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Abstract

The inventory slack routing problem is a specialized vehicle routing problem that focuses on
delivering waves of inventory to sites in a timely and even manner. It is difficult to find an
optimal solution to this problem, thus heuristic and search techniques are necessary. This paper
focuses on new variants of the Adaptive Large Neighborhood Search that incorporate new
heuristics and linear programming to set delivery quantities. The search variants are tested on a
set of instances to compare solution quality and computational effort.

1. Introduction

The Inventory Slack Routing Problem (ISRP) is a variant of the vehicle routing problem [1] in
which material arrives at a central depot in multiple waves and must be delivered to sites that
consume the material over a finite time horizon. The logistics objective is to deliver material as
early as possible. In particular, management wishes the slack (earliness) of the deliveries to be
as great as possible in order to reduce the likelihood that sites will not have material when it is
needed. Like other vehicle routing problems, the ISRP is NP-hard, and heuristics and search
algorithms are needed to find high-quality solutions in reasonable time.



Montjoy and Herrmann [2] described an Adaptive Large Neighborhood Search (ALNS) for
finding solutions to the ISRP. Montjoy [3] discussed the performance of the search on a large
set of problem instances. The search begins with an initial set of routes (determined by nearest
neighbor-based heuristic) and iteratively destroys the current routes through removal heuristics
and rebuilds the routes with insertion heuristics. In essence sites are removed and then
reinserted into different routes based on how the minimum slack is changed. Depending on its
performance, a heuristic’s probability of being chosen in future iterations is updated and its
new solution is either accepted or rejected (or diversifies the search). None of the insertion
heuristics tested previously employed a look-ahead characteristic. This paper introduces the
regret insertion heuristic, which utilizes a look-ahead attribute, and tests this heuristic along
with different ways to use linear programming to schedule the deliveries. The goal of the
experiments is to determine whether adding the regret insertion heuristic makes the ALNS
algorithm more efficient by analyzing the trade-off between computational effort and search
performance.

2. Regret Insertion Heuristic

The regret insertion heuristic performs a search of the existing routes for the best route for
each removed site that will result in the greatest minimum slack with a look ahead at potential
future problems. The regret insertion heuristic finds, for each site and each vehicle, the
position on that vehicle’s route that yields the greatest minimum slack. A site’s regret is the
difference between the two greatest minimum slacks [4]. By prioritizing the removed sites that
have the greatest regret, the algorithm hopes to avoid future problems by first inserting
removed sites that have a great influence on minimum slack. (A site with little regret should
have little impact on the minimum slack wherever it goes.)

The regret insertion heuristic starts with the existing vehicle routes and the removed sites. First,
the procedure analyzes how many vehicles have no stops in their routes. Each of those vehicles
will receive a removed site based on priority of which sites result in the highest minimum slack.
The sites that are placed into a route are thus deleted from the set of removed sites. (It cannot
improve the solution to have idle vehicles.) Next, the program determines the best routes for
each remaining removed site by looking at the highest minimum slack calculated. The regret for
each removed site is calculated by subtracting the second best route’s slack from the best
route’s slack. The removed site with the highest regret is placed into its best route. This is
repeated until no sites remain. This procedure is summarized in Figure 1.

Consider an instance with six sites and three vehicles and a partial solution with two removed
sites. Vehicle 1 visits site 1, vehicle 2 visits site 2, and vehicle 3 visits sites 3 and 4. Sites 5 and 6
are unassigned.



The regret insertion heuristic tentatively inserts sites 5 and 6 into every vehicle route and the
minimum slacks are saved. For example, when considering vehicle 3, the heuristic inserts each
site before site 3, after site 3, and after site 4 in order to determine which location will result in
the highest minimum slack.

The regret is calculated by the difference in slacks between the best route and second best
route for each removed site. In this instance, the slack corresponding to each site and vehicle is
shown in Table 1. For both sites 5 and 6, the route that has the most slack is vehicle 2, and the
second best route is vehicle 3. The regret values are 2 and 8 for sites 5 and 6, respectively. The
site with the largest regret is inserted first, so the heuristic adds site 6 to vehicle 2’s route. Then
the process is repeated until no more removed sites remain.

