Any window elements that are unable to be saved should be duplicated exactly and replaced in-kind. Any glass that needs to be replaced should be replaced with appropriate glass.
If the conservator completing the repairs of the windows is also experienced with historic doors they can be allowed to undertake the repair work on the damaged doors as well. This work should be performed in a similar fashion. If they do not perform this type of work, someone with experience conserving historic doors should be engaged. This scope of work should include the front entry door, the garret stair door, the priest’s door, the cellar entry door, and the board-and-batten cellar windows. Conservation and repair should be the approach wherever possible. In the case that something cannot be salvaged it should be duplicated and replaced in-kind.

The main entry door is in particularly poor condition, however, it should be conserved and repaired rather than replaced. It should not be discarded, despite its poor condition. The bottom rail and side rails might warrant replacement, however, the rest of the door appears to be in fair condition and should be conserved. The garret stair door and priest’s doors are both in fair condition and should be conserved without much difficulty by a knowledgeable conservator. Particular care should be given to the wood graining and painting found on the rear side of the garret stair door. A paint conservator might need to be consulted for this portion of the door.

The cellar door should also receive careful treatment. The missing lower batten from the inside of the door should be duplicated based on the two remaining battens and then reattached. The bottom strap hinge has become detached, but should be reinstalled so that the door can once again swing properly on its pintles. Regrading around the chapel will also help with the conservation of this door because it will allow for the door to swing freely without hitting the ground below. Allowing the dirt to accumulate in this area has contributed to the deterioration of this door.
Regrading will help lessen the amount of rot on the lower portion of the cellar door and should be done following archaeological investigation. The door surround and threshold appear to need only minor conservation work.

The board-and-batten cellar windows in the opposite gable wall are in need of conservation efforts as well. The window to the southwest of the relieving arch appears to be original, while the northeast window is more crudely constructed and appears to be a later replacement. If this window is salvageable it should be conserved and repaired. If it is found to be too deteriorated to conserve, it should be replaced with a board-and-batten cellar window matching the original (the southwest window), rather than being replaced in-kind. The deteriorating masonry and wooden framing that serves as the jambs for these windows will be addressed in a later section.

In addition to the window sash and doors themselves, the jambs and surrounds must also be repaired; the conservator directing the treatment of the windows may be able to perform this work. If not, the carpenters responsible for the rest of the chapel’s wood work should perform these repairs. These openings were poorly constructed when they were first executed and could possibly need additional engineering in order to ensure that they will not collapse again. Greater latitude can be afforded in this situation, such as modern bracing in order to ensure stability.

While the preservation work on the fenestration is being performed, all apertures should be kept closed and weather tight. This will ensure that no water, animals, or vandals are able to enter the building. Plywood will suffice in this instance, but great care should be taken not to damage any of the historic material
surrounding the window openings when installing plywood coverings. Plywood
should not be secured with Tapcons or any other type of masonry screw. Instead, the
plywood can be clamped onto the building by attaching it to wooden members
spanning the window opening on the interior; ventilation holes should be cut in these
pieces of plywood and covered with screen to allow for proper ventilation. The
building envelope is currently quite open, a fact that has had an extremely negative
effect on the building. If left completely open while restoration work is underway the
results could be catastrophic.

Masonry

Aside from the bracing and stabilization of the southeast gable wall, the
chapel faces a number of additional structural issues stemming directly from the
deteriorating masonry. This work should begin at the cellar level with the foundation.
A mason specializing in historic masonry repair should be contracted to complete this
work. After conducting their own inspection, additional problems that need to be
addressed should be discussed and added to the scope of work described below.

All four walls in the cellar suffer from significant basal erosion. In these
areas, bricks have spalled and deteriorated to such a degree that they will need to be
removed and replaced. Any bricks that need to be replaced should be replaced in-
kind. In addition to basal erosion, there are several places where improper mortar
was used to repair deteriorated areas. This mortar should be removed and replaced
with an appropriately formulated lime mortar. Mortar analysis should be performed
throughout different areas of the chapel in order to ensure that the mortar being used
in a particular area is sensitive to the surrounding historic masonry. Failure to remove the cement-based mortar will lead to continued masonry deterioration.

Several large cracks and areas of brick spalling must be addressed throughout the foundation walls. Any spalled bricks should be addressed by either flipping the brick around, or replacing in-kind if the damage is bad enough. Cracks should be repaired by inserting 3/16 inch stainless steel stitching rods into the mortar joints where these cracks are occurring.77 The stitching rods should be placed in every other mortar joint throughout the length of the crack and should extend approximately one foot outwards on either side of the crack.78

Any efflorescence that has accumulated on the walls should be carefully removed so that it does not continue to deteriorate the masonry walls. All of the cellar walls should be repointed with appropriate mortar wherever necessary. The herringbone floor should also be inspected carefully and spalled bricks should be removed and replaced; no mortar was used in the laying of this floor.

The above ground masonry walls should receive similar treatment to the cellar foundation walls. Bricks and mortar should be analyzed in various places throughout the chapel walls so that the mason performing the work can know how to mix the mortar for each particular area. This will ensure that it will react well with the surrounding historic masonry. In places where bricks have spalled they should be replaced in-kind. Where cracks are large enough to warrant a stitching rod, 3/16 stitching rods should be used to repair these areas; the mason will have to decide where these are necessary. The stitching rods should be inserted in every other

77 John Sines, site visit, (February 9, 2013).
78 Ibid.
mortar joint throughout the length of the crack and should extend approximately one foot outwards on either side of the crack. Throughout the building any cement-based mortar should be removed and replaced with a period appropriate lime-based mortar. Repointing should take place wherever necessary throughout the building.

As the masonry work is being completed, the masons performing the work should understand that they have the freedom to perform the necessary work to stabilize and preserve the building, while simultaneously taking care not to erase the history of the building by completely reworking the pattern of the bricks. The lack of a brick bond, and generally poor quality of the masonry, has certainly contributed to the deterioration of the building. However, repairs should be undertaken with care so that they do not alter the appearance of the chapel any more than is necessary to preserve and stabilize the building.

After the southeast gable wall has been stabilized, a plan must be developed to fix this critical portion of the building. Because of its poor condition, the lower central portion of the gable wall will almost certainly need to be dismantled and rebuilt completely.\(^{79}\) Prior to the commencement of work a structural engineer should be hired to investigate the feasibility of supporting the upper portion of the gable wall so that it can be retained. If it is not possible to save the portion of the wall, care should be taken to save and reuse as much of the historic material as possible. This is particularly relevant with regard to the decorative architectural elements in this area such as the glazed headers lining the rake boards and the chimney weatherings.

\(^{79}\) John Sines, site visit, (February 9, 2013).
Wooden Framing

The wooden framing systems throughout the chapel are in need of considerable attention. Wood should be conserved and retained where possible. When replacement is necessary wooden members should be replaced in-kind. Many of the sanctuary/nave floor joists are rotten and have suffered insect beetle damage; these joists will need considerable attention. Depending on the severity of the rot, these joists will either need to be sistered or replaced. When carpentry repairs commence, Michael Worthington, from the Oxford Tree-Ring Laboratory, should be contacted and allowed to go through wooden cut offs and pieces of historic wood that are being remove from the building. This will afford Mr. Worthington another opportunity to possibly date additional parts of the building using dendrochronology.

The quarter-sawn oak floor joists in the oldest portion of the chapel are generally in good condition and should be conserved. Where necessary, these joists should be sistered in a manner that is sensitive to the historic fabric in order to ensure the stability of the floor. The tulip poplar joists comprising the rest of this floor system are in much worse condition and will require more drastic action. Many of these have already been sistered but have continued to deteriorate. Where possible these joists should be conserved and retained, however, this may be impractical with many of them. Joists that cannot be retained should be replaced in-kind with tulip poplar that has been hand-hewn and pit-sawn.

Because a complete inspection of the joists at the garret level was not possible, the carpenters performing the work should conduct their own inspection once these joists are exposed. The garret level floor joists should be handled in the
same manner as the sanctuary/nave level floor joists. Where possible, joists should be conserved and left in place; sistering is appropriate in this area as well. If joists cannot be saved they should be replaced in-kind. Because these joists will be concealed after the building is finished, more dramatic forms of intervention could be permissible to stabilize the floor and retain historic fabric than what are acceptable in the basement where the framing is completely exposed.

The framing in and around the garret stair will also have to be inspected more thoroughly once work on the building has commenced. As with the garret floor joists, much of the stair framing remains concealed at this time by intact historic plaster. Any material that can be conserved and retained should be, while any material that cannot be saved should be replaced in-kind.

