ABSTRACT

Title of Dissertation: TOTAL SYNTHESIS OF AN OXIDATION PRODUCT OF γ-CAROTENE – A PROVITAMIN A FOOD CAROTENOID

Kristine Crawford, Ph.D. 2011

Dissertation directed by: Professor Philip DeShong
Department of Chemistry and Biochemistry

Human serum carotenoids and their metabolites are known to function as antioxidants and inflammation mediators. In 1992, two oxidative metabolites of lycopene were isolated from human serum and tomato-based food products. These substances were subsequently prepared by partial synthesis from lycopene and characterized as a diastereomeric mixture of 2,6-cycloleycopene-1,5-diols I and II. Results of in vitro studies have demonstrated that the diols were more effective at inhibiting the growth of solid human tumor cells than lycopene. While the metabolisms of prominent hydrocarbon carotenoids such as lycopene and β-carotene have been extensively studied, the functional role of γ-carotene remains unexplored. Because the chemical structure of γ-carotene is a hybrid of lycopene and β-carotene, the total synthesis of the analogous metabolite of γ-carotene 2,6-cyclo-γ-carotene-1,5-diol was undertaken.

The total synthesis 2,6-cyclo-γ-carotene-1,5-diol was accomplished using a C15+C10+C15 Wittig coupling strategy. The C15-dihydroxyaldehyde key synthon with a defined stereochemistry, a protected C10-Wittig salt, and the β-onylidenethyltriphenylphosphonium chloride C15-Wittig salt provided the three building blocks in this synthesis. To arrive at the C15-dihydroxyaldehyde, citral epoxide was elongated to a
C\textsubscript{15}-epoxynitrile which underwent acid-catalyzed cyclization to afford a C\textsubscript{15}-dihydroxynitrile. After reduction with DIBAL-H, the key C\textsubscript{15}-dihydroxyaldehyedye was produced in 16% yield in three steps from citral epoxide. The major drawback of this synthesis was the cyclization step. According to this approach, 2,6-cyclo-\(\gamma\)-carotene-1,5-diol was prepared in high purity in 5 steps in 2.4% overall yield.

In a semi-synthetic approach, 12’-apo-\(\beta\)-carotene-12’-al was transformed into a C\textsubscript{25}-Wittig salt and coupled to the C\textsubscript{15}-dihydroxyaldehyde synthon to afford 2,6-cyclo-\(\gamma\)-carotene-1,5-diol in 16.8% overall yield in 3 steps. A third strategy involved the epoxidation of 12’-apo-\(\Psi\)-carotene-12’-al followed by cyclization to a C\textsubscript{25}-dihydroxyaldehyde upon silica gel chromatography. Final coupling of C\textsubscript{25}-dihydroxyaldehyde with the \(\beta\)-ionylideneethyltriphenylphosphonium chloride C\textsubscript{15}-Wittig salt produced 2,6-cyclo-\(\gamma\)-carotene-1,5-diol in 6.0% overall yield in 2 steps. This strategy does not require access to large amounts of pure C\textsubscript{15}-dihydroxyaldehyedye and takes advantage of the commercial availability of 12’-apo-\(\Psi\)-carotene-12’-al, and is by far the most practical route to 2,6-cyclo-\(\gamma\)-carotene-1,5-diol. The present methodologies provide novel access to an oxidation product of \(\gamma\)-carotene that could be potentially formed in humans or biological systems.
Total Synthesis of an Oxidation Product of γ-Carotene – a Provitamin A Food Carotenoid

by

Kristine Crawford

Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2011

Advisory Committee:

Professor Philip DeShong, Chair
Professor Neil Blough
Associate Professor Jason Kahn
Senior Research Scientist Frederick Khachik
Associate Professor Andrei Vedernikov
Professor Liangli Yu
ACKNOWLEDGEMENTS

I wish to extend heartfelt thanks to my advisor, mentor and friend Fred Khachik. I met Fred at the USDA 15 years ago, where he generously spent several weekends teaching me how to extract zeaxanthin dipalmitate from Chinese gogi fruit. His passion for carotenoid research and enthusiastic teaching style are as vital today as they were back then, and I am again blessed to be his graduate student at the University of Maryland. Beyond helping me develop a deeper knowledge of carotenoid synthesis, I have great respect for Fred’s innovative spirit, and am grateful to him for sharing his expertise as a clear, convincing writer and a determined experimentalist. As always, Fred has been a dependable, intelligent and honorable advisor. While it will not be possible to quantitate the immense and varied learning I received under Fred’s tutelage, surely it will all be reflected in my future professional activities.

I extend many thanks to professor Michael Doyle, chairman of the chemistry department at the University of Maryland for accepting my enrollment into the doctoral program as a full-time employee of Martek Biosciences Corporation. In addition to Dr. Doyle, I am grateful to Drs. Fred Khachik, Janice Reutt-Robey, Lyle Isaacs and Philip DeShong for working with me to define an acceptable path forward to graduation and for their willingness to accept me as a graduate student under this unconventional circumstance. I thank my committee for their involvement, co-advisor Dr. Jason Kahn for the direction, vision, and wisdom he has provided over the years and Dr. Eugene Mazzola for the professional camaraderie and extensive help provided in interpreting and understanding the complex NMR spectra of stereochemically varied products.
My mentors and supervisors at Martek Biosciences Corporation have taken great care to train and develop me over the last ten years. I am blessed to work for a company that values and supports continuous education and collaboration with academia. I will be forever grateful to Drs. Dutt Vinjamoori, Norman Salem Jr. and Jim Flatt for their confidence and trust in me and for the opportunity they gave me to earn this doctoral degree in the midst of contributing to corporate objectives.

I am thankful to my parents Kathy, Butch and Mary, my sister Marsha and brother George for their encouragement over the years. My precious husband Jonathan and children Eliza and Ted have given me essential support and encouragement through it all. After every cumulative exam I arrived home to flowers and balloons. Throughout the program I kept their sweet gifts close by: Carpe Ph.Diem tee shirt, “Mommy - Best kid in school” badge, and “It’s your time” flower. Some of the most heartwarming memories I have are doing homework with my children at the dining room table. Ted helped me rehearse my second year seminar while Eliza helped me format the presentation. Jonathan took on a variety of additional responsibilities over the years and the children have been willing to sacrifice some snuggle time. My family has made it possible for me to pursue my dream of earning a Ph.D. in chemistry. I love them more than anything!
TABLE OF CONTENTS

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

LIST OF SCHEMES.. ix

LIST OF ABBREVIATIONS .. xiii

INTRODUCTION .. 1

DISCUSSION ... 42

Retrosynthetic Analysis of γ-Carotene Oxidation Product 40A. .. 50
Synthesis of C_{15}-dihydroxyaldehyde 42 via C_{15}-epoxynitrile 47. 55
Synthesis of citral epoxide (48). .. 58
Preparation of 4-(diethylphosphono)-3-methyl-2-butenenitrile (49). 58
Synthesis of C_{15}-epoxynitrile 47. ... 59
Cyclization of C_{15}-epoxynitrile 47 in dilute H_{2}SO_{4}. ... 61
Cyclization of C_{15}-epoxynitrile 47 with FeCl_{3} and ZrCl_{4}. 75
DIBAL-H reduction of C_{15}-dihydroxynitrile 46. ... 79
Alternate route to the synthesis of C_{15}-dihydroxyaldehyde 42. 79
Cyclization of C_{17}-epoxyethylester 56 with dilute H_{2}SO_{4}. 81
Reduction of C_{17}-dihydroxyethylesters 55 to C_{15}-triol 54 by LAH reduction 84
Synthesis of C_{25}-dihydroxyaldehyde 29. .. 91
Structural characterization of C_{25}-dihydroxyaldehyde 29. 92
Synthesis of 40A by Wittig coupling reaction between C_{25}-dihydroxyaldehyde 29 and Wittig salt 44. .. 94
Partial Synthesis of C_{15}-dihydroxyaldehyde 42. ... 102
Synthesis of C_{15}-nitrile 58. ... 104
DIBAL-H reduction of C_{15}-nitrile 58. ... 105
Synthesis of target Carotenoid 40A via alternative route to C_{25}-dihydroxyaldehyde 29. .. 106
Synthesis of C_{15}-Wittig salt 28. .. 108
Synthesis of C_{25}-dihydroxyaldehyde 29 via C_{25}-aldehyde 70. 108
Epoxidation of 70 .. 109
A simplified procedure for the synthesis of target carotenoid 40A from dihydroxy aldehyde 42 .. 110
Reduction of (all-E)-12’apo-β-caroten-12’-al (74) with NaBH4 .. 112
Synthesis of C25-Wittig salt 72 .. 112
Synthesis of 40A from Wittig salt 72 and C15-dihydroxylaldehyde 42 .. 112
Direct synthesis of target carotenoid 40A from γ-carotene (6) .. 113
Investigation of the possible presence of γ-carotene oxidation product 40A in extracts of human plasma, tomato paste and algal biomass ... 115
CONCLUSION .. 117

EXPERIMENTAL SECTION .. 123

APPENDIX I ... 150

REFERENCES ... 151
LIST OF TABLES

Table 1. Major dietary carotenoids and their concentration in human plasma.5,6,8-11 6
Table 2. Concentration of carotenoids measured in human tissues.6,13 8
Table 3. Proton chemical shifts of C\textsubscript{15}-dihydroxynitriles 46. 65
Table 4. Carbon-proton connectivities determined for 46a\textsubscript{1} by HMBC NMR. 66
Table 5. Chemical shifts for H2 and H6 of 1,5-dihydroxy-2,6-cyclolycopene (21).85,86,90 69
Table 6. Cyclization of C\textsubscript{15}-epoxynitrile 47 with dilute sulfuric acid. 71
Table 7. Lewis acid-catalyzed reactions of C\textsubscript{15}-epoxynitrile 47. 77
Table 8. Chemical shifts for the bicyclic oxide (50)84, cyanoepoxide 47 and C\textsubscript{15}-dihydroxynitrile 46a\textsubscript{1}. 78
Table 9. The cyclization of C\textsubscript{17}-epoxyethylesters 56 with dilute sulfuric acid. 81
Table 10. Chemical shifts of key protons for C\textsubscript{17}-dihydroxyethylesters 55a\textsubscript{1}, 55a\textsubscript{2}, and 55b. 84
Table 11. Chemical shifts of key protons of C\textsubscript{15}-dihydroxyaldehydes 42a\textsubscript{1}, 42a\textsubscript{2}, 42b\textsubscript{1}, and 42b\textsubscript{2}. 89
Table 12. Carbon-proton connectivities determined for C\textsubscript{25}-dihydroxyaldehyde 29 by HMBC NMR. 94
Table 13. Carbon-proton connectivities determined for the target carotenoid 40A by HMBC NMR. 102
LIST OF FIGURES

Figure 1. Structures of phytoene (1), phytofluene (2), ζ-carotene (3), neurosporene (4) and lycopene (5) with conventional numbering system and definition of ψ-end-group adopted for carotenoids. ... 3

Figure 2. Structures of γ-carotene (6), α-carotene (7), and β-carotene (8) with conventional numbering system and definition of α-, β- and ε-end groups adopted for carotenoids. ... 4

Figure 3. Structures of canthaxanthin (9), astaxanthin (10), α-cryptoxanthin (11), β-cryptoxanthin (12), lutein (13), and zeaxanthin (14). 5

Figure 4. Products derived from chemical quenching of β-carotene (8) with singlet oxygen generated by illuminating a mixture of 8/Rose Bengal/oxygen in organic solvent. ... 22

Figure 5. Schematic representation of β-carotene (8) and zeaxanthin (14) oriented across a lipid membrane. ... 26

Figure 6. Lycopene-1,2-epoxide (19). ... 30

Figure 7. 1,5-Epoxyiridanyl-lycopene (20). .. 31

Figure 8. 1,5-Dihydroxyliridanyl-lycopene (21). .. 31

Figure 9. Structure of 2,6-Cyclolycopene-1,5-diol (22) identified by Khachik. 4 32

Figure 10. Structure of 2,6-cyclolycopene-1,5-epoxide (24) isolated by Khachik et al. 86 .. 33

Figure 12. (all-E)-β-carotene (8) and two of if its sterically hindered stereoisomers. 49

Figure 13. C₁₅-epoxynitriles 47a and 47b. ... 60

Figure 14. C₁₅-Dihydroxynitriles 46a₁, 46a₂, 46b₁ and 46b₂. 62

Figure 15. Normal phase HPLC profile of C₁₅-dihydroxynitriles 46a₁, 46a₂, 46b₁, and 46b₂. (HPLC condition K, Appendix I). .. 62

Figure 16. ₁³C-NMR spectrum of C₁₅-dihydroxynitrile 46a₁. 63

Figure 17. ₁H-NMR spectrum of C₁₅-dihydroxynitrile 46a₁. 64

Figure 18. HMBC spectrum of C₁₅-dihydroxynitrile 46a₁. 66
Figure 19. NOESY spectrum of C\textsubscript{15}-dihydroxynitrile 46a\textsubscript{1}................................. 67
Figure 20. NOESY and HMBC crosspeaks and relative stereochemistry for 46a\textsubscript{1}...... 68
Figure 21. NOESY crosspeaks and relative stereochemistries for 46a\textsubscript{2}, 46b\textsubscript{1} and 46b\textsubscript{2}. .. 69
Figure 22. Structures of C\textsubscript{17}-epoxyethylesters. ... 80
Figure 23. C\textsubscript{17}-dihydroxyethylesters 55a, 55a\textsubscript{2}, and 55b. ... 83
Figure 24. HPLC chromatogram of C\textsubscript{15}-dihydroxyaldehydes 42a\textsubscript{1}, 42a\textsubscript{2}, 42b\textsubscript{1}, and 42b\textsubscript{2}. (Condition B, Appendix I).. 88
Figure 25. 1H-NMR spectrum of C\textsubscript{15}-dihydroxyaldehyde 42a\textsubscript{1}. 88
Figure 26. 13C-NMR spectrum of C\textsubscript{15}-dihydroxyaldehyde 42a\textsubscript{1}. 90
Figure 27. NOESY crosspeaks observed in key synthon 42a\textsubscript{1}.. 90
Figure 28. NOESY crosspeaks observed for C\textsubscript{25}-dihydroxyaldehyde 29. 93
Figure 29. HPLC chromatogram and spectra of target carotenoid 40A following purification by flash column chromatography and semi-preparative HPLC. (HPLC condition B, Appendix I)... 96
Figure 30. 1H-NMR spectrum of γ-carotene oxidation product 40A. ... 98
Figure 31. NOESY spectrum of γ-carotene oxidation product 40A. .. 99
Figure 32. Structure of 1,2,5,6-tetrahydro-2,6-cyclo-γ-carotene-1,5-diol 40A and observed NOESY crosspeaks. ... 99
Figure 33. 13C-NMR spectrum of γ-carotene oxidation product 40A. ... 100
Figure 34. HMBC spectrum of γ-carotene oxidation product 40A. ... 101
LIST OF SCHEMES

Scheme 1. Enzymes in the carotenoid biosynthesis pathway in plants and algae. 2
Scheme 2. Metabolic conversion of β-carotene (8) to vitamin A. 9
Scheme 3. Reaction of hydroxyl radical with guanine to form 8-OHdG. 13
Scheme 4. Oxidation of linoleic acid by hydroxyl radical. 16
Scheme 5. Proposed pathway for formation of by-products obtained from the reaction of β-carotene (8) with alkylperoxy radical (ROO•). 19
Scheme 6. Reaction products of singlet oxygen with olefins. 21
Scheme 7. Proposed metabolic pathway of lycopene in humans and tomato-based food products. 34
Scheme 8. C15+C10+C15 Wittig olefination strategy used by Traber and Pfander. 36
Scheme 10. Synthesis of Wittig salt 25 according to Traber and Pfander. 38
Scheme 11. Proposed metabolic oxidation of γ-carotene (6). 40
Scheme 12. Synthesis of (all-E)-β-carotene (8) via enol ether condensation. 43
Scheme 13. Synthesis of (rac)-zeaxanthin (14) via organometallic and Wittig coupling reactions. 44
Scheme 14. Synthesis of retinal (16) via an alkenyl lithium reagent. 44
Scheme 15. Reductive coupling of carbonyl compounds in the presence of low valent titanium. 45
Scheme 16. Role of titanium metal in reductive coupling of carbonyl compounds. 45
Scheme 17. Synthesis of β-carotene (8) via Julia’s sulphone coupling reaction. 46
Scheme 18. Synthesis of Z-olefins by sulphone coupling with carbonyl compounds and reduction by sodium dithionite. 47
Scheme 19. Conventional Wittig Reaction. 47
Scheme 20. Proposed oxaphosphetane and betaine intermediates in a typical Wittig reaction. 48
Scheme 21. General Wittig coupling strategy for the synthesis of astaxanthin (10) and other symmetrical carotenoids. ... 48

Scheme 22. Structures of C_{15}-aldehyde and C_{10}-phosphonium salt building blocks. 49

Scheme 23. Building blocks used for the synthesis of targeted diol 40A.
*Stereochemistries at C2, C5 and C6 will be determined. 50

Scheme 24. Retrosynthetic analysis of γ-carotene oxidation product 40A via C_{15}-dihydroxynitrile 46; *carotenoid numbering system has been used for compounds 40A-46, 29 and 50 ... 52

Scheme 25. Alternative route to the synthesis of C_{15}-dihydroxyaldehyde 42 via C_{17}-dihydroxyethylester 55. *Carotenoid numbering system has been used for compounds 42, 54 and 55. ... 54

Scheme 26. Epoxidation of alkenes by peroxide under neutral conditions. 55

Scheme 27. Epoxidation of olefins with peroxide under basic conditions. 71 56

Scheme 28. Nucleophilic epoxidation of citral (53). .. 57

Scheme 29. Epoxidation of citral (53) via a peroxycarboximidic acid intermediate. 57

Scheme 30. Synthesis of citral epoxide (48). ... 58

Scheme 31. Synthesis of 4-(diethylphosphono)-3-methyl-2-butenenitrile (49). 58

Scheme 32. Synthesis of C_{15}-epoxynitrile 47. ... 59

Scheme 33. Synthesis of 58 by Knoevenagel condensation reaction. 61

Scheme 34. Acid-catalyzed cyclization of C_{15}-epoxynitrile 47. 61

Scheme 35. Synthesis of C_{15}-dihydroxynitrile 46 by Amberlite IR-120 vs. silica gel... 72

Scheme 36. Rearrangement of 5E- and 5Z-lycopene-5,6-epoxides (23) by an S_N2 mechanism. 87 .. 73

Scheme 37. C_{15}-dihydroxynitrile 46b formed from cis-epoxide 47b via an S_N2-type reaction... 74

Scheme 38. Rearrangement of cis and trans-epoxides 47a and 47b by an S_N1-type mechanism. 87 .. 75

Scheme 39. Formation of bicyclic oxide 50 ... 76

Scheme 40. DIBAL-H reduction of C_{15}-dihydroxynitrile 46a1. 79
Scheme 41. Synthesis of C_{17}-epoxyethylester 56. ... 80
Scheme 42. Acid catalyzed intramolecular cyclization of C_{17}-epoxyethylesters 56. 81
Scheme 43. Reduction of C_{17}-dihydroxyethylester 55 to C_{15}-triol 54. 85
Scheme 44. TEMPO oxidation of C_{15}-triol 54 to C_{15}-dihydroxyaldehyde 42. 86
Scheme 45. Sequence proposed for the organocatalytic oxidation of alcohols to aldehydes with TEMPO and oxygen. ... 87
Scheme 46. Mechanism proposed for the catalytic conversion of primary alcohols to aldehydes with TEMPO. \cite{140,141} ... 87
Scheme 47. Synthesis of C_{25}-dihydroxyaldehyde 29. .. 91
Scheme 48. Synthesis of protected Wittig salt 43. ... 92
Scheme 49. Final step of the synthesis of γ-carotene oxidation product (40A). 95
Scheme 50. Mechanism proposed for epoxyalkane mediated Wittig coupling reactions. \cite{143} .. 96
Scheme 51. Synthesis of Wittig salt 44. \cite{111,112} ... 97
Scheme 52. Partial synthesis of C_{15}-dihydroxyaldehyde 42. Carotenoid numbering system has been used for compound 42. ... 103
Scheme 53. HWE synthesis of C_{15}-nitrile 58. ... 104
Scheme 54. Reduction of C_{15}-nitrile 58. ... 105
Scheme 55. Epoxidation of C_{15}-aldehyde 68 with m-CPBA 105
Scheme 56. Synthesis of target carotenoid 40A via C_{25}-aldehyde 70. 107
Scheme 57. Synthesis of C_{15}-Wittig salt 28. \cite{92} .. 108
Scheme 58. Synthesis of C_{25}-aldehyde 70. ... 109
Scheme 59. Epoxidation of C_{25} aldehyde 70 followed by cyclization to 29 109
Scheme 60. Simplified procedure for the synthesis of 40A. 111
Scheme 61. Reduction of (all-E)-12’apo-β-caroten-12’-al (74). 112
Scheme 62. Synthesis of C_{25}-Wittig salt 72. .. 112
Scheme 63. Synthesis of 40A from Wittig salt 72 and aldehyde 42. 113
Scheme 64. Synthesis of γ-carotene (6) according to the procedure by Ruegg et al.147
.. 113

Scheme 65. Possible epoxidation products of γ-carotene (6). ... 114
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>b.p.</td>
<td>boiling point</td>
</tr>
<tr>
<td>CARET</td>
<td>Carotene and Retinol Efficacy Trial</td>
</tr>
<tr>
<td>COSY</td>
<td>Correlation spectroscopy</td>
</tr>
<tr>
<td>C. cohnii</td>
<td>Crypthecodinium cohnii</td>
</tr>
<tr>
<td>2D</td>
<td>two dimensional</td>
</tr>
<tr>
<td>DHA</td>
<td>docosahexaenoic acid</td>
</tr>
<tr>
<td>DIBAL-H</td>
<td>diisobutylaluminum hydride</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N-dimethylformamide</td>
</tr>
<tr>
<td>DMPU</td>
<td>dimethylpropylene urea</td>
</tr>
<tr>
<td>ESI+</td>
<td>electrospray ionization</td>
</tr>
<tr>
<td>EPP</td>
<td>erythropoietic protoporphyria</td>
</tr>
<tr>
<td>EtOAC</td>
<td>ethyl acetate</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Association</td>
</tr>
<tr>
<td>GPx</td>
<td>glutathione peroxidase</td>
</tr>
<tr>
<td>h</td>
<td>hours</td>
</tr>
<tr>
<td>HMBC</td>
<td>heteronuclear multiple bond correlation</td>
</tr>
<tr>
<td>HDL</td>
<td>high density lipoprotein</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>HRMS</td>
<td>high resolution mass spectrometry</td>
</tr>
<tr>
<td>HSQC</td>
<td>heteronuclear single quantum correlation</td>
</tr>
<tr>
<td>HWE</td>
<td>Horner-Wadsworth-Emmons</td>
</tr>
<tr>
<td>IR</td>
<td>infrared</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>IU</td>
<td>International units</td>
</tr>
<tr>
<td>J</td>
<td>coupling constant</td>
</tr>
<tr>
<td>LAH</td>
<td>lithium aluminum hydride</td>
</tr>
<tr>
<td>LDL</td>
<td>low density lipoprotein</td>
</tr>
<tr>
<td>M⁺</td>
<td>molecular ion</td>
</tr>
<tr>
<td>m-CPBA</td>
<td>meta-chloroperoxybenzoic acid</td>
</tr>
<tr>
<td>m/z</td>
<td>mass to charge ratio</td>
</tr>
<tr>
<td>m.p.</td>
<td>melting point</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrometry</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>NOESY</td>
<td>nuclear overhauser effect spectroscopy</td>
</tr>
<tr>
<td>PCC</td>
<td>pyridinium chlorochromate</td>
</tr>
<tr>
<td>PMA</td>
<td>phosphomolybdic acid</td>
</tr>
<tr>
<td>R.T.</td>
<td>room temperature</td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxygen species</td>
</tr>
<tr>
<td>SOD</td>
<td>superoxide dismutase</td>
</tr>
<tr>
<td>TEMPO</td>
<td>2,2,6,6-tetramethylpiperidine-1-nitroxide</td>
</tr>
<tr>
<td>TBHP</td>
<td>tert-butyl hydroperoxide</td>
</tr>
<tr>
<td>TBME</td>
<td>tert-butylmethyl ether</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
</tbody>
</table>
INTRODUCTION

To date, approximately 600 carotenoids have been identified in plants, animals, algae, and food.\(^1\) These naturally occurring tetraterpenes are formed from the tail to tail linkage of two C-20 units. As such, they contain an extensively conjugated backbone composed of 40 carbon atoms with four isoprene units. End groups are either straight chain or cyclized. The most non-polar carotenoids contain only carbon and hydrogen are classified as carotenes, whereas carotenoids with end groups containing hydroxyl and/or carbonyl groups are more polar and are classified as xanthophylls. Due to their extensive conjugation, carotenoids absorb light in the 400-500 nm region of the visible spectrum. This physical property imparts the characteristic yellow to red color observed in the skin and pulp of various fruits and vegetables, photosynthetic organisms, flowers, crustaceans, bird plumage and animal flesh.

Carotenoids are synthesized in the chloroplasts of plants and other photosynthetic organisms such as algae, bacteria and some types of fungus. The biosynthetic pathway of carotenoids is shown in Scheme 1.\(^2\) Beginning with geranylgeranyl pyrophosphate, phytoene (1) is the first C\(_{40}\) hydrocarbon formed. Successive enzymatic desaturations produce phytofluene (2), \(\zeta\)-carotene (3), neurosporene (4) and lycopene (5), a straight chain carotene with 11 conjugated double bonds. The structures of these compounds are provided in Figure 1 with the conventional numbering system and definition of the \(\varepsilon\)-end group adopted for carotenoids. \(\gamma\)-Carotene (6), \(\alpha\)-carotene (7) and \(\beta\)-carotene (8) are produced by enzymatic action of cyclases. Their structures are provided in Figure 2 along with the definition of the \(\alpha\)- and \(\beta\)-end groups. Enzyme-mediated oxidation and hydroxylation further result in the production of xanthophylls such as canthaxanthin (9),
astaxanthin (10), α-cryptoxanthin (11), β-cryptoxanthin (12), lutein (13) and zeaxanthin (14). The structures of carotenoids 9-14 are shown in Figure 3.

Scheme 1. Enzymes in the carotenoid biosynthesis pathway in plants and algae.²
Figure 1. Structures of phytoene (1), phytofluene (2), ζ-carotene (3), neurosporene (4) and lycopene (5) with conventional numbering system and definition of ψ-end-group adopted for carotenoids.
Figure 2. Structures of γ-carotene (6), α-carotene (7), and β-carotene (8) with conventional numbering system and definition of α-, β- and ε-end groups adopted for carotenoids.
Figure 3. Structures of canthaxanthin (9), astaxanthin (10), α–cryptoxanthin (11), β–cryptoxanthin (12), lutein (13), and zeaxanthin (14).
As humans and animals cannot synthesize carotenoids \textit{in vivo}, these must be obtained from the diet. Of the 40-50 carotenoids found in commonly consumed foods in the United States,\(^3\) only 12 dietary carotenoids and 8 of their metabolites have been identified in human serum and tissues.\(^4,5\) While carotenoids exist primarily in the \textit{all-trans} form, processing conditions that require heat treatment result in the formation of lower levels of 9-, 13-, and 15-Z isomers, and these are absorbed into plasma to different extents.\(^6,7\) Dietary sources of \(\gamma\)-carotene (6) - the focus of this research - and other major dietary carotenoids are indicated in Table 1 along with their concentration in human plasma.

\textbf{Table 1.} Major dietary carotenoids and their concentration in human plasma.\(^5,6,8-11\)

<table>
<thead>
<tr>
<th>Carotenoid</th>
<th>Dietary Source</th>
<th>Plasma Concentration (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)-Carotene (7)</td>
<td>Pumpkin, carrots, squash, green beans, pea, lima beans, sweet potato, apricot, cantaloupe, green peas, prunes</td>
<td>81-192</td>
</tr>
<tr>
<td>(\beta)-Carotene (8)</td>
<td>Tomatoes and tomato-based products, carrot, squash, algae, broccoli, brussel sprouts, kale, spinach, green beans, sweet potato, apricot, cantaloupe, oranges, mango, honeydew melon, papaya, peaches, pumpkin, squash</td>
<td>132-332</td>
</tr>
<tr>
<td>(\beta)-Cryptoxanthin (12)</td>
<td>Orange, tangerine, mango, papaya, peaches, prunes, squash</td>
<td>149-371</td>
</tr>
<tr>
<td>(\gamma)-Carotene (6)</td>
<td>Apricot, tomatoes and tomato-based products, algae</td>
<td>71-140</td>
</tr>
<tr>
<td>Lycopene (5)</td>
<td>Tomatoes and tomato-based products, watermelon, pink grapefruit, guava, apricot</td>
<td>1041-1377</td>
</tr>
<tr>
<td>Lutein (13)</td>
<td>Dark green leafy vegetables, corn, green beans, broccoli, squash, brussel sprouts</td>
<td>135-266</td>
</tr>
<tr>
<td>Zeaxanthin (14)</td>
<td>Dark green leafy vegetables, peaches, kiwi, mango, papaya, green peas, pumpkin, squash, gogi fruit</td>
<td>35-50</td>
</tr>
</tbody>
</table>
The bioavailability from foods can vary widely, such that 5% of total carotenoids are absorbed from whole, raw vegetables whereas 50% or more can be absorbed from processed foods during consumption with some form of dietary fat. After ingestion, carotenoids are released from food in the intestinal lumen, incorporated into mixed micelles and absorbed into the intestine. Bile acids, dietary fat and protein all aid in this process. In the intestine, intact carotenoids are incorporated into the chylomicrons of low density lipoprotein (LDL) and transported to various organs and tissues via the lymph system and blood. Thereafter, carotenes are predominately distributed into LDL whereas xanthophylls are more equally distributed between LDL and high density lipoprotein (HDL).