By inserting the removed site with the highest regret first, the remaining removed site becomes
easier to insert. If regret was not considered, site 5 would be added to the route for vehicle 2
because the previous algorithm deals with sites one at a time. Site 6 would then be inserted
into vehicle 3 because that is the best remaining route. The highest minimum slack in the
system would be 15, instead of the 21 calculated by regret.

Table 1. Minimum slack after insertion of sites 5 and 6 into vehicle routes.

Vehicle 1 Vehicle 2 Vehicle 3
Site 5 17 23 21
Site 6 13 23 15
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Figure 1. Flowchart for the regret insertion heuristic.



3. Experimental Design

To analyze the performance of the ALNS with and without the regret insertion heuristic, we ran
both versions of the ALNS on a set of 18 instances (see Table 2). These are a subset of the
instances generated and tested by Montjoy [3]. Note that three instances have one set of nine
sites, and another three instances a different set of nine sites. The key variables are heuristic
performance (the average minimum slack of the best solution generated) and the computation
time to run the search.

The original ALNS algorithm will be referred to as “ALNS.” For a complete description, including
the values of the temperature and the cooling rate, see Montjoy [3]. The ALNS algorithm that
incorporates the regret insertion heuristic will be denoted as “ALNSRR.” Refer to Table 7 for the
labels for every algorithm.

Each trial of the ALNS completes 1500 iterations. Each trial of the ALNSR completes 1000
iterations. We ran 50 trials of each search on the instances with 5 to 50 sites but only 10 trials
on the instances with 189 sites due to larger computational time.

The searches are run consecutively over the entire set of instances on one computer. The
specifications of the computer used are Dell Optiplex 960 with Intel Core Duo CPU; E8400 @
3.00 GHz; 2.99 GHz, 3.21 GB of RAM. The algorithms are coded and executed in MATLAB. The
highest minimum slack per iteration, average times for every 100 iterations, standard
deviations for every 100 iterations, time per iteration, average highest minimum slack for every
100 iterations, and the vehicle routes of the highest quality are all saved. The initial route is
constructed by the nearest neighbor heuristic, ensuring that ALNS and ALNSR start at the same
routes.

The difference in the number of iterations run for ALNS and ALNSR is based on the evidence
gathered from initial testing that demonstrated that 1500 iterations for ALNSR is wasteful and
inefficient as the algorithm will most likely find the best solution before then. One sample is
taken from an instance of 50 sites and 35 vehicles.

As shown in Figures 2 and 3, the ALNSR found the best solution well under the 1000 or 1500
iterations specified on the instance with 50 sites and 35 vehicles. Clearly, it is unnecessary to
run 1500 iterations for the ALNSR, whereas ALNS requires 1500 iterations to get close to the
best found solution.

Only in the large instances with 189 sites are both 1500 and 1000 iterations for ALNS and
ALNSR, respectively, not enough. This will be discussed in more detail later.



Table 2. Number of sites and Vehicles for Instances

Number of sites Number of Vehicles
5 2,3,4
9 3,5,7
9 3,5,7
10 3,5,7
50 15, 25, 35
189 30, 71, 100

Increase in Average Minimum Slack

0 r r

0 5 10
lterations (in hundreds)

Figure 2. Results for the instance with 50 sites and 35vehicles.
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Figure 3. Results for the instance with 50 sites and 35 vehicles ALNSR

4. Results

The results reflect the general positive correlation between computation time and search
algorithm performance. For the instances where the ALNSR generated routes with greater
minimum slacks, it also took much longer to run. In nearly all instances, the ALNSR took longer
than the ALNS except in the data sets with a small number of sites.