Flooring

The flooring in the chapel was replaced sometime in the twentieth century with modern pine tongue-and-groove flooring. All of the flooring in the sanctuary/nave level will need to be replaced because it has deteriorated and failed in several areas. The flooring in the garret is in slightly better condition, however, it will need to be removed in order to repair the joists to which it is nailed. Because of the historically inaccurate nature of this material a decision must be made at that time about which type flooring to install as a replacement. Removal of the current flooring will allow for closer inspection of the tops of the joists which may reveal ghosts indicating what type of flooring was originally installed in the chapel. This would be a good option for a replacement floor.
Plasterwork

The lack of a plan for the use and interpretation of the chapel makes the conservation of the plasterwork a difficult matter to address. Because it is unknown whether or not the building will be restored to an earlier period, full-scale plaster restoration is not entirely possible. Instead, the conservation of original plaster must be made a priority. Once the preservation of the exterior masonry has been completed, someone specializing in the conservation of historic lime plaster should conduct a thorough assessment of all the plasterwork found in the chapel.

Any plaster work that can be conserved should be conserved and retained. Where this is not possible, the deteriorating plaster work should be removed from the walls in order to allow for new plaster to be applied. The masonry walls will be better served by receiving a new coat of plaster because it will aid in the protection of the inside of these walls. A decision regarding the treatment of the twentieth-century lath that never received plaster must be made at this point. While these areas are ready to plaster, potential interpretive opportunities result from leaving these areas unfinished. This is an example of how a well-formulated preservation plan addressing the future use and interpretation of the building would be beneficial in guiding preservation/restoration efforts.

Molding and Trim Work

A significant amount of the trim in the chapel is in fair to good condition and should be retained; care should be taken to do so wherever possible. Where trim has been removed it should be replaced in-kind based on the original trim that remains in
place in the chapel. The altar rail in particular should be treated with the utmost care as it is one of the chapel’s most significant character defining elements.

The altar rail and altar should be removed and stored in a safe place while the floor is being repaired. They should then be reinstalled after this work has been completed. As with any features temporarily removed from the building, great care should be taken to label these elements in order to ensure that they are able to be reinstalled in the exact position from which they were taken. Missing portions of the rail should be duplicated so that it appears complete when finished; the left side choir section gate is one example of where this will be necessary. Any missing balusters should be replaced in-kind as well. The missing choir benches on either side of the altar should be studied carefully and reconstructed as they would have appeared when intact; the supports for these benches remain in place so it is possible to understand what they would have looked like with a high degree of certainty.

The altar itself shows some signs of deterioration, the front of the first step is one area where the wood has broken off from either dry rot or insect infestation. This deterioration appears to be minor and should be able to be remedied with conservative treatment. Any material that cannot be conserved should be replaced in-kind.

There are several places throughout the chapel where certain pieces of molding, the baseboard and its accompanying cove molding are one example, were duplicated and replaced in the twentieth century. Many of these duplications were done poorly and the profiles do not match with their neighboring pieces of molding. If these pieces need to be replaced they should be replaced with newly manufactured...
pieces that match the originals profiles exactly. Any additional deteriorating molding and trim should be examined carefully and conserved if possible. Where historic fabric cannot be conserved and retained these details should be replaced in-kind.

Maintenance Schedule

Following the stabilization of the chapel, a maintenance schedule should be developed for the building. This maintenance plan should be developed by the individual responsible for the maintenance of the larger Compton Bassett property, in conjunction with a historic preservation professional familiar with the history of the chapel. Having a well-conceived maintenance plan to guide the maintenance of the chapel will allow potential problems to be identified at an early stage so that they can be addressed before they develop into larger issues.

Some potential tasks to add to a maintenance schedule are regularly checking to ensure that the roof remains free of leaves and debris. This should be done on a bimonthly basis and should include an inspection of the interior of the roof as well in order to identify any leaks before they become a serious problem. Routinely checking painted elements of the building will help to ensure that the paint film has not failed and is still adequately protecting the woodwork. This task can be done in a cursory manner whenever the roof is being inspected, and more thoroughly on a less regular basis. Checking the chapel’s masonry for any new areas of concern is also very important. This would include any evidence of efflorescence or spalling brick, loose bricks, or cracking in the bricks or mortar joints. This can be done on the same schedule as the paint inspection.
The chapel should be kept clear of any vegetative growth that could potentially attach to the building and cause damage. The grass around the building, and on the property as a whole, should be mowed regularly. However, a string trimmer should not be used to cut the grass immediately next to the building because it could potentially damage historic bricks. Instead, the vegetation immediately next to the building should be trimmed by hand. No vines or shrubbery should be allowed to touch the chapel itself. This maintenance on the chapel was not kept up in the past and is one of the major factors that contributed to the deterioration of the building.

The drainage around the chapel should always remain positive, which will help prevent water damage and water infiltration into the building. This should be checked periodically, and especially after any major rains or weather events.

Lastly, security should be a concern, including both human and animal intruders, as well as insects. The building should regularly be inspected for evidence of animal infiltration, as well as evidence of human trespassing and/or vandalism. While this list is in no way exhaustive, it is meant to serve as a starting point from which a more comprehensive maintenance schedule can and should be developed. This schedule should continue what has been laid out above, including regular intervals at which the building is to be checked and inspected for any issues that could negatively affect it.
Protection of Archaeological Resources

To date, no archaeological investigation of any kind has been undertaken on the Compton Bassett property, including the area surrounding the chapel. The implication of this is that there still exists a vast untapped source of information that could potentially speak to the history of the Compton Bassett property. With regard to the chapel specifically, investigation of the area immediately surrounding the building could clarify some of the remaining confusion regarding the building’s history and evolution.

The analysis of possible builders’ trenches in particular could be very helpful in this regard.80 In addition to the builders’ trenches, trash pits and middens located around the chapel might aid in understanding the use and evolution of the building. If any work has to be done in the cellar that requires the temporary removal of the flooring bricks, archaeology should be done in this area as well. Although there was no evidence of an earlier gable end return wall above ground, subterranean evidence of these walls might possibly remain in place underground. While archaeological resources are often best preserved \textit{in situ}, there is a compelling argument to the contrary with regard to the Compton Bassett chapel.

The extensive amount of work that will be necessary in order to stabilize and preserve the chapel, particularly with regard to the masonry foundation walls, will result in a considerable amount of ground disturbance immediately adjacent to the building. This ground disturbance has the potential to impact, and likely destroy, any archaeological resources located within this area. This potential threat to these

80 Carl Lounsbury, site visit with author, (Compton Bassett, Upper Marlboro, MD, March 19, 2013).
resources, as well as their ability to further our knowledge and understanding of the
evolution and use of the building, suggests that these resources should be excavated
in advance of any work being performed on the building.
Chapter 5: Conclusion

Historic Structures Reports and Values Center Preservation

The Compton Bassett chapel is a significant historic resource with high integrity; however, because of its current condition it is also in dire need of preservation and/or restoration activities. The Maryland-National Capital Park and Planning Commission, as owner, is in turn concerned with finding a way to utilize Compton Bassett’s historic resources in a way that both meets their needs and fulfills the requirements of the Prince George’s County’s historic preservation ordinance. The result is that the chapel’s multitude of values must be weighed and considered by those making decisions about the future of the building.

The chapel has historical value in that it serves as a direct link to Maryland’s colonial history via its unique religious, social, and political significance. This history is particularly relevant to the Roman Catholic community in both Prince George’s County and the State of Maryland as a whole. The building is also relevant to the history of agriculture and the landed gentry in the area. The Hill family, who built the Compton Bassett chapel, was one of the Prince George’s County’s most prominent families in the colonial and post-colonial eras. For over two centuries the Hills affected the lives of numerous individuals in the area, including their fellow members of the gentry, indentured servants, and enslaved African Americans. Despite this influence, the Hills, like all of their fellow Roman Catholics, struggled to worship freely.

The land on which the chapel is located was purchased by M-NCPPC for its conservation value due to its location along the Patuxent River. Prince George’s
County has an established plan of purchasing land along the Patuxent River in order to create a large environmental conservation area known as the Patuxent River Park. The conflict that often exists between natural and cultural resources for valuable funding is manifest at Compton Bassett. The conservation value of the property is widely recognized, yet there is an obvious lack of resources dedicated to the site’s cultural resources. This is unfortunate because both are equally important and work in concert to create the unique environment found at Compton Bassett.

The building itself has great architectural value stemming from the craftsmanship that went into constructing it, and from the spatial organization of the rooms. M-NCPPC must account for these important aspects of the building when trying to arrive at a use for the building. At the same time, M-NCPPC has a responsibility to provide the public with access to the property because public money was expended in purchasing Compton Bassett. This speaks to the balancing of the building’s economic value with its educational value. These are only a few of the values associated with the Compton Bassett chapel, all of which must be weighed and balanced, and then incorporated into a plan for the use and interpretation of the building.

The Benefits of Having a Good Preservation Plan

The purpose of this historic structure report is not solely to provide treatment recommendations for the Compton Bassett chapel, but also to investigate the history of the building so that all aspects of the chapel may be more thoroughly understood. This approach must be taken in order to allow for the development of a well-
conceived preservation plan that will guide the preservation and restoration of the chapel. A preservation plan that is not supported by a complete and thorough understanding of all aspects of the building and surrounding property, as well as all relevant external factors, is irresponsible and undesirable.

