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Chapter 1

Introduction

Flat surfaces are weird objects. At first glance, they seem rigid and boring.

Luckily, the apparent rigidity is a manifestation of very deep and beautiful properties

they possess. This thesis is about flat surfaces and some of their beautiful and deep

properties.

It has two parts and they are completely independent of each other and self-

contained. The first part, Chapter 1, was a wrinkle in the now-fully-developed and

well-understood theory of dynamics of compact flat surfaces. It seemed like nobody

wanted to bother to straighten out this small wrinkle enough to do it, so they waited

for a graduate student to come around looking for a problem to straighten it out.

Still, the results are cute and a bit surprising, so it is not an entirely boring wrinkle

to iron out and it seems to be one of the last missing pieces of a puzzle to be put in

place.

A harder puzzle to figure out is a theory about dynamics of non-compact flat

surfaces, which really means flat surfaces of infinite genus. This has become quite

a popular research trend in the last few years, and yet everyone remains clueless as

to what such a theory should look like. This being so, the second part of the thesis,

Chapter 2, seems more exciting as the results are at the forefront of the state of

the art and they expand the extent of what is known about the dynamics of flat
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surfaces of infinite genus. In fact, the point of view and results of the second part

have yielded many further questions and research directions, making it harder for

this thesis to die in oblivion any time in the near future.

Teichmüller theory and Teichmüller dynamics are now synonymous with the

study of flat surfaces and the different dynamical systems that can be associated to

them. They are named after Oswald Teichmüller, a German mathematician from the

first half of the twentieth century. He proved a beautiful theorem concerning maps

on surfaces while taking the first steps in uncovering the rich and deep structure

which is carried by flat surfaces and for this the theory carries his name. Although

he was a brilliant mathematician, sadly, he was a terrible human being (see [41, page

442]). I wish there was a different name for the field – or that somehow his very

impressive mathematical legacy could carry the stains of his personal one. Alas, I

could not figure out a clever way to do so, but I hope someone else does.
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Chapter 2

The non-uniform hyperbolicity of the Kontsevich-Zorich cocycle

It is well known that the properties of a geodesic foliation (or flow) on a flat

2-torus are completely characterized by its slope, whereas for a flat surface of higher

genus the situation is far from similar. Such Riemann surface M of genus greater

than one with a flat metric outside finitely many singularities can be given a pair

of transverse, measured foliations (in the sense of Thurston). If such foliations are

orientable, Zorich [44] detected numerically that homology classes of segments of

typical leaves of the foliation deviate from the asymptotic cycle (which is defined as

the limit of normalized segments of leaves) in an unprecedented way, and that the

rate of deviations are given by the positive Lyapunov exponents of the Kontsevich-

Zorich cocycle. Based on numerical experiments, the Kontsevich-Zorich conjecture

was formulated, which claimed that for Lebesgue-almost all classes of conformally

equivalent flat metrics with orientable foliations, the exponents are all distinct and

non-zero. In other words, the cocycle is non-uniformly hyperbolic and has a simple

spectrum. It was also conjectured that there should be similar deviation phenomena

for ergodic averages of functions in some space of functions.

The first proof of the non-uniform hyperbolicity of the Kontsevich-Zorich co-

cycle came from Forni [17], but the simplicity question remained open for surfaces

of genus greater than 2. The full conjecture was finally proved through methods
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completely different from those of Forni by Avila and Viana [3]. In [17], a complete

picture is painted on the deviations of ergodic averages along the straight line flows

given by vector fields tangent to the foliations on the flat surface. The rate of di-

vergence of such deviations are also described by all of the Lyapunov exponents of

the Kontsevich-Zorich cocycle.

In this chapter we study the same phenomena for the case of non-orientable

foliations on flat surfaces. Although there is no vector field to speak of, we can still

describe deviations of integrals of functions along leaves of the foliation. Our work

has been made substantially easier by the recent criterion of Forni [18], where the

proof of non-uniform hyperbolicity in [17] has been condensed and generalized to

apply to special SL(2,R)-invariant measures in the moduli space of abelian differ-

entials. Note that if one has a flat surface with a non-orientable foliation, one can

always pass to a double cover whereon the lift of the foliation becomes orientable.

The measure on the moduli space of abelian differentials which is supported on

differentials which are the pullback of non-orientable differentials is shown here to

satisfy Forni’s criterion. Thus most of the work is done in studying how information

of the original surface is related to the information on covering surface, which is a

solved problem by the works of Zorich and Forni.

The crucial ingredient in Forni’s criterion is to show there that exists a point in

the support of an SL(2,R)-invariant probability measure with a completely periodic

foliation whose homology classes of closed leaves span a Lagrangian subspace of the

first homology space. We overcome this by a much stronger statement, showing that

these special points are in fact dense in the moduli space. We are very interested
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to see what the tools from generalized permutations can say to this end.

There is a canonically defined involution on the orienting double cover cor-

responding to the choice of orientation of the covering foliations. The involution

splits the bundle on which the Kontsevich-Zorich cocycle acts into invariant and

anti-invariant sub-bundles, corresponding to eigenvalues ±1 of map induced by the

involution. The Kontsevich-Zorich cocycle respects such splitting, defines two cocy-

cles by its restriction to the invariant and anti-invariant sub-bundles, and thus the

spectrum of the cocycle can be written as the spectrum of those two cocycles. Un-

like the case for abelian differentials, the exponents which describe the deviations in

homology are not the same exponents which describe the deviations of ergodic aver-

ages, and vice-versa. Specifically, the Lyapunov exponents of the cocycle restricted

to the invariant sub-bundle describe the deviations in homology of typical leaves of

non-orientable foliations while the exponents of the cocycle restricted to the anti-

invariant sub-bundle describe the deviations of averages of functions along leaves of

non-orientable foliations. Since for any genus g surface the anti-invariant sub-bundle

can have arbitrarily large dimension (due to the presence of simple poles), there are

non-orientable foliations on a genus g surface on which the deviation of the ergodic

averages along its leaves are described by arbitrarily many parameters.

Like in the original proof for abelian differentials, the proof here cannot ad-

dress the question of simplicity of the Lyapunov spectrum of the cocycle. Since the

restriction of the cocycle to the invariant part is equivalent to the cocycle over the

moduli space of non-orientable quadratic differentials and since the anti-invariant

sub-bundle describes the deviations of ergodic averages, there is no reason a-priori of
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why the spectrum of the cocycle over the moduli space of non-orientable quadratic

differentials describes the deviations of averages of functions along leaves of non-

orientable foliations defined by such quadratic differentials. Thus, unless there is

some repetition of exponents across the invariant/anti-invariant division, the cocycle

over the space of non-orientable quadratic differentials does not say anything about

such averages. In our own numerical experiments we have found strong evidence

that the spectrum of the cocycle is in fact simple.

The chapter is organized as follows. In Section 2.1 we review the necessary

material for quadratic differentials, the double cover construction and the abso-

lutely continuous SL(2,R)-invariant ergodic probability measure defined on each

stratum of the moduli space of quadratic differentials. In Section 2.2 we define the

Kontsevich-Zorich cocycle and state Forni’s criterion for the non-uniform hyperbol-

icity of the cocycle. In Section 2.3 we show that the measure supported on abelian

differentials which come from non-orientable differentials through the double cover

construction satisfy Forni’s criterion and thus that the Kontsevich-Zorich cocycle is

non-uniformly hyperbolic with respect to that measure. In Section 2.4 with study

the applications to deviation phenomena of homology classes and ergodic averages.

Finally, in the appendix, we summarize our experimental findings of approximating

numerically the Lyapunov exponents for different strata, which strongly suggest the

simplicity of the cocycle.
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2.1 Quadratic Differentials and Flat Surfaces

Let M be a closed, orientable surface of genus g and let Σκ = {p1, . . . , pτ} be

a set of points on M with κ = {n1, . . . , nτ},
∑

i ni = 4g − 4, and ni ∈ {−1} ∪ N.

M is a half-translation surface if transitions between charts on M\Σκ are given by

functions of the form ϕ(z) = ±z + c for some constant c. On M\Σκ there is a

flat metric for which the points Σκ are singularities of order ni at pi. On any such

surface, we can place a pair of orthogonal foliations Fv and Fh which are defined

everywhere on M\Σκ and have singularities at Σκ.

The same information is carried by a quadratic differential on M . A holo-

morphic quadratic differential assigns to any local coordinate z a quadratic form

q = φ(z)dz2 where φ(z) has poles of order ni at pi. If we represent it as φ′(w)

with respect to another coordinate chart w, then it satisfies φ′(w) = φ(z)(dz/dw)2.

The foliations are then defined by integrating the distributions φ(z)dz2 > 0 and

φ(z)dz2 < 0, respectively. In other words,

Fvq = ker Re q1/2 and Fhq = ker Im q1/2

are, respectively, the vertical and horizontal foliations defined by a quadratic dif-

ferential q. They are measured foliations in the sense of Thurston with respective

transverse measures |Re q1/2| and |Im q1/2|. The flat metric comes from the adapted

local coordinates

ζ =

∫ z

p

√
φ(w) dw

around any point p ∈M\Σκ.
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A measured foliation F on a compact surface is called periodic if the set of non-

closed leaves has measure zero. A quadratic differential whose horizontal foliation is

periodic is called a periodic quadratic differential. A saddle connection is a leaf of the

foliation joining two singularities. In the literature, periodic quadratic differentials

also go by the name of Strebel quadratic differentials.

If a quadratic differential is globally the square of an abelian differential, i.e.,

a holomorphic 1-form, then the foliations Fhq and Fvq are orientable and change of

coordinates are given by maps of the form ϕ(z) = z + c. In this case we speak of a

translation surface.

Let Hg be the moduli space of abelian differentials on a genus g surface, which

is the set of conformally equivalent classes of abelian differentials for a surface M

of genus g. The singularities in this case satisfy
∑

i ni = 2g − 2 and the complex

dimension of this space is 2g + τ − 1. The space Hg is stratified by the singularity

pattern κ = {n1, . . . , nτ}. As such, the set

Hκ = Hg ∩ {abelian differentials with singularity pattern κ}

is the stratum of all abelian differentials on a genus g surface with singularity pat-

tern κ = {n1, . . . , nτ} and
∑

i ni = 2g − 2. We will interchangeably use the terms

abelian differential, quadratic differential which is a square of an abelian, and ori-

entable quadratic differential since a quadratic differential q with Fv,hq orientable is

necessarily the square of an abelian differential α and thus we can identify q with α.

Note that an orientable quadratic differential has two square roots. Since they are

part of the same SL(2,R) orbit, it does not matter which square root, + or −, we
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consider and thus we will by convention always pick +. Thus the space of quadratic

differentials which are squares of abelian is equally stratified.

The moduli space of quadratic differentials Hg

∐
Qg on a Riemann surface M

of genus g ≥ 1 is the quotient of the Teichmüller space of meromorphic quadratic

differentials with at most simple poles

Mg ≡ {meromorphic quadratic differentials}/Diff+
0 (M)

with respect to the action of the mapping class group Γg, where Diff+
0 denotes the

set of orientation preserving diffeomorphisms isotopic to the identity. The sub-

set Qg denotes the set of meromorphic quadratic differentials which are not the

square of abelian differentials. These sets are equally stratified: for some singularity

pattern κ = {n1, . . . , nτ} with
∑

i ni = 4g − 4, Qκ denotes the set of quadratic

differentials on a surface of genus g with singularity pattern κ. Elements of Qκ

will be sometimes called non-orientable quadratic differentials since they induce a

half-translation structure on M , i.e., non-orientable foliations Fv,hq . Clearly it is

necessary for all quadratic differentials in Hκ to have each singularity be of even

order, but it is not sufficient. In fact, a result of Masur and Smillie [37] states that

for any κ = {n1, . . . , nτ} with
∑

i ni = 4g − 4 there is a non-orientable quadratic

differential q ∈ Qκ with such singularity pattern with two exceptions (κ = {−1, 1}

or ∅) in genus 1 and two exceptions (κ = {4} or {1, 3}) in genus two. Additionally,

each stratum of Hg or Qg is not necessarily connected. Kontsevich and Zorich [31]

have achieved a complete classification of the connected components of each stratum

of abelian differentials while Lanneau [33] has classified the connected components
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of the strata of non-orientable differentials. The space Qκ has complex dimension

2g + τ − 2.

Given any quadratic differential q ∈ Qκ on a genus g surface M one can

construct a canonical double cover πκ : M̂ → M with M̂ connected if and only

if q is not the square of an abelian differential. Moreover, π∗κq = α̂2, where α̂ is

an abelian differential on M̂ . The construction can be summarized as follows for a

non-orientable differential q. Let (Ui, φi) be an atlas for M\Σκ. For any Ui define

g±i (z) = ±
√
φi(z) on the open sets V ±i which are each a copy of Ui. The charts

{V ±i } can then be glued together in a compatible way and after filling in the holes

given by Σκ we get the surface M̂ with a quadratic differential α̂2 = π∗κq. The

surface M̂ is an orienting double cover since Fv,hq for q ∈ Qg lifts to an orientable

foliation on M̂ .

Let κ be written as κ = {n1, . . . , nν , nν+1, . . . , nτ} where ni is odd for 1 ≤ i ≤ ν

and even for ν < i ≤ τ with n1 ≤ · · · ≤ nν . Then the double cover construction

gives a local embedding of Qκ for κ = {n1, . . . , nν , nν+1, . . . , nτ} into Hκ̂, where

κ̂ =

{
n1 + 1, . . . , nν + 1,

1

2
nν+1,

1

2
nν+1, . . . ,

1

2
nτ ,

1

2
nτ

}
.

In the double cover construction, the preimages of the poles become marked points,

the odd zeros of q are critical points of πκ (ramification points) and each even

singularity of q has two preimages. The genus ĝ of M̂ can be computed by the

Riemann-Hurwitz formula and satisfies 2ĝ = ν + 4g − 2.

There is an involution σ : M̂ → M̂ mapping σ : V ±i → V ∓i (that is,

interchanging the points on each fiber) and clearly fixing π−1
κ Σκ as a set. Let
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Σ̂κ ≡ π−1
κ Σκ\π−1

κ ({p1, . . . , pτ−1}), where p1, . . . , pτ−1 are simple poles of the quadratic

differential q. The involution induces a splitting on the relative homology and coho-

mology of M̂ into invariant and anti-invariant subspaces. Specifically, there is the

following symplectic decomposition

H1(M̂, Σ̂κ;R) = H+
1 (M̂, Σ̂κ;R)⊕H−1 (M̂, Σ̂κ;R) (2.1)

where the splitting corresponds to the eigenvalues ±1 of σ∗. There is also a similar

symplectic splitting in H1(M̂, Σ̂κ;R):

H1(M̂, Σ̂κ;R) = H1
+(M̂, Σ̂κ;R)⊕H1

−(M̂, Σ̂κ;R).

We will denote by P± = 1
2
(Id ± σ∗) : H1(M̂, Σ̂κ;Q) → H±1 (M̂, Σ̂κ;Q) and P± =

1
2
(Id ± σ∗) : H1(M̂, Σ̂κ;Q) → H1

±(M̂, Σ̂κ;Q) the projection to the corresponding

eigenspaces in both cases.

A small neighborhood of [α̂] in H1
−(M̂, Σ̂κ;C) gives a local coordinate chart

of a regular point q in Qκ. In other words, elements of H1
−(M̂, Σ̂κ;C) are abelian

differentials which come from the pull-back of non-orientable quadratic differentials,

[α̂] ∈ H1
−(M̂, Σ̂;C), where α̂ =

√
π∗κq. The local charts are given by the period map

q 7→ [
√
π∗κq] ∈ H1

−(M̂, Σ̂κ;C).

There is a canonical absolutely continuous invariant measure µκ on any stra-

tum Qκ of the moduli space Qg defined as the Lebesgue measure on H1
−(M̂, Σ̂κ;C)

normalized so that the quotient torus H1
−(M̂, Σ̂κ;C)/H1

−(M̂, Σ̂κ;Z⊕ iZ) has volume

one. We remark that an analogous canonical absolutely continuous invariant mea-

sure νκ can be defined for the moduli space Hκ of squares of abelian differentials.

Since the period map q 7→ [q1/2] ∈ H1(M,Σκ;C) gives local coordinates to Hκ, it is
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defined in the same way and has the same properties as the measure µκ defined on

strata of the moduli space of non-orientable quadratic differentials.

The group SL(2,R) acts on quadratic differentials q ∈ (Hg

∐
Qg) by left

multiplication on the (locally defined) vector (Re q1/2, Im q1/2). More precisely, since

local coordinates are given by

H1
−(M̂, Σ̂κ;C) ∼= R2 ⊗H1

−(M̂, Σ̂κ;R)

(H1(M,Σκ;C) in the case of an orientable differential), SL(2,R) acts on Qκ by

multiplication on the first factor. Thus, the measures µκ and νκ respectively defined

on Qκ and Hκ are SL(2,R)-invariant.

The local embedding iκ : Qκ ↪→ Hκ̂ defined by the double cover construction

induces a map which maps the measure µκ to the measure

µ̂κ ≡ (iκ)∗µκ (2.2)

on Hκ̂. In general, we expect the measure µ̂κ is singular with respect to νκ̂ since

the support of µ̂κ is the sub-variety of Qκ̂ which is the preimage of the subspace

H1
−(M̂, Σ̂κ;C) under the period map. Only in the case of hyperelliptic surfaces we

have µ̂κ = νκ̂. The measure (2.2) is clearly SL(2,R)-invariant.

2.2 The Kontsevich-Zorich Cocycle

The action of diagonal subgroup

gt ≡

〈 et 0

0 e−t

 : t ∈ R

〉
≤ SL(2,R)
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onHκ orQκ is the Teichmüller flow and plays a central role in the study of quadratic

differentials. It is was proved by Masur [34] for the principal stratum κ = {1, . . . , 1}

and then for any stratum by Veech [43] that the Teichmüller flow acts ergodically on

each connected component of a stratum with respect to the measure µκ (respectively,

νκ) when restricted to a hypersurface Q(A)
κ ⊂ Qκ of quadratic differentials on a

surface of area A (respectively, the hypersurface H(A)
κ ⊂ Hκ of abelian differentials

of norm A) and that the measure µ
(A)
κ ≡ µκ|Q(A)

κ
(respectively, ν

(A)
κ ≡ νκ|H(A)

κ
) is

finite.

The Teichmüller flow gt admits two invariant foliations W± on Hg. For an

abelian differential α ∈ Hg , the foliations are locally defined by

W+(α) = {α′ ∈ Hg : Imα′ ∈ R+ · Imα} = {α′ ∈ Hg : Fhα′ = [Fhα ]}

W−(α) = {α′ ∈ Hg : Reα′ ∈ R+ · Reα} = {α′ ∈ Hg : Fvα′ = [Fvα]}.

Let W±κ (α) be the intersection of W±(α) with the stratum Hκ. For any open

set U ⊂ Hκ, define the local, invariant foliations W±U as the unique, connected

component of the intersection W±κ (α) ∩ U which contains the abelian differential

α ∈ U .

2.2.1 Definition of the Cocycle

We briefly recall the definition of a cocycle as used in this chapter.

Let X be a metric space and φ : X ×G→ X a group action on X by a group

G. For p : V → X a real vector bundle over X of dimension D, a linear cocycle over

φ is a map ϕ : V → V defined on the base space by φ and on fibers by ϕ : v 7→ A · v

13



where A : X ×G→ GL(D,R) satisfies the cocycle condition

A(x, g1 + g2) = A(φ(x, g1), g2)A(x, g1)

for any g1, g2 ∈ G.

Let Mg be the Teichmüller space of meromorphic quadratic differentials on a

Riemann surface M of genus g > 1. The Kontsevich-Zorich cocycle Gt, introduced

in [30], is the quotient cocycle, with respect to the mapping class group Γg, of the

trivial cocycle

gt × id :Mg ×H1(M ;R) −→Mg ×H1(M ;R)

acting on the orbifold vector bundle

H1
g(M ;R) ≡ (Mg ×H1(M ;R))/Γg

over the moduli space Qg ≡ (Hg

∐
Qg) = Mg/Γg of meromorphic quadratic dif-

ferentials. Note that we can identify fibers of close points using the Gauss-Manin

connection. The projection of the cocycle Gt coincides with the Teichmüller flow gt

on the moduli space Qg.

By the Oseledets Multiplicative Ergodic Theorem for linear cocycles [28], for

a gt-invariant probability measure µ supported on some stratum of Qg there is a

decomposition µ-almost everywhere of the cohomology bundle H1
q (M ;R) = E+(q)⊕

E−(q)⊕ E0(q) where

E±(q) = E±1 (q)⊕ · · · ⊕ E±s±(q) (2.3)

and Lyapunov exponents λ+
1 > · · · > λ+

s+ > 0 > λ−1 > · · · > λ−s− which describe the

exponential rate of expansion and contraction of elements in such sub-bundles under

14



Gt. Elements of E0 have zero exponential expansion or contraction. The dimension

of each sub-bundle E±i in (2.3) is exactly the multiplicity of λ±i .