Carotenoids are generally measured and quantitated by normal- and reversed-phase HPLC with UV/Vis detection. Of the numerous methods published, Khachik et al. described a comprehensive approach capable of measuring eighteen carotenoids in the lipid soluble portion of human plasma. The all-trans forms of lycopene (5), α-carotene (7), β-carotene (8), β-cryptoxanthin (12), lutein (13) and zeaxanthin (14) were primarily detected. Minor amounts of all-trans phytoene (1), phytofluene (2), ζ-carotene (3), neurosporene (4), γ-carotene (6) and α-cryptoxanthin (11) were also detectable along with several cis- isomers of 5 and 8, which can constitute up to 50% of the total form in serum. In addition, oxidative metabolites of 5, 13 and 14 were also measured by this method.

In addition to their presence in plasma, carotenoids are also distributed to various extents in the liver, colon, breast, adrenal gland, testes, ovary, corpus luteum, kidney, retina and adipose tissue. Distribution is thought be largely influenced by preferential
uptake into various cells as a function of structure and polarity. Further, individual carotenoids may have specialized, site-specific functions. For example, lycopene (5) is preferentially absorbed in the testes, and higher plasma levels of this carotene are uniquely associated with decreased risk for developing prostate cancer. The distribution of several carotenoids in tissues from human subjects living in Germany and the United States is shown in Table 2.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>β-Carotene (8) (nmol/g)</th>
<th>Lycopene (5) (nmol/g)</th>
<th>β-Crypto-xanthin (12) (nmol/g)</th>
<th>Lutein (13) (nmol/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td>0.8 – 8.0</td>
<td>1.3 – 5.7</td>
<td>0.1 – 3.5</td>
<td>0.1 – 12.2</td>
</tr>
<tr>
<td>Kidney</td>
<td>0.1 – 1.2</td>
<td>0.1 – 1.2</td>
<td>0.1 – 0.4</td>
<td>0.1 – 10.4</td>
</tr>
<tr>
<td>Adrenal</td>
<td>5.6 – 9.4</td>
<td>1.9 – 21.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testes</td>
<td>2.7 – 4.6</td>
<td>4.3 – 21.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovary</td>
<td>0.4 – 1.0</td>
<td>0.2 – 0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adipose</td>
<td>0.4</td>
<td>0.2 – 1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung</td>
<td>0.1 – 1.0</td>
<td>0.1 – 4.2</td>
<td>0.1 – 1.6</td>
<td>0.1 – 1.4</td>
</tr>
<tr>
<td>Colon</td>
<td>0.2</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast</td>
<td>0.7</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin</td>
<td>0.3</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Among the various carotenoids that are absorbed by humans, (6’R)-α-carotene (7), β-carotene (8), (3R)-β-cryptoxanthin (12), and γ-carotene (6) contain a β-end group. Only these carotenoids can be converted into vitamin A in the intestine, while lycopene (5) with a Ψ-end group is not a precursor to vitamin A. Vitamin A is a collective term for retinol (15) and its oxidized forms retinal (16) and retinoic acid (17), all of which play unique roles in human health and vision. While the mechanism employed by humans and non-primate animals such as quail and frogs to metabolize lutein (13) and zeaxanthin (14) in plasma, liver and ocular tissues has been reported by Khachik et al., much attention has also been given to elucidating the pathway for conversion of pro-vitamin A carotenoids into vitamin A in humans. In 1960, Glover postulated that 8 could be
converted to 16 by central fission of the C15-15’ bond in the polyene portion of the molecule.17 The theory was subsequently borne out experimentally when the enzyme β-carotenoid-15,15’-dioxygenase was isolated from the cytosol of rat liver and the intestinal mucosa of rats, rabbits, and human newborns.18,19 After partial purification, the enzyme was found to produce two molecules of retinal (16) as the major product from the central cleavage of β-carotene (8). Enzymatic transformation of 8 into vitamin A in the intestine is illustrated in Scheme 2.20 This mechanism is thought to be operative for all pro-vitamin A carotenoids.

\textbf{Scheme 2.} Metabolic conversion of β-carotene (8) to vitamin A.20
According to this process, central enzymatic cleavage of β-carotene (8) produces two molecules of retinal (16). After incorporation into chylomicrons, 16 is transported to the liver and oxidized irreversibly to retinoic acid (17) and/or reversibly reduced to all-trans retinol (15) by an enzyme using the coenzyme nicotinamide adenine dinucleotide (NADH/NAD\(^+\)). The various forms of vitamin A are bound to retinol binding proteins, released from the liver, circulated in the blood and distributed to target cells. All-trans retinol (15) can be reversibly converted to retinyl esters for storage in the liver and adipose tissue or further converted to 11-cis-retinal (18) in the rods of the eye. The binding of 18 to the visual pigment opsin is essential for vision, while retinoic acid (17) is required for cell differentiation and metabolic control.\(^{20,21}\) In addition to retinal, products resulting from the non-symmetrical, or excentric cleavage of β-carotene (8) have been isolated following incubation with intestinal mucosa homogenates from humans,\(^{22}\) and the excentric cleavage of provitamin A carotenoids is now also widely accepted. For a review on the nutritional and biological properties of vitamin A in humans, see the review by Ross and Harrison.\(^{23}\)

The focus of this dissertation is to develop a strategy for the synthesis of possible oxidation products of γ-carotene (6) that may be potentially formed in biological systems as a result of metabolism of this carotenoid. Because the structure of 6 is a hybrid of the structures of β-carotene (8) and lycopene (5), it is appropriate to describe the metabolism and biological activities of these carotenoids in prevention of chronic diseases. In addition, much of the biological activities of these carotenoids are based on their antioxidant mechanism of action. Therefore, the evidence for the interaction of carotenoids with reactive oxygen species (ROS) should first be considered.
Oxygen has damaging effects on aerobic organisms. Rodents exposed to 100% oxygen for periods ranging between several hours to one month exhibited mitochondrial damage of the heart and liver, degeneration of seminiferous epithelium, decreased sperm counts and inhibited erythroid cell development in bone marrow. Humans undergoing hyperbaric oxygen therapy developed haemorrhages in the inner ear and deafness. Plants exhibit diminished leaf growth at elevated oxygen concentrations. Molecular oxygen in its ground state is essentially unreactive toward non-radical species, leading Gershman and Gilbert to propose in 1954 that the damaging effects of oxygen could be attributed instead to the effects of ROS.\(^{24}\)

Biologically relevant ROS include the superoxide radical anion, hydrogen peroxide, hydroxyl radical, peroxynitrite anion, nitric oxide radical, nitrogen dioxide radical and singlet oxygen. In plants and algae, ROS are produced endogenously in chloroplasts during photosynthesis. In aerobic organisms, ROS are produced for useful purposes such as wound repair under typical conditions of oxygen metabolism as by-products of electron transport reactions occurring in mitochondria, and by neutrophils and macrophages during inflammation as a response to infection and by platelets involved in wound repair. ROS can also be generated during exposure to ionizing radiation, such as UV light and X-rays, while atmospheric pollution represents an exogenous source of ROS.\(^{24}\)

The \textit{in vivo} formation of ROS begins with the reduction of oxygen to water by oxygen reductase in cytochrome a\(_3\) in mitochondria and cytochrome P\(_{450}\) in microsomes to produce the superoxide radical anion O\(_{2}^{-}\) (Equation 1).\(^{25}\) Under physiological conditions, the superoxide radical anion can be protonated form hydrogen peroxide H\(_2\)O\(_2\)
Detectable levels of hydrogen peroxide are present in the lens and breath of human subjects, and are also present in cigarette smoke.26 Endogenous levels are capable of penetrating cell membranes and oxidizing sulfhydryl residues of proteins. The concentrations of superoxide radical anion and hydrogen peroxide must be rigorously controlled, otherwise iron can catalyze formation of the hydroxyl radical HO$^\cdot$ by the superoxide-assisted Fenton reactions depicted in Equations 3 and 4.24

\begin{align*}
o_2 + e^- & \rightarrow o_2^- \quad \text{(Equation 1)} \\
2h^\cdot & \quad \text{2H}^\cdot \\
2o_2^- & \leftrightarrow h_2o_2 + o_2 \quad \text{(Equation 2)} \\
o_2^- + fe^{3+} & \rightarrow o_2 + fe^{2+} \quad \text{(Equation 3)} \\
h_2o_2 + fe^{2+} & \rightarrow fe^{3+} + ho^- + ho^\cdot \quad \text{(Equation 4)}
\end{align*}

\begin{align*}
o_2^- + no^\cdot & \rightarrow o-n-o-o^- \quad \text{(Equation 5)} \\
\text{UV-C}
\end{align*}

Another source of the hydroxyl radical is from the homolytic dissociation of the peroxynitrate anion, formed by reaction of the superoxide radical anion and the nitric oxide radical in the presence of UV-C light (Equation 5). The rapid, irreversible reaction of the hydroxyl radical makes this species the most reactive free radical towards many types of molecules found in living cells including phospholipids, sugars, amino acids and the nucleotides of DNA and RNA resulting in impaired function and strand breaks. The addition of hydroxyl radical to the purine base guanine to form 8-OHdG, one of the major products of DNA oxidation, is shown in Scheme 3.24
Scheme 3. Reaction of hydroxyl radical with guanine to form 8-OHdG.

Biological systems employ antioxidant enzymes such as catalases, superoxide dismutase and glutathione to prevent accumulation of ROS that would otherwise damage cell structures.\(^{14}\) Hydrogen peroxide is decomposed by the catalase enzyme to water and oxygen,\(^{27}\) and metabolized in mitochondrial and cytosolic compartments to water by the selenium-containing enzyme glutathione peroxidase (GPx), as shown in Equation 7. The active site of the enzyme contains glutathione (GSH), a tripeptide cofactor.

\[
\text{GPx} \quad 2\text{GSH} + \text{H}_2\text{O}_2 \rightarrow \text{GSSG} + \text{H}_2\text{O} \quad \text{(Equation 7)}
\]

Mitochondrial superoxide dismutase (SOD) enzymes catalyze the dismutation of superoxide anion into oxygen and hydrogen peroxide by the processes shown in Equations 8 and 9 respectively. The cytosolic SOD enzyme requires manganese.\(^{24}\)

\[
\text{Cu}^{2+}\text{–SOD} + \text{O}_2^- \rightarrow \text{Cu}^{1+}\text{–SOD} + \text{O}_2 \quad \text{(Equation 8)}
\]

\[
\text{Cu}^{1+}\text{–SOD} + \text{O}_2^- \rightarrow \text{Cu}^{2+}\text{–SOD} + \text{H}_2\text{O}_2 \quad \text{(Equation 9)}
\]

Carotenoids represent another class of essential, yet non-enzymatic micronutrients that can sequester free radicals. Truscott proposed that superoxide radical anion could be converted to hydrogen peroxide by \(\beta\)-carotene (8) in lung tissue exposed to cigarette smoke (Equation 10).\(^{28}\)
The peroxynitrite anion ONO_2^- is produced in plasma membranes and mitochondria by the reaction of nitric oxide ($\bullet \text{NO}$) and superoxide radical anion as shown in Equation 11.29 Steady state concentrations are estimated to be in the nM range. Under physiological conditions the anion is protonated to peroxynitrous acid (ONOOH), which can cross cell membranes within 5-20 μm of its site of origin. Within the hydrophobic core, peroxynitrous acid can undergo homolytic dissociation to produce hydroxyl radicals and nitrogen dioxide radicals ($\bullet \text{NO}_2$) as shown in Equation 12. These ROS can in turn oxidize unsaturated lipids and LDL and modify proteins containing tyrosine residues by nitration.

\[
\bullet \text{NO} + \text{O}_2^- \rightarrow \text{O}=\text{N}−\text{O}−\text{O}^- \quad \text{(Equation 11)}
\]

\[
\text{O}=\text{N}−\text{O}−\text{O}−\text{H} \rightarrow \bullet \text{OH} + \bullet \text{NO}_2 \quad \text{(Equation 12)}
\]

Pathological conditions associated with endogenous peroxynitrite anion include vascular inflammation and dementia,29 and coronary heart disease.30 Results of in vitro studies provided evidence that carotenoids such as lycopene (5), β-carotene (8) and astaxanthin (10) can scavenge peroxynitrite anion directly to produce a series of apocarotenal and nitration products. These observations suggest a possible role for carotenoids in mitigating the effects of peroxynitrite in vivo.31

Hydroxyl radicals formed by the Fenton reaction are mainly responsible for initiation of lipid oxidations.32 Lipid peroxidation is initiated by and propagated from uncontrolled reaction of alkyl and/or alkoxy radical free radicals with essential unsaturated fatty acids to produce lipid hydroperoxides and lipid polymers. These events change the
functionality of lipids which can lead to pathological conditions such as Alzheimer’s disease. The article by Cerutti summarizes supporting evidence for the roles played by lipid peroxidation in human carcinogenesis.

In tissues exposed to oxygen, lipid peroxidation can be represented as follows:

Initiation

\[L-H + HO\cdot \rightarrow L\cdot \] \hspace{1cm} (Equation 13)

Chain Propagation

\[L\cdot + O_2 \rightarrow LOO\cdot \] \hspace{1cm} (Equation 14)

\[LOO\cdot + LH \rightarrow LOOH + L\cdot \] \hspace{1cm} (Equation 15)

Termination

\[L\cdot + L\cdot \rightarrow L-L \] \hspace{1cm} (Equation 16)

\[LOO\cdot + L\cdot \rightarrow LOOL \] \hspace{1cm} (Equation 17)

During initiation, the hydroxyl radical abstracts an allylic hydrogen atom from a lipid L to form a lipid radical L• (Equation 13). During the propagation phase, the lipid radical combines with oxygen to afford a lipid peroxyl radical LOO• (Equation 14) which can in turn abstract a hydrogen atom from a vicinal lipid LH (Equation 15). In the absence of chain breaking antioxidants, lipid peroxidation can be terminated by the combination of radical species to form non-radical products such as dimerized lipids L-L (Equation 16) and lipid peroxides LOOL (Equation 17). To illustrate the processes of initiation and propagation, the hydroxyl radical-initiated oxidation of linoleic acid is shown in Scheme 4.
Scheme 4. Oxidation of linoleic acid by hydroxyl radical.\(^{32}\)

Lipid hydroperoxides formed in the membrane tend to adopt an orientation that allows the polar end of the molecule to move out of the hydrophobic core, and thus have the potential to disrupt the native architecture. Moreover, Diplock proposed that such events could activate a phospholipase enzyme that would cleave the peroxidized fatty acid (LOOH) from the phospholipid, rendering it susceptible to iron-catalyzed degradation to produce additional reactive radicals LOO• and LO• by the process shown in Equations 18 and 19.\(^{25}\)

\[
\text{LOOH} + \text{Fe}^{3+} \rightarrow \text{LOO}^• + \text{Fe}^{2+} + \text{H}^+ \quad \text{(Equation 18)}
\]

\[
\text{LOOH} + \text{Fe}^{2+} \rightarrow \text{LO}^• + \text{Fe}^{3+} + \text{HO}^– \quad \text{(Equation 19)}
\]

Lipid peroxides (LOOH) can be decomposed by hydroperoxidases and glutathione to non-radical products such as alcohols (LOH) as shown in Equations 20 and 21, respectively.\(^{27}\)
While vitamin E is the major lipid-soluble chain breaking antioxidant \textit{in vivo},32 carotenoids containing an allylic hydrogen atom at C4 such as β-carotene (8) and lycopene (5) can also attenuate lipid oxidation by intercepting the hydroxyl radical to form a resonance-stabilized free radical that is less reactive towards lipids and oxygen, as shown in Equation 22. Ultimately, carotenoids can terminate lipid peroxidation by combining with lipid free radicals L• to produce non-radical products as shown in Equation 23.26,32

Experimental evidence from \textit{in vitro} studies confirms that β-carotene (8), lycopene (5), zeaxanthin (14), astaxanthin (10) and canthaxanthin (9) are reactive towards hydroxyl radicals generated in a bulk phase.35 Woodal and colleagues used a prototypical Fenton reaction to generate the hydroxyl radical from a mixture of ferric chloride, sodium ascorbate and hydrogen peroxide. The mixture was added to a solution
of carotenoid dissolved in alcoholic benzene. Reactions were monitored by visible absorption spectroscopy at the maximum wavelength of each carotenoid. Oxidation was evidenced by loss of absorbance and accompanied by rapid photobleaching. The slope of the initial tangent to the curve generated by plotting % residual pigment versus time was used to rank the antioxidant capacity of each carotenoid. Reactivity decreased in the order lycopene (5) > β-carotene (8) > zeaxanthin (14) > canthaxanthin (9) > astaxanthin (10).

The electron withdrawing nature of the oxo group at C4 in canthaxanthin and astaxanthin was used to rationalize their decreased reactivity compared to that of lycopene and β-carotene. Semiempirical calculations confirmed that the electron density is substantially reduced at C4, C5 and C6 in astaxanthin.

Reaction of β-carotene, lycopene, zeaxanthin, astaxanthin and canthaxanthin with alkyl peroxyl radicals have also been modeled in benzene containing the free radical initiator 2,2’-azobis-2,4-dimethylvaleronitrile (AMVN) or 2,2’-azobis-isobutyronitrile (AIBN) and oxygen. The initiators dissociate at 37 °C to produce a steady supply of alkyl radicals (R•), which react with oxygen to form alkyl peroxyl radicals (ROO•). These radicals reacted with carotenoids in the following decreasing order: Lycopene > β-carotene > zeaxanthin > canthaxanthin > astaxanthin. Reaction of 8 with AMVN produced a complex mixture of epoxides, apo-carotenones and apo-carotenals by a mechanism consistent with alkoxyl radical addition to the conjugated polyene chain. Several of the products are shown in Scheme 5.
Scheme 5. Proposed pathway for formation of by-products obtained from the reaction of β-carotene (8) with alkylperoxyl radical (ROO•).36

The practical significance of alkyl radical scavenging properties exhibited by carotenoids was illustrated by in vitro studies were lycopene (5), β-carotene (8) and α-carotene (7) suppressed peroxidation of methyl linoleate fatty acid ester in a dose-dependent manner.35,38 The concentration of oxygen in tissues furthest from blood supply and in capillaries of active muscle is reportedly near 20 torr.27 Therefore, carotenoids are theoretically capable of scavenging lipid peroxyl radicals that might be generated in tissues under physiological conditions.
Singlet oxygen is formed *in vivo* during the oxidation of unsaturated lipids by lipoxygenase, by neutrophils during respiratory burst where chloride or bromide ions are oxidized by myeloperoxidases needed for phagocytosis, and in living human eosinophils incubated in the presence of physiological concentrations of bromide ion. Upon exposure to UV light, singlet oxygen is generated in cells containing photosensitizers (Sen) such as chlorophyll, riboflavin, retinal, lipofuscin and dermal porphyrins. Light induces electronic transitions within these molecules, raising them to an excited state Sen* (Equation 24). The excess energy can be transferred to proximal ground-state oxygen molecules (3O$_2$) to produce singlet oxygen, while the photosensitized molecule Sen* returns to its ground state (Equation 25).

$$\text{Sen} + h\nu \rightarrow \text{Sen}^*$$ \hspace{1cm} (Equation 24)

$$\text{Sen}^* + ^3\text{O}_2 \rightarrow \text{Sen} + ^1\text{O}_2$$ \hspace{1cm} (Equation 25)

Unintercepted singlet oxygen can react with sensitizer molecules themselves and cause single-strand breaks in DNA. In biological tissue, singlet oxygen reacts with double bonds in unsaturated fatty acids and other biomolecules to produce endoperoxide, allyl hydroperoxide and dioxetane by-products as shown in Scheme 6. Being the more electrophilic species, singlet oxygen reacts with carbon-carbon double bonds 1500 times faster than ground state oxygen. Examples of destructive structural changes induced by singlet oxygen in humans are the development of macular degeneration and cataracts.
Scheme 6. Reaction products of singlet oxygen with olefins.32

Endogenous carotenoids are able to play a protective role by absorbing the excess energy from singlet oxygen, thereby entering into an excited triplet state, 3Carotenoid* (Equation 26). Excited state carotenoids subsequently relax back to the ground state (Carotenoid) \textit{via} loss of heat to the surroundings (Equation 27). In this process, known as physical quenching, the carotenoid is regenerated rendering it available to undergo further quenching cycles with singlet oxygen.

$$^1\text{O}_2 + \text{Carotenoid} \rightarrow ^3\text{O}_2 + ^3\text{Carotenoid}^*$$ \hspace{1em} (Equation 26)

$$^3\text{Carotenoid}^* \rightarrow \text{Carotenoid} + \text{heat}$$ \hspace{1em} (Equation 27)

The direct reaction of β-carotene (8) with singlet oxygen occurs up to 0.1\% of the time by a process known as chemical quenching.14 Apo-carotenals, apo-carotenones and endoperoxide by-products are obtained, as shown in Figure 4.41 Similar types of by-products from chemical quenching studies with lycopene (5) irradiated with UV light in the presence of methylene blue sensitizer have also been isolated and characterized.6
Figure 4. Products derived from chemical quenching of β-carotene (8) with singlet oxygen generated by illuminating a mixture of 8/Rose Bengal/oxygen in organic solvent.41

The relationship between carotenoid structure and its reactivity towards singlet oxygen was gleaned from studies conducted by Di Mascio \textit{et al.}42 Quenching rate constants were directly proportional to the length and planarity of the conjugated C=C chain. Compounds containing less than 8 double bonds such as retinoic acid (17) were incapable of quenching singlet oxygen. Lycopene (5) contains 11 conjugated planar double bonds, and exhibited the greatest quenching rate constant in a bulk phase, compared to the other carotenoids studied. Other studies also established 5 to be the most reactive carotenoid towards singlet oxygen.43 Steric interactions between the C5 methyl group of the β-ionone ring and the vinylic proton on C8 in γ-carotene (6) cause the linear
portion of the conjugated backbone to rotate slightly out of the plane of the end group double bond, reducing orbital overlap on one end of the molecule. Orbital overlap is further decreased in β-carotene (8). Accordingly, quenching rate constants were found to decrease in the order lycopene (5) > γ-carotene (6) > β-carotene (8). Carotenoids with a keto group at C4 such as astaxanthin (10) and canthaxanthin (9) displayed enhanced quenching ability relative to 8. The effect was attributed to the substituent’s ability to lower the incipient triplet energy level of the carotenoid following energy transfer from the excited state of oxygen.42

Evidence for a protective role of carotenoids against singlet oxygen was established from in vitro studies demonstrating that 8 could suppress the chlorophyll-sensitized photooxidation of methyl linoleate in solution.44 Wagner et al. further demonstrated protective effects of carotenoids against singlet oxygen-mediated peroxidation of lipid residues in the LDL portion of human plasma. Thermal decomposition of a synthetic endoperoxide was used to generate singlet oxygen, which reacted with apo-β-protein at the hydrophilic interface of LDL, resulting in significant formation of phospholipid-hydroperoxides. Levels of lycopene (5) and β-carotene (8) versus lipid hydroperoxides in LDL were inversely correlated.44 The ability of carotenoids to prevent singlet oxygen-mediated lipid oxidation was further demonstrated by Tinkler and colleagues. When human lymphoid cells were illuminated in the presence of the photosensitizer Rose Bengal and any of the carotenoids lycopene (5), β-carotene (8), astaxanthin (10) or canthaxanthin (9), membrane damage was significantly attenuated by the presence of carotenoids.45 Efficacy decreased in the order lycopene (5) > β-
carotene (8) > astaxanthin (10) > canthaxanthin (9), as was also predicted by Di Mascio.42

\textit{In vivo} studies also provide evidence for a protective role of carotenoids against tissue damage from singlet oxygen in human subjects afflicted with the disease erythropoietic protoporphyria (EPP). EPP is caused by a deficiency of specific enzymes needed to produce and use porphyrins that are necessary for proper hemoglobin synthesis. The disease causes abnormal amounts of porphyrins sensitizers to build up in the body. Exposure to UV light triggers the formation of singlet oxygen in cutaneous skin, producing rashes, blistering, and scarring. However, oral supplementation with β-carotene (8) significantly increases the amount of time subjects can spend outdoors and is the only systemic treatment of EPP approved by the FDA.46

The protective effect of lycopene (5) against chronic UV damage in humans has also been demonstrated. When skin from the forearm of 16 women was exposed to a single dose of UV radiation equal to three times the amount necessary to induce minimal erythema, the concentration of 5 decreased from 31-46\% compared to levels of 5 in adjacent, non-exposed skin. Concentrations of β-carotene (8) were unaffected, suggesting that 5 is more protective than 8 against oxidative damage to tissues.47

A broad range of \textit{in vitro} studies have established that antioxidants can effectively mitigate damage to DNA and delay or significantly inhibit lipid peroxidation and a variety of malignant transformations.14 The extensively conjugated polyene chain of carotenoids can effectively absorb light and quench deleterious ROS generated endogenously, such as singlet oxygen, hydroxyl radicals, and lipid peroxyl radicals.41 As such, carotenoids are effective antioxidants. As evidence for their ability to function as
antioxidants in vivo, oxidized metabolites of lutein, zeaxanthin and lycopene have been detected and identified in human serum and milk.3-5 Moreover, in a 4-week study to compare the bioavailability of lycopene from food versus supplements, the concentration of a lycopene metabolite was significantly higher in the plasma of human subjects relative to baseline concentrations after having consumed a controlled amount of lycopene twice per day from tomato juice, tomato oleoresin and lycopene beadlets.48

Factors that influence the antioxidant activity of carotenoids in biological systems include their structure, cellular orientation, concentration, the partial pressure of oxygen and synergistic interaction with other antioxidants.26 The hallmark feature of all carotenoids is the extensively conjugated double bond system. This structural element is necessary for energy transfer reactions that occur during photosynthesis and endows carotenoids with the special ability to quench singlet oxygen without being consumed. Their lipophilic nature restricts carotenoids to hydrophobic regions of cells, although polar substituents influence their solubility and orientation within membranes. For example, the hydroxyl end groups of zeaxanthin (14) tend to anchor this carotenoid vertically across a lipid bilayer membrane whereas more hydrophobic carotenes such as \(\beta \)-carotene (8) and lycopene (5) tend to be horizontally positioned within the hydrophobic core, as shown in Figure 5. Different orientations are expected to affect membrane fluidity and importantly, oxygen permeability, as lower levels of intracellular oxygen are expected to result in less lipid peroxidation. Orientation also influences the local environment within a cell, as evidenced by the unique effects of different carotenoids on the organization and function of pigment-protein complexes associated with light harvesting in plants.26
Carotenoids appear to interact synergistically with other antioxidants, especially vitamins C and E. Evidence for the plausibility of this mechanism was provided by Jialal et al., who demonstrated that ascorbate effectively preserved 76% and 95% of native tocopherols and \(\beta\)-carotene (8) present in human LDL during copper (II) mediated production of lipid peroxides, respectively. In the absence of vitamin C, 8 was undetected while 5% of the total tocopherols remained after the experiment. Meanwhile, Palozza and Krinsky demonstrated that a combination of 8 and \(\alpha\)-tocopherol could inhibit free radical induced lipid peroxidation of rat liver microsomes to a greater extent than the sum of the inhibition afforded by either compound alone.