A well-conceived historic preservation plan is essential to the proper treatment of a historic resource. This will ensure that decisions are made in a manner that accounts for the site’s many competing values, and all actions to be taken in the foreseeable future, rather than just those undertaken in the near term. The preservation-based primary treatment approach explained in Chapter 4 of this report is at this time the most appropriate approach for the Compton Bassett chapel.

A preservation plan for the chapel should also be formulated and coordinated with the preservation plan for the larger Compton Bassett property. This should not be difficult considering that the cultural landscape study of the property conducted in 2012 recommended preservation as the primary treatment for the larger property as well.81 If building conditions change dramatically in the future, or the relevant external factors change, this treatment approach might warrant reevaluation. This leads directly to another relevant discussion with regard to the treatment of these historic resources.

The Importance of Regular Reevaluation of Resources

Historic resources such as the Compton Bassett chapel must be reevaluated on a regular basis as new information becomes available. In the case of the chapel, the

building has for years been thought of as an early-eighteenth-century structure that was possibly the only remaining extant example of a freestanding private Roman Catholic chapel in the State of Maryland. Dendrochronology has now shown that it was built later in the eighteenth century. The main house itself was also shown to have been constructed at a later date than originally thought. These examples illustrate the need to regularly reevaluate historic resources so that they are being interpreted in the most accurate and truthful manner.

The revisions presented in this historic structure report should not be interpreted as lessening the value and importance of the Compton Bassett chapel. This would be an oversimplification of the matter because the chapel is still quite significant, but for different reasons. While it is not an early eighteenth-century building, it is still an eighteenth-century building; a resource that is becoming less and less common as time goes by. The chapel is also still an example of a private Roman Catholic chapel from just after the colonial period, and as such contains some unique and significant spatial and architectural features. Discrimination against Catholics did not cease immediately following the American Revolution, and as a result these private chapels were still necessary in many cases. When the integrity of the structure is factored into this discussion, particularly the integrity of association, setting, and location, it is easy to see that the Compton Bassett chapel is a structure that must be preserved. The chapel currently suffers from severe damage and deterioration and is at a critical point in its history. Those with the ability to affect change must recognize this and do all in their power to save this important historic resource.
Figure 72. Photograph of the main façade of chapel (HABS 1980s).
Bibliography

Primary Sources

Hill Family Papers, 1683-1823, MS 446. Maryland Historical Society. Baltimore, Maryland.

Prince George’s County, Maryland. 1798 Federal Direct Tax for Prince George’s County Maryland. Transcribed by Mary Haley-Amen, 2010.

Unknown, photographer. “[svf_pgco_churches_compton_bassett_chapel_exterior_1920].” Photograph. Unknown publisher city. From the Maryland Historical Trust: Compton Bassett Chapel.

Unknown, photographer. “[svf_pgco_churches_compton_bassett_chapel_interior_1920].” Photograph. Unknown publisher city. From the Maryland Historical Trust: Compton Bassett Chapel.

Secondary Sources

Burgner, Robert. M-NCPPC Facilities Manager. Site visit with author. Upper Marlboro, Maryland. Multiple dates.

Library of Congress, HABS. “Compton Bassett Chapel, Marlboro Pike (State Route 408), Upper Marlboro, Prince George's County, MD” Upper Marlboro, Prince George’s County, MD. From Library of Congress: Historic American Buildings Survey.

Maryland-National Capital Park and Planning Commission, *Approved Historic Sites and Districts Plan, Prince George’s County, Maryland* (June, 2010).

National Register of Historic Places, Compton Bassett, Upper Marlboro, Prince George’s County, Maryland, National Register # 83002959.

Prince George’s County, Maryland. *1798 Federal Direct Tax for Prince George’s County Maryland*. Transcribed by Mary Haley-Amen.

Appendix A: Measured Drawings

Appendix A contains all of the measured drawings of the Compton Bassett chapel that were produced as a part of this report. These drawings include floor plans of the cellar, sanctuary/nave, and garret levels of the building, as well as molding profiles that were taken throughout the structure. Unfortunately, it was not possible to produce good elevation drawings of the chapel with the tarp remaining in place over the building. Once the tarp is removed elevation drawings of each elevation of the chapel should be produced.
Appendix B: Chapel Dendrochronology Report

The Tree-Ring Dating of Compton Bassett Chapel, Upper Marlboro, Maryland

Michael J. Worthington and Jane I. Seiter

Figure 1: Photograph of Compton Bassett Chapel taken in 1936. Courtesy of the Historic American Buildings Survey, Delos H. Smith, photographer.

Oxford Tree-Ring Laboratory
25 East Montgomery Street, Baltimore, MD 21230
michael@dendrochronology.com
www.dendrochronology.com
410-929-1520

March 2013
Summary:

Compton Bassett Chapel, Upper Marlboro, Prince George's County, MD (38.815024, -76.718203)

(a) Primary phase of chapel

Felling dates: Spring 1778, Spring 1779

(a) Floor joists (3/3) 1762, 1772, 1777 (¼C); Chimney trimmer (1/1) 1778 (¼C). Site Master 1607-1778 CBCMx1 ($t = 6.41$ MTVx1; 6.02 DC-AREA; 5.98 WILDx1).

The Compton Bassett Chapel was previously thought to be an intact example of an 18th-century Catholic chapel. A recent reassessment (as of spring 2013) has hypothesized that it was in fact built as a small brick plantation office that was subsequently enlarged and converted into a storehouse, then converted again into a chapel during a mid-19th century remodeling. A dendrochronological study of the chapel was undertaken in an attempt to date the primary and secondary construction phases. The oak timbers in the primary phase provided felling dates of the spring of 1778 and the spring of 1779, suggesting that the chapel was built in the spring of 1779 or shortly thereafter. The tulip poplar timbers in the secondary construction phase were too decayed to allow successful coring, so must remain undated.

Date sampled: February 21, 2013

Commissioner: Donald W. Linebaugh, University of Maryland Graduate Program in Historic Preservation

Owner: The Maryland-National Capital Park and Planning Commission

Summary published: www.dendrochronology.com
How Dendrochronology Works

Dendrochronology has over the past few decades become one of the leading and most accurate scientific dating methods. While not always successful, when it does work, it is precise, often to the season of the year. Tree-ring dating to this degree of precision is well known for its use in dating historic buildings and archaeological timbers. However, more ancillary objects such as doors, furniture, panel paintings, and wooden boards in medieval book-bindings can sometimes be successfully dated.

The science of dendrochronology is based on a combination of biology and statistics. In temperate zones, a tree puts on a new layer of growth underneath the bark every year, with the effect being that the tree grows wider and taller as it ages. Each annual ring is composed of the growth which takes place during the spring and summer and continues until about November, when the leaves are shed and the tree becomes dormant for the winter period. For the two principal American oaks, the white and red (Quercus alba and Quercus rubra), as well as for the black ash (Fraxinus nigra) and many other species, the annual ring is composed of two distinct parts: the spring growth or early wood, and the summer growth, or late wood. Early wood is composed of large vessels formed during the period of shoot growth which takes place between March and May, before the establishment of any significant leaf growth. This is produced by using most of the energy and raw materials laid down the previous year. Then, there is an abrupt change at the time of leaf expansion around May or June when hormonal activity dictates a change in the quality of the xylem, and the summer growth, or late wood, is formed. Here the wood becomes increasingly fibrous and contains much smaller vessels. Trees with this type of growth pattern are known as ring-porous, and are distinguished by the contrast between the open, light-colored early wood vessels and the dense, darker-colored late wood.

Other species of tree, such as tulip poplar (Liriodendron tulipifera L.), are known as diffuse-porous. Unlike the ring-porous trees, the spring vessels consist of very small spring vessels that become even smaller as the tree advances into the summer growth. The annual growth rings are often very difficult to distinguish under even a powerful microscope, and one often needs to study the medullary rays, which thicken at the ring boundaries.

Dendrochronology utilizes the variation in the width of the annual rings as influenced by climatic conditions common to a large area, as opposed to other more local factors such as woodland competition and insect attack. It is these climate-induced variations in ring widths that allow calendar dates to be ascribed to an undated timber when compared to a firmly-dated sequence. If a tree section is complete to the bark edge, then when dated a precise date of felling can be determined. The felling date will be precise to the season of the year, depending on the degree of formation of the outermost ring. Therefore, a tree with bark that has the spring vessels formed but no summer growth can be said to be felled in the spring, although it is not possible to say in which particular month the tree was felled.

Another important dimension to dendrochronological studies is the presence of sapwood and bark. This is the band of growth rings immediately beneath the bark and comprises the living growth rings which transport the sap from the roots to the leaves. This sapwood band is distinguished from the heartwood by the prominent features of color change and the blocking of the spring vessels with tyloses, the waste products of the tree’s growth. The heartwood is generally darker in color, and the spring vessels are usually blocked with tyloses. The heartwood is dead tissue, whereas the sapwood is living, although the only really living, growing, cells are in the cambium, immediately beneath the bark. In the American white oak, the difference in color is not generally matched by the change in the spring vessels, which are
often filled by tyloses to within a year or two of the terminal ring. Conversely, the spring vessels in the American red oak are almost all free of tyloses, right to the pith. Generally the sapwood retains stored food and is therefore attractive to insect and fungal attack once the tree is felled and therefore is often removed during conversion.

