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Abstract

Peer-to-Peer networks are gaining increasing attention from both the scientific and
the large Internet user community. Popular applications utilizing this new technology
offer many attractive features to a growing number of users. At the heart of such
networks lies the data retrieval algorithm. Proposed methods either depend on the
network-disastrous flooding and its variations or utilize various indices too expensive
to maintain. In this report we describe an adaptive, bandwidth-efficient and easy to
deploy search algorithm for unstructured Peer-to-Peer networks, the Adaptive Prob-
abilistic Search method (APS). Our scheme utilizes feedback from previous searches
to probabilistically guide future ones. FExtensive simulation results show that APS
achieves high success rates, increased number of discovered objects, very low band-
width consumption and adaptation to changing topologies.

1 Introduction

Peer-to-Peer (P2P) networking has been growing rapidly in the last few years. P2P repre-
sents the notion of sharing resources available at the edges of the Internet. Its success was
originally boosted by some very popular file-sharing applications (e.g., [NAP, AUD]). Nu-
merous systems that utilize or support P2P technology have emerged since (e.g., [DFMO1,
GNU, SET, NET]). Bandwidth consumption attributed to P2P file-sharing systems amounts
to a considerable fraction of the total Internet traffic, despite the shutdown of several systems
due to legal rulings.



We can roughly classify P2P architectures into two categories: Centralized approaches
utilize a central directory for object location, ID assignment, etc. Decentralized approaches
abandon this solution to employ a distributed directory structure. Pure decentralized sys-
tems exhibit a fully distributed behavior with all peers (or nodes) being equal, while in
hybrid systems some nodes act as super-peers, serving the shielded peers they neighbor with.
Another taxonomy classifies P2P networks into structured and unstructured. Structured
networks provide strict rules for file placement and object discovery, while unstructured ap-
proaches offer arbitrary network topology, file placement and search. We focus our attention
on decentralized unstructured P2P systems, which have proved to be of greater impact to
the network community [SAN] than systems with strict guarantees.

Due to the large popularity and enormous amounts of data exchanged, it is vital for P2P
search to be performed in a fully distributed, bandwidth-efficient and adaptive manner. A
search for an object in a P2P network is successful if it discovers at least one replica of the
object. The ratio of successful to total searches made is the success rate (or accuracy) of the
algorithm. A search can result to multiple discoveries (or hits), which are copies of the same
object stored at distinct nodes. Duplicate messages are copies of the same query sent to a
node that has already processed it. The performance of an algorithm is associated with its
success rate and number of hits, while its cost relates to the number of messages it produces.

Search methods can be categorized as either blind or informed. In a blind search, nodes
do not store any information regarding file locations. In informed approaches, nodes locally
store metadata that assist in the search for the queried objects. Current blind search methods
waste a lot of bandwidth to achieve high performance. Every search requires contacting many
nodes within some distance called time-to-live (T'T'L), generating huge overhead to all nodes
involved. This approach aims at finding the maximum number of results within an area
of the network with the originating node being at the center and the radius being a 77T L-
related parameter. Informed methods use their indices in order to achieve similar quality
results (by choosing “good” neighbors to forward the query to) and to reduce overhead. The
shortcoming of most informed methods is the maintenance cost of the indices after peers
join/leave the network or update their collections. In most cases, these events trigger floods
of update messages, inflating network traffic.

Current P2P search algorithms can be roughly divided in two categories: The ones that
exhibit good performance at high cost (either during the search or the metadata updates),
and those that are bandwidth-efficient but exhibit varying performance. The important
observation is that popular P2P networks display a highly dynamic behavior, with most users
connecting for small periods of time and then leaving the system [CLL02|. Any algorithm
that fails to scale along this pattern, inevitably puts excessive burden on network traffic.

Many search protocols for unstructured networks have been proposed with an intention
to reduce the overhead of the original flooding scheme. In the Random Walks algorithm
[LCCT02], the requesting node sends out & query messages to an equal number of randomly
chosen neighbors. Each of these queries follows its own path, having intermediate nodes
forward it to a randomly chosen neighbor at each step. These queries are known as walkers.
While this approach manages to reduce messages by more than an order of magnitude, it
exhibits low performance due to its random nature and inability to adapt to different query
loads.



