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A new optical technique for probing the small scales turbulence has been developed. When light is 

transmitted through the atmosphere, it can scatter off vortex filaments in the air that are at different 

densities from the surrounding air, and hence, have different indices of refraction.  These 

filaments, or eddies are distributed through a turbulent flow. Our experiment illuminated a 

turbulent flow with an expanded Gaussian laser beam.  Two detectors, capable of translation 

perpendicular to the beam path, observed intensity fluctuations at different points.  By analysis of 

two point spatial transmission correlation functions, the smallest length scales of clear air 

turbulence can be determined in real time without disturbing the flow.  By changing the type of air 

flow, different length scales associated with different conditions have been measured optically.  

The measured scales agree with measurements done by hotwire techniques and correspond to the 

Kolmogorov microscale. 
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Introduction 

 

This work introduces a new experimental method for probing the smallest 

scales in atmospheric turbulence.  What began as an exploration into the effects of 

atmospheric (or clear air) turbulence on the transmission of optical signals became a 

direct probe into the small structures of fluid turbulence itself using optical 

techniques.  There are many advantages of this method. It is very accurate and 

produces robust results in real time. It does not disturb the flow in any way. It does 

not require tracer particles or other means of decorating the flow. It is comparatively 

easy to deploy and use (in comparison to hotwire anemometry or particle imaging 

velocimetry) and it is inexpensive to construct the actual equipment. Unlike previous 

work on optical transmission through fluid turbulence, which was done at long range, 

where light was transmitted through a very wide interaction region producing 

multiple scatterings and interferences, this work was done at short range where the 

light was assumed to only scatter once from a structure in the turbulent flow.  Due to 

this, it was possible to investigate the structures of the flow itself. 

This work has three major parts.  The first part covers a basic overview of the 

theory and phenomenology of fluid turbulence and a brief discussion of the optics 

relevant to the problem of light transmission through fluid turbulence.  The fluid 

theory reviewed is quite mature and can be found discussed in many excellent 

textbooks, seminal papers and review articles.  However, it was essential to include 

this discussion in order to justify the main claims of the experimental results, namely 

that the optical device developed detected features of fluid turbulence that were to be 
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expected for the flows under consideration.  It was essential to present enough 

information to give the reader an intuitive sense for the behavior of fluid turbulence 

and some of the difficulties its study presents. The experimental nature of this work 

demanded that the goal of this section was to include only as much theory as was 

needed to discuss the experiment.  Due to this, many interesting discussions about the 

theory of fluid turbulence, like the “road to turbulence” and the relationship of the 

theory to chaos were completely omitted. Only passing reference was made to many 

fascinating (and even some basic) topics from a very rich discipline.  By no means is 

the theoretical discussion of fluid turbulence meant to be comprehensive nor does it 

represent any sort of theoretical breakthrough.  

The theoretical discussion of optics is similarly limited.  Most theoretical 

work done in the past involving optical transmission through turbulence involved 

long range radar, communications or astronomical applications. Typical scales were 

on the order of kilometers or higher. This work applies to an entirely different optical 

regime; ray optics, over short distances on scales less than a meter. Almost none of 

the previous theoretical work in the field applies.  It should be pointed out that since 

the hotwire probe is the workhorse of many fluid turbulence experiments, almost 

none of the previous experimental work into studying the scales of turbulence apply 

either, other than as a check to make contact with what has been observed in turbulent 

flows before.  In this sense, this work is both interdisciplinary and unique.  

The second part of this work contains the experimental details of this project. 

It discusses the design, construction and operation of the experimental device itself.  
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Experiments were also performed with hotwire anemometry.  A brief discussion of 

hotwire anemometry is also included in this section. 

 The third major section of this work reviews the results and discusses 

measurement of errors. The goal of this section is not only to demonstrate what was 

observed by the technique, but to point out that what was observed was what would 

be expected from the theoretical basics of fluid turbulence.  It is not claimed that this 

new device is seeing anything new yet.  It is claimed that it is seeing exactly what 

should be seen in a new way that is reliable, fast, and does not disturb the flow under 

observation. Further, this technique zeros in on the very smallest scales of fluid 

turbulence preferentially so it gives a direct look at the scales which are dissipating 

mechanical energy to heat through viscosity.  It can distinguish different flows from 

the change in that scale from one flow to another. It produces results in real time 

without the need for elaborate post processing. One can observe the correlation 

functions “settle” in a matter of minutes. In principle, the entire system could be 

automated and all analysis which is currently done post process could be done by 

coding additional software. Once the system is aligned, there is no difficult 

calibration needed. With a higher bit resolution, one could get accurate measurements 

in tens of seconds. By comparison, hotwire probes take in all scales at once, they 

must be calibrated individually, they must be placed into the flow itself, and they are 

extremely temperamental, fragile and expensive. 
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Chapter 1: An introduction to fluid basics and the challenges of 

turbulence 

 

Setting the stage 

This work started as an investigation of how fluid turbulence in the air effects 

the transmission of optical signals.  This is a multidisciplinary subject that bridges 

both optics and fluid mechanics.  The fruit of this labor was the development of an 

instrument that can probe structures in clear air turbulence.  This chapter will attempt 

to lay out some of the basics of turbulence from a theoretical view.  By no means is 

this an attempt to be an exhaustive discussion of a very rich field.  Rather, the goal of 

this chapter is to lay out sufficient theory to justify the experimental claims made 

later.   

Turbulence, as might be inferred from the title of this chapter, is a very 

complex subject that presents many challenges both theoretically and experimentally.  

Studying turbulence requires working with turbulent flows and demands developing 

familiarity with different flows.  While that last statement may seem obvious, in this 

context, it means that the mathematics is such that one must use a heuristic and 

phenomenological approach in attacking these sorts of problems.  There is certainly 
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hard and fast physics to be discussed and solid physical principle to be understood, 

however, unless one is dealing with one of a few special cases, the theory is more of a 

guide to developing proper intuition of how these systems behave than something that 

can be solved explicitly.  This is because the ultimate underlying theory of 

turbulence, the Navier-Stokes equations, can not, in general, be solved explicitly and 

computer modeling of its solutions in a given case is severely restricted by computing 

power. For solid mathematical reasons, much of the discussion of turbulence must 

revolve around scaling arguments and phenomenology. 

This chapter will lay out what some of those problems are in a more rigorous 

fashion and discuss some of the things that we can actually say solidly about the 

issues.  We start by laying out some of the basics of fluid mechanics and discuss 

some of the theoretical issues behind exploring the phenomena of turbulence.  As an 

example of the difficulties of this subject, it is important to note that there is no 

universally accepted definition of what exactly turbulence is. It is a mark of the 

complexity of the subject that turbulence is very much something that one knows 

when one sees it.  This problem is further compounded by the fact that when a fluid 

dynamacist talks of turbulence, what is meant is a certain state of a fluid system, 

while in the optical world, what is meant is something that is done to an optical signal 

passing through fluid turbulence.  These are two very different things even if the 

optical papers frequently use them synonymously.  Sometimes in this field, the 

problem is not only seeking the correct answers, but perhaps even having the correct 

questions.   
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 We have from our everyday experience, an intuitive sense of what turbulence 

is.  We can picture rapids in a stream, or the complex patterns in billowing smoke.  It 

is as if any notion of smooth flow or graceful streamline has been utterly banished – 

and yet there seem to be patterns within patterns.  A precise mathematical discussion 

of what qualifies as turbulence, and when a system has stopped transitioning into 

turbulence from a smooth flow and actually becomes a fully turbulent state is 

something that is discussed at length and debated in the literature.  Ultimately that is a 

discussion of a transition into chaos and a detailed discussion of that issue is beyond 

the scope of this work.  For the sake of discussion in this work, our turbulence is 

already fully developed and fully developed turbulence is defined as a state of 

statistically isotropic fluid motion where the analysis of Kolmogorov applies.  

Kolmogorov’s ideas will be discussed and outlined in this chapter.  One can also 

approach these ideas by looking at vorticity.  One goal of this chapter will ultimately 

be to refine what is meant by turbulence and some of its basic properties in the 

context of the flows examined.  In so doing, this will justify later claims that the new 

instrument sees exactly what one would expect it to see. 

 As a first brush, turbulence is a highly complex and dissipative state of fluid 

motion.  It is chaotic in the mathematical sense of the word, and much of the 

beginnings of chaos theory started with problems associated with turbulence and fluid 

flows.  As such, if one were to perform a fluid turbulence experiment, even the tiniest 

deviation in initial conditions would generate a completely different realization of 

turbulence, and any theory of turbulence that would be based on tracking one 

realization of it, i.e., something that could deterministically follow the evolution of 
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one fluid element, would be essentially useless – in much the same way that tracking 

an individual molecule of gas in a cylinder would be useless to describing what the 

gas was doing as a whole.  Much like the case in statistical mechanics, only certain 

bulk and average features of turbulent flows can be discussed. Any theory of 

turbulence must therefore be statistical in nature.  Turbulence is very much like 

entropy in the sense that, there are a number of ways to discuss it, but putting it into 

non-mathematical language that gives a true picture of what it actually is can be very 

difficult.  Unlike entropy however, we do not have any neat definitions of it to be 

written as simple (or even not so simple) mathematical expressions.   

 Much of the background in this chapter can be found in many standard (and 

excellent) fluid mechanics texts. However, since the overall work presented in this 

thesis is very interdisciplinary, it is worth including the fundamentals.  I follow the 

discussions of Landau, Davidson, Tartarski and Hinze [1,2,3,4] to present the basics. 

A brief note on notation 

 Unfortunately, in the field of fluid mechanics, and the literature of optical 

problems associated with transmission through turbulence, one encounters a wide 

variety of differing notations and notational legacies.  This problem is further 

complicated by the fact that much of fluid mechanics has developed its own 

notational traditions which may be confusing to someone who specializes in a 

different field.  These issues go beyond something like the different conventions of a 

mostly minus metric vs. a mostly plus metric when employing relativistic 

transformations. For example, sometimes  , will be the dynamic viscosity, and other 

times, it will be the Kolmogorov microscale, which some optics papers refer to as 0l .  
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Other optics papers define 
0l as the Taylor microscale, while fluid mechanics papers 

use  .  In some fluid papers,   sometimes also means thermal conductivity.  All 

optics papers refer to 
0l  (reserving   for wavelength) as the “inner scale” of 

turbulence; though sometimes, it is unclear which small turbulent scale is being 

referred to exactly at all!  What each of these things are will be discussed in due 

course. 

As a result of this, great care has been taken to be explicit about notation 

throughout this text, and the text will consistently follow one set of fluid mechanics 

notational conventions.  Even so, out of the necessity of legacy, sometimes, the same 

notation will be used to denote radically different things.  The reader is urged to 

examine the context of any given expression when in doubt, and they should 

especially do so, should they develop an interest in the wider literature. 

Equation Chapter 1 Section 1 

The basics of fluid mechanics 

 

 The first and most basic notion of fluid mechanics is the notion of a fluid 

element.  A fluid element is a vanishingly small volume of the fluid that is small 

enough to be treated as a differential, yet contains enough atoms or molecules of the 

fluid that it is not necessary to take the behavior of individual atoms or molecules into 

account. In some sense, a bulk parameter of a fluid that contains an “average” of 

molecular properties is viscosity.     