Moreover, as shown in Table 3, there is almost no improvement in the greatest minimum slack
found for instances with 5 to 10 sites. The regret insertion heuristic performs a search of all the
possible places where a removed site can be inserted in order to determine which removed
sites have the most impact on minimum slack. By inserting those sites first, the remaining sites
are all relatively easy to place. However, in small instances, almost every combination of stops
and vehicles can be fully considered simply due to the large number of iterations. Because the
best solution can be found without the regret insertion heuristic, the ALNS and ALNSR find
solutions for small instances with very similar greatest minimum slacks. For instances with a
large number of sites, the number of iterations is insufficient to search the solution space so
thoroughly, so insertions have to be chosen wisely, which is why the regret insertion heuristic is
valuable. With an ability to foresee difficulties in inserting certain removed sites, the regret
heuristic can avoid those issues, which is why only a few iterations are needed and the best
quality solution can be found so quickly.

In the instances with 50 and 189 sites, the lower bounds of the confidence intervals for ALNSR
are all greater than the upper bounds of the confidence intervals for ALNS. For example, even
with instances where the highest minimum slack differed by the least the confidence intervals
reveal that the solutions for ALNSR will have greater slack than the solutions for ALNS.



Table 3. Comparison of ALNS and ALNSR Search Quality over 18 Instances

Number Number of Average 95% Confidence Interval
of sites Vehicles Greatest Minimum Slack on Greatest Minimum Slack
ALNS ALNSR ALNS ALNSR
5 2 478.5 478.5 [478.5 478.5] [478.5 478.5]
3 491.5 491.5 [491.5 491.5] [491.5 491.5]
4 491.5 491.5 [491.5 491.5] [491.5 491.5]
9 (F) 3 1281.0 1280.9 [1280.9 1281.0] [1280.9 1281.0]
5 1316.0 1316.0 [1316.0 1316.0] [1316.0 1316.0]
7 1328.0 1328.0 [1328.0 1328.0] [1328.0 1328.0]
9(Q) 3 458.0 458.0 [458.0 458.0] [458.0 458.0]
5 482.7 482.9 [482.4 482.8] [482.8 483.0]
7 496.0 496.0 [496.0 496.0] [496.0 496.0]
10 3 1082.3 1082.9 [1082.1 1082.6] [1082.8 1083.0]
5 1092.2 1092.1 [1092.1 1092.2] [1092.1 1092.2]
7 1092.2 1092.2 [1092.2 1092.2] [1092.2 1092.2]
50 15 1248.1 1266.0 [1246.4 1249.7] [1264.8 1267.1]
25 1284.1 1285.1 [1283.7 1284.5] [1284.9 1285.2]
35 1284.4 1285.2 [1284.4 1284.9] [1285.2 1285.2]
189 30 1247.1 1266.9 [1245.9 1248.3] [1265.5 1268.3]
71 1319.8 1335.7 [1319.3 1320.3] [1334.7 1336.7]
100 13324 1345.5 [1331.5 1333.3] [1344.3 1346.7]




Table 4. Computation Time Per Trial for Both ALNS and ALNSR

Number  Number  Number Computation Time Difference

of sites of of Trials per trial (seconds) (seconds)
Vehicles ALNS ALNSR
5 2 50 13.2 11.8 -14
3 50 9.6 8.6 -1.0
4 50 8.3 6.8 -1.5
9 (F) 3 50 28.4 40.3 11.9
5 50 19.8 30.7 10.9
7 50 17.0 18.6 1.6
9(Q) 3 50 43.1 61.4 18.3
5 50 28.4 43.2 14.8
7 50 21.8 22.9 1.1
10 3 50 43.9 64.9 21.0
5 50 27.8 42.2 14.4
7 50 22.2 26.4 4.2
50 15 50 113.7 509.2 395.5
25 50 91.8 355.5 263.7
35 50 90.6 234.9 144.3
189 30 10 440.1 3150.1 2710.0
71 10 254.0 1698.8 1444.8
100 10 247.7 1321.3 1073.6

5. Discussion

The regret insertion heuristic is most valuable around 50 sites, due to the reasonable tradeoff
between computation time and search performance. As shown in Figures 2 and 3, the ALNSR
generated solutions that have greater minimum slack than those found by the ALNS.
Furthermore, the ALNSR finds the best solution in the system around 200 iterations whereas
the ALNS is still searching for that solution after 1500 iterations. Figure 4 shows the relationship
between solution quality and computation time. Finding higher quality solutions requires more
time. The average time for ALNSR is 144 seconds greater than the average time for ALNS.