In this work, we propose a new search algorithm that achieves high performance at low cost,
the Adaptive Probabilistic Search method (APS). In APS, a node deploys k walkers for object
discovery, but the forwarding process is probabilistic instead of random. Peers effectively
direct walkers using feedback from previous searches, while keeping information only about
their neighbors. As we show in this work, APS exhibits many plausible characteristics, such
as:

e High accuracy

e Low bandwidth consumption

e Large number of discovered objects

e Robust and adaptive behavior in rapidly-changing environments

These features come as a result of our algorithm’s learning character, which enables peers
to share, refine and adjust their search knowledge with time. Furthermore, APS induces
zero overhead over the network at join/leave/update operations.

We make the following research contributions in this report:

1. We define the APS algorithm for search in unstructured P2P networks. We describe
the main idea, the indexing scheme, the search and update procedures and analyze its
performance.

2. We present two improved versions of the algorithm which exhibit significant gains in
message reduction and the number of objects discovered near the requesters.

3. We perform extensive simulations and compare APS with the Random Walks and
GUESS methods over different environments. Our algorithm achieves excellent results
in the success rate, number of discovered objects, message consumption and adaptation
to changing topologies.

Section 2 gives an overview of the related work. In Section 3 we present our algorithm,
discuss its characteristics and describe two improved versions of the scheme. Extensive
simulation results follow in Section 4. Finally, Section 5 contains our conclusions.

2 Related Work

Structured Peer-to-Peer networks have received a lot of attention in the last few years, from
both academia and industry. Systems in that category include, but are not limited to,
OceanStore [KBCT00], CFS [DKK*01], PAST [RDO01b] and Publius [WRCO00]. All oper-
ations in these systems are based on an “overlay” network, which handles file and replica
placement and guarantees bounded number of steps and reliable storage. Examples of such
overlays include CAN [RFH*00], Chord [SMK™01], Pastry [RD01la] and Tapestry [ZKJ01].
All these networks operate well under the assumption that the primary goals are consistency
and object persistence.



Unstructured Peer-to-Peer networks have also been studied a lot in the last few years. In
this category we recognize popular file sharing systems like Gnutella [GNU] and Kazaa [KAZ].
The original Gnutella algorithm uses flooding (BFS traversal of the underlying graph) for
object discovery. [KGZY02] proposes a variation of the flooding scheme with peers randomly
choosing only a ratio of their neighbors to forward the query to. Two similar approaches that
use consecutive BFS searches at increasing depths are described in [YGMO02, LCC*02]. The
notion of Ultrapeers [SR] is used by two new search protocols for Gnutella-type networks.
We attempt an initial description at this point, although the references were not complete.
Nodes are categorized as either ultrapeers or leaf-nodes. Each ultrapeer is connected to other
ultrapeers and to a set of leaf-nodes (peers shielded from other nodes), acting as their proxy.
In GUESS [DF], a search is conducted by iteratively contacting different ultrapeers and
having them ask all their leaf-nodes, until some predefined condition is met. In Gnutella2
[Sto], when an ultrapeer (or hub) receives a query from a leaf, it initiates the equivalent
of the original Gnutella search with TT'L, = 2. Neighboring hubs regularly exchange local
repository tables to filter out unnecessary traffic. Compared to these approaches, APS uses
informed walkers instead of flooding and its variations. Moreover, our indices reflect the
relative probability of success through a neighbor, not the neighbors’ local repository.

An approach similar to [LCCT02] was described in [ALPHO1], where the degrees of the
nodes are used to guide the walkers in a power-law graph. Our algorithm uses hints that
relate to search results, not network topology. This way, both performance enhancement
and knowledge build-up can be achieved.

Several informed methods have also been proposed. In [KGZY02], each node forwards
keyword requests to a set number of neighbors that have answered the most requests “similar”
to the current one, according to a query similarity metric. Nodes store information about
recently answered queries in order to rank their neighbors. This approach focuses more on
object discovery than message reduction and seems tailored for applications where nodes
store correlated data. Instead of just receiving positive feedback from previous searches,
our approach also utilizes negative feedback from the walkers so that efficient unlearning is
performed, while neighbors are probabilistically chosen, not ranked. In our work, we also
focus on reducing both search messages and the distance to the discovered objects.

In [YGMO02], a node holds information about all files stored at nodes within a certain
radius and can answer queries on behalf of all of them. In [CGMO02], nodes store file content
metadata for each of their outgoing links, enabling them to forward a query to the neighbor
with the highest value of a defined metric. In [RK02], each node holds d bloom filters for each
neighbor. A filter at depth ¢ summarizes documents that can be found through that specific
link ¢ hops away. Nodes forward queries to the neighbor whose higher depth bloom filter
matches a hashed representation of the document ID. In our approach, nodes keep indices
regarding only their neighbors, avoiding the cost of updates at every change. Furthermore,
our index semantics relate to previous search results, not file locations.