 One could ask at what point the equations of fluid mechanics, which are 

written in terms of fluid elements, would break down – and they would, for a 
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sufficiently rarified gas or, sufficiently small enough scale of observation.  However, 

for air at one atmosphere and around room temperature, or for that matter, most fluid 

experiments, this presents no difficulty.  At the scales and densities germane to this 

writing (air, at close to one atmospheric pressure and sub-millimeter scales) this is not 

an issue.  Using the Ideal Gas Law, PV=nRT, to estimate the number of molecules in 

a cubic mm of air, under laboratory conditions, gives on the order of 2 x 10
15

 

molecules and an average separation distance on the scale of nanometers.  More 

importantly, the mean free path is on the scale of tens of nanometers.  Intuitively, the 

mean free path must be the lowest bound on the applicability of the notion of a fluid 

element because any element smaller than that, would have some fraction of its 

constituent particles constantly leaving the element. 

The fluid element is treated in a way somewhat analogous to the way that 

charges are treated in classical electromagnetism.  Mathematically, there are many 

similarities between the fundamentals of fluid mechanics and classical 

electromagnetism.  Both are completely classical vector field theories.  Both subjects 

were investigated and developed by many of the same people.  Many of the 

manipulations one would employ when examining Maxwell’s equations carry over to 

the discussion of fluids as well.  Unlike Maxwell’s equations however, the Navier – 

Stokes equations present a substantially greater mathematical challenge. 

To properly begin our discussion, we consider a volume of space V, which 

contains a fluid of density  .  The total mass of fluid contained in V must be: 

 dV   

The flow of mass out of V per unit time must be: 
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     dV
t





 

  

However, the flow of mass out of a volume V can also be represented by: 

            d  u n   

Where u is the velocity of a fluid element and dn is a unit vector along the outward 

normal over the surface that encloses V.  Equating these two expressions is nothing 

more than saying that mass is conserved. 

 dV d
t

 


  
   u n  (1.1) 

The right hand side of (1.1) can be converted to a volume integral and the partial 

derivative on the left can be carried through.  This gives us 

 ( ) 0dV
t




 
   

 u  

for any arbitrary volume element.  For this integral to always vanish, the expression 

in brackets must vanish.  This is the equation of continuity.  Expanding, the equation 

of continuity is given by 

 0
t


 


    


u u . (1.2) 

Later, we will argue that the assumption that 0 u  is justified in many cases, 

however if we assume that our fluid is homogenous and has a constant density, this 

condition immediately follows. 

 So far, we have not taken viscosity or “fluid friction” into account.  A fluid 

that does not take these things into account is called an ideal fluid.  It is instructive to 

discuss an ideal fluid briefly, by deriving Euler’s equation (of fluids) before 

complicating matters.   
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Using vector analysis, we can consider the effects of pressure gradients on the 

fluid element. If we consider the pressure field p applied to a fluid element and then 

integrate it over the surface of that element we can convert to a volume integral in 

terms of p .  Imbalances in p create a net force on our fluid element.  However, the 

fluid element is not static. In order to express the instantaneous effect of these 

gradients on the element, the mathematics must describe a co-moving frame. We can 

immediately write: 

 D Dt p  u  (1.3) 

where we use mass per unit volume instead of mass to write force per unit volume. 

 The clever part of this derivation comes from asking what exactly is meant by 

D Dtu when we are actually discussing a fluid element that is itself moving along 

with an overall fluid flow.  This notation is not an accident. It denotes a derivative 

that follows the fluid element around as it moves in the overall flow. This is called the 

convective derivative and it was first introduced by Stokes.  We construct it via the 

chain rule. For a scalar, A, moving in the flow, we would simply write: 

 ( / ) ( / )A A t t A x x         (1.4) 

Switching to the case at hand, we have, over some time interval dt , two parts that we 

need to analogously evaluate for the vector quantity u.  The first is  t dt u which 

is calculated relative to an arbitrary fixed point in space.  The second part is the 

spatial variation of the fluid element away from that fixed point.  This is given for a 

vector by writing dx dy dz
x y z

  
 

  

u u u
.  Dividing by dt , we obtain the convective 

derivative of u,  
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 ( )D Dt t    u u u u . (1.5) 

Which automatically gives upon substituting (1.3) 

 
1

( )d dt p


    u u u . (1.6) 

Convective derivatives are defined as ( ) / ( )( )D Dt t      u u  where ( ) is a place 

holder for whatever the convective derivative is operating on, and u is the overall 

local flow of the fluid.  Convective derivatives follow the usual rules of 

differentiation. 

Equation (1.6) is Euler’s equation of fluid mechanics, which is an equation of 

motion for a fluid element in the absence of viscosity.  Again,  is density and p is 

pressure.  If one wanted to add a term for gravity acting on the fluid, all one needs to 

do is multiply through by  and add g  to the right hand side of the equation.  

It is very important to note the ( )u u term in Euler’s equation.  By following 

a very straight forward set of ideas, the fundamental non-linearity of fluid mechanics 

arises almost instantly and with very little effort.  It is fundamentally impossible to 

escape non-linearity if one accepts the notion of a fluid element, very basic 

Newtonian physics and basic vector calculus.  Mathematically, this non-linearity is 

the source of many beautiful things – indeed all of turbulence - because it will turn 

out that the equations of fluid mechanics would be very well behaved without it and 

nothing like a turbulent flow could possibly arise.  However, Euler’s equation is of 

limited use.  Real fluids are generally dissipative in their motions because they have 

the property of viscosity. 
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 The next step is to form the Navier – Stokes equations, which take viscous 

effects into account and appends them to Euler’s equation.  Ultimately, the conceptual 

idea behind viscosity is analogous to friction.  Fluids with high viscosity, like honey 

or tar, flow slowly and mix with great difficulty.  They are difficult to move through. 

Viscosity is something that is dissipative of both momentum and energy.  It arises 

when two fluid elements are in contact with each other and move relative to each 

other.  Ultimately, viscosity comes from the molecular or atomic structure of the fluid 

itself; however, there is no need to look into it with that degree of detail here.  If we 

visualize this, we can easily imagine that the effect of such a property might be to 

apply shear stresses to a fluid element.  Let us continue to assume that  is a constant.  

This implies that we are dealing with an homogenous fluid of uniform density.  If we 

assume that our fluid element is instantaneously in the shape of a cube, we can begin 

to write expressions for these forces.  Just to be careful in our discussion, force here is 

in terms of density and not mass. 

We start by simply noticing that whatever these viscous forces are must add 

on to the end of the Euler equation and note they must comprise both shear forces and 

normal forces acting on our instantaneously cubical fluid element. This gives us nine 

quantities to worry about, and is best written in tensor notation.  We adopt the tensor 

ij for this purpose.  All indices run over x, y and z. In such notation, xy , yz , zx  

etc… are the shear stresses and xx , yy  and zz  are the normal forces.  The notation 

xy means that the force is in the x direction relative to a plane normal to y.  Since we 

are not looking at relativistic fluids, the time component is treated as a separate entity. 
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 Any net imbalance in these stresses ij will lead to net acceleration of the fluid 

element.  For example, a difference in xy between the top and the bottom of the 

element would produce a net acceleration in the x direction. So we must be looking 

for changes in x as we vary from top to bottom in y.  To get the total effect, we need 

to integrate over the whole element and collect terms.  We find that a net viscous 

force in the j direction, jf  is given by 

 
ij

j

i

f V
x








 (1.7) 

where summation over repeated indices is understood.  This allows us to immediately 

write a more full equation of motion. 

 ( )
ij

i

D
d dt p

Dt x


  


     



u
u u u  (1.8) 

 Multiplying through by   on the tensor term of (1.8) was left out with malice 

aforethought. It will be put back in as we refine what that term means.  

To get more detail, we invoke Newton’s law of viscosity. Stresses and strains 

will deform our fluid element.  Newton’s law of viscosity simply postulates that the 

stress and strain be proportional to the density of the fluid, a constant  (which is 

called the kinematic viscosity) and the rate of change of velocity of the fluid element 

in a given direction.  In other words, as the element drags along, getting “rubbed” by 

other viscous fluid elements it slows down more the further it goes.  Newton clearly 

sees viscosity as bleeding energy out of the fluid element.  We collect all possible 

terms in a given direction and write 
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ji

ij

j i

uu

x x
 

 
     

. (1.9) 

Substituting (1.9) into (1.8) we obtain the Navier-Stokes equation. 

 2( )
D

d dt p
Dt

         
u

u u u u  (1.10) 

If we wish to add a gravity term or any other force term to the equation of motion, we 

just add it on to the right hand side as before with Euler’s equation.  The Navier 

Stokes equation is the “fundamental theory” of fluid mechanics.  It is non-linear and 

non-local. 

It turns out that one can relate pressure to velocity.  This has profound 

consequences.  If we assume a constant density and take the divergence of both sides 

of (1.10) we are left with 

 2( )
p



 
     

 
u u  (1.11) 

Equation (1.11) is invertible via the Biot-Savart law over an infinite domain. 

 
[ ( ) ]

( )
4

p d




 



u u

x x
x x

 (1.12) 

The implication is that we can write pressure at a point in space in terms of velocity if 

we know the velocity field over all of space.  However, that means that the velocity 

field over all of space contributes to the pressure at a given point.  This is what is 

meant by the statement that the Navier-Stokes equations are non-local.  Physically, 

the condition 0 u  implies that sound waves travel infinitely fast or that the fluid 

is incompressible.  Even if we relax that condition and allow for sound waves to 

travel at some large speed relative to the scales we are looking at, and further 



 

 16 

 

complicate the terms of the Navier – Stokes equations, we would still find that the 

pressure at any given point still depends on what its neighbors are doing out to some 

radius. At the end of the day, any structure of the fluid communicates with all other 

structures in the flow, and those structures change and communicate back to the 

original part of the fluid under consideration.   

The next step is to discuss how viscosity dissipates energy in a fluid flow.  We 

start with a definition. 

 
1

2

ji
ij

j i

uu
S

x x

 
     

 (1.13) 

This is called the strain rate tensor and we see from the definition that  

 2ij ijS   (1.14) 

 

We can construct an energy equation or more specifically, a rate of change of 

energy equation out of (1.10) by dotting both sides with the field u.  Noting that 

 
2

2

D D u

Dt Dt

 
   

 

u
u  

After much algebra, we receive 

 
 

   
2

2
/ 2

/ 2 / / 2i ij ij ij

j

u
u p u S S

t x
   

 
             

u u  (1.15) 

where 

 
ij i

i ij i ij

j j j

u
u u

x x x


 

 
      

 

and the operator   is understood to act as a gradient or a divergence as appropriate. 
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This is an equation that tells how the energy in the fluid changes with time. If we 

imagine the fluid enclosed by an arbitrary boundary, the four terms in (1.15) are 

identified as follows [2]: 

1. The rate of kinetic energy convected across a boundary 

2. The work done by pressure on the boundary 

3. The work done by viscous forces on the boundary 

4. The loss of mechanical energy to heat. 

From this, we identify that the rate of dissipation of mechanical energy to heat, is 

given by 

 2 ij ijS S  . (1.16) 

One could follow a similar derivation by taking the cross product of u and (1.10) on 

both sides to show 

  
2

2 ij ijS S    u . (1.17) 

Immediately, we see that the dissipation of mechanical energy to heat in a flow has 

something to do with the curl of the flow.  Automatically, a curl invokes an image of 

some form of rotation and a curl of the velocity field invokes some sort of swirling 

motion.  Swirling motions in fluids are given many names.  In this work, eddies and 

vortices are used interchangeably for that purpose.  From equation (1.17) we see that 

vortices dissipate energy to heat through viscosity.  The picture will soon emerge that 

turbulent flows have many scales of motion that cascade down, by passing energy 

through ever smaller scales and ultimately give up their energy to heat through 

viscosity at the smallest scales.  With this in mind, we define the vorticity field, ω  as  

   ω u  (1.18) 
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 Though it may seem a bit of mathematical slight of hand, we can decompose 

any velocity gradient into a strain component and a vorticity component.[1,2] 

 
1 1 1

2 2 2

j ji i i
ij ijk k

j j i j i

u uu u u
S

x x x x x
 

      
                  

 (1.19) 

From its mathematical form, we can see that vorticity is properly named. The velocity 

field through the strain tensor ijS will deform a fluid element, or push it along, and the 

vorticity  will rotate it. Considering this in terms of the entire velocity field 

intuitively shows the mathematical origins of swirling motions in fluids.  Vorticity 

stacks in much the same way that one can picture magnetic fields being formed out of 

adding magnetic moments. It becomes appropriate to talk about vortex tubes and lines 

of vorticity in a flow.  It is these structures that our experiment is observing.   