Figure 5 displays the diminishing effect of the regret insertion heuristic in discovering good
solutions early. Whereas in the case of 50 sites, the regret insertion heuristic greatly improved
the efficiency of the algorithm by not only finding the best possible solution but also quickly, in
the instances with fewer than 10 sites, the regret heuristic performed significantly worse. In the
instance of 10 sites and 5 vehicles, as demonstrated in Figure 5, the ALNS and ALNSR found
similar solutions with the minimum slack. The slope of both graphs reveals that they are near
the higher quality solution, but in this case the ALNS found that solution more quickly.



Figure 6 presents another view of Figure 5 comparing the average highest minimum slack with
iterations instead of time. The ALNSR is able to find a higher quality solution earlier in the
search. The values of the greatest minimum slack, which is recorded after the first 100
iterations, reveal that although using the regret insertion heuristic reduces the number of
iterations required to find the best solution it increases the average computational time. This
phenomenon also occurred on the instances with 5, 9, and 10 sites.

The results gathered from the largest instances (those with 189 sites) demonstrate the same
trend where the regret insertion heuristic finds higher quality solutions than the original ALNS
at the expense of time. Figure 7 portrays one such instance with 189 sites and 30 vehicles.
Despite finding better solutions, the ALNSR runs for nearly an hour compared to the eight
minutes for the ALNS. Furthermore, unlike the other instances where the graphs displayed a
concave characteristic, this instance reveals that both algorithms are still searching for the
optimal solution as depicted by the convexity of the curve. The ALNS barely improved across
the 1500 iterations, with only a slight increase in minimum slack towards the end of the search.
This lack of convergence indicates that not nearly enough iterations have been run for both
algorithms. Figure 8 displays this same trend.

It is important to note the large difference in computation time between the two instances
where only the number of vehicles changed. This can be easily explained by how the regret
insertion heuristic works. With fewer vehicles, there are more stops per route requiring that
the algorithm must spend more time computing where to insert a removed site into each route.
With more vehicles, there are fewer stops in each route and consequently it becomes easier to
determine the best place to insert a removed site. There are also similarities in the plots of
Figures 7 and 8. Again, there is still the lack of concavity representing that the optimal solution
has not been found and that not enough iterations have been run. Also, the ALNSR
outperformed the ALNS search by a large amount in both instances.

In the 189-site instances, the ALNSR required between 20 minutes and an hour, defeating the
purpose of a local search, but in general discovered better solutions than the ALNS. In instances
with a smaller number of sites, there are no major differences between the two searches. The
regret insertion heuristic only served to increase the computation time of the search without
yielding any better results. This was due to the small instances where 1500 iterations of the
ALNS algorithm can essentially search through every potential combination of stops for each
route in order to find the optimal solution. In these circumstances the ALNSR could do little to
improve the search except to find the better solution earlier. For larger instances where the
search space is also larger, each iteration valued more because not every combination of sites
per route can be explored and the ALNSR played a much larger role in the search performance
by finding better solutions with higher minimum slacks.
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6. Calculating Regret using Route Durations

The regret insertion heuristic increased the computation time of the search greatly. Even
though it is able to discover higher quality solutions, this increased effort makes the algorithm
inefficient. Determining the delivery quantities and calculating the minimum slack for each
possible location for a removed site takes significant time. Because the minimum slack largely
depends upon the route durations, we considered a version of the regret insertion heuristic
that considered the difference in vehicle route durations. In this version, a removed site is
inserted into every possible location in a route. At each location, the heuristic considers the
total route duration. Then the removed site with the greatest regret — difference in route
durations between its best route and second best route —is inserted first.