Figure 2. A cross-section of an oak timber with sapwood rings on the left-hand side (above). The boxes illustrate conversion methods resulting in **A)** a precise felling date and **B)** a *terminus post quem* or felled after date. Also pictured is a core showing complete sapwood (below).

Methodology: The Dating Process

All of the timbers sampled were oak (*Quercus alba*) from what appeared to be primary first-use timbers. Timbers that looked most suitable for dendrochronological purposes—those with complete sapwood or reasonably long ring sequences—were selected. *In-situ* timbers were sampled through coring, using a 16 mm hollow auger. Details and locations of the samples are given in the summary tables.

The dry samples were sanded on a finisher, or bench-mounted belt sander, using 60 to 1200 grit abrasive paper, and were cleaned with compressed air to allow the ring boundaries to be clearly
distinguished. They were then measured under a x10/x30 microscope using a travelling stage electronically displaying displacement to a precision of 0.01mm. Thus each ring or year is represented by its measurement which is arranged as a series of ring-width indices within a data set, with the earliest ring being placed at the beginning of the series, and the latest or outermost ring concluding the data set.

As indicated above, the principle behind tree-ring dating is a simple one: the seasonal variations in climate-induced growth as reflected in the varying width of a series of measured annual rings is compared with other, previously dated ring sequences to allow precise dates to be ascribed to each ring. When an undated sample or site sequence is compared against a dated sequence, known as a reference chronology, an indication of how good the match is must be determined. Although it is almost impossible to define a visual match, computer comparisons can be accurately quantified. While it may not be the best statistical indicator, Student’s (a pseudonym for W S Gosset) t-value has been widely used among dendrochronologists. The cross-correlation algorithms most commonly used and published are derived from Baillie and Pilcher’s CROS program (Baillie and Pilcher 1973).

Generally, t-values over 3.5 should be considered significant, although in reality it is common to find demonstrably spurious t-values of 4 and 5 because more than one matching position is indicated. For this reason, dendrochronologists prefer to see some t-value ranges of 5, 6, or higher, and for these to be well replicated from different, independent chronologies with local and regional chronologies well represented. Users of dates also need to assess their validity critically. They should not have great faith in a date supported by a handful of t-values of 3s with one or two 4s, nor should they be entirely satisfied with a single high match of 5 or 6. Examples of spurious t-values in excess of 7 have been noted, so it is essential that matches with reference chronologies be well replicated, and that this is confirmed with visual matches between the two graphs. Matches with t-values of 10 or more between individual sequences usually signify having originated from the same parent tree.

In reality, the probability of a particular date being valid is itself a statistical measure depending on the t-values. Consideration must also be given to the length of the sequence being dated as well as those of the reference chronologies. A sample with 30 or 40 years growth is likely to match with high t-values at varying positions, whereas a sample with 100 consecutive rings is much more likely to match significantly at only one unique position. Samples with ring counts as low as 50 may occasionally be dated, but only if the matches are very strong, clear, and well replicated, with no other significant matching positions. This is essential for intra-site matching when dealing with such short sequences. Consideration should also be given to evaluating the reference chronology against which the samples have been matched: those with well-replicated components that are geographically near to the sampling site are given more weight than an individual site or sample from far away.

It is general practice to cross-match samples from within the same phase to each other first, combining them into a site master, before comparing with the reference chronologies. This has the advantage of averaging out the “noise” of individual trees and is much more likely to obtain higher t-values and stronger visual matches. After measurement, the ring-width series for each sample is plotted as a graph of width against year on log-linear graph paper. The graphs of each of the samples in the phase under study are then compared visually at the positions indicated by the computer matching and, if found satisfactory and consistent, are averaged to form a mean curve for the site or phase. This mean curve and any unmatched individual sequences are compared against dated reference chronologies to obtain an absolute calendar date for each sequence. Sometimes, especially in urban situations, timbers may have come from different
sources and fail to match each other, thus making the compilation of a site master difficult. In this situation samples must then be compared individually with the reference chronologies.

Therefore, when cross-matching samples with each other, or against reference chronologies, a combination of both visual matching and a process of qualified statistical comparison by computer is used. For this study, the ring-width series were compared on an IBM compatible computer for statistical cross-matching using a variant of the Belfast CROS program (Baillie and Pilcher 1973).

Ascribing and Interpreting Felling Dates

Once a tree-ring sequence has been firmly dated in time, a felling date, or date range, is ascribed where possible. For samples that have sapwood complete to the underside of, or including, bark, this process is relatively straightforward. Depending on the completeness of the final ring, i.e. if it has only the early wood formed, or the latewood, a precise felling date and season can be given. Where the sapwood is partially missing, or if only a heartwood/sapwood transition boundary survives, then the question of when the tree was felled becomes considerably more complicated. In the European oaks, sapwood tends to be of a relatively constant width and/or number of rings, and it is possible to estimate the approximate number of sapwood rings that are missing from any given timber.

Unfortunately, it has not been possible to apply an accurate sapwood estimate to either the white or red oaks at this time. Primarily, it would appear that there is a complete absence of literature on sapwood estimates for oak anywhere in the country (Grissino-Mayer, pers comm). The matter is further complicated in that the sapwood in white oak (Quercus alba) occurs in two bands, with only the outer ring or two being free of tyloses in the spring vessels (Gerry 1914; Kato and Kishima 1965). Out of some 50 or so samples, only a handful had more than 3 rings of sapwood without tyloses. The actual sapwood band is differentiated sometimes by a lighter color, although this is often indiscernible (Desch 1948). In archaeological timbers, the lighter colored sapwood does not collapse as it does in the European oak (Quercus robur), but only the last ring or two without tyloses shrink tangentially. In these circumstances the only way of being able to identify the heartwood/sapwood boundary is by recording how far into the timber wood boring beetle larvae penetrate, as the heartwood is not usually susceptible to attack unless the timber is in poor or damp conditions. Despite all of these drawbacks, some effort has been made in recording sapwood ring counts on white oak, although the effort is acknowledged to be somewhat subjective.

As for red oaks (Quercus rubra) it will probably not be possible to determine a sapwood estimate as these are what are known as “sapwood trees” (Chattaway 1952). Whereas the white oak suffers from an excess of tyloses, these are virtually non-existent in the red oak, even to the pith. Furthermore, there is no obvious color change throughout the section of the tree, and wood-boring insects will often penetrate right through to the center of the timber. Therefore, in sampling red oaks, it is vital to retain the final ring beneath the bark, or to make a careful note of the approximate number of rings lost in sampling, if any meaningful interpretation of felling dates is to be made. Similarly, no study has been made in estimating the number of sapwood rings in tulip-poplar, black ash, or any of the pines.

Therefore, if the bark edge does not survive on any of the timbers sampled, only a terminus post quem or felled after date can be given. The earliest possible felling date would be the year after
the last measured ring date, adjusted for any unmeasured rings or rings lost during the process of coring.

Some caution must be used in interpreting solitary precise felling dates. Many instances have been noted where timbers used in the same structural phase have been felled one, two, or more years apart. Whenever possible, a group of precise felling dates should be used as a more reliable indication of the construction period. It must be emphasized that dendrochronology can only date when a tree has been felled, not when the timber was used to construct the structure under study. However, it is common practice to build timber-framed structures with green or unseasoned timber and therefore construction usually took place within twelve to eighteen months of felling (Miles 1997).

Details of Dendrochronological Analysis

The results of the dendrochronological analysis for the buildings under study are presented in a number of detailed tables. The most useful of these is the summary Table 1. This gives most of the salient results of the dendrochronological process, and includes details for each sample, such as its species, location, and felling date, if successfully tree-ring dated. This last column is of particular interest to the end user, as it gives the actual year and season when the tree was felled, if bark or bark edge is present. If bark edge is not present, it gives a terminus post quem or date after which the timber was felled. Often these terminus post quem dates begin far earlier than any associated precise felling dates. This is simply because far more rings have been lost in the initial conversion of the timber. If the sapwood was complete on the timber but some was lost during coring, an estimated date range can sometimes be given.

It will also be noticed that often the precise felling dates will vary within several years of each other. Unless there is supporting archaeological evidence suggesting different phases, all this would indicate is either stockpiling of timber, or of trees that had been felled or died at varying times but were not cut up until the commencement of the particular building operations in question. When presented with varying precise felling dates, one should always take the latest date for the structure under study, and it is likely that construction will have been completed for ordinary vernacular buildings within twelve or eighteen months from this latest felling date (Miles 1997).

Table 2 gives an indication of the statistical reliability of the match between one sequence and another. This shows the t-value over the number of years overlap for each combination of samples in a matrix table. It should be born in mind that t-values with less than 80 rings overlap may not truly reflect the same degree of matching and that spurious matches may produce similar values.