It follows from the fact that Gt is a symplectic cocycle that the Lyapunov

spectrum of the cocycle Gt, with respect to any gt-invariant ergodic probability

measure, is symmetric. In other words, if λ is a Lyapunov exponent of Gt, so is −λ

and dimE+ = dimE−. Thus, the Lyapunov exponents for the Kontsevich-Zorich

cocycle satisfy

1 = λ1 ≥ λ2 ≥ · · · ≥ λg ≥ 0 ≥ −λg = λg+1 ≥ · · · ≥ λ2g−1 ≥ λ2g = −1. (2.4)

Since the period map identifies the tangent space of Qg to the cohomology

space, there is a relationship between the Lyapunov exponents of the Kontsevich-

Zorich cocycle and those of the tangent cocycle of the Teichmüller flow. Since we can

express the local trivialization of the tangent bundle as TQκ = Qκ ×H1(M, Σ̂κ;C)

(Qκ×H1
−(M,Σκ;C) when Gt acts on strata of non-orientable differentials), then by

the isomorphism of the vector bundles

H1
κ(M,C) ∼= C⊗H1(M ;R) ∼= R2 ⊗H1(M ;R)

induced by the isomorphism on each fiber, the projection of Tgt to the absolute

cohomology can be expressed in terms of the Kontsevich-Zorich cocycle as

Tgt =

 et 0

0 e−t

⊗Gt acting on R2 ⊗H1(M ;R).

Thus, the Lyapunov exponents of the Teichmüller flow with respect to the
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canonical, absolutely continuous measures µκ or νκ can be written as

2 ≥ (1 + λ2) ≥ · · · ≥ (1 + λg) ≥
τ−1︷ ︸︸ ︷

1 = · · · = 1 ≥ (1− λg)

≥ · · · ≥ (1− λ2) ≥ 0 ≥ −(1− λ2) ≥ · · · ≥ −(1− λg)

≥ −1 = · · · = −1︸ ︷︷ ︸
τ−1

≥ −(1 + λg) ≥ · · · ≥ −(1 + λ2) ≥ −2.

where the τ − 1 trivial exponents come from cycles relative to Σκ.

The trivial exponents of the tangent cocycle Tgt are neglected by Gt since the

bundle H1
g neglects cocycles in H1(M,Σκ;C) which are dual to cycles relative to

Σκ, from which we get such trivial exponents. The non-uniform hyperbolicity of

the tangent cocycle for the Teichmüller flow is equivalent to the spectral gap of the

Kontsevich-Zorich cocycle, i.e., that λ1 > λ2. This was proved by Veech [43] for the

canonical measure and then by Forni in [17] for any Teichmüller invariant ergodic

probability measure µ in Hg.

Let q̂ = iκ(q) ∈ Hκ̂ be an orientable quadratic differential which is obtained

by the double cover construction. The splitting H1(M̂ ;R) = H1
+ ⊕ H1

− is equiv-

ariant with respect to the Gauss-Manin connection. Since both H1
+ and H1

− are

symplectic subspaces, the restriction of the Kontsevich-Zorich cocycle to either the

invariant or anti-invariant sub-bundles defines another symplectic cocycle. Thus we

get symmetric Lyapunov spectra

λ+
1 ≥ λ+

2 ≥ · · · ≥ λ+
g ≥ 0 ≥ −λ+

g = λ+
g+1 ≥ · · · ≥ λ+

2g

and

λ−1 ≥ λ−2 ≥ · · · ≥ λ−g+n−1 ≥ 0 ≥ −λ−g+n−1 = λ−g+n ≥ · · · ≥ λ−2g+2n−2
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which are, respectively, the Lyapunov exponents of the symplectic cocycles of the

invariant and anti-invariant sub-bundles.

It follows from the double cover construction that the action of gt commutes

with iκ. Moreover, since π∗κ is an isomorphism between H1(M ;R) and H1
+(M̂ ;R),

(iκ × π∗κ) ◦ (gt|Qκ × id) = (gt|Hκ̂ × id) ◦ (iκ × π∗κ), (2.5)

and thus the Lyapunov spectrum of the Kontsevich-Zorich cocycle on the bundle

over iκ(Qκ) restricted to the invariant sub-bundle is the same as the Lyapunov

spectrum of the Kontsevich-Zorich cocycle on the bundle over Qκ.

2.2.2 A Criterion for Non-Uniform Hyperbolicity

The non-uniform hyperbolicity of the Kontsevich-Zorich cocycle for the canon-

ical, absolutely continuous measure onHκ was first proved by Forni in [17]. Recently,

the proof of such result has been generalized in [18] to apply to any SL(2,R)-

invariant ergodic probability measure on Hκ which have special points in their sup-

port. In this section we review the necessary material to state Forni’s criterion.

Definition 1. An open set U ⊂ Hκ is of product type if for any (ω+, ω−) ∈ U × U

there is an abelian differential ω ∈ U and an open interval (a, b) ⊂ R such that

W+
U (ω+) ∩W−U (ω−) =

b⋃
t=a

{gt(ω)}.

Define for an open subset U ⊂ Hκ of product type and any subset Ω ⊂ U ,

W±U (Ω) ≡
⋃
ω∈Ω

W±U (ω).
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Definition 2. A Teichmüller-invariant measure µ supported on Hκ has product

structure on an open subset U ⊂ Hκ of product type if for any two Borel subsets

Ω± ⊂ U ,

µ(Ω−) 6= 0 and µ(Ω+) 6= 0 implies µ
(
W+
U (Ω+) ∩W−U (Ω−)

)
6= 0.

A Teichmüller-invariant measure µ onHκ has local product structure if every abelian

differential ω ∈ Hκ has an open neighborhood Uω ⊂ Hκ of product type on which µ

has a product structure.

Definition 3. The homological dimension of a completely periodic measured folia-

tion F on an orientable surface M of genus g > 1 is the dimension of the isotropic

subspace L(F) ⊂ H1(M ;R) generated by the homology classes of closed leaves

of the foliation F . A completely periodic measured foliation F is Lagrangian if

dimL(F) = g, that is, if the subspace in H1(M ;R) generated by classes of closed

leaves of the foliation is a Lagrangian subspace with respect to the intersection form.

A periodic measured foliation is Lagrangian if and only if it has g distinct

leaves γ1, . . . , γg such that M̃ = M\(γ1 ∪ · · · ∪ γg) is homeomorphic to a sphere

minus 2g paired, disjoint disks.

Definition 4. A Teichmüller-invariant probability measure on a stratum Hκ is cus-

pidal if it has local product structure and its support contains a holomorphic differ-

ential with a completely periodic horizontal or vertical foliation. The homological

dimension of a Teichmüller-invariant measure is the maximal homological dimension

of a completely periodic vertical or horizontal foliation of a holomorphic differential
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in its support. A Teichmüller-invariant probability measure is Lagrangian if it has

maximal homological dimension, i.e., its support contains a holomorphic differential

whose vertical or horizontal foliation is Lagrangian.

As far as the author is aware, all known SL(2,R)-invariant measures on Hg

(and in particular the measure (2.2)) are cuspidal. We can now state Forni’s criterion

for the non-uniform hyperbolicity of the Kontsevich-Zorich cocycle with respect to

some SL(2,R)-invariant measure.

Theorem (Forni’s Criterion [18]). Let µ be an SL(2,R)-invariant ergodic probability

measure on a stratum Hκ ⊂ Hg of the moduli space of abelian differentials. If µ

is cuspidal Lagrangian, the Kontsevich-Zorich cocycle is non-uniformly hyperbolic

µ-almost everywhere. The Lyapunov exponents λµ1 ≥ · · · ≥ λµ2g form a symmetric

subset of the real line in the following way:

1 = λµ1 > λµ2 ≥ · · · ≥ λµg > 0 > λµg+1 = −λµg ≥ · · · ≥ λµ2g−1 = −λµ2 > λµ2g = −1.

The spectral gap λµ1 > λµ2 is an easier result than the entire proof of non-

uniform hyperbolicity. In fact, in [17] the spectral gap was proved for any gt-

invariant probability measure. It follows from this result that both E+
1 (q) and

E−2g(q) in the decomposition (2.3) are one-dimensional. In fact, for an Oseledets-

regular point q ∈ Hκ, E
+
1 (q) = [Re q1/2] ·R and E−2g(q) = [Im q1/2] ·R, and their dual

bundles (in the sense of Poincaré duality) in H1(M ;R) are generated, respectively,

by the Schwartzman asymptotic cycles (which will be defined in section 2.4) for the

horizontal and vertical foliations, Fv,hq .
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2.3 Non-Uniform Hyperbolicity for Quadratic Differentials

In this section we apply Forni’s criterion to the SL(2,R)-invariant measure

(2.2) on Hκ̂ coming from non-orientable quadratic differentials by the double cover

construction detailed in section 2.1. The non-trivial property to show is that the

support of such measure in every stratum contains a completely periodic quadratic

differential q on M whose vertical or horizontal foliation lifts to a Lagrangian folia-

tion on M̂ , since for any surface M of genus g, the anti-invariant space H−1 (M̂ ;R)

can have arbitrarily large dimension. In this section we will prove a much stronger

statement, Proposition 1, which states that such quadratic differentials are dense in

every stratum Qκ, which will suffice in order to apply the criterion.

2.3.1 Construction of convenient basis of homology

Following [32, §4.1], we make some remarks about the structure of πκ : M̂ →

M and the canonical basis on homology one can construct from it. Note that

πκ : M̂\{ramification points} →M\{odd singularities}

is a regular covering space with group of deck transformations Z2. As such, and

denoting Ṁ = M\{odd singularities}, the monodromy representation π1(Ṁ)→ Z2

factors through H1(Ṁ ;Z) (and even through H1(Ṁ ;Z2)) since Z2 is Abelian. Let

m : H1(Ṁ ;Z2) → Z2 denote such map. Starting with a standard symplectic basis

{a1, b1, . . . , ag, bg} for H1(M ;Z2) with ai ∩ bi = 1 and all other intersections zero,

it is possible to construct the following (symplectic) basis on H1(M̂ ;Q), using that

[γ] ∈ ker(m) if and only if the loop γ lifts to two loops on M̂ .
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Suppose that M has no singularities of odd degree. In this case πκ : M̂ →M

is a regular covering space and as such σ has no fixed points and the holonomy of a

curve depends only on its homology class. Starting with a standard symplectic basis

{ā1, b̄1, . . . , āg, b̄g} of H1(M ;Z) we can make a change of basis to obtain a “nice”

basis of H1(M̂ ;Z). By assumption, q is not the square of an Abelian differential,

so there is at least one cycle of our symplectic basis with non-trivial monodromy,

which we can assume is b̄g. For 1 ≤ i < g, let ai = āi+ b̄g if m(āi) = 1 and otherwise

ai = āi, and construct bi in a similar way. Then any loop γai or γbi representing the

new basis {ai, bi} lifts to two disjoint loops γ±ai and γ±bi for 1 ≤ i < g with [γ±ai ] = a±i

and [γ±bi ] = b±i . We can assign the labels ± such that a+
i ∩ b+

i = a−i ∩ b−i = 1 and

all other intersections are zero for 1 ≤ i < g. Because of the prescribed symplectic

structure, P±a+
i 6= 0 6= P±b+

i for 1 ≤ i < g and moreover they span a symplectic

subspace of H1(M̂ ;Q) of dimension 4g − 4 (codimension 2).

Let b+
g be half the homology class of a lift of a curve representing 2bg on M

and similarly for a lift a+
g of ag, independent of the value of m(ag). Then

{a+
1 , b

+
1 , a

−
1 , b

−
1 , . . . , a

+
g−1, b

+
g−1, a

−
g−1, b

−
g−1, a

+
g , b

+
g } (2.6)

is a basis of H1(M̂ ;Q). Moreover we have a−i = σ∗a
+
i and b−i = σ∗b

+
i for 1 ≤ i < g,

and σ∗b
+
g = b+

g . Furthermore we have πκ∗a
±
i = ai and πκ∗b

±
i = bi.

The cycles on H1(M̂ ;Z) which come through modified cycles on H1(M ;Z) can

be modified by subtracting b+
g to give a symplectic basis for H1(M̂ ;Z), which we can
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explicitly write in terms of the invariant and anti-invariant subspaces in homology:

H+
1 (M̂ ;Q) = 〈P+a+

1 , P
+b+

1 , . . . , P
+a+

g , P
+b+

g 〉

H−1 (M̂ ;Q) = 〈P−a−1 , P−b−1 , . . . , P−a−g−1, P
−b−g−1〉

In these coordinates, P+a+
i ∩ P+b+

i = P−a−i ∩ P−b−i 6= 0 and all other intersections

are zero. Thus H+
1 and H−1 are symplectically orthogonal.

Suppose that M has some singularities of odd order, which by necessity has

to be an even number of them, 2n, and label the odd singularities p1, . . . , p2n. Con-

sider a standard symplectic basis a1, b1, . . . , ag, bg of H1(M ;R). Note that two loops

representing homology classes can be different in H1(Ṁ ;Z) while being homologous

in H1(M ;Z). This happens, for example, when the loops have different monodromy.

Thus any loop representing a basis element of H1(M ;Z) with non-trivial monodromy

can be modified slightly to change its monodromy while staying in the same homol-

ogy class. This is done by “taking a detour” to go around an odd singularity, say

p2n. By making such modifications to representatives of ai and bi we can suppose

that every loop representing a basis element of H1(M ;Z) lifts to two loops on M̂ ,

γa± and γb± with [γa±i ] = a±i and [γb±i ] = b±i . By considering the intersections of

curves representing the basis of H1(M) and their lifts, we can assign the ± labels

to the lifts so that we get a collection of cycles in H1(M̂ ;Q)

{a+
1 , b

+
1 , a

−
1 , b

−
1 , . . . , a

+
g , b

+
g , a

−
g , b

−
g } (2.7)

such that a+
i ∩ b+

i = a−i ∩ b−i = 1 for i ≤ i ≤ g and all other intersections are

zero. Moreover we have a−i = σ∗a
+
i and b−i = σ∗b

+
i for 1 ≤ i ≤ g. Furthermore we
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have πκ∗a
±
i = ai and π∗κb

±
i = bi. Because of the prescribed symplectic structure,

P±a+
i 6= 0 6= P±b+

i for 1 ≤ i ≤ g and these cycles span a 4g-dimensional symplectic

subspace of H1(M̂ ;Q). Thus we can explicitly write the basis for the invariant and

anti-invariant subspaces in homology:

H+
1 (M̂ ;Q) = 〈P+a+

1 , P
+b+

1 , . . . , P
+a+

g , P
+b+

g 〉

H−1 (M̂ ;Q) = 〈P−a−1 , P−b−1 , . . . , P−a−g , P−b−g 〉 (2.8)

with the corresponding intersections, making them symplectically orthogonal. By

the Riemann-Hurwitz formula, dimH−1 (M̂,R) = 2g+2n−2, so in the case of n = 1

we have constructed a basis for the homology of the covering surface. For n > 1, the

other 2n−2 cycles on M̂ which are basis elements of H1(M̂ ;R) are constructed in a

way reminiscent of the way one constructs basis elements on a hyperelliptic surface.

Consider a series of paths li joining pi to pi+1 for 1 ≤ i ≤ 2n − 2. We can

chose these paths so that they have no intersection with the cycles ai or bi and

that the line
⋃2n−2
i=1 li does not have self intersections. For ε sufficiently small, take

an ε-tubular neighborhood Ei of li and consider the oriented boundary ∂Ei which

we can identify with a cycle c̄i. This cycle clearly has trivial monodromy and, as

such, lifts to two different paths on M̂ . Pick one of these and label it ci. Thus

we get the cycles c1, . . . , c2n−2 on M̂ with cj ∩ cj+1 = 1 for 1 ≤ j ≤ 2n − 3 and

σ∗cj = −cj. Let C ⊂ H1(M̂ ;Z) be the subspace spanned by the cycles ci. This

space is symplectically orthogonal to the subspaces spanned by P±a±i and P±b±i .

The subspace C can be thought of absolute homology classes of the covering surface

which are represented by lifts of curves which are homologous to zero. We will
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denote by P C : H1(M̂ ;R)→ C the projection of a cycle to C.

For the case when q has at least two odd singularities, we adopt from now

on the following notation. Let H−1 (M̂ ;Z) = Ĥ−1 (M̂ ;Z) ⊕ C be the anti-invariant

eigenspace, i.e., the projection P−H1(M̂ ;Z). Then we can write the homology of

the covering surface, which represents the (symplectic) orthogonal splitting, as:

H1(M̂ ;R) = H+
1 (M̂ ;R)⊕ Ĥ−1 (M̂ ;R)⊕ C. (2.9)

Similarly, there is a splitting in cohomology:

H1(M̂ ;R) = H1
+(M̂ ;R)⊕ Ĥ1

−(M̂ ;R)⊕ C∗.

Note that when n > 1, Ĥ−1 (M̂ ;R) is not the entire anti-invariant eigenspace, but

the projection to the negative eigenspace of the cycles on M̂ which come from basis

elements of H1(M ;Z).

2.3.2 Verification of Forni’s criterion

We now relate structure of periodic foliations induced by quadratic differ-

entials to the above discussion of the relationship between the homology of the

half-translation surface M carrying a quadratic differential and its orienting dou-

ble cover M̂ . By removing saddle connections and singularities, a half-translation

surface carrying a periodic quadratic differential q decomposes M into the disjoint

union of cylinders {c1
q, . . . , c

s
q} composed of closed leaves of the foliation. Each cylin-

der ciq has a waistcurve |aiq| whose homology class aiq = [|aiq|] represents the homology

class of all other closed leaves in ciq.
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Since it does not make a difference whether we speak of the vertical of horizon-

tal foliation, whenever it is not specified whether we consider the horizontal

or vertical foliation defined by a quadratic differential, we shall assume

it is the horizontal foliation.

For any measured foliation Fq on M , denote by F̂q the measured foliation

given by Fπ∗κq on M̂ , i.e., the lift of Fq to M̂ . As such, we have that Fq is periodic if

and only if F̂q is periodic. Let α be an Abelian differential on a translation surface

M which, for the next lemma, we do not assume is the pullback of a quadratic

differential. Let Sα be the union of all saddle connections in the periodic foliation

given by a holomorphic 1-form α. By convention, we also assume the singularities

of α are contained in Sα. Then M\Sα is a disjoint union of cylinders c1
α, . . . , c

s
α.

Lemma 1. Let α be an Abelian differential on a translation surface M whose hor-

izontal foliation is periodic with cylinders {c1
α, . . . , c

s
α} with respective waistcurves

{|a1
α|, . . . , |asα|} and heights {hiα}. Let γ : [0, 1] −→ M be a simple curve with

γ(0), γ(1) ∈ Sα. Then

=
(∫

γ

α

)
=

s∑
i=1

hiα
(
[γi] ∩ aiα

)
, (2.10)

where [γi] ≡ [γ ∩ ciα] ∈ H1(ciα, ∂c
i
α;Z).

Proof. Since M decomposes into cylinders,∫
γ

=(α) =
s∑
i=1

∫
γ∩ciα
=(α).

Moreover, in each cylinder =(α) can be written in local coordinates as dyi. Thus∫
γ

=(α) =
s∑
i=1

∫
γ∩ciα

dyi,
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from which (2.10) follows.

Note that in Lemma 1 we did not require γ to be closed. The lemma thus yields

information of the intersection properties of curves γ with waistcurves of cylinders

of M defined by a periodic Abelian differential. It follows that any periodic F̂q is

given by a holomorphic 1-form α with the property that P−1α =
∑s

i=1 h
i
αa

i
α, where

hiα > 0 is the height of the cylinder ciα, aiα is the homology class represented by its

oriented waistcurve |aiα| (with respect to the orientation of the foliation), and P is

the (symplectic) isomorphism given by Poincaré duality.

Let q be a completely periodic quadratic differential. Let I(q) and I(α) denote

the maximal isotropic subspaces of H1(M ;Q) and H1(M̂ ;Q), respectively, spanned

by closed leaves of the foliation Fq and of F̂q. Consider a completion of I(α) to a

symplectic basis of H1(M̂ ;Q) as in (2.9) in Section 2.3.1. Let C⊥ = H+
1 (M̂ ;Q) ⊕

Ĥ1(M̂ ;Q) and denote by P⊥ : H1(M̂ ;Q)→ C⊥ the projection. Denote by I+(α) ≡

P+I(α), I−(α) ≡ P⊥P−I(α), IC(α) ≡ P CI(α).

Lemma 2. Let q be a periodic quadratic differential. Then

dim I+(α) ≥ dim I−(α), (2.11)

equality holds if q has at least two odd singularities.

