12. Mechanisms of translocation of proteins through bacterial membranes

By: Raykoucheva, St.

A review with 178 refs. on translocation of proteins through bacterial membranes. The development of ideas on the mechanism of this process (the signal hypothesis, the loop model, etc.) is followed. The differences between prokaryotes and eukaryotes with respect to protein transport are discussed. Data for the involvement of biol membranes in protein translocation are presented. The contribution of some new genetic approaches to the study of this process is summarized and the perspectives of using these methods to solve important theoretical and practical problems (particularly for biotechnol) are outlined.

Indexing

Micr. Biochemistry (Section 13-0)

Concepts

Bacteria
protein translocation by membranes of

Proteins, biological studies
translocation of, by bacterial membranes
biological study

Biological transport
translocation, of proteins, by bacterial membranes

Supplementary Terms
review protein translocation bacteria membrane
Съдържание

Бойка Аначкова, Георги Русев — Къси разпространени ДНК-последователности в генома на висшите животни 3
Радка Н. Филипова, Иван Т. Тодоров — Тромбоцитен растежен фактор — молекулярна биология и роля в злокачествената трансформация 19
Румен Г. Панков, Георги Г. Марков — Цитоскелет — междинни филаменти 32
Светлана П. Байкушева — Механизми на транслокация на белъци през бактериална мембрана 67
Лъчезар К. Карапълов, Ганка Л. Пирончева — Снаждане на РНК
Contents

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boyka Anachkova, George Russev</td>
<td>Short Dispersed Repetitive DNA Sequences in Genomes of Higher Animals</td>
<td>18</td>
</tr>
<tr>
<td>Radka N. Philipova, Ivan T. Todorov</td>
<td>Platelet-Derived Growth Factor—Molecular Biology and Role in the Malignant Transformation</td>
<td>31</td>
</tr>
<tr>
<td>Roumen G. Pancov, George G. Markov</td>
<td>The Cytoskeleton—Intermediate Filaments</td>
<td>66</td>
</tr>
<tr>
<td>Svetla P. Baykousheva</td>
<td>Mechanisms of Translocation of Proteins Through Bacterial Membranes</td>
<td>89</td>
</tr>
<tr>
<td>Lachezar K. Karagyozov, Ganka L. Pironcheva</td>
<td>Splicing of RNA</td>
<td>106</td>
</tr>
</tbody>
</table>
Механизми на транслокация на белтъци през бактериални мембрани

Светла П. Байкушева

Институт по микробиология — БАН, София 1113

1. Увод
2. Строеж на клетъчната обвивка на бактериите и локализация на белтъците в нея
3. Хипотези за експорт на белтъци
4. Генетични подходи за изучаване секретията на белтъците при бактериите
5. Участие на мембраниите в секретията на белтъци
6. Особености при експорт на белтъци при прокариоти и еукариоти
7. Заключение

Литература

"Един модел е ценен само дотогава, докато служи да насочва изследванията. Един модел обаче може да бъде опасен, когато той е толкова привлекателен и предвзет, че да заглуши, което се съгласува с него, но не е така разсъждавано, вреден за всички различни от него хипотези." Рандал, Нърди [126]

1. Увод

Всяка жива клетка синтезира в цитоплазмата си белтъци, които след това се пренасят през биоложките мембрани, локализирани се на определени места в клетката и извън нея. Този сложен процес включва синтезата на полипептида, насочването му към съответното място през мембранията. Такива белтъци са наричани "експортни" или "секретирани", а терминът "екскреция" се запазва само за онези от тях, които се изхвърлят в средата около клетката [115]. Механизмите за експорт на белтъци се оказаха принципно едни и същи при прокариоти и еукариоти, въпреки че при еукариотите те са много по-сложни [112, 113, 130, 134, 136, 137, 139, 148, 175]. Докато изследванията върху еукариоти позволява да се изяснят някои биохимични особености, то
прокариотите предоставяха подходящ модел за разкриване на генетичните особености и проследяване на началните етапи на този процес [7, 9, 10, 115]. Бактериите като *Escherichia coli* например, които са добре познати в биохимичното и генетично отношение и бързо се размножават, даваха възможност чрез прилагане на сложни генетични манипулации да се проучи не само експортът на белтъци при прокариотите, но и принципа да се изяснят общи за тях и за еукариотите етапи от него. Освен като удобна опростена система за изучаване на това явление бактериите привличат интереса на специалисти от много различни области поради факта, че продуцираните и секретираните от тях белтъци (ензими, хормони, токсини и др.) намират голямо практически приложение и са обект за изследване от биотехнологична гледна точка [31, 123, 124].

За изключително големия интерес към експорт на белтъци в клетките свидетелствуват многобройни експериментални работи и литературни обзори, публикувани през последните пет години. Тъй като е невъзможно да се обхване цялостно литературата в тази област, в настоящия обзор се разглеждат най-общо еволюцията на идеите и подкрепящите ги резултати през последните 15 години и се представят по-подробно най-новите данни върху механизъмите на трансляцията на белтъците през бактериалните мембрани. В литературата има подробни сведения за експорт на белтъци при прокариоти [1, 2, 7, 9, 10, 31, 48, 59, 111, 115, 119, 123, 124, 125, 126, 135, 142, 151, 169, 170], дрожди [112, 113, 148] и клетки от по-висши организми [73, 74, 130, 134, 136, 137, 139, 161, 162].

Разликите в осъществяването на експорт на белтъци при прокариотите (бактериите) и еукариотите (дрожди и по-висши организми) трябва да се разглеждат, като се има предвид различното устройство на техните клетки. Това, което отличава бактериите от еукариотите, е отсъствието на специализирани оргanelи, вътреклетъчни мембранни структури (ендоциламин ретикулум, вакуоли, апарата на Голджи, митохондрии и др.), както и на обособено ядро. Бактериите за разлика от еукариотите имат многослойна клетъчна стена, която заведо с цитоплазмената мембрана образува клетъчната обвивка.

2. Строеж на клетъчната обвивка на бактериите и локализация на белтъците в нея

Прокариотите, или бактериите, имат сложна клетъчна обвивка (фиг. 1) [125]. Според това, как тя е устроена, те се разделят на две основни групи — Грам-отрицателни и бактериите, което отразява и разликата в осъществяването им при обработката с бактари. Всички бактерии притежават цитоплазмена (вътрешна) мембрана (ЦМ), изградена подобно на други биологични мембрани от липиди и белтъци. Белтъците са около 300 вида и участват в дишането, транспорта на йони, преноса на хранителни вещества, енергийния метаболизъм, биогенезата на мембраниите и в други процеси. Отделните компоненти са разположени асиметрично срещу равнищата на мембраната [85].