First, multiple radii have been cross-matched with each other and combined to form same-timber means. These are then compared with other samples from the site and any which are found to have originated from the same parent tree are again similarly combined. Finally, all samples, including all same timber and same tree means, are combined to form one or more site masters. Again, the cross-matching is shown as a matrix table of t-values over the number of years overlaps. Reference should always be made to Table 1 to clearly identify which components have been combined.

Table 3 shows the degree of cross-matching between the site master(s) and a selection of reference chronologies. This shows the state or region from which the reference chronology
originated, the common chronology name, the publication reference, and the years covered by the reference chronology. The number of overlapping years between the reference chronology and the site master is also shown together with the resulting t-value. It should be noted that well replicated regional reference chronologies, which are shown in bold, will often produce better matches than individual site masters or indeed individual sample sequences.

Figures include a bar diagram that shows the chronological relationship between two or more dated samples from a phase of building and any plans showing sample locations, if available.

Publication of all dated sites for English buildings occurs annually in *Vernacular Architecture*, but regretfully there is at the present time no vehicle available for the publication of dated American buildings. However, a similar entry is shown on the summary page of the report, which could be used in any future publication of American dates. This does not give as much technical data for the samples dated, but does give the t-value matches against the relevant chronologies, provides a short descriptive paragraph for each building or phase dated, and gives a useful short summary of samples dated. These summaries are also listed on the web-site maintained by the Laboratory, which can be accessed at www.dendrochronology.com. The Oxford Tree-Ring Laboratory retains copyright of this report, but the commissioner of the report has the right to use the report for his or her own use so long as the authorship is quoted. Primary data and the resulting site master(s) used in the analysis are available from the Laboratory on request by the commissioner and bona fide researchers. The samples form part of the Laboratory archives, unless an alternative archive, such as the Colonial Williamsburg Foundation in association with the Oxford Tree-Ring Laboratory, has been specified in advance. A copy of this report will be archived at the Digital Repository at the University of Maryland (DRUM).
Sampling

The Compton Bassett Chapel was long thought to be an intact example of an 18th-century Catholic chapel. Recently its development has been reassessed, and at the time of writing (spring 2013) the latest working hypothesis is that the structure was built as a small brick office building for the surrounding plantation of Compton Bassett. The office building was subsequently greatly enlarged, possibly to form a plantation storehouse, then converted to a chapel in the mid-19th century. The chapel’s fixtures and fittings and the wall paneling are from this mid-19th century remodeling, while the entire roof structure was replaced sometime during the 20th century.

A dendrochronological study of Compton Bassett Chapel was undertaken in an attempt to date the primary and secondary construction phases. Only six oak joists and two oak trimmers survive from the much smaller primary phase. The larger secondary phase was constructed from tulip poplar timbers that had been attacked by wood-boring insects and were too decayed to allow successful coring. It is hoped that a second round of sampling will be undertaken during renovation work planned for the near future, allowing us a chance to date this phase.

Four timbers in total were sampled from the primary phase: three floor joists and a chimney trimmer, all from the basement. Each sample was given the code cbcm (for Compton Bassett Chapel, Maryland) and numbered 1 to 4 (see table 1). The position of each sample was noted at the time of sampling (see figure 3).

Summary of Dating

The outer wood on some of the timbers was extremely friable and therefore difficult to keep intact during coring. Two separate samples were taken from one of the timbers in order to maximize the chances of retaining a complete core and then were combined to form the new individual sample sequence cbcm1, which was used in the rest of the analysis (see table 2).

All of the timber sequences were compared with each other. All four of the timbers from the primary construction phase of the chapel were found to match each other, allowing them to be combined into the 172-year site master CBCMx1.

The site master was compared with over four hundred master chronologies from the East Coast of the United States. CBCMx1 was found to date spanning the years 1607 to 1778 (see table 3).

Interpretation

The tree-ring analysis has resulted in the successful dating of multiple timbers from the oak framing in the basement of the chapel. Of the four timbers that formed the dated site master CBCMx1, two—a floor joist and a chimney trimmer—retained complete sapwood, providing precise felling dates of the spring of 1778 and spring of 1779 respectively. These dates suggest that the chapel was constructed in the spring of 1779 or shortly thereafter.

Acknowledgements

Thanks are given to Dennis Pogue, Thomas Reinhart, and Derek Anderson for their help in interpreting the phasing of the structure, and to Derek for his help on site during sampling.
Thanks are also due to Dr. Ed Cook and Paul Krusic of the LDEO Dendrochronology Laboratory at Columbia University, New York, for making available both published and unpublished reference chronologies.

References

Gerry, E 1914 “Tyloses: Their Occurrence and Practical Significance in Some American Wood,” *Journal of Agricultural Research* 1: 335-469

Miles, D H 1997 “The Interpretation, Presentation, and Use of Tree-Ring Dates,” *Vernacular Architecture* 28: 40-56

Worthington, M J 2010 Unpublished oak master chronology formed from sites within a 100-mile radius of Washington DC, unpublished computer file DC-AREA, Oxford Tree-Ring Laboratory

Worthington, M J 2011 Working compilation of 13 reference chronologies from Maryland compiled by various researchers, unpublished computer file MD2011, Oxford Tree-Ring Laboratory

Table 1: Summary of tree-ring dating

COMPTON BASSETT CHAPEL, UPPER MARLBRO, MARYLAND

<table>
<thead>
<tr>
<th>Sample number & type</th>
<th>Species</th>
<th>Timber and position</th>
<th>Dates AD spanning</th>
<th>Last Ring</th>
<th>No of rings</th>
<th>Mean width</th>
<th>Std devn</th>
<th>Mean sens</th>
<th>Felling seasons and dates/date ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cbcma1</td>
<td>c</td>
<td>QUAL</td>
<td>Floor joist 5th from NE wall</td>
<td>1607-1760</td>
<td>h/v only</td>
<td>154</td>
<td>0.89</td>
<td>0.25</td>
<td>0.132</td>
</tr>
<tr>
<td>cbcmb1b</td>
<td>c</td>
<td>QUAL</td>
<td>ditto</td>
<td>1610-1762</td>
<td>15NM</td>
<td>153</td>
<td>0.84</td>
<td>0.26</td>
<td>0.131</td>
</tr>
<tr>
<td>* cbcma1b</td>
<td>m</td>
<td>mean of cbcma1 + cbcmb1b</td>
<td></td>
<td>1607-1762</td>
<td>15NM</td>
<td>156</td>
<td>0.86</td>
<td>0.26</td>
<td>0.117</td>
</tr>
<tr>
<td>* cbcmb2</td>
<td>c</td>
<td>QUAL</td>
<td>Floor joist 4th from NE wall</td>
<td>1644-1777</td>
<td>1/4C</td>
<td>134</td>
<td>0.83</td>
<td>0.24</td>
<td>0.133</td>
</tr>
<tr>
<td>* cbcma1a</td>
<td>c</td>
<td>QUAL</td>
<td>Floor joist 3rd from NE wall</td>
<td>1661-1772</td>
<td>h/v only</td>
<td>112</td>
<td>0.96</td>
<td>0.21</td>
<td>0.137</td>
</tr>
<tr>
<td>cbcma3a</td>
<td>c</td>
<td>QUAL</td>
<td>ditto</td>
<td></td>
<td>1/4C</td>
<td>15</td>
<td>0.70</td>
<td>0.08</td>
<td>0.137</td>
</tr>
<tr>
<td>* cbcmb4</td>
<td>c</td>
<td>QUAL</td>
<td>Chimney trimmer NW side</td>
<td>1611-1778</td>
<td>1/4C</td>
<td>168</td>
<td>0.92</td>
<td>0.23</td>
<td>0.145</td>
</tr>
<tr>
<td>* CBMx1</td>
<td></td>
<td>Site master</td>
<td></td>
<td>1607-1778</td>
<td></td>
<td>172</td>
<td>0.88</td>
<td>0.22</td>
<td>0.101</td>
</tr>
</tbody>
</table>

Key: * = sample included in site-master; c = core; mc = micro-core; s = slice/section; g = graphic; p = photograph; m = mean; 1/4C, 1/2C, C = bark edge present, partial or complete ring; 1/4C = spring (last partial ring not measured), 1/2C = summer/autumn (last partial ring not measured), or C = winter felling (ring measured); h/v only = heartwood only; nm = number of unmeasured rings; std devn = standard deviation; mean sens = mean sensitivity; QUAL = *Quercus alba* (White oak)
Explanation of terms used in Table 1

The summary table gives most of the salient results of the dendrochronological process. For ease in quickly referring to various types of information, these have all been presented in Table 1. The information includes the following categories:

Sample number: Generally, each site is given a two or three letter identifying prefix code, after which each timber is given an individual number. If a timber is sampled twice, or if two timbers were noted at time of sampling as having clearly originated from the same tree, then they are given suffixes “a,” “b,” etc. Where a core sample has broken, with no clear overlap between segments, these are differentiated by a further suffix “1,” “2,” etc.