Proof. Let {a1, . . . , ak} be a basis of I(q), where the ai are homology classes of

waistcurves of cylinders. Every waistcurve |ai| from this set is an isometrically

embedded flat cylinder, hence has trivial monodromy and therefore lifts to two

different waistcurves |a±i | and hence dim〈a+
1 , . . . , a

+
k , a

−
1 , . . . , a

−
k 〉 ≤ 2k. By changing
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basis through P±,

dim span {P+a+
1 , . . . , P

+a+
k }+ dim span {P−a+

1 , . . . , P
−a+

k } ≤ 2k. (2.12)

If aj is any homology class of a waistcurve of a cylinder given by q, then

aj =
∑k

i=1 t
j
iai for some tj ∈ Zk since {a1, . . . , ak} is a basis of I(q). Suppose then

that for some j we have a+
j =

∑k
i=1 t

j
ia

+
i +e, where, for 1 ≤ i ≤ k, a+

i is the homology

class of a lift of a representative of ai and let e+ ≡ P+e.

We claim e+ = 0. Otherwise
∑k

i=1 tiai + πκ∗(e
+) = aj =

∑k
i=1 tiai, a contra-

diction since πκ∗ restricted to H+
1 (M̂ ;Q) is an isomorphism onto H1(M ;Q). Thus,

span {P+a+
1 , . . . , P

+a+
k } = I+(α).

Combinining this with (2.12) we obtain that

dim I+(α) ≥ dim span {P−a+
1 , . . . , P

−a+
k }. (2.13)

We address the case of odd singularities to show that dim〈P−a+
1 , . . . , P

−a+
k 〉 =

k = dim I+(α). We first show that a+
i 6= ±a−i for all i ∈ {1, . . . , k}. Suppose

a+
i = ±a−i holds for some i. Then M̂\(|a+

i | ∪ |a−i |) is a disjoint union of punctured

Riemann surfaces S1

∐
S2, each of which maps to itself under σ since q has odd

singularities and thus σ has fixed points. This implies that M\|ai| is disconnected,

or ai = 0, a contradiction. Thus the lift of each waistcurve satisfies P±a+
i 6= 0 for

all i.

Now we follow the basis construction from Section 2.3.1. Let {ā1, b1, . . . , āg, bg}

be a completion of a basis of I(q) to a symplectic basis of H1(M ;Z) with āi = aiq

for 1 ≤ i ≤ k, āi ∩ bj = δji , and āi ∩ āj = bi ∩ bj = 0 for all i, j. Suppose such basis
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is represented by simple closed curves γāi and γbi with trivial holonomy, which can

be assumed since there are at least two odd singularities. Then each such curve has

two lifts γ±āi and γ±bi with [γ±āi ] = a±i and [γ±bi ] = b±i . We can assign the ± labels

such that a+
i ∩ b+

i = a−i ∩ b−i 6= 0 and all other intersections are zero. Indeed,

starting with a symplectic basis such that ai ∩ bi = 1 then there exist two closed

curves γai and γbi with trivial monodromy representing, respectively, ai and bi, and

intersecting only once on M\Σµ. The point of intersection has two lifts, which

means there are two intersections on M̂\Σ̂, from which the ± labels are assigned so

that a+
i ∩ b+

i = a−i ∩ b−i 6= 0 and all other intersections are zero. By repeating this

procedure one obtains a basis for H1(M̂ ;Q) with the desired intersection properties.

Since C is symplectically orthogonal to I+(α) and I−(α) we do not worry about the

intersection with cycles in C.

Suppose dim〈P−a+
1 , . . . , P

−a+
k 〉 < k. Without loss of generality we can assume

there exists a c ∈ Qk−1 such that

P−a+
1 =

1

2
(a+

1 − σ∗a+
1 ) =

k∑
i=2

ci−1(a+
i − σ∗a+

i ).

Since P−b+
1 is the symplectic dual of P−a+

1 ,

0 6= P−b+
1 ∩ P−a+

1 =
k∑
i=2

ci−1P
−b+

1 ∩ (a+
i − σ∗a+

i ) = 0,

a contradiction since the right hand side involves a sum of intersections which are

all zero. Therefore, when q has at least two odd singularities,

dim〈P−a+
1 , . . . , P

−a+
k 〉 = k. (2.14)
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It remains to show that

〈P−a+
1 , . . . , P

−a+
k 〉 = I−(α).

Let q have at least two odd singularities. We consider a completion of I(α) to

a symplectic basis as in Section 2.3.1: let {ā1, . . . , āk} be a basis of I(q) consisting of

homology classes of waistcurves of cylinders. Consider its completion to a symplectic

basis {a1, b1, . . . , ag, bg} of H1(M ;Z) with ai = āi for 1 ≤ i ≤ k, ai ∩ bj = δji . We

can lift this basis to a symplectic basis {a+
1 , b

+
1 , . . . , a

+
g , b

+
g , a

−
1 , b

−
1 , . . . , a

−
g , b

−
g } of a

symplectic subspace of H1(M̂ ;Q) with a±i ∩ b±j = δji and all other intersections zero.

Suppose 〈P−a+
1 , . . . , P

−a+
k 〉 6= I−(α). Let ĉ∗ be a cylinder of F̂q such that

P−â∗ 6∈ span {P−a+
1 , . . . , P

−a+
k } and 0 6= a∗ ≡ π∗â

∗ ∈ H1(M ;Q). Then â∗ =∑k
i=i t

∗
i a

+
i + e−, where σ∗e

− = −e− and t∗ ∈ Zk is defined by a∗ =
∑k

i=1 t
∗
i ai.

We claim that there is some element E ∈ {a+
k+1, b

+
k+1, . . . , a

+
g , b

+
g } such that

E ∩ â∗ = E ∩ e− 6= 0. Indeed, if there was no such element, then E ∩ â∗ = 0 for all

E ∈ {a+
k+1, b

+
k+1, . . . , a

+
g , b

+
g }. Since 〈a±1 , b±1 , . . . , a±k , b

±
k 〉 and 〈a±k+1, b

±
k+1, . . . , a

±
g , b

±
g 〉

are symplectically orthogonal and P−a+
i = −P−a−i , P−b+

i = −P−b−i for all i, and

since P−â∗ 6∈ 〈P−a+
1 , . . . , P

−a+
k 〉, P−â∗ would have a non-zero component P−b+

i for

some i ≤ k implying that â∗ would have non-zero intersection with a+
i , which cannot

happen since the a±i are represented by waistcurves of cylinders of the foliation.

Therefore, the claim holds. Projecting onto M ,

0 6= π∗E ∩ a∗ =
k∑
i=1

t∗i (π∗E ∩ ai) = 0,

a contradiction. Therefore, if q has at least two off singularities,

span {P−a+
1 , . . . , P

−a+
k } = I−(α),
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and, combining this with (2.14), the proof follows for the case of q having at least

two odd singularities.

The case of q having no odd singularities is practically the same. Let q have

no odd singularities and consider a completion of I(α) as in Section 2.3.1: let

{ā1, . . . , āk} be a basis of I(q) consisting of homology classes of waistcurves of cylin-

ders. Consider its completion to a symplectic basis {a1, b1, . . . , ag, bg} of H1(M ;Z)

with ai = āi for 1 ≤ i ≤ k and ai ∩ bj = δji . As in (2.6), we can lift this basis to a

symplectic basis

{a+
1 , b

+
1 , a

−
1 , b

−
1 , . . . , a

+
g−1, b

+
g−1, a

−
g−1, b

−
g−1, a

+
g , b

+
g }

of H1(M̂ ;Q).

Let ĉ∗ be a cylinder of F̂q such that P−â∗ 6∈ span {P−a+
1 , . . . , P

−a+
k } and

a∗ = π∗â
∗ 6= 0. Then â∗ =

∑k
i=i t

∗
i a

+
i +e−, where σ∗e

− = −e− and t∗ ∈ Zk is defined

by a∗ =
∑k

i=1 t
∗
i ai.

We claim that there is some element E ∈ {a+
k+1, b

+
k+1, . . . , a

+
g−1, b

+
g−1} such that

E∩â∗ = E∩e− 6= 0. Indeed, if there was no such element, then E∩â∗ = 0 for all E ∈

{a+
k+1, b

+
k+1, . . . , a

+
g−1, b

+
g−1}. Since 〈a±1 , b±1 , . . . , a±k , b

±
k 〉 and 〈a±k+1, b

±
k+1, . . . , a

±
g−1, b

±
g−1〉

are symplectically orthogonal and P−a+
i = −P−a−i , P−b+

i = −P−b−i for all i, and

since P−â∗ 6∈ 〈P−a+
1 , . . . , P

−a+
k 〉, P−â∗ would have a non-zero component P−b+

i for

some i ≤ k implying that â∗ would have non-zero intersection with a+
i , which cannot

happen since the a±i are represented by waistcurves of cylinders of the foliation.

Therefore, the claim holds. Projecting onto M ,

0 6= π∗E ∩ a∗ =
k∑
i=1

t∗i (π∗E ∩ ai) = 0,
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a contradiction. Therefore, span {P−a+
1 , . . . , P

−a+
k } = I−(α).

Combining this with (2.13), the proof follows.

Let Lh,vκ be the set of quadratic differentials q ∈ Qκ for which the foliation

F̂h,vq is Lagrangian.

Proposition 1. The set Lh,vκ is dense in Qκ.

We remark that [17, Lemma 4.4] proves this statement in the case of q being

the square of an abelian differential. Thus this proof follows closely the ideas of

that proof, making slight modifications. We briefly review the idea for abelian

differentials. One begins with a periodic horizontal foliation given by a holomorphic

1-form. Since these foliations are dense in the moduli space, the proof is completed

by showing that given any such periodic foliation, one can make an arbitrary small

perturbation to this form (keeping the vertical foliation fixed) to obtain a 1-form

whose horizontal foliation is periodic and whose isotropic span has larger dimension

than that of the unperturbed foliation. By making finitely many perturbations (no

more than the genus of the surface) one obtains a Lagrangian foliation.

For a quadratic differential q ∈ Qκ the idea is similar but one has to proceed

carefully. Since local coordinates of Qκ are given by periods in H1
−(Ŝ, Σ̂κ;C), we can

only make perturbations of α =
√
π∗κq in the anti-invariant subspace of H1(Ŝ, Σ̂κ;C)

by an anti-invariant holomorphic 1-form. From here, by virtue of Lemma 2, we can

proceed as in [17] when there are at least two odd singularities. When there are no

odd singularities, the space H1
−(M̂ ;C) is too small to give enough perturbations to

grow isotropically to a Lagrangian foliation, so we perturb our holomorphic 1-form
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with anti-invariant relative cocycles, i.e., exact forms of the form df which are non-

zero elements of H1(Ŝ, Σ̂;C) and satisfy σ∗df = −df . We will show that perturbing

with these exact forms we may continue growing-out until we get a Lagrangian

foliation.

Proof. We will consider two different cases: quadratic differentials with and without

odd singularities.

Case 1 (Quadratic differentials with at least two odd singularities). Since peri-

odic quadratic differentials form a dense subset of Qκ, when Qκ is a stratum of

quadratic differentials with at least two odd singularities, we will show that there is

a Lagrangian foliation arbitrarily close to a periodic one which is not Lagrangian.

Suppose q is a quadratic differential with at least two odd singularities such

that its horizontal foliation is periodic and that for α =
√
π∗κq we have g > dim I+(α) =

k. Let {|a1
q|, . . . , |akq |} be the waistcurves of the cylinders of the periodic foliation

on M whose homology classes span I(q). Then

Ṁ ≡M\(|a1
q| ∪ · · · ∪ |akq |)

is a genus (g − k) connected surface with 2k paired punctures. Let γc : [0, 1]→ Ṁ

be a smooth simple closed curve which represents a cycle which is not homologous

to a linear combination of boundary cycles and has empty intersection with the

singularity set Σκ.

Denoting by i : Ṁ ↪→ M the inclusion map, then γ ≡ i ◦ γc : [0, 1] → M , by

construction, satisfies the following properties. If we define the non-zero homology
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class h ≡ [γ] ∈ H1(M ;Z), then h 6∈ I(q), h ∩ b = 0 for any b ∈ I(q), γ ∩ |a1
q| =

· · · = γ ∩ |atq| = ∅ and γ ∩ Σκ = ∅. Furthermore, we can assume m(h) = 0, since

we can always modify γc slightly to go around an odd singularity of q in order to

force m(h) = 0. Since each γ has trivial monodromy, it has two lifts γ± to M̂ with

[γ−] = σ∗[γ
+]. Let h± = [γ±] ∈ H1(M̂ ;Z), which by construction satisfies h±∩b = 0

for any b ∈ I±(α) and h± 6∈ I±(α).

We claim h+ 6= ±h−. Suppose h+ = ±h−. Then M̂\(γ+ ∪ γ−) is a disjoint

union of punctured Riemann surfaces S1

∐
S2, each of which maps to itself under σ

since q has odd singularities and thus σ has fixed points. This implies that M\γ is

disconnected, or h = 0, a contradiction. For the two lifts γ± on M̂ of the cycle γ,

we have γ± ∩ |â1
α| = · · · = γ± ∩ |ât̂α| = ∅ and γ± ∩ Σ̂κ = ∅.

Let V±(γ±) ⊂⊂ U±(γ±) be sufficiently small open tubular neighborhoods of

γ± in M̂ such that

U+(γ+) ∩ U−(γ−) = ∅, U±(γ±) ∩ (|â1
α| ∪ · · · ∪ |ât̂α|) = ∅, U±(γ±) ⊂ M̂\Σ̂κ

(2.15)

and U−(γ−) = σ(U+(γ+)), V−(γ−) = σ(V+(γ+)). Let U±ε (γ±), ε ∈ {0, 1}, be the

two connected components of U±(γ±)\γ± and V±ε (γ±) = V±(γ±) ∩ U±ε (γ±). Let

φ± : U± → R be a smooth function such that

φ±(x) =


0 for x ∈ U±0 (γ±)\V+

0 (γ+),

1 for x ∈ U±1 (γ±)

and define the closed 1-forms

λ± =


0 on M̂\U±(γ±)

dφ± on U±(γ±)

, η− = P−λ+. (2.16)
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We claim that 0 6= [η−] ∈ H1(M̂ ;Q). Indeed, since λ+ is dual to h+ and σ∗λ+ is

dual to h−, it follows from the fact that h+ 6= h−.

The horizontal foliation given by α′r = α + irη− for r ∈ Q sufficiently small

is periodic and satisfies, by construction, the property that every waistcurve of Fα

is homologous to a waistcurve of Fα′r and therefore I(α) ⊂ I(α′r). This is a strict

inclusion, since P−1α′r = P−1α + P−h+ and by construction h± 6∈ I(α). Therefore,

dimI(α) < dimI(α′r).

After finitely many iterations of this perturbation procedure we obtain a form

α− with I−(α−) a Lagrangian subspace of H−1 (M̂ ;Q). As in [17], one may continue

with the perturbation procedure to obtain a form α∗ with a Lagrangian subspace

IC(α∗) of the symplectic subspace C by making similar perturbations in C∗. Then,

since I−(α∗) and IC(α∗) are Lagrangian subspaces, by Lemma 2, I+(α∗) is also a

Lagrangian subspace of Ĥ+
1 (M̂ ;Q). Thus the case of a quadratic differential with

at least two odd singularities is proved.

Case 2 (Quadratic differentials with no odd singularities). Suppose q is a periodic

quadratic differential with no odd singularities. In this case the only shortcom-

ing is that the space H1
−(M̂ ;Q) is not big enough to provide enough perturba-

tions to create a Lagrangian subspace in H+
1 (M̂ ;Q). Specifically, since in this case

dimH−1 (M̂ ;Q) = 2g − 2, if we begin with a periodic quadratic differential with

dim I(q) = k < g after g − k − 1 iterations of the perturbative procedure described

in the previous case we may get an isotropic subspace in H+
1 (M̂ ;Q) of dimension

g − 1. At this point we are unable to perturb in H1
−(M̂ ;Q), so we perturb with
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elements of H1
−(M̂, Σ̂κ;Q) since it is this space which gives local coordinates to Qκ.

As in the case of periodic quadratic differentials with odd singularities, it will be

sufficient to show there is one with a Lagrangian foliation which is arbitrarily close.

Suppose q ∈ Qκ is a periodic quadratic differential on the genus g surface M in

a stratum with no odd singularities and k− = dim I−(α) < g−1. Let h ∈ H−1 (M̂ ;Q)

be a cycle such that h 6∈ I−(α) and h ∩ b = 0 for all b ∈ I−(α). Let h̄ ∈ H−1 (M̂ ;Z)

be the unique (up to a sign) primitive integer multiple of h.

We can proceed to perturb α by the Poincaré dual to h̄ (which by construction

is an element of H1
−(M̂ ;Q)) as in (2.15) and (2.16). In this case, we do not have

to worry about making sure the perturbation is done by the dual of an element in

H−1 (M̂ ;Q) since we have guaranteed this by construction in the preceding paragraph.

Thus we obtain a new form α′ with dim I−(α′) > dim I−(α). Indeed, the argument

which showed isotropic growth in Case 1 relied on the type of the perturbation

(namely, being a perturbation in H1
−(M̂ ;Q)), which is independent of the type of

stratum to which α belongs. By construction in the preceding paragraph, we have

chosen the right kind of perturbation and the same arguments for isotropic growth

from Case 1 apply here. After finitely many iterations of the previous perturbative

procedure, each time with the Poincaré dual of an h̄ as in the preceding paragraph,

one can end up with a periodic foliation on M̂ given by the Abelian differential

α with dim I+(α) = dim I−(α) = g − 1. It could also happen that we obtain an

Abelian differential with g = dim I+(α) > dim I−(α) = g − 1 at which point the

proposition would be proved for quadratic differentials with no odd singularities. In
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what follows, we treat the case dim I±(α) = g − 1.

Let {|a+
1 |, . . . , |a+

g−1|, |a−1 |, . . . , |a−g−1|} be waistcurves of cylinders of the folia-

tion given by α which represent a basis in homology for I+(α)⊕ I−(α). Then

Ṁ ≡ M̂\(|a+
1 | ∪ · · · ∪ |a+

g−1| ∪ |a−1 | ∪ · · · ∪ |a−g−1|)

is topologically a torus with 2g − 2 paired punctures coming from removing the

waistcurves of cylinders. Let p+
1 be a zero of α and p−1 = σ(p+

1 ).

Let γ+
1 : [0, 1] → M̂\N 1

δ , where N 1
δ is a δ neighborhood of the punctures for

some δ > 0, be a path on M̂ such that

γ+
1 (0) = p−1 , γ

+
1 (1) = p+

1 , Σ̂κ ∩ {γ+
1 (t)}t∈(0,1) = ∅, and 0 6= [πκγ

+
1 ] ∈ H1(M ;Z).

(2.17)

Denote by γ−1 = σ(γ+
1 ) its image path satisfying γ±1 (ε) = γ∓1 (1− ε), ε ∈ {0, 1}. Note

that 0 6= [γ+
1 ∪ γ−1 ] ∈ H1(M̂ ;Q) and 0 6= P−[γ+

1 ] ∈ H1(M̂, Σ̂;Q).

Let U±ε = B(p±1 , ε/2) be two open ε/2-balls around p+
1 and p−1 and Vε1 a ε-

tubular neighborhood around γ+
1 ∪ γ−1 . Let f1 be a smooth function compactly

supported in Vε1 such that

f1(x) =


0 on U−ε

1 on U+
ε

(2.18)

and f±1 ≡ P±f1.

Let α′r1 = α + ir1 · df−1 for r1 ∈ Q sufficiently small. Since f1 is constant

inside U±ε , df−1 = 0 in a neighborhood of p±1 , α′r1 is still an Abelian differential with

a periodic foliation. Moreover, since γ±1 is disjoint from the waistcurves |aiα| for ε

sufficiently small, the waistcurves |aiα| persist under the perturbation and are close
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and homologous to the waistcurves |ajα′r1 | of the Abelian differential α′r1 .

We claim not only that the horizontal foliation given by α′r1 has more cylinders

than the one given by α, but that the waistcurve of at least one of these cylinders

has non-zero intersection with γ+
1 . Since

=

(∫
γ+1

α′r1

)
6= 0, (2.19)

the claim follows from Lemma 1. At this point either dim I(α′r1) > dim I(α) or

dim I(α′r1) = dim I(α). If the former occurs, since H+
1 (M̂ ;Q) and H−1 (M̂ ;Q) are

symplectically orthogonal, dimH−1 (M̂ ;Q) = 2g − 2, and dim I−(α) = g − 1, this is

equivalent to dim I+(α′r1) > dim I+(α), and this completes the proof for quadratic

differentials with no odd singularities.

Suppose dim I(α′r1) = dim I(α). Let c∗α′r1
be a cylinder of the foliation given by

α′r1 such that a∗α′r1
∩ [γ+

1 ] 6= 0 in the sense of Lemma 1. Clearly we have a∗α′r1
∩aiα = 0

for any other waistcurve aiα of the foliation given by α.