Freenet [CSWHO1] uses a DFS-like search with the exception that nodes forward to neigh-
bors after consulting a routing table from previous searches. Discovered documents are
also cached along the reverse path. In our method, the algorithm does not dictate object
replication, while it deploys k& walkers simultaneously instead of one at a time.



3 The APS Algorithm

3.1 Owur Search Model

The following assumptions are made throughout the discussion that follows:

Peers initiate searches for various objects. These objects are distributed across the network
according to a replication distribution, which dictates what objects are stored at each node.
The query distribution dictates how many requests are made for each object (e.g., popular
objects get many more requests than unpopular ones). The search algorithms cannot in any
way dictate object placement and replication in the system. They are also not allowed to
alter the topology of the P2P overlay. A node is directly connected to its neighbors, and
these are the only peers whose addresses the node is aware of.

Nodes can keep some soft state (i.e., information that is erased after a short amount of
time) for each query they process. Each search is assigned an identifier, which, together with
the soft state, enables peers to make the distinction between new and duplicate messages.
Identifiers are also assigned to objects and nodes from a flat, non-hierarchical space. The TTL
parameter represents the maximum hop-distance a query can reach before it gets discarded,
while k£ denotes the number of walkers deployed for search from a requester node.

Finally, the metrics we use to evaluate search algorithms are the success rate, the number
of discovered objects, the number of messages and duplicate messages produced and the
distance of the discovered objects from the requester nodes. For simplicity reasons, we
ignore network and processing delays. While such delays affect response time, they cannot
impact our metrics.

3.2 Algorithm Description

In APS, each node keeps a local index consisting of one entry for each object it has requested,
or forwarded a request for, per neighbor. The value of each entry reflects the relative proba-
bility of this node’s neighbor to be chosen as the next hop in a future request for the specific
object.

Searching is based on the deployment of k£ walkers and probabilistic forwarding: The
requester chooses k out of its N neighboring nodes' to forward the request to. Each of
these nodes evaluates the query against its local repository and if a hit occurs, the walker
terminates successfully. On a miss, the query is forwarded to one of the node’s neighbors.
This procedure continues until all £ walkers have terminated, either with a success or a
failure. So, while the requesting node forwards the query to k& neighbors, the rest of the nodes
forward it to only one. In the forwarding process, a node chooses its next-hop neighbor(s)
not randomly, but using the probabilities given by its index values. At each forwarding step,
nodes append their identifiers in the search message and keep a soft state about the search
they have processed. If two walkers from the same request cross paths (i.e., a node receives
a duplicate message due to a cycle), the second walker is assumed to have terminated with
a failure and the duplicate message is discarded.

Index values stored at peers are updated in the following manner: When a node chooses one

If k > N, the query is sent to all neighbors



. .. At walker | After index
Indices | Initially ) )
termination updates

A—B 30 20 20
B—C 30 20 20
C—D 30 20 20
A—E 30 20 40
E—F 30 20 40
A—G 30 30 30

Figure 1: Search for an object stored at node F using the pessimistic approach of APS with
two walkers. The table shows how various index values change, where X—Y denotes the
index value stored at node X for neighbor Y relative to the requested object.

or k peers to forward the request to, it pro-actively either increases the relative probability
of the peer(s) it picked, assuming the walker(s) will be successful (optimistic approach), or
it decreases the relative probability of the chosen peer(s), assuming the walker(s) will fail
(pessimistic approach).

Upon walker termination, if the walker is successful, there is nothing to be done in the
optimistic approach. If the walker fails, index values relative to the requested object along
the walker’s path must be corrected. Using information available inside the search message,
the last node in the path sends an “update” message to the preceding node. This node,
after receiving the update message, decreases its index value for the last node to reflect
the failure. The update procedure continues along the reverse path towards the requester,
with intermediate nodes decreasing their local index values relative to the next hops for that
walker. Finally, the requester decreases its index value that relates to its neighbor for that
walker. If we employ the pessimistic approach, this update procedure takes place after a
walker succeeds, having nodes increase the index values along the walker’s path. There is
nothing to be done when a walker fails.