Type shows whether the sample was from a core “c,” or a section or slice from a timber “s.” Sometimes photographs are used “p,” or timbers measured *in situ* with a graticule “g.”

Species gives the four-letter species code used by the International Tree-Ring Data Bank, at NOAA. These are identified in the key at the bottom of the table.

Timber and position column details each timber sampled along with a location reference. This will usually refer to a bay or truss number, or relate to compass points or to a reference drawing.

Dates AD spanning gives the first and last measured ring dates of the sequence (if dated),

H/S bdry is the date of the heartwood/sapwood transition or boundary (if identifiable).

Sapwood complement gives the number of sapwood rings, if identifiable. The tree starts growing in the spring during which time the earlywood is produced, also known also as spring growth. This consists of between one and three decreasing spring vessels and is noted as spring felling and is indicated by a ¼ C after the number of sapwood ring count. Sometimes this can be more accurately pin-pointed to very early spring when just a few spring vessels are visible. After the spring growing season, the latewood or summer growth commences, and is differentiated from the proceeding spring growth by the dense band of tissue. This summer growth continues until just before the leaves drop, in about October. Trees felled during this period are noted as *summer* felled (½ C), but it is difficult to be too precise, as the width of the latewood can be variable, and it can be difficult to distinguish whether a tree stopped growing in autumn or *winter*. When the summer band is clearly complete, then the tree would have been felled during the dormant winter period, as shown by a single C. Sometimes a sample will clearly have complete sapwood, but due either to slight abrasion at the point of coring, or extremely narrow growth rings, it is impossible to determine the season of felling.

Number of rings: The total number of measured rings included in the samples analyzed.

Mean ring width: This, simply put, is the sum total of all the individual ring widths, divided by the number of rings, giving an average ring width for the series.

Mean sensitivity: A statistic measuring the mean percentage, or relative, change from each measured yearly ring value to the next; that is, the average relative difference from one ring width to the next, calculated by dividing the absolute value of the differences between each pair of measurements by the average of the paired measurements, then averaging the quotients for all pairs in the tree-ring series (Fritts 1976). Sensitivity is a dendrochronological term referring to the presence of ring-width variability in the radial direction within a tree which indicates the growth response of a particular tree is sensitive to variations in climate, as opposed to complacency.

Standard deviation: The mean scatter of a population of numbers from the population mean; the square root of the variance, which is itself the square of the mean scatter of a statistical population of numbers from the population mean (Fritts 1976).

Felling seasons and dates/date ranges is probably the most important column of the summary table. Here the actual felling dates and seasons are given for each dated sample (if complete sapwood is present). Sometimes it will be noticed that often the precise felling dates will vary within several years of each other. Unless there is supporting archaeological evidence suggesting different phases, all this would indicate is either stockpiling of timber, or of trees which have been felled or died at varying times but not cut up until the commencement of the particular building operations in question. When presented with varying precise felling dates, one should always take the latest date for the structure under study, and it is likely that construction will have been completed for ordinary vernacular buildings within twelve or eighteen months from this latest felling date.
Table 2: Matrix of t-values and overlaps for same-timber means and site master

Components of timber mean **cbcm1**

<table>
<thead>
<tr>
<th>Sample:</th>
<th>cbcm1b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last ring date AD:</td>
<td>1762</td>
</tr>
<tr>
<td>cbcm1a</td>
<td>7.91</td>
</tr>
<tr>
<td>1760</td>
<td>151</td>
</tr>
</tbody>
</table>

Components of master chronology **CBCMx1**

<table>
<thead>
<tr>
<th>Sample:</th>
<th>cbcm2</th>
<th>cbcm3a1</th>
<th>cbcm4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last ring date AD:</td>
<td>1777</td>
<td>1772</td>
<td>1778</td>
</tr>
<tr>
<td>cbcm1</td>
<td>5.09</td>
<td>3.47</td>
<td>6.18</td>
</tr>
<tr>
<td>1762</td>
<td>119</td>
<td>102</td>
<td>152</td>
</tr>
<tr>
<td>cbcm2</td>
<td>3.41</td>
<td>4.15</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cbcm3a1</td>
<td>6.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3: Dating of site master CBCMX1 (1607-1778) against reference chronologies

<table>
<thead>
<tr>
<th>State or region</th>
<th>Chronology name</th>
<th>Short publication reference</th>
<th>File name</th>
<th>Spanning</th>
<th>Overlap</th>
<th>t-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virginia</td>
<td>Mt. Vernon Spinning House</td>
<td>(Miles and Worthington 2005/29)</td>
<td>MTVx1</td>
<td>1555-1764</td>
<td>158</td>
<td>6.41</td>
</tr>
<tr>
<td>Maryland and Virginia</td>
<td>DC Area Oak Master Chronology (made from sites within a 100-mile radius of Washington DC)</td>
<td>(Worthington 2010)</td>
<td>DC-Area</td>
<td>1570-1883</td>
<td>172</td>
<td>6.02</td>
</tr>
<tr>
<td>Maryland</td>
<td>The Wilderness, Trappe</td>
<td>(Worthington and Seiler 2013/1)</td>
<td>WILDx1</td>
<td>1693-1807</td>
<td>86</td>
<td>5.98</td>
</tr>
<tr>
<td>Virginia</td>
<td>Piedmont Master Oak + Historical QUSP</td>
<td>(Columbia unpublished)</td>
<td>PIEDMO</td>
<td>1488-2001</td>
<td>172</td>
<td>5.78</td>
</tr>
<tr>
<td>Virginia</td>
<td>Walnut Valley Plantation, Surry County, Virginia</td>
<td>(Miles and Worthington 2009/05)</td>
<td>WVV</td>
<td>1634-1815</td>
<td>125</td>
<td>5.70</td>
</tr>
<tr>
<td>Maryland</td>
<td>Palisade House</td>
<td>(Columbia unpublished)</td>
<td>HUTCHE</td>
<td>1490-1982</td>
<td>172</td>
<td>5.54</td>
</tr>
<tr>
<td>Maryland</td>
<td>Maryland Master Chronology</td>
<td>(Worthington 2011)</td>
<td>MD2011</td>
<td>1536-1892</td>
<td>172</td>
<td>4.83</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>Morgan Homestead</td>
<td>(Columbia unpublished)</td>
<td>FORES</td>
<td>1458-1988</td>
<td>172</td>
<td>5.33</td>
</tr>
</tbody>
</table>

Chronologies in **bold** denote regional masters

* = Component of DC-Area

† = Component of MD2011
Figure 3. Sketch plan of the chapel showing sample locations in the cellar (not to scale).
Figure 4. Bar diagram showing dated timbers in chronological order.
Appendix C: National Register Nomination

<table>
<thead>
<tr>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compton Bassett</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>STREET & NUMBER</td>
</tr>
<tr>
<td>16508 Marlboro Pike</td>
</tr>
<tr>
<td>CITY, TOWN</td>
</tr>
<tr>
<td>Upper Marlboro</td>
</tr>
<tr>
<td>VICINITY OF</td>
</tr>
<tr>
<td>Fourth</td>
</tr>
<tr>
<td>STATE</td>
</tr>
<tr>
<td>Maryland</td>
</tr>
<tr>
<td>CODE</td>
</tr>
<tr>
<td>024</td>
</tr>
<tr>
<td>COUNTY</td>
</tr>
<tr>
<td>Prince George's</td>
</tr>
<tr>
<td>CODE</td>
</tr>
<tr>
<td>013</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLASSIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CATEGORY</td>
</tr>
<tr>
<td>x BUILDING(S)</td>
</tr>
<tr>
<td>x STRUCTURE</td>
</tr>
<tr>
<td>SITE</td>
</tr>
<tr>
<td>OBJECT</td>
</tr>
<tr>
<td>x OCCUPIED</td>
</tr>
<tr>
<td>x UNOCCUPIED</td>
</tr>
<tr>
<td>WORK IN PROGRESS</td>
</tr>
<tr>
<td>ACCESSIBLE</td>
</tr>
<tr>
<td>YES RESTRICTED</td>
</tr>
<tr>
<td>YES UNRESTRICTED</td>
</tr>
<tr>
<td>x NO</td>
</tr>
<tr>
<td>x PRIVATE RESIDENCE</td>
</tr>
<tr>
<td>x COMMERCIAL</td>
</tr>
<tr>
<td>x EDUCATIONAL</td>
</tr>
<tr>
<td>x ENTERTAINMENT</td>
</tr>
<tr>
<td>x GOVERNMENT</td>
</tr>
<tr>
<td>x INDUSTRIAL</td>
</tr>
<tr>
<td>x MILITARY</td>
</tr>
<tr>
<td>x TRANSPORTATION</td>
</tr>
<tr>
<td>x OTHER</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OWNER OF PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
</tr>
<tr>
<td>Robert B. Sasscer and Henry S. Sasscer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOCATION OF LEGAL DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>COURTHOUSE, REGISTRY OF DEEDS, Lot</td>
</tr>
<tr>
<td>Courthouse</td>
</tr>
<tr>
<td>CITY, TOWN</td>
</tr>
<tr>
<td>Upper Marlboro</td>
</tr>
<tr>
<td>VICINITY OF</td>
</tr>
<tr>
<td>Maryland</td>
</tr>
<tr>
<td>STATE</td>
</tr>
<tr>
<td>20870</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REPRESENTATION IN EXISTING SURVEYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
</tr>
<tr>
<td>Historic American Buildings Survey</td>
</tr>
<tr>
<td>DATE</td>
</tr>
<tr>
<td>1936</td>
</tr>
<tr>
<td>x FEDERAL</td>
</tr>
<tr>
<td>x STATE</td>
</tr>
<tr>
<td>x COUNTY</td>
</tr>
<tr>
<td>LOCAL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEPOSITORY FOR SURVEY RECORDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CITY, TOWN</td>
</tr>
<tr>
<td>Washington</td>
</tr>
<tr>
<td>STATE</td>
</tr>
<tr>
<td>D.C.</td>
</tr>
</tbody>
</table>
Description