LetM be a torus obtained by inserting 2g− 2 copies {Di}2g−2
i=1 of the two-disk

to the punctures of Ṁ. Let θ1 be the closed 1-form on M defined as

θ1 =


α′r1 on Ṁ

ωi on Di

, (2.20)

where the ωi are smooth forms outside finitely many singularities in the interior

of each Di and are defined such that (2.20) defines a smooth, closed form outside

finitely many points. Then θ1 defines an orientable foliation on M which coincides

with α′r1 outside the inserted disks Di. It follows from the Poincaré-Hopf index

formula that if a simply connected, planar domain bounded by a periodic orbit of a
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vector field contains finitely many fixed points, the sum of the indices at every fixed

point in the interior is equal to 1. In other words, denoting by ιp(θ) the index of

the vector field (foliation) given by θ at the singularity p, we have

∑
p∈int(Di)

ιp(θ) = 1

for any i since Di is a simply connected, bounded planar domain. If dim I(α′r1) =

dim I(α) both the waistcurve |a∗α′r1 | and its image σ|a∗α′r1 | each bound a simply con-

nected domain on M. By (2.19), p+
1 is contained in the interior of one of the two

domains B+
1 and p−1 in the other B−1 . We claim that this finishes the proof for all

differentials q ∈ Qκ for κ = {4g − 4} for any g > 1. Indeed, since p±1 were the

only singularities of α and each was of negative index, by the Poincaré-Hopf index

theorem,

0 = χ(M) =
∑
p∈B±1

ιp(θ1) +
∑

p∈(M\B±1 )

ιp(θ1) = 2 +
∑

p∈(M\B±1 )

ιp(θ1) ≥ 2, (2.21)

a contradiction. Thus neither |a∗α′r1 | or its image σ|a∗α′r1 | bound a simply connected

domain, i.e., dim I(α′r1) > dim I(α) and the proof is concluded in this case.

After finitely many iterations of the above argument we can reach the same

contradiction for any quadratic differential with no odd singularities. In fact, if q ∈

Qκ with κ = {n1, . . . , nτ} has no odd singularities, after no more than τ iterations,

we reach the same contradiction. We show the argument for κ = {n1, n2} with n1,

n2 even and n1 + n2 = 4g − 4 for some g > 1. For τ > 2, the argument is the same.

If after one iteration we do not reach a contradiction, we pick two other sin-

gularities p+
2 and p−2 = σ(p+

2 ) of α′r1 which are not in the interior of B±1 (if there

are no such singularities, we reach the same contradiction through (2.21)). Define
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a path γ+
2 : [0, 1] → M\N 2

δ as in (2.17) where N 2
δ is a δ neighborhood of the set

{Di}2g−2
i=1 ∪ B±1 ∪ Vε1 for δ small enough. Let f2 and f±2 be defined as in (2.18) for

p±2 and let θ2 = θ1 + ir2 · df−2 for a small enough r2 ∈ Q. Then

=

(∫
γ+2

θ2

)
6= 0

which, by Lemma 1, implies there is a new cylinder given by the horizontal foliation

which intersects γ+
2 . Note that we obtain the same form θ2 if we substitute the form

α′r2 = α+ i(r1 · df−1 + r2 · df−2 ) for α′r1 in (2.20), thus the new waistcurve given by θ2

also corresponds to a new waistcurve on M̂ given by α′r2 .

If the waistcurve |aθ2| of this new cylinder represents a cycle which is homolo-

gous to zero, that is, if dim I(α′r2) = dim I(α), then |aθ2| and its image σ|aθ2 | bound

simply connected domains B+
2 and B−2 containing p+

2 and p−2 , respectively, on M.

As in (2.21),

0 = χ(M) =
∑
i∈{1,2}

∑
p∈B±i

ιp(θ2) +
∑

p∈(M\(B±1 ∪B
±
2 ))

ιp(θ2)

= 2 +
∑

p∈(M\(B±1 ∪B
±
2 ))

ιp(θ2) ≥ 2,

since the only singularities of θ2 of negative index were in B±1 and B±2 . Thus we get

the same contradiction as in (2.21). For an arbitrary stratum with no odd singular-

ities, we can continue the same perturbation procedure with different anti-invariant

relative cocycles which are dual to relative cycles connecting paired zeros at every

step. After finitely many perturbations (no more than τ) each zero of α (singularity

of negative index) is contained in a simply connected domain of the foliation, which

leads to a contradiction through the Poincaré-Hopf index formula. Thus, at some
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point of the perturbative procedure with relative, anti-invariant cycles, we obtain

dim I+(α′ri) > dim I+(α) and thus a Lagrangian foliation on M̂ .

Finally we can prove the main theorem of this chapter.

Theorem 1. The Kontsevich-Zorich cocycle is non-uniformly hyperbolic µ̂κ-almost

everywhere on Hκ̂, where µ̂κ is the measure (2.2) supported on abelian differentials

which come from non-orientable quadratic differentials through the double cover con-

struction. The Lyapunov exponents satisfy

1 = λ1 > λ2 ≥ · · · ≥ λg > 0 > λg+1 = −λg ≥ · · · ≥ λ2g−1 = −λ2 > λ2g = −1.

(2.22)

Since the Kontsevich-Zorich cocycle defines two cocycles on the bundle over

iκ(Qκ) ⊂ Hκ̂, namely, the restriction of the cocycle to the invariant and anti-

invariant sub-bundles (which are each invariant under the action of the cocycle),

Theorem 1 implies we can express the Lyapunov exponents of the Kontsevich-Zorich

cocycle of the invariant and anti-invariant sub-bundles as

1 > λ+
1 ≥ λ+

2 ≥ · · · ≥ λ+
g > 0 > −λ+

g = λ+
g+1 ≥ · · · ≥ λ+

2g > −1

and

1 = λ−1 > λ−2 ≥ · · · ≥ λ−g+n−1 > 0 > −λ−g+n−1 = λ−g+n ≥ · · · > λ−2g+2n−2 = −1

since, by the remark following the statement of Forni’s criterion, the sub-bundles cor-

responding to the simple, extreme exponents are respectively generated by [Re
√
π∗κq]·

R and [Im
√
π∗κq] · R.
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The question about the simplicity of the Lyapunov spectrum remains open.

Examples of non-simple spectrum (in fact, degenerate spectrum, i.e., λi = 0 for all

i 6= 1) for other measures usually involve a certain set of symmetries (see [19] for

a thorough discussion and examples) which are not present for Lebesgue almost all

non-orientable quadratic differentials. The involution σ splits the cocycle into two

symplectic cocycles and it would be very surprising to find strong enough symme-

tries from the involution which would imply non-simplicity of the spectrum (2.22).

Numerical experiments indeed show strong evidence for a simple spectrum. Thus

we conjecture that for µ̂κ-almost all quadratic differentials, the Kontsevich-Zorich

cocycle has simple spectrum. We have approximated numerically the values of the

exponents for several strata, which we summarize in the appendix.

We remark that Proposition 1 is stronger than needed to prove the result, as

Forni’s criterion needs one Lagrangian differential in the support of the measure. It

is thus possible to prove Theorem 1 through other methods by showing there is at

least one Lagrangian differential in the support of the canonical measure such that

not only Fq is Lagrangian on M , but also that F̂q is Lagrangian on M̂ . It seems

that the tools from generalized permutations (see for example [5]) could be used to

obtain such results, although we believe in such case it the hardest task would be to

obtain a Lagrangian subspace IC in the symplectic subspace C in the case of many

odd singularities. In the same case, showing that I± are Lagrangian would not be

a difficult task since, by Lemma 2, it suffices to obtain a Lagrangian foliation on

M . The case of quadratic differentials with no odd singularities would most likely

also have to be treated as a special case as well. We would be very interested to see
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whether Theorem 1 can be proved in such way (the tools and results of [14] look

particularly promising for this task).

Proof of Theorem 1. Since the measure (2.2) is the push-forward of a canonical mea-

sure which is locally equivalent to Lebesgue by the period map, it is easy to see that

it has local product structure. By Proposition 1, quadratic differentials q such that

F̂q is Lagrangian are dense in every stratum of Qκ and thus the measure µ̂κ on Hκ̂

is cuspidal Lagrangian. The theorem then follows from Forni’s criterion.

2.4 Deviation Phenomena

Let M be a smooth, closed manifold and X a smooth vector field on M

which generates a flow ϕt. For a point p ∈ M , let cT (p) ∈ H1(M ;R) be the cycle

represented by closing the segment ϕT (p) by a shortest path joining ϕT (p) to p.

For an ergodic measure µ, invariant under X, and a point p the support of µ, the

Schwartzman asymptotic cycle [40] is defined as

c∗µ ≡ lim
T→∞

cT (p)

T
∈ H1(M ;R).

The cycle c∗µ is a sort of topological invariant of the flow X with respect to the

measure µ which can be regarded as a generalization of a rotation number since it

coincides with the usual notion of rotation number for a minimal flow on a torus.

In the case when M is an closed, orientable surface of genus g > 1 endowed

with a flat metric outside finitely many singular points and X generates a (uniquely

ergodic) translation flow (in other words, straight-line flow on a translation surface)

on M , Zorich [44] observed the following unexpected deviation phenomena through
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computational experiments. There are g numbers 1 = λ1 > · · · > λg > 0 and a

filtration of subspaces

〈c∗〉 = F1 ⊂ · · · ⊂ Fg ⊂ H1(M̂ ;R)

with dimFi/Fi−1 = 1 such that, for φ ∈ Ann(Fi) but φ 6∈ Ann(Fi+1),

lim sup
T→∞

log ‖〈φ, cT 〉‖
log T

= λi+1 (2.23)

Cycles which generate the subspaces Fi are called Zorich cycles. It was also proved

that the numbers λi actually coincide with the Lyapunov exponents (2.4) of the

Kontsevich-Zorich cocycle. In fact, he proved the following conditional statement.

Theorem ([44]). Suppose the Kontsevich-Zorich cocycle is non-uniformly hyperbolic

ν-almost everywhere, where ν is the canonical, absolutely continuous gt-invariant

probability measure on some stratum of Abelian differentials, i.e., λ1 ≥ · · · ≥ λg > 0

for ν-almost every Abelian differential α. Let λ′1 > · · · > λ′s > 0 be the different

Lyapunov exponents. Then for ν-almost every Abelian differential there exists a

filtration of subspaces in H1(M ;R)

〈c∗〉 = F1 ⊆ · · · ⊆ Fs ⊂ H1(M̂ ;R)

with dimFi/Fi−1 = multiplicity of λ′i, dimFs = g such that (2.23) holds. Moreover

[cT (p)] remains within bounded distance of Fs for almost every point p.

We remark that this result of Zorich has been recently generalized to any gt-

invariant probability measure on a stratum of Abelian differentials by Delecroix,

Hubert and Lelièvre [12].

43



Based on the computer experiments, it was conjectured by Kontsevich and

Zorich that for the canonical measure on the moduli space of orientable quadratic

differentials, the Kontsevich-Zorich cocycle is non-uniformly hyperbolic and has a

simple spectrum. This became known as the Kontsevich-Zorich conjecture [30].

It was also conjectured that similar deviations should hold for ergodic averages of

smooth functions. Specifically, it was conjectured that for a smooth function f and

large T , ∣∣∣∣∫ T

0

f ◦ ϕt(p) dt
∣∣∣∣ ≈ T λi+1 (2.24)

for almost every p on a codimension i subspace in some space of functions.

The non-uniform hyperbolicity of the Kontsevich-Zorich cocycle was first proved

in [17]. There it was proved that the deviation of ergodic averages is in fact described

by the exponents of the Kontsevich-Zorich cocycle and that λg > 0, but the sim-

plicity of the spectrum was not proved for surfaces of genus greater than two. The

full conjecture, that is, that the spectrum of the cocycle is simple and that λg > 0,

was proved by Avila and Viana [3]. We now recall the precise results on deviations

of ergodic averages from [17, §6-§9].

Let Xα be a vector field on a surface M of genus g which is tangent to the

horizontal foliation of an abelian differential α. Let I1
Xα

(M) denote the vector space

of Xα-invariant distributions (in the sense of Schwartz), i.e., distributional solutions

D ∈ H−1(M) of the equation XαD = 0, where H−1(M) is the dual space of the

Sobolev space H1(M).

Theorem ([17]). For Lebesgue-almost all abelian differentials α the space I1
Xα

(M)
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has dimension g and there exists a splitting

I1
Xα(M) = I1

Xα(λ′1)⊕ · · · ⊕ I1
Xα(λ′s)

where dim I1
Xα

(λ′i) = multiplicity of λ′i for the ith distinct Lyapunov exponent of

Kontsevich-Zorich cocycle. Denoting by ϕt the flow of Xα, for any function f ∈

H1(M) such that

Df = 0 for all D ∈ I1
Xα(λ′1)⊕ · · · ⊕ I1

Xα(λ′i),

and if there exists a Di+1 ∈ I1
Xα

(λ′i+i)\{0} such that Di+1f 6= 0, then, if 0 < i < s,

for almost every p ∈M ,

lim sup
T→∞

log |
∫ T

0
f ◦ ϕt(p) dt|
log T

= λ′i+1.

If Df = 0 for all D ∈ I1
Xα

, then for any p not contained in a singular leaf,

lim sup
T→∞

log |
∫ T

0
f ◦ ϕt(p) dt|
log T

= 0.

A basic current C for F is a current (in the sense of de Rham) of dimension

and degree equal to one such that for all vector fields X tangent to F we have

iXC = LXC = 0.

Let Bsq be the space of currents for Fhq of order s. It was proved in [17] that the

space I1
Xα

is in bijection with the subspace B1
q,+ ⊂ B1

q of closed currents which are

not exact. In fact, C ∈ B1
q,+ if and only if C ∧ [Imα] ∈ I1

Xα
. There is an analogous

splitting of the space B1
q,+:

B1
q,+ = B1

q,+(λ′1)⊕ · · · ⊕ B1
q,+(λ′s)

45



with respect to the Lyapunov spectrum of the Kontsevich-Zorich cocycle. Let

Πi
q : B1

q −→ B1
q,+(λ′i)

be the projection to the ith summand of the splitting. The invariant distributions

which generate each I1
Xα

(λ′i) are constructed from the asymptotic currents as follows.

There is a sequence of times Tk →∞ such that

Di ≡ lim
k→∞

Πi
q `Tk ∧ [Imα]

|Πi
q `Tk |−1

= lim
k→∞

Πi
q `Tk

|Πi
q `Tk |−1

∧ [Imα] = Ci∧ [Imα] ∈ I1
Xα(λ′i), (2.25)

are the invariant distributions, where `T is the current defined by a segment of a

leaf of Fhq (a chain) of length T . Furthermore,

lim sup
T→∞

log |Πi
q `T |−1

log T
= λ′i. (2.26)

Thus, the basic currents Ci in (2.25) are the Zorich cycles which generate the sub-

spaces Fi in Zorich’s theorem. In fact, there is a representation theorem of Zorich

cycles which states that all Zorich cycles are represented by basic currents of order

1 [17, Theorem 8.3].

We remark that although Forni’s theorem on deviation of ergodic averages is

stated for almost every abelian differential with respect to the canonical, aboso-

lutely continuous invariant probability measure on a stratum of moduli space of

abelian differentials, the statement holds for any SL(2,R)-invariant measure. In-

deed, this requirement is a consequence of the fact that the non-uniform hyper-

bolicity of the Kontsevich-Zorich cocycle in [17] was only proved for the canonical

measure. The proof of deviation of ergodic averages generalizes without modifica-

tions to any SL(2,R)-invariant measure for which the Kontsevich-Zorich cocycle is
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non-uniformly hyperbolic. See [17, Chapters 8 and 9], [15], and [8].

Any element of the spectrum of the Kontsevich-Zorich cocycle for the canonical

measure in the moduli space of abelian differentials describes deviations of both

homology cycles as well as that of ergodic averages. For the case of non-orientable

quadratic differentials, it is surprisingly not the same.

2.4.1 Deviations in homology for quadratic differentials

Let q ∈ Qκ be a quadratic differential on M which is an Oseledets-regular

point with respect to the measure (2.2) for the Kontsevich-Zorich cocycle. Let M̂

the orienting double cover and α =
√
π∗κq. For a point p ∈M on a minimal leaf ` of

Fq and picking a local direction, we can follow a segment of length T , `T , of the leaf

` in such direction. Let cT ∈ H1(M ;R) be the cycle obtained by closing the chain

`T by a short path.

For a point p̂ ∈ π−1
κ (p), following a leaf ˆ̀

T of length T of the foliation F̂q such

that πκ ˆ̀
T = `T , let ĉT ∈ H1(M̂ ;R) be the cycle obtained by closing the chain ˆ̀

T by

a short path. Then

ĉ∗q ≡ lim
T→∞

ĉT
T
∈ H−1 (M̂ ;R)

is the Schwartzman asymptotic cycle. It is anti-invariant with respect to σ∗ since it

can be shown to be the Poincaré dual of the cohomology class defining the foliation,

in this case either [Re(α)] or [Im(α)]. By construction, πκ∗ĉ
∗
q = c∗q. By Theorem

1, the Kontsevich-Zorich cocycle is non-uniformly hyperbolic with respect to the

measure µ̂κ supported on iκ(Qκ) ⊂ Hκ̂. Let 1 = λ−1 > λ−2 ≥ · · · ≥ λ−2g+n−1 > 0 and
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λ+
1 ≥ · · · ≥ λ+

g > 0 be the positive Lyapunov exponents of the restriction of the

cocycle to the anti-invariant and invariant sub-bundles, respectively. By Zorich’s

theorem, for large T we (intuitively) have,

ĉT ≈ ĉ∗qT + c−2 T
λ−2 + · · ·︸ ︷︷ ︸

coming from H−1 (M̂ ;R)

+ c+
1 T

λ+1 + c+
2 T

λ+2 + · · ·︸ ︷︷ ︸
coming from H+

1 (M̂ ;R)

.

Since πκ∗ĉT = cT and ker πκ∗ = H−1 (M̂ ;R),

cT ≈ πκ∗(c
+
1 )T λ

+
1 + πκ∗(c

+
2 )T λ

+
2 + · · · . (2.27)

If we define the Schwartzman asymptotic cycle for the non-orientable foliations on

M as

c∗q ≡ lim
T→∞

cT
T
∈ H1(M ;R),

then, by (2.27), it is well-defined and equal to zero. Thus the deviation of homology

classes is sublinear and described completely by invariant behavior. The result

is summarized in the following theorem, which follows from Theorem 1 and the

generalization of Zorich’s theorem in [12].

Theorem 2 (Deviations in homology for a typical leaf of a quadratic differential).

For Lebesgue-almost all quadratic differentials q ∈ Qg on M , there exists a filtration

of subspaces

F1 ⊂ · · · ⊂ Fs ⊂ H1(M ;R)

with dimFi/Fi−1 = multiplicity of λ+
i and Fs a Lagrangian subspace, such that, for

φ ∈ Ann(Fi) but φ 6∈ Ann(Fi+1),

lim sup
T→∞

log ‖〈φ, cT 〉‖
log T

= λ+
i+1
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where cT is obtained by closing a non-singular leaf `T of length T by a short segment

and λ+
1 > · · · > λ+

s > 0 are the distinct Lyapunov exponents of the Kontsevich-

Zorich cocycle with respect to the measure coming from quadratic differentials, re-

stricted to the invariant sub-bundle H1
+(M̂ ;R).

2.4.2 Deviation of ergodic averages for quadratic differentials

Let q ∈ Qκ be a quadratic differential on M which is an Oseledets-regular

point with respect to the measure (2.2) for the Kontsevich-Zorich cocycle. Let M̂

be the orienting double cover and α =
√
π∗κq. For a point p ∈ M on a minimal leaf

of Fq, let ϕt(p) be the “flow” obtained by integrating the distribution defining the

horizontal foliation in a chosen direction and starting at p. As such,
⋃T
t=0 ϕt(p) is a

segment `T of a leaf of the horizontal foliation Fq of length T with an endpoint p.

Then for a smooth function f ,

∫ T

0

f ◦ ϕs(p) ds (2.28)

is well defined. Let f̂ = π∗κf be a smooth function on M̂ . Then

∫ T

0

f ◦ ϕs(p) ds =

∫ T

0

f̂ ◦ ϕ̂s(p̂) ds,

for the flow ϕ̂t(p) defined by the orientable horizontal foliation F̂q for a point p̂ ∈

π−1
κ (p). Moreover,

∫ T

0

f ◦ ϕs(p) ds =

∫ T

0

f̂ ◦ ϕ̂s(p̂) ds = 〈`T , f̂ · Imα〉 =

∫
`T

f̂ · Imα. (2.29)
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For the space of invariant distributions I1
q (M̂), let I±q ≡ P±I1

q (M̂). By [17], there

is a splitting of the closed, non-exact basic currents of order one

B1
q = B+

q ⊕ B−q = B+
q (λ+

1 )⊕ · · · ⊕ B+
q (λ+

s+)⊕ B−q (λ−1 )⊕ · · · ⊕ B−q (λ−s−)

into the components corresponding to the Lyapunov exponents coming from the

restriction of the cocycle to the invariant and anti-invariant sub-bundles, respec-

tively. Let Πi
± : B1

q −→ B±q (λ±i ). For an invariant distribution D = C ∧ Im [α], since

[α] ∈ H1
−(M̂, Σ̂κ;R), D ∈ I±q if and only if C ∈ B∓q .