Figure 1 shows an example of how the whole process works. Node A initiates a request
for an object owned by node F using two walkers. Assume that all index values relative to
this object are initially equal to 30 and the pessimistic approach is used. The paths of the
two walkers are shown with thicker arrows. During the search, the index value for a chosen
neighbor is reduced by 10. One walker with path (A,B,C,D) fails, while the second with
path (A,E,F) finds the object. The update process is initiated for the successful walker on
the reverse path (along the dotted arrows). First node E, then node A increase the value of
their indices for their next hops (nodes F, E respectively) by 20 to indicate object discovery
through that path. In a subsequent search for the same object, peer A will choose peer B
W/ith probability 2/9 (:m), peer E with probability 4/9 and peer G with probability
3/9.

Our method utilizes “probabilistic” walkers with a learning feature that incorporates
knowledge from past and present searches to enhance future performance. The learning



process adaptively directs the walkers to promising parts of the network, while keeping
bandwidth consumption low.

APS requires no message exchange on any dynamic operation such as node arrivals or
departures and object insertions or deletions. The nature of the indices makes the handling
of these operations simple: If a node detects the arrival of a new neighbor, it will associate
some initial index value with that neighbor when a search will take place. If a neighbor
disconnects from the network, the node removes the relative entries and stops considering it
in future queries. No action is required after object updates, since indices are not related to
file content. So, although our algorithm actively uses information, its maintenance cost on
any of these events is zero, a major advantage over most current approaches.

3.3 Discussion

Each node stores a relative probability (e.g., an unsigned integer value) for each of its neigh-
bors for each (directly or indirectly) requested object. So, for R such objects and N neigh-
bors, O(R x N) space is needed. For a typical network node, this amount of space is not a
burden. On nodes with limited storage capacities, index values for objects not requested for
some time can be erased. This can be achieved by assigning a time-to-expire value on each
newly-created or updated index, or by employing simple LRU or LFU replacement policies.
Each search or update message carries path information, storing a maximum of T7TL peer
addresses. Alternatively, each node can associate the search and requester node IDs with
the preceding peer in the path of the walker. Updates then follow the reverse path back to
the requester. This information expires after a certain amount of time. A selection from the
above techniques depends on the application, query workload and node capabilities.

Let us calculate how many messages it will take for the APS method to terminate. In
the worst case — all walkers travel TT'L hops and then invoke the update procedure — the
number of messages exchanged will be 2 x k x TT'L, so the method has the same complexity
with its random counterpart. The only extra messages that occur in APS are the update
messages along the reverse path. This is where our two index update policies are used: If we
expect or experience after a while that for a specific number of walkers k, only few of them
terminate successfully, then the pessimistic mode should be employed. Conversely, if many
of our walkers hit their targets on average, the optimistic approach should be considered.
Naturally, the two approaches have the same performance in all other metrics.

Along the paths of all £ walkers, indices are updated so that better next hop choices
are made with bigger probability. Our learning feature includes both positive and negative
feedback from the walkers in both update approaches. In the pessimistic approach, each
node on the walker’s path decreases the relative probability of its next hop for the requested
object concurrently with the search. If the walker succeeds, the update procedure increases
those index values by more than the subtracted amount (positive feedback). So, if the initial
probability of a node for a certain object was P, it becomes bigger than P if the object was
discovered through (or at) that node and smaller than P if the walker failed. The learning
process in the optimistic approach operates in an opposite fashion, with negative feedback
taking place after a walker fails. Our algorithm exhibits both learning and unlearning char-
acteristics: Learning is important to achieve both high performance and discovery of newly



inserted objects. Unlearning helps our search process adjust to object deletions, redirecting
the walkers elsewhere.

Another characteristic of the algorithm is its ability to obtain more knowledge with more
questions. The more feedback from the walkers, the more precise the indices become. That
particularly suits the discovery of popular objects in the P2P network, which, according to
studies [CLL02], constitute over 60% of all searches. Another similar observation is that all
nodes participating in a search will benefit from the process. This is a distinctive feature
of our method, with indices being constantly updated using search results and not after
object updates. In our case, both requesters and peers on the paths of all walkers actively
adjust their knowledge about the specific object. A node that has never before requested an
object but is “near” peers that have done so, inherits this knowledge by proximity. Besides
standard resource-sharing in P2P systems, our algorithm achieves the distribution of search
knowledge over a large number of peers.