While epidemiological studies have demonstrated an inverse correlation between increased consumption of dietary \(\beta\)-carotene (8) and the development of lung cancer, pro-oxidant effects have actually been observed in studies involving high doses of 8 administered in supplement form. The CARET (Carotene and Retinol Efficacy Trial) study was conducted in 18,000 high-risk smokers in the US. During the study, researchers found that consumption of a daily combination of 30 mg 8 and 25,000 international units (IU) retinyl palmitate resulted in a 28% increase in the incidence of
lung cancer and the trial was ended 21 months prematurely.51 Because cigarette smoke contains hydrogen peroxide and superoxide anion radical, these phenomenon were thought to result from pro-oxidative effects produced by extraordinary levels of oxidative by-products having formed in the presence of these ROS and oxygen in lung.14 It is interesting to note that lung tissue taken from ferrets exposed to cigarette smoke contained higher concentrations of oxidation by-products of \(\beta\)-carotene (8) compared to controls.26

In support of this hypothesis, benzo[a]pyrene metabolites were found to bind more effectively to calf thymus DNA in the presence of oxidative products of BC while binding was inhibited by \(\beta\)-carotene itself.52 In an \textit{in vitro} model, Lowe \textit{et al.} demonstrated that higher levels of endogenous carotenoids can lose their antioxidant effects. Hydrogen peroxide was generated by the xanthine/xanthine oxidase system in the presence of HT29 cells, and either \(\beta\)-carotene (8) or lycopene (5). Both carotenoids protected cells against oxidative damage to DNA at concentrations up to 3 \(\mu\)M, or typical levels that would be present in the plasma of human subjects consuming dietary carotenoids. However at concentrations three times this level, the protective effects of both 8 and 5 were lost.53

The first observation of the biological activity of lycopene (5) was reported by Ernster and co-workers in 1959, who showed a significant increase in the survival rate among mice exposed to X-Rays after intraperitoneal injections with 5/Tween-80/saline, compared to controls.54 The same year, the authors also demonstrated a significant increase in the survival of mice receiving either \(\beta\)-carotene (8) or 5 by the same route of
administration, prior to infection by a highly virulent strain of K. pneumonia bacteria.55 Other biological properties of 5 have been reviewed by Nguyen and Schwartz.38

In 1968, the discovery by Foote and colleagues that 8 is capable of deactivating singlet oxygen stimulated further interest on the potential biological effects of this and other carotenoids.56 In 1977, Epstein conducted the first experiment demonstrating a significant inverse correlation between the development and growth of UV induced skin tumors in mice receiving 8 by intraperitoneal injection.57 These observations led Peto \textit{et al.} to propose in 1981 that dietary β-carotene (8) could be associated with a decreased risk for cancer development in humans.58 The hypothesis has been supported by results from many biological59 and epidemiological studies that have consistently established an inverse correlation between consumption of carotenoid-rich fruits, vegetables and juices and the risk of developing cancers of the mouth and throat, epithelial, breast, cervix, bladder, pancreas and prostate gland.60-63 Beyond chemoprevention, dietary carotenoids have been shown to confer significant protection against developing age-related macular degeneration,64 ischemic stroke,65 and cardiovascular disease.66,67 Although these foods contain many nutritionally relevant vitamins and minerals, carotenoid content has often been correlated most strongly with decreased risk.68

Beyond the value of carotenoids in mitigating tumor development in mice,3,6,57,69,70 results from an \textit{in vitro} study showed that lycopene (5) was capable of inhibiting the proliferation of human endometrial, mammary and lung cancer cells seeded in culture media to a greater extent than α-carotene (7) and β-carotene (8). The enhanced effect of lycopene was attributed to its proven ability to suppress secretion of specific insulin-like growth factors that stimulate uncontrolled division in endometrial and breast
cancer cells.71,72 Strong evidence that dietary carotenoids can discourage development of cancer in humans was provided by results from a human intervention study led by Pool-Zobel.73 In subjects consuming either lycopene from tomato juice, \(\alpha \)-carotene and \(\beta \)-carotene from carrot juice or lutein from powdered spinach, the number of DNA strand breaks in peripheral blood lymphocytes was significantly lower than in controls.

Results from clinical trials have shown that retinoids can be used topically or administered orally to effect regression of premalignant lesions, reduce the number of primary lesions and prevent occurrence of secondary malignancies in basal and squamous cell skin cancers in humans.74 While the provitamin A activity of \(\beta \)-carotene (8) and \(\alpha \)-carotene (7) may be invoked to explain the tumor suppressive properties of these carotenoids, the proven efficacies of lycopene (5), lutein (13) and canthaxanthin (9) suggests that provitamin A activity is not a necessary condition for the tumor suppressive function of carotenoids. Nevertheless, dietary retinoids are generally recognized for their ability to prevent a variety of human cancers by increasing the expression of connexin 43, the most widely expressed member of the family of genes that codes for the transcription of a connexin, a gap junction protein necessary for direct transfer of signals, nutrients and waste products between contacting cells.75,76 In many studies, increased gap junction communication has been associated with increased control over cancerous growth.77 In regards to this finding, several researchers showed that diverse carotenoids such as zeaxanthin (14), lycopene (5), \(\beta \)-carotene (8), and canthaxanthin (9) increased gap junctional communication in mouse embryo fibroblasts and cultured human keratinocytes in a dose-dependent manner.3,78
In this regard, the ability to upregulate the expression of connexin 43 may be one mechanism by which carotenoids function as chemopreventive agents. As was the case for tumor suppression, provitamin A activity alone does not explain the enhanced gap junctional communication afforded by canthaxanthin, zeaxanthin and lycopene. Further, Stahl found no correlation between the singlet oxygen quenching ability of carotenoids and their ability to enhance gap junctional communication in mouse cells79 while Zhang found no correlation between the ability of carotenoids to inhibit lipid peroxidation and GJC communication.78 Therefore, carotenoids appear to be able to modulate the development of cancer by several mechanisms.

While catalases and peroxidases effectively control the amount of hydrogen peroxide and lipid peroxide that can accumulate intracellularly, epoxidation of lycopene might provide an alternative mechanism for scavenging hydrogen peroxide generated \textit{in vivo}. In support of this hypothesis, a series of oxygenated carotenoids including lycopene-1,2-epoxide (19) have been isolated from red tomato fruit80-82 and guava juice.83 Identification of 19 was based on retention time by HPLC, properties of the UV-visible absorption spectra, and results of mass spectral analysis compared with a standard of lycopene-1,2-epoxide synthesized by reaction of lycopene with \textit{m}-chloroperoxybenzoic acid (\textit{m}-CPBA). The structure of 19 is shown in Figure 6.

![Figure 6. Lycopene-1,2-epoxide (19).](image)

In a formal study conducted by Lu \textit{et al.}, 19 was synthesized with either \textit{m}-CPBA or acidified hydrogen peroxide reagents in 10\% and 4\% yields, respectively.84
Significantly, a new oxidation product of lycopene was isolated from the reaction mixtures and given the name 1,5-epoxyiridanyl-lycopene (20), as shown in Figure 7.

![Figure 7. 1,5-Epoxyiridanyl-lycopene (20).](image)

Compound 20 was produced in 2% and 6% yields when lycopene was treated with m-CPBA or acidified hydrogen peroxide, respectively. Both reactions were carried out in methylene chloride. The structural characterization and relative stereochemistry of 20 were assessed by molecular weight determination by mass spectral analysis, UV-visible absorption characteristics, IR spectra and 2D NMR experiments.

In 1997, Yokota et al.85 also accomplished the synthesis of 19 and 20 in 4% and 6.5% yields respectively from the epoxidation of lycopene with acidified hydrogen peroxide in methylene chloride. Moreover, a novel hydrolyzed derivative of 20 was isolated in 3.3% yield from the chemical synthesis and named 1,5-dihydroxyiridanyl-lycopene (21). Yokota also isolated 21 from tomato puree in 0.0003%.85 The structure of 21 is shown in Figure 8.

![Figure 8. 1,5-Dihydroxyiridanyl-lycopene (21).](image)
Structural characterization and relative stereochemistry of **21** were assessed by molecular weight determination by mass spectral analysis, UV-visible absorption characteristics, IR spectra and 2D NMR experiments.

Oxidized metabolites of lycopene have also been identified by Khachik *et. al.* based on results of HPLC analyses. In 1992, lycopene-1,2-epoxide (**19**) was detected in tomatoes and tomato paste.\(^{82}\) In 1997, diol **21** and its diastereomer **22** were detected in the serum and milk of lactating mothers.\(^{4}\) The structure of **22** is shown in Figure 9.

![Figure 9. Structure of 2,6-Cyclolycopene-1,5-diol (22) identified by Khachik.](image)

Lycopene oxidation with *m*-CPBA was studied more extensively by Khachik *et al.* who proved that this compound is first oxidized at the 1,2- and the 5,6-positions to form lycopene-1,2-epoxide (**19**) and lycopene-5,6-epoxide (**23**), based on the reversed phase HPLC profile of the crude reaction.\(^{86}\) The structure of **23** is shown in Figure 10.

![Figure 10. Lycopene-5,6-epoxide (23).](image)

After purification by flash column chromatography on silica gel, **19** was found to be quite stable and was isolated in 15% yield. However, **23** was shown to be highly unstable in the presence of mildly acidic hydroxyl groups on silica and underwent intramolecular cyclization during normal phase HPLC and purification by flash column
chromatography to give a mixture of bicyclic oxides 20 and 24 in 12% and 2% respectively. The structure of 24 is shown in Figure 11, and has been given the name 2,6-cyclolycopene-1,5-epoxide.

![Figure 11](image)

Figure 11. Structure of 2,6-cyclolycopene-1,5-epoxide (24) isolated by Khachik *et al.*

Diols 21 and 22 were also isolated in 12% and 4%, respectively. Bicyclic oxides 20 and 24 and 2,6-cyclolycopene-1,5-diols 21 and 22 were also identified in tomato paste, tomato juice and human serum. Their structures and relative stereochemistry were confirmed by comparison of the HPLC-UV/Vis-MS profiles with those of fully characterized synthetic compounds. Detailed structural assignments were based on results from COSY, DEPT-135, HMQC and HMBC NMR experiments. The diols contain three asymmetric centers at C2, C5, and C6. While the relative configurations at these centers were determined by a T-ROESY experiment, the absolute configurations of these diols were not established.

Based on results from the chemical oxidation of lycopene with *m*-CPBA and the detection of the 1,5-bicyclic oxide and 1,5-diol metabolites in tomato products, Khachik *et al.* proposed the metabolic pathway for lycopene shown in Scheme 7. Accordingly, lycopene 1,2- and 5,6-epoxides (19 and 23) might be formed under typical conditions for metabolic oxidation in biological tissues. Intramolecular rearrangement of lycopene-5,6-epoxide (23) can afford bicyclic oxides 20 and 24 as intermediates under acidic conditions present in tomato fruit and during digestion, although neither bicyclic oxide
has been detected in human serum to date. Ultimately, the bicyclic oxides can undergo acid and/or enzyme-mediated ring opening to the respective diols 21 and 22.

Scheme 7. Proposed metabolic pathway of lycopene in humans and tomato-based food products.

87
It is interesting to note that supplementation of healthy human subjects with purified lycopene was accompanied by increased serum levels of diols 21 and 22.48 Results of in vitro studies provide evidence for the biological activity of these diols. These metabolites were more effective than lycopene in up-regulating the transcription of connexin 43 in mouse embryonal fibroblasts and human keratinocytes at concentrations present in serum.3,68,88 Further, results from an in vitro study conducted by the Division of Cancer Treatment and Diagnosis at the National Cancer Institute demonstrated that diols 21 and 22 can inhibit the growth of solid human tumor cells of the breast, lung and central nervous system to 32\% or less compared to untreated cells. The compounds were further tested over five concentration ranges in a 60-cell panel and found to moderately inhibit the growth of leukemia, non-small cell lung, colon, melanoma, ovarian, renal, kidney, central nervous system and prostate tumors in humans.89 The biological activities of 21 and 22 may explain some of the chemopreventive effects associated with lycopene.

To date, the only total synthesis of diol 21 was accomplished by Traber and Pfander in 1998.90 Their strategy was based on the C\textsubscript{15}+C\textsubscript{10}+C\textsubscript{15} double Wittig coupling reaction shown in Scheme 8. The novel Wittig salt 25 was prepared with defined relative stereochemistry from α-terpinylacetate (26) in 7 steps in 6.5\% overall yield. The C\textsubscript{10}-dialdehyde synthon 27 (2,7-dimethyl-2,4,6-octatrien-1,8-dial) was commercially available while Wittig salt 28 was prepared according to the procedure previously reported in high yield for the synthesis of lycopene91 and several Z-isomers of lycopene.92
Scheme 8.

$C_{15}+C_{10}+C_{15}$ Wittig olefination strategy used by Traber and Pfander.90

The stepwise coupling of synthons 25, 27 and 28 is illustrated in Scheme 9. Wittig salt 25 was first coupled with C$_{10}$-dialdehyde (27) under basic conditions in methylene chloride at room temperature to afford the C$_{25}$-cyclized aldehyde intermediate (29) in 28% yield. Use of a slight excess of 25 and the decreased reactivity of the longer chain aldehyde 29 encouraged formation of the monocondensation product. In the final step, 29 was coupled with Wittig salt 28 using sodium hydroxide in methylene chloride under reflux to produce 21 in 41% yield. The overall yield of 2,6-cycloycopene-1,5-diol (21) was 0.8% from the alpha-terpinyl acetate (26).

To arrive at Wittig salt 25, Traber and Pfander employed the strategy shown in Scheme 10. The starting material alpha-terpinyl acetate (26) was oxidized under neutral conditions with KMnO₄ to yield the vicinal diol 30, which underwent oxidative cleavage with lead tetraacetate to ketoaldehyde 31. Intramolecular aldol condensation of 31 in the presence of piperidine followed by treatment with acetic acid resulted in the formation of the formylocyclopentanol 32 with the indicated relative stereochemistry. After the alcohol moiety was protected with TMSCl to afford 33, aldol condensation with the enolate anion of acetone produced the α,β-unsaturated ketone 34. Alkylation with vinylmagnesium bromide produced allylic alcohol 35. In the final step, reaction of 35 with Ph₃P-HBr afforded Wittig salt 25. Traber and Pfander’s synthesis of 25 was accomplished in just 6.5% overall yield from 26.
Scheme 10. Synthesis of Wittig salt 25 according to Traber and Pfander.90

Upon formation of 32, two new stereocenters were generated. The stereochemistry of 32 was established by proton NMR spectroscopy, where a large coupling constant of 9.9 Hz between protons at C2 and C3 suggested a dihedral angle near 180°. Moreover, the indicated conformation is expected to be the most thermodynamically stable arrangement, with the bulky acetoxy substituent at C3 and the carbaldehyde at C2 in a \textit{trans} relationship to one another. Further, the authors concluded that the \textit{cis}-position of the hydroxyl group at C1 would allow intramolecular hydrogen bonding with the carbonyl group of the aldehyde. The relative stereochemistry of 32 was preserved in successive transformations to produce Wittig salt 25 and compound 21. The relative stereochemistry of 21 was confirmed by comparing the chemical shift and
coupling constants of protons at C2 and C6 with those reported by Khachik et al. for this particular stereoisomer.27

γ-Carotene (6) with a β-end group and a Ψ-end group is a structural hybrid of β-carotene (8) and lycopene (5), and would be expected to possess similar functional roles in living systems. While γ-carotene occurs in some of the same foods as these carotenoids, especially apricots and tomatoes,9,10 Cryptocodinium cohnii (C. cohnii) algae are a more obscure dietary source of this carotenoid.93 This algal strain produces an abundance of γ-carotene along with a lower amount of β-carotene. Lipid soluble extracts of C. cohnii are added to many foods, beverages, infant formulas and nutritional supplements as a vegetarian source of docosahexaenoic acid (DHA). DHA is an omega-3 polyunsaturated fatty acid found to be essential for healthy brain and cardiovascular function.94 Although γ-carotene is less prevalent in commonly consumed foods than other prominent carotenoids such as β-carotene and lycopene, it has been identified in the extracts from human serum and breast milk.4

Because of its structural similarities to lycopene, 6 would be expected to undergo metabolic transformations analogous to this carotenoid as proposed in Scheme 11.
Scheme 11. Proposed metabolic oxidation of γ-carotene (6).
In fact, \(\gamma \)-carotene-1,2-epoxide (36) has been isolated from the Delta tomato mutant.\(^{95} \) Therefore, one likely pathway for the metabolism of 6 is the oxidation of the \(\Psi \)-end group of this carotenoid at the 1,2- and 5,6-positions, resulting in the formation of 36 and 37 respectively. Similar to the established oxidative pathways for lycopene, 37 would be expected to undergo acid and/or enzyme catalyzed rearrangement to 2,6-cyclo-\(\gamma \)-carotene-1,5-oxides (38) and (39) followed by ring opening to 2,6-cyclo-\(\gamma \)-carotene-1,5-diols (40) and (41).

While the rate constant for singlet oxygen quenching by \(\gamma \)-carotene (6) has been studied in an \textit{in vitro} model,\(^ {43} \) the metabolic fate of this dietary carotenoid in living systems is not known at present. In addition, the chemopreventive properties of 6 and/or its possible metabolite(s) in relation to their anti-inflammatory and antioxidant activities have not yet been explored. Therefore, the objectives of this research are to:

1. Develop a viable strategy for the total synthesis of the possible oxidative metabolites of \(\gamma \)-carotene (6), including 2,6-cyclo-\(\gamma \)-carotene-1,5-diols (40) and (41);

2. Accomplish this synthesis from an end-group that can serve as a precursor for the total synthesis of lycopene metabolites, namely, diols 21 and 22;

3. Investigate the presence of the oxidation products of \(\gamma \)-carotene in human plasma, algal extracts and tomato products that are the major dietary sources of this carotenoid.
DISCUSSION

In 1950, Karrer, Milas, and Inhoffen independently accomplished the synthesis of the first carotenoid, β-carotene. By 1976, ninety-eight naturally occurring carotenoids had been synthesized by the general strategy of coupling various end-groups to a central, conjugated polyene synthon with the use of Grignard reactions, enol ether condensations, palladium and titanium-mediated C-C bond formations, Julia sulphone and Wittig coupling reactions. While aldol condensations between aldehydes and ketones have found application in the total synthesis of carotenoids that are not sensitive to bases, a more common approach to C-C bond formation is the enol ether condensation. The process was discovered by Isler and colleagues in 1939, and has been used for the industrial synthesis of β-carotene. Chain lengthening by two or more carbons occurs during the Lewis acid coupling of an alkyl enol ether with an acetal to produce an unsaturated aldehyde, which can then be coupled with a Grignard reagent. Acid-catalyzed dehydration followed by partial cis-reduction with the Lindlar catalyst afforded 15,15'-Z-β-carotene. After refluxing in an organic solvent such as heptane, the 15Z-isomer could be transformed into the thermodynamically more stable (all-E) form of 8 (Scheme 12). However, this approach cannot be employed in the synthesis of carotenoids with acid-sensitive end groups.
Scheme 12. Synthesis of (all-E)-β-carotene (8) via enol ether condensation.

The combination of organometalic and Wittig reactions find application in the synthesis of carotenoids such as (rac)-zeaxanthin (14). For example, condensation of 3-hydroxy-β-ionone with vinyl magnesium bromide at sub-ambient temperatures affords 3-hydroxy-vinyl-α-ionol (Scheme 13). Reaction with triphenylphosphine hydrobromide
produces 3-hydroxy-β-ionylidenetriphenylphosphonium bromide. The double Wittig reaction of the phosphonium salt with the C_{10}^\text{2nd} dialdehyde (27) affords 14 in high yields.

Scheme 13. Synthesis of (rac)-zeaxanthin (14) via organometallic and Wittig coupling reactions.101

Alkenyl lithium reagents are prepared by the Shapiro reaction and are often condensed with aldehydes and ketones to construct the polyene chain under mildly acidic conditions. An example of this is the synthesis of retinal (16) from β-iononeacetaldehyde. (Scheme 14).

Scheme 14. Synthesis of retinal (16) via an alkenyl lithium reagent.102
Low valent titanium (0) prepared from the reduction of TiCl₃ with LiAlH₄, participates in the coupling of ketones and/or aldehydes to afford olefins in high yields. The β-carotene (8) has been synthesized in 90% yield by coupling 2 moles of retinaldehyde (16) with TiCl₃ and LiAlH₄ in THF at room temperature. Coupling reportedly occurs in a stepwise manner from the reductive dimerization of the carbonyl compounds followed by deoxygenation of a 1,2-diolate intermediate, as illustrated in Scheme 15.

Scheme 15. Reductive coupling of carbonyl compounds in the presence of low valent titanium.

The role of the metal is illustrated in Scheme 16. Following coordination to the surface of titanium, stepwise cleavage of the C-O bonds of the diolate proceeds with formation of the olefin and oxide-coated titanium.

Scheme 16. Role of titanium metal in reductive coupling of carbonyl compounds.

The formation of olefins via sulfone coupling with an alkyl halide followed by base-promoted elimination was pioneered by Julia in 1973 for the synthesis of vitamin A. The general process has also been used to synthesize β-carotene (8) (Scheme 17).

The anion of the C\textsubscript{13}-sulphone was coupled to the dichloride after undergoing an \(S_N2 \) reaction. \textit{(All-E)}-β-carotene (8) was obtained after partial reduction with the Lindlar catalyst and double bond isomerization during reflux.

In 1991, Bernhard and Mayer105 further developed C-C bond formation \textit{via} sulphone coupling with carbonyl compounds. The procedure incorporates reduction by sodium dithionite to liberate the olefin, as shown in Scheme 18. In addition to the synthesis of 8, the process has been used to produce a variety of carotenoids, often with (Z)-stereochemistry, in high yields including lycopene (5), zeaxanthin (14), astaxanthin (10) and canthaxanthin (9).
Scheme 18. Synthesis of Z-olefins by sulphone coupling with carbonyl compounds and reduction by sodium dithionite.105

The convenient and effective coupling reaction between phosphorous ylides and carbonyl compounds to produce olefins with predictable placement of the double bond was discovered in the 1950’s by Georg Wittig and colleagues.106,107 The Wittig reaction remains one of the most important reaction for preparing polyenes to date. In a prototypical reaction, a base is used to generate a phosphonium ylide; subsequent reaction with a carbonyl compound produces an alkene of uncertain stereochemistry and the by-product trialkyl- or triphenylphosphine oxide as shown in Scheme 19.

Scheme 19. Conventional Wittig Reaction.108

The transformation proceeds according the mechanism shown in Scheme 20.108 Wittig proposed that a four-membered 1,2-oxaphosphetane cyclic intermediate could exist in equilibrium with a betaine before irreversibly collapsing to form the olefin, although evidence for the existence of the betaine could not since be confirmed in 31P NMR studies conducted by Vedejs and colleagues.109
Scheme 20. Proposed oxaphosphetane and betaine intermediates in a typical Wittig reaction.108

The Wittig reaction is one of the most effective coupling strategies to produce symmetrical C\textsubscript{40}-carotenoids like astaxanthin (10),110 zeaxanthin (14) and \(\beta\)-carotene (8) where two identical C\textsubscript{15}-phosphonium salt end-groups are coupled to the C\textsubscript{10}-dialdehyde 27 in successive steps (Scheme 21).

Scheme 21. General Wittig coupling strategy for the synthesis of astaxanthin (10)110 and other symmetrical carotenoids.

Although a C\textsubscript{10}-diphosphonium salt can be coupled with two molecules of C\textsubscript{15}-aldehyde (Scheme 22), reactions have to be conducted at low temperature to minimize
the tendency for elimination of triphenylphosphine, thus decreasing the efficiency of this approach.

Scheme 22. Structures of \(\text{C}_{15}\)-aldehyde and \(\text{C}_{10}\)-phosphonium salt building blocks.

Formation of carotenoids with a polyene chain having an \((all-E)\)-geometry is highly desirable, since the \(all-E\)-isomers can be crystallized during purification, in contrast to the Z-stereoisomers. The task of synthesizing carotenoids with an \((all-E)\)-geometry is made difficult by the fact that Z-isomerization can occur at C9, C9’, C13, C13’ and C15 and C15’ of the polyene chain following coupling reactions. On the other hand, steric interactions between Me-18 and Me-19 as well as H-10 and Me-20 arising from 7Z, 7’Z, 11Z and 11’Z orientations tend to guarantee the formation of \(trans\) double bonds at these locations (Figure 12).

Figure 12. \((all-E)\)-\(\beta\)-carotene (8) and two of its sterically hindered stereoisomers.
The C$_{15}$+C$_{10}$+C$_{15}$ coupling strategy employs bond formation at C11 and C11' and has been shown to be the method of choice for the synthesis of (all-E)-C$_{40}$-carotenoids containing cyclic end groups. Therefore, our approach for the total synthesis of the γ-carotene oxidation product was also based on the C$_{15}$+C$_{10}$+C$_{15}$ coupling strategy, where we used building blocks 42, 43 and 44 to arrive at the targeted diol 40A (Scheme 23). For compound 40A, the relative stereochemistries at C2, C5 and C6 will be determined, and may be different than the relative stereochemistries predicted for 40 and 41.

Scheme 23. Building blocks used for the synthesis of targeted diol 40A. Stereochemistries at C2, C5 and C6 will be determined.

Retrosynthetic Analysis of γ-Carotene Oxidation Product 40A.

To accomplish the synthesis of the target diol 40A, we explored a slightly different strategy, based on the retrosynthetic pathway shown in Scheme 24. It was anticipated that the final step of our synthesis could be readily accomplished by elongation of the C$_{25}$-dihydroxyaldehyde 29 with the Wittig salt 44 that could be readily prepared according to known processes.111,112 We rationalized 29 could be prepared from deprotection of the corresponding dimethylacetal 45 under mild acidic conditions without
elimination of the tertiary hydroxyl groups at C1 and C5. The acetal 45 could in turn be prepared from the reaction of protected C_{10}-Wittig salt 43 with C_{15}-dihydroxyaldehyde 42. The protected C_{10}-Wittig salt 43 is readily accessible according to published methods.113,114 Although application of 43 in the synthesis of unsymmetrical carotenoids with sensitive end-groups has been well documented in the literature,114-117 this building block has not been employed in the synthesis of the oxidation products of lycopene (5), \(\gamma\)-carotene (6), or their precursors.

The cyclized C_{15}-dihydroxynitrile 46, prepared as a mixture of stereoisomers with known relative stereochemistries at C2, C5, C6 and C10 could in turn serve as the precursor to the cyclized C_{15}-dihydroxyaldehyde 42. This aldehyde would be most likely prepared as a mixture of diastereomers. However, it was anticipated that due to the presence of polar hydroxyl groups, the diastereomeric aldehydes could be readily separated by column chromatography. The cyanoepoxide 47 could be prepared from elongation of citral epoxide 48 with synthon 49. The cyclization of 47 to 46 would be expected to proceed in dilute H\textsubscript{2}SO\textsubscript{4}, similar to the reported rearrangement for lycopene-5,6-epoxide (23) to diols 21 and 22. Alternatively, the C_{15}-dihydroxynitrile 46 might be obtained from the acid-catalyzed ring opening of bicyclic oxide 50 that could be generated by the lewis-acid catalyzed rearrangement of epoxide 47. The preparation of 49 could be accomplished by reaction of 4-chloro-3-methyl-2-butenenitrile (51) with triethyl phosphite. Horner-Wadsworth-Emmons (HWE) reaction of diethyl cyanomethyl-phosphonate 52 with chloroacetone was expected to afford 41 in useful yields.118 Commercially available (E/Z)-citral served as the precursor to citral epoxide (48).
Scheme 24. Retrosynthetic analysis of γ-carotene oxidation product 40A via C15-dihydroxynitrile 46; *carotenoid numbering system has been used for compounds 40A-46, 29 and 50.
Alternatively, the C$_{15}$-dihydroxyaldehyde 42 could be prepared according to retrosynthetic pathway shown in Scheme 25. According to this strategy, the C$_{15}$-triol 54 could be oxidized to afford 42. Triol 54 could in turn be prepared by reduction of the C$_{17}$-dihydroxyethylester 55. We expected that 55 could be prepared from the intramolecular cyclization of the C$_{17}$-epoxyethylester 56 in dilute sulfuric acid. Epoxy ethylester 56 could be prepared by elongation of citral epoxide (48) with triethyl-3-methyl-4-phosphono-2-butenoate 57.
Scheme 25. Alternative route to the synthesis of C\textsubscript{15}-dihydroxyaldehyde 42 \textit{via} C\textsubscript{17}-dihydroxyethylester 55. *Carotenoid numbering system has been used for compounds 42, 54 and 55.
Synthesis of C\textsubscript{15}-dihydroxyaldehyde 42 \textit{via} C\textsubscript{15}-epoxynitrile 47.

Citral (3,7-dimethyl-2,6-octadienal) is commercially available as a mixture of (2\textit{E})- and (2\textit{Z})-isomers. There are no known methods to separate these geometrical isomers, known as geranial and neral respectively. Although relatively pure forms of the corresponding alcohols geraniol and nerol are commercially available and could be subsequently oxidized to the aldehyde while preserving the stereochemistry at C2, we chose citral as a more affordable starting material.

Peroxycarboxylic acids are generally used to convert alkenes to epoxides. Useful reagents include \textit{m}-chloroperoxybenzoic, peroxybenzoic, peroxyacetic acids and tert-butylhydroperoxide.119 Epoxidation is known to proceed by nucleophilic attack of the alkene on the peroxyacid in a concerted manner (Scheme 26). Because the rate of epoxidation is enhanced by electron-rich double bonds, we expected regioselective epoxidation of citral to produce the 6,7-epoxy derivative predominately, since the double bond at C2 is conjugated with an aldehyde.

![Scheme 26](image)

\textbf{Scheme 26.} Epoxidation of alkenes by peroxide under neutral conditions.