If D ∈ I−q , D(f̂) = 0 for f̂ = π∗κf . Then, by (2.25), (2.26), and (2.29), for

large T ,

∫ T

0

f ◦ ϕs(p) ds ≈
s−∑
i=1

〈Πi
− `T , f̂ · Imα〉 · T λ

−
i +

s+∑
i=1

〈Πi
+ `T , f̂ · Imα〉 · T λ

+
i

=
s−∑
i=1

〈Πi
− `T , f̂ · Imα〉 · T λ

−
i ,

and thus the deviation of ergodic averages are described by anti-invariant behavior.

If H1(M) denotes the standard Sobolev space of functions on M , then it is clear to

see that π∗κH
1(M) ⊂ H1(M̂). The results of [17], [15], [8], and Theorem 1 imply the

following.

Theorem 3 (Deviations of ergodic averages for quadratic differentials). For Lebesgue-

almost all non-orientable differentials q on a genus g surface M there is a space

I1
q (M) of dimension 2g + 2n− 2 of distributions defined as the push-forward of the

space of invariant distributions I+
q on M̂ which splits as

I1
q (M) = πκ∗I+

q (λ′1)⊕ · · · ⊕ πκ∗I+
q (λ′s−)
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where dim I+
q (λ′i) = multiplicity of λ′i for the ith distinct Lyapunov exponent of

Kontsevich-Zorich cocycle restricted to the anti-invariant sub-bundle. Denoting by

ϕt the local flow of Fhq as in (2.28), for any function f ∈ H1(M) such that

Df = 0 for all D ∈ πκ∗I+
q (λ′1)⊕ · · · ⊕ πκ∗I+

q (λ′i),

and if there exists a Di+1 ∈ πκ∗I+
q (λ′i+i)\{0} such that Di+1f 6= 0, then, if 0 < i <

s−, for almost every p ∈M ,

lim sup
T→∞

log |
∫ T

0
f ◦ ϕt(p) dt|
log T

= λ′i+1.

If Df = 0 for all D ∈ πκ∗I+
q , then for any p not contained in a singular leaf,

lim sup
T→∞

log |
∫ T

0
f ◦ ϕt(p) dt|
log T

= 0.

It is a consequence of a result of Masur and Smillie [37] that the anti-invariant

sub-bundle can be arbitrarily large for a fixed genus g surface. Consequently, by the

above theorem, there are non-orientable foliations for which the space of invariant

distributions I1
q (M) can have arbitrarily large dimension and the deviation of ergodic

averages are described by arbitrarily many parameters.

By (2.5), the Kontsevich-Zorich cocycle over Qκ describes only the Lyapunov

exponents of the invariant sub-bundle over iκ(Qκ) ⊂ Hκ̂. Thus, by the above

theorem, there seems to be no a-priori reason for the Lyapunov exponents of the

cocycle over Qκ to describe the deviation of averages of functions along leaves of

the foliation: only if there is repetition of exponents across the invariant and anti-

invariant sub-bundles does the cocycle over Qκ describe the deviation behavior of

ergodic integrals.
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2.5 Approximating the Lyapunov exponents numerically

The Kontsevich-Zorich cocycle is a continuous-time version of a discrete, matrix-

valued cocycle, the Rauzy-Veech-Zorich cocycle. Thus one can try to numerically

compute the Lyapunov exponents for this discrete cocycle. In fact, this was how

Zorich originally conjectured a simple spectrum for the case of Abelian differentials.

We will not go into details behind the discrete theory of (half-)translation surfaces,

that of interval exchange transformations, zippered rectangles, Rauzy-Veech induc-

tion, Zorich acceleration, generalized permutations, et cetera. We have written this

section assuming the reader is acquainted with these concepts. We will give refer-

ences for the unfamiliar but interested reader.

The language of generalized permutations [5] is the right discrete language

in which to study the dynamics of the discrete cocycle on a surface carrying a

non-orientable quadratic differential. Not surprisingly, one can pass to the orient-

ing double cover and study the dynamics of the Rauzy-Veech-Zorich cocycle for an

interval exchange transformation through analogues of the already-developed tools

for interval exchange transformations. The concept of interval exchange transforma-

tion with involution, first introduced in [2], is the right analogue of interval exchange

transformations for Abelian differentials which are the pull-back of non-orientable

ones. Although the explicit connection between generalized permutations and inter-

val exchange transformations with involution, as well as explicit expressions for all

the cocycles involved on the orienting cover, are not found in the literature, it is not

hard to work them out from [5] and [2]. Having computed the matrix-valued cocy-
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cle expressions for the interval exchange transformations with involution, we have

approximated the Lyapunov exponents for such cocycles numerically, following [13,

§V.C]. The code and instructions on how to use it can be found in the appendix.

Below is a table of all the strata of quadratic differentials for which the

Lyapunov exponents were approximated numerically. Recall that we always have

λ−1 = 1. According to [33], some strata are not connected and in some cases we

have computed the exponents for different components of such strata. Note that

the result for Q(2,−1,−1) has actually been proved in [4, Theorem 1.7]. The results

for all strata examined suggest a simple spectrum, so we conjecture that this is true

for µ̂κ-almost all quadratic differentials for any singularity pattern κ.
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Stratum Geni Invariant Exponents Anti-Invariant Exponents

Q(2,−1,−1) g = 1, ĝ = 2 λ+
1 = 1

2
λ−1 = 1

Q(2, 1,−13) g = 1, ĝ = 3 λ+
1 = 1

2
λ−2 = 1

3

g = 3, ĝ = 5 λ+
1 = 0.660189 λ−2 = 0.2000206

Q(8) λ+
2 = 0.3973745

λ+
3 = 0.142043

g = 3, ĝ = 4 λ+
1 = 0.778654 λ−2 = 0.551526333

Q(−1, 3, 3, 3)adj λ+
2 = 0.47222 λ−3 = 0.233913333

λ+
3 = 0.229875 λ−4 = 0.097543

g = 3, ĝ = 4 λ+
1 = 0.597168 λ−2 = 0.327950333

Q(−1, 3, 3, 3)irr λ+
2 = 0.402619 λ−3 = 0.190083

λ+
3 = 0.200314 λ−4 = 0.083007333

g = 3, ĝ = 3 λ+
1 = 0.601297 λ−2 = 0.30827666

Q(−1, 3, 6)adj λ+
2 = 0.3795885 λ−3 = 0.1406165

λ+
3 = 0.1677125

g = 3, ĝ = 3 λ+
1 = 0.767285 λ−2 = 0.524996

Q(−1, 3, 6)irr λ+
2 = 0.445894 λ−3 = 0.17866075

λ+
3 = 0.190788
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Stratum Geni Invariant Exponents Anti-Invariant Exponents

g = 3, ĝ = 3 λ+
1 = 0.607201 λ−2 = 0.281791

Q(−1, 9)adj λ+
2 = 0.346005 λ−3 = 0.080341

λ+
3 = 0.135734

g = 3, ĝ = 3 λ+
1 = 0.742725 λ−2 = 0.4617

Q(−1, 9)irr λ+
2 = 0.3902795 λ−3 = 0.082813

λ+
3 = 0.139563

g = 4, ĝ = 7 λ+
1 = 0.6639145 λ−2 = 0.303482

Q(12)I λ+
2 = 0.45256 λ−3 = 0.119673

λ+
3 = 0.2278785

λ+
4 = 0.089465

g = 4, ĝ = 7 λ+
1 = 0.7476805 λ−2 = 0.443258

Q(12)II λ+
2 = 0.49137 λ−3 = 0.12827975

λ+
3 = 0.2437355

λ+
4 = 0.0893735

g = 3, ĝ = 2 λ+
1 = 0.704425 λ−2 = 0.33313725

Q(4, 4) λ+
2 = 0.4367675

λ+
3 = 0.1917245
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Figure 2.1: Positive spectra of the Kontsevich-Zorich cocycle for the strata

Q(−1n, 1n) for most values of n ∈ {2, . . . , 18}. The red lines indicate the Lyapunov

exponent corresponding to the invariant sub-bundle of each stratum.

Consider the stratum Q((−1)n, 1n) for some n ≥ 2 which consists of surfaces of

genus n which cover the torus. The Kontsevich-Zorich cocycle on any such stratum

has only one invariant Lyapunov exponent, independent of n, which we denote by

λ+
n . Vincent Delecroix asked me the following question: what is the behavior of λ+

n

as n→∞?

My intuitive guess was that, as n→∞, λ+
n → 0. The reasoning is that since

λ+
n describes the (sublinear) speed at which non-orientable foliations commit to an

asymptotic direction, as you put more and more obstacles which turn you around

on the torus (i.e., as you put more poles) then it takes you a longer time to commit

to any asymptotic direction. Numerical experiments agree with this point of view

(see Figure 2.1), although a proof of this fact is not readily available.
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Chapter 3

The ergodicity of flat surfaces of finite area

A flat surface is a two-dimensional oriented manifold M endowed with a flat

metric everywhere except on a set of “bad points” Σ or singularities, which is forced

to exist by the topology of the surface if the surface is of genus greater than one.

Flat surfaces are inextricably connected to quadratic differentials since the latter

give a Riemann surface a flat metric and a pair of transverse, measured foliations,

called the vertical and horizontal foliations. If the foliations are orientable, which

is not always the case, by considering them as flows we suddenly have a dynamical

system, called the translation flow, given by an analytic object, i.e., by a given

quadratic differential or, since the foliations are orientable, by a holomorphic 1-form

or an Abelian differential α. Thus one can try to derive dynamical and ergodic

properties of the flow by studying properties of the Abelian differential. Although

we can get two different flows by considering the horizontal or vertical foliations,

from now on we shall assume the flow corresponds to the horizontal foliation. The

translation flow is defined along a global direction θα ∈ S1, locally defined as the

argument of the holomorphic coefficient of the Abelian differential α. This flow

preserves an absolutely continuous measure µα, singular at Σ, which is also defined

by the Abelian differential. For a very thorough background on flat surfaces, see

[38, 45].
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In the case when the surface is compact, this point of view is rather favorable,

as the “right” space of all quadratic differentials on a fixed Riemann surface of genus

g is a finite dimensional space. This “right” space is the moduli space of quadratic

differentials, or moduli space for short. It is the “right” space because it is the

space of classes of conformally-equivalent flat metrics on a Riemann surface and is

a topological space homeomorphic to an open ball of dimension 6g − 6, where g is

the genus of the surface, equipped with an absolutely continuous SL(2,R)-invariant

probability measure, a fact proved independently by Masur and Veech [34, 43].

Properties of the translation flow on a compact flat surface can be derived from an

associated dynamical system on moduli space, namely, the action of the diagonal

subgroup of SL(2,R) on the moduli space, also known as the Teichmüller flow.

The question of ergodicity of the translation flow on a flat surface is addressed

by studying the beautiful interplay between the dynamics on the flat surface and

that of the Teichmüller flow on the moduli space of quadratic differentials. The

relationship between the dynamics of the translation flow on a flat Riemann surface

and that of the dynamics of the Teichmüller flow on the moduli space of quadratic

differentials is given by a famous result of Masur, known as Masur’s criterion: if

the translation flow on a flat Riemann surface is minimal and not uniquely ergodic,

then the Teichmüller orbit (of the class of that flat metric on which our translation

flow is defined) leaves every compact set of the moduli space [34, 35]. In fact, for

almost every θ ∈ S1, the translation flow generated by αθ = eiθα is uniquely ergodic

[29] and the set of non-ergodic directions has Hausdorff dimension at most 1
2

[36, 35].

There are very special flat surfaces whose SL(2,R) orbit is three-dimensional.
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These flat surfaces are called Veech surfaces and what makes them special is a large

collection of “symmetries” which preserve the flat structure. These symmetries

renormalize the translation flow via the action of the diagonal subgroup of SL(2,R),

i.e., the action of the Teichmüller flow. For these special surfaces it suffices to study

its SL(2,R) orbit to derive dynamical properties of the translation flow on it. In

particular, the phase space of the orbit is a three-dimensional manifold, regardless of

the genus of the surface, which is in high contrast with the dimension of the phase

space in the typical case, which grows linearly with the genus of the surface. In

these special cases, Masur’s criterion can be expressed as follows: if the translation

flow on a Veech surface is minimal but not uniquely ergodic, then its Teichmüller

orbit leaves every compact subset of SL(2,R)/SL(S), where SL(S) is the large

collection of symmetries already mentioned (and defined in §3.1.2), called the Veech

group of the surface S. Veech surfaces have the additional property of satisfying the

Veech dichotomy : the translation flow in any direction θ on a Veech surface is either

completely periodic or uniquely ergodic. By completely periodic we mean that all

orbits which do not emanate from singularities are closed.

Since the dynamics of finite-genus flat surfaces are by now very well under-

stood, there has been a recent surge in the study of the dynamics of the translation

flow on flat surfaces of infinite genus [9, 27, 21, 7, 22, 23, 20, 39]. In this case, all nice

structure from the finite-genus theory is lost. In particular, there is no well-defined

notion of moduli spaces which allow us to carry out an analogous study and thus

most results so far about the ergodicity of the translation flow on a flat surface of

infinite genus are done in a case-by-case scenario. A common approach for all of the
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examples known and studied is the genus-independent approach already used in the

finite genus case, that is, by exploiting the properties given by the Veech group of

the surface.

There are two types of infinite-genus flat surfaces that can be considered: flat

surfaces with finite area and those with infinite area. At the moment, it seems there

are more results for the ergodicity of the translation flow in the case of infinite area

flat surfaces of infinite genus. Most of these surfaces are Zd branched coverings of

surfaces of finite area and one can recover some information about the dynamics on

the cover from the dynamics on the finite-genus surface being covered. In particular

we should mention the results of [20], where a criterion for the non-ergodicity of the

translation flow for a full measure set of directions is established for a large class of

flat surfaces of infinite genus, which seems to be the most general result concerned

with flat surfaces of infinite genus and infinite area. There are some infinite genus

flat surfaces of finite area in the literature with non-trivial Veech groups, but there

has been no unifying approach in these cases to prove ergodicity of the translation

flow, although the results of [23] are a step in this direction.

In this chapter we give a general proof of the ergodicity of the translation

flow for infinite genus flat surfaces of finite area with sufficiently large Veech group.

In spirit, our theorem is very much like Masur’s criterion. The main result is the

following.

Theorem 4. Let S be a flat surface of finite area whose Teichmüller orbit does not

leave every compact set of SL(2,R)/SL(S). Then the translation flow is ergodic
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with respect to Lebesgue measure.

In style, however, our theorem is different from Masur’s criterion since the

methods are quite different. In particular, it is not clear from this approach that

unique ergodicity can be proved. What we gain is that we obtain an ergodicity

theorem by weakening the hypotheses by removing the minimality requirement in

Masur’s criterion.

Theorem 4 applies to all of the known flat surfaces of infinite genus and finite

area with non-trivial Veech groups [9, 7, 23]. For some of these examples our result

gives ergodicity for the translation flow on surfaces where other methods could not

and thus proves to be useful as a general tool, readily applicable to any new examples

of flat surfaces of finite area and infinite genus with a non-trivial Veech group. We

are particularly interested to see whether it can be applied to the family of surfaces

in [11]. Comparing the results in this chapter with others in the literature, it is

reasonable to conjecture that there are flat surfaces of infinite genus and finite area

whose translation flows are ergodic but not uniquely ergodic.

Theorem 4 applies to any flat surface of finite area with nontrivial Veech

group. For a Veech surface (which is defined in Section 3.1.2), the proof of the

Veech dichotomy relies on Masur’s criterion to make the conclusion about unique

ergodicity. Therefore we can replace Masur’s criterion with Theorem 4 in the proof

of the Veech dichotomy to obtain a weaker version, but one which holds for non-

compact Veech surfaces.

Theorem 5 (Weak Veech dichotomy). Let S be a Veech surface of finite area. Then
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the translation flow in any direction θ is either ergodic or completely periodic.

It is unknown whether there exist flat surfaces of finite area and infinite genus

for which this dichotomy holds.

Section 1 gives background on flat surfaces from a geometric and analytic point

of view, as well as background on Veech groups. Section 2 deals with proving the

main result, Theorem 4, followed by a discussion of the weak Veech dichotomy. In

Section 3 we apply the main result to surfaces of infinite genus and finite area.

3.1 Flat Surfaces and Veech Groups

3.1.1 Flat structures

Let S be a Riemann surface with no boundary and Σ ⊂ S̄ a discrete set of

points. S is a flat surface if it carries an atlas {(Ui, ϕi)}i with Uα, Uβ ⊂ S\Σ such

that for any two charts (Uα, ϕα) and (Uβ, ϕβ), ϕα◦ϕ−1
β (z) = ±z+cαβ for z ∈ Uα∩Uβ.

If ϕα ◦ϕ−1
β (z) = z+cαβ for all z and α, β, then S is a translation surface. Otherwise

it is a half-translation surface. Here we will only be interested in translation surfaces

since half-translation surfaces can be studied by passing to an appropriate double

cover where they become translation surfaces.

The points which make up Σ are the singularities of S. Any compact transla-

tion surface S of genus greater that one must, by the Gauss-Bonnet theorem, have

overall negative curvature. Since a translation surface has a flat metric everywhere

on S\Σ, any surface of genus greater than one must have its negative curvature

concentrated on Σ. Thus at a point p ∈ Σ the metric can be written in polar
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coordinates (r, θ) as
√
dr2 + (ar dθ)2), where 2πa is the cone angle at p.

The complex structure of a translation surface can also be completely obtained

by an Abelian differential, i.e., a holomorphic 1-form. In local coordinates away from

Σ any Abelian differential can be written as α = φ(z) dz, with φ a holomorphic

function, and the metric can be written locally as Rα = |α||dz| while the area form

is given on S\Σ by ωα = < (α) ∧ = (α). Any Abelian differential α comes with a

pair of transverse measured foliations, the horizontal and vertical foliations, Fh and

Fv. They are the foliations generated by the distributions Ker=(α) and Ker<(α),

respectively.

A flat surface will be denoted as (S, α) which emphasizes the metric and foli-

ated structure imposed on the topological surface S by the Abelian differential α.

The flat surface (S, αθ), where αθ = eiθα, carries the same metric as the flat surface

(S, α), but their foliations differ. The foliations on (S, αθ) are simply obtained by

“rotating” the foliations on (S, α) by the angle θ. Sometimes we may refer to S as a

flat surface without specification of any Abelian differential. In such case, we mean

that we are considering (S, αθ) for some α and all θ ∈ S1.

A regular leaf for the vertical or horizontal foliation is a leaf which does not

limit to a point in Σ, i.e., a singularity of α. Otherwise it is called singular. A

saddle connection of α is a singular leaf of the vertical or horizontal foliation which

connects two singularities. We remark that in the case of non-compact surfaces,

the set of singularities also includes the ideal boundary of S, a feature that is not

present for compact surfaces. As such, in some cases, saddle connections may be

arbitrarily long, even of infinite length. By the Poincaré recurrence theorem, the set
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of saddle connections on a flat surface of finite area has zero measure.

We denote the set of saddle connections of an Abelian differential on a surface

S by SC(S, α). The horizontal or vertical foliations of an abelian differential are

periodic if all but perhaps the singular leaves are closed. In such case, by considering

S\SC(S, α), the surface decomposes into a union of cylinders bounded by saddle

connections and each cylinder is foliated by homotopically-equivalent closed leaves

of the foliation. It may be possible for a surface S\SC(S, α) to decompose as the

disjoint union of periodic components (cylinders), and minimal components.

In this chapter we deal with flat surfaces of infinite genus and finite area. For

such surfaces the set of singularities Σ not only consists of finite-angle singularities

as in the compact case, but in addition of singularities of infinite angle. This will

be of no consequence in the present analysis. Examples of such surfaces are found

in section 3.3. These surfaces also carry a translation structure just as in the finite

genus case and therefore a (singular) flat metric given by an Abelian differential α.

The requirement that the surface have finite area is equivalent to the requirement

that the norm of the Abelian differential, ‖α‖ =
∫
S
|α|2 ωα, is finite.

The vector fields X and Y of norm 1 which, respectively, are tangent to the

foliations Fh,v, commute and in addition have the following properties [16]:

1. {X, Y } is an orthonormal frame for the tangent bundle TS on S\Σ with

respect to the metric Rα.