3.4 Algorithm Improvements

APS produces update messages to adjust index values along the paths of some walkers. Our
goal is to minimize these messages in order to further reduce the level of bandwidth con-
sumption. Obviously, if fewer than k/2 walkers are successful, then the pessimistic approach
should be employed instead of the optimistic and vice versa. Choosing one strategy over the
other for queries over all objects is not optimal, as many unnecessary update messages are
produced for both popular and unpopular object requests. In swapping-APS (s-APS), the
algorithm constantly monitors the ratio of successful walkers for each request and accord-
ingly switches to the update policy that produces fewer messages. This makes our s-APS
improvement more bandwidth efficient, sometimes producing a lower total number of mes-
sages even from Random Walks, which uses no update messages. The number of requests for
which nodes monitor the successful walker ratio depends on available node storage, although
the overhead will be very small in most cases.

Another improvement relates to the index update procedure. In the original scheme, all
index values are updated by the same amount, using a simple step function. In weighted-APS
(w-APS), we incorporate a distance-based function for modifying the relative probabilities
stored at each node. Index values for peers closer to the discovered object are increased more
than those for distant nodes®. Distance information is directly accessible from the stored
path inside the search messages. With this method, peers are biased to direct walkers to
objects that are near. Our results show a significant increase in the number of discovered
objects located near the requesters.

4 Simulation Results

We performed extensive simulations to evaluate the performance of APS. We first briefly
describe our simulation model and then present results for both static and fully dynamic

2The weighted modification is used with the pessimistic approach, where the distance from an object is
known.



network operation.

4.1 Simulation Methodology

We used two different graph models to simulate our network: The random graph model and
the popular power-law model. Since the application overlay works with logical connections
and does not reflect the underlying network, we mainly used the random graph model to
simulate our P2P overlay structure. We also used two P2P models, pure and hybrid: In
the pure model all peers equally pause and answer requests; in the hybrid model nodes are
organized in an Ultrapeer-leaf hierarchy. We utilized two well-known topology generators:
GT-ITM [ZCB96] for the pure and hybrid random graph models and Inet-3.0 [JCJO00] for
the power-law graph model.

Before each simulation, object replication and query distributions are set. We choose from
three different distributions, namely uniform, zipf and 80/20. Requester nodes and query
loads are also saved so that each run uses the same configuration. Requesters are randomly
chosen and always represent a noticeable fraction® of the size of the graph. Requests arrive
“sequentially” in the system. In order to simulate a dynamic network behavior, we insert
“on-line” nodes and remove active ones every 1000 queries. On average, the network changes
more than 3000 times during each simulation. We always keep approximately 80% of the
network nodes active. Arriving nodes start functioning without any prior knowledge.

The approach we use for walker termination is the 77T L-based method. The initial value
of an index is 30 and its minimum value is 10, so that no nodes are precluded from the
forwarding process. Index values are increased (decreased) by 10 during the search and
decreased (increased) by 20 during the updates with the optimistic (pessimistic) approach.
For the weighted scheme, the amount of increase is inversely proportional to the distance
from the object raised to the power of 2.5.

Table 1 summarizes our simulation parameters and their default values.

We found that it is best to set k equal or higher to the average out-degree and TTL to 5
or 6. We used 100 objects in most simulations for simplicity and speed. An increase in that
number does not affect the quality of the results. For the query and replication strategies,
we followed the observations in [CLLO02] but preferred a less skewed distribution, where the
highest-ranked 10% of objects amount to about 30% of the total number of stored objects
and receive about 30% of the total requests. For our model with 100 objects this was a more
realistic choice, making requests for all of them. A larger exponent (a = 1.5) can be used if
the number of objects increases.

4.2 Non-Dynamic Behavior

In this section we examine the characteristics of APS with a static network. This is equivalent
to taking a “snapshot” of the network, where all nodes remain active for the duration of the
queries. In the following figures, if one or more of our algorithm’s variations are compared,
they will be specifically mentioned with their names (e.g., w-APS). The label “APS” is used
when all our other methods have very similar performance in a particular metric.

3More than 10%




’ Simulation Parameters H Default Values ‘

Number of Nodes 10000

Graph model Random

P2P model Pure
Average node degree 10

Walkers deployed (k) 12

TTL 6

Number of Objects 100
Replication Distribution Zipf (a = 0.82)
Query Distribution Zipf (a = 0.9)
Number of Requester Nodes 1000

Number of Queries per Requester Node | 3162

Table 1: Simulation parameters and their default values

For the default graph, our simulations show that the standard flooding scheme with TTL =
4 can be successful in over 99% of its searches, while producing over 9000 messages per search.
Since these properties are well-known, we focus on the Random Walks and APS algorithms.