 The origin of vorticity in a given flow frequently turns out to be an interaction 

with a boundary layer or a physical boundary.  For example, when a flow goes 

through a pipe, or wind interacts with a solid object, viscosity causes the flow to rub 

against the boundary which imposes a torque.  These torques create vortex tubes 

which are then blown along by the main flow. 

 In order to discuss how vortex tubes evolve, and discuss a little more about 

vorticity itself, we can, with some work, manipulate the Navier Stokes equation 

(1.10) into the following form. 

   2D

Dt
   

ω
ω u ω  (1.20) 

This is accomplished by taking a curl and using a vector identity for  2 / 2u .   

The first term of the right hand side of equation (1.20) generates stretching of the 
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vortex tube while the second term diffuses vorticity through the fluid.  This can be 

seen by noting that if one neglects the first term on the RHS, we have a diffusion 

equation.  From this, we can see that once vorticity starts, it diffuses through the 

medium.  We note in passing, that if we were to restrict ourselves to only two 

dimensions, the first term would disappear automatically, since ω  would always be 

perpendicular to the divergence of u.  Because of this, discussions of two dimensional 

flows are fundamentally different than three dimensional ones for more than just the 

obvious difference in dimensionality.  

 

 

Fig [1.1] An image of the evolution of grid turbulence from Tsinober [5] p.14.  Smoke has 

been added to air to act as a tracer.  The diffusion of vorticity through the flow is plainly 

visible as the flow evolves. 

 

 

 As stated above, the effect of the first term of (1.20) is to stretch vortex tubes.  

This is readily seen by imagining a vortex tube and a set of coordinates defined along 
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it.  If we define a coordinate s along the length of the tube, and 
su  as a velocity 

component in that direction, we see immediately that   /s su du ds ω ω .  If 

/sdu ds  is positive, then two arbitrary points along s would move apart and the vortex 

tube would be stretched.  In order to conserve angular momentum, this would make 

the vorticity increase which we see readily by referring back to (1.20).  However, as 

vorticity increases, by equation (1.17) energy dissipation increases.  The walls of the 

vortex tube are a lossy boundary layer that can generate other motions. This happens 

all the way down to a scale where viscous forces dominate and give up the energy of 

vorticity to heat through viscosity.  Once a tube is stretched too thin, it “evaporates.”  

We can now justify the picture that a turbulent flow has many scales of 

motion that exchange energy in a cascade. Large scales rub against boundary layers 

and bleed energy off into smaller scale vortices.  This goes down to a range of 

smallest scales where the kinetic energy of the motion is quickly turned into heat. The 

existence of these many scales of motion corresponding to many scales of vorticity is 

familiar to anyone who has watched leaves swirl on a windy day or watched patterns 

of smoke coming from a cigarette.  There are cycles within cycles. Using Kelvin’s 

theorem, we can discuss how these cycles get moved along with the overall flow. 

 Kelvin’s theorem applies to the special case that viscosity is zero.  Obviously 

viscous effects are very important – as shown above to the evolution of real world 

fluids.  However, for very many fluids of interest, like air, in the case of this 

experiment, viscosity is very small, and even though the theorem does not apply 

directly, it is still instructive to examine. Lord Kelvin showed via his theorem (stated 

without proof) that for an inviscid fluid vortex lines become frozen into the flow.  It 
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will be shown that high Reynolds number flows correspond to turbulent flows and the 

limit of zero viscosity.  This is because of the definition of the number, and the fact 

that as the Reynolds number increases, the non-linear terms of the Navier-Stokes 

equations dominate.  Even though no real fluid commonly encountered is inviscid, the 

limit of zero viscosity corresponds to a state of “pure” turbulence.  It is therefore still 

instructive to discuss Kelvin’s theorem. 

 Mathematically, we wish to look at the rate of change in flux of the solenoidal 

field ω  through a material surface S.  A material surface means that it is composed of 

the same fluid particles, and the whole thing is moving along with the flow.  It turns 

out that [2] p.48: 

 ( )
S S

d d
d d

dt dt

 
     

 
 

ω
ω S u ω S . (1.21) 

But for an inviscid flow, 

 ( )
d

dt
 

ω
u ω . (1.22) 

Therefore, 

 0
S

d
d

dt
  ω S . (1.23) 

Clearly, the integral part of (1.23) is a constant with respect to time. We can convert 

to a line integral over the bounding curve of the surface and arrive at a formal 

statement of Kelvin’s theorem. 

 d   u l  (1.24) 

where  is a constant called the circulation.  What this means is that the circulation is 

conserved in an inviscid fluid as the flow evolves. This implies physically that the 
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vortex lines in a fluid move with the flow as if they are frozen into the flow.  This an 

elegant mathematical way of saying that we expect to see tubes of vorticity move 

down stream.  If we take viscostiy into account, we see that these tubes of vorticity 

give up their energy as they evolve.  That evolution and the nature of turbulence 

phenomenologically, is the topic of the next sections.  

 

The work of Reynolds 

 One thing that can not be overstated when discussing turbulence is a certain 

respect for clearly stating upfront those things which can not be stated clearly. This is 

not meant as joke, but rather an admission of the limitations imposed upon us by the 

difficulties of working with the Navier-Stokes equations, whose unknown solutions 

are deeply sensitive to initial conditions, and which must also change according to 

different boundary conditions.  The tantalizing intuitive insights into the behavior of 

fluids one can garner from manipulating the equations through vector analysis 

techniques, statistical assumptions and the creation of non-dimensional parameters 

provide a strong phenomenological picture of the system in general terms.  However, 

they leave room for some arbitrariness in the application of certain definitions.   None 

the less, on the level of physical intuition about such systems, these insights are 

invaluable.  

Before discussing Kolmogorov’s statistical insights into turbulence, it is very 

instructive to discuss the work of Reynolds.  While many physical systems can be 

successfully analyzed, by taking one limit or another that effectively linearizes the 

equations, turbulent flows were observed by Reynolds to arise from the non-
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linearities of the Navier-Stokes Equation.  In the Nineteenth century, Reynolds did a 

number of experiments involving the flow of water in pipes.  His experiments varied 

flow rates and pipe diameters.  He characterized these flows with, his now well 

known, non-dimensional number Re /lu  , where l is the diameter of the pipe and u 

is the overall flow rate.  The literature also frequently denotes the Reynolds number 

by R.  When Reynolds did his experiments, he observed that above a certain critical 

value of Re, the flow in the pipes became turbulent.  Consider the steady state form of 

the NSE, 

 21
( ) p



 
     u u u . (1.25) 

The term   is called the dynamic viscosity and its notation is a legacy. It must not be 

confused with the Kolmogorov microscale, which is unfortunately, frequently 

denoted in the literature, by the same Greek letter.  In this context, the kinematic 

viscosity is related to the dynamic viscosity by 





 .  Notice that dimensionally, 

2 2~ /u l


 

 u  is linear in u , and that 2( ) ~ /u lu u  is non-linear.  Here, l is a 

characteristic length scale that Reynolds associated with the largest possible scales of 

vortices, and hence, with the diameter of the pipe.   Eventually, in the discussion of 

Kolmogorov’s ideas, a value of l defined in such a manner, will become an example 

of an outer scale of turbulence.  The ratio of the terms is 
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u l ul
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
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This means that for small Re, the nonlinear term of the Navier Stokes equation is 

negligible, and the equations become approximately linear and very much better 

behaved. We immediately see several things from the definition of the Reynolds 

number.  A fluid with high viscosity effectively dampens non-linearities and as a 

result, highly viscous, slowly flowing fluids like tar or honey do not easily (if ever!) 

give rise to turbulence.  This should also make sense in the context of equation (1.20) 

and the discussion that followed it.   Vorticity diffuses through the velocity field with 

viscosity as the coefficient.  A high viscosity therefore causes vortices to diffuse and 

dissipate rapidly with respect to space, and such motions to very rapidly give their 

energy over to heat with respect to time.  

On the other hand, in the limit of zero viscosity, Re explodes, which would be 

equivalent to a state of “pure” turbulence, and the phenomenology of Kelvin’s 

theorem becomes very relevant.  A fluid with low viscosity, like air or water, 

guarantees that vorticity can propagate through the medium, interact with other 

centers of vorticity and generate the complex and unpredictable (in a non-statistical 

sense) flows observed in turbulence.   

The Reynolds number marks a transition into turbulence.  This is exactly what 

Reynolds observed as he increased the rate of flow while he kept the pipe diameter 

fixed.  Beneath a certain critical value, streamlines are smooth, and above it, 

turbulence is to be expected.  In practice, turbulence develops in pipe flows for 

Reynolds numbers around 3000 depending on experimental conditions and how one 

defines l, the characteristic large scale of the system.  For a circular pipe, the diameter 

is the logical choice for l, but suppose, one has a square or rectangular pipe.  Suppose 
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one wanted to discuss the flow around an object moving through a fluid?  In practice, 

l becomes the hydraulic diameter, which is defined as four times the cross sectional 

area of the pipe or object divided by wetted perimeter, which is the perimeter of that 

area which is in contact with the fluid. With a pipe this reduces to the diameter. 

 Exactly where the critical number lies depends on the geometry of the flow, 

the boundary conditions involved and the definitions used. The Reynolds number on 

the one hand, is an insightful guide for when to expect turbulence, but on the other, it 

is impossible to produce a hard and fast universal constant for the critical value.  

 

 
 

Fig [1.2]. A pipe flow experiment.  Ink is injected into the fluid to visualize the flow. 

Successive experiments are shown as one goes down the photo. Moving downwards, the flow 

rate and hence, R increases.[5] 
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 There is also a turbulent, or Taylor, Reynolds number. Which is denoted R .   

 
u

R




  (1.27) 

where   is the Taylor scale (to be defined later, but represents a small scale at which 

eddies begin to dissipate to viscosity), and u is the deviation of the mean of the fluid 

velocity. From this definition, it is clear why this is called a turbulent Reynolds 

number.  The deviation of the mean of the velocity field represents a velocity 

associated with smaller structures added on to the speed of the overall flow, and the 

Taylor microscale is the scale at which those smaller structures begin to go to 

viscosity. The advantage of R is that it characterizes a local level of turbulence 

without having to make assertions about the outer scale or the history of the 

turbulence. 

In the field of fluid mechanics, there are many other nondemsional numbers 

that have been developed to characterize fluid flows. Two other such numbers, which 

will become relevant to the discussion of hotwire anemometery, are The Prandtl 

number and the Nusselt number.  The Prandtl number is used to characterize heat 

flows, and is the ratio of the viscous diffusion rate to the thermal diffusion rate.   