Regiospecific epoxidation of alkenes conjugated with or adjacent to electron withdrawing substituents can be accomplished in a stepwise manner with hydrogen peroxide.120 While \textalpha,\textbeta-unsaturated ketones119 and aldehydes such as acrolein have been shown to undergo epoxidation with H\textsubscript{2}O\textsubscript{2} at pH = 8121 our attempted preparation of citral epoxide according to this method only gave a poor yield of this compound. Under basic
conditions, the usually accepted mechanism for epoxidation of electrophilic olefins is shown in Scheme 27.120

![Scheme 27. Epoxidation of olefins with peroxide under basic conditions.71](image)

In contrast to the concerted mechanism shown in Scheme 26, the deprotonated form of the peroxide attacks the olefin to produce a stabilized carbanion A. The rate at which A evolves into the epoxide is highly dependent on the leaving group ability of the XO− group.122 Accordingly, epoxidation of citral epoxide (48) at C2 would be expected to proceed more rapidly with m-CPBA than with hydrogen peroxide. With olefins containing non-conjugating electron withdrawing groups, choice of hydrogen peroxide is expected to increase the lifetime of adduct A, allowing for single bond rotation at C2 and ultimate formation of the thermodynamically more stable trans-epoxide. In our system however, nucleophilic epoxidation would produce an anion that is conjugated to the aldehydic carbon atom, which has the effect of reducing the single bond character and rotation about C2, as illustrated in Scheme 28. Regardless of the reagent used, we
expected the ratio of \((E/Z)\)-citral epoxide isomers to be identical to that which was present in the starting material.

Scheme 28. Nucleophilic epoxidation of citral (53).

Hydrogen peroxide has been shown to react with nitriles in the presence of potassium bicarbonate to form a peroxycarboximidic acid intermediate that can subsequently epoxidize alkenes under non-acidic conditions, as shown in Scheme 29.123,124

Scheme 29. Epoxidation of citral (53) via a peroxycarboximidic acid intermediate.
Synthesis of citral epoxide (48).

When (E/Z)-citral (53) was allowed to react with H$_2$O$_2$ in the presence of acetonitrile/K$_2$CO$_3$ at room temperature, 48 was obtained in 75% yield (Scheme 30).

Scheme 30. Synthesis of citral epoxide (48).

However, after vacuum distillation, the isolated yield of 48 was 48%. The low yield was attributed to significant polymerization that occurred during distillation. The isomeric ratio of 48 was determined by NMR (E:Z = 1.2:1.0).

Preparation of 4-(diethylphosphono)-3-methyl-2-pentenenitrile (49).

The preparation of 49 was accomplished in 74% overall yield in two steps according to a published procedure, as illustrated in Scheme 31.118 Horner-Wadsworth-Emmons (HWE) reaction of diethyl cyanomethylphosphonate (52) with chloroacetone gave (E/Z)-4-chloro-3-methyl-2-pentenenitrile (51) in 92% yield after column chromatography. In an Arbuzov reaction,125 nitrile 51 was then allowed to react with triethyl phosphite to afford 49 (E/Z = 1.1:1.0) in 74% isolated yield after distillation.

Scheme 31. Synthesis of 4-(diethylphosphono)-3-methyl-2-pentenenitrile (49).
Synthesis of C\textsubscript{15}-epoxynitrile 47.

A mixture of E/Z-epoxynitriles 47 was prepared by HWE reaction of phosphonate 49 with citral epoxide (48) as shown in Scheme 32.

Scheme 32. Synthesis of C\textsubscript{15}-epoxynitrile 47.

When sodium hydride was used as a base to generate the anion of 49, a significant amount of precipitate was formed that prevented stirring. This resulted in 66\% isolated yield of 47. To circumvent this problem, we employed a modified procedure that has been reported by Wang et al.126 Accordingly, the anion was first generated with lithium diisopropylamide (Li-DIPA) at -65 °C, resulting in a fluid mixture that could be magnetically stirred. After addition of citral epoxide (48) to the anion and purification by column chromatography, C\textsubscript{15}-epoxynitrile 47 was obtained in 96\% isolated yield as a mixture of 4 stereoisomers. These were separated by preparative TLC into two sets of isomers 47a and 47b as shown in Figure 13. The first set was identified by NMR to be a mixture of (2E,4E)-trans-6,7-epoxynitrile 47a\textsubscript{1} and (2Z,4E)-trans-6,7-epoxynitrile (47a\textsubscript{2}), while the second set was tentatively identified to be a mixture of (2E,4E)-cis-6,7-epoxynitrile 47b\textsubscript{1} and (2Z,4E)-cis-6,7-epoxynitrile 47b\textsubscript{2}. The ratio of trans/cis epoxides 47a:47b was approximately (1:1), based on HPLC area counts while the ratio of (2E/2Z) isomers was approximately 2:1, based on analysis by NMR. These stereoisomers would arise from coupling between (E/Z)-citral epoxides 48 and (E/Z)-phosphonate 49.
trans-Epoxides 47a1 and 47a2 and cis-epoxides 47b1 and 47b2 were analyzed by HRMS which gave rise to signals for the protonated molecular ion [M+H]^+ and its loss of water [M+H-H_2O]^+. 13C NMR data were acquired for these four stereoisomers of 47. The stereochemistry of the cyano group at C2 was established from comparison of the proton NMR chemical shift of H4. It has been well documented that when H4 and an electron withdrawing group (EWG) are in a cis-geometry, the chemical shift of H4 is shifted measurably downfield in comparison with the chemical shift of this proton when it is in a trans-geometry with the EWG. Because the chemical shifts of H4 in epoxynitriles 47a2 and 47b2 was 7.0 ppm versus 6.5 ppm in epoxynitriles 47a1 and 47b1, the stereochemistry of the cyano group at C2 could be assigned in these structures on this basis. We were unable to distinguish the difference between cis/trans-6,7-epoxynitriles 47a1 and 47b1 and 47a2 and 47b2 by proton NMR studies.

To avoid the formation of the 2Z-epoxynitriles 47a2 and 47b2, another route to 47 was investigated. This involved Knoevenagel condensation of ψ-ionone with cyanoacetic
acid to yield C\textsubscript{15}-nitrile 58 as an \textit{all-E}-isomer (Scheme 33). Regioselective epoxidation of 58 at C6 could then produce 47 as a single isomer.127 However, HPLC analysis of the product revealed a mixture of 4 isomers was obtained when \textgreek{psi}-ionone, cyanoacetic acid and cyclohexylamine were heated together at 85 °C for two hours. We therefore discontinued our attempt to produce 47 as a single product by this route.

Scheme 33. Synthesis of 58 by Knoevenagel condensation reaction.

Cyclization of C\textsubscript{15}-epoxynitrile 47 in dilute \textsubscript{2}H\textsubscript{2}SO\textsubscript{4}.

The following step of our synthesis involved cyclization of C\textsubscript{15}-epoxynitrile 47 to C\textsubscript{15}-dihydroxynitrile 46 at R.T. with dilute sulfuric acid in THF (Scheme 34).

Scheme 34. Acid-catalyzed cyclization of C\textsubscript{15}-epoxynitrile 47.
The target compound 46 was isolated in 27% yield, although competitive amounts of dehydrated hydroxynitrile product 59 and 6,7-dihydroxynitrile by-product (60) were also obtained in 25% and 48% yields, respectively. The product was purified by flash column chromatography. An isomeric mixture of 46 was further purified by semi-preparative HPLC. Four compounds 46a1, 46a2, 46b1 and 46b2 were isolated in relative yields 3.4:1.0:1.8:1.4 (Figure 14).

![Image](image_url)

Figure 14. C15-Dihydroxynitriles 46a1, 46a2, 46b1 and 46b2.

The normal phase HPLC profile of the C15-dihydroxynitriles is shown in Figure 15.

![Image](image_url)

Figure 15. Normal phase HPLC profile of C15-dihydroxynitriles 46a1, 46a2, 46b1, and 46b2. (HPLC condition K, Appendix I).

The C15-dihydroxynitriles 46 were analyzed by HRMS which gave rise to signals for the protonated molecular parent ion and fragments associated with loss of one and two molecules of water.
The 13C-NMR data obtained for the stereoisomers of 46 were consistent with the proposed structures (Figure 16).

![Figure 16. 13C-NMR spectrum of C_{15}-dihydroxynitrile 46a1.](image)

Chemical shifts corresponding to C1 and C5 attached to hydroxyl groups occurred at 72 and 82 ppm, respectively. Three signals corresponding to substituted olefinic carbons were evident while another signal was observed for the olefinic carbon atom conjugated to the cyano group at approximately 97 ppm. The chemical shift of the nitrile carbon atom was evident at approximately 156 ppm.
The 1H-NMR spectrum of $46a_1$ is shown in Figure 17.

![Figure 17. 1H-NMR spectrum of C$_{15}$-dihydroxynitrile $46a_1$.](image)

The relative stereochemistry of the cyano group at C10 was established from comparison of the proton NMR chemical shift of H8. Analogous to the rationale used to establish the orientation of the cyano group in epoxide 47, when H8 and the cyano group were in a cis-configuration, the chemical shift of H8 was shifted measurably downfield in comparison with the chemical shift of this proton when it was in a trans-configuration with respect to the cyano group. Because the chemical shifts of H8 in cyanodiols $46a_2$ and $46b_2$ were 6.7 ppm versus 6.1 ppm in epoxynitriles $46a_1$ and $46b_1$, the stereochemistry of the cyano group at C10 could be assigned in these structures on this basis. Stereochemical differences between $46a$ and $46b$ were also evident from the differences in the chemical shift between H2 and H6. In diols $46a$, the chemical shift of H2 and H6 when these protons were in a cis relationship to each other were nearly
identical. When these protons were in a trans relationship to one another, the difference between the chemical shift of H2 and H6 was approximately 0.7 ppm.

Typical stereochemical differences for key protons in 46a1, 46a2, 46b1, and 46b2 are shown in Table 3.

<table>
<thead>
<tr>
<th>Stereoisomer</th>
<th>H2 (ppm)</th>
<th>H6 (ppm)</th>
<th>H7 (ppm)</th>
<th>H8 (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>46a1 (Major)</td>
<td>2.65</td>
<td>2.56</td>
<td>6.06</td>
<td>6.19</td>
</tr>
<tr>
<td>46a2</td>
<td>2.66</td>
<td>2.66</td>
<td>6.11</td>
<td>6.70</td>
</tr>
<tr>
<td>46b1</td>
<td>1.92</td>
<td>2.57</td>
<td>5.86</td>
<td>6.13</td>
</tr>
<tr>
<td>46b2 (Minor)</td>
<td>1.95</td>
<td>2.66</td>
<td>5.93</td>
<td>6.64</td>
</tr>
</tbody>
</table>

The structures of the stereoisomeric cyanodiols were unequivocally established by proton, COSY, NOESY, HSQC and HMBC NMR experiments. The HMBC spectrum of 46a1 is shown in Figure 18.
Figure 18. HMBC spectrum of C_{15}-dihydroxynitrile 46a1.

Long-range connectivities between proton and carbon atoms for 46a1 are summarized in Table 4.

Table 4. Carbon-proton connectivities determined for 46a1 by HMBC NMR.

<table>
<thead>
<tr>
<th>C Position</th>
<th>H Connectivities</th>
<th>C Position</th>
<th>H Connectivities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2, 6, 16, 17</td>
<td>9</td>
<td>7, 8, 10, 19</td>
</tr>
<tr>
<td>2</td>
<td>3, 4, 6, 7, 16, 17</td>
<td>10</td>
<td>8, 19</td>
</tr>
<tr>
<td>3</td>
<td>2, 4</td>
<td>11</td>
<td>10, 19</td>
</tr>
<tr>
<td>4</td>
<td>3, 6, 18</td>
<td>16</td>
<td>2, 17</td>
</tr>
<tr>
<td>5</td>
<td>2, 3, 4, 6, 7, 18</td>
<td>17</td>
<td>2, 16</td>
</tr>
<tr>
<td>6</td>
<td>2, 3, 4, 7, 8, 18</td>
<td>18</td>
<td>4, 6</td>
</tr>
<tr>
<td>7</td>
<td>2, 6, 8</td>
<td>19</td>
<td>8, 10</td>
</tr>
<tr>
<td>8</td>
<td>6, 7, 10, 19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The relative stereochemistries of 46a1 at C2, C5 and C6 were determined by NOESY NMR (Figure 19).

Figure 19. NOESY spectrum of C15-dihydroxynitrile 46a1.

For 46a1, the major diol isolated, crosspeaks observed between the protons of Me16/17 and H7 and those between H2 and H6 indicated their *cis* relationship and established the orientation of the protons at C2 and C6. NOESY crosspeaks observed between the protons on Me18, H2 and H6 revealed a *cis* relationship and established the orientation of both the hydroxyl group at C5 and the side chain at C6. HMBC crosspeaks between the Me18 protons and C4 and C6 were used to distinguish Me18 from Me16 and
Me17. Further, Me17 can be distinguished from Me16 by the NOESY crosspeak with H7. Crosspeaks and relative stereochemical assignments for 46a1 are shown in Figure 20.

Figure 20. NOESY and HMBC crosspeaks and relative stereochemistry for 46a1.

In addition to the same NOESY crosspeaks as diol 46a1, an additional crosspeak between Me19 and H10 established the cis-orientation of the cyano group at C10 in diol 46a2. It should be noted that the only difference in the relative stereochemistry between diols 46a1 and 46a2 is the orientation of the cyano group at C10 (Figure 21).

NOESY crosspeaks observed in diols 46b1 and 46b2 between the protons on Me18 and H6 indicated their cis relationship, and established the orientation of both the hydroxyl group at C5 and the side chain at C6 (Figure 21). A crosspeak was observed between H2 and H7 in both of these diols, indicating a trans relationship between the hydroxylated isopropyl group and the side chain at C6. Further evidence for the relative stereochemistry at C2 for 46b1 and 46b2 was provided by the NOESY crosspeaks observed between the protons of Me16/Me17 and H6. The relative stereochemistry of diols 46b1 and 46b2 differed only in the orientation of the cyano group at C10, where a crosspeak between the protons on Me19 and H10 indicated a cis orientation of the cyano group in 46b2.
Figure 21. NOESY crosspeaks and relative stereochemistries for 46a2, 46b1 and 46b2.

The relative stereochemistries determined at C2 and C6 for diols 46b1 and 46b2 do not agree with those reported at these locations for the analogous compound 1,5-dihydroxy-2,6-cyclolycopene (21), as determined by Yokota, Khachik, and Pfander (Table 5). However, the small differences between the chemical shifts of H2 and H6 that were reported by these authors are consistent with the relative stereochemistry we determined for diols 46a1 and 46a2.

Table 5. Chemical shifts for H2 and H6 of 1,5-dihydroxy-2,6-cyclolycopene (21).

<table>
<thead>
<tr>
<th>Reference</th>
<th>H2 (ppm)</th>
<th>H6 (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>2.32</td>
<td>2.25</td>
</tr>
<tr>
<td>28</td>
<td>2.10</td>
<td>2.11</td>
</tr>
<tr>
<td>33</td>
<td>2.30</td>
<td>2.23</td>
</tr>
</tbody>
</table>

The dehydration product 59 was analyzed by HRMS. The protonated form of the molecular parent ion for this compound was observed in addition to a fragment resulting
from loss of one molecule of water. The NMR chemical shift for H2 at approximately 1.9 or 2.7 ppm was no longer evident in this dehydration product. The chemical shifts of Me16/17 were shifted downfield from 1.2 ppm to approximately 1.6 ppm, which is characteristic of geminal methyl groups attached to an sp² carbon atom. The chemical shift of Me16/17 in ¹³C-NMR were 21 and 24 ppm, near the expected value of 19 ppm.

Only diol 60 was identified by mass spectral analysis, proton and carbon NMR. The protonated form of the molecular ion was observed in addition to fragments resulting from loss of one and two molecules of water. An isomeric mixture was isolated based on results of proton NMR (E/Z = 2:1). The chemical shift of H6 at 4.1 ppm was consistent with a hydroxyl substituent, in comparison the chemical shift of H6 of epoxide 47 at 3.3 ppm.

Various conditions were explored to optimize the yield of 46 (Table 6). When methylene chloride was used as solvent, only the starting material was isolated from the biphasic mixture after 24 h at R.T., whereas 20% of the desired product 46 was obtained when the water miscible solvent THF was used (entries 1 and 2). Nevertheless, 12% of the starting material 47 remained unreacted.

To drive the reaction to completion, the amount of acid was increased (entry 3). Under this condition, the yield of 46 increased to 26% after just 2 h at R.T. Although most of the starting material was consumed under these conditions, the dehydration product 59 and diol 60 were formed predominately and lowering the temperature to 0 °C (entry 4), had no effect on preventing the formation of these side products. The yield of 46 remained essentially the same when cyclization was carried out with increasing the
concentration of sulfuric acid (entry 5). Ultimately, differences in product ratios were not significantly influenced by changes in the amount of acid used or reaction temperature.

Table 6. Cyclization of C_{15}-epoxynitrile 47 with dilute sulfuric acid.

<table>
<thead>
<tr>
<th>Entry</th>
<th>47 : H_{2}SO_{4} (mmol)</th>
<th>Conditions</th>
<th>Temp. Time (h)</th>
<th>Relative %^{a} 46 : 59 : 60 : 47</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1 : 0.015</td>
<td>0.05% H_{2}SO_{4}, 4 mL CH_{2}Cl_{2}, 2 mL</td>
<td>R.T. 24</td>
<td>0 : 0 : 0 : 100</td>
</tr>
<tr>
<td>2</td>
<td>0.1 : 0.015</td>
<td>0.05% H_{2}SO_{4}, 4 mL THF, 2 mL</td>
<td>R.T. 24</td>
<td>20 : 30 : 28 : 12</td>
</tr>
<tr>
<td>3</td>
<td>0.1 : 0.4</td>
<td>1.7 % H_{2}SO_{4}, 3 mL THF, 3 mL</td>
<td>R.T. 2</td>
<td>26 : 28 : 34 : 2</td>
</tr>
<tr>
<td>4</td>
<td>0.1 : 0.4</td>
<td>1.7 % H_{2}SO_{4}, 3 mL THF, 3 mL</td>
<td>0 °C 5</td>
<td>27 : 31 : 21 : 17</td>
</tr>
<tr>
<td>5</td>
<td>0.1 : 2.1</td>
<td>5 % H_{2}SO_{4}, (1 mL) THF (1 mL)</td>
<td>R.T. 2</td>
<td>24 : 19 : 34 : 1</td>
</tr>
</tbody>
</table>

^{a} Determined by HPLC peak area (condition B, Appendix I).

Although the C_{15}-dihydroxynitrile 46 could be prepared with dilute sulfuric acid in modest yields, we hoped to develop a condition under which the yield of the key synthon 46 would predominate over those of the dehydration product 59 and 6,7-diol 60 by-products. Recognizing the acidic nature of moist silica gel, cyanooxypoxides 47 (a1, a2,
b1 and b2) (0.43 mmol) were passed through a small column containing 20 g silica gel treated with water (23 mmol). However, no reaction took place under these conditions. Gratifyingly, 46 could be prepared by stirring a solution of 47 with the acidic cation exchange resin (Amberlite IR-120), which is a sulfonated polystyrene/divinylbenzene copolymer. A solution of epoxynitriles 47 in hexane were treated with water and Amberlite IR-120. The mixture was stirred overnight at R.T. Based on area percent by normal phase HPLC, 46 was obtained as a mixture of 4 compounds in 36% yield, along with 60 (20%), 59 (32%) and starting material (11%) (Scheme 35).

Scheme 35. Synthesis of C15-dihydroxynitrile 46 by Amberlite IR-120 vs. silica gel.

The mechanism for the acid-catalyzed rearrangement of 5E- and 5Z-lycopene-5,6-epoxides (23) has been proposed by Khachik *et al.* to occur via an S$_{N}$2 type mechanism (Scheme 36). Protonation of the epoxide ring followed by nucleophilic attack of the C1/C2 double bond at C6 produced five-membered ring carbocation intermediates. Addition of water and subsequent loss of a proton afforded 2,6-cyclolycopene-1,5-diols (22 and 21) observed by Khachik *et al.* in minor and major amounts, respectively.
The major 2,6-cyclolycopene-1,5-diol (21) observed by Khachik corresponds to the minor C15-dihydroxynitrile 46b2 observed in this research when the cis-epoxides 47b1 and 47b2 undergo an SN2-type reaction (Scheme 37).
Scheme 37. C$_{15}$-dihydroxynitrile 46b formed from cis-epoxide 47b via an S$_{N}$2-type reaction.

In an S$_{N}$1 type process, acid-catalyzed protonation of the cis and trans epoxide rings followed by ring opening would be accompanied by formation of a carbocation at C6. Intramolecular cyclization would produce four 5-membered rings with epimerization at C2 and C6. Reaction with water followed by loss of a proton would afford products with relative stereochemistries at C2, C5 and C6 observed for diols 46a and 46b (Scheme 38). The acid-catalyzed intramolecular cyclization of the cis and trans-epoxide 47a and 47b by an S$_{N}$1 pathway would account for both sets of diols 46a and 46b observed in this research.
Scheme 38. Rearrangement of cis and trans-epoxides 47a and 47b by an S_N1-type mechanism.

Cyclization of C_{15}-epoxynitrile 47 with FeCl₃ and ZrCl₄.

Meanwhile, a literature survey revealed similar Lewis acid-promoted cyclization of simple isoprenoid epoxyolefins such as geraniol and farnesol epoxides with FeCl₃ hexahydrate and ZrCl₄. Because the cyclization with these Lewis acids have been
shown to be regiochemically controlled, we then investigated the cyclization of 47 with these catalysts under a number of different conditions.

As described earlier, cyclization of lycopene 5’,6’-epoxide (23) to diols 21 and 22 has been shown to proceed via bicyclic oxides 20 and 24. Therefore, we anticipated that epoxynitrile 47 could similarly undergo cyclization in the presence of a Lewis acid to dihydroxynitrile 46 via nitrile 50 as shown in Scheme 39.

![Scheme 39. Formation of bicyclic oxide 50.](image)

Zirconium tetrachloride, iron trichloride, boron trifluoride and acidic alumina were evaluated for their ability to cyclize epoxynitrile 47 to diol 46, possibly via bicyclic oxide 50. Solvent type, mol percent of Lewis acid and temperature were varied to optimize the formation of diol 46; the results are listed in Table 7. In all reactions with ZrCl₄ and FeCl₃, a substantial amount of compound 59, a dehydration product of dihydroxynitrile 46, was formed, along with a mixture of numerous unidentified side-products based on HPLC analysis.
Addition of Na₂CO₃ did not seem to have any effect in preventing the formation of 59, and in the presence of Et₃N no reaction was observed. Similar results were also obtained in the reactions of 47 with anhydrous FeCl₃. The solvent of choice with both catalysts was found to be dichloromethane, as it resulted in nearly complete conversion of the starting material. Lowering the temperature produced similar results but prolonged the reaction time. Further, varying the amounts of the catalysts and lowering the reaction temperature had no effect on relative composition of 59. Attempted cyclization of 47 with BF₃ etherate in THF or in the presence of acidic alumina was also unsuccessful. We also attempted microwave heating of 47 in CH₂Cl₂ but only the starting material was recovered.

<table>
<thead>
<tr>
<th>Lewis Acid (LA)</th>
<th>mol% LA</th>
<th>Temp. (°C)</th>
<th>Solvent</th>
<th>Time (min)</th>
<th>47 : 59 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZrCl₄</td>
<td>15</td>
<td>Ambient</td>
<td>CH₂Cl₂</td>
<td>30</td>
<td>5 : 22</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-5</td>
<td>CH₂Cl₂</td>
<td>30</td>
<td>28 : 26</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-5</td>
<td>CH₂Cl₂</td>
<td>30</td>
<td>3 : 29</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-20</td>
<td>CH₂Cl₂</td>
<td>30</td>
<td>15 : 26</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>-20</td>
<td>CH₂Cl₂</td>
<td>60</td>
<td>9 : 25</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-20</td>
<td>Hexane</td>
<td>60</td>
<td>2% conversion</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-20</td>
<td>THF</td>
<td>60</td>
<td>49 : 22</td>
</tr>
<tr>
<td>ZrCl₄, Na₂CO₃, excess</td>
<td>20</td>
<td>-20</td>
<td>CH₂Cl₂</td>
<td>60</td>
<td>38 : 23</td>
</tr>
<tr>
<td>ZrCl₄, Et₃N, excess</td>
<td>100</td>
<td>-10</td>
<td>CH₂Cl₂</td>
<td>60</td>
<td>No reaction</td>
</tr>
<tr>
<td>FeCl₃, anhydrous</td>
<td>20</td>
<td>-20</td>
<td>CH₂Cl₂</td>
<td>60</td>
<td>43 : 24</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>-20</td>
<td>CH₂Cl₂</td>
<td>60</td>
<td>20 : 27</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>-5</td>
<td>CH₂Cl₂</td>
<td>20</td>
<td>3 : 26</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>-20</td>
<td>CH₂Cl₂</td>
<td>20</td>
<td>3 : 27</td>
</tr>
<tr>
<td>BF₃Ether</td>
<td>20</td>
<td>-20</td>
<td>THF</td>
<td>60</td>
<td>No reaction</td>
</tr>
<tr>
<td>Alumina, acidic</td>
<td>Excess</td>
<td>Ambient</td>
<td>CH₂Cl₂</td>
<td>120</td>
<td>No reaction</td>
</tr>
<tr>
<td></td>
<td>Excess</td>
<td>60 °C</td>
<td>THF</td>
<td>120</td>
<td>No reaction</td>
</tr>
</tbody>
</table>
We were unable to identify the existence of 50 under any experimental condition employed based proton NMR spectrometry. Signature chemical shifts for H2, H6 and Me16/17 expected for the bicyclic oxide intermediate reported by Lu et al.84 were not observed in the spectra of crude products. These are provided in Table 8 along with those of the epoxynitrile starting material 47 and product 46, which was also not present in the crude product, based on the HPLC profiles. As we were unable to isolate and identify 50 under any experimental condition employed, no attempt was made to further isolate and identify compounds in the crude product. This is because our initial goal was to optimize the reaction conditions that could prevent the formation of 59 that was most likely formed from dehydration of the desired diol 46.

Table 8. Chemical shifts for the bicyclic oxide (50)84, cyanoepoxide 47 and C\textsubscript{15}-dihydroxynitrile 46a1.

<table>
<thead>
<tr>
<th></th>
<th>H2 (ppm)</th>
<th>H6 (ppm)</th>
<th>Me 16 / 17 (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>5.1</td>
<td>3.4</td>
<td>1.7 / 1.6</td>
</tr>
<tr>
<td>50</td>
<td>2.0</td>
<td>2.8</td>
<td>1.3 / 1.2</td>
</tr>
<tr>
<td>46a1</td>
<td>2.7</td>
<td>2.6</td>
<td>1.3 / 1.2</td>
</tr>
</tbody>
</table>
DIBAL-H reduction of C\textsubscript{15}-dihydroxynitrile 46.

While reduction of C\textsubscript{15}-dihydroxynitriles 46\textsubscript{a} and 46\textsubscript{b} with DIBAL-H afforded a mixture of aldehydes, stereochemically pure C\textsubscript{15}-dihydroxynitrile 46\textsubscript{a1} could be reduced to produce the corresponding isomer 42\textsubscript{a1} in 46\% yield when the temperature was maintained below -20 °C, as shown in Scheme 40.

![Scheme 40. DIBAL-H reduction of C\textsubscript{15}-dihydroxynitrile 46\textsubscript{a1}.](image)

Although conjugated cyano compounds have been reduced with DIBAL-H at R.T. to aldehydes in good yields,130,131 the low temperature condition was expected to result in a higher isolated yield of the product, due to the tendency of the C\textsubscript{15}-dihydroxyaldehyde 42 to decompose at room temperature and during purification by semi-preparative HPLC.

Alternate route to the synthesis of C\textsubscript{15}-dihydroxyaldehyde 42.

In an attempt to increase the yield of 42, another route to this key intermediate was explored. This essentially involved the same route with the exception of replacing the cyano group with an ester function. With the hope that the cyclization could proceed much more efficiently, key synthon 42 was also prepared via the C\textsubscript{17}-epoxyethylester 56 in a second route according to the process outlined in Scheme 41.
Scheme 41. Synthesis of C_{17}-epoxyylester 56.

In the first step, sodium hydride was used to generate the anion of the commercially available starting material triethyl-3-methyl-4-phosphono-2-butenoate (57). Formation of hydrogen gas was evident and ceased within one hour. Subsequent HWE coupling with citral epoxide (48) in the second step produced a dark colored product. The crude product was purified by flash column chromatography to afford 56 in 60% isolated yield. The product consisted of a mixture of cis/trans-epoxides with their corresponding 2E- and 2Z-stereoisomers. The ratio of cis/trans-epoxides 56a:56b was approximately (1:1), based on HPLC area counts while the ratio of (2E/2Z) isomers was approximately 2:1, based on analysis by NMR. The mixture was further separated by semi-preparative normal phase HPLC into four stereoisomers (56a1, 56a2, 56b1, 56b2) as shown in Figure 22. The structures and relative stereochemistries at C2, C4 and C6 were established by proton and NOESY NMR spectroscopy.