<table>
<thead>
<tr>
<th>Condition</th>
<th>Check One</th>
<th>Original Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>Unaltered</td>
<td>Unaltered</td>
</tr>
<tr>
<td>Good</td>
<td>Unaltered</td>
<td>Unaltered</td>
</tr>
<tr>
<td>Fair</td>
<td>Unaltered</td>
<td>Unaltered</td>
</tr>
<tr>
<td>Poor</td>
<td>Unaltered</td>
<td>Unaltered</td>
</tr>
<tr>
<td>Unexposed</td>
<td>Unaltered</td>
<td>Unaltered</td>
</tr>
</tbody>
</table>

Describe the present and original (if known) physical appearance.

Compton Bassett is situated on a high, wooded hill overlooking the Patuxent River one quarter mile to the east. Maryland Route 4 is south of the house and Marlboro Pike is to the west. The property is approximately 1 1/2 miles east of Upper Marlboro, Prince George's County, Maryland.

This two-story brick Georgian house is covered with cream colored stucco, and has a high basement of grey stucco. The main block of the house measures 50 feet by 40 feet with a two-story wing extending on the northeast side. The hipped roof is pierced by two interior chimneys aligned above the second and fourth bays.

The southeast (front) facade has a slightly projecting pavilion in the center flanked on either side by two windows on each floor. These windows have nine-over-nine light sash. On the first floor of the pavilion is the main entrance, a six-panel door with handsome Georgian surround. On the interior this door is faced with twelve wide horizontal boards beaded at the lower edge; the door hardware appears to be original. The door surround has reeded and fluted pilasters that support a triangular pediment. Above the door is a simple but delicate five pane fanlight. The whole first floor of the pavilion is framed with a simple, rectangular, flat-roofed porch. Within the posts of the porch, closely flanking the doorway, are two narrow ten-light windows. On the second floor of the pavilion is a 12-light window capped with a fanlight identical to that over the door and flanked with narrow eight-light windows. This three-part configuration closely resembles a Palladian window. The pavilion is capped with a pediment containing a small lunette window, again identical to the fanlight over the entrance door.

The northwest facade is similar to the southeast with a few notable exceptions. The central portion is flush with the wall rather than projecting, and there is no pediment breaking the roof line. The entrance is also a six-paneled door with identical fanlight but the door surround is much simpler: two pilasters topped with an architrave in semicircular form. There are louvered shutters on all the windows, including the narrow ones that flank the door and the window above it.

The southwest facade of the house has a nine-over-nine double hung sash window at each floor level. These are placed off-center, closer to the front of the building. A gable dormer with six-over-six sash window is centered on this slope of the hip roof. On the northeast facade a two-story stucco-covered brick kitchen wing in an L shape was added in 1928.

The floor plan of the main block consists of a center hall flanked by two rooms on each side. The open string stair, with delicately carved balusters, is at the northwest end of the hall. Each room has a fireplace centered on its interior wall. There is also a very large fireplace in the old kitchen in the cellar.
155

Tonal Register of Historic Places
Inventory -- Nomination Form

Compton Bassett
Prince George's County, Maryland
Continuation Sheet 7

Description (continued)

Delicately carved moldings grace the interior of the entire house, especially the cornice, door surrounds and mantel. Six-paneled doors are enclosed in finely carved moldings, the top frames fluted and reeded, and capped by a dentil cornice. This design is echoed in the fireplace intels in the parlor and library, notable for a stylized triglyph and stope design. A simplified design is used on the other mantels in the house. There is a chair rail in the parlor, dining room and hall.

The stair hall is divided by a cross arch with fanlight supported by four reeded and fluted pilasters. The handrail of the stairway has two turned, square balusters per tread, and ends in a volute. There is a wooden handrail on the wall side of the stairway.

The windows have interior, four-paneled shutters which fold into recesses in the sides of the window frames. The area beneath the window is paneled.

The ceilings on both the main and second floors measure twelve feet in height. The floors are covered with original random width pine boards. The attic framing contains both sawn and hewn members. The cellar is of brick.

The use of the Georgian style in the house was carried over into the site plan. There are four dependencies symmetrically placed at the four corners of the house, one in each compass direction. These are a chapel, a meat house, a dairy and the site of a store house, all approximately contemporary to the house.

The chapel, located approximately fifty feet from the south corner of the main block, is the largest of the three dependencies. The one-story building with cellar measures approximately 24 by 16 feet. It is constructed of brick with random glazed headers in all the walls, and has a steep gable roof. The main doorway, reached by five steps leading directly to the door, is near the west corner of the north façade. The four-panel door is framed by two plain pilasters with molded edges and a round-headed, five-light transom that repeats the pattern of the main entrance of the house. To the east of the doorway are two nine-over-nine light windows. The east end of the chapel is dominated by a large chimney flanked by nine-over-nine light windows on the first floor level and tiny windows high in the gable. The south façade has three evenly spaced windows matching those on the north. The west wall has one window high in the gable and a priest's door near the north corner. The six-panel door has no surround. A plain vertical board door, centred along the base of the north façade at ground level, leads to a cellar.

See Continuation Sheet #2
The brick meat house located to the west of the house has a steep gable roof similar to that used on the chapel and dairy. The building, built of brick with random glazed headers, measures 12 by 16 feet. A door is located on the east gable end wall.

The dairy is situated to the north of the house and is similar in appearance to the meat house, except for a centrally placed short, arched window in the south, west and north walls. The structure measures 14 by 16 feet, and is entered through a door on its east side. A frame addition has been built on the north side of the building.

A fourth dependency, thought to have been a store house, probably stood off the north corner of the house at one time. Bonded bricks have been found beneath the ground at the estimated location.

A family burial ground is located west of the mansion. Many burial stones date from the early 1800's, and it is thought there are other unmarked graves in the cemetery.

Other farm buildings on the property include a stable, cow shed, stable for hay storage and tobacco barn, all dating from the 20th century.
SIGNIFICANCE

<table>
<thead>
<tr>
<th>PERIOD</th>
<th>AREAS OF SIGNIFICANCE</th>
<th>CHECK AND JUSTIFY BELOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREHISTORIC</td>
<td>ARCHAEOLOGY-PREHISTORIC</td>
<td>COMMUNITY PLANNING</td>
</tr>
<tr>
<td>1400-1799</td>
<td>ARCHAEOLOGY-HISTORIC</td>
<td>CONSERVATION</td>
</tr>
<tr>
<td>1800-1899</td>
<td>ART</td>
<td>EDUCATION</td>
</tr>
<tr>
<td>1900</td>
<td>COMMERCIAL COMMUNICATIONS</td>
<td>ENGINERING</td>
</tr>
<tr>
<td>1900</td>
<td>INVENTION</td>
<td>PHILOSOPHY</td>
</tr>
<tr>
<td>1900</td>
<td>SCIENCE</td>
<td>POLITICAL-GOVERNMENT</td>
</tr>
<tr>
<td>1900</td>
<td>SPECTRUM</td>
<td>SOCIAL/HUMANITARIAN</td>
</tr>
<tr>
<td>1900</td>
<td>LOCAL HISTORICAL</td>
<td>COMMUNITY PLANNING</td>
</tr>
</tbody>
</table>

STATEMENT OF SIGNIFICANCE

According to Henry Chandlee Forman in his *Early Manor and Plantation Houses of Maryland*, "the symmetrical Georgian house is the rule in Prince George's County." (p.63). Compton Bassett is one very fine example of this style. The symmetrical, three-part facade; palladian motif in the first and second stories of the pavilion; symmetrical site plan of house and dependencies, as well as the well-executed interior woodwork all are characteristic of Georgian architecture in the second half of the 18th century. The house and its setting have remained largely untouched to the present day.

Compton Bassett has been the seat of Clement Hill, Jr. and his descendants since 1700. For 276 years, at least a part of the original patent has been in the occupancy of direct descendants of the patentee. The social status of Compton Bassett's early owners was reflected in their marriages with the more prominent Roman Catholic families in the Province. The many similarities in design between Compton Bassett and His Lordship's Kindness (National Register, Prince George's County) are well-known and should not be considered coincidental when the close kinship of their early owners is taken into account. Primarily engaged in agriculture, each generation of the family has actively served its church, state and community.