 Pr
p

f

c

k




   (1.28) 

Here, /f pk c  is the thermal diffusion rate, pc is the specific heat, and fk is the 

thermal conductivity, with units of W/mK, and is not to be confused with the 
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Boltzman constant.  When one remembers that the effect of viscosity is to bleed off 

energy from fluid motion, one sees that a small Prandtl number means that heat 

diffuses very quickly compared to loss of energy due to viscosity.  Air, at one 

atmosphere, has a small Prandtl number of around 0.7.  We note in passing, that the 

Peclet number is the mass transfer analogue of the Prandtl number. 

The Nusselt number, Nu, is the ratio of conductive heat transfer to convective 

heat transfer.  

 
f

hl
Nu

k
  (1.29) 

Here h, is the convective heat transfer, l, is the characteristic length (as in the 

definition of the Reynolds number) and fk is the thermal conductivity of the fluid.   

It should be mentioned that all of the non-dimensional numbers and scales 

discussed form not only a rule of thumb reference for conditions in a complicated 

flow, but also create sanity check for the experimentalist.  They are something better 

than being able to “just” extract “something” from a complicated flow that can be 

used as a touch stone.   If for instance, one has in hand, a reasonable estimate of Re 

being 2, it is unlikely that there is any turbulence.  If Re is well over 3000, one can 

rest assured that there is fully developed turbulence somewhere. However, they all 

very much do arise (and particularly in the case of discussing different commonly 

used turbulent scales) from the need to be able to “just extract something” which is 

still meaningful to be spoken about, and measurable by someone else, from the data.   
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The ideas of Kolmogorov 

 

The great Russian mathematician and physicist, A.N. Kolmogorov is credited 

with some of the deepest insights into the theory of turbulence.  His approach to the 

problem was almost entirely statistical in nature.  His insight was to impose the 

symmetries of the Navier Stokes equations onto his statistical description and to then 

impose phenomenological arguments. 

The symmetries of the Navier-Stokes equations are: 

 3( , , ) ( , ', ) 't r v t r r v r   (1.30) 

 ( , , ) ( , , )t r v t r v    (1.31) 

 3( , , ) ( , , )t r v t r ut v u u    (1.32) 

 ( , , ) ( , , )t r v t r v   (1.33) 

 ( , , ) ( , , ) (3)i i ij i ij i ijt r v t r v SOA A A  (1.34) 

 1

0
( , , ) ( , , ) limh ht r v t r v h


   




   (1.35) 

In words, the symmetries are space and time translation, Galilean transformation, 

parity, rotation, and scaling.  One thing that should leap out is the scale symmetry 

(1.35).  In the limit of zero viscosity, one sees different scales as a symmetry of the 

equations and hence, a feature of the system.  This is immediately reminiscent of the 

turbulent energy cascade.  The different scales are identified with the multiple 

different vorticity structures, or eddies, in the flow [6]. 

Observationally, as was discussed earlier, as Re increases, flows begin to 

break these symmetries.  In fully developed turbulence, the visible symmetries of 
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lower Re flows are completely absent.  Since there are such tremendous mathematical 

difficulties surrounding turbulence, searching for statistical properties of turbulence 

becomes natural if not essential.  Even if it were possible to calculate, knowing the 

full trajectory of a given fluid element for one realization of turbulence would not be 

particularly helpful (in of itself) in discussing what is going on in another realization 

of turbulence. 

This leads to the next major (some say the deepest [6]) insight into turbulence 

by Kolmogorov.[8,9] Kolmogorov combined statistical methods with phenomenology 

and observation to write his landmark papers on turbulence during the Second World 

War.  The Kolmogorov picture must be developed in several steps. 

Implicit in his papers, is the hypothesis that the symmetries of the NSE return 

in a statistical sense in a state of fully developed turbulence.  He set out to define 

statistics with the assumptions of homogeneity and isotropy and went on to impose all 

of the symmetries.  By homogeneous he meant that the statistics are independent of 

time and position translations, and by isotropic he imposed that the statistics are both 

rotation and parity invariant. 

Kolmogorov was certainly aware of the phenomenology of turbulence in 

terms of the energy cascade.  He was also well aware that at the smallest scales, 

vortices would dissipate to heat.  This led Kolmogorov to postulate the existence of 

an inner and an outer length scale for turbulent flows. The outer scale, L  is the length 

scale at which energy is injected into the system.  In pipe flows, the obvious choice 

for L is the diameter of the pipe, since it is not possible for there to be any larger scale 

of motion.   If vorticity diffuses from the walls, it can only ever diffuse as far as the 



 

 30 

 

other wall of the pipe. It is the size of the largest possible eddies produced.  Those 

large eddies cascade their energy down through the smaller scales.  The inner scale 
0l  

is the scale that viscous effects take over, and energy of motion is converted into heat.  

In between these scales is what is called the inertial convective range – so named 

because this represents the vortices which are being blown down stream as per the 

discussion of Kelvin’s theorem.  The phenomenology of looking in this range is the 

next piece of his model. 

We define   as energy dissipation per unit mass i.e. it has units of J
s kg

.  

Consider an eddy or vorticity structure, smaller than the outer scale, but still large 

enough that viscous effects do not destroy it.  It has some characteristic length scale 

of l. If we eliminate   from our considerations, because we are looking at fully 

developed turbulence, where viscosity goes to zero, the only physical parameters of a 

fluid left to express   are  , u , the overall flow velocity, and l , the scale of the 

eddy or vortice.  On purely dimensional grounds, Kolmogorov argued 

 3~ /u l  (1.36) 

 1/3 1/3 2/3 1/3~ ~l lu l and t l    (1.37) 

where the subscript l is a reminder that we are talking about a vortex or eddy that is of 

a given scale l.  From this we see a characteristic turnover time and eddy velocity. 

The turnover time is interpreted as a lifetime for a given eddy at a given scale before 

is spawns other vortices or dissipates. This is related to the energy dissipation which 

Kolmogorov postulated was scale invariant. In other words, he postulated that the 

energy flowed down to the lower scales at the same rate. 
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 On the other hand, one could consider the viscous regime, where diffusion 

takes over, and again argue on purely dimensional grounds that 

 2~ /diss disst l  . (1.38) 

This gives a timescale for the dissipation (which is what the subscript diss denotes). 

The two time scale expressions cross.  Equating the two time scales, and solving for 

the characteristic dissipation length gives   (which is not to be confused with 

dynamic viscosity, this is a notational legacy) the Kolmogorov micro scale.  The 

Kolmogorov microscale represents an “average value” for the smallest possible 

turbulent scales. 

  
1

3 4


  (1.39) 

One immediately sees from this definition, that as viscosity gets smaller, it 

becomes possible to make smaller and smaller scales.  One also sees that as the 

energy available for the cascade increases, it is possible to “push through viscosity” to 

ever smaller scales.  On the flip side, if  is small, and it depends on u, the dissipation 

scale could easily be larger than the outer scale of the system.  To make this concrete, 

for a small pipe flow u, the turbulent energy cascade never gets started. This is a neat 

little sanity check that the phenomenology agrees with observation. 

It is very important to note that in air, the time scales associated with the 

length scales in the inertial convective range, l L   , are much longer than the time 

it would take sound to cross an eddy.  This is the justification for assuming 

incompressibility.   
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We are now in a position to put the bits together and look at Kolmogorov’s 

statistics.  In his first paper [8] (referred to in the literature as K1941a) Kolmogorov 

started with a general expression for a two point velocity correlation function.  He 

then imposed the constraints of homogeneity and isotropy and converted to spherical 

coordinates.  He does this in the context of the structure function 
1 2( , )vD r r  which is 

intimately related to the correlation function and is defined as (in modern notation) 

 2

1 2 1 2( , ) [ ( ) ( )]uD r r r r u u  (1.40) 

where denotes statistical averaging.  In the context of isotropy and homogeneity, 

the structure function becomes a function of r r   only.  Kolmogorov ultimately 

imposes Eq.(1.33) and makes the following predictions: 

 2/3 2/3( ) ( ) ,rr uB r D r C r r L      (1.41) 

 4
3

( ) ( ) ,tt rrB r B r r L    (1.42) 

 21
15

( ) / ,rrB r r r     (1.43) 

where  , the microscale and C is a constant.  rrB  and ttB  are the longitudinal and 

transverse components of the two point correlation function. 

The two thirds law, Eq.(1.37) is of great importance to scattering from 

turbulent flows.  Kolmogorov’s third paper from 1941 [9] is of great importance to 

turbulence theory directly.  He makes the same statistical assumptions and scaling 

arguments, but instead, started by examining the three point correlation function and 

found that he could draw conclusions directly from the NSE themselves.  He predicts 

 
3 4

5
Re

( ( )) lim Rev r r 


   (1.44) 
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where 3( ( ))v r is a convenient notation for the three point velocity correlation 

function. Eq. (1.40) is of such importance because it is exact and non-trivial.  It 

imposes a sort of “outer limit” on any possible theory of turbulence in that any such 

theory must either obey (1.40) or break one of its assumptions. 

At this point, we pause in our discussion to define what we mean by 

turbulence in the context of this work.  We mean that turbulence is a highly 

dissipative state and chaotic state of fluid flow, where multiple scales of motion exist 

and cascade energy down to dissipation through viscosity, and the ideas of 

Kolmogorov apply.  That is to say, that there is a sufficiently high Re, the turbulence 

is fully developed and isotropic.   

One might reasonably complain that all of this discussion has been little more 

than a phenomenological discussion of turbulence based on clever rearrangements of 

the Navier-Stokes equations and appeals to physical intuition.  It may seem like little 

more than a parlor trick.  The insights of Kolmogorov frankly are little more than 

imposing symmetries and phenomenology onto basic tensor algebra. As such, they 

are arguably somewhat divorced from the system in question.  

It is certainly true that much more theoretical development investigating the 

Navier- Stokes equations has been done than is presented here, and that turbulence 

theory is a very large, active and fruitful field [7].  However, it is always reduced to 

noticing and elucidating the phenomenological features or the rich mathematical 

features of the Navier-Stokes equations as they apply to this or that set of constraints 

or conditions coupled with a strong measure of physical intuition.  This applies to all 

cases.  We can discuss the general behavior of certain families of solutions to these 
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equations, in certain circumstances, but we can only talk about turbulence in such 

phenomenological terms.  Unfortunately, this is the best that can be done.  This is 

because we have no way as yet to solve the equations directly.  If we could somehow 

solve for the velocity field given a set of initial conditions then there would be 

nothing left to do with the theory. The Navier-Stokes equations are too compellingly 

generated from basic physical principles to expect (or hope!) that something else will 

come and replace them.  

Many great physicists and mathematicians have tried to attack the equations 

directly for over a century.  None have succeeded, though many have shed light on 

various facets of the problem.  No general solution as yet has been found.  The 

mathematics necessary to make a successful attack might not yet even exist.  It has 

been said in many texts, that many believe that there will never be an overall theory 

of turbulence, but rather a collection of specific theories for specific flows under 

specific conditions.  All is not lost however.  We can still sufficiently describe and 

predict many behaviors of turbulent flows with what we have. 