Consider again the example instance discussed before. Table 5 lists the route durations that
result from adding each site to each vehicle’s route.

The regret is calculated by the difference in travel times between the best and second best
route for each removed site. The shortest route for both sites 5 and 6 is vehicle 2, and the
second best route is vehicle 3. The regret values are 4 and 8 for sites 5 and 6, respectively. The
site with the largest regret is inserted first, so site 6 is added to vehicle 2’s route. Then the
process is repeated until no more removed sites remain.

The ALNS search with the modified regret insertion heuristic will be denoted by “ALNSRD.”

As shown in Table 6, compared to the solutions generated by the ALNS, the solutions found by
the ALNSRD for the instances with 5 and 9 sites had the same quality. For the larger instances,

13



the solutions found by the ALNSRD were not as good. The performance of the ALNSRD was
particularly poor on the instance with 50 sites and 15 vehicles.

As shown in Table 9, the ALNSRD did require less computation time than the other searches
and reduced the time in some instances by nearly 50%. Like the search performances of ALNSR,
ALNSRD finds the same solutions as ALNS in smaller sized instances but as the size of the sites
increase the differences become more apparent.

Looking at each vehicle’s routes for various instances, ALNSRD does not find the same routes as
ALNS nor ALNSR. This can be attributed to the fact that ALNSRD seeks solely to minimize the
travel times per vehicle instead of maximizing the minimum slack. Even though the vehicle
routes vary, the minimum slacks differ only very slightly. The small differences can be logically
explained by the strong correlation between slacks and travel times. Manipulating travel time
will directly affect slack.

Though the ALNSRD could not find solutions of the same quality as ALNS or ALNSR, it was able
to finish its search in much shorter time. The results indicated unexpected behavior as we
predicted the ALNSRD will still take longer time than ALNS to complete. However, because slack
was no longer calculated, thousands of calls to our delivery volume improvement (DVI) function
was removed which sped up the search considerably. The reason why ALNSRD ran faster than
ALNS was due to the adaptive nature of the search. Heuristics that find better solutions are
more likely to be called again. Since the regret insertion heuristic is able to discover higher
guality solutions, it becomes used more than the other insertion heuristics Moreover, the new
regret insertion heuristic runs very quickly because it makes no call to external functions unlike
the other insertion heuristics. The ALNSRD calls the regret insertion heuristic more as the
search progresses due to its effectiveness and speeds up the search as less attention is diverted
to the more time consuming insertion heuristics.

The ALNSRD does not perform as well as ALNS and ALNSR. Figure 9 captures the limitations of
the new regret insertion heuristic in finding as good of a solution as ALNS or ALNSR. However,
the short amount of computation time is evident.

In the medium sized instances where ALNSR greatly outperformed ALNS, ALNSRD fails to
maintain the same results.

Figure 10 reveals the similar increase in average minimum slack between ALNS and ALNSRD.
Both algorithms performed similarly, revealing that the new regret insertion heuristic has little
to no effect of improving the search quality. The ALNSR is simply better than both ALNS and
ALNSRD although it does take much longer to run.