In the first set of simulations, we varied the number of walkers deployed (k) from 1 to 15
for the default parameters. Figure 2 presents the success rates of the two algorithms. We
can see that APS achieves very high success rates even with few deployed walkers, while it
manages to enhance its performance as more walkers are used. It is steadily around 40% more
accurate than Random Walks, which exhibits low performance even with many walkers. We
also notice that the weighted scheme shows an increase of around 4% in successful searches
over our standard method.

In Figure 3 we present the average number of messages per search. One would expect
that our method produces a much higher number of messages compared to Random Walks
due to the update procedure, but this is not the case: The majority of walkers in APS are
successful and only few of them reach TT'L hops away. In Random Walks, about 70% of the
walkers fail and waste TT'L messages each. To a lesser extent, objects are equally discovered
at all possible distances in the random method, while our scheme discovers more objects
closer to the requesters. The results confirm our case: The difference varies between 0.2
and 15 messages for the pessimistic approach, drops to only 4 messages for the optimistic
approach, while s-APS, using the best update strategy each time, outperforms the random
algorithm. For an informed method, our technique achieves an amazingly low per query
consumption. This effect is enhanced if we recall that no message exchange is necessary for
peer join/leave/update operations. Not surprisingly, in some simulations (when 6 or more
walkers are deployed) the optimistic approach produced more messages, while for fewer
walkers the pessimistic approach proved more bandwidth-efficient.

Figure 4 displays the vast reduction APS achieves in wasted bandwidth. Duplicate mes-
sages are considered to be failure states for our walkers, therefore the learning process makes
adjustments in order to minimize walker collisions. Our method constantly outperforms its
competition, producing 1 to 2 orders of magnitude fewer duplicate messages. This is also im-

10
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portant because it increases the useful processing time for each peer. The weighted approach
exhibits almost 20% fewer duplicate messages than our default methods.

Figure 5 depicts the average number of discovered objects per query. APS puts the
walkers to a much better use, achieving over 65% in walker accuracy (successful walkers over
all walkers deployed) and around 4 times as many discovered objects as its competitor. This
comes as an immediate side-effect of its high success rate and very few walker collisions.
Since walkers are directed to (possibly) different parts of the network where different copies
of an object exist, the successful walker percentage increases. This is extremely important
for current popular P2P applications, giving the user a much broader choice for download.
The w-APS variation produces marginally better results here.

Finally, Figure 6 shows how hits are distributed over their distance from the requesters,
for the default parameters. Random Walks exhibits a flat curve, discovering about the same
amount of objects throughout the 1 to TTL range. On the other hand, APS is more
biased into the first half of this range. Our weighted technique significantly improves on this

11
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characteristic, trading distant objects with closer ones. This way, the majority of discovered
objects are found with few messages, while fewer objects are discovered with more messages.
This is why w-APS performs better for distances 1 to 3 hops, while it produces fewer hits
for hops 4 to 6.

Figure 7 displays how the number of requests affects accuracy. With just 1% object
replication ratio, £k = 10 and TTL = 5, we varied the number of requests per object using
a uniform distribution for both storage and requests on the default graph. As we can see,
accuracy improves significantly with only a small increase in requests, even though only
about 100 copies of each object exist. At the same time, Random Walks is steadily below
40%, regardless of the number of requests.

Next, we analyze the behavior of our scheme’s index values. APS is an inherently adaptive
search algorithm, whose power lies in the use of the local indices. For the next experiment,
we choose only one node from our default graph with degree 12 and examine how its local
indices change. We make 1000 requests for 10 objects, with object 1 being the most popular
and 10 the least. Replication and request distributions take their default values. Figure 8
displays the number of high-valued indices for that node for all 10 objects. Object popularity
decreases from left to right on the x-axis. We monitor indices with very large values (over
1000) and indices that have a fairly large value (over 100 but below 1000). We notice
that many indices with large values exist for the very popular objects, while this number
decreases as popularity drops. Still, some indices with a relatively large value always exist
for less popular objects. APS exhibits high precision for very popular objects, building up
its “confidence” through large index values. On the other hand, the few fairly large indices
for unpopular objects point out the algorithm’s ability to locate them with good probability.