Figure 22. Structures of C_{17}-epoxyylesters.
Cyclization of C_{17}-epoxyethylester 56 with dilute H_{2}SO_{4}.

The C_{17}-epoxyethylester epoxides 56a1, 56a2 and 56b1, 56b2 were converted to the cyclized C_{17}-epoxyethylesters 55 in dilute sulfuric acid in THF, as shown in Scheme 42. In addition to the product 55, competitive amounts of the dehydration product 61 and 6,7-dihydroxy compound 62 were formed. The nature and relative amount of these products were influenced by temperature, solvent and the ratio of starting material to acid (Table 9). Reactions were monitored by normal phase HPLC; the relative percent of each product was based on area counts.

Scheme 42. Acid catalyzed intramolecular cyclization of C_{17}-epoxyethylesters 56.

<table>
<thead>
<tr>
<th>Entry</th>
<th>56 : H_{2}SO_{4} (mmol)</th>
<th>Conditions</th>
<th>Temp Time (h)</th>
<th>Relative %(^a) 55 : 61 : 62 : 56</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 : 0.09</td>
<td>0.025% H_{2}SO_{4}, 20 mL THF, 3 mL</td>
<td>R.T. 24</td>
<td>48 : 19 : 27 : 6</td>
</tr>
<tr>
<td>2</td>
<td>1 : 0.09</td>
<td>0.021% H_{2}SO_{4}, 24 mL THF, 13 mL</td>
<td>10 °C 24</td>
<td>29 : 26 : 6 : 39</td>
</tr>
<tr>
<td>3</td>
<td>1 : 0.05</td>
<td>0.01% H_{2}SO_{4}, 28 mL THF, 16 mL</td>
<td>R.T. 24</td>
<td>34 : 28 : 27 : 10</td>
</tr>
<tr>
<td>4</td>
<td>1 : 0.09</td>
<td>0.025% H_{2}SO_{4}, 20 mL acetone, 3 mL</td>
<td>R.T. 24</td>
<td>36 : 12 : 28 : 23</td>
</tr>
</tbody>
</table>

\(^a\) Determined by HPLC peak area (condition B, Appendix I).
Our observations indicate that the highest yield of product 55 could be obtained by stirring epoxide 56 with 0.1M sulfuric acid in water and THF at room temperature for 24 hours (entry 1). While formation of the diol 62 was suppressed when the reaction was conducted at 10°C, the amount of dehydration product 61 formed could not be minimized accordingly (entry 2). When half the amount of acid was used (entry 3), or when the solvent was changed from THF to acetone (entry 4), a greater amount of the starting material remained unreacted, and the formation of dehydration product 61 and diol 62 were still significant. Ultimately, differences in product ratios were not significantly influenced by changes in the amount of acid used or reaction temperature.

The C_{17}-dihydroxyethylesters 55 were synthesized under the conditions indicated for entry 1 (Table 9) and isolated by flash column chromatography in 42% overall yield along with the dehydration product 61 (15%) and 6,7-dihydroxyethylester 62 (23%). The protonated form of the molecular parent ion was observed in addition to fragments resulting from loss of one and two molecules of water by HRMS. 62 was characterized by proton NMR ($E/Z = 1.5:1.0$). The chemical shift of H6 at 4.1 ppm is consistent with a hydroxyl substituent at the allylic position, in comparison with the chemical shift of H6 of epoxide 56 at 3.3 ppm.

For the dehydration product 61, the protonated form of the molecular ion was observed in addition to a fragment resulting from loss of one molecule of water by HRMS. Structural assignment of 61 was based on results of proton NMR. The chemical shift of H2 between 2.0 and 2.6 ppm was no longer evident. Chemical shifts of protons on Me16/17 were shifted downfield from 1.2 ppm to approximately 1.6 ppm, which is characteristic of geminal methyl groups attached to an sp^2 carbon atom.
Because the starting material consisted of four stereoisomers, the product was expected to consist of four stereoisomers as well. However, the target compound could only be separated into three diastereomeric compounds 55a1, 55a2, and 55b1 by semi-preparative normal phase HPLC in relative ratios 55a1 > 55a2 > 55b1 (4.9:3.2:1.0), Figure 23.

![Figure 23. C₁₇-dihydroxyethylesters 55a, 55a2, and 55b.](image)

The structures of 55a1, 55a2, and 55b were established by proton NMR spectroscopy. The stereochemical assignments were based on the chemical shift patterns for H2, H7 and H8 established for the analogous cyano-derivatives 46a1, 46a2 and 46b1 by a NOESY experiment. The chemical shifts of H2 and H6 were approximately 2.6 ppm in 55a1 and 55a2, which indicated their cis relationship to one another, whereas the chemical shift of H2 in 55b1 was shifted upfield to approximately 2.0 ppm, indicating a trans relationship between H2 and H6 in this compound. Further, the chemical shift of H8 was approximately 7.6 ppm in compounds 55a2 and 55b1 (Table 10). This established the cis-geometry of the ester group at C10 in these compounds. By comparison, the chemical shift of H8 in 55a1 was shifted upfield to approximately 6.2 ppm, indicating a trans-geometry of the ester group at C10 in this compound.

¹³C NMR results for 55a1, 55a2, and 55b showed signals corresponding to C1 and C5 attached to hydroxyl groups occurred at approximately 72 and 81 ppm,
respectively. Four chemical shifts corresponding to substituted olefinic carbons were
evident while another signal was observed for the carbonyl group of the ester at 167 ppm.
Compounds 55a1, 55a2, and 55b gave rise to signals for the protonated parent molecular
ion and fragments associated with loss of one and two molecules of water by HRMS.

Table 10. Chemical shifts of key protons for C_{17}-dihydroxyethylesters 55a1, 55a2,
and 55b.

<table>
<thead>
<tr>
<th>Stereoisomer</th>
<th>H2</th>
<th>H6</th>
<th>H7</th>
<th>H8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(ppm)</td>
<td>(ppm)</td>
<td>(ppm)</td>
<td>(ppm)</td>
</tr>
<tr>
<td>55a1 (Major)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO_2Et</td>
<td>2.58</td>
<td>2.64</td>
<td>6.02</td>
<td>6.18</td>
</tr>
<tr>
<td>55a2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO_2Et</td>
<td>2.64</td>
<td>2.64</td>
<td>6.00</td>
<td>7.65</td>
</tr>
<tr>
<td>55b1 (Minor)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO_2Et</td>
<td>1.98</td>
<td>2.64</td>
<td>5.89</td>
<td>7.56</td>
</tr>
</tbody>
</table>

Reduction of C_{17}-dihydroxyethylesters 55 to C_{15}-triol 54 by LAH reduction

The C_{15}-cyclized triol 54 was prepared by reduction of the C_{17}-
dihydroxyethylester 55 with lithium aluminum hydride (Scheme 43).
Scheme 43. Reduction of C\textsubscript{17}-dihydroxyethylene 55 to C\textsubscript{15}-triol 54.

The crude triol product 54 was purified by flash column chromatography and isolated as a gummy, white crystalline solid in 51\% isolated yield. Based on HPLC analysis, the product consisted of 2 isomeric products in a 1:1 ratio. The mixture was further separated using normal phase semi-preparative HPLC and analyzed by HRMS, which gave rise to signals for the parent ion paired with a sodium ion and fragments associated with loss of two and three molecules of water.

In the proton NMR spectrum of triol 54, chemical shifts for three vinylic hydrogen atoms were evident, while a doublet corresponding to the methylene protons adjacent to the hydroxyl group appeared at 4.3 ppm. In the 13C NMR spectrum, chemical shifts corresponding to quaternary C1 and C5 attached to a hydroxyl group were observed at 72 and 83 ppm respectively, while a chemical shift for a secondary carbon atom attached to a hydroxyl group was evident at 59 ppm. Four chemical shifts corresponding to substituted olefinic carbon atoms were evident.

Although retinol (15) has been oxidized to retinal (16) with manganese dioxide in useful yields,132 attempts to produce key synthon C\textsubscript{15}-dihydroxyaldehyde 42 from the oxidation of C\textsubscript{15}-triol 54 with manganese dioxide in methylene chloride were unsuccessful. After 24 h at R.T., the starting material remained unreacted, based on TLC analysis. While primary alcohols can also be oxidized to the corresponding aldehydes
with pyridinium chlorochromate (PCC) in dichloromethane,133 by Swern oxidation with dimethylchlorosulfonium ion,134 or the Dess-Martin hypervalent iodine (V) reagent,135,136 one of the most common reagents for the oxidation of primary alcohols is 2,2,6,6-tetramethylpiperidine1-1nitroxide radical (TEMPO) that has been shown to be a highly selective oxidizing reagent for the exclusive preparation of aldehydes from primary allylic alcohols,137 primary saturated alcohols138 and sugars.139 For a review on the industrial applications of TEMPO in the preparation of pharmaceuticals, flavors and fragrances and agrochemicals, see the review by Ciriminna and Pagliaro.140

Based on the procedure adopted from Semmelhack \textit{et al.},141 the triol 54 was oxidized to the corresponding aldehyde 42 with 10 mole percent each TEMPO and cuprous chloride in the presence of oxygen at R.T in DMF solvent as shown in Scheme 44.

![Scheme 44. TEMPO oxidation of C\textsubscript{15}-triol 54 to C\textsubscript{15}-dihydroxyaldehyde 42.](image)

In the overall process shown in Scheme 45, copper (I) is oxidized to copper (II) as oxygen is reduced to water. Cupric ions mediate the one electron oxidation of the nitrooxyl radical to nitrosonium ion. Reaction between the nitrosonium ion and alcohol affords the aldehyde in a subsequent step according to the mechanism proposed in Scheme 46, where the solvent DMF may act as a base. During the process of \textit{syn} proportionation, redistribution of charge between the hydroxyl amine by-product and the
nitrosonium ion regenerates the TEMPO radical. In the net reaction, oxygen is consumed during the oxidation of alcohol to the aldehyde, with the concomitant formation of water.

Scheme 45. Sequence proposed for the organocatalytic oxidation of alcohols to aldehydes with TEMPO and oxygen.

During the reaction, the solution took on the blue/green color of cuprous/cupric ions. After flash column chromatography, key synthon 42 was isolated in 36% yield as a light yellow oil and shown to consist of 4 stereoisomers by normal phase HPLC (Figure 24).
Figure 24. HPLC chromatogram of C_{15}-dihydroxyaldehydes \textbf{42a1}, \textbf{42a2}, \textbf{42b1}, and \textbf{42b2}. (Condition B, Appendix I).

The isomers \textbf{42a1}, \textbf{42a2}, \textbf{42b1} and \textbf{42b2} were separated by semi-preparative HPLC and isolated in the relative ratio (1.5:0.9:1.0:1.0). Compound \textbf{42a2} could be crystallized from the mixture in hexane/ethyl acetate solvent after storage for two weeks at -80 °C. The compounds were further isolated by semi-preparative normal phase HPLC and analyzed by 1H-NMR (Figure 25).

Figure 25. 1H-NMR spectrum of C_{15}-dihydroxyaldehyde \textbf{42a1}.
Based on analogous chemical shift patterns observed for the structurally characterized isomer 42a1 and the C_{15}-dihydroxynitriles 46a and 46b, relative stereochemistries at C2, C6 and C10 were tentatively assigned for 42a2, 42b1, and 42b2. However, only 42a1 was analyzed by NOESY NMR; while the relative stereochemistry of the hydroxyl group at C5 was determined for this isomer, the relative stereochemistry of the hydroxyl group at C5 was not confirmed for 42a2, 42b1, and 42b2. Chemical shifts of H2, H6, H7 and H8 for the stereoisomers of 42 are shown in Table 11.

Table 11. Chemical shifts of key protons of C_{15}-dihydroxyaldehydes 42a1, 42a2, 42b1, and 42b2.

<table>
<thead>
<tr>
<th>Stereosomer</th>
<th>H2 (ppm)</th>
<th>H6 (ppm)</th>
<th>H7 (ppm)</th>
<th>H8 (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>42a1, major</td>
<td>2.32</td>
<td>2.29</td>
<td>6.36</td>
<td>6.25</td>
</tr>
<tr>
<td>42a2</td>
<td>2.34</td>
<td>2.34</td>
<td>6.26</td>
<td>7.13</td>
</tr>
<tr>
<td>42b1</td>
<td>1.97</td>
<td>2.63</td>
<td>6.03</td>
<td>6.20</td>
</tr>
<tr>
<td>42b2</td>
<td>1.97</td>
<td>2.65</td>
<td>5.93</td>
<td>7.06</td>
</tr>
</tbody>
</table>

The 13C NMR results for the C_{15}-aldehydes of 42 were consistent with the reported structure (Figure 26). Chemical shifts corresponding to C1 and C5 attached to a hydroxyl group occurred at 72 and 81 ppm, respectively. Three signals corresponding to substituted olefinic carbons were evident while another signal was observed for the
olefinic carbon atom conjugated to an aldehyde at approximately 154 ppm. The chemical shift of the aldehydic carbon was evident at 190 ppm.

Figure 26. 13C-NMR spectrum of C$_{15}$-dihydroxyaldehyde 42a1.

The relative stereochemistries at C2, C5, C6 and C10 of 42a1 were determined by a NOESY experiment (Figure 27).

Figure 27. NOESY crosspeaks observed in key synthon 42a1.
Crosspeaks between Me18, H2 and H6 demonstrated their cis relationship, thus establishing the relative orientations of the hydroxylated isopropyl group at C2, the hydroxyl group at C6 and side chain at C6. The 7E,9E stereochemistry was established by crosspeaks between Me19 and H7 as well as Me19 and the aldehydic proton.

By HRMS, the protonated form of the molecular parent ion was observed in addition to fragments resulting from loss of one and two molecules of water for each of the four stereoisomers. Proton and carbon assignments were based on COSY and HSQC NMR experiments.

Synthesis of C\textsubscript{25}-dihydroxyaldehyde 29.

With key synthon 42 in hand, C\textsubscript{25}-dihydroxyaldehyde 29 was prepared by a Wittig reaction. The stereoisomeric mixture of synthon 42 was first coupled with protected Wittig salt 43 in the presence of sodium methoxide to produce the C\textsubscript{25}-acetal 45, which without isolation, was deprotected in-situ with dilute sulfuric acid. Thus, 29 was obtained in 74% isolated yield after purification by column chromatography (Scheme 47).

Scheme 47. Synthesis of C\textsubscript{25}-dihydroxyaldehyde 29.
The protected Wittig salt 43 was prepared from C_{10}-dialdehyde 27 according to the procedure published by Bernhard et al.114 (Scheme 48).

\begin{center}
\includegraphics[width=\textwidth]{Scheme_48.png}
\end{center}

Scheme 48. Synthesis of protected Wittig salt 43.

The C_{10}-dialdehyde 27 is available by large scale industrial routes.142 Partial reduction of 27 with sodium borohydride in ethanol afforded the mono-ol 63 in 70\% yield after purification by column chromatography. Concentrated HCl was used to transform 64 in 76\% yield. Wittig salt 65 was prepared in 48\% yield by refluxing 64 with triphenylphosphine in ethyl acetate overnight followed by recrystallization from ethyl acetate and methylene chloride. The protected Wittig salt 43 was prepared by gently heating 65 with trimethylformate in acidified methanol in the presence of silica gel.

Structural characterization of C_{25}-dihydroxyaldehyde 29.

Aldehyde 29 was shown to consist of two isomers by normal phase HPLC. These were further separated by semi-preparative HPLC. The purified isomers of 29 were analyzed by HRMS where the protonated form of the molecular ion was observed in addition to fragments resulting from loss of one and two molecules of water. Proton and
carbon assignments for only one isomer were based on COSY, HSQC and HMBC NMR experiments. Relative stereochemistries at C2, C5, C6 and C12’ were based on a NOESY experiment.

In the proton NMR spectrum of 29, nine chemical shifts were evident for the vinylic protons. The chemical shift for the aldehydic proton occurred at 9.45 ppm. The chemical shifts for H2 and H6 were 1.96 and 2.53, respectively. This observation suggested these protons were in a trans relationship to one another, resulting in an all-E geometry for 29. The trans relationship between H2 and H6 was further demonstrated by lack of a crosspeak between these protons in a NOESY experiment. NOESY crosspeaks were observed between Me18 and H6, which established their cis relationship to one another. A crosspeak between H14’ and H12’ established an E-geometry for the C14’ double bond in relation to the aldehydic proton. Other crosspeaks observed are indicated in Figure 28.

![Figure 28](image_url)

Figure 28. NOESY crosspeaks observed for C25-dihydroxyaldehyde 29.

The 13C NMR chemical shifts for 29 corresponding to C1 and C5 attached to hydroxyl groups appeared at approximately 72 and 81 ppm, respectively. Twelve signals corresponding to substituted olefinic carbons were evident. The chemical shift of the
aldehydic carbon was evident at 194 ppm. Carbon-proton connectivities for 29 were determined by an HMBC experiment (Table 12).

Table 12. Carbon-proton connectivities determined for C_{25}-dihydroxyaldehyde 29 by HMBC NMR.

<table>
<thead>
<tr>
<th>C Position</th>
<th>H Connectivities</th>
<th>C Position</th>
<th>H Connectivities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2, 6, 16, 17</td>
<td>13</td>
<td>11, 12, 15, 20</td>
</tr>
<tr>
<td>2</td>
<td>3AB, 4A, 6, 7</td>
<td>13’</td>
<td>12’, 20’</td>
</tr>
<tr>
<td>3</td>
<td>2, 4AB</td>
<td>14</td>
<td>12, 15’, 20</td>
</tr>
<tr>
<td>4</td>
<td>3AB, 6, 18</td>
<td>14’</td>
<td>12’, 15, 20’</td>
</tr>
<tr>
<td>5</td>
<td>2, 3, 4, 6, 7</td>
<td>15</td>
<td>14’</td>
</tr>
<tr>
<td>6</td>
<td>2, 3, 7, 8</td>
<td>15’</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>2, 6, 8</td>
<td>Me16</td>
<td>2, 17</td>
</tr>
<tr>
<td>8</td>
<td>6, 10, 19</td>
<td>Me17</td>
<td>2, 16</td>
</tr>
<tr>
<td>9</td>
<td>7, 8, 19</td>
<td>Me18</td>
<td>None</td>
</tr>
<tr>
<td>10</td>
<td>8, 12, 19</td>
<td>Me19</td>
<td>8, 10</td>
</tr>
<tr>
<td>11</td>
<td>10, 12</td>
<td>Me20</td>
<td>12, 14</td>
</tr>
<tr>
<td>12</td>
<td>10, 11, 14, 20</td>
<td>Me20’</td>
<td>12’, 14’</td>
</tr>
<tr>
<td>12’</td>
<td>15’ 20’</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Synthesis of 40A by Wittig coupling reaction between C_{25}-dihydroxyaldehyde 29 and Wittig salt 44.

In the final step of the synthesis of \(\gamma \)-carotene oxidation product 40A, C_{25}-dihydroxyaldehyde 29 was coupled with Wittig salt 44 in a refluxing solution of 1,2-epoxybutane (Scheme 49).
Scheme 49. Final step of the synthesis of γ-carotene oxidation product 40A.

When the coupling reaction was attempted with sodium methoxide in methylene chloride at R.T., a significant amount of starting material 29 remained after 24 h. However, when the reactants were refluxed in 1,2-ethoxybutane for 24 h, the target compound 40A was obtained in 20% isolated yield following purification by column chromatography. Based on HPLC analysis, the target compound 40A was prepared as a mixture of EZ-isomers (E/Z = 1.9:1.0). These were further separated by normal phase semi-preparative HPLC. The all-E final isomer was isolated as an orange/red oil. The HPLC chromatogram is shown in Figure 29. 40A was analyzed by HRMS, 1H, 13C, NOESY, HSQC and HMBC NMR.
Figure 29. HPLC chromatogram and spectra of target carotenoid 40A following purification by flash column chromatography and semi-preparative HPLC. (HPLC condition B, Appendix I).

The mechanism proposed by Buddrus for epoxyalkane mediated Wittig coupling reactions is shown in Scheme 50.143

Scheme 50. Mechanism proposed for epoxyalkane mediated Wittig coupling reactions.143

The chloride counterion from the Wittig salt effects ring opening of the epoxide to generate a soft alkoxide base which is used to form the anion of the Wittig salt in the coupling reaction with the aldehyde.
Wittig salt 44 was prepared according to a published process, shown in Scheme 51.144 The reaction between β-ionone and vinyl magnesium bromide afforded vinyl-β-ionol in 91% yield. Reaction of vinyl-β-ionol with triphenylphosphine hydrochloride produced (β-ionylideneethyl)triphenylphosphonium chloride, or Wittig salt 44.111,112 The bromide salt can also be prepared.

\begin{center}
\includegraphics[width=0.5\textwidth]{Scheme_51.png}
\end{center}

Scheme 51. Synthesis of Wittig salt 44.111,112

As expected, the HRMS of the target compound showed the protonated form of the molecular parent ion. The proton and carbon assignments were established by COSY, HSQC and HMBC NMR experiments.

The chemical shifts and coupling constants exhibited by protons in the polyene chain were in agreement with those determined for (3R)-β-cryptoxanthin145 and 2,6-cyclolycopene-1,5-diol.86 Chemical shifts were observed for the fourteen vinylic protons. Most coupling constants between the *trans*-vinylic protons in the polyene chain were 15 Hz, near the predicted value of 17 Hz. Chemical shifts observed for H2 and H6 were evident at 2.3 and 2.2 ppm, respectively, indicating their *cis* relationship to one another. The 1H-NMR spectrum of 40A is shown in Figure 30.
The relative stereochemistries of 40A at C2, C5 and C6 were determined by a NOESY experiment. The NOESY spectrum is shown in Figure 31.
Figure 31. NOESY spectrum of γ-carotene oxidation product 40A.

NOESY crosspeaks and the relative stereochemical assignments for 40A are shown in Figure 32.

Figure 32. Structure of 1,2,5,6-tetrahydro-2,6-cyclo-γ-carotene-1,5-diol 40A and observed NOESY crosspeaks.

Further evidence for the cis relationship between H2 and H6 was gleaned from results of the NOESY experiment. Crosspeaks were observed between the protons on
Me16/17 and H7 which indicated their cis relationship to each other and established the orientation of the protons H2 and H6 as cis relative to one another. NOESY crosspeaks observed between the protons on Me18, H2 and H6 revealed their cis relationship and established the orientation of the hydroxyl group at C5 and the side chain at C6. An HMBC crosspeak between the Me18 protons and C4 was used to distinguish Me18 from Me16 and Me17. Further, Me17 could be distinguished from Me16 by the NOESY crosspeak with H7.

13C NMR chemical shifts for C1 and C5 attached to hydroxyl groups appeared at approximately 73 and 82 ppm, respectively (Figure 33). Twenty chemical shifts corresponding to substituted olefinic carbon atoms were evident. The 13C NMR chemical shifts for the carbons in the five-membered ring diol as well as the in-chain olefinic carbons were consistent with those of 2,6-cyclolycopene-1,5-diol.86

![Figure 33. 13C-NMR spectrum of γ-carotene oxidation product 40A.](image_url)
The HMBC NMR spectrum of γ-carotene oxidation product 40A is shown in Figure 34.

Figure 34. HMBC spectrum of γ-carotene oxidation product 40A.
Long-range connectivities between protons and carbons for 40A are summarized in Table 13.

Table 13. Carbon-proton connectivities determined for the target carotenoid 40A by HMBC NMR.

<table>
<thead>
<tr>
<th>C Position</th>
<th>H Connectivities</th>
<th>C Position</th>
<th>H Connectivities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2, 6, 16, 17</td>
<td>20’</td>
<td>12’, 14’</td>
</tr>
<tr>
<td>2</td>
<td>3, 4A, 6, 7, 16, 17</td>
<td>19’</td>
<td>8’, 10’</td>
</tr>
<tr>
<td>3</td>
<td>2, 4B</td>
<td>18’</td>
<td>4’</td>
</tr>
<tr>
<td>4</td>
<td>3, 18</td>
<td>17’</td>
<td>2’, 16’</td>
</tr>
<tr>
<td>5</td>
<td>3, 4AB, 6, 7, 18</td>
<td>16’</td>
<td>2’, 17’</td>
</tr>
<tr>
<td>6</td>
<td>2, 3, 4A, 7, 8, 18</td>
<td>15’</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>2, 6, 8</td>
<td>14’</td>
<td>12’, 15, 20’</td>
</tr>
<tr>
<td>8</td>
<td>6, 7, 10, 19</td>
<td>13’</td>
<td>11’, 12’, 15’, 20’</td>
</tr>
<tr>
<td>9</td>
<td>7, 8, 11, 19</td>
<td>12’</td>
<td>10’, 11’, 14’, 20’</td>
</tr>
<tr>
<td>10</td>
<td>8, 12, 19</td>
<td>11’</td>
<td>10’</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>10’</td>
<td>8’, 12’, 19’</td>
</tr>
<tr>
<td>12</td>
<td>10, 11, 14, 20</td>
<td>9’</td>
<td>7’, 8’, 10’, 11’, 19’</td>
</tr>
<tr>
<td>13</td>
<td>11, 12, 15, 20</td>
<td>8’</td>
<td>7’, 10’, 19’</td>
</tr>
<tr>
<td>14</td>
<td>12, 15’, 20</td>
<td>7’</td>
<td>8’</td>
</tr>
<tr>
<td>15</td>
<td>14’</td>
<td>6’</td>
<td>2’, 4’, 7’, 8’, 16’, 17’, 18’</td>
</tr>
<tr>
<td>16</td>
<td>2, 17</td>
<td>5’</td>
<td>3’, 4’, 18’</td>
</tr>
<tr>
<td>17</td>
<td>2, 16</td>
<td>4’</td>
<td>2’, 3’, 18’</td>
</tr>
<tr>
<td>18</td>
<td>4B, 6</td>
<td>3’</td>
<td>2’, 4’</td>
</tr>
<tr>
<td>19</td>
<td>8, 10</td>
<td>2’</td>
<td>3’, 4’, 16’, 17’</td>
</tr>
<tr>
<td>20</td>
<td>12, 14</td>
<td>1’</td>
<td>2’, 3’, 7’, 16’, 17’</td>
</tr>
</tbody>
</table>

Partial Synthesis of C_{15}-dihydroxyaldehyde 42.

Synthesis of the C_{15}-dihydroxyaldehyde 42 was also attempted according to the retrosynthesis outlined in Scheme 52.
Scheme 52. Partial synthesis of C₁₅-dihydroxyaldehyde 42. Carotenoid numbering system has been used for compound 42.

Compound 42 could be obtained from the intramolecular cyclization of 6,7-epoxy-3,7,11-trimethyldodeca-2,4,10-trienal (66), based on results previously obtained with the cyano- and ethyl ester analogues. A mixture of 6,7- and 10,11-epoxides 66 and
67 would be synthesized by epoxidation of the C15-aldehyde 68. DIBAL-H reduction of the corresponding C15-cyano compound 58 was expected to produce 68 in good yield. HWE coupling between the commercially available ψ-ionone and diethyl (cyanomethyl)phosphonate 52 could be used to prepare 58. The C15-nitrile 58 has been previously prepared by this route.127

Synthesis of C15-nitrile 58.

3,7,11-Trimethyldodeca-2,4,6,10-tetraennitrile (58) was synthesized by HWE coupling between diethyl (cyanomethyl) phosphonate (52) and ψ-ionone according to a reported procedure shown in supporting Scheme 53.127

![Scheme 53. HWE synthesis of C15-nitrile 58.](image)

Following purification by column chromatography, 58 was isolated in 50% yield as a light-yellow oil. Because the ratio of 5-(E/Z) isomers in ψ-ionone was approximately (1:2)92 and HWE reactions tend to produce products with variable levels of (E/Z)-isomerization, 58 was obtained as a mixture of E/Z isomers at C7 and C2. While these could be partially separated by normal phase HPLC, the stereoisomers were not
further separated or characterized. However, the 1H NMR spectrum of the isomeric mixture was in agreement with the published values.127

DIBAL-H reduction of C$_{15}$-nitrile 58.

Purified 58 was reduced with DIBAL-H to produce the C$_{15}$-aldehyde 68 as shown in Scheme 54.

![Scheme 54. Reduction of C$_{15}$-nitrile 58.](image)

After column chromatography, m-CPBA epoxidation of 68 afforded only the 10,11-epoxy aldehyde 67 (Scheme 55). Because the analogous aldehyde 66 could not be isolated, further attempts to synthesize the C$_{15}$-dihydroxyaldehyde 42 by this route were not further pursued.

![Scheme 55. Epoxidation of C$_{15}$-aldehyde 68 with m-CPBA.](image)
Synthesis of target carotenoid 40A via alternative route to C_{25}-dihydroxyaldehyde 29.