Грам-отрицателните бактерии [125] се отличават от Грам-положителните [140] по наличието на втора (външна) мембрана (ВМ), изградена от фосфолипиди, сред които са разположени около 50 вида белтъци (фиг. 1, A) [87, 99]. Те вземат участие в транспорта на различни вещества и йони, в запазването целостта на клетъчната стена и до голяма степен обусават взаимоотношенията на клетката със заобиколващата я среда. Много от тях във вътрешното са идентифицирани като рецептори на фаги и/или колонии.
[125]. Между двете мембрани на Грам-отрицателните бактерии е разположено т. нар. периламино пространство (ПП), в което се намират около 100 беликът, участващи в транспорта на хранителни вещества (сърцащи белици) или в разграждането на субстрати (ензими). Поради присъствието на хидролитични ензими в ПП то може да се разглежда като еволюционен предшественик и аналог на лизозомите в еукариотите [7].

Клетъчната обивка на Грам-положителните бактерии е по-просто устроена, отколкото тази на Грам-отрицателните, тъй като в нея липсва ВМ (фиг. 1, Б). Полпептидогликаниът в нея е свързан с тейхоеви и тейхуронови киселини, липиди и др. [140]. Той представлява дебел слой, устойчив на хидролази, който изпълнява ролята на йонообменна смола, пропускайки едни молекули и задържайки други.

И при двете групи бактерии съществуват видове и дори отделни щамове, които притежават допълнителни повърхностни слоеве, наречени капсули [87, 125, 140]. Като цяло клетъчната обивка на бактериите включва всички слоеве извън цитоплазмата, като понятитето „клетъчна стена“ се запазва за всички тях без цитоплазмата мембрана (фиг. 1) [125].

Все още съществуват противоречия по отношение на използваната терминология за описване секретирана на белици при бактериите. В настоящия обзор с термина „секреторни“ или „експортирни“ се означава характерни белици, които нагушат цитоплазмата и се локализират в плазмената мембрана, ПП, ВМ (когато става дума за Грам-отрицателни бактерии), или овни, които се екскретират в средата около клетката [115]. За последните се прилагат терминът „извънклетъчни“ [123, 125], по-типични за Грам-положителните бактерии (предимно от род Bacillus), докато при Грам-отрицателните като E. coli експортирните белици се локализират във ВМ (фиг. 2, А), ПП (фиг. 2, Б) или в плазмената мембрана (фиг. 2, В) [5, 59] и рядко излизат извън клетката [115]. Това са предимно токсини или хемолизини. Съществуват обаче и Грам-отрицателни видове бактерии, например от род Pseudomonas, които секретират множество различни белици в средата около клетката [123, 125]. Много рядко беликът, предназначение за определено място, може да се открива на друго място. Тази специфичност на локализацията на белиците в клетката поставя редица въпроси, на които все още не може да се отговори. Ето някои от тях: По какъв начин едни белици се насочва към определено място? Как беличната молекула прекосва хидрофобния слой на мембраната? Какви фактори участ-
вуват в биогенезата на самата мембрана и в локализацията на бетъциите в нея? Защо бетъциите, предназначени за ЦМ, спират в нея, а не се преместват по-нататък?

Фиг. 2. Механизъм на експорт и краища локализация на белъците в обвивката на E. coli [58]

А — бетъци във външната мембрана. Когато мястото за отцепване се покаже от външната страна на ЦМ, хептидното удължение се отцепва, преди веригата да е напълно синтезирана. Останалата част от веригата аминокиселинна последователност на насеченият пептид във външната мембрана започва да се натъква и да взаимодействува с компонентите на ВМ (напр. липополизазаридите) в местата на свързване на ЦМ с ВМ (напречни свързки на Байер). Взаимодействието между липополизазаридите и аминокиселините на бетъка във външната мембрана предизвика този бетък по свързките на Байер до ВМ; Б — перианализи бетъци. Когато мястото за отцепване се покаже от вътрешната страна на ЦМ, хептидното удължение се отцепва и останалата част от пептида се натъква. Поради хидрофилията на белъците части от им, която е навън ЦМ, остава в разтвора, а в корицата на цилиндъра е свързано с бетъци на ЦМ. След отцепване на хептидното удължение новообразуваната се аминокиселинна последователност в NH2-края остава в ПП, докато останалата част от бетъците молекула започва да се групира в двойния липиден слой на ЦМ, като в същото време синтезираната на пептида продължава. Тази част от молекулата има хидрофобни свойства. — показва последователността на групирането на бетъка. Означенията, както на фиг. 1

3. Хипотези за експорт на белъци

Хипотезите за експорт на белъци в клетките са изведени най-нагоре на еукариотните модели и след това по-дълбоко в клетките и при прокариотите. Всяка от тези хипотези има своите признани и отрицани. В началото на 70-те години M. I. K. и др. [102] забелязват, че синтезираната in vitro молекула на имуноглобулната през N-края си непредразполага в повечето от време на зрелите бетъци. Няколко години по-късно Blobel и Dobberstein формулират първата хипотеза за експорт на белъците — "Сигнална хипотеза" [12, 13]. Според нейната хипотеза белъците се синтезират в прокариотните клетки и във вътрешната мембрана на цитоплазматична на клетката. Във вътрешната мембрана се синтезират и хептиди с около 15-30 аминокиселинни остатъка от този на зрелите бетъци. Това удължение е наричано "сигнална последователност". То може да се разпознава от рецептори на зрелите бетъци в цитоплазмата на мембраната. Образува се пространство, на които инхибиране на сигнали за излизане на бетъка, а след него и останалата част от молекулата (фиг. 3). Когато сигналината последователност се покаже от вътрешната страна на мембраната, тя бива отцепвана.
с помощта на специфична протеаза („сигнална пептидаза“). Отцепването на сигналиния пептид може да стане и преди още да е завършила напълно синтезата на белъкa.

Фиг. 3. Начални етапи от синтезата и секретирането на белъките в ендоплазмения ретикулум на еукариотите съгласно сигналната хипотеза на Blobel (схема) [12, 13]: 1 — транскрипция на иницииращия кодон (AUG) на сигнала; 2 — насеяният пептид, съдържащ сигналната последователност, започва да се показва от рибозомата; 3 — насеяният пептид се свързва с рибозомния рецептор и пресича мембраната; 4 — сигналната последователност се откъсва с помощта на пептидаза; 5 — сигналната и секрецията на белъкa продължават; 6 — секрецията на белъкa е завършена и белъкът се натъква в окончателната си конформация.

Сигналните последователности на много секреторни белъци, както на прокариоти, така и на еукариоти са подробно изучени [58, 61, 72, 77, 81, 82, 101, 110, 147, 167]. Установено е, че съществува известна хомология в тях и че те представляват пептиди, състоящи се от 15—25 аминокиселини. По-дължината на веригата с сигналиния пептид съдържа в началото къс хидрофобен положително натоварен участък, следван от силно хидрофобна област (ядро), дълга 8—12 остатъка и завършваща с по-полярна част, съставена от 5—7 остатъка, който очертава мястото за отцепване на пептида [161]. Такова подреждане на аминокиселините позволява да се образува α-спирала, която е от съществено значение за експорта на белъкa [23, 34, 69]. Значението на централното хидрофобно ядро за инициирането на експорта е потвърдено многократно чрез изолирането и охарактеризирането на мутанти, дефектни по отношение на експорта, поради заместването на нейтралните аминокиселини в тази част с натоварени, както и с получаването на хибриди белъци [7, 9, 10, 115]. Делицис или точкови мутации, нарушащи последователността от аминокиселини в хидрофобния участък и непозволяващи да се образува α-спирала, предотвратяват или силно нарушават експорта на белъките. От друга страна, суперорни мутации, които възстановяват вторичната структура на сигналиния пептид, възстановяват секрецията на белъкa [33, 34]. Модифицирането на сигналията последователност с генетични методи dade представа за това, каква трябва да бъде тя, за да може да се секретира белъкът [9, 10, 33, 34, 101, 115].

Огромният брой данни за сигналиите последователности на секреторни белъци от прокариоти и еукариоти са обработени статистически и е създадена схема за предсказване на възможните места за отцепване на сигналиния пептид, като се знае само първичната му аминокиселнна последователност [161]. В повечето случаи отцепването на сигналиния пептид е необходимо и за-
дължително условие, за да се извърши секрецията на бетлъка. Има обаче и
изключения от това правило [16, 32, 155].
Отцепването на сигналните пептиди при бактериите и по-специално при
E. coli се извършва от два епизма, означени като „водеща пептидаза I“ и
„водеща пептидаза II“ [27, 29, 130]. Първият отстранява сигнала пептид
на повечето секреторни бетлъци, докато вторият го отцепва само от липопро-
тениите, като в мястото на отцепване дължително трябва да има цистеинов
остатък [60]. Едната от сигналните пептидази е установена едновременно и във
БМ, и в ЦМ из E. coli [130, 178], когато е рядък случай на локализация на един
бетлък на две различни места в клетката. Мутация след местото на отцепване
на сигнала пептид влияе на откъсването му, но не и на локализацията му във
БМ [132]. Установено е, че участъкът, в който става отцепването на
сигнала пептид (между позиции —5 и +1), е силно селекциониран по отно-
шение на наличието в него аминокиселини [161]. Малки нейтрални остатъци
преобладават в позиции —1 и —3, но рядко се срещат в —2. Обратно, аро-
матни натоварени, големи и полярни остатъци практично осъществяват от
позиция —1 и —3 и преобладават в —2. Пролинов остатък отсъства между
позициите —3 и −1, но често се среща в позиция —5. Глицин се установява
предимно в позиция —1 и —4. Хидрофобността на веригата силно нараства в
позиция —6. Сравняването на местата за отцепване на сигналите последова-
телности на много секреторни бетлъци показва, че обикновено хидрофобизи-
рането на пептида става между аминокиселинен остатък с къса странична
верига (обикновено Glu или Ala) и прилежащия остатък. Von Heijne [161]
предложи правилото „(—3, —1)“, според което местото, където става
отцепването, трябва да съдържа Ala, Glu, Cys, Thr или Glu в позиция —1.
То не трябва да съдържа ароматни, натоварени или големи полярни остатъци
в позиция —3, както и да не съдържа Pro в участъка, разположен между —3
и +1.
Сигнална хипотезата става уязвима, когато се установи, че някои секре-
торни бетлъци (например овалbumинът) не притежават в аминокиселната си сигнал-
на последователност, която да се отцепва от сигнала пептидаза [142]. Гру-
pата на Biobel [82, 83] защитава сигналата хипотеза, като представя данни,
че в овалбумин съществува сигнала последователност, но че тя е разполо-
жена вътрешно в молекулата му. Вътрешна сигнала последователност е усвои-
вана и при експорта на простулина от бактерии [152]. Споровете все още
продължават, тъй като по-късно е установена сигнала последователност в
аминокиселина на овалбумина [17, 95], а пък и някои автори [142] поставиха под
съмнение възможността една вътрешна сигнала последователност да може
da se разпознава от системата за експорт. Не е ясно каква информация съвсем
настройка във вътрешна тя, която е възможна и необучава бетлъците към съответните
им места. Началните етапи на синтезата и прехвърлянето на сигнална пептида
на бетлъци е един и същ както за секреторните бетлъци независимо за къде са пред-
назначени. Предполага се, че съществува определена аминокиселинна последо-
вателност в молекулата на архейни бетлъци, която е обобщена информация за
това, че бетлъкът трябва да остане в мембраната („спирачна преграда последо-
вателност“) [173].
В Biobel и др. предлагат усъвършенствуван вариант на сигналната хипотеза
[11, 163, 164, 165]. Тъй като пептида на бетлъците в цитоплазмата протича
много бързо (само за няколко секунди) сигналият пептид трябва да намери
рецепторите върху ЦМ, за да се залови. Ако това не става, по-нататъшното
удължаване на веригата ще доведе до формирането на вторична структура,
kоято ще блокира сигналиния пептид. Това се превръща, ако настъпи
временно спиране на трансляцията, докато рибозомата намери мястото си за
закрепване и се залови за мембраната. Щом сигналият пептид се покаже от рибозомата, той взаимодействува с една част, която се намира свободно в цитозола и има свойството да разпознае сигналият пептид. Затова тя е наречена „разпознаваща сигнала частица“ („signal recognition particle“, SRP).

Фиг. 4. Модел на бримката [59]
Първите линии представляват положително натоварени аминокиселини, които остават в началото на непълно, т.е. улажнение. Следващият участък, наричан с високата височина, съответствува на хидрофобните части на улажнението на пептида, което е местото на отцепване на молекулата на предшественика.

[48, 105]. Състои се от 6 полипептидни вериги и 1 молекула (7S) РНК [163, 164]. Съвързването на частицата с сигналият пептид блокира новото улажнаване на бълтъчната молекула, докато сигналият пептид не намери мястото си за прикрепване към мембраната. Съвързването на целия комплекс с мембраната се осъществява чрез един бълтък, наречен „прикрепящ“ („docking protein“) [43, 98], и съществува на бълтъка се деблокира и транслацията продължава. При бактериите също бяха установени мембрани бълтъци, за които се предполага, че изпълняват подобен функция [19, 93, 94, 116, 117, 144].

Формулирането на сигналият хипотеза не е единственият опит да се обяснят механизъмите на трансляцията на бълтъките през мембраната. Илюку и др. предлагат „модел на бримката“ (фиг. 4) [50, 61], според който по време на синтезата бълтъкът се нагъва в мембраната, образувайки „бримки“, докато не завърши синтезата му. Положително натовареният N-края се съвързва с отрицателно натоварената вътрешна повърхност на мембраната и остава съвързан с нея. След това той започва да се придвижва през мембраната. Този модел се основава на данни, които не можеха да бъдат обясниeni със сигналият хипотеза. За няколко мембранни бълтъка е установено, че пречицат двойния слой на мембраната няколко пъти. Тук спадат някои транспортни бълтъци — бактериородопсинът [37], както и опициус, който пресича мембраната 7 пъти [42, 142] и притежава повече от една сигнала последователност.

В същото време предложи друга хипотеза — „опосредствуван от мембраната механизъм“ [168], според която най-важен момент в секретирането е конформацията на бълтъка. Според новия вариант на тази хипотеза [170] сигналият последователност предизвиква нагъване на готовия превръщане в подходяща, компетентна за екскорт конформация, която му позволява да се въвежда в мембраната. Интегрирането на бълтъка в мембраната става за сметка на енергията, получена от протоннодвиженияа сила. Отцепването на сигналият последователност изтегля реакцията и я прави небезпечна. Генетичните изследвания показваха, че само мутации, които променят сигналият последователност [10, 61, 62], но не и такива, които променят конформацията на бълтъка, предизвикват дефекти в екскорта [142].

Накрая и др. представят модел за екскорта на бълтъка Lam B във външната обвивка на E. coli, който служи за рецептор на фага λ [47, 48]. Тези и други автори показват, че мутации, засягащи хидрофобния сегмент на водещия пептид на бълтъка от BM на E. coli, при които положително натоварените
аминокиселини са заместени с неутрални, не позволяващи на рибозомите да се захранят върху мембраната и белъкът не може да се синтезира [33, 34, 62, 72, 101, 117, 146]. Те предполагат, че съществува „спирачка трансляцията последователност“ („stop-translation sequence“) [48, 142], която се намира в началото на пептида. След като се синтезира тази последователност, тя се свързва с рибозомата по такъв начин, че не позволява по-нататъшно продвижение на трансляцията. След като сигналният пентид намери рецептора си върху мембраната, хидрофобната му част започва да навлиза в мембраната и това предизвиква изтегляне на рибозомата към последната и девактира спирачката на трансляцията последователност. Докато става продвижение до мембраната, тази последователност напълно излиза от рибозомата и по-нататъшната трансляция на белъка протича безпрепятствено. Следващите етапи са както същата хипотеза. Според Hall и др. вероятно тази предполагаема спирачка трансляцията последователност е разположена поне отчасти след 15 аминокиселинен остатък на зрелия белък. Тя може да включва също така и част или дори целия хидрофобен участък на сигналната последователност [48, 160]. Преки доказателства за съществуването на такава последователност няма, но подобна възможност е доста привлекателна. Установено е, че мутации в хидрофобния сегмент отстраняват паузата в трансляцията, необходима за сигналния пентид да намери рецептора си върху мембраната [48]. Предполага се, че те пречат на взаимодействието между спирачката трансляцията последователност и рибозомата, което от своя страна не предприема време на хидрофилия сегмент да намери рецептора си върху мембраната.

Моделът на Randall и Hardy [126] съдържа елементи на сигналната хипотеза и на модела на Wickner (фиг. 5). Според него разпознаването на сигналния пентид се осъществява от частите на, както е описано в новия вариант на сигналната хипотеза. След като разпознаването е осъществено и рибозомата се е свързала с мембраната, полипептидът продължава да нараства и се нагъва в мембраната. Когато значителна част от него (около 80%) е синтезирана, т. е. достигната е критична големина, извършва се транслокация.
на белъка през мембраната по неизвестен засега начин. Такъв механизъм не изключва участието и на някои мембрани бели. Някои автори разглеждат трансплантацията на белъка през мембраната като директен процес — „модел за директно прехвърляне“, — който прилича на модела на бримката с изключение на това, че се приема съществуването на свързващ рибозомен белък, който осъществява здрава връзка с мембраната, където позволява на наносещата верига да се промъкне през мембраната в процеса на удължаването си [161].

Енг. мап и Ст ейтз [36] лансират „модела на фуркета“, според който сигналната последователност и началният участък на зрелия белък се формират хидрофобна структура, наподобяваща фуркет, която е образувана от две α-спирал. Този фуркет след това прониква през мембраната почти като това става в модела на бримката, като експортът на останалата част от белъка се предполага, че става в резултат на повишаващата се хидрофобност по посока на C-края, който изтласква веригата през мембраната поради по-големия си афинитет към хидрофобната среда вътре в нея.

Един от най-противоречивите въпроси при разглеждането на експорта на белъците е дали те се пренасят през мембраната по време на самата трансплантация, или едва след като цялата молекула е синтезирана в цитоплазмата [142]. Например някои белъци от външната мембрана и периплазмата на E. coli [47], като токсинът и алкалната фосфата за Corynebacterium diptheriae [144], пенициллазата на B. licheniformis [77, 78, 143], α-амилазата на B. subtilis [104], се пренасят през мембраната по време на трансплантацията. При други белъци, като предшественика на белъчната обвивка на фага М13, локализиран във външната мембрана на E. coli [45], малтозаъсвързващият белък [68], β-лактамазата [71] и пролиппротеин на E. coli [156], както и пренасянето на някои белъци в митохондриите [84, 138], това се извършва след трансплантацията. В последните случаи протеолитичното отцепване на сигналината пептид става, след като 80% от молекулата са вече синтезирани [67]. Някои белъци, като малтозаъсвързващият белък на E. coli, могат да се секретират като едновременно с трансплантацията, така и след нея [67, 68]. Пренасянето на участъци от насечени периплазми на бели срещу мембраната може да става независимо от удължаването на белъчната молекула [126].

Предполага се, че някои от секретиранияте белъци могат да се пренасят след трансплантацията, но като се използва системата за пренос, функционираща по време на трансплантацията [142]. Такъв е случай с импорта на белъци в митохондриите на еукариотите [136, 175]. На табл. 1 са представени основните принципи на отделните хипотези.

