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Hedge fund industry has grown to be a key player in the financial markets.

Just as large investment banks, the failure of this industry will greatly destroy the

liquidity and stability of the whole system. However, contrast to regulated mutual

funds, hedge funds are private and lightly regulated entities who are not obliged to

disclose their activities to the general public. Hedge funds risk taking activity using

ways such as short selling and excessive leverage and their increasingly correlated

strategies pose substantial threats to the financial stability of the great economy.

In the First Chapter, we propose a simple framework which adopts the theory

of acceptable risks and calculate capital requirements using the limited available

data on hedge funds. We model the risky cash flow asset less liability (or Net Asset

Value) directly using either a Gaussian process or a Variance Gamma process and

apply the method to demeaned NAV data on 3622 hedge funds from January 2005

to April 2009. Funds are analyzed for their required capital and the value of the

option to put losses back to the taxpayers.



The previous study has considered funds individually with no correlation be-

tween them. Focusing only on individual funds ignores the critical interactions

between them and can cause the regulators to overlook important changes in the

overall system. Because many hedge funds employ similar investment strategies

they produce correlated returns. The failure of these correlated large funds will

greatly affect the markets systematically either in a direct or an indirect way. In

the Second Chapter, we propose a systemic approach with correlated largest market

participants and we study the 30 largest funds as of April 2009 with total Asset

Under Management over $620 Bn. We demonstrate the systemic capital charges

to be held by the broad economy, as well as the capital charges at the fund level

accounting for the residual idiosyncratic risk component.

Hedge fund investment strategies often include the use of leverage in order

for them to build up large positions. Extensive use of leverage has increased funds

liabilities especially during market downturns and has posted a great systemic risk

to the economy in large. In the Third Chapter, we recognize that with limited and

incomplete information on hedge funds balance sheet positions, the public usually

does not know how much leverage there is in a particular fund or how to distinguish

its assets and liabilities from the observed returns. We estimate hedge fund lever-

age using a regression-based exercise on the individual fund level. The estimated

leverage information is then combined with publicly known return and other fund

information to separate from fund cash flows its asset side and liability side. The

two sides of the cash flows are then modeled as exponentials of two correlated Lévy

processes following [36]. Capital implications are then derived from the above setup.
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Chapter 1

Hedge Fund Reserve Capital and Taxpayer Put Option

1.1 Overview

The hedge fund industry has grown tremendously over the past years, fueled

by the demand for higher returns in the face of stock market declines and mounting

pension fund liabilities. A general estimate of the industry shows that it had man-

aged around $2.5 trillion at its peak in summer 2008 ([49]). Hedge funds contribute

more than half of average trading volume in equity and corporate bond markets

(back in 2005 [15]) and they are major liquidity providers in normal times. The

credit crunch has caused assets under management (AUM) to fall sharply through a

combination of trading losses and the withdrawal of assets from funds by investors.

Nonetheless, recent estimates still find hedge funds with more than $2 trillion in

AUM and this industry is without a doubt a key player in the capital markets.

Despite its growing size and its importance in the market place, hedge fund

industry has not been under the same scrutiny as banks or other investment enti-

ties. A hedge fund is typically set up as a limited partnership, a limited liability

corporation in the United States, or as an offshore corporation. Most often, hedge

funds that are based in the United States take the form of a limited partnership

organized under section 3(c)(1) of the Investment Company Act (some organized

under 3(c)(7)), and hence being exempt from most U.S. Securities and Exchange
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Commission (SEC) regulations. These special investment entities can go long or

short any number of securities, any type of securities, including derivatives and

structured products, with varying degrees of leverage. Hedge fund managers enjoy

enormous flexibility and discretion in pursuing fund performance and can change

investment strategies at a moment’s notice. The risks in hedge fund investment

are easily underestimated and its transparency to the general public needs to be

greatly improved. A number of empirical studies have highlighted the unique risk

and reward profiles of hedge fund investments. For example, [2], [5], [6], [37], [40],

[41], [43], [51], [53], [54], and [55] provide comprehensive empirical studies of histor-

ical hedge fund performance using various hedge fund databases. [4], [7], [16], [17],

[18], [19], [20], [39], [42], and [57] present more detailed performance attribution and

“style” analysis for hedge funds. Collectively, these studies show that the dynamics

of hedge funds are quite different than those of more traditional investments, and

the potential impact on systemic risk is apparent. The banking sector is exposed

to hedge fund risks, especially smaller institutions. Even the largest banks are also

exposed to hedge fund risks through proprietary trading activities, credit arrange-

ments, structured products, and prime brokerage services. As a result, the risk

exposures of the hedge fund industry may have a material impact on the banking

sector, resulting in new sources of systemic risks ([27]). To include systemically im-

portant utilities into the realm of regulation and supervision has become the point

of attention urged by recent crisis, and is exactly the motivation of our study here.

As Dodd Frank Wall Street Reform and Consumer Protection Act ([1]) pass through

the congress, Financial Stability Oversight Council (FSOC) has been set forth and
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many other actions are underway. Questions remain however, how to identify who

is systemically important and how should they be regulated once identified? Al-

though a very important task, our objective is not to put ourselves in the position

of such identifying process. Rather, we devote our effort here on demonstrating a

theoretical framework using existent analytical theory, which provides regulatory

bodies the guidance in the situation where these systemically important entities

have been identified. Especially, we conduct our analysis using the data available

for hedge funds and hope to provide some basic tool in the development of hedge

fund regulation (for such approach applied on banks see [36], [59]).

Banks in the United States and many other countries must satisfy regulatory

capital requirements that are intended to ensure that they can withstain reasonable

losses. These are well know and commonly adopted as Basel capital requirements

([12]). These requirements are generally specified as a ratio of some measure of

capital to some measure of assets, such as total assets or risk-adjusted assets. Max-

imum effort has been expanded on trying to assess the relative riskiness of assets

that banks hold and determine the risk-based capital requirements (firms that hold

riskier assets have higher capital requirements). [60] redefines the corporate balance

sheet for relevance to two price markets related to Conic Finance introduced in [29],

and argues however, that equity capital is a poor measure of financial health as it

can be contaminated by the excessive value of the taxpayer put option ([60]). The

taxpayer put option is first defined in [36], where they propose that the objective

of a credit policy as an arm of regulation is to ensure that the value of this freely

distributed put option is kept within limits and is not allowed to get excessively
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valuable. Following the procedures outlined in [36] which lead to a new capital

policy directed towards risk-based requisite levels of reserve capital, we propose an

approach where the risky cash flow (asset less liability) is directly modeled. Based

on the risks in total cash flow, we then construct the cash reserve capital as a buffer

to be held by the firm. Here the term “capital” is in the sense of cash or cash

equivalent reserves, distinguished from Basel equity capital. This cash buffer can

also be viewed as a liquidity buffer as such preventative measure against liquidity

shocks has been called for. As markets become more volatile and the the funds risk

exposure increases significantly, this liquidity buffer prevents funds from liquidating

large positions in short period of time which may lead to a wide-spread financial

panic in the face of investors withdrawal and disruption of credit.

The classical Merton intuition ([64], [65], [66]) of a contingent claims analysis

of equity has taught us how to see equity in a world with only random assets but

no random liabilities. However, a lot has changed since the world has grown into

a host of random unhedgeable liabilities with access to modern financial markets.

Hedge funds are by nature good examples of holding balance sheets that contain

both random cash flows as assets and another set of potentially unbounded random

cash flows as liabilities. Among a variety of methods, hedge funds often use short-

selling to increase rather than “hedge” their risk, with the expectation of increasing

the return on their investment. The possibility that the liabilities may become

limitless (unless the short position exactly hedges a corresponding long position)

and dominate the assets determines that the fund cannot be permitted to exist as

a limited liability entity if it is insufficiently capitalized. Once a fund is allowed to
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exist as a limited liability entity, it accesses for free the option to put excessive losses

back to the economy. This option of putting the excessive losses back to the economy

is studied and termed the Taxpayer Put in [36]. Whether one calls it taxpayer put,

or counter-party put, we have to realize that this put option is held as an asset

by the limited liability entities and is distributed to them for free. If the value of

this put is not being properly monitored and constrained, it will contaminate the

equity ([60]) and it will give rise to incentives of manipulation and maximizing the

put value, at least in the short term. Some did as we have clearly seen in the past

crisis. Our argument is that no one can be permitted to exist and given a limited

liability status if no funds are placed at stake with the capacity to absorb potential

losses. Such level of funds placed at stake is the cash reserve capital studied in

our research, as well as the put values. The research is from the perspective of

generalizing risks acceptable to the general economy and to implement the theory

of acceptable risks. The excessive leverage many hedge funds also employ only

exacerbate the problem even further. This put option exists even with the presence

of counter-party enforcement (such as raising collateral and margin requirement) and

due diligence performed by the large institutional investors. The mechanisms and

incentives in the market place enforced by market participants are rather segmented

and discrete, and hence ineffective due to the complexity of relationships and limited

market powers. In a system that faces substantial systemic risk, these mechanisms

and incentives must be accompanied by new measures that are more systemic and

transparent.

The need to regulate hedge funds arises from the presence of the implicit put
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value. Once we recognize the existence of this put option born by the setup of

limited liable entities holding also potentially unbounded liabilities (even without

the presence of debt), the regulatory bodies must gaurantee that sufficient capital

is put at stake to ensure the risk of excess loss acceptable to taxpayers. Such

precise link between capital reserve and acceptable risks ([31]) have been proposed

by [59] and studied further in [36]. Following the earlier work of [10], [22], [50], the

risks acceptable to the general economy have been given operational definition by

focusing attention on the positive expectation under a sufficiently concave distortion

of the probability distribution of the risks being undertaken. [30] give parameterized

families of such distortions with parameter γ used to measure the level of stress being

placed on the cash flow distribution to test for its acceptability at such level. In [59],

such capital calculation is carried out with modeling assets and liabilities separately

and paying attention to the correlation. For hedge funds however, this approach may

not be easily applicable since it is unclear how to separate their balance sheets (for an

attempt using estimated fund leverage to separate assets and liabilities and model

them separately with correlation, see [72]). Contrast to regulated mutual funds,

hedge funds are private and lightly regulated entities who are not obliged to disclose

their activities to the general public. Data on hedge funds are reported as funds wish

and usually incomplete and very limited. As a natural choice for an initial attempt,

we model instead the net cash flow (on a per share basis) as a real-valued martingale

and propose two models one with Gaussian components and one with Lévy jump

components to account for skewness and kurtosis. The two models studied here are

Bachelier model and Variance Gamma model ([61], [26]). We study 3622 funds who
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have monthly NAV and return data for the period of Jan 2005 to April 2009. We

fit the demeaned data with the models using maximum likelihood estimation and

obtain model parameters that are then fed to simulation and derive risk determined

capital requirement as well as put option values to be monitored. The distortion

function is chosen to be MINMAXVAR and three increasing stress levels of γ, 0.25,

0.75, 1.25 are considered. The fatter-tailed distribution of VG normally generates

higher capital requirement under otherwise same conditions. The results show that

under VG model with stress 1.25 (the most stringent requirement) there were 127

funds insufficiently capitalized by April 30, 2009. We also show sensitivity of the

calculated capital and the put value to the underlying risk parameters, i.e. volatility

in the Gaussian model and volatility, skewness and kurtosis in the VG model. It is

suggested in [59] that the level of γ may be calibrated by selecting the smallest value

at which the preserved capital requirement mitigates the perverse risk incentives.

We also show similar analysis on such mitigation of perverse risk incentives, and

stress level 1.25 is shown to be a needed level for the sensitivity of capital to risk

dominating the sensitivity of equity value to risk, given the presence of limited

liability.

The outline of the rest of the chapter is as follows. Section 1.2 builds a model

framework which allows correlated random assets and random liabilities both con-

tributing to the final risky cash flows as an extension to the [65] model. Section 1.3

takes hedge fund perspective to model the total cash flow as a real-valued Martin-

gale, and describes the calculation of required cash reserve and taxpayer put. In

Section 1.4 we present two models for the total cash flows and their estimation. Sec-
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tion 1.5 includes two numerical studies showing the effect of risk parameters on the

capital charge and put value, as well as the corrected risk incentives in the presence

of capital constraints. Section 1.6 presents results of analysis on 3622 funds. Finally,

Section 3.4 concludes.

1.2 Extension to Merton (1974) - Managing Risks with Random Li-

abilities

[65] assumes that a company has a certain amount of zero-coupon debt that

will become due at a future time T . The company defaults if the value of its assets

is not equal to the promised debt repayment at time T . This model views balance

sheet as of consisting assets that are random and liabilities that are stable with debt

serving as the strike for equity viewed as an option at this strike. This world of no

random unhedgeable liabilities has changed. Big investment banks nowadays write

random unhedgeable liabilities on a daily basis. Firm volatilities (and skewness

and kurtosis) consist of not only contribution from the assets but also the liabilities

that are not perfectly hedged. In the case of a hedge fund, it is by nature that

both assets and liabilities are random and correlated. The short-selling activity

that hedge funds engage in on a daily basis is by nature a very risky one, since the

losses incurred on a losing bet are theoretically limitless, unless the short position

directly hedges a corresponding long position. Random liabilities and off balance

sheet items are seen everywhere. How should the risks being managed with random

assets and random liabilities? What is the equity of a hedge fund and what capital
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needs to be posted to hold a long-short position? How should firms maximize their

profit in this context and how should the government regulate them to be socially

responsible?

We start by considering a long-short hedge fund that is long A(t) dollars and

short L(t) dollars. For a balanced fund we have A(0) = L(0). We extend the Merton

model by assuming both random assets and liabilities with

A(t) = A(0)ert+σA
√
tZA−

σ2
A
2
t

L(t) = L(0)ert+σL
√
tZL−

σ2
L
2
t

Corr(ZA, ZL) = ρ

It follows that conditional on ZL we have

ZA = ρZL +
√

1− ρ2Z (1.1)

where Z is independent of ZL.

This is a direct extension to Merton’s model where assets and liabilities are

now correlated log-normal processes. To calculate equity in this context, we first

assume the fund has limited liability and post capital C in future dollars. The equity

in the fund at a future date t when the hedge fund is sold or liquidated is

(A(t)− L(t) + C)+. (1.2)

This is a call option with strike −C, or it could also be viewed as an option written on

A(t) with random strike of −C +L(t) and we may value this call on the conditional

law of A(t)|L(t) and then integrating out the variable L(t), or specifically,
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E = E[E[e−rt(A(t)− (L(t)− C))+|L]] (1.3)

Since we have that

f(A|L) =
f(A,L)

f(L)
=

1
√

2πA(t)σA
√

(1− ρ2)t
exp

[
−

(
log[A(t)

A(0)
(L(0)
L(t)

)
σAρ

σL ]− rt+ qt+
σ2
A

2
(1− ρ2)t

)2

2(1− ρ2)σ2
At

]
,

where

q =
ρrσA
σL

+
ρ2σ2

A

2
− σAσLρ

2
(1.4)

This is log-normal as in Merton’s calculation with shifted spot, interest rate

r, dividend yield q and volatility σA
√

1− ρ2. The equity is call option on assets like

in Merton with a strike of −C + L(t) and we may value this call using the Black

Scholes formula

bsp(S,K, r, q, σ, t, call) (1.5)

at the values

bsp

A(0)

(
L(t)

L(0)

)σAρ

σL

, L(t)− C, r, ρrσA
σL

+
ρ2σ2

A

2
− σAσLρ

2
, σA

√
1− ρ2, t, call


(1.6)

For the value of equity we integrate this Black Scholes call price with respect

to the law of L(t) which is

1√
2πσL

√
tL(t)

exp

−
(

ln(L(t)/L)− rt+
σ2
L

2
t
)2

2σ2
Lt

 . (1.7)

10



Hence the extended model requires as inputs σA, σL, ρ and values equity as an

integral of call options on assets perturbed by the conditional law of A(t) given L(t).

We next show models using Lévy processes as the underlying. Lévy processes

are more flexible modeling agents than pure Gaussian ones in terms of admitting

jumps and being capable of capturing skewness and kurtosis in addition to volatility.

We start with the well-studied Variance Gamma family of distributions ([61], [26]),

and show the dependence modeling in this context. One could extend this to the

four parameter family of CGMY processes ([23]).

Recall that a VG process V G(t; θ, σ, ν) can be considered a Brownian motion

θt + σB(t) time-changed by a gamma process G(t; 1, ν). Here the gamma process

G(t; 1, ν) with unit mean rate and variance rate ν has independent gamma incre-

ments. The characteristic function for V G(t; θ, σ, ν) is given by

ΦV G(t)(u) =
( 1

1− iθνu+ (σ2ν/2)u2

)t/ν
(1.8)

We often model with centered or demeaned VG so that the mean is subtracted

from the process as

H(t) = θ(G(t)− t) + σB(G(t)) (1.9)

and the centered VG process has characteristic function

ΦH(t)(u) =
( 1

1− iθνu+ (σ2ν/2)u2

)t/ν
· e−iuθt (1.10)

We assume now the long and short sides are

A(t) = A(0)ert+X1(t)−ω1t

L(t) = L(0)ert+X2(t)−ω2t (1.11)
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X1 and X2 are two centered VG processes and we wish to correlate them shortly.

ω1 and ω2 are compensators for exponential VG processes on each marginal or

specifically

ωi =
1

t
log Φ(−i) = − 1

νi
log(1− θiνi −

σ2
i νi
2

)− θi (1.12)

Unless it is specified otherwise, from now on we will always work with centered VG.

There are many ways to build dependence between the two VG variables, we

illustrate the following two.

Building Dependence 1

We rewrite the parameters first by letting

C =
1

ν

G =

(√
θ2ν2

4
+
σ2ν

2
− θν

2

)−1

M =

(√
θ2ν2

4
+
σ2ν

2
+
θν

2

)−1

,

or change it back by

ν =
1

C
θ = C(

1

M
− 1

G
) σ2 =

2C

GM
. (1.13)

the Lévy measure associated with such V G(t;C,G,M) process is

kV G(x) = C[e−MxI(x>0) + eGxI(x<0)]/|x| (1.14)

and the characteristic function is rewritten to be

ΦV G(t)(u) =
[
1 + i(

1

G
− 1

M
)u+

u2

GM

]−Ct
(1.15)
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We would like to build dependence between two marginal VG variables by

letting

X1(t) = Y1(t) + Y (t)

X2(t) = Y2(t) + Y (t)

where Y1 Y2 and Y are three independent VG with common parameters G,M and

C1 = C2 = (1− α)C

CY = αC

with α ∈ [0, 1]. It is easy to derive the bivariate characteristic function between X1

and X2

ΦX1(t),X2(t)(u1, u2)

= E[eiu1X1+iu2X2 ]

=
∫ ∞
−∞

∫ ∞
−∞

eiu1x1+iu2x2fx1,x2(x1, x2)dx1dx2 (1.16)

= ΦY (u1 + u2)ΦY1(u1)ΦY2(u2)

=

[
1 + i

( 1

G
− 1

M

)
(u1 + u2) +

(u1 + u2)2

GM

]−αCt
· ei(u1+u2)C( 1

G
− 1
M

)t ·
[
1 + i

( 1

G
− 1

M

)
u1 +

u1
2

GM

]−(1−α)Ct[
1 + i

( 1

G
− 1

M

)
u2 +

u2
2

GM

]−(1−α)Ct

Building Dependence 2
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Following [52] we assume

A(t) = A(0)eXA

L(t) = L(0)eXL

where

XA = rt− ωXt+ βx(t) + y(t)

where x(t) and y(t) are two independent VG processes and y(t) is associated with

parameters σy, νy and θy, and

XL = rt− ωxt+ x(t)

where x(t) is associated with parameters σx, νx and θx. Also we have that

ωx = − 1

νx
log(1− θxνx −

σ2
xνx
2

) (1.17)

ωX = − 1

νx
log(1− βθxνx −

σ2
xνxβ

2

2
)− 1

νy
log(1− θyνy −

σ2
yνy

2
) (1.18)

The joint characteristic function of XA and XL can be easily derived

ΦX(u1, u2) = exp[iu1(r − ωX)t+ iu2(r − ωx)t]( 1

1− i(u1β + u2)θxνx + 1
2
σ2
xνx(u1β + u2)2

) t
νx
( 1

1− iu1θyνy + 1
2
σ2
yνyu1

2

) t
νy
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The calculation of the equity price in case of Lévy underliers can not be derived

in closed form as in the Gaussian case, and it depends on the joint characteristic

function. The evaluation of the equity contract is equivalent of a spread option and

following [47] the computation uses a 2-D FFT method, which we describe in detail

in the Appendix A. Before we end the section, let us illustrate a numerical example.