Another strategy to arrive at the target compound 40A is illustrated by the retrosynthesis shown in Scheme 56. The final step of this synthesis involved elongation of 29 with Wittig salt 44 as described previously. However, compound 29 could be synthesized from the acid-catalyzed intramolecular cyclization and hydrolysis of the C_{25}-5,6-epoxide 69, similar to the procedure described earlier. The 5,6-epoxy-aldehyde 69 and its 1,2-epoxy analogue could in turn be prepared from the m-CPBA epoxidation of the C_{25}-aldehyde apo-12’-ψ-caroten-12’-al (70), while 70 could be prepared according to a published procedure92 by the coupling of the C_{15}-Wittig salt 28 and the C_{10}-dialdehyde 27. Wittig salt 28 has been successfully employed in the total synthesis of lycopene (5),91 and could be synthesized from ψ-ionone by C2 elongation with vinyl magnesium bromide followed by reaction with triphenylphospine hydrobromide according to a known procedure.92
Scheme 56. Synthesis of target carotenoid 40A via C_{25}-aldehyde 70.
Synthesis of C₁₅-Wittig salt 28.

Wittig salt 28 was synthesized in two steps according to a reported procedure (Scheme 57).

![Scheme 57. Synthesis of C₁₅-Wittig salt 28.](image)

ψ-ionone containing a 1:2 mixture of 5-(E/Z) isomers was elongated with vinyl magnesium bromide to produce ψ-vinylionol in 58% yield with a similar E/Z ratio at C7, based on analysis by ¹H NMR spectroscopy. Subsequent reaction with triphenylphosphine hydrobromide afforded 28. The all-E isomer was crystallized from ethyl acetate and methanol according to the published procedure by Hengartner in 30% yield.

Synthesis of C₂₅-dihydroxyaldehyde 29 via C₂₅-aldehyde 70.

Coupling of Wittig salt 28 and C₁₀-dialdehyde 27 afforded the acyclic C₂₅-aldehyde 70 in 78% isolated yield as a dark red oil after flash column chromatography (Scheme 58). Of this, approximately 98% was obtained as the all-E isomer, based on results of HPLC analysis and ¹H NMR spectroscopy.
Epoxidation of 70.

Epoxidation of 70 with m-CPBA at 0 °C in methylene chloride afforded a mixture of the 1,2-epoxide (41%) and the 5,6-epoxide 69 (35%) based on HPLC analysis (Scheme 59).

Scheme 59. Epoxidation of C-25 aldehyde 70 followed by cyclization to 29.

A significant amount of starting material 70 was recovered (24%). Attempts to improve the yield of 69 relative that of the 1,2-epoxide by conducting the reaction at lower temperatures were unsuccessful. Upon purification of the product by column chromatography, the tentatively identified 5,6-epoxyaldehyde 70 underwent cyclization.
to dihydroxyaldehyde 29 which was isolated in 30% yield. The HPLC profile and proton NMR spectrum of this compound was identical with the reference sample of 29 prepared earlier.

A simplified procedure for the synthesis of target carotenoid 40A from dihydroxy aldehyde 42.

The synthesis of target compound 40A could also be accomplished by a simplified procedure as outlined in the retrosynthetic pathway shown in Scheme 64. This would involve coupling of the previously prepared C$_{15}$-dihydroxyaldehyde 42 with the C$_{25}$-Wittig salt 72. This Wittig salt has been previously prepared from 12’-apo-β-caroten-12’-ol (73) and triphenylphosphine hydrobromide.146 The C$_{25}$-alcohol 73 has been prepared from NaBH$_4$ reduction of 12’-apo-β-caroten-12’-al (74) which is commercially available from BASF. This aldehyde is readily accessible from elongation of Wittig salt 44 with C$_{10}$-dialdehyde 27.146 Aldehyde 74 was provided to use by BASF (Ludwigshafen, Germany).
Scheme 60. Simplified procedure for the synthesis of \(\gamma \)-carotene oxidation product 40A.
Reduction of \textit{(all-E)-12’apo-\(\beta\)-caroten-12’-al (74)} with NaBH\(_4\).

\textit{(all-E)-12’-Apo-\(\beta\)-carotenal (74)} was reduced with sodium borohydride in ethanol according to a published procedure (Scheme 61).146 The alcohol 73 was isolated as an orange oil in 98\% yield, and was used in the next step without further purification.

\begin{center}
\begin{tikzpicture}
\node at (-9,0) {74};
\node at (9,0) {73};
\node at (0,-1.5) {NaBH\(_4\)/EtOH
R.T., 98\%};
\draw [->] (-9,-2) -- (-9,0);
\draw [->] (9,-2) -- (9,0);
\end{tikzpicture}
\end{center}

\textbf{Scheme 61.} Reduction of \textit{(all-E)-12’apo-\(\beta\)-caroten-12’-al (74)}.

Synthesis of C\textsubscript{25}-Wittig salt 72.

Subsequent reaction of 73 with triphenylphosphine hydrobromide in methanol afforded Wittig salt 72 after nearly 2 days at R.T. under argon (Scheme 62). The product was recrystallized from methanol/ethyl acetate (1:5) at -15 °C for several days, and was obtained as orange crystals in 57\% isolated yield.

\begin{center}
\begin{tikzpicture}
\node at (-9,0) {73};
\node at (9,0) {72};
\node at (0,-1.5) {PPh\(_3\)-HBr/Methanol
R.T., 57\%};
\draw [->] (-9,-2) -- (-9,0);
\draw [->] (9,-2) -- (9,0);
\end{tikzpicture}
\end{center}

\textbf{Scheme 62.} Synthesis of C\textsubscript{25}-Wittig salt 72.

Synthesis of 40A from Wittig salt 72 and C\textsubscript{15}-dihydroxyaldehyde 42.

HWE coupling of 72 with the C\textsubscript{15}-dihydroxyaldehyde 42 was accomplished similar to a reported procedure by Haugan and Liaanen-Jensen146 (Scheme 63).
Scheme 63. Synthesis of 40A from Wittig salt 72 and aldehyde 42.

A small sample of 40A was purified by preparative TLC. The HPLC profile of this purified sample consisted of a mixture of all-E-40A as well as two Z-stereoisomers and was consistent with the HPLC profile of the standard sample of 40A prepared earlier.

Direct synthesis of target carotenoid 40A from γ-carotene (6).

γ-carotene (6) was synthesized according to a known method147 as shown in Scheme 64.

Scheme 64. Synthesis of γ-carotene (6) according to the procedure by Ruegg \textit{et al.}147

After purification by flash column chromatography, γ-carotene (6) was isolated in 67\% yield as a dark red viscous oil. The identity of the product was confirmed by
comparison of the HPLC retention time and 1H NMR spectrum with those of a standard sample of 6.

Because lycopene 5,6-epoxide (23) underwent intramolecular rearrangement to 2,6-cyclolycopene-1,5-diols 21 and 22 during silica gel chromatography, identical treatment of γ-carotene-5,6-epoxide (37) was expected to produce the target compound 40A. However, the major difficulty with this approach was the fact that γ-carotene (6) could undergo epoxidation not only at 1’,2’- and 5’,6’-positions but also at the 5,6-position in the β-end group as shown in Scheme 65.

![Scheme 65](image)

Scheme 65. Possible epoxidation products of γ-carotene (6).

Among these, only γ-carotene-5’,6’-epoxide (37) could be converted to the target carotenoid 40A by acid promoted cyclization by silica gel chromatography. In addition, this route could be even further complicated by possible formation of diepoxides. Nonetheless, we were interested to explore the partial synthesis of compound 40A by this route because of the ease with which γ-carotene (6) could be prepared. Unfortunately, as
expected, \textit{m}-CPBA epoxidation of 6 under various conditions produced a mixture of numerous epoxides. As a result, this approach was not further studied.

Investigation of the possible presence of \(\gamma\)-carotene oxidation product 40A in extracts of human plasma, tomato paste and algal biomass.

Human plasma was obtained from the American Red Cross. Proteins were denatured with 100% ethanol. After extraction and the usual work-up,86 the HPLC analysis did not reveal the presence of 40A in the extract from human plasma. However, it should be noted that the oxidation product of 6 would only be expected if this carotenoid were to be present at high concentrations in plasma. Therefore, the fact that 6 was not present even in modest concentration in the Red Cross plasma could account for the lack of detection of compound 40A. This is consistent with the observation that oxidation products of major dietary carotenoids such as lutein and lycopene are only present in minute quantities in human plasma.

Hunt’s tomato paste was purchased at a local grocery store and extracted with THF. The dark red, pasty extract was analyzed by normal phase HPLC. Several closely eluting signals eluted in the retention time window of the target carotenoid 40A. However, the \(\lambda_{\text{max}}\) of all spectra taken across the signals was 450-454 nm, in contrast to the \(\lambda_{\text{max}}\) expected for the oxidized product of \(\gamma\)-carotene (6) (444 nm). Based on this observation, this batch of tomato paste was not found to contain the \(\gamma\)-carotene oxidation product 40A.

Algal biomass was obtained from Martek Biosciences Corporation, and extracted with THF. The predominant carotenoids in the oil consisted of approximately 400 ppm
\(\gamma \)-carotene (6) and 200 ppm \(\beta \)-carotene (8), in addition to minor amounts of more polar, unidentified pigment. Several fractions of the polar material were further isolated by semi-preparative HPLC and evaluated. Based on results of normal phase HPLC, one fraction tentatively contains the target carotenoid in trace amounts, based on comparison of retention time and spectral characteristics. Unfortunately, the low concentration of this fraction did not allow structural elucidation by NMR.
CONCLUSION

Several strategies for the total and partial synthesis of a possible metabolic oxidation product of gamma-carotene, namely, 1,2,5,6-tetrahydro-2,6-cyclo-γ-carotene-1,5-diol (40A) have been explored. Among these, the total synthesis of 40A has been accomplished by a C$_{15}$+C$_{10}$+C$_{15}$ double Wittig coupling using key synthon 42, the protected Wittig salt 43, and the well known Wittig salt 44 as shown below.

While the Wittig salts 43 and 44 could be readily prepared in high yields according to published procedures, the access to synthon 42 with a known relative stereochemistry was the most challenging features of this synthesis. Regioselective epoxidation of commercially available (E/Z)-citral afforded (E/Z)-citral 2,3-epoxide (48) that was elongated to C$_{15}$-dihydroxynitrile 47 (Route 1, see also Scheme 24). Cyclization of this nitrile to the C$_{15}$-dihydroxynitrile 46 followed by reduction gave synthon 42 in 16% overall yield. The low yield of this transformation was because of the cyclization of 47 to 46.
In another approach, (E/Z)-citral 2,3-epoxide (48) was transformed into C\textsubscript{17}-epoxyester 56 which is the ester analog of 47 that was similarly cyclized to synthon 42 in four steps in an overall yield of only 5\% (Route 2, see also Scheme 25). The efficiency of the alternate Route 2 was further decreased by the additional step that was required to reduce ester 55 to triol 54 before subsequent oxidation to synthon 42.

The major challenges with these two routes were the fact that separation of (E)-citral and (E)-citral epoxide from their corresponding Z-stereoisomers could not be accomplished on a gram scale and consequently the elongation of 48 to epoxynitrite 47 and epoxyester 56 resulted in a E/Z-geometry for these epoxides. This was further complicated by the E/Z-geometry of the dienenitrile and dieneester at the C2 double bonds resulting in a mixture of four stereoisomers for each 47 and 56. Although with both routes the all-E-epoxides were obtained as the major products, the presence of the other stereoisomers contributed to the low yield of these key epoxides.
Another deficiency of this synthesis was due to the low yield of cyclization of 47 and 56 and their transformation to synthon 42 that was obtained as a mixture of E/Z-stereoisomers. Therefore, routes 1 and 2 each afforded four stereoisomer of 42 with the same relative stereochemistries at C2, C5 and C6 as shown below.

These relative stereochemistries were established by extensive NMR studies. The overall yield of 40A that could be obtained from Routes 1 and 2 was 2.4% and 0.8%, respectively.

In the semi-synthetic approach outlined below (see also Scheme 56), ψ-ionone was used to prepare 12′-apo-ψ-carotene-12′-al (70). m-CPBA epoxidation of 70 afforded a mixture of C25-1,2- and 5,6-epoxide (69). The latter was cyclized to C25-dihydroxyaldehyde 29 upon silica gel chromatography. Final coupling of 29 with Wittig salt 44 could produce 40A in 4 steps in an overall yield of 0.8% from ψ-ionone. However, it should be noted that 12′-apo-ψ-carotene-12′-al (70) is an intermediate product in the commercial synthesis of lycopene by DSM Nutritional Products (Basel, Switzerland) and BASF (Ludwigshafen, Germany) and could be available for the synthesis of 40A on a large scale. Therefore employing aldehyde 70 as the starting material in this synthesis avoids the need to produce the C15-dihydroxyaldehyde synthon 42 and is by far the most practical route to this carotenoid 40A.
Another efficient strategy to 40A was via the simplified procedure shown below (see also Scheme 60), where this carotenoid was prepared in just 3 steps in 16.8% yield from the readily available starting material (all-E)-12'-apo-β-caroten-12'-al (74). This is provided that the yield of the key synthon 42 could be improved.
The present methodologies provide novel access to a possible oxidation product of γ-carotene that could be potentially formed in humans or biological systems. While our attempt to direct chemical oxidation of γ-carotene resulted in complex mixture of products, the oxidation of this carotenoid in biological systems might provide a much less complicated profile and provide an insight into the function of γ-carotene as an antioxidant. Therefore, future studies in this area should investigate the oxidation of γ-carotene in various in vitro cell cultures in the presence of biological oxidants such as hydroxyl radicals (HO•), singlet oxygen (1O2), hydrogen peroxide (H2O2), and peroxynitrite anion (ONOO−). These studies can reveal the nature of oxidation products of this carotenoid.

Further, supplementation studies with γ-carotene from food sources or with dietary supplements would be expected to provide insight into possible metabolic oxidation of this carotenoid to 40A or other metabolites of this carotenoid. In view of the well-established health benefits of lycopene and β-carotene in the prevention of chronic
diseases, investigation of the metabolism and γ-carotene that has structural features of both of these carotenoids is essential.
EXPERIMENTAL SECTION

All operations and HPLC analyses were conducted under yellow laboratory lights to prevent photo-isomerization and degradation of carotenoids and their precursors. Unless noted, experiments were carried out under anhydrous conditions under argon; reaction glassware were dried in an oven prior to use.

Reactions were monitored by using thin-layer chromatography (TLC) on Merck silica-coated glass plates treated with UV-active binder. Compounds were detected by UV (254 nm) and/or an ethanolic phosphomolybdic acid indicator solution. Reactions were also monitored by normal-phase chromatography under the conditions described below. The HPLC system (Agilent 1100 series) was equipped with a quaternary solvent delivery system (model G1311A), an autosampler (model G1313A), a thermostatted column compartment (model G1316A) and a photodiode array detector (model G1315B). The data were stored and processed by computer (Dell with Windows 2000 and HP Chem-Station software).

Normal phase HPLC separations were carried out on a Waters Spherisorb, silica-based nitrile bonded column (250 mm length x 4.6 mm internal diameter; 5 µm particle size). Reversed phase HPLC separations were carried out on a Varian C₁₈-Microsorb column, (250 mm length x 4.6 mm internal diameter; 5 µm particle size). Semipreparative HPLC separations were carried out on a Regis Spherisorb silica-based nitrile bonded column (250 mm length x 10 mm internal diameter; 5 µm particle size).

Mass Spectral Analysis. High resolution mass spectra were obtained on a JEOL SX102 Time of Flight mass spectrometer with electrospray ionization source. All compounds were determined to be >95% pure by ¹H-NMR and HPLC analysis unless
otherwise noted. All new compounds were minimally characterized using 1H-NMR, 13C-NMR, HSQC-NMR, COSY-NMR, UV/Vis spectra and mass spectrometry. Stereochemical assignments were based on NOESY-NMR.

1H, 13C, COSY, and HSQC NMR spectra were recorded on a Bruker AV-400 spectrometer. HMBC and NOESY spectra were recorded on a Bruker AV-600 spectrometer. NMR spectra were referenced to the solvent resonance (CDCl$_3$; 1H δ 7.24 ppm, 13C δ 77.1 ppm).

COSY NMR spectra were recorded with average spectral widths of 2800 Hz in each domain and with 1024 data points in the F_2 dimension. A 1H pulse width of 7 µs (90°) and a 1-s relaxation delay time were used to acquire 512 incremented proton NMR spectra of 8 scans each. Free-induction decays were processed as a 1024 x 1024 matrix with appropriate zero filling and sinebell weighting.

Phase-sensitive NOESY NMR spectra were recorded with average spectral widths of 2800 Hz in each domain and with 1024 data points in the F_2 dimension. A 1H pulse width of 7 µs (90°) and a 2-s relaxation delay time were used to acquire 512 incremented proton NMR spectra of 16 scans each. Mixing times of 1 s were employed. Free-induction decays were processed as a 1024 x 1024 matrix with appropriate zero filling and Gaussian weighting.

HSQC NMR spectra were obtained with average spectral widths of 17,000 and 2800 Hz in the carbon and proton dimensions, respectively, and with 1024 data points in the 1H dimension; 128 incremented 1H spectra of 8 scans each were acquired by using 7-µs (90°) 1H pulse widths and a 1-s relaxation delay time. Free-induction decays in both dimensions were processed as a 1024 x 256 matrix with appropriate zero filling and
Gaussian weighting. The value $^1J(CH) = 145$ Hz was used for calculating the delay Δ, which is then equal to 3.5 ms.

HMBC NMR spectra were recorded with average spectral widths of 28,000 and 2800 Hz in the carbon and proton dimensions, respectively, and with 1024 data points in the 1H dimension; 128 incremented 1H spectra of 128 scans each were acquired by using 7-μs (90^o) 1H pulse widths and a 1-s relaxation delay time. Free-induction decays in both dimensions were processed as a 1024 x 256 matrix with appropriate zero filling and Gaussian weighting. The value $^6J(CH) = 7.5$ Hz was used for calculating the delay Δ_{LR}, which is then equal to approximately 60 ms, and $^1J(CH) = 145$ Hz was used for Δ in the J-filter.

Synthesis of citral epoxide (48). Hydrogen peroxide (30%, 70 mL, 700 mmol) was added dropwise to a mixture of E/Z-citral (86.0 g, 542 mmol) and potassium bicarbonate (76.0 g, 760 mmol) in acetonitrile (36.8 mL, 700 mmol) and methanol (280 mL) at R.T. After stirring overnight, the product was filtered and extracted with aqueous ammonium chloride and ethyl acetate. The organic layer was dried over Na$_2$SO$_4$ and concentrated. Vacuum distillation (62-66 oC and 0.1 mm Hg) gave a mixture of E/Z-citral epoxide (48) (43.8 g, 260 mmol; 48%) as a light yellow oil; TLC ($R_f = 0.41$ and 0.32, hexane:acetone, 9:1, n-Si). The (E/Z)-isomeric ratio of the products ($E/Z =1.0/0.8$) was determined by 1H-NMR. Results were in agreement with reported literature values.148 ^{13}C NMR (400 MHz, CDCl$_3$) δ 17.3, 21.8, 25.4, 23.9, 33.1, 64.2, 64.3, 122.2, 132.9, 198.5.

cis-citral epoxide (48): 1H-NMR (400 MHz, CDCl$_3$) δ 1.39 (s, 3H), 1.56 (s, 3H), 1.63 (s, 3H), 1.78 (m, 2H), 2.06 (m, 2H), 3.12 (d, $J = 5.1$, 1H), 5.02 (m, 1H), 9.39 (d, $J = 5.1$, 1H).
trans-citral epoxide (48): 1H-NMR (400 MHz, CDCl$_3$) δ 1.42 (s, 3H), 1.58 (s, 3H), 1.66 (s, 3H), 1.78 (m, 2H), 2.06 (m, 2H), 3.16 (d, $J = 5.0, 1H$), 5.02 (m, 1H), 9.43 (d, $J = 5.0, 1H$).

Synthesis of 4-chloro-3-methyl-2-butenenitrile (51). Sodium hydride (60% suspension in mineral oil, 10.8 g, 271 mmol) was washed with hexane (3 x 100 mL) in a 3-neck flask equipped with an addition funnel and a thermometer. Anhydrous tert-butyl methyl ether (TBME, 160 mL) was added under argon and the mixture was cooled down to 0 °C. Diethyl (cyanomethyl) phosphonate (36.2 mL, 226 mmol) in 20 mL TBME was added dropwise to sodium hydride with stirring. The mixture was cooled down to –40 °C and chloroacetone (21.8 g, 226 mmol) in TBME (10 mL) was added dropwise in 20 minutes. The crude product was allowed to warm up to R.T. and quenched with brine. The organic layer was washed twice with water, dried over Na$_2$SO$_4$ and concentrated, yielding 26.8 g of a yellow oil. Purification by column chromatography on silica (100% hexane to hexane:acetone, 9:1) afforded a mixture of (E/Z)-51 (24.0 g, 200 mmol; 92%). The (E/Z)-isomeric ratio was determined by 1H-NMR (E/Z = 2.6/1.0); the NMR data were in agreement with literature values.118

(E)-4-chloro-3-methyl-2-butenenitrile (51): 1H-NMR (400 MHz, CDCl$_3$) δ 2.14 (d, $J = 1.2, 3H$), 4.07 (s, 2H), 5.51 (d, $J = 1.2, 1H$).

(Z)-4-chloro-3-methyl-2-butenenitrile (51): 1H-NMR (400 MHz, CDCl$_3$) δ 2.05 (d, $J = 1.5, 3H$), 4.26 (s, 2H), 5.29 (d, $J = 1.5, 1H$).

Preparation of 4-(diethylphosphono)-3-methyl-2-butenenitrile (49). Triethyl phosphite (60 mL, 350 mmol) and (E/Z)-4-chloro-3-methyl-2-butenenitrile (51) (30.3 g, 262 mmol) were heated to 100 °C for 30 minutes without a condenser to boil off ethyl
chlordane. The mixture was subsequently refluxed at 180 °C for 2 h. Vacuum distillation gave 49 (42.1 g, 190 mmol; 74%) as a colorless oil, b.p. 115-118 °C at 0.1 mm Hg. The (E/Z)-isomeric ratio was determined by 1H-NMR (E/Z = 1.1/1.0); the NMR data were in agreement with literature values.\(^{118}\)

(E-49): \(^{1}H\)-NMR (400 MHz, CDCl\(_3\)) \(\delta\) 1.31 (t, 6H), 2.18 (m, 3H), 2.95 (d, \(J_{P-H} = 23.9\), 2H), 4.11 (m, 4H), 5.26 (s, 1H).

(Z-49): \(\delta\) 1.31 (t, 6H), 2.08 (m, 3H), 2.70 (d, \(J_{P-H} = 23.6\), 2H), 4.11 (m, 4H), 5.25 (s, 1H).

Synthesis of 6,7-epoxy-3,7,11-trimethyldodeca-2,4,10-trienenitrile (47). Sodium hydride (60% suspension in mineral oil, 0.80 g, 20 mmol) was washed three times with small portions of hexane under argon. Anhydrous THF (5 mL) was added, and the mixture was cooled down to –8 °C. A solution of (diethylphosphono)-3-methyl-2-butenenitrile (49) (2.6 g, 12 mmol) in 5 mL THF was added dropwise with stirring. The color changed from colorless to red/brown as the temperature rose to 0 °C during the addition. The mixture was cooled down to –35 °C and a solution of citral epoxide (48) (2.5 g, 15 mmol) in anhydrous THF (5 mL) was added dropwise in 10 minutes. The mixture was allowed to warm up to –20 °C, and was kept at this temperature for 1 h, and then maintained at 0 °C for 2 h. The reaction mixture was quenched with water and extracted with ethyl acetate. The organic layer was washed twice with dilute brine, dried over Na\(_2\)SO\(_4\) and concentrated. After purification by column chromatography on silica (100% hexane to hexane:acetone, 99:1), 47 was obtained as a light yellow oil (1.8 g, 8 mmol; 66%), and was identified as a mixture of 4 stereoisomers. An analytical sample of these stereoisomers was separated by preparative TLC (hexane/ethylacetate, 9:1) into a mixture of two sets of stereoisomers (47a and 47b). The first set was tentatively
identified by 1H-NMR to be a mixture of (2E,4E)-*trans*-6,7-epoxynitrile (47a1) and (2Z,4E)-*trans*-6,7-epoxynitrile (47a2), while the second set was tentatively identified to be a mixture of (2E,4E)-*cis*-6,7-epoxynitrile (47b1) and (2Z,4E)-*cis*-6,7-epoxynitrile (47b2). UV/Vis $\lambda_{\text{max}} = 264$ nm (hexane). The ratio of *trans/cis* epoxides 47a:47b was approximately (1:1), based on HPLC area counts while the ratio of (2E/2Z) isomers was approximately 2:1, based on analysis of the chemical shift of H4 by 1H-NMR.

(47a1, 47a2): HRMS (ESI$^+$) m/z calculated for C$_{15}$H$_{22}$NO [M+H]$^+$ 232.1701, found 232.1726; m/z calculated for C$_{15}$H$_{20}$N [M+H–H$_2$O]$^+$ 214.1596, found 214.1606; 13C NMR (400 MHz, CDCl$_3$) δ 16.6, 17.6, 22.0, 24.1, 25.7, 32.9, 63.4, 64.1, 98.6, 117.3, 123.1, 132.4, 133.1, 133.8, 155.5.

(47b1, 47b2): HRMS (ESI$^+$) m/z calculated for C$_{15}$H$_{22}$NO [M+H]$^+$ 232.1701, found 232.1744; m/z calculated for C$_{15}$H$_{20}$N [M+H–H$_2$O]$^+$ 214.1596, found 214.1600; 13C NMR (400 MHz, CDCl$_3$) δ 16.6, 16.6, 17.6, 23.7, 25.7, 38.4, 62.4, 64.0, 98.6, 117.3, 123.2, 132.3, 133.2, 134.0, 155.5.

(2E,4E)-epoxide (47a1, 47b1): 1H-NMR (400 MHz, CDCl$_3$) δ 1.40 (s, 3H), 1.47 (m, 2H), 1.59 (s, 3H), 1.67 (s, 3H), 2.09 (m, 2H), 2.16 (d, 3H), 3.29 (d, J = 6.8, 1H), 5.07 (m, 1H), 5.25 (s, 1H), 6.00 (dd, J = 15.8 and J = 6.8, 1H), 6.45 (d, J = 15.8, 1H).

(2Z,4E)-epoxide (47a2, 47b2): 1H-NMR (400 MHz, CDCl$_3$) δ 1.41 (s, 3H), 1.47 (m, 2H), 1.60 (s, 3H), 1.68 (s, 3H), 2.02 (d, 3H), 2.09 (m, 2H), 3.35 (d, J = 7.7, 1H), 5.05 (m, 1H), 5.20 (s, 1H), 5.99 (dd, J = 15.7 and J = 7.7, 1H), 7.00 (d, J = 15.7, 1H).

Synthesis of 47 employing LDA as base. n-Butyl lithium (1.6 M in hexane, 17.5 mL, 28 mmol) was added to diisopropylamine (4.0 mL, 2.9 g, 29 mmol) at –65 °C and the mixture was stirred for 15 minutes under argon. A solution of 49 (6.0 g, 28 mmol) in
anhydrous THF (15 mL) was added. The reaction mixture was allowed to warm up to –20 °C and kept at this temperature for 2 h. A solution of 48 (5.0 g, 30 mmol) in anhydrous THF (10 mL) was added to the pre-formed anion at –20 °C and the mixture was stirred for 1 h, warmed to R.T. and stirred for an additional 30 minutes. The product was quenched with saturated NH₄Cl and extracted with ethyl acetate. The organic layer was washed with water to neutral pH, dried over Na₂SO₄ and concentrated to yield 7.3 g of a yellow oil. The product was purified by column chromatography (100% hexane to hexane/ethyl acetate, 95:5) on silica to give epoxynitrile 47 (6.2 g, 27 mmol; 96%).