4. Генетични подходи за изучаване секрецията на белъците при бактериите

Използването на различни съвременни генетични методи дава възможност да се изяснят механизъмите за секретиране на белъците при бактериите [7, 9, 10, 27, 48, 72, 75, 99, 115, 120, 125, 141]. Класическият генетичен подход за изучаване локализациите на белъците се основава на изолирането на мутанти, непосредствено да експонират един или повече белъци до съответните извънцитоплазмени отделения. Получаването на такива мутанти позволи да се уточни свойствата, присъщи на секреторните белъци, които спомагат за правилната им локализация. Определени са областите в молекулите, в рамките на които се намират специфични за експорта сигнали. Започва да се
<table>
<thead>
<tr>
<th>Стадии от биосинтезата</th>
<th>Модел на Walter и Blobel</th>
<th>Модел на Imrey</th>
<th>Модел на Wickner</th>
<th>Модел на Steitz и Engelman</th>
<th>Модел на Hall и Sillavy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Место на иницииране</td>
<td>свободни полизоми</td>
<td>свободни полизоми</td>
<td>свободни полизоми</td>
<td>свободни полизоми</td>
<td>свободни полизоми</td>
</tr>
<tr>
<td>Роля на „сигнална“ пептид</td>
<td>разнообразна от РСЧ/РНК 7S</td>
<td>възка NH2-края на белък в мембраната</td>
<td>възка на белъка в мембраната</td>
<td>участуваща във възкването на белък в мембраната</td>
<td></td>
</tr>
<tr>
<td>Връзка на белъка по време на синтезата му със самата мембрана</td>
<td>време след завършване на синтезата на сигналния пептид</td>
<td>едновременно с уланжаването на сигналния пептид</td>
<td>време на или след внасяването на върхата</td>
<td>когато структурата под форма на фурет се промени във веригата</td>
<td></td>
</tr>
<tr>
<td></td>
<td>място чрез системата РСЧ/ПВ</td>
<td>полярните главички на фосфолипидите и двойния слой</td>
<td>вероятен екзорецептор или област върху мембраната</td>
<td>в мембраната</td>
<td></td>
</tr>
<tr>
<td>Връзка между рибозомата и мембраната</td>
<td>рибозома — рибозома + РСЧ/ПВ/РНК 7S</td>
<td>няма пряка връзка</td>
<td>няма пряка връзка</td>
<td>няма пряка връзка</td>
<td></td>
</tr>
<tr>
<td>Каталитиране на формирането на белъките молекули</td>
<td>с участието на пора</td>
<td>чрез конформациата на самия белък</td>
<td>под действие на сигналната последователност върху конформацията</td>
<td>чрез пора (место за експорт)</td>
<td></td>
</tr>
<tr>
<td>Енергетична зависимост</td>
<td>уланжване на полипептидната верига</td>
<td>лигн-белък взаимодействия, енергия за биосинтезата на белък</td>
<td>взаимодействия белък—белък, белък—лигн, формиране, електрохимичен градиент</td>
<td>енергия за биосинтезата, протон денежна сила за узряването на белъка</td>
<td></td>
</tr>
<tr>
<td>Отцепване на сигнала</td>
<td>по време на преминаването на полипептида през мембраната</td>
<td>също</td>
<td>по време на или след формирането на белъката молекула и двойния слой</td>
<td>също</td>
<td></td>
</tr>
</tbody>
</table>

Таблица 1: Сравнение на различните етапи от навлизането на белъките в мембраната според различните модели [119]
очертава природата на целия апарат за експорт. Оттук се стига до някои важни изводи [10]: 1) Информацията за експорт вероятно се намира в β'-частта на структурния ген. Частта към 3'- и COOH-края на белтъчната молекула не са съществени. 2) Изглежда, че не е необходима накъде специфична конформация на белътка, за да се изнесе този от цитоплазмата. 3) Протеолитичното отцепване на сигналията последователност не е задължителен етап в експорта. Трудността с прилагането на такава стратегия става очевидна, когато се опитаме да разграничи мутациите, които пречат на правилната локализация на белътка, от онези, които засягат сигнализата и биоложическата му активност [7].

Тази дилема в известен смисъл е решена чрез създаването на техниката за слияне (fusion) на гени [141]. Тя се състои в слиянето на гена, кодиращ синтезата на секреторен белък, с гена на цитоплазмени биологоично активен белък. Следният ген програмира синтезата на нов, хибриден белък, който в аминокрая си съдържа фрагмента от експортен белък, а в карбоксибрая си — биологоично активен белък (например ензимът β-галактозидаза). Удобството на тези слети гени се състои в това, че хибридните белъци могат да се конструират така, че да съдържат една постоянна част от цитоплазменния белък, необходима за проявяването на биологочната му активност, и различни по дължина участъци от аминокрая на секреторния белък, което позволява да се определят минималната част от него, обезпечаваща правилното му локализиране извън цитоплазмата. Пример за използването на тази техника е получаването на хибридни белъци от слиянето на гена, кодираща синтезата на малтозазърванецитоплазмал белък (MSC) (mal E), с гена на β-галактозидазата (Iac Z). Малтозазърванецитоплазмал белък с M, 38500 е важен компонент на системата за транспорт на малтоза в E. coli и се кодира от гена mal E. Нативният белък се синтезира във формата със сигнален пептид, който може да се отдели по време на трансляцията или след нея [67, 68, 128]. Предполага се, че хибридни белъци, съдържащи цели сигнали и не сигнали пептида на MSC в аминокрая си, би трябвало да могат да се секретират в периплазмата на E. coli, където по принцип става локализацията на MSC. Такова секретиране обаче на белъка не е установено за нито един от цамовете, съдържащи гени mal E—Iac Z [9, 158]. Хибридни белъци, на който му липсва пълен сигнален пептид, остават в цитоплазмата (малко за локализация на нативната β-галактозидаза). Когато в хибридния белък присъства пептид, той се локализира в ЦМ [9, 115, 157]. Вероятно сигналияния пептид, закачен към хибридния белък, инхибира прекиляция на последния в ЦМ по време на трансляцията, но аминокиселинните последователности в участъка към COOH-края, където се намира β-галактозидазната част, са несъвместими с преминаването на белъка през мембраната. Тези резултати показват, че сигналиите белъци на един цитоплазмен белък не е достатъчно условие, за да може той да се секретира. Очевидно съществуват ограничения, налагани от останалата част на молекулата на хибридния белък, които не позволяват секрецията да продължи по-нататък [63, 103, 158, 173, 174].

Техниката за слиянето на гени е успешно приложена към получаването на хибридни белъци, преварени на гените Iam B—Iac Z. Генът Iam B кодира сигнализата на един от основните белъци от външната мембрана на E. coli (Iam B), участвуваща в пренасянето на малтодекстрини в клетката. Той е и рецептор на бактериофага и по-специално на фага λ. Изучаването на локализацията на тези хибридни белъци показва, че за да се инхибира експортът му, е необходима пълна сигнална последователност, както и информация, съдържаща се в първите 39 остатъка на зреия белък. Насочването на белъка...
тяка към външната мембрана изисква информация, намираща се между 39 и 49 остатък на зрелия белък. Такъв хомологият участък е установен в повечето белъци, предназначени за ВМ [110] и той е наречен от В е п о п и др. [10] „сигнал за външната мембрана“. Предполага се, че преминаването на тези белъци от ЦМ към ВМ е през сързките на Bayer [53, 55, 99] (фиг. 3).

Хибриден белък, получен от синтезацията на гена за периплазмения ензим алкална фосфатаза (pho A) и на β-галактозидазата (lac Z), не напуска цитоплазмата на E. coli [100, 157]. Нито един от хибридните белъци, съдържащи β-галактозидазата не е секретиран в периплазменото пространство, а винаги се локализира в една от двете мембрани [119]. Продуцирането на един хибриден белък може да блокира експорт на други белъци, което е гибко за клетката [128].