In Figure 9 we show the success rates for individual objects grouped according to their
popularity, using all default parameters. Popularity decreases from left to right on the x-axis.
APS shows almost perfect results for popular objects, while displaying a “graceful” decline
for unpopular requests. w-APS exhibits improved resilience and manages to keep a higher
accuracy level for unpopular requests. On the other hand, Random Walks’ accuracy drops
significantly after requests for the highest-ranked 10% of objects, reaching a mere 11% for
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the least popular objects.

In Table 2 we conclude our results on pure P2P networks. We compare s-APS with
Random Walks over three different topologies: The default one, a 50000-node random graph
with average degree 10 and a 10000-node power-law (PLAW) graph with average degree
4.4. We monitor the success rate and the average number of hits, messages and duplicate
messages per query. Apart from the default setup, we also test the algorithms using the
uniform distribution for both requests and storage. This may be a more suitable model for
other kinds of P2P applications, for example sharing of sensor data between wireless ad-hoc
peers. The replication ratio is set to 1% and each object is requested 30 times. We clearly
notice that s-APS can greatly benefit from such a setup, delivering over 96% in success rate
and discovering 4 times more results than Random Walks. Our simulations on the 50000-node
random graph justify our prediction that the graph size cannot influence the performance of
APS. The results were a little worse from the ones in the original graph, because the quality
of the new graph was worse (many more disconnected components were present). Our results
on the 10000-node power-law graph show an even greater gap in the performance of the two
algorithms, although both produce worst numbers in all metrics compared to the original
graph. This can be explained by the fact that the average out-degree of the Inet topology
is less than half the value of the random graph, significantly reducing the average number
of deployed walkers per search. Still, our method is over 40% more accurate and delivers 3
times as many results as the random method. In all these simulations, we notice that s-APS
produces almost the same number of messages with Random Walks, wasting at most 4 extra
messages per search.

Finally, we present results comparing s-APS with an implementation of GUESS [DF] on
a random hybrid graph with 6500 peers, 500 of them being ultrapeers. Each ultrapeer is
connected to 12 leaf-nodes on average. Links exist only between ultrapeers and between an
ultrapeer and its leaf-nodes. In our GUESS implementation, initiating ultrapeers forward
queries to k& randomly chosen neighbor ultrapeers. Query and replication distributions are
set to their default values. Since it is impossible to directly compare the two methods for
the same k and TT'L values, we selected simulations where the two algorithms had similar

13



s-APS Random Walks
Succ(%) | Mesg | Hits | Dupl || Succ(%) | Mesg | Hits | Dupl

Method

Default graph(Zipf) 94.0 44.6 | 7.18 | 0.06 56.5 46.2 | 1.70 | 2.16

Default graph(Uniform) 96.1 53.5 | 7.19 | 0.07 38.2 49.6 | 0.50 | 2.34

50000-Node

) 47. ) .01 ) 45. 1. 2.11
random graph(Zipf) 7.6 7.0 | 5.68 | 0.0 57.6 5.7 38
10000-Node

1 14. 1. 1 1. 12. A4 1.11
PLAW graph(Zipf) 76 9 76 | 0.18 31.6 0 | 0.49

Table 2: Results for more graphs in the static case

s-APS GUESS

Comparison metric || Succ(%) \ Mesg \ Hits | Succ(%) \ Mesg \ Hits
97.7 16.3 | 5.22 63.9 16.1 | 1.28
Messages per Search 98.6 22.0 | 7.01 65.6 22.2 | 1.87
99.7 33.2 | 11.39 84.0 33.1 | 2.55
81.0 3.2 1.33 63.9 16.1 | 1.28
Hits per Search 94.6 8.7 | 3.42 86.4 45.0 | 3.70
97.9 16.5 | 5.42 94.5 65.1 | 5.60

Table 3: Comparison with a GUESS implementation on a random hybrid graph

performance in one of two important metrics: Messages and hits per query. The results are
presented in Table 3 and the comparison metric is typed in boldface. For similar message
consumption, our scheme exhibits higher success rates and delivers 4 to 5 times more results.
For similar hits per search, our scheme produces 4 to 5 times fewer messages and always
outperforms GUESS in accuracy.