2. X and Y preserve the smooth area form ωα, thus ηX ≡ ıXωα and ηY ≡ −ıY ωα

are closed, smooth 1-forms on S\Σ.
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3. ηX and ηY generate the measured foliations Fh,v on S\Σ.

The complex structure provided by the Abelian differential α also defines spaces of

functions compatible with the induced foliations and the vector fields X and Y . We

define

L2
α(S) =

{
u :

∫
S

|u|2 ωα ≡ ‖u‖2 <∞
}

(3.1)

to be the weighted L2 spaces of S. These spaces have a natural structure of Hilbert

spaces with inner product (·, ·)α defined as

(u, v)α ≡
∫
S

uv̄ ωα

which satisfies, by the invariance of the of ωα under X and Y ,

(Xu, v)α = −(u,Xv)α and (Y u, v)α = −(u, Y v)α. (3.2)

Define the s−norm to be

‖u‖2
s ≡

∑
i+j≤s

‖X iY ju‖2. (3.3)

Let Hs
α(S) be the completion of the set of smooth functions with finite ‖ · ‖s norm.

We denote by H−sα (S) the dual space of Hs
α(S). From the vector fields X and Y ,

we construct the Cauchy-Riemann operators

∂±α ≡ X ± iY, (3.4)

the kernels of which contain the meromorphic, respectively anti-meromorphic, func-

tions which are elements of L2
α(S). As shown in [16, Proposition 3.2], it follows from

(3.2) that (∂±α )∗ are extensions of −∂∓α . It follows by Hilbert space theory that we

have the orthogonal splitting

L2
α(S) = Range(∂±α )⊕⊥ Ker (∂∓α ). (3.5)
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Finally, the Dirichlet form Qα : H1
α(S)×H1

α(S)→ C is defined as

Qα(u, v) = (Xu,Xv)α + (Y u, Y v)α = (∂±α u, ∂
±
α v)α.

The Dirichlet norm of a function u is defined to be Qα(u) ≡ Qα(u, u).

3.1.2 SL(2,R) action

Let (S, α) denote a surface S with a complex structure given by an Abelian

differential α. There is a well-defined action of the group SL(2,R) on (S, α). For

A ∈ SL(2,R), we define A ·(S, α) to be the surface (S, α) with charts post-composed

with the action of A on R2.

The stabilizer of this action is denoted by Stab(S, α) and its image in PSL(2,R)

is called the Veech group of (S, α). It is usually denoted by SL(S, α) or Aff (S, α)

since it coincides with the group of derivatives of affine diffeomorphisms (with re-

spect to α) of S. In other words, if r ∈ SL(S, α), then there exists a unique affine

diffeomorphism fr with constant derivative Dfr such that the action of Dfr on the

complex structure of (S, α) coincides with that of r. Such diffeomorphisms will be

called Teichmüller maps.

When S is compact, the Veech group SL(S, α) is always a discrete subgroup

and, when SL(S, α) is a lattice, (S, α) is called a Veech surface. Usually one expects

the Veech group of a surface to be trivial. Thus, surfaces with non-trivial Veech

groups turn out to be quite interesting (and are hard to find). The SL(2,R)-orbit

of (S, α), denoted by D(S,α), is isometric to the unit tangent bundle of the Poincaré

disk H, and is called the Teichmüller disk of (S, α). The Veech group SL(S, α) acts
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on D(S,α) by isometries of the hyperbolic metric. The quotient of the Teichmüller

disk of (S, α) by its Veech group is denoted by

H(S,α) ≡ H/SL(S, α),

where H = SL(2,R)/SO(2,R). The projection map will be denoted by

Π(S,α) : D(S,α) → H(S,α).

The disk H(S,α) has finite area if, and only if, (S, α) is a Veech surface. However, if

(S, α) is compact, H(S,α) is never compact. It is not known whether there exists a

flat surface of finite area and infinite genus whose Veech group is not discrete.

It is natural to talk about elliptic, parabolic, and hyperbolic elements of SL(2,R)

corresponding, respectively, to elements with zero, one, and two distinct real eigen-

values. Elliptic elements are conjugate to the elements of the subgroup SO(2,R)

while parabolic elements are, in a conveniently-rotated coordinate system, of the

form

ht =

 1 t

0 1

 and hs =

 1 0

s 1


for s, t ∈ R. Parabolic elements generate both parabolic elements and hyperbolic

elements. Associated to every parabolic element there corresponds a unique invari-

ant direction corresponding to its eigenvector and we say that the parabolic element

fixes this direction. Any direction invariant by a hyperbolic element is also said to

be fixed by it.
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The diagonal subgroup

gt ≡

〈 e−t 0

0 et

 : t ∈ R

〉

is an important subgroup of SL(2,R). Its action on the Teichmüller disk of a flat

surface is called the Teichmüller geodesic flow since it minimizes distances between

two points in the Teichmüller disk of a flat surface. Its action on the complex

structure of (S, α) is also referred to as Teichmüller deformation.

3.2 Ergodicity

Recall that the complex structure of any translation surface is given by an

Abelian differential α which defines a commuting pair of vector fields X and Y of

norm 1. Let

∂±t ≡ etX ± ie−tY = Xt ± iYt (3.6)

be the one-parameter family of Cauchy-Riemann operators defined for the complex

structure given by the Abelian differential

αt = e−t<(α) + iet=(α).

In other words, one can think of the operators ∂±t as the Cauchy-Riemann operators

of the surface gt · (S, α) = (S, αt). To be consistent with the notation of (3.4), we

make the identification ∂±t ≡ ∂±αt .

Note that the volume form ωαt given by αt is invariant, i.e., ωαt = ωα for all t,

and thus the Hilbert space of square integrable functions with respect to ωαt is the
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same for all t (and so are all derived Sobolev spaces Hs
αt(S)). There is, however, a

one-parameter splitting of L2
α as in (3.5):

L2
α(S) = Range(∂±t )⊕⊥t Ker (∂∓t ). (3.7)

Thus, for any function u ∈ L2(S) and for any t ∈ R there exist functions v±t ∈ H1
α(S),

meromorphic functions m−t and anti-meromorphic functions m+
t such that

u = ∂+
t v

+
t +m−t = ∂−t v

−
t +m+

t . (3.8)

If the surface is compact, the spaces Ker (∂±t ) are finite dimensional by the Riemann-

Roch theorem. For surfaces of infinite genus this is not the case necessarily, but this

fact is irrelevant in the discussion.

If we chose each v±t to have zero average, then the one parameter families v±t

are smooth. So we will assume this without loss of generality. Finally, it is easy to

verify that

∂±t f = ∂∓t f̄ . (3.9)

Remark 1. As remarked in [10, Proposition 2.5], since our surfaces have finite area,

by [38, Lemma 1.8], the horizontal and vertical foliations are minimal if there are

no saddle connections, since that result only depends on the finiteness of area. It

also follows from the proof of [38, Lemma 1.8] that the trajectory of a point which

is not contained in a saddle connection is dense in an open subset, i.e., its minimal

component has non-empty interior and therefore has positive measure.

To address the issue of ergodicity of the flows (or foliations) generated by

X and Y , we are interested in studying functions which are X-invariant (or Y -

invariant). Note that if u ∈ L2(S) is an X-invariant function, i.e., Xu = 0, by
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considering its real part we can study X-invariant functions while assuming they are

real valued. We also assume that if u ∈ L2 is a real-valued, invariant function, then

u ∈ L∞. Indeed, for any invariant u, the set Ar ≡ {x ∈ S : |u(x)| > r} is invariant

for any r, so for our purposes we can work with the function u′ = χS\Aru+ χAr for

some r, which implies ‖u′‖∞ <∞.

Lemma 3. Let u be a zero-average, real-valued, X-invariant function on a flat

surface of finite area. Then, writing u as in (3.8), we have that v+
t (and thus v−t ) is

purely imaginary and that

v+
t = v−t (3.10)

m+
t = m−t . (3.11)

Proof. By applying ∂±t to the decomposition (3.8) we obtain that

4tv
+
t = (∂−t )2v−t + ∂−t m

+
t

4tv
−
t = (∂+

t )2v+
t + ∂+

t m
−
t

(3.12)

in H−1
α (S), where4t = ∂±t ∂

∓
t is the Laplacian with respect to the complex structure

given by αt. Since Xt = 1
2
(∂+
t + ∂−t ), then Xu = 0 implies, by (3.8),

(∂+
t )2v+

t + ∂+
t m

−
t +4tv

+
t = 0 and (∂−t )2v−t + ∂−t m

+
t +4tv

−
t = 0. (3.13)

Putting (3.12) and (3.13) together,

4tv
+
t − ∂−t m+

t = −4tv
−
t − ∂−t m+

t ,

which implies 4t(v
+
t + v−t ) = 0. In other words, δvt ≡ v+

t + v−t ∈ H1
α(S) is a

harmonic function. Moreover, since v±t ∈ H1
α(S), Qα(δvt) = −(∂±t δvt, ∂

±
t δvt) = 0,
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i.e., the Dirichlet norm of δvt is zero. Since the kernel of Qα consists of constant

functions and v±t can be chosen to be of zero average (without loss of generality),

v+
t = −v−t . (3.14)

Since u is real-valued, using (3.8) and (3.9),

u = ∂+
t v

+
t +m−t = ∂−t v

−
t +m+

t = ∂+
t v̄
−
t +m+

t = ū,

which, by (3.7), m+
t = m−t . From the equation above and the fact that v+

t = −v−t it

also follows that <(v+
t ) ∈ Ker(∂+

t ). Using the same equation above and (3.9) again,

it follows that <(v−t ) ∈ Ker(∂−t ). Since <(v+
t ) = −<(v−t ) ∈ Ker(∂+

t ) ∩ Ker(∂−t ),

<(v±t ) is constant and, since v±t has zero average, it vanishes.

Given these relations, we can compute the evolution of the norm of m±t .

Lemma 4. Under the splitting (3.8) for a real-valued, X-invariant function u on a

flat surface of finite area, the evolution of the norm of m±t is described by

d

dt
‖m±t ‖2 = 4‖=(m+

t )‖2.

Proof. We first note that d
dt
∂±t = ∂∓t . We perform the calculation m+

t ; the case for

m−t is essentially the same.

1

2

d

dt
‖m+

t ‖2 = Re

(
d

dt
m+
t ,m

+
t

)
= Re

(
d

dt
(u− ∂−t v−t ),m+

t

)
= −Re

(
d

dt
∂−t v

−
t ,m

+
t

)
= −Re

(
∂+
t v
−
t − ∂−t v̇−t ,m+

t

)
= Re (∂+

t v
+
t ,m

+
t ) = Re (u−m−t ,m+

t )

= ‖m+
t ‖2 − Re

∫
S

(m+
t )2 ωα = 2‖=(m+

t )‖2.
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Definition 5. The gt orbit of (S, α) is recurrent if for any ε > 0 there is an sε ∈ R+

and an element r ∈ SL(S, α) such that the distance between gsε · (S, α) and r · (S, α)

is less than ε.

This definition gives the usual definition, from the point of view of topological

dynamics, of a recurrent orbit on H(S,α). We use this definition since it will be more

useful in the proof of ergodicity.

Remark 2. If (S, α) is gt-recurrent, then for any sequence of εi → 0 there is a

sequence of angles θi and times ti → ∞ such that the distance between gti · (S, α)

and gtirθi(S, α) is less than εi and gtirθi ∈ SL(S, α). As such, it follows that rθi → Id,

i.e., θi → 0. Indeed, since the SL(2,R) orbit of (S, α) isometric to the unit tangent

bundle of the Poincaré disk, i.e., a simply connected surface with constant sectional

curvature κ = −4, it follows from the hyperbolic law of sines that

| sin(θi)| ≤
sinh(εi)

sinh(2ti)
.

Moreover, since gtirθi ∈ SL(S, α), there exists a sequence of affine diffeomorphisms

fi such that gtirθi = Dfi ∈ SL(S, α).

For a flat surface (S, α) with a recurrent gt orbit, we will call a sequence of

quadruples

{(ti, θi, εi, fi)}∞i=1 ∈ (R+ × S1 × R+ × SL(S, α))N

as in the above remark the recurrent data of (S, α). We can assume without loss of

generality that εi+1 < εi for all i.
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Lemma 5. Let (S, α) be a flat surface of finite area whose gt-orbit is recurrent.

Then no component of S\SC(S, α) is a cylinder.

Proof. Suppose there is a component C ⊂ S\SC(S, α) which is a cylinder. Let wC

and AC be the waisturve and area of C, respectively. The Teichmüller maps fi ∈

SL(S, α) in the recurrent data are affine and therefore take cylinders to cylinders.

Define C0 = C and Ci = f−1
i (C) for i > 0. By applying the Teichmüller deformation

gti and the Teichmüller map f−1
i we see that the length wCi of the waistcurve of

cylinder Ci is e−tiwC . Note that the angle θi between the waistcurves of C and Ci

satisfies sin(θi) ≤ sinh(εi)/ sinh(2ti). By passing to the appropriate subsequences,

we can control how fast the length of the waistcurves of the Ci diminish as well as

how small the angle is between waistcurves.

We claim that ωα(Ci ∩ Cj) = 0 for all i 6= j. Indeed, let us consider C1.

Since the waistcurve of C1 is exponentially smaller than that of C and the angle

between the two foliations exponentially small (as remarked above, this can be done

by passing to a subsequence if necessary), it follows that the trajectories foliating

C1 cannot close up if ωα(C ∩ C1) 6= 0. By the same token, ωα(C ∩ C2) = 0 and for

the same reasons in fact ωα(C1 ∩ C2) = 0. Considering this for any i, we have that

ωα(Ci ∩Cj) = 0 for all j < i. But if these cylinders do not overlap and their area is

the same since the Teichmüller maps preserve area, it is impossible to fit them all

in S since the total area is finite. It therefore follows that there is no component

which is a cylinder.

Lemma 6. Let (S, α) be a flat surface of finite area whose gt orbit is recurrent and
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u ∈ L2
α(S) be a real-valued, X-invariant function. Then there is a sequence of times

{ti} and a sequence of affine diffeomorphisms {fi} ⊂ SL(S, α) such that the family

of functions F = {(f−1
i )∗m+

ti}
∞
i=0, where m+

t is the αt-meromorphic part of u as in

(3.8), is a normal family on S\Σ.

Proof. Since gt(S, α) is recurrent, it follows that for the compact set

K(S,α) =
⋃
θ∈S1

t∈[0,ε1]

gtrθ(S, α)

in the Teichmüller disk of (S, α), we have Π(S,α)(gti(S, α)) ∈ Π(S,α)(K(S,α)). As

such, for each i there exists a ϕi ∈ S1 such that the function Fi ≡ (f−1
i )∗m+

ti is

meromorphic on gεirϕi(S, α).

Let K ⊂ S\Σ be a compact set. Since every point in the compact set K(S,α)

represents a deformation of the conformal structure of S, the quantity

δK ≡ min d(K,Σ),

where the minimum is taken over conformal deformations of S corresponding to

points in K(S,α) and the distance d is taken with respect to α, is well defined. Since

K(S,α) is a compact family of deformations, it follows from the Cauchy integral

formula (see for example [24, Theorem 1.2.4]) that for any neighborhood K ′ of K

in S\Σ there exists a constant MK′ such that for all Fi we have that

|Fi(z)| ≤MK′‖Fi‖L1
α(K′) ≤MK′‖Fi‖ ≤MK′‖u‖

for any z ∈ K and therefore the functions in F are uniformly bounded on K.
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Let p ∈ K and consider a disk Di of radius δK/2 in the conformal structure

given by gεirϕi(S, α) centered at p. It follows by the Cauchy integral formula that

|Fi(z1)− Fi(z2)| ≤ 16MK‖u‖
δK

|z1 − z2| (3.15)

for any two points z1, z2 in a disk D∗i of radius δK/4 in the conformal structure

given by gεirϕi(S, α) centered at p. Let DK(p) be a disk of radius e−ε1δK/4 in the

conformal structure of (S, α). Then DK(p) ⊂ D∗i for all i. Therefore, by (3.15),

F is equicontinuous in DK(p) and thus on K since K can be covered by finitely

many disks of radius e−ε1δK/4. The statement then follows from the Arzela-Ascoli

theorem.

Since the norm of m±t is always bounded, i.e., 0 ≤ ‖m±t ‖ ≤ ‖u‖, then certainly

lim inf
d

dt
‖m±t ‖2 = lim inf ‖=(m±t )‖2 = 0

by Lemma 4. It will be crucial that along our the sequence of recurrent times

d
dt
‖m±ti‖

2 = 4‖=(m±ti)‖
2 → 0. The following lemma shows that we can always find a

sequence of recurrent times for which this is possible.

Lemma 7. Let u = ∂±t v
±
t + m∓t be a real-valued, X-invariant function on a flat

surface of finite area (S, α) whose gt orbit is recurrent. Then there is a sequence

{ti} of recurrent times as in Remark 2 such that ‖=(m±ti)‖ −→ 0 as ti −→∞.

Proof. By Remark 2 we have recurrent data {εi, ti, θi} such that dist(gti , gtirθi) ≤

εi → 0. If our sequence has the desired property, we are done. Otherwise suppose

there is a subsequence tij , j ∈ N, and a number δ > 0 such that ‖=(m±tij )‖ ≥ δ for

all j.
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Since 4‖=(m±t )‖2 = d
dt
‖m±t ‖2 is continuous and ‖m±t ‖2 bounded, there exists

a sequence τn →∞ and a further subsequence tijn , such that

|τn − tijn | ≤
1√
n

and ‖=(m±τn)‖2 <
1√
n
.

Then

dist(gτn , gtijn rθijn ) ≤ dist(gτn , gtijn ) + dist(gtijn , gtijn rθijn )

≤ 1√
n

+ εijn ≡ ε̂n −→ 0.

Since gtirθi ∈ SL(S, α) for all i, gτi is another sequence of recurrent times with the

desired property.

Lemma 8. Let (S, α) be flat surface of finite area with a recurrent gt orbit and

recurrent data {(ti, θi, εi, fi)}∞i=1. Then

f ∗i ∂
±
0 =

1

cos θi

[
∂±ti f

∗
i − f ∗i (e2tiY ∓ ie−2tiX) sin θi

]
. (3.16)

Moreover it follows that if u = ∂−t v
−
t +m+

t is a real, X-invariant function, then

∂+
0

(
(f−1
i )∗m+

ti

)
−→ 0

weakly.

Proof. Let ζ ∈ H1(S). We will now drop the indices for a while to avoid tedious

notation and work under the assumption that t is large and ε, θ are small. Since we

know exactly how the derivative of f acts, we have

∂±t f
∗ζ = f ∗

[
cos θ∂±0 + (e2tY ± ie−2tX) sin θ

]
ζ,
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from which (3.16) follows. Using this:

((f−1)∗m+
t , ∂

−
0 ζ) = (m+

t , f
∗∂−0 ζ)

= sec θ(m+
t , ∂

−
t f
∗ζ − sin θf ∗(e2tY + ie−2tX)ζ)

= − sec θ(m+
t , sin θf

∗(e2tY + ie−2tX)ζ).

Using the estimate from Remark 2:

|((f−1)∗m+
t , ∂

−
0 ζ)| = e2t| sin θ||((f−1)∗m+

t , (Y + ie−4tX)ζ)| sec θ

≤ sinh(ε)

sinh(2t)
e2t|((f−1)∗m+

t , (Y + ie−4tX)ζ)| sec θ

≤ sinh(ε)‖m+
t ‖‖ζ‖1

≤ sinh(ε)‖u‖‖ζ‖1.

Since εi → 0, the claim follows.

From Lemmas 4, 7, and 8, we can get the following crucial result.

Proposition 2. Let (S, α) be a flat surface of finite area which is gt-recurrent and

u ∈ L2
α(S) a real valued, X-invariant function of zero average. Then there exists a

sequence ti →∞ such that f ∗i m
+
ti ⇀ 0 weakly, where m+

t is the meromorphic part of

u as in (3.8), and fi ∈ SL(S, α) are Teichmüller maps associated to the recurrent

data of (S, α).

Proof. Let u be a real-valued, X-invariant function of zero average. Writing it as in

(3.8),

u = ∂+
t v

+
t +m−t = ∂−t v

−
t +m+

t .
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Note that the norm ‖m±t ‖ is always bounded by the norm of u and by Lemma 4 is

a non-decreasing function of t. Let {ci} ≡
{

(f−1
i )∗m+

ti

}
for i ∈ N be a sequence of

functions on (S, α0), where the fi are as in Remark 2. Since
∥∥(f−1

i )∗m+
ti

∥∥ = ‖m+
ti‖ ≤

‖u‖ for all i, the sequence {ci} is bounded. Therefore, there exists a function m+
∗

and weakly convergent subsequence {cij} such that (f−1
ij

)∗m+
tij
⇀ m+

∗ .