Преди се смяташе, че клетката не използва специален апарат за експорт на белъци. Сега има доказателства, че редица белъци се синтезират специално за тази цел [19, 93, 94, 115, 116, 144]. Установени са няколко гена, кодирящи компоненти на експортния апарат при бактериите. Синтезата и локализацията на тези белъци се регулира в зависимост от физиологичните нужди на клетката. Когато в сигналиния пептид има дефекти, правилната локализация на белъка не може да се осъществи верно, поради невъзможността той да бъде разпознат от апаратта за експорт. Екстрагираният суперсърни мутации възстановяват тази негова способност [7, 10].

Неотдавна е установено, че дефекти в отношение на експорта МСБ и алкална фосфатазата на E. coli се синтезират първоначално във вътрешността полизоми в цитоплазмата [129]. Това показва, че компетентността за експорт на сигналиния пептид определя местото на синтезата му и ако той не може да взаимодействува с разпознаващата сигнала част, за да обезпечи връзката на полизома с мембраната, тази синтеза на белъката продължава в цитоплазмата.

Намесата на рекомбинантната ДНК-техника разшири възможностите за генетични изследвания във върху експорта на белъци [105]. Еднини от характеристиките на тези подходи е да се предизвикат in vitro деления, които да отстраняват специфични сегменти на кодиращата последователност [172]. Другият съставен в това да се въвеждат участъци в кодиращата последователност, като се използват за свързване малки нуклеотиди. С третия подход се предизвикват мутации с помощта на специфично насочена с олигонуклеотид мутагенеза [61, 75, 146]. Тези методи показва, че само завършени последователности и по-специално критичната дължина на полипептидната верига са съществени за нормален експорт [63]. Структурният ген на субтилизина от B. subtilis е заменен с in vitro получена мутация [148]. Генът, оговарен за синтезата на неутрали протеаза на същия микроорганизъм, е клониран и така клонираният ген е използван за създаването in vitro на мутанти с делечни [172]. Резултатите, получени с насочената мутагенеза in vitro, показва, че сигнализата последователност може да послес много промени (замествания на аминокиселинни остатъци) и впреки това да обезпечава експорта [10, 61, 69, 75].

При мутации, с които се загубват части от COOH-края на секреторния белък (напри мер на периплазмената β-лактамаза в E. coli), съществува експорт на белъците, но не се ослабява в периплазменото пространство [70]. S m i t h [145] създава метод за белък във вътрешността полипептидната верига и показва, че тя остава свързана чрез COOH-края си с рибозомите. Впреки че COOH-краят няма особено значение за експорт на белъка [70, 150], той вероятно е необходим за прикрепването му към мембраната.
[15] и освобождаването му от нея и може да играе и ролята на последователност, спираща прехвърлянето на белътка през мембраната.

Въпреки че повечето изследвания за механизъмите на секретиране на ензими при бактериите са направени върху Грам-отрицателните микроорганизъм E. coli, изучаването на Грам-положителните също допринася за изясняване на проблемата. Известно е, че някои представители на тази група (като тези от род Bacillus) са продуценти на важни за промишлеността и медицината ензими. Освен това тези бактерии предоставят по-опростена система за експорт на белъти, тъй като имат само една мембрана. При Грам-положителните бактерии могат да се разграничат три основни групи низъкълетъчни белъти: липопротеини, низъкълетъчни протеази и други белъти. Някои мембрано-свързани белъти както на Грам-отрицателните, така и на Грам-положителните бактерии се модифицират след транслацията, като същевременно се прибавя един глицерид и мастнокиселини групи към NH₄-краяния нитенов остък на зрелия белък [39, 49, 52, 53, 54, 55, 59, 60, 76, 77, 78, 125, 143, 155, 156, 171].

Те се различават от секретираните форми по молекулярна маса и антигените си свойства [90, 91, 92, 97]. Предполага се, че такива хидрофобни белъци като пенициллиназата на някои Грам-положителни бактерии [77, 78] се прикрепят към излазената мембрана чрез ковалентно свързване с липиди, като отцепването на полиептида може да стане на едно или няколко места, за да се освободи той в средата. Мембрано-свързаната форма бавно се превръща в свободна форма. Когато гените за липопенициллиназата се клонират и експресират в E. coli, продуктите им се модифицират от водещата пептида II [49, 78]. Зрелият белък се локализира във външната мембрана и не излиза в средата около клетката. Експресията и секретиране на бактериална пенициллиназа са осъществени в дрожди (Saccharomyces cerevisiae) [131].

Неутралиствата алкална протеаза на B. subtilis и на B. amyloliquefaciens се синтезират като предшественици с класически сигнали пептиди, последвани от необикновено дълги пре-пептиди, които не се установяват в зрелия белък [125, 160]. Не е ясна ролята на пре-пептида, но се допуска, че той може да защитава белъка от протеолиза по време на преминаването му през мембраната, като прикрепя белъка към мембраната или че низъкълетъчната форма може да е претърпяла частично деградация [125]. Във всяко друго отношение секрецията на тези белъци не се различава значително от експорт на белъти в перiplазмата на E. coli. Засега е известна структурна гени на тези протеази да са били успешно експресирани в E. coli. Третата група включва различни извънклетъчни белъти на Грам-положителните бактерии. Много от тях се синтезират със сигнали пептиди, като някои имат и допълнителни къси участъци (от 8—16 остатъка пре-пептиди). Гени за някои от тези извънклетъчни белъти са експресирани в E. coli, като се пренасят в перплазмата, а понякога и ако пропускливостта на външната мембрана е повишена, на няколко около клетката [125].

Някои низъкълетъчни белъти се секретират под формата на комплекси, които включват няколко субединици (цицулази например). Предполага се, че групирането им става в ПМ, след което се освобождават в средата като комплекс. Вероятно секретирането на тези белъти в такава форма се извършва при ензими, които участвуват в каскадни реакции и влият в контакт с неразтворими субстрати [125].
5. Участие на мембраните в секрецията на белъци