Numerical Example

In order to calculate the capital required from (3.32) we first need to simulate

the cash flow X. VG density function is derived from Fourier transform the VG

characteristic function (1.8) using FFT as described in [24], and the inversion method

is then used to generate random independent VG variables.

We take t = 1, and let α = 0.4 and C = 1, hence C1 = C2 = 0.6 and CY = 0.4.

Also G = 5 M = 8, r = 0.05 and A(0) = L(0) = 100. We generate 3 sets (each

10000 draws) of independent VG variables

Y1 ∼ V G(C1, G,M)

Y2 ∼ V G(C2, G,M)

Y ∼ V G(CY , G,M)

then building the two dependent VG

X1 = Y1 + Y ∼ V G(C1 + CY , G,M)

X2 = Y2 + Y ∼ V G(C2 + CY , G,M).
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And then cash flows A and L are calculated with

ωi = −(Ci + CY ) log
[
1 +

( 1

G
− 1

M

)
− 1

GM

]

We show results with different stress levels being set at 0.25, 0.75 and 1.25.

The equity calculation is also presented in the table (Table 1.1), while the detail

numerical procedure to calculate the equity value is explained in the Appendix A.

Table 1.1: Numerical Example of Calculated Capital and Equity from Simulation.

stress 0.25 0.75 1.25
capital 9.6279 27.2734 42.6279
equity 15.8085 28.3582 41.5169

We see that the higher the stress level which are progressively higher levels of

acceptability, the higher the capital needed, and higher capital corresponds to lower

the negative strike of the call option and hence the higher the equity value as well.

We have shown in this section how to manage risks with random assets as well

as random liabilities by modeling the asset and the liability as correlated positive

random variables. Alternatively we may model net assets X̃ as a real valued process.

In the case of hedge funds, in fact, we do not have readily available data to enable the

separation of assets and liabilities and perform any empirical study. One approach

is to estimate the fund leverage and separate balance sheet information from know

data on NAV and AUM, etc. This is studied in a future paper [72]. However, to

start with our initial interest on demonstrating capital regulation on hedge funds,

we take what is available and model only the total cash flow without separating the

positive and the negative sides. The next section begins our theoretical framework.
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The rest of the chapter takes this simplified framework as model and demonstrate

empirical studies done both numerically and with actual hedge fund data.

1.3 Hedge Fund Required Cash Reserve and Taxpayer Put

Any financial entity, be it an investment bank, or an insurance company, or

a hedge fund, faces the same question of capital reserving to cope with potential

losses. Hedge funds that take for example balanced long-short positions, have a bal-

ance sheet with random assets and random liabilities supported by cash equivalents

constituting their equity.

We take a hedge fund which operates on random asset value A and random

liabilities L. The Net Asset Value(NAV) of this fund is then X = A − L. Due to

the random liability that contributes to cash flow X, one has to hold this position

with some initial non-random cash or cash equivalent amount C, so that such cap-

italization generates cash flow Y = Cert + X(t) at some time t that is acceptable

to the external economy. We want to emphasize that the shareholder equity com-

monly held in Tier 1 capital is not part of the reserve capital that concerns us here

as we focus on the events when all equity is destroyed and the firm is being put

back to the general economy as an exercise of its limited liability. [46] compares

such a magnitude with a margin requirement, or leverage being permitted. Follow-

ing [59] and [35] we employ the theory of acceptable risks and take stress function

MINMAXV AR at level γ, and require

∫ ∞
−∞

ydΨγ(FY (y)) ≥ 0 (1.19)
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where the stress function MINMAXV AR is

Ψγ(u) = 1− (1− u
1

1+γ )
1+γ

. (1.20)

Since

FY (y) = FX(y − Cert), (1.21)

so ∫ ∞
−∞

ydΨγ(FX(y − Cert)) ≥ 0. (1.22)

We change variable x = y − Cert then

∫ ∞
−∞

(x+ Cert)dΨγ(FX(x)) ≥ 0, (1.23)

or

Cert = −
∫ ∞
−∞

xdΨγ(FX(x)). (1.24)

We now have an analytical function of capital reserve requirement in terms

of risk parameters. The effects of different distributions of the cash flow X on the

capital is studied in later sections. To compute this expression, one may directly

integrate if distribution function is known since

Cert = −
∫ ∞
−∞

xdΨγ(FX(x)) = −
∫ 1

0
F−1(u)dΨγ(u). (1.25)

If the distribution of X is not analytically known one may follow the procedure

outlined in [30]. From a simulation of outcomes from the distribution of underlying

variables one can sort the outcomes in increasing order as x1 ≤ x2 ≤ · · · ≤ xn and

Cert ≈ −
n∑
i=1

xi
(
Ψγ
( i
n

)
−Ψγ

(i− 1

n

))
. (1.26)
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For a hedge fund set up with limited liability with random real-valued cash

flow X(t) = A(t)− L(t), the value of the fund or the equity at any time t is

(X(t) + Cert)+, (1.27)

which is a call option on X(t) that struke at −Cert. The limited liability concept

ensures that

(X(t) + Cert)+ ≥ X(t) + Cert, (1.28)

with the excess being

(−Cert −X(t))+, (1.29)

which is a put option on X(t) with strike −Cert. This is what is being termed as

“taxpayer put” ([36]). The limited liability status of the corporation gives rise to

this implicit put option. Especially, with the access to modern financial markets,

firms nowadays have taken on random unheadable liabilities that are potentially

unbounded, and it is precisely when this liability goes over the value of asset, the

put option comes into money. It is essentially the option a limited liability entity

holds to put losses back on society. In terms of time zero values we have

e−rtEQ
0 [(X(t) + Cert)+] = C +X(0) + e−rtEQ

0 [(−Cert −X(t))+], (1.30)

which is also the put-call parity. If we let E = e−rtEQ
0 [(X(t) + Cert)+] and P =

e−rtEQ
0 [(−Cert −X(t))+], then

E = C +X(0) + P . (1.31)
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We need to again distinguish our “capital” C, which is the cash reserve, from

the commonly adopted Besel capital requirement ([12]). The equity capital (E)

concerned in Basel is the same as the cash reserve if it is a long-short balanced fund

(A and L always offset each other and taxpayer put has no value in this situation).

In general, they are not the same, and equity is larger when taxpayer put has value.

[60] redefined the corporate balance sheet for relevance to two price markets related

to Conic Finance introduced in [29], showing that equity capital (in Basel sense) is

a poor measure of financial health as it can be contaminated by the excessive value

of the taxpayer put option.

From the construct of the put option, we see that this option comes into value

exactly when the potentially unbounded liability exceeds the asset. When this is

the case, all equity is destroyed and the excess (negative of X) is being put back on

to the economy being that the firm has only limited liability. One can easily place

some debt in the formula and observe that the value of this put option is enjoyed by

both the equity holders and the debt holders (unlike the classical limited liability of

equity) and it distorts the debt holders incentive to monitor risk (see detail in [36]).

We place the put as an asset if the hedge fund is too large to unwind and has to be

put to the government. For a small fund the government may not get involved but

then the liability holders receive L minus the put or someone else in the system, like

the exchanges take the loss embedded in the put. Whoever is burdened with this

put, the important point here is that the firm owns the value of this put and the

need to regulate the hedge fund arises from the presence of this implicit contract.

Some argue that creditor counter-parties with the liability L will force the
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firm to hold an acceptable level of funds for them to be willing counter-parties,

although this put option has mathematical value, in reality, there are incentives

and mechanisms (such as raising collateral and margin requirement) in the market

place to enforce that this option does not come to existence even when the firm

has limited liability. We argue that this put option exists even with the presence

of counter-party enforcement and due diligence performed by the large institutional

investors. When managers of funds are paid in line with the funds performance (or

CEO’s paid in line with the stock price), they have an incentive, especially in the

short term, to build up the value of this put, and some did. The market forces did

not curtail them as there is not and probably will not be sufficient transparency.

Furthermore, there are many players with limited renegotiation powers. When one

brings in as liabilities the retirement funds of employees for example, these parties

can be small and diverse with insufficient market power to enforce capital levels on

the firm. Recent FSA studies have also shown the new trend of “retailization” of

hedge funds. It is unclear that these parties can demand collateral, or reprice the

deal especially when the risk taking takes place ex-post all contracts in place. This

is especially true in hedge fund domain as these entities are private and exempt from

most SEC regulations. Upon Lehman’s collapse, investors realized that no prime

broker was too big to fail and spread their counter-party risk across several prime

brokerages. The multi-prime brokerage relation adds some extra complexity to the

due diligence even for the sophisticated institutional investors, as it becomes very

complicated to perform proper assets reconciliation between the fund’s administrator

and its counter-parties. This is in addition to the fact that hedge fund assets are
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hard to value due to their exposure to structured products and illiquid products.

Hedge funds often utilize substantial leverage in their trading and this exacerbates

the impact of a pricing mis-mark even further. Consequently, the mechanisms and

incentives in the market place enforced by market participants are rather segmented

and discrete, and hence ineffective due to the complexity of relationships and limited

market powers. In the system that faces substantial systemic risk these mechanisms

and incentives must be accompanied by new measures that are more systemic and

transparent. The implicit put option is an opportunity created and will be abused

if we simply choose to ignore it and place it in the hands of “market mechanisms”.

The world is just a more complicated place and markets are not perfect.

As a result, we argue that it is necessary to set up the externally determined

cash or cash equivalent amount C so that the risky cash flow coming from the balance

sheet of a limited liability entity with access to unbounded random liabilities is

acceptable to the outside market. In other words, this cash buffer is to ensure that

the taxpayer put value is not too large and the destruction of the balance sheet will

not spill over outside of the box jeopardizing the health of the general economy. The

firm cannot be the one to set the level of funds C supporting the business as agency

arguments designed to align CEO compensation with shareholders end up distorting

financial health by maximizing the value of the embedded put option (by choosing

the maximum strike of zero). It is necessary that a regulatory agency representing

the government sets up externally the cash reserve and monitor the taxpayer put

value, since it is the government who granted the limited liability status to the

corporations. The economy is not burdened with extra risk, if C calculated at
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certain high enough stress level γ is big enough to account for the possibility of

unbounded liability. As C sets up such risk control for the external economy, the

put value is also limited so that what is given to the firm for free does not have

some excessive value. We show (in Section 1.5.2) similar analysis as in [59] that the

stresses can be set at high enough level so that the incentive of perverse risk taking

of firms will be corrected and put values are limited.

1.4 Models

As the intuition and the need for capital requirement and taxpayer put moni-

toring are articulated, we now move on to the next issue of modeling the underlying

risks. As we have discussed, the random cash flow of the fund is

X = A− L (1.32)

which we now model as real-valued Martingale after discounting.

Model One - Bachelier Model

X(t) = X(0)ert +
∫ t

0
er(t−u)σdW (u) (1.33)

where W is a Wiener process.

dX(t) = rX(t)dt+ σdW (t) (1.34)

X(t) is in fact normally distributed as

N(X(0)ert, σ2 e
2rt − 1

2r
), (1.35)
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and

FX(x) = Φ

(
x−X(0)ert

σ
√

e2rt−1
2r

)
. (1.36)

We always demean the data and always calculate capital on demeaned NAV

since any risk is certainly credited for its mean. The demeaned time series are

assumed to follow

X(t+ h)−X(t) = σW (h). (1.37)

Using monthly observed data on X we can easily estimate the maximum likelihood

estimate for σ on demeaned time series data.

Model Two - VG

The VG process as a specific example of Lévy process can be expressed as

Brownian motion with drift, time changed by a subordinator ([26], [34]). We can

also model the real-valued X as a centered variance gamma (VG) process so that

X(t) = X(0)ert +
∫ t

0
er(t−u)dH(u) (1.38)

where H(t) is the centered VG

H(t) = θ(G(t)− t) + σW (G(t)) (1.39)

here the time change G(t) is a Gamma process with parameter ν, whose increments

G(t+h)−G(t) = g have Gamma density with mean h and variance νh and density

function
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fh(g) =
gh/ν−1 exp(−g/ν)

νh/νΓ(h/ν)
(1.40)

The characteristic function of H(t) is

ΦH(t)(u) =
( 1

1− iθνu+ (σ2ν/2)u2

)t/ν
· e−iuθt (1.41)

and we know ([26]) also the distribution function

fH(t)(x) =
2e

θx
σ2

ν
t
ν

√
2πσΓ( t

ν
)

(
x2

2σ2

ν
+ θ2

) t
2ν
− 1

4

K t
ν
− 1

2

(√
x2(2σ2

ν
+ θ2)

σ2

)
(1.42)

where K is the modified Bessel function of the second kind.

We again work with demeaned increments

X(t+ h)−X(t) = θ(g − h) + σ
√
gZ (1.43)

which can also be estimated using maximum likelihood to obtain parameter esti-

mates for σ, ν and θ. Following the methods of [23], for each fund, we standardized

the monthly changes (of NAV) to zero mean and unit variance and then binned the

data into 100 evenly spaced bins in the interval +/ − 5 standard deviations and

maximized the log likelihood of the binned data.

1.5 Numerical Analysis

Before we jump into the empirical analysis on actual hedge fund data, we would

like to take another closer look at the models using some numerical experiments.

In the first subsection, we demonstrate the sensitivity analysis on model outputs,

to show for example how would the change of VG model parameters affect the
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calculation of capital and the put values. The second subsection shows numerically

the effect of requiring cash reserves on risk incentives.

1.5.1 The Effect of Risk Parameters

Since VG model has richer risk dimensions including volatility, skewness and

kurtosis, we study this model to show the effect of these risks on the value of required

cash reserve and the associated taxpayer put. We impose a long-short balanced

position so that X(0) = 0. We simulate model process (3.35) with some pre-defined

parameter values out to one year (t = 1) assuming interest rate r = 0.05 . γ is set

at 0.25, 0.75 and 1.25 as three increasing stress levels or levels of acceptability. We

then calculate cash reserve required ertC∗ using (3.32) and the associated put value

as P = e−rtEQ
0 [(−C∗ert − X(t))+] (one may also use distribution function directly

such as normal in (1.36) and VG in (1.42)). The equity value is hence derived

from the put-call parity (1.31). We first start with a base case where there is zero

skewness θ = 0 and no kurtosis ν = 0.001. The model is now actually a Gaussian

model. Since the hedge fund data analysis generally show very high volatility for

the models, we set σ = 13. The cash required and the value of the taxpayer put as

well as the fund equity value are shown in the following Table 1.2.

Table 1.2: Numerical Analysis with zero skewness no kurtosis and σ = 13.

stress 0.25 0.75 1.25

C∗ 5.2960 14.0251 21.0979
Put 2.8689 0.8766 0.2661

Equity 8.1648 14.9018 21.3640
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We see that the higher the stress level, the higher the required cash level, and lower

the negative strike of the options which render higher call value (the equity) and

lower put value (the taxpayer burden).

We then increase the volatility to σ = 130 and keeping ν = 0.001 θ = 0 to

show the effect of volatility, in Table 1.3

Table 1.3: Numerical Analysis with zero skewness no kurtosis and σ = 130.

stress 0.25 0.75 1.25

C∗ 52.9517 139.4298 209.0974
Put 28.7936 8.6840 2.5495

Equity 81.7453 148.1138 211.6470

The response to volatility is quite substantial at all stress levels.

To see the effect of kurtosis we now increase ν = 0.8 keeping σ = 13 and θ = 0,

in Table 1.4

Table 1.4: Numerical Analysis with ν = 0.8 and keeping σ = 13 and θ = 0.

stress 0.25 0.75 1.25

C∗ 5.3821 15.1969 24.8151
Put 2.5497 0.8182 0.2565

Equity 7.9317 16.0151 25.0716

We observe that there are moderate responses to kurtosis at level 1.25 and only

slight or no responses at lower stress levels.

Next we would like to study the effect of skewness, both positive and negative,

on the calculated values. We show cases with θ = −1 and θ = 1 in Table 1.5 (σ = 13

ν = 0.8) and again we see no response for low stress level with moderate response
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at level 1.25.

Table 1.5: Effect of skewness in VG model, σ = 13 ν = 0.8.

θ = −1 stress 0.25 0.75 1.25
C∗ 5.4037 15.6063 25.8747

Put 2.5746 0.8328 0.2641
Equity 7.9813 16.4391 26.1388

θ = 1 stress 0.25 0.75 1.25
C∗ 5.2917 14.9276 24.4824

Put 2.4459 0.7733 0.2464
Equity 7.7375 15.7010 24.7288

1.5.2 Risk Incentives in The Presence of Capital Constraints

To see the effect of requiring cash reserves on risk incentives for individual

funds, we evaluate numerically (center differences are used) the derivatives of the

fund profit with respect to risk parameters. The fund profit is equity less the cash

reserved E − C. Again we set X(0) = 0, r = 0.05 and t = 1, the results are shown

in Table 1.6

Table 1.6: Risk Incentives Corrected by Capital Presence as Stress Levels Increase.

VG σ = 0.3 ν = 0.5 θ = 0.1

stress 0.25 0.75 1.25
∂(E−C)
∂σ

0.1864 0.0073 −0.0751
∂(E−C)
∂ν

−0.0268 −0.0173 −0.0266
∂(E−C)
∂θ

0.0772 −0.0880 −0.1694

Gaussian σ = 0.3

stress 0.25 0.75 1.25
∂(E−C)
∂σ

0.1974 0.0195 −0.0548
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We see that as stress level reach the highest 1.25, all the risk incentives are

corrected with the appropriate amount of cash reserve adjustment. In actual cal-

culation with real market data, the appropriate stress level (ideally fund dependent

stress level) can be calibrated so that the risk incentives are all pointing at the right

direction ([59]). Ideally, this calibration should also be updated from time to time

to reflect recent changes. Alternatively, one could have a set level of stress as what

we have shown in the numerical examples. In the next section, we begin our hedge

fund analysis using actual fund data to implement our model calculations.

1.6 Hedge Fund Analysis

Data on hedge funds are reported as funds wish and it is usually incomplete and

very limited. For example in CISDM hedge fund database, the reported NAV is on

a per share basis without much knowledge of actual number of shares outstanding;

AUM has frequent missing data and leverage information is mostly stale if even

reported. Little is known on hedge fund balance sheet to separate the assets and

liabilities.

We obtain hedge fund monthly NAV data from CISDM for Jan 2005 to April

2009. We only take funds that have continuous monthly data for at least 3 years

in this period to be studied. There are a total of 3622 funds in our sample. The

most data available for a particular fund is 52 monthly data (for the entire inquired

time period). For each fund, we standardize the monthly changes (of NAV) to

zero mean and unit variance and use maximum likelihood estimation to estimate
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the parameters of each model. The estimation of Gaussian model is trivial. The

estimation of VG model, follows the methods explained in [23], working with the

data binned into 100 evenly spaced bins in the interval +/− 5 standard deviations

and maximize the log likelihood of the binned data.

We then simulate each model process (3.34) and (3.35) out to one year (t = 1)

assuming interest rate is r = 0.05 which is the one-month T-bill rate on May 1, 2009.

γ is set at 0.25, 0.75 and 1.25 as three increasing stress levels. We then calculate

cash reserve required as in ertC∗ using (3.32) (one may also use distribution function

FX as normal in model one and (1.42) in model two directly) and the associated

put value as in P = e−rtEQ
0 [(−Cert −X(t))+].

We show in Table 1.7 the results of calculated cash capital required and the

corresponding taxpayer put values. We only demonstrate results for the first 40

(sorted by fund ID number) funds since it is impossible and unnecessary to show

all 3622 of them. The first column of the table is fund ID number. The second to

fourth columns are capital required using Gaussian model with stress levels being

0.25, 0.75, and 1.25 respectively. The fifth to seventh columns are capital required

using VG model also with three increasing stress levels. We see that as the stress

level increases, the capital required as cash reserve increases, as the acceptable

condition is more and more stringent. Comparing the results from two different

models with fixed stress levels, we also notice that VG model usually requires more

capital than the Gaussian model. This is due to the fact that VG model is a fatter-

tailed model compared to the Gaussian model, and there are more dimensions of

risks (skewness and kurtosis) being incorporated in the VG model. We also show in
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the table the values calculated as taxpayer put. The eighth to tenth columns are put

values calculated in the Gaussian model corresponding to three stress levels and the

eleventh to thirteenth columns are put values for the VG model with respect to the

same stress levels. We observe that the put values in either model decrease as the

stress level increases which is as expected. The put values can not be too high since

they are “given for free” to the firms, and the higher value of this free put option

should correspond to higher capital requirement and more stringent regulation.
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In the simulation, we must specify the starting value X(0). We entertain with

the idea of assuming a long-short balanced fund, and hence X(0) = 0. For each

fund we simulate out to one year as if we start from the end of its available data and

this tells us the required cash reserve C∗. We also take the NAV of the last observed

for each fund which in general may be composed of non-random asset, random asset

and random liability. By assuming starting NAV X(0) = 0 we effectively assumed

that the observed NAV was in fact the value of the non-random cash asset being

held, or C, and this can be compared to the calculated C∗ and determine which

funds are under-capitalized or over-capitalized. If C∗ is greater than C, these funds

are considered inadequate since they are not holding enough cash and too much risk

has been put on the taxpayers.

The following graphs 1.1 and 1.2 show the results for all 3622 funds. First figure

plots the required C∗ for both models each at three stress levels, together with C

(which is the last observed NAV). Since the values are usually tens of thousands, we

plot the logarithm of the values instead to be more clear on the graphs. The cash

reserve required is generally higher for the VG model than the Gaussian model at

same stress level. The second figure plots the put values for different stress levels

and different models. For clarity, we plot the sorted logarithm of the values.

Among the 3622 funds, there are 127 inadequate funds whose holding C < C∗

where C∗ is taken to be highest values of all cases which is VG at γ = 1.25. We

also plot similar graphs just for these 127 funds in 1.3 and 1.4. The last figure 1.5

clearly shows the inadequacy of the cash holding by plotting only the maximum of

all C∗ (VG case with γ = 1.25) and the actual holding C.
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Figure 1.1: Plot of the Cash Reserve Required: C∗ in Both Models,
Together with Observed NAV: C, for all 3622 Funds.
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Figure 1.2: Plot of the Taxpayer Put Values in Both Models, for all 3622 Funds.
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Figure 1.3: Plot of the Cash Reserve Required: C∗ in Both Models,
Together with Observed NAV: C, for 127 Inadequate Funds.
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Figure 1.4: Plot of Taxpayer Put Values in Both Models, for 127 Inade-
quate Funds.
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Figure 1.5: Plot of the Maximum C∗ (VG case with γ = 1.25) and the
actual holding C for 127 Inadequate Funds.
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1.7 Conclusion

Hedge funds are systemically important financial entities. Despite the fact that

hedge fund industry has grown to be a key player in the markets, its regulation has

lagged compared to other institutions such as investment banks or mutual funds and

its transparency to the general public needs to be greatly improved. Hedge funds

are by nature good examples of holding balance sheets that contain both random

cash flows as assets and another set of potentially unbounded random cash flows

as liabilities. The possibility that the liabilities may become limitless (unless the

short position exactly hedges a corresponding long position) and dominate the assets

determines that the fund cannot be permitted to exist as a limited liability entity

if it is insufficiently capitalized. We propose an approach that builds a framework

in which the risks of the total cash flow of assets less the liabilities are directly

modeled. Based on the risks in total cash flow we construct the capital reserve

(cash or cash equivalent) as buffer to be held by the firm so that the remaining

risk is acceptable to the general economy. We conduct our analysis using the data

available for hedge funds and hope to provide some basic tool in the development

of hedge fund regulation.

We model the net cash flow (on a per share basis) as a real-valued martingale

and propose two models one with Gaussian components and one with Lévy jump

(Variance Gamma) components to account for skewness and kurtosis. Hedge fund

monthly NAV data from CISDM is obtained from Jan 2005 to April 2009. We only

take funds that have continuous monthly data for at least 3 years in this period

39



to be studied. There are 3622 funds in total. We fit the demeaned data with the

models using maximum likelihood estimation and obtain model parameters that are

then fed to simulation and derive risk determined capital requirement as well as put

option values to be monitored. The risks acceptable to the general economy have

been given operational definition by focusing attention on the positive expectation

under a sufficiently concave distortion of the probability distribution of the risks

being undertaken. The distortion function is chosen to be MINMAXVAR and three

increasing stress levels of γ, 0.25, 0.75, 1.25 are considered. The fatter-tailed distri-

bution of VG normally generates higher capital requirement under otherwise same

conditions. The results show that under VG model with stress 1.25 (the most strin-

gent requirement) there were 127 funds insufficiently capitalized on April 30, 2009.

We also show sensitivity of the calculated capital and the put value to underlying

risk parameters, i.e. volatility in the Gaussian model and volatility, skewness and

kurtosis in the VG model. It is suggested in [59] that the level of γ may be calibrated

by selecting the smallest value at which the preserved capital requirement mitigates

the perverse risk incentives. We also show similar analysis on such mitigation of

perverse risk incentives and stress level 1.25 is shown to be a needed level for the

sensitivity of capital to risk dominating the sensitivity of equity value to risk, given

the presence of limited liability.
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Chapter 2

Hedge Fund Reserve Capital and Systemic Risk

2.1 Overview

Just like large investment banks, large hedge funds play a significant role in

facilitating the efficient allocation of the risks of investments. With the status of

limited liability, large hedge funds also pose great threats to the health of the general

economy when things are not so great. Large institutions such as these big hedge

funds must satisfy capital requirements intended to ensure that they can sustain

reasonable losses. The capital requirements introduced in our previous paper ([73]),

are designed so that the total risky cash flow as the assets less the liabilities is

acceptable to the general economy, as specified by the theory of acceptability ([10],

[50], [31]). The capital requirements however, are designed as if each fund is an

isolated entity. Focusing only on individual funds ignores the critical interactions

between them and can cause the regulators to overlook important changes in the

overall system. Because many hedge funds employ similar investment strategies they

produce correlated returns. The failure of these correlated large funds will greatly

affect the markets systematically either in a direct or an indirect way. The high

leverage employed by these funds also have the potential to exacerbate instability

in the market as a whole. In this paper we take into considerations the systemic

effects when setting the capital requirements.
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As we see from the past crisis, the systemic problems have been far more severe

and far more global this time around. Unregulated or less regulated financial firms

have played a much more significant role than they did 20 years ago. The hedge fund

industry is huge in size and with the tremendous amount of leverage it has employed,

it is without a doubt a big player in the capital markets. A key determinant of

hedge fund risk is the degree of similarity between the trading strategies of different

funds. Many hedge funds by nature employ similar investment strategies and chase

correlated returns. Similar trading strategies can heighten risks when funds have

to close out comparable positions in response to a common shock. The outcome

may be direct losses inflicted on creditors and trading counter-parties as well as an

indirect impact on other market participants through price changes resulting from

the disappearance of investors willing to bear higher risks. The episode around

LTCM ([71]) and the 2007/2008 credit crisis are cases in point. Extensive rules and

tremendous supervisory resources are focused on banks, with far less of both devoted

to other types of financial firms. As these other types of firms became much more

significant in the delivery of financial services through the growth of securitization,

structured products, and derivatives, our attention is again focused on hedge fund

industry as its size and proper regulation has not been proportionally developed.

The damage it could cause as a trillion dollar industry is potentially enormous ([44]

analyzes hedge funds and their implication for financial stability and see also [27]

for a thorough, 109-page discussion on the topic).

Capital requirements are typically designed as if each firm is an isolated en-

tity, with little concern for the effect of losses on one firm can have on other in-
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stitutions. The fragmented regulation structure is apparently not enough to tackle

issues when the system faces substantial systemic risk and shall be accompanied

by new measures which take into account of the correlations in a systemic way.

Capital requirements for regulated financial institutions should depend on the sys-

temic risk they pose. Large entities holding illiquid assets and relying heavily on

short-term debt or security lending financing should be required to hold propor-

tionally more capital than smaller entities with more liquid assets and more stable

financing arrangements. The recent crisis has seen the systemic crash caused by

a financial system that has outgrown the existing set of rules. Bail-out plans de-

spite its unfairness, the moral hazard it created, and the severe political problems

it generated, did resolve problems to some extent post crisis. However, what we

hope to build is a system that tries to avoid the clear unfairness of this provision

by adopting a new orderly resolution mechanism ex ante that can achieve the same

effects without bailing out uninsured stakeholders. The Squam Lake Report ([70],

[69]) has pointed out that the solution to this narrow institutional focus is to urge

a central regulatory organization to oversee the health and stability of the overall

financial system: “The role of the systemic regulator should include gathering, an-

alyzing, and reporting information about significant interactions between and risks

among financial institutions; designing and implementing systemically sensitive reg-

ulations, including capital requirements; . . .”. In the United States, as Dodd Frank

Wall Street Reform and Consumer Protection Act ([1]) pass through the congress,

Financial Stability Oversight Council (FSOC) has been set forth and many other

actions are underway. We focus here on proposing a mathematical framework for
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such regulation in a systemic context. In this section we conduct our analysis again

in the hedge fund industry and argue that capital requirements should also vary

with other characteristics that are linked to the systemic problems a hedge fund

might create. Our hope here is to provide guidance on how hedge funds should be

charged cash (or cash equivalent) capitals in order to account for both risks they

pose to the economy and as an individual. Regulators will then have much stronger

tools to address systemic financial crises, including a new resolution mechanism for

addressing the failures of systemically significant firms. Once we have these tools

and implement them correctly, it is what we hope to expressively design the tools

to be used to maintain financial stability and prevent from the event of a potential

failure of a systemically significant firm.

To take a more systemic approach, we propose to model the funds risky cash

flows jointly with correlations specified by the underlying laws of motions. The

capital charges on the biggest funds in the industry must account for both their

contribution to systemic risk and their own idiosyncratic risk. The charges on each

fund towards the systemic contribution will be collected by external hedge fund

authority and these charges must sum to account for the aggregate risky outcome

that is imposed on the systemic level. In addition, each fund has to also reserve

cash capital according to the residual risk induced by idiosyncratic component. The

residual charge is then held at the fund level. The biggest funds that have AUM

larger than $2Bn as of April 30, 2009 and have all data from April 2006 to April

2009 are studied. There are total 30 of these funds. The total AUM of these 30

funds is about 620 billion dollars and is 64% of the total AUM of the 3622 funds
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(there are 3622 funds studied previously, these are funds that have all data for the

studied period and they are considered the universe of the funds here). We again

assume marginal distributions of fund cash flows following a Gaussian process or a

Variance Gamma (VG) process ([61], [26]). For the Gaussian case, the joint laws of

the changes in NAV are multivariate normal. The VG process as a specific example

of Lévy process can be expressed as a Brownian motion with drift, time changed by a

subordinator and we introduce the dependence by merely correlating the Brownian

motions that are being time changed ([26], [34]). It is unreasonable to believe,

however, that these hedge funds generate co-monotonic cash flows. Hence following

the theory of acceptability, we know that this always leads to sum of the individual

charge being not equal to the charge on the sum (e.g. [28]). This does not give us

the additivity that we wish to obtain by charging individual funds and collect the

sum. We need additivity of the charges so that the sum accounts for the total risk of

the total cash flow and the charges should not be too conservative so that they deter

growth and activities. We show in two Theorems that additivity can be achieved

by separating the cash flow into two components: the systemic component and the

residual or idiosyncratic component. The systemic component is constructed to

be a conditional expectation of the underlying cash flow given the industry total

return. Such defined conditional function as risky random flow is postulated to be

an increasing function of the total return. In other words, these are the funds where

we will have higher (lower) expectation of their returns whenever the total return

in the industry is high (low). These conditional expectations are then co-monotonic

functions and enjoy additivity (see Theorem 2.1). Theorem 2.2 then shows that the

45



charges calculated on these random risky flows are able to sum to account for the

aggregate systemic risk. The residual charge is then held at the fund level to account

for the idiosyncratic risk component. We present this framework and work out the

capital charges for these largest funds. As far as our knowledge the calculation of

such systematic approach has not been done before.

The outline of the rest of the chapter is as follows. Section 2.2 describes the

theoretical framework allowing us to take into account systemic risk in the context

of correlated funds. In Section 2.3 and Section 2.4 we present two detail models one

with Gaussian underliers and one with Variance Gamma processes as underliers.

Section 2.5 describes the data and analysis done in the empirical study for the

30 largest funds. Charges accounting for systemic component and idiosyncratic

component and taxpayer put values are calculated for each of 30 funds. Section 3.4

concludes.

2.2 Systemic Risk with Correlated Funds

In the paper preceding the current one ([73]), we propose and study a new

capital regulatory approach based on acceptable risk control theory ([22], [30],[31])

in the hedge fund domain (for an application in bank domain see [59], [36]). The

previous paper has considered funds individually with no correlation between them.

Unfortunately, an important source of risk imposed on the general economy by hedge

funds is the systemic risk. Focusing only on individual funds ignores the critical in-

teractions between them and can cause the regulators to overlook important changes
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in the overall system.

Capital requirements are typically designed as if each firm is an isolated entity,

with little concern for the effect losses on one firm can have on other institutions.

An important source of risk imposed on the general economy by hedge funds is the

systemic risk. The failure of a large national bank, for example, is almost surely to

have a bigger impact on the banking system and the wider economy than the failure

of several small regional banks. Following the same vein, large funds and funds

that have correlated returns will certainly affect the whole system even when indi-

vidually run into problems. The fragmented regulation structure is apparently not

enough to tackle issues when the system faces substantial systemic risk and shall be

accompanied by new measures which take into account of the correlations in a sys-

temic way. Capital requirements for regulated financial institutions should depend

on the systemic risk they pose. Large entities holding illiquid assets and relying

heavily on short-term debt or security lending financing should be required to hold

proportionally more capital than smaller entities with more liquid assets and more

stable financing arrangements. The recent crisis has seen the systemic crash caused

by a financial system that has outgrown the existing set of rules. Bail-out plans

despite its unfairness, the moral hazard it created, and the severe political problems

it generated, did resolve problems to some extent post crisis. However, what we

hope to build is a system that tries to avoid the clear unfairness of this provision

by adopting a new orderly resolution mechanism ex ante that can achieve the same

effects without bailing out uninsured stakeholders. The Squam Lake Report ([70],

[69]) has pointed out that the solution to this narrow institutional focus is to urge
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a central regulatory organization to oversee the health and stability of the overall

financial system: ”The role of the systemic regulator should include gathering, an-

alyzing, and reporting information about significant interactions between and risks

among financial institutions; designing and implementing systemically sensitive reg-

ulations, including capital requirements; . . .”. In the United States, as Dodd Frank

Wall Street Reform and Consumer Protection Act ([1]) pass through the congress,

Financial Stability Oversight Council (FSOC) has been set forth and many other

actions are underway. We focus here on proposing a mathematical framework for

such regulation in a systemic context. In this section we conduct our analysis again

in the hedge fund industry and argue that capital requirements should also vary

with other characteristics that are linked to the systemic problems a hedge fund

might create. Our hope here is to provide guidance on how hedge funds should be

charged cash (or cash equivalent) capitals in order to account for both risks they

pose to the economy and as an individual. Regulators will then have much stronger

tools to address systemic financial crises, including a new resolution mechanism for

addressing the failures of systemically significant firms. Once we have these tools

and implement them correctly, it is what we hope to expressively design the tools

to be used to maintain financial stability and prevent from the event of a potential

failure of a systemically significant firm.

A key determinant of hedge fund risk is the degree of similarity between the

trading strategies of different funds. Many hedge funds by nature employ similar

investment strategies and chase correlated returns. Similar trading strategies can

heighten risk when funds have to close out comparable positions in response to a
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common shock. For example, many funds had to close out positions during the

LTCM crisis to meet margin calls and satisfy risk management constraints. Tal-

ented hedge fund managers are able to exploit market inefficiencies that cannot

be exploited by conventional asset managers and/or design innovative investment

strategies that may yield excellent returns. However, the existence of pricing ineffi-

ciencies is very limited. Moreover, any successful strategy will quickly be imitated.

As a result, many hedge funds employ similar investment strategies and produce cor-

related returns. Such highly correlated behavior poses great threat to the financial

stability of the economy as a whole. There are many ways to assess the similarity

of hedge fund strategies. The approach taken in general is to examine how closely

together the funds returns move. If the returns of many funds are either high or

low at the same time, the funds could record losses simultaneously, with possible

adverse consequences for market liquidity and stability (see e.g. [3] among others for

some study on rising correlations in hedge fund returns during crisis and as a recent

trend and their effects and differences, using a measure of cross-sectional dispersion

of returns). Furthermore, when leveraged investors are overwhelmed by market or

liquidity shocks, the risks they have assumed will be discharged back into the mar-

ket. Thus, highly leveraged investors have the potential to exacerbate instability in

the market as a whole. The outcome may be direct losses inflicted on creditors and

trading counter-parties as well as an indirect impact on other market participants

through price changes resulting from the disappearance of investors willing to bear

higher risks. The indirect impact is potentially the more serious effect. Volatility

and sharp declines in asset prices can heighten uncertainty about credit risk and dis-
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rupt the intermediation of credit. These secondary effects, if not contained, could

cause a contraction of credit and liquidity and, ultimately, heighten the risk of a

contraction in real economic activity. A conclusive assessment of the systemic risks

posed by hedge funds however, requires certain data that is currently unavailable,

and is unlikely to become available in the near future, i.e., counter-party credit ex-

posures, the net degree of leverage of hedge fund managers and investors, the gross

amount of structured products involving hedge funds, etc. Since return correlation

is a key risk in hedge fund industry and key contributor to systemic risk, and it

is relatively easy to incorporate, we propose to impose capital requirements with

correlation in the context.

Let us now be interested in the hedge funds that are most influential to the

systemic risk on the whole economy. We would like to correlate these funds who have

AUM (Asset Under Management) larger than a certain threshold. Each with random

real-valued cash flow Xi, i = 1, 2, . . . , N . The aggregate risk is now
∑N
i=1Xi(t) and

we require that
∑N
i=1Xi(t) + C be acceptable and again the smallest such capital is

([30], [36])

C(
N∑
i=1

Xi(t))e
rt = − inf

Q∈D
EQ[

N∑
i=1

Xi(t)], (2.1)

and the specific form of acceptability employed is positive expectation under a con-

cave distortion of the cash flow distribution ([30]), so that for Y =
∑N
i=1Xi

C(Y )ert = −
∫ ∞
−∞

ydΨγ(FY (y)), (2.2)
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where the stress function MINMAXV AR is

Ψγ(u) = 1− (1− u
1

1+γ )
1+γ

. (2.3)

This amount of capital C is deposited to the hedge fund regulation authority

(HFRA) in order to cover the total risk or systemic risk of these largest funds

combined. In order to charge each individual for its contribution to the systemic

risk, we may also work out the capital required in isolation as

C(Xi)e
rt = − inf

Q∈D
EQ[Xi(t)] (2.4)

The charge to each fund i on account for the aggregate risk must sum to C in order to

ensure the acceptability of the total cash flow. However, we have no reason to believe

that cash flows Xi are all co-monotonic and following the theory of acceptability,

we know that this always leads to sum of the individual charge being not equal to

the charge on the sum (e.g. [28]). This does not give us the additivity that we wish

to obtain by charging individual funds C(Xi) and collect the sum. What we can do

is shown below by separating the cash flow Xi into two components: the systemic

components and the residual or idiosyncratic component. The systemic component

is constructed to be a conditional expectation of the underlying cash flow given the

industry total return. These conditional expectations are co-monotonic functions

and hence they will be added up and charged to account for the systemic risk. The

residual charge is then held at the fund level to account for the idiosyncratic risk

component. Let us consider the return as
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Ri(t) =
Xi(t)−Xi(t− 1)

Xi(t− 1)
(2.5)

and the total return

R(t) =
N∑
i=1

Ri(t). (2.6)

Given the total return, we are interested in the risky cash flows Xi(t) that have

conditional expectations that are positively related to the total return. Such risks

on average move together with the system and are exactly the subject of suspect

for contributing to systemic risks, and the fact that these risks are also correlated

(due to the increasingly similar positioning of individual hedge funds within broad

hedge fund investment strategies), the threats they post to the general economy in

a systemic way is even exacerbated. Formally, let us define for i = 1, 2, . . . , N

Vi(t) = E[Xi(t)|R(t)] (2.7)

So we have now separated cash flow Xi

Xi = Vi + ei (2.8)

where ei is the residual component. What we are going to charge on each fund is

the capital required on the systemic component C(Vi),

C(Vi)ert = − inf
Q∈D

EQ[Vi(t)] (2.9)
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which is collected and stored in the hedge fund authority and we hope to see the

sum of C(Vi) equal to the charge on the sum C(∑i Vi). Additionally, we also require

fund to put aside cash reserve in the amount of C(Xi) − C(Vi) on the fund level to

account for the idiosyncratic risk.

Such defined risk Vi(t) is a function of the total return R(t). Given R(t) we are

interested in funds whose L is an increasing function of the total return. In other

words, these are the funds where we will have higher (lower) expectation of their

return whenever the total return in the industry is high (low). Even if this function

may be decreasing in Rt, in this case this is a fund who bets against the market and

takes opposite positions than others, we may then charge negative capital on those

particular funds as they have opposite effect on contributing to systemic risk (see

detail in the proof of Theorem 2.2). The hence selected group of increasing functions

guarantee that Vi’s are pairwise monotonic. (Recall that two random variables

X and Y ∈ L1(P ) (the collection of real-valued integrable random variables on a

probability space (Ω,F , P )) are co-monotonic if (X(ω2)−X(ω1))(Y (ω2)−Y (ω1)) ≥ 0

for P×P -a.e. ω1, ω2, or in other words, they move together.) The following theorem

guarantees the additivity of the capital as long as the Vis are pairwise monotonic.

Theorem 2.1 For Vi(t), Vj(t) defined as above, we have

− inf
Q∈D

EQ[Vi(t) + Vj(t)] = − inf
Q∈D

EQ[Vi(t)]− inf
Q∈D

EQ[Vj(t)] (2.10)

if and only if Vi(t) and Vj(t) are co-monotone.

Proof. Realizing that − infQ∈D E
Q[·] is a coherent utility function, the results above

is a direct deduction from Theorem 5.1 in [28].

53



So once the Vi function is an increasing function of the R, we have that all

Vi’s are pairwise co-monotone. And in fact we further realize the fact that if a

series of random variables are pairwise co-monotonic, then any combination of the

summation will also be co-monotonic (eg. V1 and V2 + V3). Now we are ready to

prove the following theorem where additivity of the total capital is achieved.

Theorem 2.2 If Vi(t) i = 1, 2, . . . , N are pairwise co-monotone, then we have the

capital charge on the total cash flow
∑N
i=1 Vi equal to the sum of all the individual

charges on Vi, specifically,

− inf
Q∈D

EQ[
N∑
i=1

Vi(t)] =
N∑
i=1

(− inf
Q∈D

EQ[Vi(t)]) (2.11)

Proof.

RHS = − inf
Q∈D

EQ[
2∑
i=1

Vi(t)] +
N∑
i=3

(− inf
Q∈D

EQ[Vi(t)])

= − inf
Q∈D

EQ[
3∑
i=1

Vi(t)] +
N∑
i=4

(− inf
Q∈D

EQ[Vi(t)])

· · ·

= − inf
Q∈D

EQ[
N∑
i=1

Vi(t)] = LHS

Now let us evaluate a bit further on our assumption that Vi should all be

increasing function in Rt. In reality, many funds strategically bet against the market

and in fact make profit using such strategy, in which case their expected returns will

only be decreasing functions of the total return. In such case, we will charge the

negative of the calculated (say −C(Vi) for illustration) to be included in the sum,
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and we have

= − inf
Q∈D

EQ[V1(t)]− inf
Q∈D

EQ[V2(t)] + . . .− inf
Q∈D

EQ[−Vi(t)] + . . .

− inf
Q∈D

EQ[VN(t)]

where the functions inside expectations are still co-monotonic, so that

= − inf
Q∈D

EQ[V1(t)]− inf
Q∈D

EQ[V2(t)] + . . .− inf
Q∈D

EQ[−Vi(t)] + . . .

− inf
Q∈D

EQ[VN(t)]

= − inf
Q∈D

EQ[V1 + V2 + . . .− Vi . . .+ VN ]

which is still the correct capital charge on total capital only with the adjustment

that the negative of the cash flow is added in the sum if the fund contribute to the

systemic risk in an opposite way.

2.3 Correlated Gaussian Model

The correlation structure could be still either the Gaussian case or the VG

case. In the Gaussian case, let us assume

Xi(t) = Xi(0)ert +
∫ t

0
er(t−u)σdWi(u) (2.12)

where Wi are correlated Brownian motions. In other words, for i = 1, 2, . . . , N

∆Xi = Xi(t+ h)−Xi(t) = σi
√
hZi (2.13)
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and if we let

ρi,j = corr(Zi, Zj) (2.14)

then we have variance covariance matrix for the vector ∆X = [∆X1,∆X2, . . . ,∆XN ]

Σ =



σ2
1h σ1σ2hρ1,2 · · ·

σ1σ2hρ1,2 σ2
2h

· · · σ2
Nh


. (2.15)

This matrix can be estimated using MLE. We have all the Xi(t) are also

multivariate Normal with

µXi = Xi(0)ert

σ2
Xi

= σ2
i

ert − 1

2r

cov(Xi, Xj) = σiσjρi,j
e2rt + 1− 2ert

r2δ

For the total cash flow Y =
∑
iXi, it is also a Normal variable with

µY =
N∑
i=1

µXi

σ2
Y =

∑
σ2
Xi

+ 2
∑

cov(Xi, Xj)

The variable Xi|Y = y is distributed as

N(µXi +
σXi
σY

ρXi,Y (y − µY ), (1− ρ2
Xi,Y

)σ2
Xi

) (2.16)

where

ρXi,Y =
Σj 6=icov(Xi, Xj) + σ2

Xi

σXiσY
(2.17)
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To implement the model, we would first obtain monthly changes of cash flows

from monthly NAV and then demean each univariate data. The estimated parame-

ters (variances and correlations) of the correlated Gaussian model will then be used

in a simulation to generate 10000 readings from this joint law by generating cor-

related Gaussian random variables to form a reading on an N vector in line with

equation (2.13). The result is an N by 10000 matrix of draws from the correlated

Gaussian law. This matrix of simulated draws from the estimated model will be

used subsequently in our calculation of cash capital.

2.4 Correlated VG Model

Each fund has cash flow

Xi(t) = Xi(0)ert +
∫ t

0
er(t−u)dHi(t) (2.18)

where

Hi(t) = θi(Gi(t)− t) + σiWi(Gi(t)) (2.19)

We introduce dependence between them by merely correlating the Brownian motions

and keeping the time changing subordinator independent ([26], [34]). The demeaned

changes are

∆Xi(h) = Xi(t+ h)−Xi(t) = θi(gi − h) + σi
√
giZi (2.20)

where variables Zi, i = 1, 2, . . . , N are now standard normal variates with correla-

tions ρij for i 6= j. The joint probability density and characteristic functions are not

available in closed form as one has to integrate out a large number of independent
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gamma densities but they appear as products of square roots that do not separate

out in either the density or the characteristic function. The joint law, however, is

easily simulated from a multivariate normal simulation coupled with drawings from

gamma densities.

We see that there is now dependence between the unit changes as the covari-

ances

E[∆Xi(h),∆Xj(h)] = σiσjE[
√
gi]E[

√
gj]ρi,j (2.21)

are not zero.

We see from this equation that once we have estimated the marginal laws

and have the specification of the time change and the parameters σi, νi, θi, and

the parameters for the subordinator we may estimate the correlation between the

Brownian motions implied by the time change model by

ρi,j =
E[∆Xi(h),∆Xj(h)]

σiσjE[
√
gi]E[

√
gj]

(2.22)

as the numerator is estimated by evaluating a sample covariance and we need to

compute the expectation of the square root of the subordinator. In the case of VG

model the density of the time change at unit time has a single parameter νi and

E[
√
gi] =

∫ ∞
0

1

ν
1
νi
i Γ( 1

νi
)

√
xx

1
νi
−1
e
− x
νi dx

=

√
νiΓ( 1

νi
+ 1

2
)

Γ( 1
νi

)

Once we have estimated the marginal distribution parameters σi, νi, θi by maximum
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likelihood on time series monthly data, we estimate the correlation implied between

the Brownian motions. Specifically, we center the data to a zero sample mean and

estimate the marginal distribution functions on the univariate data. This gives us

a matrix of marginal VG parameters

σi, νi, θi, i = 1, . . . , N (2.23)

We then infer the correlations between the Gaussian variates from the observed

matrix of covariances between observed returns. This procedure inflates Gaussian

component correlations relative to observed correlations by a factor of de-correlation

induced by the independent gamma time changes that depends on just the marginal

laws (see [34]). We follow [34] and construct the closest correlation to our symmetric

matrix using the procedures of [67]. We then generate 10000 readings from this joint

law by generating correlated Gaussian random variables and independent gamma

variates to form a reading on an N vector in line with equation (2.20). The result is

anN by 10000 matrix of draws from the correlated VG law. This matrix of simulated

draws from the estimated model will be used subsequently in our calculation of cash

capital.

2.5 Data and Analysis

In the previous study we have collected data for 3622 funds that have monthly

NAV and return data for the period of Jan 2005 to April 2009. Using this pool of

funds as the universe of funds, we choose from them the biggest funds: funds that

have AUM larger than $2Bn as of end of April 30, 2009. We also require that the
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funds have all data from April 2006 to April 2009 available, therefore 3 years of

monthly data. There are 30 of these funds in total. The total AUM of these 30

funds is about 620 billion and is 64% of the total AUM of 3622 funds. Because our

need to estimate the laws jointly, we must have same length of data for each fund,

and this is the reason we choose the 30 largest funds who all have 3 years of data

in the same period. Even though some funds have more data, we must drop them.

This is also the reason that some large funds such as JPMorgan are not included in

our analysis due to lack of relevant data (JPMorgan for example stopped reporting

in CISDM after 2005).

We show first in Table 2.1 a categorization of these 30 funds in terms of fund

types and strategies as defined in CISDM.

We also show in Table 2.2 and Table 2.3 some summary statistics of the funds

performance and their characteristics. These tables show the mean returns, stan-

dard deviations (SD), medians, skewness (Skew), Min-Max skewness (MM Skew),

kurtosis, minimum and maximum realizations and Sharpe Ratios (SR) for the indi-

vidual Hedge Funds during April 2006 to April 2009. We calculate the Sharpe Ratio

considering a risk-free rate of 0.0027. Min-Max skewness is computed as

(Maximum+Minimum− (2 ∗Mean))/(Maximum−Minimum). (2.24)

NAV is dollar per share, and AUM is in unit of billion dollars.

Next we begin our empirical study and first the change in NAV data is or-

ganized and demeaned and fed into optimizer to estimate the joint laws in both

the Correlated Gaussian model and the correlated VG model. The eigenvalues and
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Table 2.1: Fund Types and Strategies Categorization for 30 Largest Funds on April
30, 2009.

FUND TYPE STRATEGY N

Hedge Fund Equity Long/Short 5
Equity Long Only 8

Equity Market Neutral 1
Global Macro 1
Multi Strategy 1

Emerging Markets 1
Event Driven Multi Strategy 1

18

Fund of Funds Multi Strategy 2
Market Neutral 1

Unspecified 1

4

Commodity Trading Advisor Systematic 5

5

Commodity Pool Operator Single Strategy 2
Multi Strategy 1

3

eigenvectors of the correlation matrices are reported in Table 2.4 and Table 2.5. We

only report the largest eigenvalues since these indicate the significance of the un-

derlying factors. We see from the results that for example in the VG case there are

only five components that have significant impact on the correlated returns. The

dimensionality of the returns are reduced from 30 funds to five underlying factors,

although the question remain what constitute these factors.

We then simulate jointly the cash flows Xi(t) out to one year (and also one

month before for the return calculation). We sum together the one-month returns

for individual funds and calculate the function Vi(t) as in (2.7). This conditional
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expectation is calculated in our simulated sample numerically. Once the cash flows

are generated, the capital charges on Xi and Vi are calculated as in (2.4) and (2.9).

This capital calculation is done using the specific form of acceptability employed as

positive expectation under a concave distortion of the cash flow distribution with

the concave distortion function again chosen to be the MINMAXVAR function as

described in detail in [36]. We charge each fund C(Vi) to be held at an aggregate

level to account for its systemic contribution and also C(Xi)−C(Vi) to be held at the

fund level. We also show results for taxpayer put values in the setup of correlated

funds, here the put value for firm i is determined by the underlying firm cash flow

and the capital charge associated with it.

TPi = e−rtEQ
0 [(−C(Xi)e

rt −Xi(t))
+] (2.25)

Since in capital charge calculation, any risk is always credited for its mean, we

focus our attention on the demeaned risks and start the simulation always from

initial value zero. Tables 2.6 and 2.7 report the capital charges for each model with

acceptability level set to 1.25. NAV and AUM on April 30 2009 are also shown for

comparison and numbers of shares are estimated by simply dividing AUM by NAV.

We also show in the tables the charges as percentages of AUM for each fund. All

numbers shown are in dollars per share basis except for AUM.
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Table 2.2: Summary Statistics of the 30 Largest Funds as of April 30, 2009. NAV
is dollar per share, and AUM is in unit of billion dollars.

394 mean std median min max skew MM skew kurtosis SR

Ret −0.0118 0.0520 −0.0050 −0.1340 0.1120 −0.3026 0.0064 3.1793 −0.2784
NAV 28634.07 5565.38 31684.28 18396.88 34066.86
AUM 7.3292 3.1942 7.8000 2.5000 14.1000

446 mean std median min max skew MM skew kurtosis SR

Ret 0.0050 0.0297 0.0053 −0.0709 0.0500 −0.6894 −0.2548 3.2683 0.0759
NAV 4610.82 353.45 4541.72 4156.03 5228.34
AUM 5.8454 0.2980 5.8080 5.3440 6.6660

2239 mean std median min max skew MM skew kurtosis SR

Ret −0.0051 0.0257 −0.0008 −0.0704 0.0346 −0.5407 −0.2429 2.6561 −0.3057
NAV 4373.05 457.39 4460.27 3368.63 5000.32
AUM 8.0272 1.6528 8.3043 4.5158 10.2300

2526 mean std median min max skew MM skew kurtosis SR

Ret −0.0001 0.0351 0.0109 −0.1289 0.0482 −1.8017 −0.4541 6.8776 −0.0809
NAV 395.24 52.00 392.96 322.11 472.19
AUM 2.8035 0.4758 2.6982 2.0050 3.6017

2995 mean std median min max skew MM skew kurtosis SR

Ret 0.0069 0.0394 0.0180 −0.1380 0.0614 −1.3741 −0.4536 6.0667 0.1072
NAV 2812.69 392.15 2890.50 2151.32 3522.27
AUM 2.0783 1.0128 2.0720 0.7220 3.8620

3257 mean std median min max skew MM skew kurtosis SR

Ret 0.0035 0.0184 0.0030 −0.0330 0.0450 0.2187 0.0644 2.8906 0.0427
NAV 67.60 3.04 68.04 62.15 73.85
AUM 4.1586 0.6921 4.1830 2.6910 5.2170

3831 mean std median min max skew MM skew kurtosis SR

Ret −0.0009 0.0222 0.0047 −0.0747 0.0313 −1.4757 −0.3924 5.4093 −0.1627
NAV 1817.96 135.27 1827.45 1582.47 2019.86
AUM 1.9581 0.5811 2.1671 0.8347 2.7798

3837 mean std median min max skew MM skew kurtosis SR

Ret −0.0005 0.0237 0.0064 −0.0859 0.0281 −1.7554 −0.4989 6.4701 −0.1336
NAV 2359.11 192.02 2369.64 2055.98 2631.81
AUM 3.5696 0.5512 3.4410 2.5260 4.4260

5077 mean std median min max skew MM skew kurtosis SR

Ret 0.0130 0.0322 0.0137 −0.0777 0.0766 −0.3935 −0.1755 3.2335 0.3193
NAV 2922.37 455.24 2854.77 2315.24 3745.87
AUM 1.8541 1.2229 1.7856 0.2277 3.6451

5144 mean std median min max skew MM skew kurtosis SR

Ret 0.0142 0.0372 0.0114 −0.0446 0.0845 0.1663 0.0894 2.0181 0.3089
NAV 1.528.66 291.26 1555.22 1093.03 2008.72
AUM 19.0035 7.2780 16.8260 10.9440 42.2880

5292 mean std median min max skew MM skew kurtosis SR

Ret 0.0122 0.0342 0.0148 −0.0593 0.0795 −0.0190 −0.0296 2.2628 0.2762
NAV 595.78 95.55 590.47 464.45 740.84
AUM 4.4006 1.6800 4.1569 2.1603 7.2850

5353 mean std median min max skew MM skew kurtosis SR

Ret −0.0046 0.0374 −0.0041 −0.1081 0.0781 −0.2055 −0.1114 3.5999 −0.1959
NAV 1067.76 62.82 1059.08 954.63 1233.46
AUM 7.7087 2.6878 8.2424 3.4263 10.9705

5598 mean std median min max skew MM skew kurtosis SR

Ret 0.0154 0.0362 0.0133 −0.0407 0.0902 0.1794 0.1430 2.0352 0.3501
NAV 1642.64 337.72 1668.26 1154.13 2197.48
AUM 2.7075 1.2612 2.2250 1.4380 4.8940

6016 mean std median min max skew MM skew kurtosis SR

Ret 0.0139 0.0205 0.0141 −0.0381 0.0753 0.3089 0.0823 4.3212 0.5472
NAV 3712.37 459.51 3600.84 3114.33 4982.62
AUM 55.1748 16.3687 57.9190 23.6340 80.4590

6102 mean std median min max skew MM skew kurtosis SR

Ret 0.0119 0.0510 0.0100 −0.0754 0.1545 0.4721 0.2405 3.0206 0.1805
NAV 81.35 14.06 80.65 62.99 107.45
AUM 3.0987 0.6340 2.8902 2.3661 4.3084
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Table 2.3: Summary Statistics of the 30 Largest Funds as of April 30, 2009, part II

6988 mean std median min max skew MM skew kurtosis SR

Ret −0.0058 0.0376 −0.0051 −0.1092 0.0776 −0.2000 −0.1067 3.5799 −0.2272
NAV 2881.54 195.34 2831.08 2517.77 3348.77
AUM 4.1425 1.3012 4.3952 2.1091 5.8331

7306 mean std median min max skew MM skew kurtosis SR

Ret −0.0056 0.0250 0.0042 −0.0912 0.0211 −1.8384 −0.5252 6.2479 −0.3317
NAV 109385.52 10145.02 113627.68 87934.08 119135.39
AUM 115.4168 14.7817 121.0102 85.9310 132.5293

7307 mean std median min max skew MM skew kurtosis SR

Ret −0.0053 0.0249 0.0047 −0.0908 0.0212 −1.8477 −0.5256 6.2764 −0.3230
NAV 107980.39 9847.52 111695.56 87223.43 117626.99
AUM

8312 mean std median min max skew MM skew kurtosis SR

Ret −0.0131 0.0626 −0.0140 −0.2040 0.1240 −0.4331 −0.1640 4.4162 −0.2525
NAV 1131.50 249.84 1244.82 643.63 1415.67
AUM 10.0879 2.5133 9.3000 6.4110 15.2000

8725 mean std median min max skew MM skew kurtosis SR

Ret −0.0043 0.0268 0 −0.1300 0.0300 −2.8482 −0.5716 14.1993 −0.2597
NAV 1038.47 94.62 1000.40 914.70 1187.59
AUM 10.8760 2.5862 11.5000 6.0000 16.0000

9510 mean std median min max skew MM skew kurtosis SR

Ret −0.0133 0.0602 −0.0110 −0.2000 0.1290 −0.2211 −0.1347 4.7846 −0.2665
NAV 2719.90 515.27 2910.98 1636.03 3352.00
AUM 279.7297 36.2236 304.0000 193.0000 306.0000

9512 mean std median min max skew MM skew kurtosis SR

Ret −0.0028 0.0606 −0.0020 −0.1440 0.1630 −0.0973 0.0804 3.8640 −0.0914
NAV 107.18 18.42 111.15 66.03 131.90
AUM 9.7283 1.6172 10.5480 5.9000 11.3700

9676 mean std median min max skew MM skew kurtosis SR

Ret −0.0245 0.0622 −0.0260 −0.2150 0.0600 −0.8111 −0.3856 3.5519 −0.4369
NAV 157.71 48.18 172.42 76.49 227.60
AUM 12.6999 2.6133 14.1000 7.6380 14.9350

10964 mean std median min max skew MM skew kurtosis SR

Ret −0.0119 0.0651 −0.0140 −0.2030 0.1450 −0.2710 −0.0983 4.2546 −0.2241
NAV 8869.53 1920.38 9552.15 5100.38 11145.82
AUM

10966 mean std median min max skew MM skew kurtosis SR

Ret −0.0237 0.0616 −0.0260 −0.2150 0.0600 −0.8379 −0.3911 3.6900 −0.4290
NAV 14743.34 4455.72 16101.48 7186.55 20796.02
AUM

10967 mean std median min max skew MM skew kurtosis SR

Ret −0.0239 0.0616 −0.0260 −0.2150 0.0600 −0.8382 −0.3897 3.6769 −0.4318
NAV 14707.14 4478.57 16080.12 7139.77 20791.95
AUM

10969 mean std median min max skew MM skew kurtosis SR

Ret −0.0242 0.0622 −0.0260 −0.2140 0.0610 −0.8012 −0.3807 3.5266 −0.4316
NAV 158.12 47.85 172.62 77.29 227.60
AUM

11882 mean std median min max skew MM skew kurtosis SR

Ret −0.0051 0.0269 −0.0077 −0.0736 0.0501 −0.2639 −0.1074 3.1876 −0.2901
NAV 13670.47 1231.01 13636.12 11098.21 15953.09
AUM 4.8787 1.3200 5.0918 2.4112 7.7930

11883 mean std median min max skew MM skew kurtosis SR

Ret −0.0060 0.0268 −0.0087 −0.0745 0.0491 −0.2924 −0.1093 3.2055 −0.3240
NAV 12109.32 1125.64 12176.00 9699.73 14114.53
AUM 4.8787 1.3200 5.0918 2.4112 7.7930

12644 mean std median min max skew MM skew kurtosis SR

Ret −0.0008 0.0144 0.0005 −0.0451 0.0276 −0.6984 −0.2176 4.1285 −0.2455
NAV 1170.58 18.94 1169.66 1138.48 1217.58
AUM 4.0080 0.6431 4.2617 2.9639 4.8491
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Table 2.4: The largest five Eigenvalues and associated Eigenvectors for estimated
correlation matrix in Gaussian case

Eigenvalues 1.4504 1.9823 2.8259 5.3521 12.8918

Eigenvectors -0.1296 -0.0444 -0.1128 -0.0397 0.2343
0.1239 -0.1182 0.3390 0.2503 -0.0168
0.0959 0.0002 0.2359 0.0715 0.2142
0.0762 -0.0859 0.2335 -0.0424 0.2270
0.0882 -0.2037 0.3045 0.2229 0.0340
0.6326 -0.2152 -0.0067 -0.1363 0.0788
-0.1055 -0.0994 0.2889 0.0005 0.2274
-0.0301 -0.1395 0.2415 -0.0345 0.2371
-0.3731 -0.3494 0.0873 -0.1062 0.0140
-0.0815 -0.1518 -0.1564 0.3750 0.0498
0.0196 -0.1527 0.0424 0.3525 0.0311
-0.1384 0.1589 -0.0380 0.3166 0.1015
-0.0580 -0.1769 -0.1520 0.3788 0.0385
-0.2394 0.0494 0.0184 -0.1816 0.1084
0.2361 -0.1720 -0.1006 0.3443 -0.0241
-0.1335 0.1563 -0.0490 0.3165 0.1012
-0.1123 -0.0263 0.2216 -0.0635 0.2410
-0.1147 -0.0232 0.2250 -0.0619 0.2400
-0.0339 0.0377 -0.1109 -0.0759 0.2628
0.2452 0.4329 0.0762 0.1124 0.1037
0.1036 -0.1291 -0.2341 -0.1498 0.2070
0.2940 -0.2392 -0.0236 -0.1456 0.1996
-0.0469 -0.0260 -0.1813 0.0365 0.2542
-0.0094 0.0247 -0.1113 -0.0768 0.2615
-0.0526 -0.0218 -0.1713 0.0317 0.2561
-0.0523 -0.0188 -0.1725 0.0326 0.2558
-0.0497 -0.0293 -0.1800 0.0359 0.2544
0.1197 0.3824 0.0494 0.0588 0.1988
0.1047 0.3798 0.0502 0.0625 0.2003
0.1161 -0.1438 -0.3760 -0.0034 0.0868
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Table 2.5: The largest five Eigenvalues and associated Eigenvectors for estimated
correlation matrix in VG case

Eigenvalues 0.6309 0.9432 1.0858 5.5765 21.7636

Eigenvectors -0.0036 0.0085 -0.0105 0.0399 0.2134
-0.0425 -0.1928 -0.1624 -0.4033 -0.0359
-0.0090 -0.0108 -0.0138 0.0009 0.2143
-0.0070 -0.0121 -0.0143 0.0193 0.2141
-0.0435 -0.3296 -0.3491 -0.3263 0.0885
0.6858 -0.5420 -0.0426 0.1273 0.1239
-0.0168 -0.0162 -0.0298 0.0163 0.2140
-0.0097 -0.0105 -0.0256 0.0223 0.2140
-0.0240 0.3066 -0.8538 0.1287 0.0353
0.1159 0.2706 0.0311 -0.3319 0.1188
0.1052 -0.1083 -0.1187 -0.3842 0.0812
-0.1264 0.0522 0.1024 -0.1861 0.1897
0.1703 0.2980 0.0140 -0.3515 0.0979
-0.1194 -0.0294 -0.0659 0.2044 0.1859
0.1905 0.0420 0.0782 -0.4121 -0.0317
-0.2597 0.0913 0.1816 -0.1995 0.1783
-0.0119 -0.0081 -0.0158 0.0276 0.2139
-0.0121 -0.0081 -0.0158 0.0274 0.2139
-0.0055 0.0048 -0.0017 0.0475 0.2130
-0.3432 -0.2691 0.1402 -0.0345 0.1952
0.0133 0.0152 0.0010 0.0764 0.2108
0.0177 -0.0115 -0.0183 0.0666 0.2116
-0.0034 0.0062 -0.0024 0.0238 0.2140
-0.0049 0.0046 -0.0013 0.0464 0.2131
-0.0041 0.0055 -0.0033 0.0244 0.2140
-0.0042 0.0056 -0.0031 0.0244 0.2140
-0.0019 0.0039 -0.0015 0.0166 0.2142
-0.0527 -0.0308 0.0178 0.0243 0.2137
-0.0336 -0.0190 0.0095 0.0174 0.2141
0.4636 0.4516 0.1699 0.0881 0.1657
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2.6 Conclusion

Just like large investment banks, large hedge funds play a significant role in

facilitating the efficient allocation of the risks of investments. With the status of

limited liability, large hedge funds however, also pose great threat to the health of

the general economy when things are not so great. Large institutions such as these

big hedge funds must satisfy capital requirements intended to ensure that they

can sustain reasonable losses. The capital requirements introduced in our previous

paper are designed so that the total risky cash flow as the assets less the liabilities

is acceptable to the general economy as specified by the theory of acceptability

([10], [50], [31]). The capital requirements however are designed as if each fund is

an isolated entity. Because many hedge funds employ similar investment strategies

they produce correlated returns. As a huge trillion dollar industry the failure of

these correlated large firms will greatly affect the markets systematically either in

a direct or indirect way. The high leverage employed by these funds also have the

potential to exacerbate instability in the market as a whole. In this paper we take

into considerations the systemic effects when setting the capital requirements.

The previous study has considered funds individually with no correlation be-

tween them. Unfortunately, focusing only on individual funds ignores the critical in-

teractions between them and can cause the regulators to overlook important changes

in the overall system. We do realize that a conclusive assessment of the systemic

risks posed by hedge funds requires certain data that is currently unavailable such

as counter-party credit exposures, the net degree of leverage of hedge fund man-
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agers and investors, the gross amount of structured products involving hedge funds,

etc. Nonetheless, we build upon our current modeling framework and propose a

systemic approach with largest market participants and their return correlations in-

corporated. We study the 30 largest funds as of April 2009 with total Asset Under

Management over $620 Bn. The capital charges on these biggest funds must account

for both their contribution to systemic risk and their own idiosyncratic risk. We

separate the cash flows of the funds which are marginally Normal or marginally VG,

into two components: the systemic component and the idiosyncratic component.

The systemic component is constructed to be a conditional expectation of the un-

derlying cash flow given the industry total return. These conditional expectations

are postulated to be co-monotonic functions and enjoy additivity shown in Theorem

2.1. Theorem 2.2 then shows that the charges calculated on these random risky flows

are able to sum to account for the aggregate systemic risk. The residual charge is

then held at the fund level to account for the idiosyncratic risk component. In our

empirical study, we select from a pool of 3622 funds the 30 largest funds who have

AUM larger than $2Bn as of April 30, 2009. These funds account for 64% of the

total AUM and are the most influential in the industry. We use available data on

the returns and NAVs to estimate the model parameters and infer the correlations

among these firms. Many of them show significant correlations as expected. Once

the models are estimated, we simulate the cash flows out to one year and calculate

the capital charges that would guarantee to cover potential losses in a year. The

charges on each fund towards the systemic contribution will be collected by external

hedge funds authority. These charges will sum to account for the aggregate risky
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outcome as long as the funds expected returns are increasing functions of the total

aggregate return. Even if expected returns are decreasing functions of the total

return as some firms bet against the market, we will charge the negative of the cal-

culated capital to be included in the sum to account for the opposite effect they have

on the systemic risk contribution. Our results are shown in Section 2.5 with both

types of capital charges compared against actual AUM level. We also show taxpayer

put values in this correlated setup. Each firm’s taxpayer put value is determined

by the underlying firm cash flow and the capital charge associated with it. Our

hope here is to provide some guidance on how hedge funds should be charged cash

(or cash equivalent) capitals in order to account for risks they pose to the economy

systemically and as an individual. We hope by proposing such methods, regulators

will have much stronger tools to address systemic financial crises, not only in the

hedge fund industry, but also in the banking industry, including a new resolution

mechanism for addressing the failures of systemically significant firms.
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Chapter 3

Hedge Fund Leverage Estimation and Hedge Fund Reserve Capital

3.1 Overview

In our previous studies on hedge fund capital reserving ([73], [74]), hedge fund

information is limited to only the total return without a separation of its plus side

and its minus side. It is very important however, pointed out in [59] and studied

further in bank domain ([36]) and in hedge fund domain ([73]), to consider the risks

from liabilities together with the ones from assets in a correlated way. The taxpayer

put option ([36]) born by the setup of limited liable entities holding also potentially

unbounded liabilities (even without the presence of debt) must be monitored. The

regulatory agencies must require reserved capital charges in order to ensure that the

value of this put option is not too large. It is necessary to set up such externally

determined cash or cash equivalent amount so that the risky cash flow, coming from

the balance sheet of a limited liability entity with access to unbounded random

liabilities, is acceptable to the outside market. This is linked to the context of

acceptable risks and such precise link between capital reserve and acceptable risks

has been proposed by [59] and studied further in [36], [73] and [74]. In order to

extract balance sheet information from publicly available data on hedge funds, we

propose to start with an estimation of fund leverages. This is by itself an interesting

and challenging task since fund leverage, in spite of its importance, is generally not
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reported and unknown to the public. Assisted with these estimated leverage values,

we are then able to obtain the separated cash flows and the implied joint laws to

infer capital implication.

Many hedge funds use leverage to enhance their returns and, consequently,

their risks. Hedge funds often leverage the funds to the extent only restricted by

their creditors. The net asset value of a hedge fund can run into many billions

of dollars, and the gross assets of the fund will usually be even larger since hedge

funds typically also borrow money or trade on margin in addition to the money

invested by the investors. This is usually labeled as funding leverage. An alternative

way of achieving leverage is through the choice of investment instruments, such as

derivatives and structured notes. This type of leverage is labeled as instrument

leverage. Either way, leverage is quite often being employed in such a way, so that

the investment in the long position is a multiple of the hedge fund equity, in the hope

of making enlarged returns on the original equity. A big leverage, unfortunately, also

gives rise to the possibility that an adverse shock to the fund returns might lead

to negative net worth. If for example a hedge fund has borrowed $9 for every $1

received from investors, a loss of only 10% of the value of the investments will wipe

out 100% of the value of the investors’ stake in the fund, once the creditors have

called in their loans. In September 1998, shortly before its collapse, Long Term

Capital Management (LTCM) had $125 billion of assets on a base of $4 billion of

investors’ money, a leverage of over 30 times. It also had off-balance sheet positions

with a notional value of approximately $1 trillion. The excessive leverage that is

used by hedge funds to achieve their return is outlined as one of the main factors
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of the hedge funds’ contribution to systemic risk. In the absence of more detailed

information on hedge fund investments, the estimation of leverage can serve as a

tool for the surveillance of stability of the financial system.

The interesting challenge of estimating hedge fund leverage has been studied

in [63] as a way to measure any resulting systemic risks to the financial system.

In their paper, the estimation of leverage is done with an extension of “regression-

based style analysis” that has also been employed by many other papers (to cite

a few such as [43] [7] and [32]) to study hedge fund performance. The leverage in

concern is only the funding leverage. However, at the end of the day, if a fund

rises twice as much as the market on “up” days and falls twice as much on “down”

days, then the source of leverage is less relevant. In fact, deriving leverage based

on historical returns will also capture the leverage implicit in the balance sheets or

business models of individual funds. We will follow the same footstep here with

slightly different implementation as to the choosing of right-hand-side regression

factors including the nonlinear option-like factors. We also add in the regression

the lagged returns which result in substantially increased leverage estimates. The

most distinguishing character of our study compared to previous studies, is that

we perform the estimation on an individual fund level. In [63], leverage indicators

are obtained on a fund-family level and there are a total of nine families based on

different investment strategies. In order for our capital implication to be meaningful,

we would require fund level estimates of fun leverages. This sort of estimation

requires a relatively long time series of fund returns and better identification of

the right-hand-side regressors. We take CISDM hedge fund monthly data and only
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retain funds who have continuous data for returns, from February 1996 to September

2008. This results in 177 funds each with 152 monthly data points. This obviously

creates a survivorship bias in our sample. Nonetheless, since our main objective is

to estimate leverage on individual funds and not to make inference about overall

performance, our filter may not be as problematic. We do however, expand our

sample so that funds only need shorter time period of survival from January 2002

to September 2008. This results in 1797 funds and the results are in agreement with

the ones from longer period. The representative market factors are chosen to be a

set of indices which come from equity, bond, and commodity markets. Since hedge

fund returns exhibit nonlinear option-like exposures to standard asset classes ([42],

[43]), we follow [7], [32], and [63] to estimate leverage including some synthetic

option factors to take into account such nonlinearity. These options are termed

power-tail options and are written on S&P500 as their underlying. We mainly focus

on equity markets since it has been shown (e.g. [63]) that returns across most fund

families seem to be heavily influenced by equity market factors. In addition, [63]

found in their analysis that the returns on the broad equity market index (S&P500)

and the associated synthetic option factors are almost always important drivers of

performance. We perform a Principal Component Analysis on the option returns

and retain the first two principal components as they explain about 99% of the

variance. This procedure eliminates the multicollinearity problem and these two

principal factors will enter into the regression equation instead of the 18 option

factors. In addition to broad market indices and option-like factors, we have also

added lagged returns in the regression model. After adding the lagged returns, the

75



model is in fact an ARX model (Autoregressive model with exogenous inputs) and

allows for dependence of current returns on returns from previous periods. Although

theoretically, return serial correlation implies market inefficiency and presence of

predictability in returns which contradicts the common belief that hedge funds are

operated under highly capable fund managers with optimal investment strategies,

in practice, there might be other reasons for the returns to show serial correlation.

Most importantly, the impact on our leverage estimation is of true interest here.

Finally, we adopt the approach implemented in [63] so that the leverage estimator

is simply a sum of the absolute values of the estimated coefficients of each fund.

We estimate time-varying parameters in a rolling regression with 36 months rolling

window. Within each window, a two-stage stepwise regression is performed.

Contrast to regulated mutual funds, hedge funds are private and lightly regu-

lated entities who are not obliged to disclose their activities to the general public.

Data on hedge funds are reported as funds wish and usually incomplete and very

limited. For example in CISDM hedge funds database, the reported NAV is on a per

share basis without much knowledge of actual number of shares outstanding, AUM

has frequent missing data and leverage information is mostly stale if even reported.

Little is known on hedge funds balance sheet to separate the assets and liabilities.

Once we estimate the leverage on a fund level, we build a more comprehensive

framework in which the segregated balance sheet information can be extracted and

capital implication can be obtained. Following [36], we model the logs of assets

and liabilities as linear mixture of some unknown latent variables. These latent

variables are assumed to follow Variance Gamma (VG) distribution and such joint
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laws have been considered in the time series context by [62], [58] and [52]. In the

time series applications the required mixing matrix is estimated using Independent

Components Analysis (ICA) ([48]). The latent variables are assumed non-Gaussian

and mutually independent, and they are also found by the ICA. We also demon-

strate a benchmark model by modeling assets and liabilities as marginal lognormal

with correlated Gaussian components. We show in comparison the modeling of total

cash flow (asset less liability) as a real-valued Martingale (see [73] for detail) and

include also two models one with Gaussian components one with VG components.

Maximum likelihood estimation can be performed to obtain model parameters. Us-

ing the theory of acceptable risks one would require that the simulated cash flows

be acceptable. We report the required capital for these four different models and

compare the requirement to the last observed AUM which is viewed as the “cash”

on hand held at the fund.

The outline of the rest of the chapter is as follows. Section 3.2 describes

the estimation of leverage detailed as methodology, data description, building of

non-linear factors, using of lagged returns and discussion of results. Section 3.3

demonstrates how to use the leverage estimates in separating assets and liabilities

as well as modeling framework used in calculating capital reserve results. Finally,

Section 3.4 concludes.
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3.2 Estimating Hedge Fund Leverage

3.2.1 Methodology

A number of empirical studies have highlighted the unique risk and reward

profiles of hedge fund investments. For example, [2], [40],[41], [43], [53], [54], [55],

[6], [5], [37], [51], and [9] provide comprehensive empirical studies of historical hedge

fund performance using various hedge fund databases. [18], [19], [20], [42], [39], [17],

[7], [4], [16], and [57] present more detailed performance attribution and “style”

analysis for hedge funds. Collectively, these studies show that the dynamics of

hedge funds are quite different from those of more traditional investments, and the

potential impact on systemic risk is apparent (for a comprehensive review on this

literature see [27]).

We follow [63] and use “regression-based style analysis” to conduct our estima-

tion of hedge fund leverage. The linear regression involved here attributes portfolio

returns to a set of risk factors which represent different asset classes that the port-

folio is considered to be exposed to. The estimated coefficients on these risk factors

measure the sensitivity of the portfolio returns to changes in the returns on the

underlying factors. We also adopt the notion that leverage employed by the funds

acts as an amplifier to the estimated sensitivity and hence is a re-interpretation of

these estimated coefficients. We will elaborate on this notion after we introduce the

definition of hedge fund leverage used in our study.

We only focus on funding leverage which basically can be viewed as debt (or

funds raised by short-selling) borrowed by the fund to increase initial fund assets
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on top of investor money (equivalent to AUM - Asset Under Management). If we

denote A as all assets raised outside of AUM, funding leverage is then defined as

ρ =
A+ AUM

AUM
. (3.1)

We now illustrate in a simple example how leverage acts as amplifier to the exposures

to underlying risk factors. Assume AUM is 10 and A is 90. We have now ρ with

a value of 10 which we also term as a “10 to 1 leverage”. If end-of-period return

on portfolio is R, assuming interest rate in this period is r, the actual return on

investment is then

R̃ =
100R− 90r

10
, (3.2)

or

R̃ = R + 9(R− r). (3.3)

If we know the allocation of the portfolio and portfolio is fully invested, then

portfolio return R can be written as the weighted average of returns on the individual

assets,

R =
k∑
i=1

wiRi (3.4)

where the weights sum to one
∑k
i=1 wi = 1. Rewriting (3.3), we have

R̃ =
k∑
i=1

wiRi + 9
k∑
i=1

wiR
i − 9r, (3.5)
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or

R̃− r = 10
k∑
i=1

wi(Ri − r), (3.6)

or in a general case

R̃− r = ρ
k∑
i=1

wi(Ri − r). (3.7)

We see that weighted average of the excess returns on individual non-cash assets in

the portfolio is scaled up by our leverage parameter ρ.

Equation 3.4 is usually the case where information on exact allocation of the

portfolio is known. However, most of the time there is no such information and

an investment style analysis typically involve a regression analysis which uses (as

explanatory variables) returns on broad market indices which proxy the asset classes

included in the portfolio

R̃− r = α +
∑
j

βj(Rj − r) + ε. (3.8)

The constant α is in the sense of Jensen’s alpha and the estimated coefficients β̂j

indicate the sensitivity or exposure of the portfolio excess return to the underlying

factors excess returns. ε gives the error since the underlying factors are only proxies

and (3.8) is at best an approximation. Given the estimates from a regression of

equation (3.8) for a particular time period, we have

∑
j

β̂j = ρ̂
k∑
i=1

wi = ρ̂. (3.9)

This means that after each estimation, the estimated coefficients can be simply

summed up and the sum is an estimator for the leverage. Since short positions
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would appear as negative estimated coefficients, we shall sum up the absolute values

of these coefficients.

We intend to estimate leverage on individual fund level which is quite different

from [63] where they have estimated leverage at a fund family level. Nine fund

families are distinguished in their paper based on different investment strategies.

[43] and [7] also study fund performance on a broad fund family level. [32] also

evaluate hedge fund performance only for some groups of hedge funds sharing similar

strategies that are identified using Principal Component Analysis (PCA). However,

since we would like to eventually study capital implication by separating fund cash

flow into assets and liabilities using leverage information, we wish to see leverage

information obtained on an individual fund level. This fund-level leverage estimator

also sheds more granular insight on individual fund behavior than only obtaining one

leverage number for the hundreds and thousands of different funds within the same

broad investment strategy. This goal however, poses challenges to the estimation

itself, since an estimation of this sort requires a relatively long time series of fund

returns and better identification of the right-hand-side regressors. We will spend

the next couple of sections going through the detail on data choices, right-hand-side

factor selections and the strategy of the actual estimation in (3.8).

3.2.2 Data

In order to estimate (3.8), we first need to have time-series data for the LHS

which is hedge fund return data. Due to the nature of voluntary reporting of hedge
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fund data, incomplete data and fund disappearing is often observed in any hedge

fund database. In order to obtain long time series for the individual fund level

estimation and also make certain that later on AUM and NAV data are also available

(for separating assets and liabilities in later use of calculating capital required), we

take CISDM hedge fund monthly data and only retain funds who have continuous

data for returns, from February 1996 to September 2008. This results in 177 funds

each with 152 monthly data points. This obviously creates survivorship bias in our

sample, but since our main objective is to estimate leverage on individual funds

and not to make inferences about overall performance, our filter may not be as

problematic. Nonetheless, we do expand our sample later so that funds only need

shorter time period of survival from January 2002 to September 2008. This then

results in 1797 funds in our sample and the results are also reported.

The representative market factors on the right-hand-side of equation (3.8)

are chosen to be a set of indices which come from equity, bond, and commodity

markets. We mainly focus on equity markets since it is shown (e.g. [63]) that

returns across most fund families seem to be heavily influenced by equity market

factors. We include three equity indices: S&P500 index (from WRDS), the MSCI

World Excluding US index (MSDUWxUS) and the MSCI Emerging Market index

(MSCIEM) (from Bloomberg). Together these indices represent the major equity

markets. Similarly, we include three bond indices: the Salomon Brothers World

Government Bond Index US (SBWGU) and CSFB High Yield Index (CSHY) and

Salomon Brothers Corp Bond Index(from Bloomberg). Further, we include a com-

modity index: Moody’s Commodity Index (from Datastream) reflect positions in
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commodities. Finally, we include gold prices from Bloomberg and also the famous

SMB, HML and UMD indices suggested by [38], which measure a Size factor and a

Value-Growth factor, and Momentum respectively. All returns are calculated from

price series between January 1996 and September 2008. We also take one-month

T-bill rates as the risk-free interest rates.

We summarize the statistics of these factors (using excess returns) in Table

3.1. In calculating Sharpe Ratio (SR) we use average interest rate of the period:

0.003.
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3.2.3 Building Non-linear Factors

Another alternative to using large leverage position is to use derivatives to

hedge market risk. For example, a manager could buy some stock considered to be

underpriced with a simultaneous short position in stock options or other derivatives.

Since hedge fund returns exhibit non-linear option-like exposures to standard asset

classes ([42] and [43]), following [8], [32], [63] estimate leverage including synthetic

option factors to take into account such non-linearity. [63] found in their analysis

that the returns on the broad equity market index (S&P500) and the associated

synthetic option factors are almost always important drivers of performance. Hence,

in addition to the factors chosen and described in the last section, we also build

some option-like payoffs which proxy for the non-linearity of hedge fund return

exposures. In [8], [32], [63], historical options price series are calculated using Black

Scholes formula ([13]) with historical volatilities as inputs. This however, is quite

problematic since it is well documented in the literature that realized volatilities

are not implied volatilities. Historical option prices must be available to calculate

actual historical implied volatilities.

In this paper, we choose options that are termed power-tail options ([25]) and

are written on S&P500 as their underlying. We are here only focused in the equity

markets since equity factors and their options have been shown to be the most

significant explanatory factors ([63]) among the others. We price these options

base on calibration of historical vanilla prices. In order to price these structured

payoffs historical prices, one would like to incorporate stochastic models capable of
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synthesizing the surface of historical vanilla option prices. These prices are typically

represented by the matrix of implied volatilities indexed by the strike and maturity

dimensions. Recently, [21] showed that a wide class of additive processes (with

independent but inhomogeneous increments) can synthesize the surface of option

prices, remarkably with as few as four parameters. These processes are associated

with the law at unit time of a subclass of Lévy processes defined by the condition that

the law at unit time be self decomposable or a limit law. These additive processes

have been studied in [68] and are termed SATO processes in [33]. The SATO model

is calibrated to vanilla option surfaces of each time point and the specific payoffs

are then calculated using a Fast Fourier Transform method.

We begin by describing the payoffs of these power-tail options. We only con-

sider OTM options due to their liquid nature and the payoff for OTM power-tail

call is

E[S(T )n, I(S > K)], K = 1.1, 1.2, 1.3 (3.10)

and the payoff for OTM power-tail put is

E[S(T )n, I(S < K)], K = 0.7, 0.8, 0.9 (3.11)

These products emphasize the payouts on the tails. The underlying index S is

assumed to follow an exponential SATO process introduced in e.g. [21] and [33]

(and note that we will always start from S(0) = 1)
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S(T ) = S(0)
erT+X(T )

E[eX(T )]
(3.12)

where X(t) is a SATO process and we assume E[eX(t)] is finite and is the normalizing

factor so that S is an exponential Martingale. The SATO process X(t) is constructed

from the law at unit time of a subclass of pure jump Lévy processes such as Variance

Gamma (VG) process (X = V G(1)), and has characteristic function (if employing

VG)

φX(t)(u) = E[eiuX(t)]

= φX(utγ)

=

(
1

1− iuθνtγ + σ2ν
2
u2t2γ

) 1
γ

It is then trivial to obtain the characteristic function for lnS(T )

φT (u) = E[eiu lnS(T )]

= exp[iu(lnS(0) + rT − ln(φX(T )(−i)))]φX(T )(u)

We employ the Fast Fourier Transform method detailed in [24] to value options

and obtain SATO parameters σ ν θ and γ for every month end from January 1996 to

September 2008 by calibrating the SATO model to market prices on index options.

Once these calibrated parameters are obtained for each time, we may then

price the options in (3.10) and (3.11) using same approach of FFT described in

[25]. We price these options for both 2 month and 3 month maturities with power
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n = 2, 3, 4 and build the return time series (monthly returns) month by month from

February 1996 to September 2008. So for each month end, we have returns on 18

option contracts, 9 OTM calls and 9 OTM puts. In case of calls for example, the

Fourier transform for modified prices in (3.10) is described following [25]

δ(u) = e−rt
∫ ∞
−∞

e(α+iv)k
∫ ∞
k

ensdsdk

= e−rt
φT (v − i(α + n))

α + iv

where k = lnK and S = es, α is set to be 1.1. Interest rate r is always set to 0,

so that we do not need to subtract to get excess returns. The mean rate of return

on these options are shown in Table 3.2. As expected all are negative and more

negative as one goes further out of money reflecting a U-shaped pricing kernel ([11],

the increasing region of a U-shaped pricing kernel causes the expected rate of return

of a payout on the upside to be negative for strikes that are beyond a threshold).

Table 3.2: The mean rate of return on calculated option prices

K = 1.1 K = 1.2 K = 1.3
n = 2 −0.6845 −1.3955 −2.1222
n = 3 −0.6935 −1.4038 −2.1114
n = 4 −0.7032 −1.4127 −2.1042

Finally, we have built returns for these synthetic options that are out of the

money and are written on the equity index S&P500. These 18 options (9 calls 9

puts) will be combined with the index factors described in last section to capture

the non-linear risk exposures of hedge fund portfolios, following the similar approach

which have been taken by [63], [32] and [8]. We are here only focused in the equity

markets since equity factors and their options have been shown to be the most

88



significant explanatory factors ([63]) among the others.

Before we move on to the regression, we must perform one more transformation

to these synthetic factors, since it is recognized that the option returns are very

highly correlated. If we use these highly correlated returns directly in the regression

process, the regression will suffer from problems caused by such multi-collinearity of

the right-hand-side variables. Although multi-collinearity will not bias the estimated

coefficients, it will unreasonably inflate the estimates due to high standard errors.

We perform a Principal Component Analysis on the option returns and retain

the first two principal components as they explain about 99% of the variance. This

procedure eliminates the multi-collinearity problem and these two principal factors

will enter into the regression equation instead of the 18 option factors.

3.2.4 Adding Lagged Returns in Regression Model

In the search of representative right-hand-side factors, we also consider adding

lagged returns in the regression model. Adding lagged returns on the right-hand-

side basically allows dependence on current returns on returns from previous periods

(how many lags are appropriate still need to be determined). Although theoretically,

return serial correlation implies market inefficiency and presence of predictability in

returns which contradicts the common belief that hedge funds are operated under

highly capable fund managers with optimal investment strategies, in practice, there

might be other reasons for the returns to show serial correlation. It is shown in em-

pirical research that the returns to hedge funds are often highly serially correlated
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due to the illiquidity exposure and return smoothing (see e.g. [45], [14]). [45] and [14]

argue that serial correlation is the outcome of illiquidity exposure, and intentional

return smoothing reporting by the fund managers in order to produce misleading

performance statistics such as volatility, Sharpe ratio, correlation, and market-beta

estimates to attract investors. Given the nature of hedge-fund compensation con-

tracts and performance statistics, managers have an incentive to “smooth” their

returns by marking their portfolios to less than their actual value in months with

large positive returns so as to create a“cushion” for those months with lower returns.

Such return-smoothing behavior yields a more consistent set of returns over time,

with lower volatility and, therefore, a higher Sharpe ratio, but it also produces serial

correlation as a side effect. If the securities in the managers portfolio are actively

traded, the manager has little discretion in marking the portfolio. It is “marked to

market”. The more illiquid the portfolio, the more discretion the manager has in

marking its value and smoothing returns, creating serial correlation in the process.

The impact of smoothed returns and serial correlation is considered in more detail

in [56] and [45],

Regardless of the particular mechanism by which hedge fund returns are

smoothed and serial correlation is induced, the economic impact of serial corre-

lation can be quite real and the impact on our leverage estimation is of true interest

here. We build on original model in 3.8 and adding lagged returns

R̃t = α +
k∑
i=1

ηiR̃t−i +
∑
j

βjR
j
t + ε (3.13)
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here these returns are still excess returns after subtracting risk free rate. This

model is in fact an ARX model(Autoregressive model with exogenous inputs). To

ensure stationarity of the model and the convergence to equilibrium, the eigenvalues

associated with the characteristic AR polynomial must lie in unit circle. For k = 1

with just one-period lag, this is equivalent to auto-correlation coefficient |η1| < 1,

and our leverage estimate is then

ρ̂ =

∑
j β̂j

1− η1

(3.14)

3.2.5 Estimation of Leverage

In this section we explain in more detail how the estimation of leverage is

performed. As shown in (3.9) the leverage estimator is simply a sum of the absolute

values of the estimated coefficients βj in equation (3.8). To obtain the estimation

of these estimators, however, is not so straight-forward due to two reasons: we have

no knowledge about what these right-hand-side factors actually are; and because we

wish to perform estimation on individual fund level. Although we have put together

a reasonably representative set of factors proxying risks across major markets and

we will include the non-linear variables as proxied by the synthetic options (or their

principal components to be exact), which factors should enter into which fund’s

equation at which period of time is still a difficult question to answer. Each fund

has its own unique trading strategy and likely to put more emphasis on certain

markets over others. In different time periods, funds are also likely to shift between
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different strategies. In addressing these issues, we adopt the approach used in [63].

To point out the difference however, our estimation is done on individual fund level

and obtains more meaningful fund-level leverages.

For each fund, we estimate time-varying parameters β̂j in a rolling regression

with 36 months as the rolling window. Within each window, a two-stage stepwise

regression is performed. First stage selects which right-hand-side factors best explain

the portfolio returns within the specific window, and the second stage yields the

actual estimates of the betas that are used to calculate leverage. The identification

of those risk factors most relevant for the specific fund (with particular investment

style and strategy) and in the specific time window is performed by means of stepwise

regression of funds’ excess monthly returns on the full set of risk factors. The

stepwise procedure combines forward-selection (variables are added one by one to

the model until no remaining variable produces a significant statistic) and backward-

elimination (testing variables one by one for statistical significance and deleting any

that are not significant) steps and only retain variables if their statistical significance

exceeds a certain threshold. The tolerances for inclusion and exclusion of right-hand-

side variables in the stepwise procedure are set at p-values of 0.10 and 0.11. The

second stage engages a fixed-effects regression of fund returns on the set of factors

already identified in the first stage. These estimates from the second stage regression

are used then in calculating leverage estimator for the particular fund and regression

window. Since short positions will appear as a negative estimated coefficient, the

leverage estimator is the sum of all absolute values of the estimated betas.

When adding lagged returns on the right hand side. We did separate regres-
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sions for adding one lag versus adding two lags and the results show that adding one

lag significantly improves leverage estimation, but adding two lags do not necessar-

ily improve further. This is also consistent with our initial analysis using Durbin-

Watson test and plotting ACF and PACF graphs within regressions, which show

that generally the return autocorrelations are only up to the second lag and mostly

focused on the first lag. We focus all of the following analysis on only having one

lagged returns and results are reported accordingly.

The results of estimation show consistency with results in other similar re-

search. Firstly, we notice that usually equity market factors (especially S&P500

and SMB) are often included in the factor selections and show significant influence

on majority of the funds (in our sample 177 funds). Secondly, in general 3 to 5

factors are selected in the first stage stepwise regression. Thirdly, the inclusion of

factors proxying the non-linear returns as explanatory variables can improve the

estimation results. We also notice that in general, the regression model with lagged

returns give higher leverages on average. We select three funds with ID numbers

9038, 12924, and 12939 to show the different leverages estimators obtained from

different models. First, the estimators are obtained in three different models using

just indices as factors and then adding options and further adding lagged returns.

The average leverage estimators are compared with CISDM reported historical av-

erage gross leverages and they are shown in Table 3.3. Then we show time series

estimators in graphs shown in Figures 3.1, 3.2 and 3.3 for fund 9038, 12924, and

12939 respectively. Each figure shows estimated leverages for all rolling periods

starting from January 1999 to September 2008. Each figure shows three estimators
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for models with only indices, and indices plus equity options, and indices plus equity

options plus one-period lagged returns, in green, red and blue respectively. We see

from the graphs that including options in the regression formula improves leverage

estimation as documented in [63], [32] and [8]. We also see that including lagged

returns can improve the leverage estimated for majority of the time. However, lag-

ging two periods do not necessarily improve results further at all. Our estimation

results shown only included one-lagged returns in model.

Table 3.3: Average Leverage Comparison for Funds 9038, 12924 and 12939

ID cisdm avg-gross-lev just indices add options add lagged returns

9038 1.5 1.6567 2.3447 2.6348
12924 2 2.6201 2.9289 3.1690
12939 2 2.5076 2.8368 3.1315

Finally, we would like to see if our estimated leverages indeed reflect real

leverage positions. This however, is rather a naive wish since as mentioned before,

we do not have reliable source of leverage information on hedge funds at all and

this is the exact reason we wish to estimate them. In CISDM database, there is a

variable indicating leverage use (1 for yes, 0 for no) and also a variable reporting

average-gross-leverage. The data however, is rather uninformative and sometimes

meaningless. The average-gross-leverage is one stale number no matter how long

the fund has existed which makes little sense. Besides, there are cases where funds

have average-gross-leverage numbers reported however indicating no leverage and

vice versa. We nonetheless would like to still utilize such information provided in

the database and see if our leverage estimates show any comparison to the reported
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Figure 3.1: Estimated Leverages for Fund 9038.

leverage. In the 177 funds we sampled, there are 62 of them indicating using leverage

(avg-gross-lev> 1) and 115 of them with no information on whether or not leverage

is used or leverage numbers are 1 or less. We compare the average-gross-leverage

numbers for these 62 funds with the average (across all rolling windows) leverages

from our estimation (indices plus options plus one lagged returns) and plot them

together in Figure 3.4.

Again this is at best a naive comparison since we do not know how reliable

these reported leverages are to start with. However the comparison does show our
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Figure 3.2: Estimated Leverages for Fund 12924.

leverage estimators on average are comparable to the reported ones. Although we

see much improvement on higher and more plausible leverage numbers after options

and lagged returns are included in the right-hand-side factor selection, the leverage

estimated is still not as high as what is possibly engaged in practice. For the

whole sample, 177 funds, the estimated leverages average across the whole period of

February 1996 to September 2008 can be as high as 22, but also as low as 0.07 which

does not have any practical meaning as leverage being one indicates no leverage. For

the 177 funds studied, there are only 12 reported historical averages greater than
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Figure 3.3: Estimated Leverages for Fund 12939.

2, but in the estimation we have 35 of them with average leverage greater than

2. Even though some average leverage can be above 2 for example, when looking

at the whole rolling time periods, most of funds have leverages estimated below 1

for at least one period. For the purpose of separating hedge fund balance sheet in

the next few sections, these leverage numbers that are less than one should not be

considered. Among 177 funds being studied here, there are only 2 funds with all

117 rolling time periods with estimated leverage higher than one.

The leverage estimators although improved with added non-linear factors and
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Figure 3.4: Leverage Reported Compared to Leverage Estimated for 62
Hedge Funds.

added lagged return factors are still lower than what is possibly engaged in practice.

Our selection of time period of February 1996 to September 2008 is quite a long time

and there might be survival bias introduced in such selection (the funds that could

survive such long period are the funds that employ lower leverages). To address this

concern, we next choose a shorter period of survival for the funds to be included in

the sample and obtain results for those chosen funds.
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3.2.6 Estimation Using Shorter Time Period 2002-2008

Due to the survival bias we may have introduced to the estimation by requiring

funds to have data from 1996 to 2008, we also shorten our period to 2002 to 2008 in

order to include more funds in our sample. This results in 1797 funds who have all

monthly return data from January 2002 to September 2008 (81 data points). Our

results show similar characteristics about our approach here as: 1) leverage estimates

usually are improved after options are added and even further improved after one-

period lagged returns are included on the right-hand-side; 2) the estimated leverage

averages are in general comparable to the leverage reported, shown in Figure 3.5

where the leverages estimated and leverages reported are plotted together; 3) in the

data, out of 1797 funds, there are only 815 funds have average leverage numbers and

in these, 407 of them have numbers greater than 1 and 92 of them have numbers

greater than 2, versus in the estimation, we have 1069 funds have estimated average

greater than 1 and 397 funds with estimated average greater than 2.

We summarize the statistics of these factors (excess returns) in Table 3.4. We

use average interest rate of the period 0.0022 in the calculation for Sharp Ratio.

In the sample of 1797 funds, there are 181 funds with leverage estimators

greater than one at all 46 time points. These will be the object of study in later

section when we calculate required capital after separating fund cash flows.
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3.2.7 More Discussion on Estimated Leverages

As we improve our leverage estimators by ways of incorporating option-like

returns and lagged periods, we still feel puzzled that the leverage numbers are not

as high as expected. Especially when leverage numbers are not even greater than

one. We discuss in the following some possible explanations that could have caused

the observed results from our study.

The specific mechanisms by which a hedge fund determines its leverage can be

quite complex and often depend on a number of factors including market volatility,

credit risk, and various constraints imposed by investors, regulatory bodies, banks,

brokers, and other counter-parties. But the basic motivation for typical leverage

dynamics is the well-known trade-off between risk and expected return. By increas-

ing its leverage ratio, a hedge fund boosts its expected returns proportionally, but

also increases its return volatility and, eventually, its credit risk or risk of default.

Therefore, counter-parties providing credit facilities for hedge funds will impose some

ceiling on the degree of leverage they are willing to provide. More importantly, as

market prices move against a hedge funds portfolio, thereby reducing the value of

the funds collateral and increasing its leverage ratio, or as markets become more

volatile and the funds risk exposure increases significantly, creditors (and, in some

cases, securities regulations) will require the fund to either post additional collateral

or liquidate a portion of its portfolio to bring the leverage ratio back down to an

acceptable level.

On the other hand, low leverage estimates could result in mis-specification
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of the regression model. Although we try to cover major market indices and the

stepwise regression tries to fit the best model to the returns, the actual fund strategy

and hence their choosing of actual markets and products are still very complicated

and beyond what we could at best approximate here. Hedge funds generally have

very complex and discretionary and time varying investment strategies. The funds

claim of superior returns are often achieved with low risk and low correlation with

conventional investments. To this extent, our estimation model constructed using

a selective set of factors can be very well overly subjective and well “missing the

dots”. This is also another reason that some of the leverage numbers are low and

basically the funds are out of the “market” we have constructed. For the periods

that the fund returns are “out of the model”, the leverage estimates which are the

sum of the coefficients will tend to be low.

Another explanation for the estimated leverage numbers being low and even

below one is that returns reported are over longer period (monthly) than actual

holding period of most portfolios, hence the amplification effect by the leverage on

returns are deflated over the longer period. The theory behind our regression style

analysis to estimate leverage is that leverage can amplify portfolio returns. However,

in reality, most strategies require active trading and hedging and the holding period

for a particular leveraged portfolio can be as short as days or hours and much more

volatile. The reported returns on monthly basis could be much less dramatic and

much more smoothed out over this relatively long observation period and hence

dampens the original amplification effect from taking on big leverage.

In reality, it is also true that some funds heavily use leverage and some do
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not. In fact, recent industry reports (from example UBSs Alexander Ineichen and

Merill Lynch and Morgan Stanley) have documented that hedge funds are indeed

“de-leveraging” as the credit markets deteriorated throughout 2008. Britains Finan-

cial Services Authority (FSA) recently found that hedge fund leverage was nearly

extinct. The European Central Bank (ECB) reported gross leverage (longs plus ab-

solute value of shorts) from Hennessee Group and found leverage levels around 1.5×.

This seems also consistent with what managers were telling Merrill Lynch in a sur-

vey cited by the ECB - that a majority of managers were actually using no leverage

at all. In [7], their leverage estimates, although on fund family level and not directly

comparable to our fund-level ones, also show similar conclusion such as bared any

leverage used by equity hedge strategies. After all, what we hope to demonstrate

here is a general approach which builds a bridge between observed market data and

some unobserved characteristics in interest such as hedge fund leverage. Further-

more, the estimation of leverage, once rationalized, can be used to study hedge fund

balance sheet and draw implication of hedge fund capital requirement. This is what

we are going to demonstrate in the next section.

3.3 Separating Hedge Fund Balance Sheet and Cash Reserve Re-

quirement

We have data for AUM and NAV and by our definition of funding leverage in

(3.1), it is easy to estimate random assets (other than AUM) which we term A from
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A = ρ ∗ AUM − AUM (3.15)

These assets are the ones raised outside of asset under management invested by the

investors and are borrowed assets or securities directly contribute to the leverage the

fund is taking. These assets have random cash flow A(t) and we see that ρ must be

great than one (at all times) to ensure positive cash flows. For the random liability

side L, we assume that at any time

NAV = A− L+ AUM (3.16)

In the data however, the NAV is on a per share basis and there is no information

on number of shares sold by the fund. Hence we actually have

NAV =
A− L+ AUM

N
(3.17)

where N denotes the number of shares and we would like to estimate N first. This

is done by taking the average of previous 36 months AUM/NAV from data and

we impose that on average the total cash flow X = A − L have zero mean (in our

analysis we would always demean the cash flows). And the N̄ is used to estimate L

L = A+ AUM − N̄ ∗NAV (3.18)

Hence, from February 1996 to September 2008, every 36 month, we estimate

the share number from the last 36 observations of AUM/NAV by taking average,

then obtain the separated assets and liabilities A and L for each month from January

1999 to September 2008, using leverage estimates and NAV AUM data. There are

117 time series point for both A and L.
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3.3.1 Modeling Random Assets and Liabilities

We model assets and liabilities as correlated processes. Following [36], we

model the log of A and L as linear mixture of VG processes (LM). We also show

a bench-mark model by modeling A and L as marginal lognormal with correlated

Gaussian components (LNC).

Model One - LNC

A(t) = A(0)eXA(t)

L(t) = L(0)eXL(t)

where

XA(t) = µAt−
1

2
σ2
At+ σA

√
tZA

XL(t) = µLt−
1

2
σ2
Lt+ σL

√
tZL

ZA = ρZL +
√

1− ρ2Z (3.19)

Z and ZL are independent standard normals and hence ZA and ZL are corre-

lated normals with correlation being ρ. If we let

X1(t) = σA
√
tZA

X2(t) = σL
√
tZL

and observing h = 1/12, we have actually demeaned log daily return,
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X1(t+ 1)−X1(t)

X2(t+ 1)−X2(t)

and

X1(h) = X1(t+ 1)−X1(t) = σA
√
hZA

X2(h) = X2(t+ 1)−X2(t) = σL
√
hZL

Maximum likelihood estimation can be performed on the data by recognizing

LH =
n−1∑
i=1

log f(x1, x2) (3.20)

where

f(x1, x2) =
1

2πσAσLh
√

1− ρ2
exp

[
− z

2(1− ρ2)

]
(3.21)

and

z =
x2

1

σ2
Ah

+
x2

2

σ2
Lh
− 2ρx1x2

σAσLh
(3.22)

The parameters estimated using h = 1/12 are already annualized. We then

from this model generate correlated X1 and X2 10000 each and build cash flows A(t)

and L(t) with A0 and L0 being the last data and t = 1.

Model Two - LM

In this model, the data variables are assumed to be linear mixtures of some

unknown latent variables. Such joint laws have been considered in the time series

context by [62], [58] and [52]). The latent variables are assumed non-Gaussian
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and mutually independent, and they are called the independent components of the

observed data. These independent components, also called sources or factors, can be

found by ICA (Independent Component Analysis). In the time series applications

the required mixing matrix is also estimated using ICA ([48]). We begin with

A(t) = A(0)eXA(t)

L(t) = L(0)eXL(t)

where

XA(t) = µAt− ω1t+X1(t)

XL(t) = µLt− ω2t+X2(t)

X1 and X2 are constructed from linear mixture of independent VG processes

X1 = a11Y1 + a12Y2

X2 = a21Y1 + a22Y2

where Yi is centered VG process with parameters σi, νi and θi and original mean h

and variance νh.

Yi = θi(gi(h)− h) + σiWi(gi(h)) (3.23)

and ω1 and ω2 are compensators for exponential VG processes on each marginal or

specifically

ωi =
1

t
log Φ(−i) = − 1

νi
log(1− θiνi −

σ2
i νi
2

)− θi. (3.24)
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We use fast ICA algorithm to estimate mixing matrixA and the components Yi

and then estimate VG parameters on the univariate data on Yi. In ICA estimation,

it is assumed that Y ′i s have zero mean and unit variance, hence the variance is

all taken care of in mixing matrix A = [a11 a12; a21 a22]. We estimate VG

parameters on the components at unit time and then annualized by multiplying A

by 1/
√
h.

The position X = A−L can not be held without imposed capital requirement

and the capital is cash like or cash equivalent, denoted by C. Hence, the whole

economy admits the risky cash flow

Y = A− L+ C (3.25)

Using the new theory of acceptable risks ([36], [59]) one would require that this cash

flow be acceptable. If we take stress function MINMAXV AR at level γ ([35]) we

require ∫ ∞
−∞

ydΨγ(FY (y)) ≥ 0 (3.26)

where the stress function MINMAXV AR is

Ψγ(u) = 1− (1− u
1

1+γ )
1+γ

(3.27)

Since

FY (y) = FX(y − C) (3.28)

so ∫ ∞
−∞

ydΨγ(FX(y − C)) ≥ 0 (3.29)
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We change variable x = y − C then

∫ ∞
−∞

(x+ C)dΨγ(FX(x)) ≥ 0 (3.30)

or

C = −
∫ ∞
−∞

xdΨγ(FX(x)) (3.31)

We now have an analytical function of capital requirement in terms of risk

parameters. To compute this expression, one may follow the procedure outlined in

[30]. From a simulation of outcomes from the distribution of underlying variables

one can sort the outcomes in increasing order as xi, i = 1, . . . , n and evaluate the

required capital as

C ≈ −
n∑
i=1

xi
(
Ψγ
( i
n

)
−Ψγ

(i− 1

n

))
(3.32)

3.3.2 Modeling Total Real-Valued Cash Flow

Follow [73], we also model the random cash flow of the fund

X = A− L (3.33)

directly as real-valued Martingale. We use again two comparing models:

Model Three - Bachelier Model (Gaussian)

X(t) = X(0)ert +
∫ t

0
er(t−u)σdW (u) (3.34)

Model Four - VG
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We can also model the real-valued X as a centered variance gamma (VG)

process so that

X(t) = X(0)ert +
∫ t

0
er(t−u)dH(t) (3.35)

where H(t) is the centered VG

H(t) = θ(G(t)− t) + σW (G(t)) (3.36)

here the time change G(t) is a a Gamma process with parameter ν, whose increments

G(t+ h)−G(t) = g have Gamma density with mean h and variance νh.

3.3.3 Results

There are 181 funds with all 46 leverage estimators greater than one (for the

shorter period of January 2002 to September 2008 estimation). We obtain AUM and

NAV data from WRDS for these 181 funds still from January 2002 to September

2008. After manually deleting the ones with incomplete data, there are 81 funds left

with all 46 time series points for AUM and NAV available. We first summarize the

categorization of these 81 funds in terms of fund type and strategy used in Table

3.5.

With the data on AUM and NAV together with our estimators for leverages,

we then separate assets and liabilities and obtain time series estimation on A and L

following (3.15) and (3.18). After estimating the model parameters using data series

A and L or X = AUM+A−L in the four different models, we simulate 10000 paths

and assume A0 L0 to be the last observed values. We report the capital required for
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Table 3.5: Fund Types and Strategies Categorization for 81 Funds

FUND TYPE STRATEGY N

Hedge Fund Equity Long/Short 16
Equity Long Only 8

Equity Market Neutral 2
Global Macro 3

Emerging Markets 6
Distressed Securities 1

Convertible Arbitrage 3
Sector 9

Short Bias 5

53

Fund of Funds Multi Strategy 5
Market Neutral 2
Single Strategy 3

10

Commodity Trading Advisor Systematic 8

8

Commodity Pool Operator Single Strategy 4
Multi Strategy 4

Unspecified 2

10

the different model framework and different models and compare the requirement

to the last observed AUM which is viewed as the “cash” on hand held at the fund.

We finally calculate capital requirement for each fund for four consecutive quarters:

December 2007, March 2008, June 2008 and September 2008. Each calculation

uses the previous 36 months of data for fitting the models. It is not necessary and

impossible to show results for all 81 funds and we pick one from each fund type to

show the calculation results with setting the stress level at γ = 0.25. Table 3.6 and

3.7 show the results in million-dollar unit.
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The results indicate that generally, modeling with correlating assets and liabil-

ities gives higher capital requirement then directly modeling final cash flows, since

the correlation between assets and liabilities is an added source of uncertainty. This

is then reflected as a higher requirement for reserve capital. We also see that once

we take the correlation of underlying assets and liabilities into account and model

them jointly, the calculated cash reserves are very sensitive to the choices of models,

either fat-tailed or not. In the joint models, both A and L are positive random

variables. It is useful to work in these terms and assume the fate of the business

is determined by the joint probability law of these variables, as opposed to just

the probability law of the difference, as one can relate matters better to classical

corporate balance sheets by keeping both entities in mind. The four estimates for

the four quarters also generally increase as it approaches September 2008, which is

consistent with empirical evidence that cash balances as percentage of total assets

have steadily increased over the course of the past crisis.
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Table 3.6: Capital Requirement Sample Results

ID=39 A0 L0 X0 AUM0 LNC LM Gaussian VG
Dec07 7.1275 3.3941 3.7334 2.3015 0.96934 2.6488 0.43179 0.52377
Mar08 13.418 10.303 3.115 2.6071 2.9722 5.0538 0.43721 0.51859
Jun08 10.526 6.8876 3.6382 3.4933 2.0525 6.5876 0.44391 0.52651
Sep08 19.201 16.638 2.5639 3.0042 5.032 13.62 0.43715 0.42577

ID=131 A0 L0 X0 AUM0 LNC LM Gaussian VG
Dec07 160.51 44.69 115.82 123.4 11.431 81.833 3.6143 3.7542
Mar08 166.04 63.547 102.5 107 8.9671 88.632 4.1745 4.4344
Jun08 166.57 67.134 99.437 106.5 8.2527 77.18 5.1422 5.4771
Sep08 599.46 509.79 89.671 96.437 86.158 124.03 5.6509 6.4067

ID=348 A0 L0 X0 AUM0 LNC LM Gaussian VG
Dec07 465.8 368.63 97.167 125 40.013 79.456 3.3105 3.3442
Mar08 146.42 50.909 95.509 125 16.153 84.2 4.001 3.727
Jun08 140.68 39.167 101.52 125 17.624 82.168 4.5514 5.2028
Sep08 136.31 53.656 82.658 100 12.4 73.752 6.9615 7.8457

ID=2617 A0 L0 X0 AUM0 LNC LM Gaussian VG
Dec07 676.65 472.03 204.62 179.7 9.0445 13.656 12.124 12.621
Mar08 990.22 764.98 225.24 202.7 18.081 14.9228 13.486 14.298
Jun08 1094.3 836.34 257.99 232.4 19.1 25.201 14.169 12.417
Sep08 290.87 90.599 200.28 183 19.505 28.19 16.938 18.941

ID=3078 A0 L0 X0 AUM0 LNC LM Gaussian VG
Dec07 1627.3 1246 381.28 380.6 234.61 642.08 23.007 24.023
Mar08 1472.1 1135.4 336.68 358.5 210.02 343.88 28.148 28.765
Jun08 1494.4 1134.9 359.54 371.4 156.01 208.21 30.754 31.607
Sep08 266.46 34.394 232.07 204.9 21.362 160.91 36.909 37.143

ID=2757 A0 L0 X0 AUM0 LNC LM Gaussian VG
Dec07 78.892 67.641 11.25 25.984 4.6258 7.311 0.95165 1.0698
Mar08 141.02 129.34 11.679 24.677 9.1813 8.222 1.06 1.1567
Jun08 63.539 52.016 11.523 21.276 2.8841 9.5153 1.4177 1.4207
Sep08 55.459 47.46 7.999 12.736 2.9543 5.2733 3.6513 4.8421

ID=3134 A0 L0 X0 AUM0 LNC LM Gaussian VG
Dec07 304.91 125.18 179.73 172.57 23.652 119.25 6.8277 6.6667
Mar08 439.69 276.74 162.96 154.9 17.621 128.11 7.9 9.3809
Jun08 532.08 350.07 182.01 174.26 28.915 139.55 8.1354 8.175
Sep08 409.11 271.6 137.51 131.74 22.739 106.45 10.738 12.718

ID=3620 A0 L0 X0 AUM0 LNC LM Gauss VG
Dec07 153.77 116.98 36.791 56 1.8308 1.4849 1.4153 1.2911
Mar08 353.78 306.49 47.295 86 2.9429 31.487 1.7979 1.7292
Jun08 374.03 321.15 52.874 95 2.899 28.445 2.4113 2.1312
Sep08 414.5 351.4 63.105 103 2.8764 11.411 2.764 2.5962
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Table 3.7: Capital Requirement Sample Results - Continued

ID=4377 A0 L0 X0 AUM0 LNC LM Gaussian VG
Dec07 446.74 316.96 129.77 159 8.772 114.0 4.6983 4.8252
Mar08 439.93 319.7 120.23 144 10.341 111.81 5.5134 5.7084
Jun08 376.11 243.67 132.44 153 6.0396 67.166 6.1491 6.2101
Sep08 344.71 234.5 110.21 123.7 6.3794 372.78 7.3047 8.5555

ID=6844 A0 L0 X0 AUM0 LNC LM Gaussian VG
Dec07 38.298 7.4434 30.854 30.696 2.4894 17.445 1.7987 1.7354
Mar08 44.962 8.8317 36.13 35.621 2.9372 19.77 2.3216 2.2619
Jun08 47.861 9.1995 38.661 38.187 3.158 20.417 2.3255 2.2015
Sep08 40.272 5.7326 34.539 33.83 3.2007 23.241 2.4837 2.4645

ID=3476 A0 L0 X0 AUM0 LNC LM Gaussian VG
Dec07 121.7 43.763 77.936 71.2 20.779 100.16 3.8694 4.2534
Mar08 184.27 118.8 65.472 59.2 35.772 48.135 4.2059 4.6939
Jun08 107.36 50.208 57.152 59.2 22.989 71.159 4.5862 5.274
Sep08 160.13 109.61 50.517 59.2 41.592 99.562 4.882 5.2144

ID=5333 A0 L0 X0 AUM0 LNC LM Gaussian VG
Dec07 665.47 602.2 63.27 69.813 33.797 43.545 5.3805 5.3835
Mar08 674.68 587.23 87.452 92.863 22.611 76.072 8.079 7.5238
Jun08 2119.9 1984.7 135.23 282.11 100.46 116.87 11.206 11.222
Sep08 468.54 398.8 69.732 116.6 15.952 43.686 15.363 15.183

ID=3622 A0 L0 X0 AUM0 LNC LM Gaussian VG
Dec07 212.81 137.21 75.602 84 4.3888 36.857 4.201 4.7166
Mar08 415.85 329.49 86.358 143 15.573 68.009 4.1547 4.0631
Jun08 616.08 526.25 89.833 151 24.523 88.576 4.9749 4.9766
Sep08 601.74 496.94 104.8 155 21.672 74.3 5.5558 5.3044

ID=3714 A0 L0 X0 AUM0 LNC LM Gaussian VG
Dec07 29.107 18.772 10.335 9.44 1.2678 8.4383 0.2314 0.24914
Mar08 23.582 13.888 9.694 9.13 0.93782 5.2927 0.27903 0.3076
Jun08 15.975 5.9213 10.054 9.7 1.6494 7.5797 0.27298 0.36633
Sep08 23.564 14.975 8.5888 8.8 3.9488 5.6648 0.37248 0.45016

ID=6998 A0 L0 X0 AUM0 LNC LM Gaussian VG
Dec07 16.894 12.756 4.1371 3.2921 3.9944 3.636 0.55841 0.54062
Mar08 5.8768 1.6354 4.2413 3.4119 0.80091 3.9202 0.52911 0.53293
Jun08 5.9712 1.8011 4.1701 3.2402 0.71404 3.1561 0.51741 0.53633
Sep08 4.4436 0.83533 3.6083 2.9416 0.65873 3.199 0.51464 0.48122

ID=12030 A0 L0 X0 AUM0 LNC LM Gaussian VG
Dec07 101.25 54.526 46.721 50.113 11.184 24.624 2.0983 2.3871
Mar08 98.536 56.277 42.259 50.113 11.373 38.031 2.5571 2.8474
Jun08 89.251 46.263 42.988 50.113 9.1163 28.853 2.6042 2.8102
Sep08 92.278 59.427 32.852 50.113 2.3304 45.34 3.0759 3.5772
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3.4 Conclusion

In this paper, we estimate hedge fund leverage from available public infor-

mation. The estimated values are then used to separate hedge fund balance sheet

so that a more comprehensive framework of modeling and calculating capital im-

plication is developed. The estimation is done with regression-based style analysis

following [63] using time series data and we perform the estimation on an individual

fund level. The return cash flow is then separated into assets and liabilities and

these are modeled using joint laws built from either Brownian processes or Variance

Gamma processes. We follow [36], [73] and [74] to carry out the cash capital reserve

calculation.

We adopt the theory that funding leverage acts as an amplifier of the return

exposures to the underlying risks. Following the approach implemented in [63] so

that the leverage estimator is simply a sum of the absolute values of the estimated

coefficients of each fund. The most distinguishing character of our study compared

to previous studies, is that we perform the estimation on an individual fund level.

In [63], leverage indicators are obtained on a fund-family level and there are a total

of nine families based on different investment strategies. In order for our capital

implication to be meaningful, we would require fund level estimates of fun leverages.

This sort of estimation requires a relatively long time series of fund returns and

better identification of the right-hand-side regressors. We take CISDM hedge fund

monthly data and only retain funds who have continuous data for returns, from

February 1996 to September 2008. This results in 177 funds each with 152 monthly
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data points. The results of estimation are in agreement with results from other

similar research. Firstly, we notice that usually equity market factors (especially

S&P500 and SMB) are often included in the factor selections and show significant

influence on majority of the funds. Secondly, in general 3 to 5 factors are selected

in the first stage stepwise regression. Thirdly, the inclusion of factors proxying

the non-linear option returns as explanatory variables can improve the estimation

results as also documented in [63]. We also notice that in general, the regression

model with lagged returns give higher leverages on average. For the 177 funds

studied, there are only 12 reported historical average greater than 2, but in the

estimation we have 35 of them with average leverage greater than 2. Although

our leverage estimators on average are comparable to the reported ones, and we see

much improvement on higher and more plausible leverage numbers after options and

lagged returns are being included on the right hand side, the estimated leverages

are still not as high as what is perceived. Nonetheless, our leverage estimation is in

line with the level of leverage actually engaged in practice as counter-parties may

impose restrictions on acceptable leverage levels. Our estimation is also consistent

with the recent phenomenon of de-leveraging observed in the industry especially

as the credit markets deteriorated throughout 2008. Moreover, we argue that mis-

specification of models is not likely to be the key source of lower values of leverage

estimation, since the implemented regression has taken the step of model fitting

and our proxy factors are generally comprehensive as commonly practiced. Other

explanations such as dampened amplifying effect by using monthly observed data

rather than more frequent activities could also be crucial in interpreting the results.
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We also report results for a similar study using shorter period of January 2002 to

September 2008 with 1797 funds in the sample. The results and conclusions are

similar to the longer period.

The separation of assets and liabilities from estimated leverage values enables

a framework similar as in [36] and is an extension to our previous studies in [73] and

[74]. Even though some average leverage can be above 2 for example, when looking

at the whole rolling time periods, most of funds have leverages estimated below 1

for at least one period. For the purpose of separating hedge fund balance sheet

these leverage numbers that are less than one should not be considered. For the

period January 2002 to September 2008, there are 81 funds left in our sample after

requiring all leverage values greater than one and the funds have both data on AUM

and NAV. We finally calculate capital requirement for each fund for four consecutive

quarters, December 2007, March 2008, June 2008 and September 2008, each using

the previous 36 months of data for model fitting. We report calculated capital

requirement for these four quarters using four comparing models. The results show

that generally, modeling with correlating assets and liabilities gives higher capital

requirement then directly modeling final cash flows, since the correlation between

assets and liabilities is an added source of uncertainty. The capital requirement for

the four quarters in general also increase as it approaches September 2008.
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Appendix A

Equity Valuation – Using 2D-FFT on Spread Option

As we have shown the equity of a hedge fund of long-short positions posting

capital C and with limited liability is

E = e−rtE[(A(t)− L(t) + C)+] (A.1)

this is a spread option with a negative strike. However, we also know by put-call

parity that

E = A(0)− L(0) + Ce−rt + w (A.2)

where w is a put option

w = e−rtE[(−C − A(t) + L(t))+] (A.3)

or it could be viewed again as a spread (call) option

w = e−rtE[(L(t)− A(t)− C)+]. (A.4)

We wish to price this option and then use (A.2) to obtain the interested equity

value.

Since we have assumed (1.11) and if we define

XL = rt+X2 − ω2t

XA = rt+X1 − ω1t
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(A.5)

we have the joint characteristic function with X = [XL, XA]

ΦX(u1, u2) = E[eiu1XL+iu2XA ]

= exp[iu1(rt− log ΦX1,X2(−i, 0))]

exp[iu2(rt− log ΦX1,X2(0,−i))]ΦX1,X2(u1, u2)

Following [47] we write the price as

w = e−rt+c
∫ ∫

dxLdxA(eaL−c+xL − eaA−c+xA − 1)
+
fX(xL, xA) (A.6)

where c = log C, aL = logL(0) and aA = logA(0).

Define yL = −xL, yA = −xA, and notice

E[exp(iu1YL + iu2YA)] = ΦX(−u1,−u2) = ΦY (u1, u2) (A.7)

we may also write

w = e−rt+c
∫ ∫

dyLdyA(eaL−c−yL − eaA−c−yA − 1)
+
fY (yL, yA)

= e−rt+ch(aL − c, aA − c)

where

h(a, b) (A.8)

=
∫ ∫

dyLdyA(ea−yL − eb−yA − 1)
+
fY (yL, yA)

=
∫ ∫

dyLdyA(ea−yL − eb−yA − 1)
+
eλ1(a−yL)+λ2(b−yA)e−λ1(a−yL)−λ2(b−yA)fY (yL, yA)

= e−λ1a−λ2b
∫ ∫

dyLdyA(ea−yL − eb−yA − 1)
+
eλ1(a−yL)+λ2(b−yA)eλ1yL+λ2yAfY (yL, yA)
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for appropriate choices of λ1 and λ2. After transforming the right hand side treating

the two functions separately, we obtain (detail as in Appendix in [36], or [47])

h(a, b)

=
e−λ1a−λ2b

(2π)2

∫ +∞

−∞

∫ +∞

−∞
e−iu1a−iu2b

Γ(−λ1 − λ2 − 1− iu1 − iu2)Γ(λ2 + iu2)

Γ(1− λ1 − iu1)
ΦX(iλ1 − u1, iλ2 − u2)du1du2

=
e−λ1a−λ2b

(2π)2

∫ +∞

−∞

∫ +∞

−∞
eiu1a+iu2b

Γ(−λ1 − λ2 − 1 + iu1 + iu2)Γ(λ2 − iu2)

Γ(1− λ1 + iu1)
ΦX(iλ1 + u1, iλ2 + u2)du1du2

the second equality comes after a simple change of variables.

To compute h(a, b), we approximate the double integral by a double sum over

the lattice

T = {u(k) = (u(k1), u(k2))|k = (k1, k2) ∈ {0, . . . , N −1}2}, u(k) = −ū+kδ (A.9)

for appropriate choices of N , δ, ū := Nδ/2. For the FFT it is convenient to take N to

be a power of 2 and lattice spacing δ such that truncation of the u-integrals to [−ū, ū]

and discretization leads to an acceptable error. Finally we choose initial values

X(0) = (logL(0), logA(0)) to lie on the reciprocal lattice with spacing η = 2π
Nδ

= π
ū
,

T∗ = {x(l) = (x(l1), x(l2))|l = (l1, l2) ∈ {0, . . . , N − 1}2},

x(l) = −x̄+ lη, x̄ = Nη/2

We then have the approximation with X(0) = x(l) ∈ T∗
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h(x1, x2) ≈ δ2

(2π)2

N−1∑
k1,k2=0

e[iu1(k1)−λ1]x1+[iu2(k2)−λ2]x2

Γ(−λ1 − λ2 − 1 + iu1(k1) + iu2(k2))Γ(λ2 − iu2(k2))

Γ(1− λ1 + iu1(k1))
ΦX(u1(k1) + iλ1, u2(k2) + iλ2)

As usual for the discrete FFT, as long as N is even

iu(k)x(l)′ = iπ(k1 + k2 + l1 + l2) + 2πikl′/N (mod 2πi) (A.10)

This leads to the double inverse discrete Fourier transform

h(x1, x2) ≈ (−1)l1+l2
(
δN

2π

)2

e−λ1x1(l1)−λ2x2(l2)
[ 1

N2

N−1∑
k1,k2=0

e2πikl′/NH(k)
]

= (−1)l1+l2
(
δN

2π

)2

e−λ1x1(l1)−λ2x2(l2)[ifft2(H)](l)

where

H(k) =

(−1)k1+k2 Γ(−λ1 − λ2 − 1 + iu1(k1) + iu2(k2))Γ(λ2 − iu2(k2))

Γ(1− λ1 + iu1(k1))
ΦX(u1(k1) + iλ1, u2(k2) + iλ2)

For our numerical implementation, we choose parameters same as in [47]:

N = 29 λ1 = −3, λ2 = 1 and δ = 2−3.
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Appendix B

Fund Type and Strategy Categorization

In CISDM, funds report a certain fund type as well as some description on

the general strategy they employ. Fund types indicate whether the fund is a Hedge

Fund, a Fund of Funds, a Commodity Trading Advisor or a Commodity Pool Op-

erator. The Strategy is more of a free form description of the general investment

strategy of the fund. Hedge funds employ many different trading strategies, which

are classified in many different ways, with no standard system used. A hedge fund

will typically commit itself to a particular strategy, particular investment types and

leverage limits via statements in its offering documentation, thereby giving investors

some indication of the nature of the particular fund. We categorize hedge funds here

generally following the CISDM description and each strategy can be said to be built

from a number of different elements.

Hedge Fund: Basic type of funds. The following is a group of strategies hedge

funds may employ.

1. Relative value: (Arbitrage, Market neutral) - Exploit pricing inefficiencies

between related assets that are mis-priced.

a. Fixed income arbitrage - exploit pricing inefficiencies between related

fixed income securities.
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b. Equity market neutral (Equity arbitrage) - being market neutral by

maintaining a close balance between long and short positions.

c. Convertible arbitrage - exploit pricing inefficiencies between convertible

securities and the corresponding stocks.

d. Fixed income corporate - fixed income arbitrage strategy using corpo-

rate fixed income instruments.

e. Asset-backed securities (Fixed-Income asset-backed) - fixed income

arbitrage strategy using asset-backed securities.

f. Credit long / short - as long / short equity but in credit markets instead

of equity markets.

g. Statistical arbitrage - equity market neutral strategy using statistical

models.

h. Volatility arbitrage - exploit the change in implied volatility instead of

the change in price.

i. Yield alternatives - non-fixed income arbitrage strategies based on the

yield instead of the price.

j. Multi-strategy - fund uses a combination of strategies or diversification

through different styles to reduce risk.

k. Regulatory arbitrage - the practice of taking advantage of regulatory

differences between two or more markets.

l. Capital-structure arbitrage - seeks opportunities created by differential

pricing of various instruments issued by one corporation. Consider, for example,

traditional bonds and convertible bonds. The latter are bonds that are, under con-
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tracted conditions, convertible into shares of equity. The stock-option component of

a convertible bond has a calculable value in itself. The value of the whole instrument

should be the value of the traditional bonds plus the extra value of the option fea-

ture. If the spread, the difference between the convertible and the non-convertible

bonds grows excessively, then the capital-structure arbitrageur will bet that it will

converge.

2. Global Macro: (Macro, Trading) - Global Macro funds attempt to an-

ticipate global macroeconomic events, generally using all markets instruments to

generate a return.

a. Discretionary macro - trading is carried out by investment managers

selecting investments, instead of being generated by software.

b. Systematic macro - trading is carried out using mathematical models,

executed by software without any human intervention other than the initial pro-

gramming of the software.

3. Sector: emerging market, technology, health care etc.

Fund of Funds: a hedge fund with a diversified portfolio of numerous underlying

hedge funds and a fund invested in other funds of hedge funds. The fund of funds

may be also grouped into:

1. Conservative: - a low volatility, absolute-return fund of funds emphasiz-

ing consistent returns and capital preservation.

2. Opportunistic: - designed to target high absolute and high risk adjusted

returns. The fund will capitalize on Primores’ fund expertise and allow for a broad
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mandate in pursuing investment opportunities. Investments can include offshore

seeding of onshore funds, allocation to emerging managers, investments into less

liquid strategies offering access to non mainstream strategies as well as special sit-

uation investments.

Commodity Trading Advisor (CTA Managed futures, Trading): The funds

originally operated predominantly in commodities markets, but today they invest

in any liquid futures (or options) market. The two major types of advisors are

technical traders and fundamental traders. Technical traders may use computer

software programs to follow price trends and perform quantitative analysis. Funda-

mental traders forecast prices by doing the analysis of supply and demand factors

and other market information.

Commodity Pool Operator: an enterprise in which funds ( or securities, prop-

erty, either directly or through capital contributions) contributed by a number of

persons are combined for the purpose of trading futures contracts, options on fu-

tures, or retail off-exchange FOREX contracts, or to invest in another commodity

pool.

For fund strategies, since unlike the traditional investment arena, there does

not exist a universally accepted norm to classify hedge funds’ different strategies,

we present one popular and commonly used categorization segregated mainly as

“Non-Directional” and “Directional” strategies. Hedge fund strategies with low ex-
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posures to standard asset markets (ones following Relative Value, Long-Short, or

Risk Arbitrage type strategies) are classified as non-directional, while those having

high correlation with the market are classified as directional.

Non-directional Strategies: These strategies have less correlation with any spe-

cific market. They are commonly referred to as “market neutral” strategies. These

strategies aim to exploit short term pricing discrepancies and market inefficiencies

between related securities while keeping the market exposure to a minimum. As

most of the times, liquidity is limited in such strategies, they frequently run smaller

pools of capital than their counterparts following directional strategies. Included in

this group are the following strategies:

1. Event Arbitrage - A strategy of purchasing securities of a company being

acquired, and shorting that of the acquiring company. The risk associated with such

strategies is more of a “deal” risk rather than market risk.

2. Event Driven - A strategy which hopes to benefit from mis-pricing arising

in different events such as merger arbitrage, restructurings etc. Manager takes

a position in an undervalued security that is anticipated to rise in value because

of events such as mergers, reorganizations, or takeovers. The main risk in such

strategies is non-realization of the event.

a. Distressed securities (Distressed debt) - specialized in companies

trading at discounts to their value because of (potential) bankruptcy.

3. Equity Hedge A strategy of investing in equity or equity-like instruments

where the net exposure (gross long minus gross short) is generally low. Also referred
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to as Long-Short strategy. The manager may invest globally, or have a more defined

geographic, industry or capitalization focus. The risk primarily pertains to the

specific risk of the long and short positions.

4. Restructuring - A strategy of buying and occasionally shorting securities

of companies under Chapter 11 and/or ones which are undergoing some form of

reorganization. The securities range from senior secured debt to common stock.

The liquidation of financially distressed company is the main source of risk in these

strategies.

5. Fixed Income Arbitrage - A strategy having long and short bond posi-

tions via cash or derivatives markets in government, corporate and/or asset-backed

securities. The risk of these strategies varies depending on duration, credit exposure

and the degree of leverage employed.

6. Capital Structure Arbitrage - A strategy of buying and selling different

securities of the same issuer (e.g. convertibles/common stock) seeking to obtain low

volatility returns by arbitraging the relative mis-pricing of these securities.

Directional Strategies: These strategies hope to benefit from broad market move-

ments. Some popular directional strategies are:

1. Macro - A strategy that seeks to capitalize on country, regional and/or

economic change affecting securities, commodities, interest rates and currency rates.

Asset allocation can be aggressive, and leverage and derivatives may be utilized. The

method and degree of hedging can vary significantly.

2. Long - A strategy which employs a “growth” or “value” approach to

128



investing in equities with no shorting or hedging to minimize inherent market risk.

These funds mainly invest in the emerging markets where there may be restrictions

on short sales.

3. Hedge (Long Bias) - A strategy similar to equity hedge with significant

net long exposure.

4. Short - A strategy that focuses on selling short over-valued securities,

with the hope of repurchasing them in the future at a lower price. Short bias - take

advantage of declining equity markets using short positions.

5. Long/short equity (Equity hedge) - long equity positions hedged with

short sales of stocks or stock market index options.

6. Emerging markets - specialized in emerging markets, such as China,

India etc.
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