 

Some final notes on turbulent scales 

 

 The statistical analysis of the Navier-Stokes equations lends itself very well to 

the study of correlations of the velocity field.  From this analysis, two additional 

scales are commonly discussed.  These are the integral scale and the Taylor 

microscale.  Both of these scales are usually measured with hotwire probes. 
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 The integral scale is the area under a time auto-correlation curve for the 

velocity field, which was transformed into a spatial correlation by multiplying with 

the local flow speed.  The correlation function is dimensionless. The area under the 

curve takes on units of length.  Since the smaller scales are more numerous than the 

larger scales, this corresponds to a weighted average measure of all turbulent scales in 

the system.  It is of necessity smaller than the outer scale. 

B(r)

r

B(r)

r
 

Fig[1.3]The Integral Scale is the area under a spatially transformed time autocorrelation 

function. This has units of length since B(r) is dimensionless. 
 

 The Taylor microscale,   is created by taking the first two terms of a Taylor 

expansion of the spatially converted time autocorrelation.  Those two first terms 

correspond to a parabola which must intersect the x axis.  The x intercept of that 

parabola is the Taylor microscale.  Phenomenologically, 1/ 2Re l  . It can be 

thought of as the scale where loss of kinetic energy to viscosity begins to take effect. 
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Fig [1.4] The Taylor microscale is the x intercept of the first two terms of a Taylor expansion 

of a correlation.  

 

 As a final remark on phenomenology, there are three statistical results that are 

useful for analyzing hotwire anemometry data which are presented here without 

derivation [2].   

 
1

3 4( / )    (1.45) 

  
2

15 /u x     (1.46) 

  
1

222 / /u u x    
 

 (1.47) 

In all of these expressions, 
1

2 2u  is the root mean square velocity fluctuation. 

Important points in summary: 

 

 

1. The Navier - Stokes equations contain the theory of turbulence. 

2. As the Reynolds number increases, the non-linear terms in the Navier-Stokes 

equations become significant. 
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3. This leads to many different scales of motion in turbulence which are 

characterized by vorticity. 

4. The larger scales exchange energy to smaller scales by spawning them. 

5. This process continues down to the inner scale, where the interaction of 

vorticity and energy dissipation converts kinetic energy into heat. 

6. The greater the initial flow speed and hence Re, the smaller the smallest scales 

are. 

7. There are several commonly used and measurable scales of turbulence that are 

discussed.  Going from largest to smallest, they are the outer scale, the integral 

scale, the Taylor scale and the Kolmogorov microscale.  The outer scale 

represents the scales at which energy is injected into the system.  The integral 

scale is formally the area under a velocity correlation function curve (hence 

integral).  It represents a sort of average scale somewhere in the inertial range. 

The Taylor scale is extracted by taking the x intercept of the first two terms of 

a Taylor expansion of a velocity correlation function.  This represents the 

point that scales begin to die off due to viscosity.  The Kolmogorov 

microscale is extracted phenomenologically and is the scale where viscosity 

must dominate. 

 

Some notes on the correlation function 

 Since the research presented in this work revolves around measurements of 

correlation functions, a discussion of them is in order.  In this work, we define the 

correlation function as follows 
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( )
I d I

BAB d
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 

 
  (1.48) 

where I I I   , subscripts A and B refer to channels A and B,   is the deviation, 

and brackets refer to averaging. In the experiment, the correlations of two voltages, 

which correspond to intensity, are measured. This is a discretized form of the 

correlation.  The parameter (d) is the separation in either space or time, depending on 

context, of either the actual physical separation of the two detectors, or the lag in time 

between samplings.  When d = 0 we refer to that as the autocorrelation, and it implies 

that A BI I .  To be very specific, in terminology, this is the demeaned, two point, 

cross correlation of discrete samples of signal A and signal B.  “Two point” means 

that it convolves two signals that it accepts as arguments.  One could define higher 

order, n-point correlation functions involving n quantities, or define them in a 

continuous case which would accept functions for the arguments and then integrate.  

However, there is no need to consider such cases here. 

 The correlation function B(d) is a statistical function, which on average, is 

bounded on the interval [1,-1].  It tells of a dependence or a relationship between the 

two arguments in a statistical sense. If the correlation is 1, the two quantities being 

fed into the correlation function are said to be perfectly correlated.  In other words, 

this is a measure of the two things being the same thing.  If the correlation is zero, the 

signals are said to be uncorrelated. This is a way of saying that the two inputs have no 

statistical relation to each other at all.  This implies that there is no relationship at all 

between what is going on at B compared to what is going on at A.  If it is -1 then the 

signals are said to be anticorrelated.  This implies that whenever signal A is doing one 
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thing, signal B is always doing a specific other thing.  One can see from the definition 

that B(0) always equals 1.   

 Before remarking further on the mathematical properties of the correlation 

function, it is important to point out that a measured correlation function is model 

independent. One role of theory may be to attempt to explain why this sort of 

correlation as opposed to that sort of correlation obtains. However, one need not 

know anything about the particular signals one is analyzing to determine if there is a 

correlation between them.  As an experimental technique, in the sense of something 

that is useful to measure, this makes the correlation function very powerful.  An 

analysis of the correlation function will determine if two signals correspond to 

looking at the same thing, and how long or how far apart the sources of the signals 

must be before they are looking at something else.  This makes the correlation 

function an obvious choice to probe scales in a turbulent flow.  The scales must relate 

to how long it takes a correlation function to de-correlate.  

 Some mathematical properties of the correlation function are: 

 ( ) ( )B d B d   (1.49) 

and 

 ( ) (0)B d B . (1.50) 

The way that discrete correlation functions increase sensitivity through demeaning is 

seen as follows.  Let us compare a non demeaned correlation function to a demeaned 

one.  Brackets will represent averaging and summation over indices, as always, is 

implied. We define the non normalized correlation as: 

 i iA B  (1.51) 



 

 40 

 

And we define  

 i iA A A B B B       (1.52) 

where the bar also represents taking a mean average.  This is of course simply the 

demeaned variable.  Then  

 iA A A    (1.53) 

and an identical expression can be made for 
iB .  Substituting these expressions into 

(1.51) we obtain the following:  

 i iA B AB AB BA A B      (1.54) 

Since we expect A and B to have an equal chance to be above or below the means 

of A and B respectively for any given data point, we expect the long term average of 

these quantities to vanish.  Also, since averaging commutes with addition (1.54) 

reduces to  

 i iA B AB A B     (1.55) 

as i gets large.  What we see from this is that the demeaned correlation is something 

that sits on top of a large constant (the product of the averages) in the undemeaned 

correlation.  If one is dealing with small fluctuations in comparison to the average 

signal, the interesting part of the expression, where all the data is, can get lost.  Since, 

in our experiment, the average received voltage was on the order of 1V, and the 

standard deviation of the fluctuations was on the order of 0.001V, which is very small 

in comparison, using the de-meaned correlation was a necessary step to extract the 

data of interest.  
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 It can be seen from the definition, that the demeaned correlation function can 

become negative. It is possible for a given reading to fluctuate below the mean.  

Theoretical work by Fante predicts negative portions of the correlation in certain 

cases of optical transmission through turbulence [29]. 

 

Optics and Scattering 

 

 Doing an optical experiment to measure the scales of turbulence fluctuations 

could not be possible if light did not interact with the turbulence fluctuations 

themselves.  It is well known that atmospheric fluctuations interfere with the 

transmission of optical signals.  Most people have seen the way that images waver 

when looking over hot asphalt or the stars twinkling at night. Signals can be broken 

up, scattered, or caused to wander off a target in numerous ways. This is of particular 

importance if one is interested in radar or using adaptive optics for optical telescopes 

in astronomy, for example.  Most of the literature in the optics world revolves around 

attempting to overcome the issue of getting a clean optical signal through atmospheric 

“noise.”  Atmospheric effects from multiple scatterings and interferences can create a 

very complex speckle-like pattern in the incoming light.  The results of this are very 

dramatic.  A wave front that started smooth and Gaussian becomes a complicated 

speckle-like pattern. 
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Fig[1.5] A picture of the intensity variations of laser light, taken over long range after 

interacting with atmospheric turbulence, to produce optical turbulence. The scale is in 

cm. Reproduced from Banakh et al.[13]  By contrast, the flutuations measured our 

experiment, are not visible to the naked eye. 

 

 

Since the current experiment studies scattering of short wavelength light that 

has passed along a short path, most of the optical analysis that exists in the literature, 

which generally deals with long (> 100 m) paths does not really apply.  Most work on 

electromagnetic wave transmission through turbulence started with issues associated 
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with radar and microwave transmission.  In those cases, the wavelengths involved 

need not have been very small in comparison to the structures causing scattering.  

Transmission of optical frequencies came onto the scene somewhat later, but 

historically, in all of those cases, the investigations explored the problems of 

transmission over long ranges.  Therefore, my discussion of much of the present 

theoretical optical work in this field will be limited because it does not apply. 

In the optics world, the theoretical starting point is the Kolmogorov’s 2/3 law. 

[14]  It is quite reasonably assumed that within the inertial range, r L   , there are 

a series of interacting turbulent scales that evolve on a time scale much more slowly 

than the time it would take light to trasverse them.  This is in essence, Taylor’s 

“frozen in” hypothesis as applied to optics.  It should also be repeated that the 

evolution of an eddy in turbulence occurs on a time scale much longer than the time it 

would take sound to traverse the eddy.  This justifies the assumption of 

incompressibility that went into the earlier discussion of the Navier-Stokes equations. 

What makes the scales scatter light in the first place is a fluctuation in index 

of refraction.  This fluctuation in index of refraction occurs because regions of air at 

different temperature will have different densities and as a result different indices of 

refraction.  The concept is that these regions are carried by the turbulence as a 

“decoration” and that they will follow a spatial structure function in the same way as 

the Kolmogorov law.  In the literature [14] structure functions (1.41 - 1.43) become 

expressions for temperature by replacing the constants C and   with TC .  This is 

justified by assuming the energy dissipation of the cascade to be constant.  Of course, 

that implies that one could write a constant for index of refraction fluctuations 
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following the same form as well.  In the world of optical turbulence, eqs. (1.41 -1.43) 

become: 
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. (1.56) 

The constant nC  is squared in eq. (1.56) out of convenience for other optical 

calculations. 
2

nC  is called the index of refraction structure parameter.[14]  It is called 

a constant, and treated as such in the literature, but that is a misnomer.  It can vary 

spatially over a propagation distance as the beam goes through regions with different 

atmospheric conditions.  Since what is measured are optical intensity fluctuations in a 

beam that has traversed some long range, of unknown air conditions, it is possible to 

generate the same value of optical structure parameter in infinitely different ways.  A 

long enough range of relatively placid air – which would not be considered turbulent 

by any fluid definition could easily produce enough scattering and interferences to 

yield an optical signal that was just as broken up or distorted as the same signal going 

through a comparatively short range filled with actually turbulent air, in the fluid 

sense.  Over a range of kilometers, or even tens of meters, unknown gusts along the 

path of transmission all contribute to any distortion of an incoming optical signal.  

There is simply no hope of inversion from the results of a long optical path to the 

various fluid motions that caused the distorted wavefronts. To make this idea 

concrete, once phasors wrap around through 2  or more, there is no hope to figure 

out a unique way what actually happened from all of the possible ways it could have 

happened.  Ultimately, the structure constant is related back to the local  of fluid 

turbulence in different regions that the light traverses, which is not a universal 
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constant itself.  In the optical world, nC  is loosely thought of as a measure of the 

strength of turbulence.  Here, this refers to optical turbulence which is realized in the 

form of temporal and spatial intensity fluctuations at a receiver.  It is reasonable to 

use the index of refraction fluctuation in this manner.  Over a long optical range, it is 

impossible to start from the fluid turbulence itself and derive a more concrete 

measure, because different regions of turbulent air that the path traverses could all 

potentially have different regions of flow with varying Reynolds Numbers.  As such, 

someone in the field (in the literal sense of outside in a field) who is trying to make an 

optical system work, needs some basic idea of how to characterize the range that is 

being worked on. 

At this point, we should point out that intuitively, the smallest scales of 

turbulence are the ones likely to scatter light the most. This is not just because they 

are small compared to the wavelengths in question.  One would expect that as the 

vortices stretch and become thinner as they dissipate their energy to viscosity, that 

there is a more energy flow going to heat over a smaller area than would be the case 

at the places in the cascade where a new vortex could be formed.   This means that 

there will be a larger difference in index of refraction compared to still air, and hence 

stronger scattering.  From the results of the current experiment, the scales actually 

observed correspond to the smallest scales of turbulence for flows of the kind 

examined.   One of the central features of our technique is that it preferentially zeros 

in on the smallest scales and extracts them directly, while hotwire and other 

measurements have to infer those scales from the phenomenology and laborious 

analysis, or in the case of PIV, directly look for them in a very lengthy analysis.  To 
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be discussed in a table in the results section, the scales we get directly, because of this 

preferential scattering, correspond beautifully to the data of others for the 

Kolmogorov microscale, obtained by other means. 

From eq. (1.56) the next standard step is to take a Fourier transform of the 

covariance function.  This produces what is called the spatial power spectral density, 

or more simply, the spatial power spectrum, denoted ( )n  .  After doing the 

appropriate integrals, it turns out that in one dimension, eq. (1.56) implies that ( )n   

follows a -5/3 power law, and that in three dimensions we have  

 
2 11/3( ) 0.033n nC     (1.57) 

The factor of 0.033 is a numerical approximation for all of the factors of   and other 

constants (from gamma functions) that come out of the integration.  Eq. (1.50) is 

called the Kolmogorov spectrum.  There are “competing” spectra in the literature 

which are extensions of the Kolmogorov spectrum and are widely used.  They are the 

Tartarskii spectrum [14] 

 
2 11/3 2 2( ) 0.033 exp( / ) , 1/ , 5.92 /n n m mC L            (1.58) 

and the Von Karman spectrum [14] 
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
 (1.59) 

It should be noted strongly that the exponential terms tacked on to the Kolmogorov 

spectrum are attached only for mathematical convenience and have no firm basis in 

physics.  In their defense, the equations apply in the inertial range by design.  There is 

also a Hill spectrum, [16] but it will not be reviewed here.  To see why we want a 

spectrum at all, we now switch to scattering proper. 
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Scattering proper 

 

Since most optical turbulence problems are concerned with transmission through the 

atmosphere, we start by assuming an incoming monochromatic electromagnetic wave 

solution to Maxwell’s equations, and write 

 1 1( ) (1 ( )), ( ) 1n n n x x x  (1.60) 

where this represents small variations in the index of refraction.  Here, 1( )n r  is a 

small, isotropic, homogenous, random, scalar field. It is possible to account for 

variations in index of refraction that have time dependence.  However, such variations 

in real fluids, compared to the transit time of light, render them negligible.  Andrews 

and Phillips give an expression for the magnitude of these variations in index of 

refraction. [14] 

 6 3 2 ( )
( ) 1 77.6 10 (1 7.52 10 )

( )

P R
n R x x

T R
      (1.61) 

In expression (1.61) units are rolled into the constants such that the index of 

refraction is dimensionless. We can see that these changes in index of refraction 

depend on the local variations in temperature and pressure.  This is exactly what fluid 

turbulence will provide.  If we were to insert a random field for the index of 

refraction into Maxwell’s equations, and attempt to find wave solutions, the unknown 

field E becomes parameterized by the unknown random field ( )n x , and cannot be 

solved exactly.  Approximation methods must be employed. 
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 The most commonly applied approximation is the Rytov method.  It should be 

mentioned that the Born approximation fell out of vogue when it was observed that 

predictions calculated with that model did not reproduce observed data.[14,16] 

 The Rytov approximation seeks solutions to Maxwell’s equations of the form 

[16] 

 0 1 2( , ) ( , )exp[ ( , ) ( , ) ...]U L U l l l   r r r r  (1.62) 

where the   terms are complex phase arguments.  The evaluation of any of the 

statistical moments of the E field when calculated using this expansion (or Born) lead 

to integrals over ( )n r  which were Fourier transformed to the spectral density, ( )n  .  

The spectral density of choice is then inserted into the calculations.  Any of the 

approximation methods, used in the optics literature, like the Born approximation or 

the Rytov approximation have this feature.  Calculating quantities of interest becomes 

a question of what type of wave (spherical, Gaussian or plane,) what type of 

approximation, and what spectrum.  Much theoretical work in optical turbulence 

revolves around calculating one of the various combinations of wave type, 

approximation and spectrum. A comprehensive discussion of all of these 

combinations is well beyond the scope of this thesis. 

 The Rytov approximation, and the Born approximation are also limited in 

application to what is called weak fluctuation theory (intensity variations are not large 

and multiple null regions are not present in the incoming wavefront).  They do not 

predict the correct statistics for so called strong turbulence i.e. large fluctuations.  

There is another approximation called the Extended Huygens Fresnel Principle that is 
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employed for strong fluctuations.  Unfortunately, as of this writing, strong fluctuation 

theory does not seem to fit well with available data.[14,18] 

Fortunately, for this experiment, the optical wavelength used, 632 nm is 

approximately four orders of magnitude smaller than the smallest observed scales of 

turbulence, in flows like those examined here, which are on the order of tenths of 

millimeters.  Because of this, complicated scattering calculations can be essentially 

replaced with ray optics. 

The air is a linear, nonconducting, nonmagnetic material. We can also assume 

that the index of refraction varies very little over the wavelength of an incoming ray 

of light.  In the optical regime, we are able to seek solutions to Maxwell’s equations 

that satisfy: 

 
2

2 2

2
( ) 0n

c




 
   
 

x  (1.63) 

This simplification follows from the assumption that ( )n r varies slowly, since 

that would imply that the permittivity of the medium varies slowly (compared to 

wavelength).  Therefore, gradients of the permittivity would drop out when they are 

accounted for in Maxwell’s equations.  Not surprisingly, this discussion leads to the 

eikonal approximation.   

Following Jackson [17], in the case at hand, solutions  , to (1.63) have a 

local wave number  

 ( ) ( ) /k n cx x  (1.64) 

and we seek them of the form: 

 ( )/i S ce   x . (1.65) 
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  The scalar function ( )S x is called the eikonal.  Equation (1.65) implies that the 

solutions  are plane waves with wave vector  

 ˆ( ) ( ) / ( ) ( ) /S c n c   k x x x k x  (1.66) 

 What is important to take conceptually from (1.66) is that k̂ is a unit vector that 

points in the instantaneous direction of ( )S x .  This is at the heart of the geometric 

interpretation of the discussion.  We make the connection that  

 ˆ( ) ( ) ( )S n x x k x . (1.67) 

Very quickly, this evolves into a problem of variational calculus. When we substitute 

(1.65) into (1.63) and create an equation for ( )S x , we are able to neglect the higher 

order terms because of the slow spatial variation of ( )n x compared to the wavelength 

of the light in question.  We can make the eikonal approximation 

 2( )S S n   x . (1.68) 

Using this to simplify the math, a Taylor series expansion of S becomes essentially a 

propagator when inserted into (1.65).  If we imagine some origin relative to which our 

plane wave incrementally advances at a position r, we invite the geometric 

interpretation directly by tracing out the ray path s, associated with the wave.  

Specifically, ˆd

ds


r
k , ˆd

ds
 k and ( )

dS
n

ds
 r .  Putting all of this together, we come 

to the ray equation, or the generalized Snell’s law. 

 ( ) ( )
d d

n n
ds ds

 
  

 

r
r r  (1.69) 

 The above analysis applies to the scattering of light off of one scattering 

vortex.  One could model the vortices as essentially small cylinders or ellipsoids of 
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random orientation, and attempt to calculate ray trajectories in a computer simulation. 

However, in terms of the optical analysis of the experiment that was performed, our 

analysis is simplified even further.   

Whatever light came in from the collimated and expanded beam of the laser 

hit an eddy and even though it was still very strongly forward scattered, we assume 

that it scattered away from the pinhole of the detectors without interfering with light 

scattered by other regions of the fluid outside of the narrow cylinder defined by the 

optical axis and the pinhole. A highball estimate of how forward scattered light from 

these eddies are can be made by imagining diffraction from a hole or a slit.  Using 

sin / d  where d is a correlation length, which we believe corresponds to the 

Kolmogorov microscale, gives theta ~ 0.0015 rad.   The idea is that the pinhole 

defines a narrow cylinder along the beam axis. Only single scattering from a vortex 

that lies within this cylinder can affect the amount of light that reaches the detector 

behind the pinhole. What matters here is that light from another parallel pinhole 

diameter cylinder will not interfere with the light coming to the detectors if we 

measure close enough to the interaction region.  

In this sense, we are also in a “single scattering regime.” Light is very unlikely 

to scatter away from the detector, leave a viewing cylinder, and then scatter off of 

another turbulent structure in another cylinder only to enter the detector.  The 

scattering region is optically thin compared to the extreme forward scattering. 

Specifically, with a forward scattering angle ~ 0.0015 rad, and an interaction region 

only 30 cm wide, even the small fraction of power diffracted at close to that angle, 

would not leave the viewing cylinder with a diameter of 0.5mm, to hit another 
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structure outside of that cylinder before leaving the interaction region.  If there was a 

wide interaction region or a long optical path (the conditions of almost every optical 

turbulence experiment in the literature) multiply scattered light (in the sense that the 

light scattered away from the detector, hit another eddy and came back in, or 

interfered with light from eddies outside the field of view) would certainly reach the 

detector and that would have to affect the data.  We would expect that by going 

further back, scattered light from a region outside of the pinhole would interfere with 

the signal coming in from directly in front of the pinhole. 

This was checked by taking measurements of correlation length of the same 

flow, with the detectors at ½, 1 and 2 m distant from the interaction region. There was 

no appreciable difference in results. Specifically, correlation lengths did not change.  

Had there been a meaningful contribution to the signal coming in from sources 

outside the viewing cylinder, there would certainly have been an effect. One of the 

features of this method of optical measurement of turbulent scales is that it takes 

much of the more complicated optics out of the analysis. 
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Fig[1.6] The detector apertures in the experiment are close enough to the source of scattering, 

and the scattering is so forward that any scattered light coming in from a source outside of the 

cylinder of view defined by the aperture will not enter the aperture.  This greatly simplifies 

any discussion of the optics. 
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Chapter 2: Experimental procedure 

 

Overview of the Experiment 

Equation Chapter 2 Section 1 

 In brief, the experiment examined correlation lengths and times of sections of 

an illuminated column of laser light in real time. This was done by expanding a 10 

mW HeNe laser beam with a focused 30 mm beam expander and shining the light 

through a region of turbulent air. The turbulence was freely decaying grid turbulence 

generated by an industrial strength blower. The turbulence was blown at a right angle 

to the beam path and the portion of the flow, that the beam traversed, was 

approximately 30 cm wide, with its edge approximately 20 cm from the beam 

expander.  The mouth of the blower was 60 cm from the beam axis for most 

measurements, though comparisons were made to a 30 cm displacement for one 

measurement. A hot plate was placed directly in front of and underneath the output of 

the blower which could be set to different temperatures and thus provide more intense 

scattering centers to be picked up by the flow.  On the other end of the range, 1 meter 

from the beam expander, the column of light was split and sent to two silicon photo 

detectors, which were both fitted with pinholes and optical filters. The difference in 

optical path length between the two detectors was 30 cm. The detectors were mounted 

such that they could be displaced either vertically or horizontally relative to a 
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common zero in the center of the incoming disk of light. The signals from the 

detectors were converted to digital signals by a DAQ and then sent into a computer 

for analysis.  The computer could then be used to construct both time and spatial 

correlations in real time. From this, the time scales and spatial scales of correlated 

shadows of the fluid turbulence could be determined. 

Laser 30x Beam 

Expander

A

B

Detectors

Air Flow

 

Fig[2.1] Experiment schematic. The expanded beam formed a disk in the plane perpendicular 

to the apertures on the detectors. The detectors could be translated to look at different regions 

of the disk. The mouth of the blower was in general 60 cm from the beam axis. 

 

The genesis of the experiment was to probe what happens to light as it passes 

through a turbulent medium by examining correlation length and time scales and thus 

gain insight into the breaking up of wave fronts in strong optical turbulence. Again, 

the core mechanism is that pockets of air at different temperatures create scattering 

centers and the more scattering the more the signal would be affected. It turned out 

that the technique was not particularly useful for long range experiments, in the far 

field, over the range of a typical optical link.  This is because there are an infinite 

number of ways for scattering phenomena to propagate into the far field to produce 
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the same results. Once multiple scatterings lead to light entering the detectors, one 

could produce a short correlation length optically with relatively placid conditions, 

but with a long enough range, while one could produce the same short scale results by 

having extremely turbulent air (in the fluid sense) over a shorter range. There are 

many other confounding factors. Lensing effects of larger hot pockets of air could 

shift the entire beam away from the detectors, rendering a run very difficult to 

perform.  A strong gust of air in the middle of a long range might not be noticeably 

different from two gusts of air at different places in the range, and there was no way 

to measure conditions at regular intervals over the long range. Most importantly, if 

one wanted to examine a nicely turbulent pattern of received light intensity, the wind 

would not cooperate by maintaining steady conditions relative to the time it took to 

take a statistically meaningful measurement. Over long distances, there are simply too 

many confounding factors and too many unknowns about the conditions of the air 

through which the beam travels as it goes down the range.  In this situation it is 

difficult to obtain meaningful results beyond qualititative observations that the beam 

was getting more randomized in the given weather conditions and range, over a short 

period of time relative to various different and unknown weather conditions, such as 

varying wind gusts.  

However, in the near field, single scattering regime, under controlled 

circumstances, our experimental technique provides robust and highly precise 

measurements of small scale turbulent structures. The theoretically accepted picture 

of many scales of turbulence composed of stretching and twisting vorticity structures, 
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that concentrate at the smallest scales, led organically to the idea of using optical 

techniques involving correlations to probe these structures.   

In a laboratory environment, at close ranges of less than a meter, flows of a 

consistent nature could not only be reliably reproduced, but could be examined 

without the problems associated with either multiple scatterings or multiple unknown 

and uncontrolled sources of turbulence.  Reproducible flows could be produced and 

maintained over multiple runs.  The environment was temperature controlled and 

humidity controlled.   

If the two detectors were close enough to the scattering region, scattered light 

from regions other than those the detector was looking at directly could not enter the 

detectors. It was found by direct measurement that varying the path length from the 

center of the turbulent region to the beam splitter and hence the detectors, from 50 cm 

to 2 meters made no discernable difference in correlation lengths.  Measurements 

were made at 0.5m, 1m and 2m to verify this.  

Temperatures could be held constant.  Background light could be essentially 

eliminated, though with the filters as tight as they were that was not as much of a 

concern indoors. We could directly, and reproducibly, probe the shadows of 

structures in turbulent flows passing transverse to the beam line.  Those shadows 

corresponded to a slug of turbulent air passing in front of the detectors, and because 

of the complicated structure of that slug, one could tell when it had passed because 

the two detectors would no longer correlate.  What had started as a project that 

examined long range links became a probe into the structures of fluid turbulence 

itself. 
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The length scales measured by this examination corresponded to the smallest 

scales in the turbulence because of the structure of turbulence itself and the nature of 

the measurement.  As was discussed previously, most of the structure of a turbulent 

flow is of the smallest scales, and because in our experiments, for the light reaching 

the apertures of the two detectors to correlate, these apertures cannot be much further 

separated than that small scale.    

To justify that assertion, consider the following picture.  Imagine a pile of thin 

sticks of the same length lying on the ground.  Light is shining up through those 

sticks.  The light makes a complex shadow pattern when it passes through.  The 

largest size scale of that shadow pattern that can result is, of necessity, the length of 

those sticks.  

Now imagine two detectors, of an aperture diameter close to the scale of those 

sticks looking down on those sticks.  Both detectors can agree by correlating their 

signals whether the extent of a shadow pattern that both are looking at is the same 

shadow pattern. The scale over which they can do this is the scale of the sticks.  If 

you move one detector away from the zero position, in any direction, where both 

detectors started from looking at the same place, by two stick lengths you are 

guaranteed to be looking at a completely different shadow configuration. If you 

imagine that the diameters of the apertures exactly match the stick lengths, then a 

“one stick” displacement could still have half of the same stick in one detector and 

the other half in the other, and there would still be a correlation. However, by two 

stick lengths it is impossible for that same stick to seen by both detectors.    We can 

thus conclude, that provided the apertures are on the scale of the stick lengths or 
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smaller, and the 0.5mm apertures were for the flows examined, that the correlation 

lengths measured must correspond to the scales of the sticks in the pile. 

In the case of turbulence and the actual experiment, those sticks are of course, 

the actual fine structures in the flow itself. The laser light is scattered by those fine 

structures the most.  The small structures concentrate heat, therefore they scatter 

more. Another argument for why the detectors focus on the small scales of turbulence 

is that a comparatively large blob of air that contains the smaller ones is going to 

scatter light in the same way across its entire dimension and create a sort of constant 

background – on top of which the much higher scattering small structures are overlaid 

and because the experiment measures a demeaned fluctuation, a more slowly 

changing background will contribute less to the correlation.   

The chaotic nature of turbulence guarantees that the actual configuration of 

filaments and eddies in one slug of air will be completely different than the 

configuration in the slug of air next to it.  The two slugs will make completely 

different shadows.  There will therefore be no “fooling” of the correlation by some 

sort of unexpected repeating condition.  Once the detectors are looking at patches of 

air that are separated by much more than the length of the structures, they must be 

looking at an entirely different shadow configuration, and will no longer correlate. 

Since those length scales are dominated by the smallest scales of turbulence, we can 

be confident that we really are looking at the small scale structures of turbulence. 

This is one of the reasons that later measurements were switched to vertical 

displacements only.  The presence of the mean flow itself could affect the results.  

For a spatial correlation measurement, shifting horizontally meant that there would be 
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some portion of the correlation contributed to falsely by the patch of air seen at 

detector A having the time to blow downstream in front of detector B a moment later 

and thus make the length scale seem slightly longer than it actually was.  By 

displacing vertically, the patch of air being sampled was blown out of the field of 

view of both detectors at the same time.  Since the fully developed turbulence is 

isotropic, this was completely justified. 

 

Details of the Experiment 

 For this experiment, four sets of apertures, of four different diameters were 

machined.  The apertures were 2mm, 1.5mm, 1mm, and 0.5mm respectively.  The 1.5 

mm apertures were never used. Steps of half an aperture width were taken to be the 

standard displacement in any experimental run. Since at first, we did not know what 

sorts of scales we would find when we looked but, knew they had to be on the scale 

of a millimeter, we simply started with the 2 mm apertures and worked our way down 

until we had found a sufficient resolution to see a smooth spatial correlation.  The 0.5 

mm apertures turned out to work quite well at resolving the spatial correlation 

sufficiently to make reliable measures of the scales that were being observed.   

Doing the experiment with even smaller apertures would have added more 

resolution and perhaps made the measured length scales even more precise, however, 

that was not possible given the physical limitations of the equipment available.  In 

order for this experiment to work, setting a good zero position was essential.  The 

zero position was defined as the position where both detectors were looking at the 
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same slug of air at the same time.  This meant aligning them so that their fields of 

view overlapped each other as much as possible. 

This was accomplished by placing a pinhole in front of the beam splitter.  This 

produced two laser dots, which were physically on the order of 1 mm diameter, 

respectively on the two pinhole faces of the aperture.  When aligning apertures that 

were larger than 0.5mm, a larger initial pinhole was used, however the procedure was 

unchanged. 

The first dot, transmitted to the face of the aperture A was aligned so that the 

pinhole of A appeared in the center of the laser dot.  Once that was set, it was not 

touched.  Aperture A did not need to be in the exact center of the dot, it was however 

useful to use the center as a visual cue for the first order of the alignment.  The mirror 

that directed the beam to aperture B was then adjusted to align that dot so it would be 

centered on the pinhole of aperture B.   

This was only the first step, however.  The correlation itself was used to guide 

the fine adjustments.  Since the device could calculate correlation functions very 

accurately in real time, and since the correlation function was giving significant 

figures out to 4 decimal places, the fine adjustments were made by attempting to get 

correlations as close to one, for the auto correlation bin, as much as possible.  If the 

two detectors weren’t looking at the same thing, they simply would not correlate. In 

this sense, the system “aligns itself.” The procedure then was to make fine 

adjustments on the mirror and watch the effect of moving in that direction on the 

autocorrelation. For a given run, using the smallest apertures, 0.5 mm, victory was 
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usually declared when the autocorrelation was above 0.975.  But for many runs, the 

starting autocorrelation was better.  

Alignment could be more of an art than a science.  If realignment was 

required because the He-Ne laser had been disturbed or if the system was displaced to 

take data downstream, sometimes a greater than .99 autocorrelation would occur 

within a few minutes of work.  Other times, it could take a quarter hour.  However, 

once the routine became practiced, it could generally be finished in less than five 

minutes.  For obvious reasons, it is much easier to align larger apertures than smaller 

ones by this method. The larger the aperture was, the less a small deviation in 

alignment would change the total viewing area the detectors overlapped.  When the 

centers of the pinholes were close to each other, there was more common light. 

This also put one of the physical limitations on the experiment itself and is 

one important reason that apertures smaller than 0.5 mm were never used.  The 

apertures were cut out of copper, made as flat as possible and then covered in flat 

black paint.  The paint had a slight variation in its surface, no matter how carefully 

the disks were machined and painted.  Telling the difference between the opening of 

an aperture of say 0.1 mm (the smallest drill bit available) from a dark point in the 

laser speckle pattern was not something that could be done with the naked eye for the 

first alignment.  There are many ways that this difficulty could be overcome in a more 

refined version of the device, however, since the 0.5 mm openings were already 

giving adequate resolution for the flows under study, such changes that would have 

been expensive and labor intensive were not pursued.  One obvious solution would 

have been to precision manufacture apertures out of a very smooth material that was 
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already black and (critically) would allow the drilling of very narrow clean holes.  

This is why just finding some black plastic was not the answer.  Then one could have 

used a magnifying glass to look more closely at the first alignment.  However, fine 

alignment using the mirror would then become much more difficult to do by hand 

because of the increased sensitivity to misalignment.  One could imagine a dream 

version of this device that would have the fine mirror adjustments done mechanically 

while a computer used a routine to maximize the autocorrelation. 