Clement Hill, Jr. (1670-1743) came to Maryland in 1693. He lived with his uncle, Clement Hill, Sr., until 1696 when he married Ann Darnall, daughter of Col. Henry Darnall of The Woodyard. Hill lived at the latter place until the summer of 1699 when Col. Darnall returned from England bringing to his son-in-law a commission from Lord Baltimore as Surveyor General of the Western Shore. It is recorded in the Rent Rolls that Clement Hill, Jr. had Compton Bassett, 748 acres, surveyed July 19, 1699. Within a year he had completed the construction of a house that he named after a house he had known in his native England. No description of that house built in 1700 is known to exist. The 1743 Inventory of Clement Hill's estate was made room-by-room and lists "Chamber over the Great Room... Chamber over the Little Room... Chamber over the Hall... Dining Room... Hall..., Hall Closett..., Great Room..., Little Room..., Store..., Kitchen, and Passage..."

Clement Hill, Jr.'s will gave his house and dwelling plantation to his wife during her lifetime and then to their son, Clement, (1707-1782) who had married Mary Digges, a daughter of Charles of Warburton Manor.

See Continuation Sheet #3
It was this Clement Hill who donated supplies to the support of the patriot army in 1788. Perhaps due to the stress of the times, the original mansion house, which according to family records burned in 1771, was not rebuilt until after the Revolutionary War.

Clement Hill (1743-1807), only son and heir of his father, was left the responsibility of replacing the family dwelling house. The builder he employed is not known. "A. L. Gosnell" was scratched into wet plaster over the dormer on the southeast facade. His identity has not been established. The present house and dependencies are described in the Federal Direct Tax Assessment of 1798, with 1896 acres of adjoining land. (See Addendum)

Whether or not this house resembles the 1700 structure is unknown. Smoke-stained bricks are found in the present structure. It is believed the present house was covered with pebble dash to hide the stained bricks. The White House architect, James Hoban, came to Compton Bassett in March of 1822 for consultation concerning certain improvements to the mansion, including pebble dash for the exterior. Receipts for Hoban’s services and building materials appear in Dr. William Hill’s accounts.

County Court records show that Clement Hill was appointed a Commissioner of Tax in 1792 and again in 1803. His 1807 will gave the dwelling house to his wife, Eleanor, during her lifetime and then to their son, William. Eleanor Brent Hill was the daughter of William Brent of Virginia. Her mother was a sister of Daniel Carroll, signer of the Federal Constitution, and of John Carroll, the first American Archbishop of the Roman Catholic Church.

Dr. William Hill (1783-1823), who married Anne Smith, daughter of Dr. Clement Smith, Jr., inherited Compton Bassett by terms of his father’s will. By 1816 he had acquired additional land to total the 2,182 acres that he had resurveyed as Woodland. In 1814, when Dr. William Beanes of Upper Marlboro was captured by the British, an episode which culminated in Francis Scott Key’s creation of our National Anthem, Dr. Hill, a close friend of Beanes, was also taken but gained an early release from his captors. Dr. Hill was one of the organizers of Planter’s Bank in Marlborough in 1817. When he died in 1823, he gave life rights to his dwelling plantation to his wife, then to his son, William Beanes Hill.

William Beanes Hill (1813-1890), Judge of the Orphan’s Court for 25
years, State Senator in 1877 and Secretary of the State of Maryland, was
a graduate of St. Mary's College at Emmitsburg, Maryland, and one of the
leading planters in the state. He married Catherine Beall Smith,
daughter of Richard of Georgetown. Judge Hill was one of the original
stockholders in the Maryland Agricultural College (now the University
of Maryland) in 1856. In 1864 he founded the Woodland Bridge Company,
inc. to operate a toll facility across the Patuxent River near Hill's
Landing. An undated drawing, entitled "Hill's Landing," shows the bridge,
a sternwheeler steamer and a brick kiln at the water's edge. This
establishment was located just south of the present day Maryland Route 4
bridge. The Landing, as such, is no longer in existence.

Judge Hill willed his dwelling house to his eldest daughter, Esther G.
Hill. It was she who gave the religious articles in the family chapel
to St. Mary's Roman Catholic Church in Upper Marlboro in 1895. Incident-
ally, no record has been found to show deconsecration of the chapel.
It may still be a Roman Catholic Church. Esther G. Hill died in 1900,
giving the family home to her niece, Mary Dixon Beale, who had married
Rev. Verdy Sasscer, M.D. Two of their sons, Henry S. Sasscer and Dr.
Robert B. Sasscer, are currently the owners and occupants of the mansion.
The surrounding acreage is still a working farm.

4Bowie, Effie Gwynn, Across the Years in Prince George's
County. (Richmond: Garrett and Massie, 1947) p. 427
5Bowie, p. 426
6Rent Rolls #4:324, Hall of Records, Annapolis, Maryland
7Bowie, p. 426
8Bowie, p. 249
9Red Books, Part 2, items 1604-1605, Hall of Records,
Annapolis, Maryland
10Federal Direct Tax, 1798, Patuxent Hundred, Prince George's
County, Maryland. Particular lists of dwellings and of land.
11Hill Papers, unpublished. Dr William Hill letter to Hoban,
14 March 1822. William Hill Accounts, 20 March 1822, paid $20.00 to
James Hoban and $6.00 to William Galloway for "gig and horse" to trans-
port Hoban for two days.
Compton Bassett
Prince George's County, Maryland
CONTINUATION SHEET
ITEM NUMBER 8 PAGE 5

STATEMENT OF SIGNIFICANCE (footnotes continued)

10Bowie, p. 112

11Patented Certificate #2392 for Prince George's County, Hall of Records, Annapolis, Maryland.

12Van Horn, pp. 262-263
News and Notes of the Prince George's County Historical Society, Riverdale, Maryland, p. 29

13Van Horn, p. 269

14News and Notes, p. 59

15Hill Papers, unpublished.

16Bowie, p. 427
MAJOR BIBLIOGRAPHICAL REFERENCES

urhouse, Upper Marlboro, Maryland
Administration #12747
Land Records AB-11:17, 3446:687, 3603:114, 3803:510

ll of Records, Annapolis, Maryland
Federal Direct Tax, 1798. Petuxent Hundred, Prince George's County,

GEOGRAPHICAL DATA

ACREAGE OF NOMINATED PROPERTY 266

UTM REFERENCES

<table>
<thead>
<tr>
<th>E</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

ZONE EASTING NORTHING

<table>
<thead>
<tr>
<th>E</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

VERBAL BOUNDARY DESCRIPTION

LIST ALL STATES AND COUNTIES FOR PROPERTIES OVERLAPPING STATE OR COUNTY BOUNDARIES

<table>
<thead>
<tr>
<th>STATE</th>
<th>CODE</th>
<th>COUNTY</th>
<th>CODE</th>
</tr>
</thead>
</table>

FORM PREPARED BY

NAME / TITLE
Margaret W. Cook/Pamela James

ORGANIZATION
Prince George's County Committee of the Maryland Historical Trust/

STREET & NUMBER
5621 Delaware Drive/ 21 State Circle

CITY OR TOWN
Oxon Hill, Annapolis

STATE
Maryland

DATE December 1976

STATE HISTORIC PRESERVATION OFFICER CERTIFICATION

THE EVALUATED SIGNIFICANCE OF THIS PROPERTY WITHIN THE STATE IS:

NATIONAL _____ STATE _____ LOCAL _____

As the designated State Historic Preservation Officer for the National Historic Preservation Act of 1966 (Public Law 89-665), I hereby nominate this property for inclusion in the National Register and certify that it has been evaluated according to the criteria and procedures set forth by the National Park Service.

STATE HISTORIC PRESERVATION OFFICER SIGNATURE

TITLE

DATE

NPS USE ONLY

I HEREBY CERTIFY THAT THIS PROPERTY IS INCLUDED IN THE NATIONAL REGISTER

DATE

DIRECTOR, OFFICE OF ARCHEOLOGY AND HISTORIC PRESERVATION

DATE

KEEPER OF THE NATIONAL REGISTER

161
Compton Bassett
Prince George's County,
Maryland
CONTINUATION SHEET
ITEM NUMBER 9 PAGE 6

MAJOR BIBLIOGRAPHICAL REFERENCES (continued)

Hall of Records, Annapolis, Maryland
Maryland. Particular Lists of Dwellings and Land
Inventories, DD#1, RNR#1:315-317
Patented Certificate, Prince George's County, #2392
Patent, CC#4:161, WD:261
Red Books, Part 2, Items #1604-1605
Rent Rolls #4:324, 327, 332
Wills, 23:215, T#1:634, T#1:340, WAJ,Jr., #1:660, JBP#1:668

Hill Family Papers, unpublished, in possession of the family

Secondary Sources:

