Performance of Batch-based Digital Signatures

William C. Cheng
Department of Computer Science
University of Maryland at College Park

Cheng-Fu Chou
Department of Computer Science
University of Maryland at College Park

Leana Golubchik
University of Maryland Institute for Advanced Computer Studies and Department of Computer Science
University of Maryland at College Park
Abstract

A Digital Signature is an important type of authentication in a public-key (or asymmetric) cryptographic system, and it is in wide use. The performance of an Internet server computing digital signatures online is limited by the high cost of modular arithmetic. One simple way to improve the performance of the server is to reduce the number of computed digital signatures by combining a set of documents into a batch in a smart way and signing each batch only once. This reduces the demand on the CPU but requires extra information to be sent to clients.

In this paper, we investigate performance of online digital signature batching schemes and show that significant computational benefits can be obtained from batching without significant increases in the amount of additional information that needs to be sent to the clients. We also give a semi-Markov model of a batch-based digital signature server and its approximate solution. We validate the solutions of the analytical model through both emulation and simulation.

1 Introduction

A Digital Signature is an important type of authentication in a public-key (or asymmetric) cryptographic system, and it is in wide use [13, 16]. If Alice would like to send an authenticated (but not encrypted) message M to Bob, Alice can compute a digital signature from M, denoted by DS[M], concatenate M with DS[M], denoted by M+DS[M], and send M+DS[M] to Bob. Bob, with possession of Alice’s public key, can verify the following important security properties of the message.

- **Integrity** – that not a single bit in the message has been altered.
- **Authentication** – that the message was truly sent by Alice.
- **Nonrepudiation** – that Alice cannot deny that she has sent the message.

Another important property of a digital signature is that it is not vulnerable to the so-called man-in-the-middle attack, i.e., no one (other than Alice) can change a single bit of either M or DS[M] without Bob noticing that the message, M+DS[M], has been altered.

In a client/server-based application, a server, which offers a set of services, can play the role of Alice and a client can play the role of Bob. Often, a client would like to obtain a receipt from the server, describing the service rendered, and signifying the completion of the prescribed transaction. A digital signature can act as such a receipt due to the nice security properties listed above. There are many client/server-based applications where a digital signature is desirable. For example, in a lottery ticket selling service (or a concert tickets purchasing priority numbers issuing service), a server can timestamp and digitally sign each ticket it issues; in a pay-per-view stock tip service, a server can generate the latest report on a stock symbol from its database and digitally sign the report; in an income tax form collection service, a proposal collection service, a conference paper
collection service, or a bid collection service for contract bidding, a server can generate a timestamp and send the digitally signed timestamp as proof that a client’s submission has been received and that the client has made a deadline [1]. Note that for most of these online applications (stock tip type service being the exception), the document being signed is a timestamp or a small collection of numbers, i.e., the size of the document is fairly small.

A typical application is illustrated in Figure 1. In Figure 1(a), a server is shown to provide documents to a large number of clients spread across the network, such as the Internet. (This can be generalized to multiple services and multiple/mirrored servers). Each client \(j \) sends a request for a document, \(I_j \), to the server. The server digitally signs document \(I_j \), to produce \(DS[I_j] \) and sends the document together with the digital signature to client \(j \) (refer to Figures 1(b) and (c)).

![Figure 1: Digital Signatures Problem.](image)

The main problem here is that the digital signature process is very computationally expensive. Therefore, if the particular service is very popular, under high loads, the response time for a client can be very large. Each of the applications mentioned above corresponds to a real-life event which may experience high demands at certain times. For example, demands for popular concert tickets can be high when the tickets first go on sale, while submission of income tax forms are often done close to the deadline. It is the main focus of this paper to examine ways of reducing a client’s response time when the load on the server is high.

Let us examine the digital signature process more carefully to see where the performance bottleneck is. Figure 2 depicts the process of digitally signing and verifying a document \(M \) [16]. We focus on the left half (signing) in Figure 2. (We will denote the verification procedure, the right half of Figure 2 by \textsc{Verify}[M,DS[M]].) Let us denote the public and private keys used for a service \(S \) provided by the server as \(K_{pub}^S \) and \(K_{priv}^S \). (Please note that we will drop the \(S \) superscript for clarity.) The server applies a one-way hash (uninvertible) function \(H \) to document \(M \) to produce
H(M). The size of H(M) is fixed (on the order of 20 bytes, depending on which digital signature system the server is required to use). The server then uses K_{priv} to digitally sign H(M), the output of which is referred to as the digital signature of document M, denoted by DS[M]. Although there are several existing different digital signature algorithms (e.g., RSA, DSA, etc. [13]), the basic signing process is the same. The differences among these algorithms are abstracted in the block labeled DS in Figure 2.

![Diagram](image)

Figure 2: Digitally Signing and Verifying a Document M.

Since the creation of a digital signature mainly consists of the H and the DS blocks, let us examine the relative time spent in each block. The time to compute a one-way hash function is linearly proportional to the size of M. The time spent in the DS block is also linearly proportional to the size of its input. But since input to the DS block is H(M), whose size is fixed, the time spent in the DS block is constant. If the size of M is small, computing DS[M] is typically several orders of magnitude more expensive than computing H(M). For example, on a 750 MHz Pentium-III PC running Linux, digitally signing 20 bytes of data takes about 0.02 seconds while computing a hash of 20 bytes of data takes about 1 microsecond with OpenSSL [18].

Our goal in this work is to reduce the computational needs of a server due to digital signatures under high workloads. We explore the use of batching schemes and show that, using standard cryptographic techniques, we can significantly improve the performance of a server under high load. That is, even under high load (near 100% utilization), the server can keep up with the demands without sacrificing security (while keeping computational and networking overhead at a minimal).

The remainder of the paper is organized as follows. We briefly survey related work in Section 2. Section 3 describes various batching schemes. We present our analytic models, validate them, and review performance results in Section 4. Section 5 concludes with a summary and a discussion.

2 Related Work

In this paper, we are mainly concerned with systems issues in producing digital signatures under high loads. By that we mean that we explore the use of batching schemes under standard cryptographic techniques, i.e., those in [13, 16] using readily available software (e.g., OpenSSL [18]).
There has been some work in the cryptography literature on batching schemes, in the context of public-key cryptographic systems, that involve the private key, but all of them are related to either decryption or digital signature verification, e.g., [3, 6, 14]. Most of these proposals require modifications to cryptographic algorithms, while our approach can be used with any standard public-key cryptographic system. We believe that the main reason for lack of published work on batch signing is that, cryptographically speaking, batch signing is fairly simple (and therefore, can be done using standard cryptographic techniques). Another reason is that the applications mentioned in Section 1 are relatively new.

Since the slowness of digital signatures mainly stems from the high cost of modular arithmetic, an alternative approach is the so-called one-time signatures used in secret-key (or symmetric) cryptographic systems, e.g., [4, 9, 11]. Although one-time signatures are very fast to compute, this approach requires large amounts of keys to be generated, managed, and distributed (since a signature can only be used once). Therefore, they are not widely used in practice. Another approach of mixing private-key digital signatures and one-time signatures also exists [5]. It has some of the same drawbacks as one-time signatures.

On the systems side, in [12], Merkle introduced the idea of authentication trees for an alternate cryptographic system. In contrast, we use digital signatures for authentication, and we use a tree of hashes to reduce message overhead in our Tree-based Batching scheme. In [7], Gennaro et al. studied the case where a single receiver is to receive a stream of blocks online and each block needs to be authenticated. They have mentioned that hashes of all blocks can be put in a table and the table can be digitally signed and sent to the receiver. Our Simple Batching scheme is similar, but in our case, each block is sent to a different receiver. In addition, there is one reference we have found in a posting to a mailing list for the Usenet Format Working Group which proposes an offline batch signing process for digital signatures of news digests [17]. The final Internet Draft [10], produced by the working group contains no information about batch signing. We believe that the main reason for this omission is that there is no enforceable scheme in place for revoking digital signatures and the so-called Cancel Locks in USENET. In all the work mention above, some have given complexity analysis of batching schemes, but none have considered performance analysis of an online system using batch-based digital signatures.

In summary, we believe that, given the applications in Section 1, there is a need for significant performance improvement of digital signatures under high loads in a system setting. Hence such online schemes and their evaluation is the focus and the contribution of this paper.

3 Batching Schemes

We propose to reduce the computational requirements of digital signatures for large numbers of clients through a batching approach described in this section.
First, we describe a non-batched system, as in the scheme used in [2], as a baseline for comparison. This system is depicted in Figure 3. (This scheme is commonly used in Internet servers.) In order to guard against replay attacks [13], we require that each request j is accompanied by a nonce, r_j, whose length is comparable to the length of a hash value, and we also require that, in the response, the corresponding document I_j includes r_j in its header, so that the client can verify that I_j was indeed intended for it. (The header in I_j may include additional information such as a server timestamp.) For each document I_j, the signing server produces $DS[I_j]$ and sends $I_j + DS[I_j]$ to the client which requested I_j in a first-come-first-served fashion. The digital signature of a document is computed independently of other documents and signatures. The digital signature scheme used here is depicted, in general, as shown in the left half of Figure 2. Clearly, at high loads, a large queue can build up at the signing server since computing digital signatures is CPU intensive. Note that in this scheme, there is no wasted network bandwidth, in the sense that a client C_i only receives $I_j + DS[I_j]$, i.e., it does not receive information that does not belong to it. (The verification procedure is performed by the client and is not described here. Interested readers are referred to [16].)

3.1 Simple Batching

A very simple way to batch requests is to use a gated server, as depicted in Figure 4. We use the term customer and client request interchangeably. When the server becomes free, it closes a gate behind the last customer in the queue and serves all the customers inside the gate in a batch\(^1\). All newly arrived customers queue up behind the gate. When the server finishes serving the batch, all customers inside the gate depart from the server. The process then repeats. If the server is free when a customer arrives, it closes the gate behind this customer and serves this customer only.

Let B be the number of client requests (or customers) waiting when the server completes the previous computation of a digital signature (B is also referred to as the batch size). Each client j requires document I_j and a digital signature to verify the security properties related to I_j. One approach to reducing the computational cost of signing each document independently is to first concatenate the B documents corresponding to the B clients waiting in the queue and

\(^1\)It can easily be shown that gating fewer customers than are present in the queue can only lead to a longer average response time for the client in this setting. It is also not worth while to consider the scheme where a server waits for some amount of time for a larger number of customers to join the batch.
then sign them all together, i.e., produce $D = I_1 + I_2 + \ldots + I_B$, and $DS[D]$ and send $D + DS[D]$ to each client. However, client j will be able to see I_k where $k \neq j$. To get around this problem, instead of concatenating the documents, we can concatenate the hashes of the documents, i.e., produce $D = H(I_1) + H(I_2) + \ldots + H(I_B)$, and $DS[D]$ and send $D + DS[D] + I_j$ to client j, for $1 \leq j \leq B$. (Note that this D can be considerably smaller than one obtained by concatenating the actual documents.) Then, our client and server algorithms are as follows.

Server algorithm (refer to Figure 4):
1. let $D = H(I_1) + H(I_2) + \ldots + H(I_B)$;
2. compute $DS[D]$
3. construct message $D + DS[D] + I_j$ for each client $1 \leq j \leq B$.

Client j algorithm (upon receiving $DS[D] + D + I_j$):
1. VERIFY $D, DS[D]]$
2. verify that the nonce, r_j, is in the header of I_j
3. compute $H(I_j)$
4. verify $H(I_j)$ can be found in D.

This is referred to as the Simple Batching scheme. It can give a significant CPU speed improvement since it only computes 1 digital signature for each batch as opposed to doing B digital signature computations in the non-batched scheme. However, this requires larger message sizes. The total overhead on the system, as far as message sizes are concerned, is B times the size of D (since sizeof($DS[D]$) and sizeof($DS[I_j]$) are identical). The size of D is just B times the size of a hash. Therefore, the message size overhead is $B^2 \cdot \text{sizeof(hash)}$. The security properties of this scheme are discussed at the end of Section 3.2.

3.2 Tree-based Batching

Motivated by the potential need to save network bandwidth (not just CPU speed) and hence reduce message sizes, we modify the Simple Batching scheme by building a tree of hashes, where leaves of the tree are hashes of documents. We then only sign the root of the tree, which is denoted by R. The value of an internal node of the tree is computed by concatenating the values of its
children and then applying the hash function. A hash tree is illustrated in Figure 5 for the case
where $B = 4$. This scheme also uses a gated server which operates similarly to the Simple Batching
scheme depicted in Figure 4. The main difference is in the content of the out-going messages, which
is also illustrated in Figure 5. Let $P_M = [x_1, x_2, \ldots, x_h]$ denote a list of nodes along the path from

$$R = H(H(H(I_1)+H(I_2))+H(H(I_3)+H(I_4)))$$

\[H(H(I_1)+H(I_2)) \quad H(H(I_3)+H(I_4)) \]

\[H(I_1) \quad H(I_2) \quad H(I_3) \quad H(I_4) \]

Send to C_1:
<table>
<thead>
<tr>
<th>R</th>
<th>DS[R]</th>
<th>H(I_1)</th>
<th>H(I_2)</th>
<th>H(I_3)+H(I_4)</th>
</tr>
</thead>
</table>

Send to C_2:
<table>
<thead>
<tr>
<th>R</th>
<th>DS[R]</th>
<th>H(I_1)</th>
<th>H(I_2)</th>
<th>H(I_3)+H(I_4)</th>
</tr>
</thead>
</table>

Send to C_3:
<table>
<thead>
<tr>
<th>R</th>
<th>DS[R]</th>
<th>H(I_4)</th>
<th>H(I_3)+H(I_2)</th>
</tr>
</thead>
</table>

Send to C_4:
<table>
<thead>
<tr>
<th>R</th>
<th>DS[R]</th>
<th>H(I_4)</th>
<th>H(I_3)+H(I_2)</th>
</tr>
</thead>
</table>

Figure 5: Example of Tree-based Batching Scheme for $B = 4$.

a leaf node that corresponds to document M to the root node, excluding the root node, and let h
denote the depth of the leaf node (given that the root is at depth 0). For example, P_1 would be
$[H(I_1), H(I_1), H(I_2)]$. Let $S_M = [y_1, y_2, \ldots, y_h]$ denote a list of nodes, where y_k is the sibling of
the corresponding node x_i in P_M. (S_M is called the authentication path in [12].) For example, S_{I_1}
would be $[H(I_2), H(I_3), H(I_4)]$. The client and server algorithms are modified as follows.

Server algorithm:

1. build a complete binary tree with leaf nodes $H(I_1)$, $H(I_2)$, \ldots, $H(I_B)$;
 the value of an internal node X with children Y and Z is simply $X = H(Y+Z)$;
2. compute $DS[R]$ (where R is the root of the binary tree);
3. construct message $R + DS[R] + S_{I_j} + I_j$ for each client $1 \leq j \leq B$.

Client j algorithm (upon receiving $R + DS[R] + S_{I_j} + I_j$):

1. VERIFY[R, DS[R]];
2. verify that the nonce, r_j, is in the header of I_j;
3. let $S_{I_j} = [y_1, y_2, \ldots, y_h]$; compute $H(I_j)$ and run the following simple
algorithm:
 \[r \leftarrow H(I_j); \]
 for (i=1 to h) do $r \leftarrow H(r + y_i)$;
verify that \(r = R \).

Compared with the Simple Batching scheme, the Tree-based Batching scheme computes only one digital signature, but it computes twice as many hashes. Compared with the non-batched scheme, the total overhead on the network for the Tree-based Batching scheme, as far as message sizes are concerned, is \(B \) times the size of a hash times the height of the complete binary tree. Therefore, the message size overhead is \(B \times \log_2(B) \times \text{sizeof(hash)} \).

In general, an \(m \)-ary tree can be used instead of a binary tree to reduce the number of additional hashed needed. However, the message size overhead is then \(B \times (m - 1) \times \log_m(B) \times \text{sizeof(hash)} \). It can easily be shown that the above expression is monotonically increasing for \(m > 1 \) (by taking the derivative of the expression with respect to \(m \)), and therefore, is minimized when \(m = 2 \).

Remarks: The preceding assumes that the chosen hash function is uninvertible. Given that such a hash function and digital signature are used, the batching schemes presented above have the same security properties as the non-batched scheme.

We are motivated by applications where the documents are relatively small and so the computation time of the hash function is insignificant as compared to that for the digital signature. In cases where the documents are large, the performance of the batching schemes is about the same as the non-batched scheme. This is because the extra computation time incurred in the batched schemes is all in computing hashes of hashes (which are guaranteed to be small to start with).

4 Performance Results

In this section we discuss performance characteristics of the batching schemes described in Section 3. We construct analytical models for both batching schemes and validate them against emulation and simulation. In this validation, we consider documents of various sizes.

4.1 Analysis

We begin with the analysis of the digital signature *gated* server with batching schemes described in Sections 3.1 and 3.2.

The following analysis is carried out under the assumption that the digital signature is computed using a private key type operation (such as in RSA and DSA), and that the one way function is computed through a typical hash function such as SHA1 or MD5. Hence, the digital signature computation is *significantly* more costly than the hash function computation, given the same size document. For instance, the OpenSSL benchmark [18] results in approximately a 4 orders of magnitude difference between digital signature computation and hash function computation for a 20 byte message.
4.1.1 System Model

We first consider the case where the size of the document is small. By small, we mean that the time it takes to hash a document is less than 10% of the time it takes to digitally sign a 20-byte string (or a 16-byte string if MD5 is used). A different (but simpler) model is used for larger documents, which we will describe later.

Given the above assumption, we model the service time for computation of a digital signature of a batch of B customers as being deterministic and independent of the batch size (i.e., most of the time is spent in computing the digital signature so we ignore the fact that the hash function computation time is a function of the batch size). That is, we can think of the server as an M/D/1 queue with batching, i.e., where the arrival process is Poisson with rate λ and the service time is deterministic and equal to $1/\mu$.

We approximate this model with the semi-Markov process, SM, depicted in Figure 6. The state of SM is described by (i, j), where i indicates the number of customers waiting in the queue and j indicates whether the server is busy or idle, with $j = 0$ indicating that it is idle and $j = s$ indicating that it is busy. Lastly T is the mean residual service time, and it is equal to $1/(2\mu)$ (refer to [8]). (That is, if we let r.v. X represent the digital signature plus hash function computation time, and we let r.v. Y represent the corresponding residual computation time, then $E[Y] = E[X^2]/2E[X]$.)

Let τ_0 be the mean holding time in state $(0,0)$, τ_1 be the mean holding time in state $(0,s)$, and τ_2 be the mean holding time in state (i,s), for $i > 0$. Then,

$\tau_0 = \int_0^\infty t\lambda e^{-\lambda t}dt = \frac{1}{\lambda}$

$\tau_1 = \int_0^{1/T} t\lambda e^{-\lambda t}dt + \frac{1}{\mu} \int_{1/T}^\infty \lambda e^{-\lambda t}dt = \frac{1}{\lambda}(1 - p_1)$

$\tau_2 = \int_0^T t\lambda e^{-\lambda t}dt + T \int_T^\infty \lambda e^{-\lambda t}dt = \frac{1}{\lambda}(1 - p_2)$

where

$p_1 = e^{-\frac{1}{\mu}}$
\[p_2 = e^{-\frac{\lambda}{p_1}} = e^{-\lambda T} \]

Then, we can solve this model by constructing the corresponding Discrete-Time Markov Chain (or DTMC), \(\mathcal{M} \), as illustrated in Figure 7, as follows. Let \(\pi = \{\pi_0, \pi_1, \pi_2, \ldots\} \) be the steady state distribution for \(\mathcal{M} \), where \(\pi_0 \) corresponds to state \((0,0)\), \(\pi_1 \) corresponds to state \((0,s)\), and \(\pi_i \) corresponds to state \((i-1,s)\) for \(i \geq 2 \). Then we have the following set of equations:

\[
\sum_{i=0}^{\infty} \pi_i = 1 \\
\pi_0 = \pi_1 p_1 \\
\pi_1 = \pi_0 + \sum_{i=2}^{\infty} \pi_i p_2 \\
\pi_i = \pi_1 (1 - p_1) (1 - p_2)^{i-2} \quad \forall i \geq 2
\]

which gives us

\[
\pi_0 = \frac{p_2 p_1}{p_1 p_2 + p_2 + 1 - p_1} \\
\pi_1 = \frac{p_2}{p_1 p_2 + p_2 + 1 - p_1} \\
\pi_i = \frac{p_2 (1 - p_1) (1 - p_2)^{i-2}}{p_1 p_2 + p_2 + 1 - p_1} \quad \forall i \geq 2
\]

Let \(\pi^* = \{\pi^*_0, \pi^*_1, \pi^*_2, \ldots\} \) be the steady state distribution for \(\mathcal{SM} \). Then,

\[
\pi^*_0 = \frac{\pi_0 \tau_0}{\pi_0 \tau_0 + \pi_1 \tau_1 + \sum_{i=2}^{\infty} \pi_i \tau_2} \\
\pi^*_1 = \frac{\pi_1 \tau_1}{\pi_0 \tau_0 + \pi_1 \tau_1 + \sum_{i=2}^{\infty} \pi_i \tau_2} \\
\pi^*_i = \frac{\pi_i \tau_2}{\pi_0 \tau_0 + \pi_1 \tau_1 + \sum_{i=2}^{\infty} \pi_i \tau_2} \quad \forall i \geq 2
\]

this gives

\[
\pi^*_0 = \frac{p_1 p_2}{1 - p_1 + p_1 p_2}.
\]

Finally, we compute the mean waiting time of the M/D/1 queue with batching as:

\[
\bar{W} = (1 - \text{Prob}[\text{system is empty}]) \cdot T
\]
where \(\text{Prob}\{\text{system is empty}\} \) is the probability of an arrival finding the M/D/1 batching system empty and \(T = 1/(2\mu) \) is the mean residual service time of the M/D/1 batching system. We approximate \(\text{Prob}\{\text{system is empty}\} \) by \(\pi_0^* \), which is obtained by solving the semi-Markov process given in Figure 6. Then, the corresponding mean response time is approximated as:

\[
\bar{T} = \frac{1}{\mu} + \bar{W} = \frac{1}{\mu} + \frac{1}{2\mu} (1 - \pi_0^*) = \frac{1}{\mu} + \frac{1}{2\mu} \left(\frac{1 - e^{-\frac{\lambda}{\mu}}}{1 - e^{-\frac{\lambda}{\mu}} + e^{-\frac{\lambda}{2\mu}}} \right)
\]

4.1.2 Model Parameters

What remains is to derive the model parameters as a function of the digital signature and hash functions operations. Specifically, we need to derive the service time for a batch of size \(B \). Let the digital signature computation for a fixed size (around 20 bytes) string take \(t_{ds} \) units of time. Let the computation of a hash function for a similar size document (i.e., similar to the size of the output of a hash function) take \(t_h^* \) time units. And, let the computation of a hash function for an “average” size document sent in the reply message in our system take \(t_h \) units of time, i.e., we simplify the following derivation by assuming that the documents being sent by our system are of reasonably comparable size and thus the hash function computation of an average size document is representative of the time it takes to compute a hash function on some document \(I_j \). We further simplify the parameter derivation by assuming an average size batch and approximating it as \(\lambda/\mu \) (i.e., \(B \approx \lambda/\mu \)). Given that the digital signature computation is significantly more costly, the above simplifications are reasonable. Referring back to Figure 2, \(t_{ds} \) is the time spent in the DS block, \(t_h \) is the time spent in the H block for an average-sized message \(M \), and \(t_h^* \) is the time spent in the H block if \(M \) has the size of a hash (i.e., around 20 bytes).

We further approximate the time it takes to compute a hash function of a document of size \(k \times L \) by \(k \) times the time it takes to compute a hash function of a document of size \(L \). (This is a reasonable assumption given currently used hash functions and the results from the OpenSSL benchmark [18].)

Then, in the case of the Simple Batching scheme, the time required to compute \(D \) is \((\lambda/\mu)t_h \). To digitally sign \(D \), the time spent in the H block of Figure 2 is approximately \((\lambda/\mu)t_h^* \) (by the above assumption) and the time spent in the DS block of Figure 2 is \(t_{ds} \). Therefore, the time to compute \(D+DS[D] \) is:

\[
\frac{1}{\mu} = t_{ds} + \frac{\lambda}{\mu} t_h + \frac{\lambda}{\mu} t_h^*
\]

\[
= \frac{t_{ds}}{1 - \lambda(t_h + t_h^*)}
\]

Similarly, in the case of the binary Tree-based Batching scheme, we have:

\[
\frac{1}{\mu} = t_{ds} + \frac{\lambda}{\mu} t_h + 2\left(\frac{\lambda}{\mu} - 1\right)t_h^*
\]

\[\text{(2)}\]
= \frac{t_{ds} - 2t_h}{1 - \lambda(t_h + 2t_h)}

It can easily be shown that the stability regions for the schemes described above are:

\[
\lambda < \begin{cases} \\
\frac{1}{t_{ds} + t_h} & \text{for the non-batched scheme} \\
\frac{1}{t_h + t_h} & \text{for the Simple Batching scheme} \\
\frac{1}{t_h + 2t_h} & \text{for the Tree-based Batching scheme}
\end{cases}
\tag{3}
\]

Discussion of M-ary Trees

In the case of the m-ary Tree-based Batching scheme, we have:

\[
\frac{1}{\mu} = t_{ds} + \frac{\lambda}{\mu} t_h + \frac{\lambda}{\mu} m t_h \sum_{i=1}^{\log_m \frac{\lambda}{\mu}} \frac{1}{m^i}
\]

\[
= t_{ds} + \frac{\lambda}{\mu} t_h + \left(\frac{\lambda}{\mu} - 1 \right) \frac{m}{m-1} t_h
\]

\[
= \frac{t_{ds} - \left(\frac{m}{m-1} \right) t_h}{1 - \lambda[t_h + \left(\frac{m}{m-1} \right) t_h]}
\]

In the above equation, although a higher value of \(m\) will reduce \(1/\mu\), it only reduces \(1/\mu\) by a very small amount because \(t_{ds}\) is several orders of magnitude larger than \(t_h\). Based on the discussion presented at the end of Section 3.2, the message size overhead increases as \(m\) increases. Therefore, it is not worthwhile to use a value of \(m > 2\).

4.2 Validation of Analytical Models

In this section we validate our analysis by comparing the analytical results obtained above with those obtained through emulation as well as simulation.

Specifically, we perform the emulation by executing the digital signature schemes described in Section 3 using the OpenSSL [18] implementation. This is an emulation since we still use a Poisson arrival stream with rate \(\lambda\) as our customer requests workload. The simulation is performed using CSIM [15] with service times computed from the OpenSSL benchmark. We note that we validate through simulation, in a subset of cases, in addition to emulation, since in the emulation environment we cannot guarantee that no other workload would be running on the emulation machine at the time of emulation experiments (more details are given below).

We compute the parameters of the analytical models using equations given in Section 4.1.2, where \(t_{ds}\) and \(t_h\) are set to the values produced by the benchmark provided with OpenSSL [18] and executed on the same machine as the emulation.
The comparison of analytical and emulation results are given in Figure 8, for mean response time, and Figure 9, for mean batch size. Figure 8(a)-(d) depicts the results corresponding to the Simple Batching scheme, Figure 8(e)-(h) depicts the results corresponding to the (binary) Tree-based Batching scheme, Figure 9(a)-(d) validates our approximation of an average size batch as λ/μ for the Simple Batching scheme, and Figure 9(e)-(h) validates our approximation of an average size batch as λ/μ for the (binary) Tree-based Batching scheme (refer to Section 4.1.2).

For relatively small document sizes (20 bytes, 1KB, and 10K), mean response times predicted by our analytical model are fairly close to that of emulation for both batching schemes, especially for small arrival rates. Although at higher arrival rates the errors can be larger, they are no more than 10% for both batching schemes. For document size of 100KB, the assumption that hashing time is not a function of batch size (or rather just using the approximate mean batch size to approximate the hashing time) is no longer a good approximation, and the model performs worse, as shown in Figure 8(d) and 8(h). (For even larger document sizes, please see discussion below.) We also note a problem with emulation experiments. The emulation is running on a machine where the background load fluctuates. As emulation times get longer (i.e., for larger document sizes), additional background load interference with the emulation experiments is more significant. Therefore, in Figure 8(d) and 8(h), we also added simulation results obtained using the same parameters used for the emulations. We show that the error is reduced. However, the assumption that hashing time is not a function of batch size still accounts for the larger errors.

Validation results for mean batch size, given in Figure 9, show that the error of our approximation of mean batch size by λ/μ is fairly small for both batching schemes. The error characteristics for larger document size is similar to the validation results for mean response time.

For even larger document sizes (e.g., 1MB), the time it takes to perform hash calculations begins to dominate the time it takes to perform digital signatures. The comparison of analytical and emulation results are given in Figure 10 for mean batch size and mean response time. Clearly, the approximation that the batch size is λ/μ is a poor one, as demonstrated in Figure 10(a)-(b). Nevertheless, the mean response time prediction is shown to be less sensitive to the batch size estimation, as shown in Figure 10(d)-(e). We also note that since the mean batch size for large document sizes (such as 1MB) is fairly close to 1 even under relatively high arrival rates (as is evident from Figure 10(a)-(b)). Hence, a simple M/D/1 model without batching can be used in these cases (its mean response time is given in Eq.(4) below). This is validated in Figure 10(d)-(e) where the M/D/1 model results in very small errors as compared to simulation.

Since we also would like to make comparisons with the original non-batched digital signature scheme, i.e., one which signs each requested document independently (refer to Section 3), we also model it as an M/D/1 queue, but without batching, whose mean response time is given by (refer
to [8]):

\[T = \frac{1}{\mu} + \frac{1}{\mu} \left(\frac{\lambda}{2(1 - \frac{1}{\mu})} \right) \]

(4)

The parameters of this model can be computed as in Section 4.1.2, i.e.,

\[\frac{1}{\mu} = t_{ds} + t_h \]

And, the validation of this model through our emulation is illustrated in Figure 11 as well as Figure 10(c) for the 1MB document size.

In summary, as can be seen in all these figures, analytical results match emulation results closely for document sizes \(\leq 10K \). These sizes suffice for applications, such as the ones mentioned in [2], which require secure timestamps and which motivated our work.

In the following section we use analytical results to evaluate performance of the batching digital signature schemes.

4.3 Performance Evaluation

In all analytical results presented here we used \(t_{ds} = 0.0041 \) seconds, as measured by the OpenSSL benchmark. Based on Eq. (3), a non-batched system becomes unstable when the arrival rate exceeds \(1/0.0041 = 244 \) requests/sec for small documents \((\leq 10KB)\). Figure 11(a)-(d) and Figure 10(c) show that the response time curve has a convex shape for such a system. Comparing that with Figures 8(a)-(c) and 8(e)-(g), the response time of a batched system behaves nicely even at very high loads for small documents. Note that the arrival rates in Figure 11 are given in units of 1/sec while the arrival rates in Figure 8 are given in units of 1000/sec. Also note that the stability conditions, for thebatched and the non-batched schemes, given in Eq. (3), also illustrate a similar comparison as Figures 8 and 11. That is, the stability of the non-batched system is a function of \(t_{ds} \) while the stability of the batch-based systems is not.

For medium size documents (i.e., 100KB), as shown in Figure 8(d) and 8(h), the advantages of batching start to diminish. For large documents (i.e., 1MB), as shown in Figure 10(c)-(e), batching does not improve performance (perhaps only slightly in some cases). However, it does not reduce performance either.

Let us now look at batch sizes. For large documents, all systems start to perform poorly at small arrival rates. Since arrival rates are small, there is very little opportunity to batch, and therefore, average batch sizes are small, as shown in Figure 10(a)-(b). For small documents, Figure 9(a)-(c) and 9(e)-(g) show that the average batch size increases almost linearly with the arrival rate. This is due to the fact that the service time is almost constant in these systems. This supports out earlier observations about the performance of the various schemes.
Lastly, Figure 12 compares the network overhead of the batching schemes with the non-batched scheme. The vertical axis in each graph is the total number of bytes sent to the clients divided by the total number of bytes sent to the clients if no batching is used. It is clear from these graphs that the Tree-based Batching scheme results in considerably less network overhead as compared with the Simple Batching scheme. For a given batch size B, the difference in computation time between the Tree-based Batching scheme and the Simple Batching scheme is simply $(B - 1) \times t_h$, (refer to Eqs. (1) and (2)). t_h is typically on the order of a few microseconds. It should be clear that Tree-based Batching has considerable advantages but costs very little.

5 Conclusions

In this paper, we proposed online batch-based digital signature schemes for Internet servers, which are motivated by the need to reduce server CPU loads and hence significantly improve client response time under high workloads. We demonstrated the effectiveness of these schemes by developing an analytical model, validating this model against emulation and simulation studies, and comparing the performance of the batching schemes against a non-batched system using the analytical model.

We have established stability conditions for the batching schemes. From the stability conditions, it is fairly easy to see that as the document sizes grow, the performance of the server will be limited by hash functions calculations, and the benefit of batching will diminish.

We have shown that significant computational benefits can be obtained from batching schemes without significant increases in the amount of additional information that needs to be sent to the clients. We have also demonstrated that batching is most beneficial when small documents, such as timestamps and priority numbers, need to be digitally signed. For applications such as the ones mentioned in [2] which require secure timestamps, batch signing can relieve the CPU bottleneck at the server.

Acknowledgements

We would like to thank ******** (name removed for double-blind reviewing) for providing security references and helpful discussions with an earlier (non-gated) approach.

References

Figure 8: Mean Response Time Validation of the Analytic Model against Emulation for Simple and Tree-based Batching Schemes.
Figure 9: Mean Batch Size Validation of the Analytic Model against Emulation for Simple and Tree-based Batching Schemes.
Figure 10: Validation of the Analytic Model against Emulation for Large Documents.
Figure 11: Mean Response Time Validation of a Simple Analytic Model against Emulation for the No Batching Case.

Figure 12: Normalized Network Overhead of Batching Schemes.