При повечето от изследванията по експрата на белъци са използвани генетични подходи, които даваха цяла информация за това, как изглеждат компетентните за експрата форми на тези молекули. Не трябва да се пренебрегва обаче и участието на биологичните мембрани в този процес. Белъците могат да се свързват с мембрани по различни начини. Условно те могат да се разделят на „интеграции“ (вградени в двойния липиден слой) и „периферни“ (разположени вън от слоя или вътрешната повърхност на мембрани) [166]. Интеграционните белъци биват „прости“ (присичащи само вътрешната мащабна) и „сложни“ (присичащи и няколко пъти) [161]. Повечето гемове на белъците се състоят от дълъг участък от хидрофобни остатъци (21 на брой), непосредствено след които по посока на COOH-края се намират положително натоварени базични остатъци. Предполага се, че те се свързват с отрицателно натоварени вътрешното качество на мембрани [74]. От централната част на хидрофобния участък са изключени всички натоварени аминокиселини, както и Asn, Glu, His, Trp. Рядко тук се среща Pro. Въпреки че Ser и Thr са полярни аминокиселини, те често се установяват в този участък, защото страничните им вериги могат да образуват водородни връзки с гъбовката на пептида [161]. Всички останали са повече или по-малко разпределени в транспортния сегмент и той много напомня ухилено и обкръжение на сигнален последователен с пространствени разположения на аспирация. В някои случаи гемовите се нарушават от една страна, а неполярните — от другата. Така е случаят с бактериорохози, който е „сложен“ интегрален белък, присичащ неколкократно мембраната. Той се състои от 7 наклонени аспирации, които образуват цилиндър с хидрофобна повърхност и полярна средна част [37]. Такава „амфипатична“ молекула произвежда специфични за целите, които се определят в зависимост от мембраната [41]. В някои случаи полярните остатъци в транспортния сегмент се свързват ковалентно с мастилните киселини чрез естерна връзка [161].

Въпреки че съществуването на сигналиите и транспортните последователности е безспорен факт, трудно е да се докаже структурата на тези единици. Както стана ясно, между мембраната и рибозимите съществува функционална връзка, която е чувствителна към някои малки изменения в състоянието на мембраната [3, 19, 118]. Това дава възможност за възлизащето на последната в само в регулиращата на процеса на секретиране, но и в извършващата се в повечето случаи едно временно с него транспорт [1, 2, 74, 107, 119]. Синтезирацията се полициптидна верига, приложена и в мембрани, се подлага на различни хидрофобни взаимодействия, които е ясно до каква степен тя е изложена във взаимодействието на липидната среда при преминаването й през мембраната. Взаимодействието със спомага при това процес на изолиране на полипептидите. Добавянето на транспортната може да доведе до намиране на трансферна нея транспортирана с нея транспортна.
трансмембраниен белък, е водещата пептидаза — ензимът, който отцепва сигналната последователност на секретиранияте белъци [127, 170].

Все още не е ясно дали ПДС участва пряко или косвено в транслокацциата на белъците, като влияе на своевременно на мембраната [118]. С една и съща полярност (положителна отвън) при E. coli и при митохондриите, въпреки че движението на полиепипитидите в първия случай се извършва навън, а при втория — навътре. Вероятно се променя стабилността на двойния слой, което улеснява спонтанното възкваване на полиепипитидите в мембраната [134]. Ако това обаче се опосредства от някои белъци, тяхната конформация може да зависи от състоянието на мембраната. Какъвто и да е точният механизъм, очевидно енергетичното състояние на клетката оказва влияние на този процес [35].

Въпреки че в момента не може да се изключи такова непряко участие на ПДС, пряката й наместа изглежда също толкова вероятна. Някои автори приеха модел, в който мембраният потенциал сам по себе си е движеща сила на експорта [26]. Те предполагат, че отрицателно натоварената участь на полиепипитида може да се превижи през мембраната на принципа на електрофорезата в отговор на мембраниния потенциал [24]. Този модел изключва напълно каквото и да е участие на химическия компонент на ПДС (А pH).

Изучаването на екскрета на β-лактамазата в E. coli показва, че системата за експорт има нужда от тънката ПДС, а не само от ДНК [127]. Има данни и че експортът на α-амилазата на B. amyloliquefaciens изисква ПДС [104]. Изследваната на някои автори напоследък показаха [20, 151], че за транслокаццията на белъци през бактериални мембрани е необходим АТФ, което не позволява да се направи категорична оценка за енергетичното обезпечаване на този процес [127]. Създаването на бактериални системи за транслокаццията на бактериални белъци във везикули позволи да се идентифицират някои от компонентите, обезпечаващи енергетично транслокаццията [127, 130, 151].

Както показаха N и други [106], инкорпорирането на предшественици на секреторни ензими в липозоми повишава тяхната активност, докато такова повишение не е наблюдавано при включването в такива изкуствени мембрани на самите секреторни белъци. Установено е, че активирането на предшественика на извънклетъчния протеаза в Pseudomonas aeruginosa не се дължи на протеолитичното откъсване на сигналния пептид, а по-скоро на отстраняването на нековалентно свързан с белъчната молекула инхибитор [38], което съпроводено със силно увеличаване хидрофобността на молекулата.

Съществуването на мембрани свързани форми, които се различават от секретиранияте по молекула маса, антигенни свойства [4, 91, 92, 109] и по това, че са по-хидрофобни, тъй като съдържат фосфолипиден остъкъл, прикрен към NH₂-края на белъка [59, 76, 77, 78, 125], дава основание да се предположи, че преминаването на извънклетъчната промяна в конформацията на молекулата му. Мембрано-свързваните форми на β-лактамазата на B. licheniformis и на S. aureus съдържат тиоетер съвързан към пистеиновата остъкъл в сигналната последователност диглициерил подобно на същия белък в E. coli [52, 54, 55, 60, 89, 97, 109].

Както вече беше показано, при определени условия в цитоплазмата могат да се натрупват предшественици на секреторните белъци, когато експортът им е нарушен поради мутации или при третиране на клетките с някои химични агенти: фенетилов алкохол, антибиотици глобомицин и други [3, 4, 40, 46, 52, 54, 55, 57], прокинетиков [79], депретрени [1], разтворители [3], както и специфични инхибитори на лициндия синтез като нерулени и кинакрин [8, 18, 21, 22].
40, 44, 64, 80, 88, 89, 121, 122], които като променят свойствата на мембраните, предизвикат промени и в експоната на белтьци.

Съставът на фосфолипидите в мембраната оказва влияние върху синтезата и трансплантацията на белъци [14, 25, 39, 76, 162]. Предполага се [1, 6, 107], че киселите фосфолипиди взаимодействуват с белъците и играят важна роля в експоната им. Промени в мастнокиселинния състав на ауксотрофни шамове или във флуидната на мембраната при фазов преход предизвикват натрупване на предшественици на секреторни белъци в цитоплазмата на клетката [54, 76]. По-нататъшните изследвания върху ролята на ПДС и на самите мембрани при трансплантацията на белъци ще вземат и друг актуален проблем на молекулярната биология — за същността на липид-белъчните взаимодействия в биологичните мембрани.

6. Особености при експоната на белъци при прокариоти и еукариоти

Въпреки че експонатът на белъци при бактериите има общи черти с този процес при еукариотите, т. е. сигналните им пептиди се приличат [56], а белъците се синтезират върху мембрано свързани полизоми, съществуват и значителни разлики между тях [43, 74, 134, 136, 139, 162]. При бактериите трансмембралната се извършва независимо от удължаването на молекулата. Секретиранияте от тях белъци за разлика от тези на еукариотните не са гликозилирани [73]. Фактът, че антибиотикът тиуникамицин, който блокира гликозилирането, не нарушава секрецията на много бактерии, показва, че тази реакция не е задължително условие за извършването на тяхната трансплантация през мембраната [142, 149].

Пътят за секретиране на белъци при дрождите изглежда подобен на този във висшите еукариоти и включва участенето на каскада от мембрано свързани структури, които обезпечават прехвърлянето на белъка в грубия ендоплазмен ретикулум, където той се синтезира и протичат първите етапи от гликозилирането му, до мястото за секретиране в плазмената мембрана [112, 113, 148]. Преминаването през един енергетично зависен етап, бактерията се прехвърля в Голдки-подобна структура, където става по-нататъшното му гликозилиране. След това той достига до секреторни везикули, които мигрират и се сливат с плазмената мембрана [148].

Везикули и апарат на Голдки са установени и в някои филаментозни плесени, така че някои от тези етапи съществуват и при тях [123, 124].

Има доказателства, че синтезата и експонатът на белъците при прокариотите не са така ясно свързани, както това става при еукариотните. При еукариотите е установено, че съществува разпознаваща сигнала част и прикрепящ белък [43, 163, 164, 165]. За да се пресечат през ендоплазмен ретикулум, някои бактериални белъци също имат нужда от такава система [105]. При B. subtilis е установен мембрано-свързан бактериен комплекс, състоящ се от 6 белъка, за който се предположи, че може би функционира като разпознаващ сигнала комплекс [19, 93, 116, 119, 144]. Някои автори категорично подкрепят становището, че ако апарат за експонат на белъци при прокариотите наистина съществува, той вероятно се различава значително от този, установен при еукариотите [125]. Като се имат предвид прилики в сигналините последователности на прокариоти и еукариоти, може да се допусне, че сигналините пептиди участвуват в специфични взаимодействия белък-белък, които зависят от вторичната, а не от първичната структура на белъкта [34, 125]. Някои етапи от експоната на белъци са засегнали в хода на еволюцията,
което се илюстрира добре от факта, че един микроорганизъм са способни да секретират белъци, характерни за други микроорганизми [50, 51, 97, 114, 120, 154, 159, 168] и дори за еукариоти [152, 153], и, обратно, сигналиращи пептиди, характерни за прокариоти, функциониращ в еукариотни системи [131].

7. Заключение

Изучаването на механизмите на секретиране на белъците има широко практическо приложение. Много от извънклетъчните бактериални белъци представляват интерес за биотехнологията [31, 123, 124]. Например използваните за хидролизата на пищевито α-амилаза, глукозамилаза, β-амилаза, пулулаза, глукозоизомераза са един от най-важните промишлено произвеждани ензими. Извънклетъчните протеази са широко разпространени при микроорганизмите и също намират широко практическо приложение в косметическата индустрия, в производството на перуци на средство и дезинфекции, в пищевата и сирштовата промишленост, както и да заместват животинските ензими в производството на сирена и др. Протеазите, хидролизиращите пищевитото ензими и глукозоизомеразата заедно съставляват 90% от производството на ензими за пазара в света [31, 123]. Към тези с промишлено значение се числят и извънклетъчните целулаза, β-глюкана за, химицеплаза, инвертазата, лактозата, липазата, пектиназата, пенициллиназата и др. Много от тези ензими са успешно имобилизирани и могат да се използват многократно в производствените процеси. Физиологичната роля на извънклетъчните белъци за растежа и диференциацията на клетките все още не е изяснена, но установен факт е, че много от тях започват да се секретират в средата в определен момент от цикъла на развитие (когато възгероднияят източник е на изчерпване) [55, 66, 86, 96, 133]. Това може да доведе до дере- пресираше на катаболитно репресираният гени и да започне секретацията.

Използването на рекомбинация ДНК-технологии позволява да се клонират и експресират в прокариотни гените, отговорни за секретацията на инсулина, интерферона, човешки растежен хормон, релаксина, урокиназата и други биологично активни вещества. Търсенето на начини за повишаване на производителността на микроорганизмите по отношение на извънклетъчни белъци доведе до конструирането на секреторни вектори, които позволяват да се експресират чужди гени в бактерии и да се увеличият многократно секретацията на белъци [9, 108, 120]. Голям успех представлява и създаването на н-химеридоми за монооклонални антитела, на 1-химеридоми за лимфокини, както и химеридоми на моноукуларни фактори за получаване на моноцики.

Схващането за съществуването на специфични сигнали последователности, които насочват полипептидите до различни части на клетката, се оказа много плодотворно. Опимите обаче, извършени през последните години върху транспорта на белъци, дадоха доста противоречиви резултати. Докато в някои случаи беше доказана с помощта на генетични методи необходимостта от крайния сигнален пептид за трансlokацията на белъците през мембраната, в други случаи той се оказа недостатъчен за осъществяването на експорта [158]. Проведените изследвания върху пренасянето на химеридни белъци, съдържащи различните по дължина участъци от секретирани белъци и от цитоплазмената ензим β-галактозидаза на E. coli, показваха, че освен N-краяния сигнален пептид в бактеричните молекули съществуват и други участъци, предпределящи локализацията на тези белъци в клетката. Оказа се също така, че транспортът на белъците може да става както по време на
трансляцията, така и след нейното завършване. По такъв начин „сигналираната хипотеза“ вече не може да обясни всички тези противоречиви данни. Понятието „сигнал“ стана по-неопределен и никакъв смисъл не се съдържа в него, когато областта в полиепитидната верига, отстояща на големо разстояние при първичната структура на бетъка, трябва да се кооперира в процеса на транслокация [42]. Докато някои изследователи съществуват групи бетъци, които следват прост начин на пренос с участието на сигнален пептид, също така е очевидно, че механизъмите на транспорт през мембраните могат да бъдат по-различни [74, 161]. Успешите, постигнати в тази област, познава и нови въпроси за разрешаване. Ето някои от тях: Различават ли се механизъмите, по които се осъществява нюкоренирането на бетъци в биоложичните мембрани, от тези, по които се прехвърлят им през тях? На какви условия трябва да бъдат възможни възможностите при транслокацията на бетъци през мембраните? Съществуват ли специфични рецептори или капаци, в които се намира и внасят на крайния външен пептид, и какво е значението на отцепването на този пептид? Как може да се регулира секрецията на бетъци в клетка на генетично, биохимично и физиологично ниво?

Получените през последните години данни показват, че може би сме на прага на изясняването на факторите, които контролират синтезата, секретирането и локализацията на бетъци в живата клетка. Решаването на все още откритите въпроси обаче не би могло да бъде осъществено, без да се задълбочат съществените връзки между учени от различни области, защото проблемът за механизъмите на транслокацията на бетъци през мембраните се оказа много по-сложен, отколкото се предполагаше преди.

Литература