4.3 Dynamic Network Behavior

Robust behavior (fault-tolerant and adaptive operation in dynamically changing environ-
ments) should be a fundamental characteristic of every search scheme. APS maintains high
levels of robustness for the following reasons: The query forwarding process is probabilis-
tic, which means that nodes with the largest values do not get necessarily chosen. This is
important as object locations may change frequently and wrong choices may occur in the
beginning. No neighbors are excluded because of a low probability and node failures cannot
interfere with the algorithm’s normal operation®. In any case, k walkers will be deployed from
the requesting node and no more traffic for index maintenance will be put on the network.
Our algorithm also utilizes its unlearning feature, which enables walkers to be redirected if
previously recovered objects are missing. Finally, the probability of query failure is greatly

4Unless the requester’s neighbors are fewer than &, in which case all of them are chosen
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s-APS Random Walks

Method Suce(%) ‘ Mesg ‘ Hits ‘ Dupl | Succ(%) \ Mesg \ Hits \ Dupl

Default graph(Zipf) 90.9 50.2 | 4.41 | 0.08 52.1 39.7 | 1.10 | 2.19

Default graph(Uniform) 94.1 58.5 | 4.22 | 0.10 32.3 41.8 [ 0.39 | 2.38

50000-Node

. 48.4 | 2.4 .02 . ) 1.2 2192
random. graph(Zipf) .3 8 000 59.6 39.5 9
10000-Node

6 | 130 | 111|054 | 21 01025 0.72
PLAW graph(Zipf) 676 | 130 0.5 0 | 90 02507

Table 4: Results for more graphs in the dynamic case

reduced because of the large percentage of successful walkers. The changes in topology or
object locations must simultaneously affect all successful paths in order for a miss to occur.

In this section, we present simulation results with rapidly changing network topology, as
we believe is the case with current P2P networks. Table 4 presents the most representative
results in direct comparison to the static case.

First, we compare the two schemes on the default parameters. Our technique delivers
amazingly high quality results. It shows a mere 3% decrease in accuracy and around 2.7
fewer hits per query, while the rest of the results are similar to the static run. The results
for the uniform distributions on the default graph are qualitatively similar.

In the 50000-node random graph, we notice the success rate is about 8% lower from the
static case, while the number of discovered objects is almost halved. The differences in
performance become striking in the 10000-node power-law network. s-APS delivers as many
as 4 times more results and exhibits a success rate three times bigger than Random Walks’.
The success rate for s-APS drops by around 9% and discovered objects decrease by 37%,
which seems reasonable to the static numbers if we reckon the rapidly changing topology
and the graph’s structure as described before.

In these simulations, our algorithm kept its message production at the same levels with
the static runs, wasting at most 6 extra messages per search, a direct proof that it does
not impose more burden on network traffic. The metric that is reasonably affected is the
number of hits per search, as some paths to discovered objects frequently “disappear”. As
expected, the success rate shows only a small decrease, which ranges from 2% to 9%. Our
scheme exhibits remarkable robustness even in such fast-changing environments. Random
Walks shows a small decrease in performance, as walkers are not directed according to object
locations, but randomly across the network.

Finally, a noteworthy observation; in choosing the total number of queries per simulation,
we aimed for simplicity and realism. As we demonstrated, APS would benefit even more by
increasing the number of queries per simulation.
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5 Conclusions

In this work we introduced APS, an efficient, scalable and adaptive technique for Peer-to-
Peer search. Our algorithm is suitable for P2P systems, where network traffic needs to be
minimized, user-satisfaction and search accuracy must be high and co-operation between
peers is important. APS utilizes probabilistically directed walkers for bandwidth-efficient
search in unstructured P2P networks. Using its index scheme, APS incorporates information
from past searches to enhance future performance. This also allows for fast, joint learning,
since many nodes participate in the process initiated from a single node’s request. Peers
are required to keep indices only relative to their neighbors, while no message exchange is
necessary for any dynamic network event, local or global. We also described two improved
versions of our algorithm: s-APS further reduces message consumption by choosing the best
update policy for each request, while w-APS significantly increases the number of objects
discovered at short distances.

Our simulations on a variety of topologies demonstrated the versatility of the proposed
technique. Results showed that APS achieves high performance at very low cost. It discovers
4 times as many objects and delivers very high success rates compared to the Random
Walks and GUESS algorithms. It also proved to be as efficient as the random algorithm
and much more efficient than GUESS, regarding message consumption. Another important
result is that APS enhances its performance with more queries. Finally, we demonstrated
our algorithm’s ability to maintain these features even in rapidly changing environments,
exhibiting a high degree of robustness and adaptation.
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