14



Table 5. Route Durations after Insertion of sites 5 and 6

Vehicle 1 Vehicle 2 Vehicle 3
Site 5 43 26 30
Site 6 49 27 35

Table 6. Comparison of ALNS and ALNSRD on 18 Instances

Number Number of Average Highest Minimum 95% Confidence Interval
of sites Vehicles Slack ALNS ALNSRD
ALNS ALNSRD
5 2 478.5 478.5 [478.5 478.5] [478.5 478.5]
3 491.5 491.5 [491.5 491.5] [491.5 491.5]
4 491.5 491.5 [491.5 491.5] [491.5 491.5]
9 (F) 3 1281.0 1280.7 [1280.9 1281.0] [1280.6 1280.8]
5 1316.0 1316.0 [1316.0 1316.0] [1316.0 1316.0]
7 1328.0 1328.0 [1328.0 1328.0] [1328.0 1328.0]
9(Q) 3 458.0 457.9 [458.0 458.0] [457.6 458.1]
5 482.7 482.4 [482.4 482.8] [482.1 483.7]
7 496.0 496.0 [496.0 496.0] [496.0 496.0]
10 3 1082.3 1081.5 [1082.1 1082.6] [1081.2 1081.9]
5 1092.2 1091.8 [1092.1 1092.2] [1091.7 1091.9]
7 1092.2 1092.1 [1092.2 1092.2] [1092.0 1092.2]
50 15 1248.1 1229.3 [1246.4 1249.7] [1227.0 1231.5]
25 1284.1 1282.9 [1283.7 1284.5] [1282.5 1283.4]
35 1284.4 1284.1 [1284.4 1284.9] [1283.8 1284.4]
189 30 1247.1 1244.7 [1245.9 1248.3] [1243.4 1246.0]
71 1319.8 1318.4 [1319.3 1320.3] [1317.8 1319.0]
100 13324 1329.5 [1331.5 1333.3] [1328.3 1330.7]
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7. Adding Linear Programming to ALNS

The ALNS, ALNSR, and ALNSRD searches used delivery volume improvement (DVI) to improve
the delivery quantities of each vehicle. The DVI procedure considers each vehicle separately. In
order to determine the best minimum slack for a given set of routes by optimizing the delivery
quantities of all vehicles simultaneously, we formulated an appropriate linear program (LP).

16



After routes and schedules have been determined for each vehicle, a linear program can
be used to optimally allocate the quantities. In this LP, the decision variables are a,, which is a

pickup by vehicle v for trip j, and b . , which is a delivery to site & by vehicle v on trip j. We

vk’

know that vehicle v takes J, trips.

The notation from the original formulation remains as follow. C designates the capacity
of a vehicle. 7, is the time that vehicle v begins loading at the depot for trip j. w,, is the time

until a delivery is completed for site & by vehicle v from when this vehicle begins loading at the
depot. /(z) denotes the amount of inventory that has become available at the depot at time ¢.

Qvikis the amount of inventory delivered to site k by vehicle v prior to trip ;.

Additionally, we have the function n (¢), which is the number of trips started by vehicle

v up to, and including, time 7. Let 7, = {7, j =1,...,J,} be the set of all delivery start times for

vehicle v. Let T denote the union of all starting times for the ¥ vehicles: T = U’ _T..

Given the routes and schedules, the maximum minimum slack can be found by solving
the following linear program:

max s (2.2)
v_n (1)
a, <I(t) fort€T (1.2)
v=l j=I
a;,sCforv=1..,V;j=2,.,J, (2.3)
vajk =a, forv=1..,V;j=2,.J, (1.4)
"IV
Ebvjk =L (T,-T) forv=1,.,V;kE0, (1.5)
7=
0, =0forv=1..V;kE€0, (1.6)
j-l
O, = Ebvmk forv=1,.,V;j=2,.,J;k€0, (1.7)
m=1
s=T + i —t,-w, forv=1..V;j=1..J k€0, (1.8)

'k
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a;z0forv=1..V;j=1..J (2.9)

v

b,

vik

z0forv=1L..,V;j=1..,J;kEQ0, (1.10)

Equation 1.1 denotes the objective function, which is to maximize the minimum slack.
Equation 1.2 prevents the pickups from exceeding inventory at the depot. Equation 1.3 is a
vehicle capacity constraint for all pickups. Equation 1.4 forces the vehicle to deliver all
inventory picked up before returning to the depot. Equation 1.5 ensures that all sites receive
their demanded inventory. Equations 1.6 and 1.7 define the cumulative quantity amounts.
Equation 1.8 defines the minimum slack. Equations 1.9 and 1.10 are nonnegativity constraints
for the decision variables.

Using the LP to evaluate each solution greatly increased the time required to run the search. Let
ALNS with LP be denoted “ALNSLP” and ALNSR with LP be denoted “ALNSRLP.” ALNSLP took
nearly 30 minutes per trial (1500 iterations) for an instance with 50 sites, and ALNSRLP was not
halfway complete after 180 minutes.

In order to reduce the time required by the search, we also tested a version that used the DVI
procedure during the search and ran the LP only on the best solution found. Let ALNS and
ALNSRD with LP at the end be denoted “LinProg” and “LinProg2.”

The addition of LP increased the computation time of the ALNS algorithms so greatly that the
times are comparable between ALNSRLP for small instances and ALNS with large instances.
However, despite the enormous cost of time, the LP is able to find solutions with higher
maximum slacks. Figure 11 demonstrates the instance where ALNSLP and ALNSR LP both vastly
outperformed DVI.

Although the ALNSLP finds high quality solutions, the time required is over five times as much
as the ALNS requires. We noted that building the constraint matrices for the LP takes more
time than solving the LP using MATLAB’s LP solver. The ALNSRLP takes considerably longer to
run than the ALNSLP, but both algorithms find the solutions with the same minimum slack. This
suggests that the LP alone is able to improve the search performance and discover high quality
solutions without the incorporation of the regret insertion heuristic.

LinProg and LinProg2 performed as expected. The computation times are not displayed for
these two algorithms because they take approximately the same amount of time as ALNS and
ALNSRD (see Table 6). The quality of the solutions found is almost as good as ALNSLP while
taking much less time. The results in Tables 4 and 8 shows that using the LP at the end of the
search drastically improves the search performance without significantly increasing the
computational effort. Comparing the search quality of all the algorithms, it is interesting that

18



LinProg performs the best in the shortest amount of time. Not only does it take less time than
ALNSR, but it also outperforms it for the instances with 10 and 50 sites.

Table 7. Table of Algorithm Labels

Label Corresponding Algorithm

ALNS Original ALNS

ALNSR ALNS with regret insertion
heuristic

ALNSRD ALNS with modified regret
insertion heuristic based
on route duration

ALNSLP ALNS with linear
programming replacing
DVI

ALNSRLP ALNSR with linear
programming replacing
DVI

LinProg Linear programming run
once after ALNS finishes

LinProg2 Linear programming run

once after ALNSRD finishes

Table 8. Comparison of ALNSLP and ALNSRLP.

Number Number of Greatest Minimum Slack Greatest Minimum Slack
of sites Vehicles Average 95% Confidence Interval
ALNSLP ALNSRLP ALNSLP ALNSRLP
5 2 483.7 483.7 [483.7 483.7] [483.7 483.7]
3 493.8 493.8 [493.8 493.8] [493.8 493.8]
4 498.1 498.1 [498.1 498.1] [498.1 498.1]
9 (F) 3 1280.9 1281.0 [1280.8 1281.0] [1280.9 1281.0]
5 1316.0 1316.0 [1316.0 1316.0] [1316.0 1316.0]
7 1328.0 1328.0 [1328.0 1328.0] [1328.0 1328.0]
9(Q) 3 458.0 458.0 [458.0 458.0] [458.0 458.0]
5 482.4 483.0 [482.1 482.6] [482.9 483.0]
7 496.0 496.0 [496.0 496.0] [496.0 496.0]
10 3 1084.7 1084.7 [1084.7 1084.7] [1084.7 1084.7]
5 1096.8 1096.8 [1096.8 1096.8] [1096.8 1096.8]
7 1101.0 1101.1 [1101.01101.0] [1101.11101.1]
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Table 9. Comparison of LinProg and LinProg2.