Synthesis of 3,7,11-trimethyladeca-2,4,6,10-tetraen-nitrile (58) by Knoevenagel condensation reaction. Ψ-Ionone (10.0 g, 52 mmol), cyanoacetic acid (5.3 g, 62 mmol) and cyclohexylamine (20 mL, 170 mmol) were stirred under argon at 85 °C for 1 h, then for another 1 h at 85 °C while open to the atmosphere. Progress of the reaction was monitored by TLC (hexane:acetone, 95:5). The mixture was cooled down to R.T. and transferred to a separatory funnel. Water (50 mL) and hydrochloric acid (30 mL, 2M) were added. The product was extracted into ethyl acetate, dried over Na₂SO₄ and evaporated to dryness. The crude product (13.7 g) was obtained as a dark brown oil and was not further purified. The isomeric ratio of 58 (2E/2Z = 1.0/1.5) was determined by normal phase HPLC (condition I, Appendix 1) and ¹H NMR. The NMR data were in agreement with literature values.¹²⁷

Cyclization of (cis/trans)-6,7-epoxy-3,7,11-trimethyl-adeca-2,4,10-trienenitrile (47) with dilute H₂SO₄. Sulfuric acid (5% v/v in water, 150 mL) was added to a stereoisomeric mixture of 47 (6.5 g, 28 mmol) in THF (30 mL) at 0 °C. The reaction was warmed up to R.T. and stirred for 2 h. Progress of the reaction was monitored by
disappearance of the signal for the starting material by normal phase HPLC (condition B, Appendix I). The reaction mixture was neutralized with saturated NaHCO₃ and extracted twice with hexane/CH₂Cl₂ (75/25). The organic layer was dried over Na₂SO₄ and concentrated to yield 6.2 g of yellow oil. The product was purified by flash column chromatography on silica (hexane:acetone, 9:1). Three fractions were collected and individually subjected to semi-preparative normal phase HPLC (condition E, Appendix I). These were identified as 3-methyl-5-[3-(1-hydroxyl-1-methylethyl)-1-hydroxy-1-methyl-2-cyclopent-2-yl]-penta-2,4-dienitrile (46) (27%), monool dehydration product (59) (25%) and 6,7-dihydroxy-3,7,11-trimethyldodeca-2,4,10-trienitrile (60) (48%). A small sample of C₁₅-dihydroxynitrile 46 was further separated into 4 stereoisomers (46a₁, 46a₂, 46b₁ and 46b₂) by normal phase semi-preparative HPLC (condition E, Appendix I) in relative yields 3.4:1.0:1.8:1.4. The structures were assigned based on results of HRMS and proton, carbon, COSY, HSQC and HMBC NMR (400 MHz, CDCl₃). The relative stereochemistries were determined by NOESY NMR (600 MHz, CDCl₃).

(2E,4E)-3-methyl-5-[3-(1-hydroxyl-1-methylethyl)-1-hydroxy-1-methyl-2-cyclopent-2-yl]-penta-2,4-dienitrile (46a₁): HRMS (ESI⁺) m/z calculated for C₁₅H₂₂NO

[M+H–H₂O]⁺ 232.1701, found 232.1708; m/z calculated for C₁₅H₂₀N [M+H–2H₂O]⁺ 214.1596, found 214.1613. UV λₘₚₙ = 262 nm (hexane). ¹H-NMR (400 MHz, CDCl₃) δ

1.18 (s, 3H), 1.19 (s, 3H), 1.25 (s, 3H), 1.84 (m, 2H), 1.95 (m, 1H), 2.14 (d, 3H), 2.56 (dd, J = 10.8, J = 5.7, 1H), 2.65 (dt, J = 9.7, J = 5.7, 1H), 5.18 (s, 1H), 6.06 (dd, J = 15.5, J = 10.8, 1H), 6.19 (d, J = 15.5, 1H). ¹³C NMR (400 MHz, CDCl₃) δ 17.0, 22.4, 26.6, 29.5, 29.9, 37.8, 53.0, 58.7, 72.0, 82.4, 96.8, 117.6, 131.1, 139.1, 156.4.
(2Z,4E)-3-methyl-5-[3-(1-hydroxyl-1-methylethyl)-1-hydroxy-1-methyl-2-cyclopent-2-yl]-penta-2,4-dienitrile (46a2): HRMS (ESI+) m/z calculated for C\textsubscript{15}H\textsubscript{22}NO

[M+H–H\textsubscript{2}O]+ 232.1701, found 232.1689; m/z calculated for C\textsubscript{15}H\textsubscript{20}N [M+H–2H\textsubscript{2}O]+ 214.1596, found 214.1616. UV \(\lambda_{\text{max}}\) = 264 nm (hexane). 1H-NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 1.18 (s, 3H), 1.19 (s, 3H), 1.28 (s, 3H), 1.83 (m, 2H), 1.94 (m, 2H), 1.99 (d, 3H), 2.66 (m, 1H), 2.67 (m, 1H), 5.11 (d, 1H), 6.11 (dd, \(J = 15.5, J = 10.5\), 1H), 6.70 (d, \(J = 15.5, 1H\)). 13C NMR (600 MHz, CDCl\textsubscript{3}) \(\delta\) 19.7, 22.4, 26.73, 29.5, 30.0, 37.6, 53.1, 58.9, 72.1, 82.5, 95.3, 116.9, 128.4, 140.1, 156.0.

(2E,4E)-3-methyl-5-[3-(1-hydroxyl-1-methylethyl)-1-hydroxy-1-methyl-2-cyclopent-2-yl]-penta-2,4-dienitrile (46b2): HRMS (ESI+) m/z calculated for C\textsubscript{15}H\textsubscript{22}NO

[M+H–H\textsubscript{2}O]+ 232.1701, found 232.1689; m/z calculated for C\textsubscript{15}H\textsubscript{20}N [M+H–2H\textsubscript{2}O]+ 214.1596, found 214.1593. UV \(\lambda_{\text{max}}\) = 262 nm (hexane). 1H-NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 1.14 (s, 3H), 1.21 (s, 3H), 1.22 (s, 3H), 1.65 (m, 2H), 1.84 (m, 2H), 1.93 (m, 1H), 2.13 (d, 3H), 2.57 (dd, \(J = 10.2, J = 3.8, 1H\)), 5.17 (s, 1H), 5.86 (dd, \(J = 15.4, J = 10.2, 1H\)), 6.13 (d, \(J = 15.4, 1H\)). 13C NMR (600 MHz, CDCl\textsubscript{3}) \(\delta\) 24.0, 16.8, 24.5, 28.4, 29.5, 40.1, 55.3, 56.3, 72.3, 81.2, 97.1, 117.6, 130.3, 141.3, 156.6.

(2Z,4E)-3-methyl-5-[3-(1-hydroxyl-1-methylethyl)-1-hydroxy-1-methyl-2-cyclopent-2-yl]-penta-2,4-dienitrile (46b2): HRMS (ESI+) m/z calculated for C\textsubscript{15}H\textsubscript{22}NO

[M+H–H\textsubscript{2}O]+ 232.1701, found 232.1687; m/z calculated for C\textsubscript{15}H\textsubscript{20}N [M+H–2H\textsubscript{2}O]+ 214.1596, found 214.1593. UV \(\lambda_{\text{max}}\) = 262 nm (hexane). 1H-NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 1.16 (s, 3H), 1.22 (s, 3H), 1.26 (s, 3H), 1.76 (m, 2H), 1.84 (m, 2H), 1.95 (m, 1H), 2.00 (d, 3H), 2.66 (dd, \(J = 10.1, J = 4.5, 1H\)), 5.11 (s, 1H), 5.93 (dd, \(J = 15.4, J = 10.1, 1H\)), 6.64 (d, \(J = 15.4, 1H\)).
59: HRMS (ESI⁺) m/z calculated for C₁₅H₂₂NO [M+H]⁺ 232.1701, found 232.1686; m/z calculated for C₁₅H₂₀N [M+H–H₂O]⁺ 214.1596, found 214.1574. \(\lambda_{\text{max}} = 262 \text{ nm (hexane)} \).

\(^1\text{H}-\text{NMR (400 MHz, CDCl}_3\text{)} \delta 1.26 (s, 3H), 1.57 (s, 3H), 1.68 (s, 3H), 1.77 (m, 2H), 2.14 (d, 3H), 2.39 (m, 1H), 2.48 (mm, 2H), 3.10 (d, J = 9.0, 1H), 5.17 (s, 1H), 5.82 (dd, J = 15.5, J = 9.0, 1H), 6.10 (d, J = 15.5, 1H). \(^{13}\text{C NMR (100 MHz, CDCl}_3\text{)} \delta 16.8, 21.0, 21.2, 24.5, 27.6, 38.1, 58.8, 81.8, 96.9, 117.7, 128.1, 130.5, 134.4, 137.7.

6,7-dihydroxy-3,7,11-trimethyldodeca-2,4,10-trienenitrile (60): HRMS (ESI⁺) m/z calculated for C₁₅H₂₄NO₂ [M + H]⁺ 250.1807, found 250.1808; m/z calculated for C₁₅H₂₀NO [M+H–2H₂O]⁺ 232.1701, found 232.1701; m/z calculated for C₁₅H₂₀N [M+H–2H₂O]⁺ 214.1596, found 214.1601. UV/VIS \(\lambda_{\text{max}} = 258 \text{ nm (hexane)} \).

\(^1\text{H}-\text{NMR (400 MHz, CDCl}_3\text{)} \delta 1.12 (s, 3H), 1.64 (s, 3H), 1.71 (s, 3H), 1.99 (s, 1H), 2.18 (d, 3H), 2.40 (d, 1H), 4.11 (m, 1H), 5.14 (m, 1H), 5.26 (s, 1H), 6.12 (dd, J = 15.7, 1H), 6.43 (d, J = 15.7, 1H). \(^{13}\text{C NMR (100 MHz, CDCl}_3\text{)} \delta 16.8, 17.7, 21.5, 22.0, 25.7, 38.7, 98.7, 117.4, 123.9, 132.2, 132.3, 135.7, 156.1.

Synthesis of 46 by cyclization of 47 with Amberlite IR-120. A solution of 47 (128 mg, 0.55 mmol) in hexane (6 mL) was sequentially treated with water (0.5 mL) and Amberlite IR-120 (40 mg). The mixture was stirred at R.T. for 5 h. Additional Amberlite (60 mg) and water (0.5 mL) were added. After stirring at R.T. overnight, the product was extracted into ethyl acetate and analyzed by normal phase HPLC (condition K, Appendix I). Based on area counts, 46 was produced in 36% yield, along with 60 (20%), 59 (32%) and starting material 47 (11%).

Lewis acid-catalyzed cyclization of 47. A mixture of Lewis acid in solvent (0.08 M) was cooled down to the appropriate temperature and added to a solution of 47 (20 mg,
0.090 mmol) in solvent with stirring. The products were extracted with dilute NaHCO₃ and hexane/CH₂Cl₂ (3:1). The organic layer was washed with water, dried over Na₂SO₄ and analyzed by normal phase HPLC (condition E, Appendix I).

For alumina mediated reactions, excess acidic alumina powder (100 mg) was added to a solution of 47 (20 mg, 0.090 mmol) dissolved in either CH₂Cl₂ or THF (5 mL) and the mixture was heated at the reflux temperature for 2 h. The product was filtered and analyzed by HPLC (condition E, Appendix I).

In the microwave heating experiment, a solution of 47 (20 mg, 0.090 mmol) in CH₂Cl₂ (2 mL) was sealed in a pressure resistant and temperature controlled glass tube and placed in a microwave designed for laboratory use. In three separate experiments, the samples were heated at 60 °C and 100 °C for 5 minutes, and at 100 °C for 10 minutes. In all experiments, the starting material was recovered quantitatively.

Synthesis of stereochemically pure (4E,2E)-3-methyl-5-[3-(1-hydroxy-1-methylethyl)-1-hydroxy-1-methyl-2-cyclopent-2-yl]-penta-2,4-dienal (42a1) from (2E,4E)-3-methyl-5-[3-(1-hydroxyl-1-methylethyl)-1-hydroxy-1-methyl-2-cyclopent-2yl]-penta-2,4-dienitrile (46a1) by reduction with DIBAL-H. (2E,4E)-C₁₅-dihydroxynitrile 46a₁ (0.2 g, 0.8 mmol) was dissolved in CH₂Cl₂ (10 mL). The solution was cooled down to -50 °C in an acetone/dry ice bath. DIBAL-H solution (3 mL, 1.0 M in CH₂Cl₂, 3 mmol) was added dropwise with stirring over 30 minutes. The reaction was kept at -20 °C for 2 h before warming to 0 °C for 2 h. Progress of the reaction was monitored by normal phase HPLC (condition A, Appendix I). The reaction was worked up by cooling the mixture down to -10 °C. Dilute sulfuric acid was added (0.5%, 50 mL). The crude product (0.2 g) was extracted into CH₂Cl₂ from dilute brine, dried over Na₂SO₄
and concentrated to produce a viscous yellow oil. After purification by flash column chromatography on silica (hexane:ethyl acetate, 4:1 to 1:1), 42a1 (0.92 g, 3.6 mmol; 46%) was recovered as a light yellow oil. Retention time by normal phase HPLC (condition A, Appendix I) and 1H, 13C, COSY, HSQC, NOESY NMR experiments were used to establish the relative stereochemistry of the product.

Synthesis of 6,7-epoxy-3,7,11-trimethyldodeca-2,4,10-trienoic ethylester (56).

Sodium hydride (60% suspension in mineral oil, 2.7 g, 67.5 mmol) was washed three times with small portions of hexane under argon. Anhydrous THF (100 mL) was added, and the mixture was cooled down to 0 °C. A solution of triethyl-3-methyl-4-phosphono-2-butenoate (57) (11.6 g, 43.9 mmol) in THF (15 mL) was added dropwise with stirring. After 1 h, a solution of citral epoxide (48) (7.4 g, 43.9 mmol) in anhydrous THF (15 mL) was added dropwise in 10 minutes. Based on TLC analysis (hexane:acetone = 95:5), after 45 minutes at 0 °C, the starting material had been completely converted to the product. The reaction mixture was quenched with dilute brine and extracted into ethyl acetate. The organic layer was washed twice with dilute brine, dried over Na2SO4 and concentrated. After purification by column chromatography on silica (100% hexane to hexane:acetone, 95:5), 56 was obtained as a light yellow oil (7.4 g, 27 mmol; 60%), consisting of a mixture of four stereoisomers. The ratio of trans/cis epoxides 56a:56b was approximately (1:1), based on HPLC area counts while the ratio of (2E/2Z) isomers was approximately 2:1, based on analysis by NMR. These were further separated by normal phase semi-preparative HPLC (condition F, Appendix I). NOESY NMR was used to assign the relative stereochemistry at C2, C4 and C6. HRMS (ESI+) m/z calculated for C17H27O3 [M+H]+ 279.1960, found 279.1943.
(2E,4E)-trans-6,7-epoxy-3,7,11-trimethyldodeca-2,4,10-trienoic ethylester (56a1):

1H-NMR (400 MHz, CDCl$_3$) δ 1.31 (s, 3H), 1.46 (m, 2H), 1.53 (s, 3H), 1.60 (s, 3H), 2.04 (m, 2H), 2.21 (d, 3H), 3.24 (d, $J = 7.0$, 1H), 5.04 (m, 1H), 5.74 (s, 1H), 5.92 (dd, $J = 15.6$ and $J = 7.0$, 1H), 6.37 (d, $J = 15.6$, 1H).

(2Z,4E)-trans-6,7-epoxy-3,7,11-trimethyldodeca-2,4,10-trienoic ethylester (56a2):

UV $\lambda_{max} = 270$ nm (hexane). 1H-NMR (400 MHz, CDCl$_3$) δ 1.31 (s, 3H), 1.46 (m, 2H), 1.53 (s, 3H), 1.60 (s, 3H), 1.94 (d, 3H), 2.04 (m, 2H), 3.29 (d, $J = 8.0$, 1H), 5.02 (m, 1H), 5.65 (s, 1H), 5.85 (dd, $J = 16.0$ and $J = 8.0$, 1H), 7.91 (d, $J = 16.0$, 1H).

(2E,4E)-cis-6,7-epoxy-3,7,11-trimethyldodeca-2,4,10-trienoic ethylester (56b1):

1H-NMR (400 MHz, CDCl$_3$) δ 1.27 (s, 3H), 1.42 (m, 2H), 1.49 (s, 3H), 1.56 (s, 3H), 2.02 (m, 2H), 2.18 (d, 3H), 3.19 (d, $J = 7.0$, 1H), 5.00 (m, 1H), 5.70 (s, 1H), 5.88 (dd, $J = 15.7$ and $J = 7.0$, 1H), 6.33 (d, $J = 15.7$, 1H).

(2Z,4E)-cis-6,7-epoxy-3,7,11-trimethyldodeca-2,4,10-trienoic ethylester (56b2):

1H-NMR (400 MHz, CDCl$_3$) δ 1.27 (s, 3H), 1.42 (m, 2H), 1.49 (s, 3H), 1.56 (s, 3H), 1.90 (d, $J = 1.2$, 3H), 2.02 (m, 2H), 3.25 (d, $J = 8.0$, 1H), 4.98 (m, 1H), 5.61 (s, 1H), 5.82 (dd, $J = 16.0$ and $J = 8.0$, 1H), 7.88 (d, $J = 16.0$, 1H).

Cyclization of 56 with dilute H$_2$SO$_4$. A solution of 56 (12.7 g, 45.6 mmol) in THF (90 mL) was treated with water (650 mL) and sulfuric acid (0.1% v/v, 220 mL). The mixture was stirred under argon at R.T. for 24 h. Progress of the reaction was monitored by normal phase HPLC (condition B, Appendix I). The product was worked up with saturated sodium bicarbonate solution (200 mL) and extracted into ethyl acetate (200 mL). The organic layer was washed once with water and dried over Na$_2$SO$_4$ and concentrated to yield 11.5 g of pale yellow oil. The crude product was purified by flash column
chromatography on silica (hexane:ethyl acetate, 95:5 to 80:20 to 70:30). Four fractions were collected, analyzed by 1H NMR and found to consist of starting material 56 (0.6 g, 2.1 mmol; 5%), 3-methyl-5-[3-(1-hydroxy-1-methylethyl)-1-hydroxy-1-methyl-2-cyclopent-2-yl]-penta-2,4-dieneoic acid ethyl ester (C$_{17}$-dihydroxyethylester 55) (4.8 g, 16.2 mmol; 42%) consisting of isomers at C2 ($E/Z = 1.2/1.0$), dehydration product 61 (1.7 g, 6.1 mmol; 15%) consisting of isomers at C2 ($E/Z = 1.2/1.0$), and 6,7-dihydroxyethylester 62 (2.6 g, 8.8 mmol; 23%) consisting of isomers at C2 ($E/Z = 1.5/1.0$). The fraction containing 55 was further purified by semi-preparative normal phase HPLC (condition F, Appendix I). Three stereoisomeric compounds (55a1, 55a2 and 55b1) were isolated and formed in relative amounts 55a1 > 55a2 > 55b1 (4.9:3.2:1.0). The stereoisomers were analyzed by HRMS, 1H, 13C, COSY and HSQC NMR.

$(4E,2E)$-3-methyl-5-[3-(1-hydroxy-1-methylethyl)-1-hydroxy-1-methyl-2-cyclopent-
2-yl]-penta-2,4-dieneoic acid ethylester (55a1): UV $\lambda_{max} = 268$ nm (hexane:CH$_2$Cl$_2$,
75:25). HRMS (ESI$^+$) m/z calculated for C$_{17}$H$_{29}$O$_4$ [M+H]$^+$ 297.2066, found 297.2080;
m/z calculated for C$_{17}$H$_{27}$O$_3$ [M+H–H$_2$O]$^+$ 279.1960, found 279.1987; m/z calculated for
C$_{17}$H$_{25}$O$_2$ [M+H–2H$_2$O]$^+$ 261.1854, found 261.1844. 1H-NMR (400 MHz, CDCl$_3$) δ 1.17
(s, 3H), 1.18 (s, 3H), 1.27 (s, 3H), 1.29 (t, $J = 7.1$, 3H), 1.95 (m, 2H), 1.95 (m, 2H), 2.27
(d, 3H), 2.58 (m, 1H), 2.64 (m, 1H), 4.18 (q, $J = 7.1$, 2H), 5.76 (s, 1H), 6.02 (dd, $J = 15.5$,
1H), 6.18 (d, $J = 15.5$, 1H). 13C NMR (400 MHz, CDCl$_3$) δ 14.1, 14.3, 22.4, 26.6, 29.6,
29.6, 37.8, 53.1, 58.7, 59.8, 72.1, 82.5, 118.7, 135.0, 136.2, 151.4, 167.0.

$(4E,2Z)$-3-methyl-5-[3-(1-hydroxy-1-methylethyl)-1-hydroxy-1-methyl-2-cyclopent-
2-yl]-penta-2,4-dieneoic acid ethylester (55a2): UV $\lambda_{max} = 270$ nm (hexane: CH$_2$Cl$_2$,
75:25). HRMS (ESI$^+$) m/z calculated for C$_{17}$H$_{29}$O$_4$ [M+H]$^+$ 297.2066, found 297.2067; m/z calculated for C$_{17}$H$_{27}$O$_3$ [M+H–H$_2$O]$^+$ 279.1960, found 279.1952; m/z calculated for C$_{17}$H$_{25}$O$_2$ [M+H–2H$_2$O]$^+$ 261.1854, found 261.1850. 1H-NMR (400 MHz, CDCl$_3$) δ 1.16 (s, 3H), 1.19 (s, 3H), 1.28 (t, $J = 7.1$, 3H), 1.30 (s, 3H), 1.85 (m, 2H), 1.93 (m, 2H), 1.98 (d, 3H), 2.64 (m, 1H), 2.64 (m, 1H), 4.16 (q, $J = 7.1$, 2H), 5.65 (s, 1H), 6.00 (dd, $J = 15.8$, 1H), 7.65 (d, $J = 15.8$, 1H). 13C NMR (400 MHz, CDCl$_3$) δ 14.3, 21.3, 22.4, 26.7, 29.5, 37.6, 53.3, 59.0, 59.7, 72.2, 82.5, 116.8, 129.2, 137.7, 150.1, 166.2.

(4E,2Z)-3-methyl-5-[3-(1-hydroxy-1-methylethyl)-1-hydroxy-1-methyl-2-cyclopent-2-yl]-penta-2,4-dieneoic acid ethylester (55b1): UV λ_{max} = 268 nm (hexane:CH$_2$Cl$_2$, 75:25). HRMS (ESI$^+$) m/z calculated for C$_{17}$H$_{29}$O$_4$ [M+H]$^+$ 297.2066, found 297.2067; m/z calculated for C$_{17}$H$_{27}$O$_3$ [M+H–H$_2$O]$^+$ 279.1960, found 279.1952; m/z calculated for C$_{17}$H$_{25}$O$_2$ [M+H–2H$_2$O]$^+$ 261.1854, found 261.1850. 1H-NMR (400 MHz, CDCl$_3$) δ 1.11 (s, 3H), 1.17 (s, 3H), 1.28 (s, 3H), 1.28 (t, $J = 7.1$, 3H), 1.68 (m, 2H), 1.82 (m, 2H), 1.98 (d, 3H), 1.98 (m, 1H), 2.64 (dd, $J = 9.0$ and $J = 4.7$, 1H), 4.16 (q, $J = 7.1$, 2H), 5.64 (s, 1H), 5.89 (dd, $J = 15.7$ and $J = 9.9$, 1H), 7.56 (d, $J = 15.7$, 1H). 13C NMR (400 MHz, CDCl$_3$) δ 14.3, 21.3, 24.0, 24.4, 28.4, 29.4, 40.0, 55.2, 56.4, 59.7, 72.4, 81.3, 116.3, 116.8, 127.7, 140.4, 150.4.

(2E)-C$_{17}$-dehydration product 61: UV λ_{max} = 268 nm (hexane:CH$_2$Cl$_2$, 75:25). 1H-NMR (400 MHz, CDCl$_3$) δ 1.20 (s, 3H), 1.28 (t, $J = 7.1$, 3H), 1.53 (s, 3H), 1.61 (s, 3H), 1.72 (m, 1H), 1.80 (m, 1H), 2.21 (d, 3H), 2.33 (m, 1H), 2.43 (m, 1H), 3.04 (d, $J = 8.7$, 1H), 4.17 (q, $J = 7.1$, 2H), 5.68 (s, 1H), 5.77 (dd, $J = 15.5$ and $J = 8.7$, 1H), 6.01 (d, $J = 15.5$, 1H).

(2Z)-C$_{17}$-dehydration product 61: UV λ_{max} = 268 nm (hexane:CH$_2$Cl$_2$, 75:25). 1H-NMR (400 MHz, CDCl$_3$) δ 1.20 (s, 3H), 1.28 (t, $J = 7.1$, 3H), 1.57 (s, 3H), 1.61 (s, 3H),
1.72 (m, 1H), 1.80 (m, 1H), 1.92 (d, 3H), 2.33 (m, 1H), 2.43 (m, 1H), 3.10 (d, J = 9.1, 1H), 4.17 (q, J = 7.1, 2H), 5.57 (s, 1H), 5.73 (dd, J = 15.8 and J = 9.1, 1H), 7.48 (d, J = 15.8, 1H).

(2E)-6,7-dihydroxyethylester 62: UV $\lambda_{\text{max}} = 262$ nm (hexane: CH$_2$Cl$_2$, 75:25). 1H-NMR (400 MHz, CDCl$_3$) δ 1.20 (s, 3H), 1.28 (t, J = 7.1 Hz, 3H), 1.43 (m, 2H), 1.55 (s, 3H), 1.61 (s, 3H), 2.03 (m, 2H), 2.20 (s, 3H), 3.99 (d, J = 7.1 Hz, 1H), 4.17 (q, J = 7.1, 2H), 5.04 (m, 1H), 5.71 (s, 1H), 6.05 (dd, J = 15.5 and J = 7.1, 1H), 6.28 (d, J = 15.5, 1H).

(2Z)-6,7-dihydroxyethylester 62: UV $\lambda_{\text{max}} = 262$ nm (hexane: CH$_2$Cl$_2$, 75:25). 1H-NMR (400 MHz, CDCl$_3$) δ 1.20 (s, 3H), 1.28 (t, J = 7.1, 3H), 1.43 (m, 2H), 1.55 (s, 3H), 1.61 (s, 3H), 1.94 (s, 3H), 2.03 (m, 2H), 4.03 (d, J = 7.1, 1H), 4.17 (q, J = 7.1, 2H), 5.03 (m, 1H), 5.63 (s, 1H), 6.09 (dd, J = 16.1 and J = 7.1, 1H), 7.65 (d, J = 16.1, 1H).

Conversion of C$_{17}$-dihydroxyethyl ester 55 to C$_{15}$-triol 54 by LAH reduction.

3-methyl-5-[3-(1-hydroxy-1-methylethyl)-1-hydroxy-1-methyl-2-cyclopent-2-yl]-penta-2,4-dieneoic acid ethylester (55) (5.2 g, 17.5 mmol) was dissolved in THF (60 mL). The solution was cooled down to -10 °C in an ice/salt bath. LAH (14 mL, 2.0 M in THF) was added dropwise over 2 h. The mixture was stirred for 30 minutes then allowed to warm to 9 °C and stir for another 2 h. TLC analysis demonstrated complete conversion of the starting material (hexane:ethyl acetate, 4:6). The reaction was worked up by cooling the mixture down to 0 °C and adding ethyl acetate, dilute brine solution and 0.5% HCl (20 mL). After vacuum filtration through Celite, the organic phase was separated, dried over Na$_2$SO$_4$ and evaporated to dryness. The crude product was recovered as a yellow oil (4.2) and further purified by flash column chromatography on silica (hexane:ethyl acetate, 7:3). 54 was recovered as a mixture of white crystals and yellow oil (2.3 g, 9.0 mmol; 51%),
and was shown to consist of two isomers in a nearly 1:1 ratio, based on HPLC analysis (condition C, Appendix I). These were further separated by semi-preparative normal phase HPLC and isolated as white solids (condition F, Appendix I). Structural characterization of 54 was determined by 1H, 13C, COSY, HSQC NMR and HRMS.

3-methyl-5-[3-(1-hydroxy-1-methylethyl)-1-hydroxy-1-methyl-2-cyclopent-2-yl]-penta-2,4-diene-1-ol (54): m.p. 120-133 °C. UV $\lambda_{\text{max}} = 238$ nm (MeOH). HRMS (ESI$^+$) m/z calculated for C$_{15}$H$_{26}$O$_3$Na [M+Na]$^+$ 277.1780, found 277.1729; m/z calculated for C$_{15}$H$_{23}$O [M+H–2H$_2$O]$^+$ 219.1750, found 219.1744; m/z calculated for C$_{15}$H$_{21}$ [M+H–3H$_2$O]$^+$ 201.1643, found 201.1675. 1H-NMR (400 MHz, CDCl$_3$) δ 1.16 (s, 3H), 1.19 (s, 3H), 1.29 (s, 3H), 1.80 (m, 2H), 1.85 (d, 3H), 1.89 (m, 2H), 2.55 (dd, $J = 10.7$, 1H), 2.62 (m, 1H), 4.30 (d, $J = 7.1$, 2H), 5.55 (t, $J = 7.1$, 1H), 5.66 (dd, $J = 10.7$ and $J = 15.5$, 1H), 6.52 (d, $J = 15.5$, 1H). 13C NMR (400 MHz, CDCl$_3$) δ 20.7, 22.3, 26.5, 29.3, 29.8, 37.7, 52.9, 58.3, 58.8, 72.3, 82.5, 125.6, 128.5, 131.4, 134.7.