We can assume, by Lemma 7, that (since f ∗i is unitary)

‖=
(
(f−1
i )∗m+

ti

)
‖ −→ 0 (3.17)

as i → ∞. By Lemma 8, m+
∗ is meromorphic and by (3.17) it has zero imaginary

part and thus it is a constant. Since u has zero average,
∫
S
mt ωα = 0 for all t. It

follows from this that ∫
S

(f−1
i )∗m+

ti
ωα = 0

for all i since the Jacobian of fi is identically 1 for all i. Thus, since m+
∗ is a constant

of zero average, it is identically zero.

Proposition 3. Let (S, α) be a flat surface of finite area whose gt orbit is recurrent.

Then the translation flow is ergodic.

Proof. Let u be a real-valued, X-invariant function of zero average. Writing it as in

(3.8),

u = ∂+
t v

+
t +m−t = ∂−t v

−
t +m+

t .

Consider an exhaustion K0 ⊂ K1 ⊂ K2 ⊂ · · · of S\Σ =
⋃
Kn by compact

sets Kn such that ωα(Kn) ≥ 1 − 1
n

and consider the sequences of functions F n
k =

(f−1
nk

)∗mtnk
which, by Lemma 6, converge uniformly on Kn. By Proposition 2, for
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each n, F n
k → 0 uniformly as k →∞ on Kn. Therefore, for every n and δ > 0, there

exists an Nδ such that

‖(f−1
nk

)∗m+
tnk
‖L∞α (Kn) < δ (3.18)

for all k > Nδ. Equivalently,

Bn,k ≡ ‖m+
tnk
‖L∞α (fnk (Kn)) < δ.

Now let ε > 0 and choose n big enough so that ωα(S\Kn) < ε. Then

‖m+
tnk
‖2 =

∫
Kn

(f−1
nk

)∗(m+
tnk
u)ωα +

∫
S\Kn

(f−1
nk

)∗(m+
tnk
u)ωα

=

∫
fnk (Kn)

m+
tnk
uωα +

∫
fnk (S\Kn)

m+
tnk
uωα

≤ Bn,k‖u‖L1
α(Kn) + ‖u‖∞

∫
fnk (S\Kn)

|m+
tnk
|ωα

≤ ε‖u‖L1
α(Kn) + ωα(S\Kn)

1
2‖m+

tnk
‖‖u‖∞

≤
√
ε(
√
ε+ ‖u‖∞)‖u‖

for k > Nε as in (3.18). This implies that ‖m+
t ‖ can be arbitrarily small for arbi-

trarily large values of t. It follows by Lemma 4 that m+
t ≡ 0 for all t. Moreover

we have u = ∂±t v
±
t for some v±t ∈ H1

α(S). Since u is real and, by Lemma 3, v±t

imaginary, u = ∂±t v
±
t = Xtv

±
t ± iYtv±t implies that v±t is X-invariant.

For a point p ∈ S\Σ and w, h > 0, a (w, h)-rectangle for p is defined as

Kp(w, h) =
⋃

s∈(−w,w)
t∈(−h,h)

ϕXs ◦ ϕYt (p),

where ϕX,Y are the respective flows generated by X and Y . It is well defined for

any p ∈ S\Σ if w and h are chosen small enough. Since v±t is X-invariant, its

restriction to any (w, h)-rectangle Kp(w, h) for some point p is a function of one
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variable, namely, the Y -coordinate. Thus by the Sobolev embedding theorem we

have that since v±t ∈ H1
α(Kp(w, h)), v±t is a continuous function on Kp(w, h).

Let {Kpi(wi, hi)}i∈N be an open cover of S\Σ. By the Sobolev embedding

theorem v±t is continuous on each Kpi(wi, hi), and so it is continuous on S. If there

are no saddle connections, by Remark 1, the flow ϕXt is minimal. Since v±t is X-

invariant and continuous, and ϕXt minimal, v±t is constant and thus u = 0 and we

conclude that the flow is ergodic.

Otherwise suppose that there is at least one saddle connection and thus we

cannot guarantee minimality. By Lemma 5, there is no periodic component and

S\SC(S, α) decomposes into countably many minimal components of positive area

(see Remark 1). Since v±t is a continuous function on S which is constant on count-

ably many components, it assumes countably many values. So v±t is constant and

u = 0.

We can now prove the main result.

Proof of Theorem 4. If the gt orbit of the flat surface (S, α) is recurrent, then the

theorem is proved by Proposition 3. Therefore it remains to prove the theorem for

flat surfaces who are not recurrent but nonetheless have a limit point ` in a compact

set Λ ⊂ H(S,α).

Consider a fundamental domain Λ̂ of the action of SL(S, α) on SL(2,R)/SO(2,R),

let ˆ̀ be the point on this domain which projects to `: ` = Π(S,α)(ˆ̀) and consider

S ∈ Λ̂ representing (S, α). There exist numbers s, t ∈ R such that htgsS = ˆ̀.

Consider the flat surface htgs(S, α). It has the following properties:
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1. It is in the stable horocycle of the gT orbit of (S, α). Therefore, the distance on

SL(2,R)/SL(S, α) between gT (S, α) and gTh
tgs(S, α) goes to zero as T →∞

since SL(S, α) acts by isometries.

2. The horizontal foliation of (S, α) and that of htgs(S, α) are the same. This

follows from the fact that gs and ht parametrize the stable horocycle of any

point in SL(2,R), meaning that the horizontal foliation of any point in the

stable horocycle limits to the same projective horizontal foliation under the

geodesic (Teichmüller) flow.

It follows from property (i) above that the gT orbit of htgs(S, α) is recurrent. Indeed,

since there is a sequence of times {Ti}∞0 such that gTi → ` and gTh
tgs is asymptotic

to gT as T → ∞, it follows that htgs(S, α) has a recurrent gT orbit. Therefore,

by Proposition 3, the horizontal foliation of htgs(S, α) is ergodic. Moreover, by

property (ii) above, the horizontal foliation of htgs(S, α) is the same as that of

(S, α). Therefore, since it is ergodic for htgs(S, α), it is ergodic for (S, α).

Definition 6. The gt orbit of (S, α) is periodic if there exists an s such that gs ∈

SL(S, α). The number s is the period of (S, α).

Suppose (S, α) is gt periodic with period T . Then there exists a unique affine

diffeomorphism f : S → S such that Df can be identified with r ≡ gT ∈ SL(S, α).

Any periodic orbit gt(S, α) is obviously recurrent and thus by Theorem 4 has an

ergodic horizontal foliation. By considering the orbit g−trπ/2(S, α) for t ≥ 0 and

(3.16), then the same theorem gives us the ergodicity of the vertical foliation.
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Corollary 1. Let (S, α) be a flat surface of infinite genus and finite area which is

gt-periodic. Then the flows generated by X and Y on S are ergodic.

3.2.1 The Veech dichotomy

Veech [42] was the first to notice that if the group of affine automorphisms of

a surface (now known as the Veech group) is big enough, then the translation flow

on it is reminiscent to the case on the flat torus: it is either completely periodic

or uniquely ergodic. This dichotomy is referred to as the Veech dichotomy. More

specifically, for a Veech surface, that is, for a closed flat surface of finite genus for

which SL(S, α) is a lattice in SL(2,R), this dichotomy holds.

A modern proof of the Veech dichotomy hardly relies on the fact that it is

coming from a surface of finite genus. It does, however, depend on the size of the

singular set Σ ⊂ S. Suppose that the Veech group of a flat surface of infinite genus

and finite area (S, α) is a lattice and that |Σ| < ∞. If the gt orbit does not leave

every compact set of SL(2,R)/SL(S, α), the horizontal foliation of (S, α) is ergodic

by Theorem 4.

If the gt orbit leaves every compact subset of H(S,α), then gt(S, α) limits to

a cusp of H(S,α) and, therefore (see [26, §1.3-1.4]), the horizontal foliation of (S, α)

is preserved by a parabolic element of h ∈ SL(S, α). We claim that, in this case,

all singular leaves are saddle connections. Indeed, suppose there is a singular leaf

l which is not a saddle connection. Then it is dense in a minimal component A of

positive measure (see Remark 1). No power Hk of the parabolic automorphism H
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(with DH = h) which preserves the horizontal direction sends l to itself as it would

otherwise restrict to the identity on the minimal component of positive area on which

this leaf is dense, contradicting the fact that the automorphism H is parabolic. By

the same token, no power of H sends A to itself. But if H i(A) ∩Hj(A) = ∅ for all

i 6= j (since A is a minimal component), ωα(A) > 0 and H preserves ωα, l cannot

be dense in an open set since the area of (S, α) is finite. Therefore l is a saddle

connection. The fact that regular leaves are closed follows from [26, Lemma 4].

Therefore we have a weak Veech dichotomy.

Theorem (Weak Veech dichotomy). Let (S, α) be a flat surface of finite area whose

Veech group is a lattice. Then the horizontal foliation is either ergodic or completely

periodic.

The requirement that the singular set be finite is not unusual for flat surfaces

with non-trivial Veech groups. Indeed, as far as we know, all known infinite genus

flat surfaces of finite area whose Veech group is non-trivial have finitely many singu-

larities. These examples will be discussed in the next section. It is not clear whether

the assumption on |Σ| can be dropped while retaining the conclusion of the theorem.

More importantly, it is unknown whether there exist infinite genus flat surfaces of

finite area whose Veech group is a lattice.

3.3 Applications

In this section we go over examples of flat surfaces of infinite genus and finite

area to which Theorem 4 applies. The first is a family of surfaces constructed by
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Figure 3.1: Construction of the surface Sp.

Chamanara. The second example is the Arnoux-Bowman-Yoccoz surface, whose

Veech group contains no parabolic elements and whose Teichmüller orbit has only

one periodic orbit. The third example is an application to a construction of Hooper

which produces flat surfaces of infinite genus out of infinite graphs. We conclude

the chapter with a discussion of “staircase” surfaces of finite area.

3.3.1 Chamanara’s surface

The infinite genus surface introduced in [9] is constructed as follows (see Figure

3.1). Let S = ABA′C be a square centered at the origin in C such that its sides

have length one and the diagonal BC is on the real line. Set B0 = B and C0 = C.

For i ≥ 1 define Bi (respectively B−i, Ci and C−i) to be the point on the interval BA

(respectively BA′, CA and CA′) such that the length of ABi (respectively A′B−i,

ACi, and A′C−i) is pi for some 0 < p < 1. The sides BiBi+1 and C−(i+1)C−i are
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identified by a translation. This identifies all the points of the form B2k+1 and C2k

and the points of the form B2k and C2k+1. We denote the identification map by Qp.

The resulting surface obtained from the above is denoted by Sp = Qp(S) and it is

clear that it is a flat surface of finite area. It is shown in [9, Proposition 9] that it is

an infinite genus surface with one end. It is also easy to see that it is the geometric

limit of finite genus surfaces: let Sn be the subset of S bounded from above by

CnBn and below by C−nB−n. Then for each n, Snp = Qp(S) is a translation surface

of genus n with two singularities of order n− 1. Then limiting surface Snp −→ Sp is

our infinite genus surface with singularities of infinite order.

For any n, let λnp be the direction of the line joining C to Bn on Sp. We denote

by (Sp, α
n
p ) the flat surface Sp with an Abelian differential with horizontal foliation

in the direction of λnp . We present now the main properties of the surface Sp and its

Veech group SL(Sp, αp) from [9].

Theorem. Let Sp be the flat surface constructed as above. Then

• Sp is a Riemann surface of the first kind.

• For any rational number p ∈ (0, 1) and n ∈ Z there is a cyclic subgroup of

SL(Sp, α
n
p ) consisting of parabolic automorphisms in SL(Sp, α

n
p ) with invariant

direction λnp .

• For any direction λ that makes an angle of more than π
4

with the horizontal

direction there is no parabolic automorphism of Sp with invariant direction λ.

• SL(Sp, αp) is a Fuchsian group of the second kind and thus H(Sp,αp) has infinite
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hyperbolic area.

• When p = 1/n, H(S1/n,α1/n) is a surface of genus zero with two cusps and one

hole such that the length of the closed geodesic representing the homotopy class

of the hole is lnn.

• If p is rational and not of the form 1/n then H(Sp,αp) has infinitely many cusps.

By the theorem above, since H(Sp,αp) has infinite volume, it is hard to find

recurrent directions. It seems that there is not much known about directions with

slope greater than π
4
. However, directions which are fixed by hyperbolic elements

which are products of parabolic elements of SL(Sp, αp) give periodic gt orbits and

thus to these directions we can apply Proposition 1. Thus we have the following

new result.

Theorem 6. For rational p ∈ (0, 1) there is a countably infinite set Dp of directions

for which the translation flow on Sp is ergodic, given by the periodic and recurrent

directions of hyperbolic elements of SL(Sp, αp).

3.3.2 The Arnoux-Bowman-Yoccoz surface

In the early 80’s, Arnoux and Yoccoz [1] constructed a family of flat surfaces,

one of every genus g ≥ 3. These served as examples of surfaces carrying pseudo

Anosov maps, which where not well understood as the theory was still in its infancy.

It was eventually shown that the Veech groups of these surfaces are quite peculiar:

they do not contain parabolic elements [25]. One usually expects that if the Veech
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group of a flat surface has an infinite subgroup of hyperbolic automorphisms, then

it is generated by parabolic elements. For the Arnoux-Yoccoz family of surfaces,

this was shown not to be the case.

The recent work of J. Bowman [7] has taken the geometric limit of this family

of surfaces as the genus goes to infinity. The limiting surface will be referred to as

the Arnoux-Bowman-Yoccoz surface, and it is depicted in Figure 3.2. This surface

has finite area and, much like its finite-genus “subsurfaces”, the Veech group of

this surface contains no parabolic elements. In fact Bowman showed that the Veech

group of this surface is isomorphic to Z×Z2, where the infinite subgroup is generated

by the map which expands the horizontal direction by a factor of 2 while contracting

the vertical by a factor of 1
2

(as shown in figure 3.2). Note that this direction gives

a gt periodic orbit of period log 2 and that the vertical foliation contains saddle

connections.

In [7], the ergodicity of the vertical and horizontal foliations is claimed without

proof. Here it follows from Theorem 4 and the description of the Veech group given

in [7].

Corollary 2. The vertical and horizontal foliations on the Arnoux-Bowman-Yoccoz

surface, as depicted in Figure 3.2, are ergodic.

It is not known whether these foliations are uniquely ergodic or not.
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Figure 3.2: The Arnoux-Bowman-Yoccoz surface. The lengths of the identified sides

are 1
2n

, where n is the index of the side.

3.3.3 Hooper’s Surfaces

Let S be a flat surface and C ⊂ S a cylinder. The modulus of C is the ratio

width
circumference

. The following terminology is from [23].

A cylinder decomposition C(θ) of S in a direction θ ∈ S1 is a description of S as

a union of cylinders with boundaries parallel to θ and disjoint interiors: S =
⋃
i∈I Ci.

A cylinder decomposition is twistable if there exists a positive constant κC(θ) such

that κC(θ)mi ∈ Z, where mi is the modulus of Ci. The existence of a twistable

cylinder decomposition implies the existence of a non-trivial parabolic element of

the Veech group of S, namely

MC(θ) = rθ ◦ hκC(θ) ◦ r−θ

or, if θ is parallel to the horizontal foliation of (S, α), then MC = hκC(θ) .

Suppose C(θ1) and D(θ2) are two twistable cylinder decompositions of S and

88



Figure 3.3: An infinite genus flat surface of finite area from Hooper’s construction.

The twistable cylinder decompositions are evident (from [23]).

let G be the group generated by MC(θ1) and MD(θ2). Define the collection of (C,D)-

renormalizable directions to be those elements of the set

Λ = {θ ∈ S1 : there exist c > 0 such that |Mθ| < c for infinitely many M ∈ G}

which

1. θ is not fixed by a parabolic element in the group G

2. θ is not the endpoint of an open interval in S1\Λ.

The main theorem in [23] concerning this chapter is the following.

Theorem. Let S be an infinite genus flat surface of finite area and θ1, θ2 ∈ S1

directions for which S admits twistable cylinder decompositions C(θ1) and D(θ2)

with θ1 6= ±θ2. Assume moreover that every Ci crosses at least two cylinders in D,

and vice-versa. Then the translation flow in every (C,D)-renormalizable direction

is uniquely ergodic.
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Suppose that for cylinder decompositions (C(θ1),D(θ2)), there is a cylinder

Ci such that it crosses only one cylinder of D. It is possible to overcome this

obstruction to apply the above theorem by subdividing Ci in two cylinders of equal

size and modulus to obtain a new cylinder decomposition Ĉ(θ1) with the desired

crossing properties. The price paid for this is that the the constant of the parabolic

automorphism which generates the set of renormalizable directions satisfies κĈ(θ1) =

2κC(θ1).

It is not hard to see that Hooper’s renormalizable directions correspond to

directions of foliations of gt-recurrent surfaces as in Definition 5. In many cases, the

set of directions of the translation flow which are uniquely ergodic as a consequence

of the above theorem is much smaller than the directions which are ergodic under

Theorem 4 since the renormalizable directions of Hooper’s theorem are generated

by smaller subgroups of the Veech group.

In [23], a generalization was given of a construction of Thurston in which one

starts from a connected, bipartite, ribbon graph and gets a translation surface with

a non-trivial Veech group containing hyperbolic elements. Hooper gave a general

way of constructing flat surfaces of infinite genus with large Veech groups containing

hyperbolic elements from infinite graphs (see Figure 3.3 for an example). Surfaces in

his constructions come automatically with twistable cylinder decompositions which

give renormalizable directions and infinitely many uniquely ergodic directions for the

translation flow when such a surface has finite area. Theorem 4 applies to surfaces

in Hooper’s construction and the set of directions for which the translation flow

is ergodic is larger than the set or directions for which it is uniquely ergodic as a
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Figure 3.4: The crunched staircase S+
1
2

constructed from rectangles of decreasing

sides. Parallel sides are identified in the obvious way.

consequence of the above theorem.

3.3.4 Staircases

Recently there has been a considerable amount of attention given to a type

of flat surface of infinite genus called infinite staircases. This flat surface of infinite

genus has infinite area. In this section, we consider finite-area versions of it. The

construction is as follows.

Let p = a/b ∈ (0, 1) ∩ Q, where gcd(a, b) = 1. Starting with the unit square,

we glue a rectangle of width p and height 1 to the right side of the square and

glue parallel sides. We now glue a rectangle R2 of width p and height p2 to our

starting rectangle by identifying the bottom edge of R2 to {(x, 1) : x ∈ [1, 1 + p]},

the top edge of R2 with {(0, x) : x ∈ (1, 1 + p)}, and the left and right edges of R2.
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Figure 3.5: The double cover Ŝ+
1
2

of the surface S+
1
2

in Figure 3.4.

The next step is to glue the rectangle R3 of width p3 and height p2 by identifying

the left edge of R3 with {(1 + p, y) : y ∈ [1, 1 + p2])}, the right edge of R3 with

{(1, y) : y ∈ [1, 1 + p2]}, and the top and bottom edges of R3. Carrying out this

construction by attaching infinitely many rectangles we obtain the surface S+
p of

infinite genus and finite area (see Figure 3.4).

The surface S+
p naturally decomposes into vertical and horizontal cylinders.

All but one of the vertical cylinders have modulus p
1+p2

while the one coming from

the unit square has modulus 1. All but one of the horizontal cylinders have modulus

p
1+p2

while one has modulus 1
1+p2

. From this it is not difficult to work out a non-

trivial subgroup of the Veech group of S+
p generated by twists in the vertical and

horizontal directions.

We can consider the surface Ŝ+
p which is a double cover of the surface S+

p .

Figure 3.5 illustrates the construction. In this case, it is easy to see that the Veech

group contains a subgroup of order two. This automorphism switches two cylinders

in Ŝ+
p covering the same cylinder in S+

p . The same is true for the surface Sp, given
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by a similar construction, and illustrated in Figure 3.6.

Consider the parabolic matrices

Φh(a, b) =

 1 a+ b

0 1

 and Φv(a, b) =

 1 0

a+ b 1

 ,
and consider the discrete subgroups of SL(2,R) generated by these matrices: G(a, b) =

〈Φh(a, b),Φv(a, b)〉 ⊂ SL(2,R). We summarize the results for the staircase surfaces

in the next proposition.

Proposition 4. For p = a/b ∈ (0, 1) ∩ Q, we have that G(a, b) ⊂ SL(S+
p ),

G(2a, 2b) ⊂ SL(Ŝ+
p ), and G(a, b) ⊂ SL(Sp). Therefore, by Theorem 4, there is

a countably infinite set of ergodic directions of the translation flow on S+
p .

Although G(a, b) is a subgroup of the Veech groups of both S+
p and Sp,

G(a, b) ⊂ SL(Sp) can also be generated by Φh(a, b) and an element of order 2.