Number Number of Average Highest Minimum 95% Confidence Interval
of sites Vehicles Slack LinProg LinProg2
LinProg LinProg2
5 2 478.6 478.6 [478.6 478.6] [478.6 478.6]
3 493.8 493.8 [493.8 493.8] [493.8 493.8]
4 497.5 497.5 [497.5 497.5] [497.5 497.5]
9 (F) 3 1280.9 1280.7 [1280.8 1281.0] [1280.5 1281.0]
5 1316.0 1316.0 [1316.0 1316.0] [1316.0 1316.0]
7 1328.0 1328.0 [1328.0 1328.0] [1328.0 1328.0]
9(Q) 3 458.0 458.0 [458.0 458.0] [458.0458.0]
5 482.6 482.2 [482.2 483.1] [481.6 482.8]
7 496.0 496.0 [496.0 496.0] [496.0 496.0]
10 3 1083.3 1082.8 [1082.8 1083.7] [1082.1 1083.6]
5 1095.0 1094.9 [1095.0 1095.1] [1094.7 1095.1]
7 1100.1 1100.1 [1100.1 1100.2] [1099.9 1100.2]
50 15 1263.2 1251.6 [1259.3 1267.2] [1247.2 1256.0]
25 1292.9 1292.9 [1292.4 1293.4] [1292.3 1293.4]
35 1297.4 1297.3 [1296.9 1297.8] [1296.9 1297.8]
189 30 1245.3 1244.0 [1244.5 1246.1] [1244.0 1244.0]
71 1318.9 1319.0 [1318.2 1319.6] [1318.01318.0]
100 1332.9 1329.0 [1331.3 1334.5] [1328.0 1330.0]
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Table 10. Computation Time per Trial for ALNS, ALNSR, ALNSRD, ALNSLP, and ALNSRLP.

Number  Number  Number Computation Time per trial (seconds)
of sites of of Trials
Vehicles ALNS ALNSR ALNSRD ALNSLP ALNSRLP
5 2 50 13.2 11.8 8.1 82.3 78.9
3 50 9.6 8.6 6.1 55.3 58.1
4 50 8.3 6.8 5.5 38.8 40.7
9 (F) 3 50 28.4 40.3 19.0 190.2 312.7
5 50 19.8 30.7 12.8 175.8 364.0
7 50 17.0 18.6 111 127.4 233.6
9(Q) 3 50 43.1 61.4 28.9 327.9 531.6
5 50 28.4 43.2 19.3 227.4 462.2
7 50 21.8 22.9 15.1 144.8 247.1
10 3 50 43.9 64.9 27.8 234.6 381.0
5 50 27.8 42.2 17.8 161.2 335.7
7 50 22.2 26.4 13.7 111.9 227.6
50 15 50 113.7 509.2 74.2
25 50 91.8 355.5 61.5
35 50 90.6 234.9 60.8
189 30 10 440.1 3150.1 288.2
71 10 254.0 1698.8 171.6
100 10 247.7 1321.3 169.4
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Figure 11. Comparison of ALNS, ALNSR, ALNSLP, ALNSRLP for the instance with 10 sites and 7 vehicles.
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8. Conclusions

The regret insertion heuristic performs the most efficiently in instances with less than 50 sites.
There is almost no difference in search performance between ALNS and ALNSR for instances
with a small number of sites. On the other hand, for instances with a large number of sites
there were significant improvements in solution quality for ALNSR. However, the increase in
guality comes at the cost of an immense computational time. For the instances with 50 sites,
the ALNSR not only finds higher quality solutions but also does so within a reasonable amount
of time. The regret insertion heuristic is inefficient in instances with a large or small number of
sites, but around the range of 50 sites it performs exceptionally well both in finding high quality
solutions and early.

With the implementation of the new regret insertion heuristic, the ALNSR becomes less
favorable for small instances. The ALNSRD finds the same solutions as ALNS and ALNSR but
much faster.

The addition of the LP algorithm greatly increased the search performance of the ALNS. The
solutions were all of higher quality than those found with ALNS. ALNSLP and ALNSRLP found
similar results despite the ALNSRLP requiring longer computation time, suggesting that the
regret insertion heuristic only slows down the search without generating better results. The
LinProg and LinProg2 are the best algorithms out of the instances tested. They not only find
higher quality solutions than ALNS and ALNSR, they also take a short amount of time to run.
This suggests that the removal and insertion heuristics with DVI are competent in finding high
guality routes and the LP can optimize the minimum slacks through efficient scheduling.
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