Synthesis of C$_{15}$-dihydroxyaldehyde 42 by TEMPO oxidation of 3-methyl-5-[3-(1-hydroxy-1-methylethyl)-1-hydroxy-1-methyl-2-cyclopent-2-yl]-penta-2,4-dieneoic acid ethylester (54). C$_{15}$-triol 54 (2.0 g, 7.9 mmol) was dissolved in DMF (30 mL). CuCl (0.08 g, 0.79 mmol) and 2,2,6,6-tetramethylpiperidine-1-nitroxide free radical (TEMPO, 0.12 g, 0.79 mmol) were added simultaneously. Oxygen was bubbled through the mixture at R.T. for 15 h. The product was extracted from dilute brine into ethyl acetate. The organic layer was dried over Na$_2$SO$_4$ and concentrated, affording crude product (2.3 g) as a yellow oil. After purification by flash column chromatography on silica (hexane:ethyl acetate, 4:1 to 1:1), 42 was recovered as a light yellow oil (0.71 g, 2.8 mmol; 36%). Analysis by normal phase HPLC (condition B, Appendix I) showed that
the product consisted of 4 stereoisomers 42a1, 42a2, 42b1 and 42b2. The isomers were separated by semi-preparative HPLC and isolated in the relative ratio (1.5:0.9:1.0:1.0). Compound 42a2 was separated from the mixture by crystallization (hexane:ethyl acetate, 6:4) at -80 °C. The broad melting point was 115-128 °C. Isomers of 42 were isolated by semi-preparative HPLC (condition G, Appendix I).

(\textit{4E,2E})-3-methyl-5-[3-(1-hydroxy-1-methylethyl)-1-hydroxy-1-methyl-2-cyclopent-2-yl]-penta-2,4-dienal (42a1): \textup{UV} \lambda_{\text{max}} = 286 \text{ nm (hexane}:\text{CH}_2\text{Cl}_2:\text{methanol 75:25:1.2). HRMS (ESI$^+$) \text{ m/z calculated for } C_{15}H_{25}O_3 [M+H]^+ 253.1804, found 253.1840; \text{ m/z calculated for } C_{15}H_{23}O_2 [M+H–H_2O]^+ 235.1698, found 235.1709; \text{ m/z calculated for } C_{15}H_{21}O [M+H–2H_2O]^+ 217.1592, found 217.1606.} ^1\text{H-NMR} (400 \text{ MHz, CDCl}_3) \delta 1.16 (s, 3H), 1.18 (s, 3H), 1.25 (s, 3H), 1.60 (m, 1H), 1.74 (m, 2H), 2.00 (m, 1H), 2.28 (d, 3H), 2.32 (m, 1H), 2.33 (m, 1H), 5.91 (d, \textit{J} = 8.1, 1H), 6.25 (d, \textit{J} = 15.8, 1H), 6.36 (dd, \textit{J} = 15.8, \textit{J} = 8.5, 1H), 10.10 (d, \textit{J} = 8.1, 1H). \textup{^13C NMR (400 MHz, CDCl}_3) \delta 13.2, 25.1, 26.5, 27.9, 28.6, 40.5, 54.4, 55.7, 72.9, 82.8, 128.9, 135.3, 140.8, 154.3, 191.5.

3-methyl-5-[3-(1-hydroxy-1-methylethyl)-1-hydroxy-1-methyl-2-cyclopent-2-yl]-penta-2,4-dienal (42a2): \textup{UV} \lambda_{\text{max}} = 284 \text{ nm (hexane}:\text{CH}_2\text{Cl}_2:\text{MeOH 75:25:1.2). HRMS (ESI$^+$) \text{ m/z calculated for } C_{15}H_{25}O_3 [M+H]^+ 253.1804, found 253.1800; \text{ m/z calculated for } C_{15}H_{23}O_2 [M+H–H_2O]^+ 235.1698, found 235.1700; \text{ m/z calculated for } C_{15}H_{21}O [M+H–2H_2O]^+ 217.1592, found 217.1598.} ^1\text{H-NMR} (400 \text{ MHz, CDCl}_3) \delta 1.18 (s, 3H), 1.20 (s, 3H), 1.28 (s, 3H), 1.60 (m, 2H), 1.75 (m, 2H), 2.10 (d, 3H), 2.34 (m, 1H), 2.35 (m, 1H), 5.85 (d, \textit{J} = 7.7, 1H), 6.26 (dd, \textit{J} = 15.7, 1H), 7.13 (d, \textit{J} = 15.7, 1H), 10.18 (d, \textit{J} = 7.7, 1H). \textup{^13C NMR (400 MHz, CDCl}_3) \delta 21.6, 25.1, 26.5, 27.9, 28.7, 40.5, 54.5, 55.8, 72.9, 82.8, 127.4, 127.7, 141.9, 154.5, 190.1.
3-methyl-5-[3-(1-hydroxy-1-methylethyl)-1-hydroxy-1-methyl-2-cyclopent-2-yl]-
penta-2,4-dienal (42b1): UV $\lambda_{max} = 284$ nm (hexane:CH$_2$Cl$_2$:methanol 75:25:1.2). HRMS (ESI$^+$) m/z calculated for C$_{15}$H$_{25}$O$_3$ [M+H]$^+$ 253.1804, found 253.1819; m/z calculated for C$_{15}$H$_{23}$O$_2$ [M+H–H$_2$O]$^+$ 235.1698, found 235.1692; m/z calculated for C$_{15}$H$_{21}$O [M+H–2H$_2$O]$^+$ 217.1592, found 217.1586. 1H-NMR (400 MHz, CDCl$_3$) δ 1.17 (s, 3H), 1.22 (s, 3H), 1.25 (s, 3H), 1.68 (m, 2H), 1.85 (m, 2H), 1.97 (m, 1H), 2.25 (d, 3H), 2.63 (dd, $J = 10.1$, 1H), 5.93 (d, $J = 8.1$, 1H), 6.03 (dd, $J = 15.5$, $J = 10.1$, 1H), 6.20 (d, $J = 15.5$, 1H), 10.11 (d, $J = 8.1$, 1H). 13C NMR (400 MHz, CDCl$_3$) δ 13.3, 24.0, 24.5, 28.4, 29.5, 40.1, 55.3, 56.5, 72.3, 81.3, 129.0, 133.2, 141.1, 154.1, 191.3.

3-methyl-5-[3-(1-hydroxy-1-methylethyl)-1-hydroxy-1-methyl-2-cyclopent-2-yl]-
penta-2,4-dienal (42b2): UV $\lambda_{max} = 282$ nm (hexane:CH$_2$Cl$_2$:methanol 75:25:1.2). HRMS (ESI$^+$) m/z calculated for C$_{15}$H$_{25}$O$_3$ [M+H]$^+$ 253.1804, found 253.1863; m/z calculated for C$_{15}$H$_{23}$O$_2$ [M+H–H$_2$O]$^+$ 235.1698, found 235.1703; m/z calculated for C$_{15}$H$_{21}$O [M+H–2H$_2$O]$^+$ 217.1592, found 217.1593. 1H-NMR (400 MHz, CDCl$_3$) δ 1.18 (s, 3H), 1.23 (s, 3H), 1.26 (s, 3H), 1.67 (m, 2H), 1.85 (m, 2H), 1.97 (m, 1H), 2.06 (d, 3H), 2.65 (dd, $J = 10.2$, 1H), 5.84 (d, $J = 8.1$, 1H), 5.93 (dd, $J = 15.3$, $J = 10.2$, 1H), 7.06 (d, $J = 15.3$, 1H), 10.16 (d, $J = 8.1$, 1H). 13C NMR (400 MHz, CDCl$_3$) δ 21.5, 24.1, 24.5, 28.4, 29.5, 40.2, 55.4, 56.7, 72.3, 81.2, 125.2, 128.0, 142.3, 154.4, 190.1.

Synthesis of 2,7-dimethyl-8-hydroxy-2,4,6-octatrienal (63). C$_{10}$-dialdehyde 27 (2.0 g, 12.2 mmol) was dissolved in ethanol (150 mL). A solution of sodium borohydride (155.2 mg, 4.1 mmol) in ethanol (50 mL) was added dropwise with stirring at R.T. over 3 h. The reaction was monitored by reversed-phase chromatography (condition J, Appendix I). The mixture was acidified with water (200 mL) containing hydrochloric acid (5 mL,
0.5%) and sulfuric acid (2 mL, 5%) and extracted into methylene chloride. The organic layer was dried over Na₂SO₄ and evaporated to dryness, affording an amber-colored oil (2.1 g). After purification by flash column chromatography on silica (hexane:ethyl acetate 9:1 to 8:2), 63 was recovered as a light yellow oil (1.4 g, 8.4 mmol; 70%).

Synthesis of 2,7-dimethyl-8-chloro-2,4,6-octatrienal (64). Mono-hydroxy aldehyde 63 (4.5 g, 27.0 mmol) was dissolved in methylene chloride (45 mL). The mixture was cooled down to -5 °C in an ice-salt bath. Concentrated hydrochloric acid (6.8 mL, 81.6 mmol) was added dropwise, producing a dark brown/black solution. The reaction was monitored by reversed-phase chromatography (condition J, Appendix I). Saturated sodium bicarbonate solution was added and the product was extracted into methylene chloride. The organic layer was washed with cold water to neutral pH, dried over Na₂SO₄ and evaporated to dryness. The product was recrystallized from the dark brown crude mixture with diisopropyl ether at -15 °C overnight affording 64 as dark brown solid (3.8 g, 20.5 mmol; 76%).

Synthesis of 7-formyl-2-methyl-2,4,6-octatrienyl-triphenylphosphonium chloride (65). Triphenylphosphine (8.1 g, 31 mmol) and 64 (5.0 g, 27 mmol) were dissolved in ethyl acetate (90 mL). The solution was refluxed overnight at 79 °C under argon. The mixture was cooled down to 0 °C in an ice bath. Solids were filtered and dried under vacuum overnight, affording crude 65 as a light brown solid (4.6 g). The product was recrystallized from methylene chloride (30 mL) and ethyl acetate (50 mL) at -10 °C for two days, affording 65 as a light brown, free flowing solid (4.4 g, 9.8 mmol; 48%). UV λₘₐₓ = 332 nm (methanol).
Protection of 7-formyl-2-methyl-2,4,6-octatrienyl-triphenylphosphonium chloride (65). A solution of C\textsubscript{10} Wittig salt 65 (0.14 g, 0.31 mmol), trimethyl formate (80 \mu L, 0.73 mmol) and methanolic p-toluenesulfonic acid (0.1 mL, 1% w/v) in methanol (5 mL) was heated to 40 °C for 4 h. The solution became red/brown in color. Progress of the reaction was monitored by UV spectroscopy. The protected Wittig salt 43 was not further isolated. UV \(\lambda_{\text{max}} = 294 \text{ nm} \) (methanol).

Synthesis of protected C\textsubscript{25}-dihydroxyaldehyde (45). A solution of protected C\textsubscript{10} Wittig salt 43 in methanol (4.8 mL, 0.073 M, 0.35 mmol) was cooled down to -5 °C in an ice-salt bath under argon. Sodium methoxide (20.7 mg, 0.38 mmol) was dissolved in methanol (2 mL) and added dropwise. After 20 minutes, a solution of C\textsubscript{15}-dihydroxyaldehyde 42 (80.0 mg, 0.32 mmol) in methylene chloride (20 mL) was added dropwise. The reaction was allowed to stir at R.T. overnight. The reaction was monitored by normal phase HPLC (condition A, Appendix I).

Synthesis of C\textsubscript{25}-dihydroxyaldehyde (29). The acetal 45 was extracted into methylene chloride from dilute brine and evaporated to dryness before dissolving in THF (15 mL). The solution was cooled down to -5 °C in an ice-salt bath under argon. 45 was treated with dilute sulfuric acid (2 mL, 0.5% v/v). After stirring for 2 h, crude product 29 was recovered as a dark red oil (300 mg). After purification by flash column chromatography on silica (hexane:ethyl acetate 8:2 to 6:4), 29 was recovered as a yellow oil (101 mg, 0.26 mmol; 74%). The product was shown to consist of two isomers by normal phase HPLC (condition A, Appendix 1). These were further separated by semi-preparative HPLC (condition D, Appendix 1) and isolated as orange solids.
Synthesis of 1,2,5,6-tetrahydro-2,6-cyclo-γ-carotene-1,5-diol (40A).

C_{25}\text{-dihydroxyaldehyde 29} (1.3 g, 3.5 mmol) and C_{15}-phosphonium Wittig salt 44 (4.1 g, 8.2 mmol) were dissolved in 1,2-ethoxybutane solvent (25 mL) and refluxed at 65 °C under argon for 24 h. Progress of the reaction was monitored by normal phase HPLC (condition A, Appendix I). Rotary evaporation of solvent afforded 5.6 g of dark red oil. Purification by flash column chromatography on silica (hexane:ethyl acetate 100:0 to 40:60) afforded 40A as a dark red oil (0.4 g, 0.7 mmol; 20%), consisting of a mixture of cis/trans isomers based on the results of HPLC and spectral analysis of signals (condition A, Appendix I). The mixture was further purified by semi-preparative normal phase chromatography (condition H, Appendix I). The all-trans form of 40A (15 mg, 0.03
mmol) was obtained as an orange-red solid. UV/VIS $\lambda_{\text{max}} = 444$ nm (hexane). HRMS (ESI$^+$) m/z calculated for C$_{40}$H$_{59}$O$_2$ [M+H]$^+$ 571.4515, found 571.4521. Proton and carbon assignments were established by COSY, HSQC and HMBC experiments. The relative stereochemistry of all-trans 40A was determined by a NOESY experiment. 1H-NMR (600 MHz, CDCl$_3$) δ 1.03 (s, 3H), 1.03 (s, 3H), 1.16 (s, 3H), 1.18 (s, 3H), 1.23 (s, 3H), 1.48 (m, 2H), 1.62 (m, 2H), 1.68 (m, 1H), 1.72 (s, 3H), 1.79 (m, 1H), 1.94 (s, 3H), 1.97 (s, 3H), 1.98 (s, 3H), 1.98 (m, 2H), 2.02 (m, 2H), 2.23 (dd, $J = 10.0$ and 9.0), 2.31 (ddd, 2H, $J = 10.0$, 10.0 and 7.2), 5.73 (dd, $J = 15.8$ and 9.0, 1H), 6.15 (d, $J = 10.7$, 1H), 6.15 (d, $J = 10.7$, 1H), 6.15 (d, $J = 10.7$, 1H), 6.24 (d, $J = 15.8$, 1H), 6.25 (m, 1H), 6.25 (m, 1H), 6.35 (d, $J = 15.0$, 1H), 6.36 (d, $J = 15.0$, 1H), 6.59 (dd, $J = 15.0$ and 10.7, 1H), 6.63 (m, 1H), 6.63 (m, 1H), 6.64 (dd, $J = 15.0$ and 10.7, 1H). 13C NMR (500 MHz, CDCl$_3$) δ 12.7, 12.8, 12.8, 13.1, 19.3, 21.7, 25.1, 26.7, 27.4, 28.5, 29.0, 29.0, 33.1, 34.3, 39.7, 39.8, 54.3, 55.6, 73.1, 82.2, 124.6, 125.2, 126.7, 129.4, 129.9, 130.3, 130.8, 131.6, 132.3, 132.8, 134.9, 136.1, 136.2, 136.7, 137.2, 137.8, 137.9, 138.0, 138.2.

Synthesis of 3,7,11-trimethyldodeca-2,4,6,10-tetraen-nitrile (58). Sodium hydride (60% suspension in mineral oil, 7.5 g, 0.19 mol) was washed two times with hexane under argon. THF (160 mL) was added and the mixture was cooled down to -5 °C in an ice-salt bath. A solution of diethyl (cyanomethyl)phosphonate (52) (23.5 g, 0.13 mol) in THF (40 mL) was added dropwise to sodium hydride while stirring. Additional THF (20 mL) was added to aid stirring of the preformed anion. The mixture was allowed to warm to R.T. and stir for 90 minutes. The mixture was cooled down to -35 °C in an acetone/dry ice bath. A solution of ψ-ionone (23.2 g, 0.12 mol) in THF (20 mL) was
added dropwise. The reaction was allowed to warm to R.T. and stir overnight under argon before quenching with dilute brine. Progress of the reaction was monitored by normal phase HPLC (condition C, Appendix I). The crude product was extracted into ethyl acetate. The organic layer was washed with additional brine to neutral pH, dried over Na$_2$SO$_4$ and evaporation, affording a dark, brown oil. After flash column chromatography on silica (hexane:ethyl acetate 95:5), 58 (13.1 g, 60.8 mmol; 50%) was recovered as a light yellow oil. UV λ_{max} = 308 nm (hexane/methylene chloride/methanol 75/24.2/0.8). The 1H NMR data were in agreement with literature values.127

Synthesis of 3,7,11-trimethyldodeca-2,4,6,10-tetraenal (68). A solution of C$_{15}$-nitrile 58 (13.1 g, 61 mmol) in methylene chloride (70 mL) was cooled down to -5 °C under argon. DIBAL-H (1.0 M in methylene chloride, 75 mL, 75 mmol) was added dropwise over 1 h. Progress of the reaction was monitored by normal phase HPLC (condition C, Appendix I). After 30 minutes, the reaction was cooled down to -20 °C and quenched with water (50 mL) and silica gel (36 g). After filtration through Celite, the product was taken up into methylene chloride. The organic phase was washed with water to neutral pH, dried over Na$_2$SO$_4$ and evaporated to dryness. The crude product 68 (12.6 g; 95%) was isolated as a light orange oil and stored at -80 °C. UV λ_{max} = 308 nm (hexane/methylene chloride/methanol 75/24.2/0.8).

Synthesis of ψ-vinyl ionol; 3,7,11-Trimethyldodeca-1,4,6,10-tetraen-3-ol (71). ψ-Ionone (15.9 g, 83 mmol) was dissolved in anhydrous THF (100 mL) under argon. The solution was cooled down to -20 °C in an ice-salt bath. Vinyl magnesium bromide (100 mL, 1M in THF, 100 mmol) was added dropwise. Progress of the reaction was monitored by TLC (hexane:ethyl acetate, 85:15). After stirring for 2 h at -10 °C, the
reaction was quenched with saturated ammonium chloride (100 mL). The crude product was extracted into ethyl acetate. The organic layer was washed with dilute brine to neutral pH, then dried over Na$_2$SO$_4$ and concentrated. The crude product (18.3 g) was obtained as a yellow oil. After purification by column chromatography on silica (100% hexane to hexane:ethyl acetate, 85:15), 71 (1.6 g, 7.3 mmol; 58%) was obtained as a light yellow oil. The isomeric ratio was determined by 1H NMR (7E/7Z = 1:2). The NMR data were in agreement with literature values.61

(all E)-ψ-vinyl ionol; 3,7,11-Trimethyldodeca-1,4,6,10-tetraen-3-ol (71): 1H-NMR (400 MHz, CDCl$_3$) δ 1.41 (s, 3H), 1.61 (s, 3H), 1.68 (s, 3H), 1.77 (s, 3H), 2.10 (m, 2H), 2.10 (m, 2H), 5.07 (d, J=10.6, 1H), 5.11 (m, 1H), 5.26 (d, J = 17.3, 1H), 5.69 (d, J = 15.3, 1H), 5.84 (d, J = 10.6, 1H), 5.99 (dd, J = 17.3 and 10.9, 1 H), 6.47 (dd, J = 15.3 and 10.9, 1H).

(7Z)-3,7,11-Trimethyldodeca-1,4,6,10-tetraen-3-ol (71): 1H-NMR (400 MHz, CDCl$_3$) δ 1.40 (s, 3H), 1.61 (s, 3H), 1.68 (s, 3H), 1.78 (s, 3H), 2.10 (m, 2H), 2.10 (m, 2H), 5.07 (d, J=10.6, 1H), 5.13 (m, 1H), 5.25 (d, J =17.3, 1H), 5.66 (d, J = 15.3, 1H), 5.84 (d, J = 10.9, 1H), 5.98 (dd, J = 17.3 and 10.6, 1 H), 6.45 (dd, J = 15.3 and 10.9, 1H).

Synthesis of triphenyl [(2E,4E,6E)-3,7,11-trimethyldodeca-2,4,6,10-tetraenyl]phosphonium bromide, C$_{15}$-Wittig Salt (28). Triphenylphosphine hydrobromide (16.8 g, 49 mmol) was dissolved in methanol (95 mL) at R.T. under argon. After all solids dissolved, the mixture was cooled down to 15 °C. A solution of ψ-vinyl ionol (71) (10.7 g, 49 mmol) in methanol (30 mL) was added dropwise. The reaction was allowed to warm up to R.T. and stir for 20 h. Progress of the reaction was monitored by TLC (hexane:ethyl acetate, 85:15). The mixture was evaporated to dryness at 45 °C.
under vacuum, affording crude product (30.4 g) as a yellow oil. Recrystallization from ethyl acetate (90 mL) at -10 °C for 3 days afforded 28 (0.9 g, 1.6 mmol; 4%) as a gummy white solid. The 1H NMR results were in agreement with those reported in the literature.92

Synthesis of (all-E)-12’-apo-ψ-carotene-12’-al (70). C15-Wittig salt 44 (0.54 g, 0.99 mmol) and C10-dialdehyde 27 (0.15 g, 0.91 mmol) were dissolved in CH2Cl2 (60 mL). The solution was cooled down to -10 °C in an ice-salt bath. A solution of sodium metal (0.13 g, 5.8 mmol) dissolved in methanol (10 mL) was added dropwise. The reaction was monitored by normal phase HPLC (condition B, Appendix I). After stirring for 3 h, dilute brine was added and the crude product was extracted into CH2Cl2. The organic layer was dried over Na2SO4 and evaporated to dryness to give 1.3 g dark red, viscous oil. After purification by flash column chromatography on silica (hexane:ethyl acetate, 100:0 to 98:2), 70 (0.4 g, 1.1 mmol; 78%) was recovered as a viscous, dark red oil in the all-E form, based on HPLC analysis and results of 1H NMR which agreed with those reported in the literature.92

70: UV \(\lambda_{\text{max}} = 436 \text{ nm} \) (hexane:CH2Cl2:methanol 75:25:0.8). 1H-NMR (400 MHz, CDCl3) \(\delta \): 1.62 (s, 3H), 1.69 (s, 3H), 1.83 (s, 3H), 1.88 (s, 3H), 1.98 (s, 3H), 2.04 (s, 3H), 2.18 (m, 2H), 2.24 (m, 2H), 5.15 (t, \(J = 7.1, \text{ 1H} \)), 5.95 (d, \(J = 11.0, \text{ 1H} \)), 6.19 (d, \(J = 12.0, \text{ 1H} \)), 6.27 (d, \(J = 15.7, \text{ 1H} \)), 6.30 (d, \(J = 12.0, \text{ 1H} \)), 6.37 (d, \(J = 15.0, \text{ 1H} \)), 6.54 (dd, \(J = 11.0 \) and 15.0, 1H), 6.68 (dd, \(J = 12.0 \) and 14.0, 1H), 6.78 (dd, \(J = 12.0 \) and 15.0, 1H), 6.96 (d, \(J = 12.0, \text{ 1H} \)), 7.03 (dd, \(J = 12.0 \) and 14.0, 1H), 9.45 (s, 1H). 13C NMR (400 MHz, CDCl3) \(\delta \): 9.6, 12.9, 13.0, 17.7, 24.2, 25.7, 26.9, 32.8, 123.9, 125.7, 126.4, 127.3, 127.8, 130.9, 131.9, 132.1, 134.8, 136.3, 136.8, 137.8, 138.1, 140.7, 141.8, 148.9, 194.5.
Synthesis of $\text{C}_{25}\text{-aldehyde-5,6-epoxide (69)}$. $\text{C}_{25}\text{-aldehyde 70 (82.6 mg, 0.24 mmol)}$ was dissolved in methylene chloride (15 mL) at 0 °C under argon. m-CPBA (39.8 mg, 0.24 mmol) was dissolved in methylene chloride (10 mL) and added dropwise. Progress of the reaction was monitored by normal phase HPLC (condition B, Appendix I). After 40 minutes, the reaction was quenched with dilute sodium metabisulfite and diluted with brine. The crude products were extracted into hexane:methylene chloride (75:25). The organic layer was evaporated to dryness and passed through silica (100% ethyl acetate). The product 69 (30.3 mg, 0.087 mmol; 35%) was recovered as a dark red oil, and was further purified by semi-preparative HPLC to afford 69 in two stereoisomeric forms $69a$ and $69b$ (condition D, Appendix I). UV λ_{max} = 406 nm and 414 nm (Hexane:CH$_2$Cl$_2$:MeOH 75:23.8:1.2). $69a$: HRMS (ESI$^+$) m/z calculated for C$_{25}$H$_{35}$O$_2$ [M+H]$^+$ 367.2637, found 367.2616. $69b$: HRMS (ESI$^+$) m/z calculated for C$_{25}$H$_{35}$O$_2$ [M+H]$^+$ 367.2637, found 367.2625.

Synthesis of γ-carotene (6). Wittig salt 72 (2.0 g, 4.0 mmol) and β-apo-12’-carotenal (74) (1.0 g, 2.9 mmol) were dissolved in methylene chloride (35 mL). The solution was cooled down to -5 °C in an ice-salt bath. A solution of sodium methoxide (0.2 g, 4.1 mmol) in methanol (20 mL) was added dropwise with stirring. After one h, the reaction was warmed up to R.T. and allowed to stir for 24 h. Progress of the reaction was monitored by TLC (hexane:acetone, 9:1). Brine (50 mL) was added, and the product was extracted with methylene chloride (3 x 30 mL). The organic layer was dried over Na$_2$SO$_4$ and evaporated, affording 3.7 g of dark red, viscous oil. After purification by flash column chromatography on silica (hexane:ethyl acetate 100:0 to 98:2), 6 was obtained as a dark red oil (1.0 g, 1.9 mmol; 68%). UV λ_{max} = 460 nm (hexane).
APPENDIX I

<table>
<thead>
<tr>
<th>Condition</th>
<th>HPLC Column</th>
<th>HPLC eluent and flow rate</th>
<th>Compounds separated, monitoring wavelength (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Silica-based nitrile bonded, 250 x 4.6 mm, 5 µm (Analytical)</td>
<td>70% Hexane, 30% Ethyl acetate, 0.7 mL/min</td>
<td>45, 374 nm; 42, 286 nm; 29, 410 nm; 40, 446 nm</td>
</tr>
<tr>
<td>B</td>
<td>Silica-based nitrile bonded, 250 x 4.6 mm, 5 µm (Analytical)</td>
<td>75% Hexane, 25% CH₂Cl₂, 1.2% MeOH, 0.7 mL/min</td>
<td>46, 262 nm; 42, 282 nm; 70, 430 nm; 69, 410 nm; 55, 56, 61, 62, 270 nm; 40A, 446 nm</td>
</tr>
<tr>
<td>C</td>
<td>Silica-based nitrile bonded, 250 x 4.6 mm, 5 µm (Analytical)</td>
<td>75% Hexane, 25% CH₂Cl₂, 0.8% MeOH, 0.7 mL/min</td>
<td>68, 338 nm; 54, 270 nm; 58, 310 nm; 55, 56, 61, 62, 270 nm</td>
</tr>
<tr>
<td>D</td>
<td>Silica-based nitrile bonded, 25 cm x 10 mm, 5 µm (semi-preparative)</td>
<td>75% Hexane, 25% CH₂Cl₂, 0.5% MeOH, 3.0 mL/min</td>
<td>70, 430 nm; 69, 410 nm; 29, 410 nm</td>
</tr>
<tr>
<td>E</td>
<td>Silica-based nitrile bonded, 25 cm x 10 mm, 5 µm (semi-preparative)</td>
<td>75% Hexane, 25% CH₂Cl₂, 1.2% MeOH, 3.0 mL/min</td>
<td>46, 262 nm</td>
</tr>
<tr>
<td>F</td>
<td>Silica-based nitrile bonded, 25 cm x 10 mm, 5 µm (semi-preparative)</td>
<td>75% Hexane, 25% CH₂Cl₂, 0.7% MeOH, 2.5 mL/min (600-603); 3.5 mL/min</td>
<td>54-56, 61, 62, 270 nm</td>
</tr>
<tr>
<td>G</td>
<td>Silica-based nitrile bonded, 25 cm x 10 mm, 5 µm (semi-preparative)</td>
<td>75% Hexane, 25% CH₂Cl₂, 1.0% MeOH, 2.8 mL/min</td>
<td>42, 282 nm</td>
</tr>
<tr>
<td>H</td>
<td>Silica-based nitrile bonded, 25 cm x 10 mm, 5 µm (semi-preparative)</td>
<td>80% Hexane, 20% Ethyl acetate, 2.3 mL/min</td>
<td>40, 446 nm</td>
</tr>
<tr>
<td>I</td>
<td>Silica-based nitrile bonded, 250 x 4.6 mm, 5 µm (Analytical)</td>
<td>95% Hexane, 5% CH₂Cl₂, 0.7 mL/min</td>
<td>58, 306 nm</td>
</tr>
<tr>
<td>J</td>
<td>C18 column, 250 x 4.6 mm, 5 µm (Analytical)</td>
<td>70% acetonitrile, 30% water, 0.7 mL/min</td>
<td>63, 64, 330 nm</td>
</tr>
<tr>
<td>K</td>
<td>C18 column, 250 x 4.6 mm, 5 µm (Analytical)</td>
<td>80% acetonitrile, 20% water, 0.7 mL/min</td>
<td>46, 262 nm</td>
</tr>
</tbody>
</table>
REFERENCES