Therefore the set of ergodic directions may differ for these two surfaces, although it

is not clear by how much. The proof of the Proposition above follows from the fact

that, by construction, these surfaces decompose into twistable cylinders. See [26]

for details.

Surfaces with “obvious” orthogonal cylinder decompositions, such as the stair-

case surfaces above and surfaces coming from Hooper’s construction, exhibit a high

degree of self similarity. They can be obtained as geometric limits: by means of

connected sums, one such surface is obtained by gluing onto a finite genus flat sur-

face a smaller version of itself. This construction preserves the twistable directions

and moduli of the cylinders. Therefore, each finite genus flat surface which limits
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Figure 3.6: The infinite staircase S 1
2
.

to an infinite genus flat surface of this kind has the same set of ergodic directions

for the translation flow which are generated by the same twists, as a consequence of

Theorem 4. This set of ergodic directions prevails in the infinite genus limit.
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Appendix A

Code for computing Lyapunov exponents for the Kontsevich-Zorich

cocycle for quadratic differentials

A.1 Description

The purpose of this piece of code is to compute the Lyapunov exponents for

the Kontsevich-Zorich cocycle. It is done through the Rauzy-Veech-Zorich cocycle

and writen for the case of quadratic differentials, but it should work for the case of

abelian differentials.

The code was writen on a linux machine and needs the g++ compiler and The

Numerical Recipes Library, which can be found at: http://www.nr.com/codefile.php?nr3

A.2 How the code works

First of all, I will assume the reader is familiar with the language of interval

exchange transformations, generalized permutations, flat surfaces, et cetera.

The code computes the Lyapunov exponents for the Kontsevich-Zorich cocycle

via its discrete version, the Rauzy-Veech-Zorich cocycle. In particular, we use the

Rauzy-Veech induction step for intereval exchange transformations with involution,

as introduced by Avila and Resende [2].

One should think of this as starting with a quadratic differential giving a non-
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orientable foliation on a flat surface. The dynamics of such surfaces are studied in

the ”non-orientable world” by generalized permutations (see Boissy and Lanneau’s

work [6]). Alternatively, one can also pass to an orienting double cover (and to

the ”orientable world”) whereon the foliation becomes orientable and study the

cocycle on this cover, which is what we do here, by putting together the languages

of generalized permutations and interval exchange transformation with involution.

Since the cocycle is non-uniformly hyperbolic (see the first part of this thesis), all

exponents are non-zero.

Since the cocycle is defined on the homology (or cohomology) bundle and

there is an involution on the surface, the bundles split into invariant and anti-

invariant sub-bundles corresponding to 1 or -1 eigenvalues of the induced action by

the involution. In the code we compute the entire cocycle and the cocycle restricted

to the anti-invariant sub-bundle, the difference of which gives the cocycle restricted

to the invariant sub-bundle. So we know which exponents come from the invariant

part and which from the anti-invariant part.

Instead of writing a formal and technical description of how to use the code,

we will illustrate with two examples, which is probably the best way to get you

started using the code. If you want to compute the exponents for some stratum,

you need to have an explicit generalized permutation which represents a surface in

that stratum. This you can do with Anton Zorich’s software (http://perso.univ-

rennes1.fr/anton.zorich/Software/software en.html).

Let’s take, for example, a surface in Q(2,−1,−1). A generalized permutation

for this is
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(1 2 2 3)

(3 4 4 1)

by going to the double cover, we ”lift” this generalized permutation to get to sub-

divided intervals. For this generalized permutation, the lifted interval looks like

1 4 4 3 . 1 2 2 3

where the dot (.) is called the ”marker” and it marks where the intervals on the

double cover split, i.e., it tells you how the information on the covering surface

corresponds to the information og the generalized permutation. After you do this,

rename the alphabet from 0 to D-1 (we start at zero to get used to the indexing

conventions used the code, forced by the indexing conventions of the syntax of C++).

So we get:

(*) 1 4 4 3 . 1 2 2 3

0 1 2 3 . 4 5 6 7

Now we need to get the involution vector, which really defines our interval

exchange transformation with involution. The involution vector for this example is

involution[0] = 4;

involution[1] = 2;

involution[2] = 1;

involution[3] = 7;

involution[4] = 0;

involution[5] = 6;

involution[6] = 5;

involution[7] = 3;

since we are pairing the indices of the alphabet of the top row of (*). This vector

can also be defined as
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involution = {4,2,1,7,0,6,5,3};

Finally we need to define the initial position of the marker, which in this case

is 4.

So, the information you need to compute the exponents for a stratum are:

• The involution vector defined on the double cover (which you can construct

as in the above examples).

• The initial position of the marker (which may change as the cocycle evolves)

• The size of the alphabet defining your generalized permutation (or interval

exchange transformation with involution). In the code, we call it D and is

defined globally at the begninning of the code (for the example above D = 8).

• The number of experiments you want to do per run as well as the number of

iterations of the cocycle you want to do per experiment.

The involution vector and initial marker position are defined in the constructor for

the IET class.

We close with another example to make sure we are clear. A representative

generalized permutation for a surface in Q(−1, 2, 3) is

1 1 2 3 2 4 5

3 4 6 5 6

so we get

6 5 6 4 3 . 1 1 2 3 2 4 5

0 1 2 3 4 . 5 6 7 8 9 10 11
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which gives the involution vector

invol = {2, 11, 0, 10, 8, 6, 5, 9, 4, 7, 3, 1};

so the starting data is

noRuns = 20;

D = 12;

marker = 5;

invol = {2, 11, 0, 10, 8, 6, 5, 9, 4, 7, 3, 1};

and this should compute the Lyapunov exponents for such stratum.

Be sure to add at the end of the code a routine which performs the QR-

factorization the way it is done in Numerical Recipes. In the code, the class

QRdcmp

is very much the same class as in Numerical Recipes and defined the same way. We

do will not write include the Numerical Recipes’ QR-decomposition routine here

since I am sure there is some sort of copyright issue.

Once you have changed the starting involution, D, marker, and number of

iterations of the Zorich cocycle, the number of experiments per run, and included

an QR-factorization function that works, save the file and compile making sure

to link to the appropriate libraries, such as the Numerical Recipes library if you

included their QR-decomposition routine.

The program starts with a random point and computes the Lyapunov expo-

nents of the cocycle starting at this random point. The program generates two files:

’dataP.dat’ and ’dataM.dat’ which is the data of the evolution of the Lyapunov ex-

ponents of the full cocycle and its restriction to the anti-invariant part, respectively.
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These you can plot using a program such as gnuplot. After the program runs, the

last chunk of the output should look something like

The average Lyapunov exponents, after 20 runs, are:

1 1

0.5836283714563749 0.2015752359502962

0.317831871467477 -inf

0.201687189307008 -0.001237484552094726

0.0002042856236410213 -0.2015938286117917

4.953772744522572e-05 -inf

-6.434889398229047e-05 -inf

-8.404635272592056e-05 -inf

-0.2015420824123736 -inf

-0.317868437665994 -inf

-0.5836091719808862 -inf

-1.000233168276001 -inf

the first column corresponds to the Lyapunov exponents, in decreasing order, of

the general cocycle while the second one to the restriction to the anti-invariant

sub-bundle (NOTE: I know there are some issues sometimes with the anti-invariant

cocycle, but for the most part you can still figure out which eigenvalues correspond

to which eigenspaces).

The WARNING messages come up when one is on the edge of moduli space:

this happens when the size of one of the intervals (or two since the involution pairs

up intervals) is much larger than the rest. When this happens one needs to perform

a large number of Rauzy-Veech induction steps before performing one step of Zorich

acceleration (in other words, the warning messages state that one has had the same

”type” for 50,000 or more iterations of Rauzy-Veech induction).
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NOTE: This should work for for the classical Rauzy-Veech induction for IETs

corresponding to abelian differentials. I have not checked this, but I see no reason

why it should not work.
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A.3 The code

#include <nr3.h>

#include <iostream>

#include <math.h>

#include <time.h>

#include <stdlib.h>

#include <stdio.h>

#include <iomanip>

#include <fstream>

#define noRuns 20 // # of experiments

#define iterations 50000 // Iterations of the cocycle per experiment

#define D 12 // Number of intervals on the top

using namespace std;

class IET { // This is our main object, our IET with involution

public:

IET(); // This is the constructor

double lambda[D]; // The lambda, i.e., vector defining the intervals

int invol[D]; // involution

int marker; // The marker is where the intervals split by lifting a generalized

// permutation to an IET with involution

int pi[D]; // The map from an alphabet on D = 2*d letters to the integers {0,...,D-1}

int piInv[D]; // The inverse of the map

double cocyclePlus[D][D]; // The Rauzy Veech cocycle matrix

double cocycleMinus[D][D]; // The Rauzy Veech cocycle matrix, restricted to the anti-invariant subspace

int type; // The type, either zero or one, depending on who’s the winner and who’s loser

int zorichStep; // This is one if the type has changed from the previous step of induction,

// zero if not

void induction(); // This updated all the values of this class which represents one

// iteration of Rauzy-Veech induction
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};

struct QRdcmp { // This is what does the QR factorization

Int n;

MatDoub qt, r;

Bool sing;

QRdcmp(MatDoub_IO &a);

};

int main(){

int d=D/2;

int count, zorichTime = 0;

ofstream dataPlus, dataMinus;

dataMinus.open("dataM.dat"); // names of files where the data is written to

dataPlus.open("dataP.dat");

dataPlus.precision(16);

dataMinus.precision(16);

cout.precision(16);

IET iet; // This initializes the object IET

double avgPlus[D], avgMinus[D], zeros = 0.0, etaPlus[D], etaMinus[D], TotalPlus[D], TotalMinus[D];

MatDoub oldQPlus(D,D,zeros), oldQMinus(D,D,zeros);

for(int i = 0; i < D; i ++){ // Starting up the cocycles

avgPlus[i] = avgMinus[i] = etaPlus[i] = etaMinus[i] = 0.0;

oldQPlus[i][i] = oldQMinus[i][i] = 1.0;

TotalPlus[i] = 0;

TotalMinus[i] = 0;

}

for(int run = 0; run < noRuns; run++){

for(int i = 1; zorichTime < iterations; i++){ // Loop for steps of Rauzy Veech induction,

// but stops after some definite Zorich

// steps have been taken

MatDoub TPlus(D,D,zeros), TMinus(D,D,zeros);

double TbarP[D][D], TbarM[D][D], rCheck[D][D];

iet.induction(); // COMPUTES THE NEW PERMUTATION AND NEW LAMBDA.

// i.e., A STEP OF RAUZY-VEECH INDUCTION
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zorichTime += iet.zorichStep; // Records a step of Zorich acceleration if

// the type has changed

for(int j = 0; j < D; j++){

for(int k = 0; k < D; k++){

for(int l = 0; l < D; l++){ // Define the matrices which will be decomposed

TPlus[j][k] += iet.cocyclePlus[j][l]*oldQPlus[l][k];

TMinus[j][k] += iet.cocycleMinus[j][l]*oldQMinus[l][k];

}

}

}

QRdcmp plusPart(TPlus), minusPart(TMinus); // Computes the QR decomposition of

// the matrix T defined as T = cocycle*oldQ

for(int j = 0; j < D; j++){ // Makes the new Q matrix the old one

for(int k = 0; k < D; k++){

oldQPlus[j][k] = plusPart.qt[k][j];

oldQMinus[j][k] = minusPart.qt[k][j];

}

}

for(int j = 0; j < D; j++){ // zorichTime^{th} step approximation of the jth Lyap. exponent

etaPlus[j] += log(fabs(plusPart.r[j][j])); // (you need to divide by time, i.e., zorichTime)

etaMinus[j] += log(fabs(minusPart.r[j][j]));

}

if(iet.zorichStep){ // We only record steps of Zorich acceleration,

// not steps of Rauzy-Veech induction

count = 0;

dataPlus << zorichTime << " ";

dataMinus << zorichTime << " ";

if((zorichTime%(iterations/2) == 0)){

cout<<(zorichTime*100/iterations)<<" percent done of run number "<<run+1<<" out of " << noRuns << endl;

}

for(int j = 0; j < D; j++){ // Writes out the normalized Lyapunov exponents to file

dataPlus << etaPlus[j]/etaPlus[0] << " ";

dataMinus << etaMinus[j]/etaPlus[0] << " ";

if(zorichTime > iterations/4){ // Keeps track of the exponents to calculate the
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avgPlus[j] += etaPlus[j]/etaPlus[0]; // average, but only does in the second half of

avgMinus[j] += etaMinus[j]/etaPlus[0]; // the trajectory

}

}

dataPlus << endl;

dataMinus << endl;

}

count++;

if(count == 50000){ cout << "Warning: we have been stuck on the edge for 50,000 iterations" << endl; }

if(count == 100000){ cout << "Warning: we have been stuck on the edge for 100,000 iterations" << endl; }

if(count == 500000){ cout << "Warning: we have been stuck on the edge for 500,000 iterations" << endl; } // Warnings

if(count == 1000000){ cout << "Warning: we have been stuck on the edge for 1,000,000 iterations" << endl; }

}

cout << endl << endl << "The average Lyapunov exponents for this run are:" << endl << endl;

for(int i = 0; i < D; i++){

cout << 4*avgPlus[i]/(3*iterations) << " " << 4*avgMinus[i]/(3*iterations) << endl;

}

for(int j = 0; j < D; j++){

TotalPlus[j] += 4*avgPlus[j]/(3*iterations);

TotalMinus[j] += 4*avgMinus[j]/(3*iterations);

for(int k = 0; k < D; k++){

oldQPlus[j][k] = 0.0;

oldQMinus[j][k] = 0.0;

}

}

for(int i = 0; i < D; i ++){ // Starting up the cocycles

avgPlus[i] = avgMinus[i] = etaPlus[i] = etaMinus[i] = 0.0;

oldQPlus[i][i] = oldQMinus[i][i] = 1.0;

}

zorichTime = 0;

}

cout << endl << endl << "The average Lyapunov exponents, after " << noRuns <<" runs, are:" << endl << endl;

for(int i = 0; i < D; i++){

cout << TotalPlus[i]/noRuns << " " << TotalMinus[i]/noRuns << endl;
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}

return 0;

}

IET::IET() {

for (int i = 0; i < D; i++){pi[i] = piInv[i] = i;}

// SETTING UP THE FIRST RANDOM INTERVAL

srand ( time(NULL) );

double intLength= 0.0;

type = 0;

double leftLength = 0.0, rightLength = 0.0;

int doubleLeft, doubleRight;

marker = 5;

invol = {2, 11, 0, 10, 8, 6, 5, 9, 4, 7, 3, 1};

// Get a double letter on each side

for(int i = 0; i < marker; i++){

if(pi[invol[piInv[i]]] < marker){doubleLeft = piInv[i]; break;}

}

for(int i = marker; i < D; i++){

if(pi[invol[piInv[i]]] >= marker){doubleRight = piInv[i]; break;}

}

// Assign lenghts to all letters except the double letters on each side

for(int i = 0; i < marker; i++){

if(piInv[i] != doubleLeft && invol[piInv[i]] != doubleLeft){

lambda[i] = lambda[invol[i]] = rand();

while(lambda[i] <= 0.0){ lambda[i] = lambda[invol[i]]= rand(); }

// (In case we get the length of an interval to be zero)

}

}

for(int i = marker; i < D; i++){

if(piInv[i] != doubleRight && invol[piInv[i]] != doubleRight){

lambda[i] = lambda[invol[i]] = rand();

while(lambda[i] <= 0.0){ lambda[i] = lambda[invol[i]]= rand(); }

}
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}

for(int i = 0; i < marker; i++){

leftLength += lambda[piInv[i]];

}

for(int i = marker; i < D; i++){

rightLength += lambda[piInv[i]];

}

if(leftLength > rightLength){

lambda[doubleLeft] = lambda[invol[doubleLeft]] = rand();

lambda[doubleRight] = lambda[invol[doubleRight]] = (leftLength + 2*lambda[doubleLeft] - rightLength)/2.0;

}

else{

lambda[doubleRight] = lambda[invol[doubleRight]] = rand();

lambda[doubleLeft] = lambda[invol[doubleLeft]] = (rightLength + 2*lambda[doubleRight] - leftLength)/2.0;

}

double leftsum = 0.0;

double rightsum = 0.0;

for(int i = 0; i < marker; i++){

leftsum += lambda[piInv[i]];

}

for(int i = marker; i < D; i++){

rightsum += lambda[piInv[i]];

}

for(int i = 0; i<D; i++){intLength += lambda[i];}

for(int i = 0; i<D; i++){lambda[i] /= intLength/2.0;}

leftsum = 0.0;

rightsum = 0.0;

for(int i = 0; i < marker; i++){

leftsum += lambda[piInv[i]];

}

for(int i = marker; i < D; i++){

rightsum += lambda[piInv[i]];

}

// DONE SETTING UP
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}

void IET::induction(){

int winner, loser, newPiInv[D], oldType;

double newLambda[D];

oldType = type;

// COMPUTE THE TYPE

if(lambda[piInv[0]] > lambda[piInv[D-1]]){type = 0; winner = piInv[0]; loser = piInv[D-1];}

else{type = 1; winner = piInv[D-1]; loser = piInv[0];}

if(type == 0){

for(int i = 0; i < D; i++){ // Getting the new permutation

if(i <= pi[invol[winner]]){ newPiInv[i] = piInv[i]; }

else if(i == (pi[invol[winner]] + 1) ){ newPiInv[i] = piInv[D-1]; }

else{ newPiInv[i] = piInv[i-1]; }

}

}

else{

for(int i = 0; i < D; i++){ // Getting the new permutation

if(i >= pi[invol[winner]]){ newPiInv[i] = piInv[i]; }

else if(i == (pi[invol[winner]] - 1) ){ newPiInv[i] = piInv[0]; }

else{ newPiInv[i] = piInv[i+1]; }

}

}

if(type == oldType){ // Figure out whether we’ve done a step of Zorich acceleration or not

zorichStep = 0;

}

else{ zorichStep = 1; }

if(winner == piInv[0]){

if(pi[invol[winner]] < marker){marker += 1;} // This means if the winner and the involution

} // of the winner are on the same side. In such

else{ // cases you have to move the mid-point marker.

if(pi[invol[winner]] >= marker){marker -= 1;}
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}

for(int i=0; i < D; i++){ // Get pi

piInv[i] = newPiInv[i];

pi[piInv[i]] = i;

}

// Update lambda

double intLength = 0.0;

newLambda[winner] = newLambda[invol[winner]] = lambda[winner] - lambda[loser];

for(int i = 0; i < D; i++){

if(i != winner && i != invol[winner]){

newLambda[i] = newLambda[invol[i]] = lambda[i];

}

}

for(int i = 0; i < D; i++){

intLength += newLambda[i];

}

// THIS GIVES YOU THE (NORMALIZED) NEW LAMBDA

for(int i = 0; i < D; i++){ lambda[i] = lambda[invol[i]] = 2.0*newLambda[i] /intLength; }

// Ok so here we compute the matrix at every step of induction from which

// the cocycle is built.

for(int i = 0; i < D; i++){

for (int j = 0; j < D; j++){

cocyclePlus[i][j] = 0.0;

cocycleMinus[i][j] = 0.0;

}

}

for(int i = 0; i < D; i ++){

cocyclePlus[i][i] = 1.0;

cocycleMinus[i][i] = cocycleMinus[i][invol[i]] = 0.5;

}

cocyclePlus[invol[loser]][winner] = cocyclePlus[loser][invol[winner]] = 1.0;

cocycleMinus[invol[loser]][winner] = cocycleMinus[loser][invol[winner]] = 0.5;

cocycleMinus[loser][winner] = cocycleMinus[invol[loser]][invol[winner]] = 0.5;
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// Finally, we adjust the lambda so that the trajectory remains in the

// hypersurface containing IET’s which come from generalized permutations.

int doubleLeft, doubleRight;

double leftLength = 0.0;

double rightLength = 0.0;

for(int i = 0; i < marker; i++){

if(pi[invol[piInv[i]]] < marker){doubleLeft = piInv[i]; break;}

}

for(int i = marker; i < D; i++){

if(pi[invol[piInv[i]]] >= marker){doubleRight = piInv[i]; break;}

}

for(int i = 0; i < marker; i++){

leftLength += lambda[piInv[i]];

}

for(int i = marker; i < D; i++){

rightLength += lambda[piInv[i]];

}

if(leftLength > rightLength){

lambda[doubleRight] += (leftLength-rightLength)/2.0;

lambda[invol[doubleRight]] += (leftLength-rightLength)/2.0;

}

else{

lambda[doubleLeft] += (rightLength-leftLength)/2.0;

lambda[invol[doubleLeft]] += (rightLength-leftLength)/2.0;

}

for(int i = 0; i<D; i++){lambda[i] /= leftLength;}

}
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