The main reason that apertures smaller than 0.5 mm were not used to gain 

even higher resolution of the spatial correlation function was the amount of 

transmitted light.  As it was, with a 10 mw laser and the detectors used, which had 

seven stages of gain, the maximum gain settings needed to be employed in order to 

insure a high signal to noise ratio.  We wanted at least one volt base output coming 

from the detectors into the DAQ. Base inputs to the DAQ were on the order of 1 -

1.5V for 0.5mm apertures.  With 0.5mm apertures, voltage fluctuations (the signal) 

were on the order of 0.02V with the detectors set to maximum gain.   

The DAQ was advertised as 16 bit, however, the last three bits of the data 

were noisy.  This was directly measured by observing the output of the DAQ with a 

terminator installed on its inputs.  It seems that many DAQs have a feature like this 

and advertise that they are 16 bit based on taking averages.  As it is, 132  “guaranteed” 

distinct steps translates into 8192 steps. This produced the fundamental limit of 4 

significant figures of the signals that were then processed by the computer.    

   To improve the device and gain even higher spatial resolution, by machining 

and installing smaller apertures, there are three obvious options.  Employ a brighter 
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laser.  Employ a better DAQ.  Employ more sensitive detectors to place behind the 

pinholes.  All of these things are quite easily accomplished.   

Of all the equipment used in this experiment, the most crucial was the data 

acquisition system (DAQ).  The DAQ used in this experiment, was a 9215-A DAQ 

from National Instruments.  It is a 4 channel standalone unit that can communicate 

directly to a computer via a USB port.  It samples at 100kHz per channel and was 

chosen because it specified 16 bit resolution, is easily portable and readily 

communicates with multiple platforms by virtue of the USB connection.  It has the 

advantage of being designed specifically to operate in the Labview software 

environment. While the device still needed to be configured with the Labview 

software, using the National Instruments device explorer package, the device was 

essentially plug and play and it was easily possible to set the scale of incoming 

signals and sampling rate from within the Labview code itself.   Unfortunately, the 

DAQ had three noisy bits and only 13 were really useful.  This was directly measured 

by examining the output of the DAQ when its inputs were terminated.  This three bit 

error was a limiting source of error in the experiment.   

The photo-detectors themselves were Thorlabs PDA36A silicon detectors.  

They were rigidly mounted with their faces perpendicular to the beam axis.  These 

detectors have a 17MHz bandwidth, a wavelength acceptance range of 350-1000 nm, 

a 13 mm
2
 (3.6mm x 3.6mm) active area and a gain of 1.5 x 10

3
 V/A to 4.75 x 10

6
 

V/A.  Since our experiment did not sample faster than 100kHz, there was more than 

sufficient bandwidth. The switchable gain had eight steps up through 70dB, and it 

was generally desirable to use the highest gain setting in order maximize signal to 
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noise with the smallest apertures.  This gave outputs in the region of 1-1.5 V.  With a 

larger aperture, it was easy to saturate the detectors on high gain.  The detectors were 

very quiet even on maximum gain.  Excluding 60 Hz noise, which was removed 

immediately by sampling at a much higher rate than 60 Hz, and demeaning, the noise 

from the noisy three bits of the DAQ provided a much greater contribution. The 

responsivity of these detectors peaked at close to 700 nm making them very suitable 

for use with a He-Ne laser. 

The detectors are manufactured in such a way that they can be fitted with a 

filter that screws into a cylindrical mounting directly in front of the active region. 

Narrow band filters were mounted and the housing for them was approximately 

1.5cm long and 2.7 cm in diameter.  The pinhole apertures were affixed to the lip of 

the housing using wax.  In this way they could be quickly swapped out and mounted.  

Since the wavelength of the light used is very small compared to the aperture 

opening, there was little to worry about from diffraction effects. The active region of 

the detector was large enough to catch all the light that was transmitted and since we 

were only measuring intensity, diffraction was of no concern.  If one were to use a 

much smaller aperture in this sort of experiment, provided that there was enough 

light, sensitivity of the detector, and resolution from the DAQ, diffraction effects at 

the pinhole would still be of no concern. 

The detectors were fitted with Thorlabs FL632.8-1 laser line filters that have a 

peak at 632.8 nm and a FWHM of 1 nm.  They came pre-machined to mount on the 

detectors.  They are 25.4 mm in diameter and 6.3 mm thick.  These filters were 

designed to be used with a He-Ne laser and they cut down tremendously on any 
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background noise or optical contamination from other sources.  The filters were 

absolutely necessary.  Without them, the instrument could easily pick up the 

oscillations of laboratory ambient lighting. When taking data indoors the extra 

precaution of working in the dark was taken.  

The pinhole apertures were machined by hand.  They were pressed out of stiff 

copper sheet by a die to a diameter of 3cm and pressed flat.  They were centered and 

drilled to the requisite diameter.  Centering of the pinhole was done as carefully as 

possible, but exact centering was not necessary because of the comparatively large 

active region of the detector a short distance behind them.  The apertures were 

pressed again a second time to insure they were flat and given two coats of flat black 

paint to prevent any unwanted reflections.  It is possible that the process of painting 

made the diameters of the pinholes slightly smaller than reported.  However, if they 

were very slightly smaller than reported, this is a small error in favor of the 

correlation measurements being more accurate because a smaller pinhole only means 

a higher resolution in determining the correlation function.   

The detectors were mounted on optical translation mounts that could be 

adjusted both vertically and horizontally by micrometers.  The accuracy of the 

translations was +/- 0.005 mm.  In the experiment, a vertical translation is one that 

occurs in the vertical plane perpendicular to the beam line and horizontal translations 

are parallel with the flow.  With this arrangement it was possible to translate the 

detectors to a full 28 mm separation if both detectors were moved. However, when 

taking data indoors, it was never necessary to go out further than 5 mm, because in 
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general, the signals had become completely uncorrelated by the time the detectors 

were separated by 4 mm.   

The beam splitting cube was 4 cm on a side and polarizing.  It was offset by a 

small angle to insure that there would be no difficulties with retro-reflections. Great 

care was taken to make certain that the polarized laser was rotated such that both 

detectors were reading the same average voltage as closely as possible – usually to 

within 0.1V.  This was accomplished by making a small rotational adjustment and 

reading the two outputs. The process of demeaning insured that good data could still 

be obtained even if the average voltage from one channel was significantly larger 

than the average voltage of the other channel.  However, this alignment insured that 

the signal to noise ratio from both channels was comparable. The bottom of the cube 

was held in place with wax and fitted to a machined aluminum base that screwed 

down into an optical breadboard. This ensured that the cube would be of the proper 

height to fully interact with the beam region. 

The beam expander was a 30x beam expander purchased from Melles Griot.  

In the course of examining the beam expander, it was discovered that in two small 

circular patches, the primary lens coating was not even, and this caused a significant 

drop in intensity transmitted though those regions.  Fortunately, those two patches fell 

on roughly the same diameter as the main lens. Measurements were taken of the 

intensity across paths that did not have those occlusions by simply rotating the beam 

expander.  The beam profile along those lines (both horizontal and vertical) was 

nicely Gaussian and smooth.  The occlusions were also more than 5mm from the 

center of the beam.  Since that was more than the decorrelation length of any 
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measurement made indoors, this was not an issue.  It should also be noted that by 

keeping one pinhole fixed and displacing the other by up to 5mm, we were still in the 

region of the expanded beam that could be approximated by a plane wave. 

The DAQ used was a 9215-A DAQ from National Instruments.  It is a 4 

channel BNC connecting standalone unit that can communicate to a computer directly 

by USB port.  It samples at 100kHz per channel and was chosen because it advertizes 

16 bit resolution, is easily portable and easily communicates with multiple platforms 

by virtue of the USB connection.  It also has the advantage of being designed 

specifically to communicate with the Labview software package. While the deivce 

still needs to be configured in the Labview software, using the National instruments 

device explorer package, this makes the device essentially plug and play.  This ease 

of use was of great benefit because it was possible easily set the scale of incoming 

signals and sampling rate from within the Labview code itself.    

   

The computer code 

 One of the largest selling points of this technique to probe turbulent scales is 

that it can be done on the fly.  What made this possible was the code that was written 

to do this.   

 The code was written in Labview which was chosen because it specifically 

supports the DAQ that was used. Both are National Instruments products.  Labview is 

an object oriented language that uses graphical components which represent blocks of 

computer code as building blocks.  Programming in Labview consists of choosing 

operations from many pallets and then connecting them in a way that is reminiscent 
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of plumbing or circuit boards.  For example one selection from a pallet might be a 

box that represents telling the computer to take data in from the DAQ.  From there, 

the data is graphically represented as traveling in pipes to other blocks of code that 

will manipulate it in some way. At the outset, it is a very friendly and intuitive 

language to create code in and it is very powerful.  However, like all code, there are 

tricks of the trade and some very non intuitive steps that sometimes need to be taken 

to make it behave as desired.  The code is printed out in the appendix. 

 The code needed to do three things.  It needed to calculate  
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for both time and space displacements. It needed to do the calculations in as stripped 

down and efficient a way as possible, so as to not choke the processing speed of a 

computer running Labview.  Finally, it needed to be able to save the collected data 

and calculations. 

 The core algorithm of the code is iterative and given by: 

  1 1 1 /n n n nI I I I N      

which is a running average that was calculated on the fly for both channels and then 

fed into the subroutines that calculated deviations.  This is the same algorithm that is 

used in digital multimeters and allowed for a dynamic mean to be taken.  As can be 

seen, the effect of this is to create a sliding window that corresponds to each new data 

point being averaged with the average value of the last N averages taken in a cycle 

that repeats until stopped. 
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 The algorithm that determines the correlations must use an appropriate 

dynamic mean of the local (temporal) intensity by subtracting a local running average 

intensity from each incoming reading.  This was a crucial step. For short paths in 

turbulence, the intensity variations are a very small effect.  They are not visible to the 

naked eye. The dynamically corrected correlation was used both to increase 

sensitivity and to remove the effect of a non-constant laser output. Laser output varied 

over minute time scales and collecting a running average over three minutes or more 

would produce a false correlation without this step. Other noise could also easily 

effect this sensitive measurement. Therefore, it was necessary to examine fluctuations 

from a local mean rather than a global mean.    Finally, the many different scales in 

fluid turbulence itself meant that our averaging had to be able to detect the small local 

variations in the flow with respect to time.  Thus, any statistics based on a global 

mean would be meaningless. 

  Unless explicitly stated otherwise, the algorithm used an initial average of the 

first 1000 readings, for each channel, as a starting point 0I . This was done for each 

channel respectively. For these measurements N = 1000.   Sampling was carried out 

at 100 kHz, meaning that the local average window was 0.01 seconds long.  This 

local mean was used in all of the subsequent calculations of the correlation algorithm.  

The code was written so that both N and the number of points in the initial average 

could be varied.  It was found in practice that varying the initial average for 0I  made 

very little difference. An initial average with as many as 1,000,000 points produced 

results indistinguishable from runs using 1000 points.  The window size needed to be 

large enough to have a meaningful average to de-mean an incoming reading, but the 
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time that was needed to take that average still needed to be substantially less than any 

laser variations – which could be accomplished by .01 seconds easily.  This is how 

1000 samples were decided on as the window size.  In practice, for spatial correlation 

measurements even taking a 1000 sample window at 10 kHz, or even 5 kHz, 

producing an order of magnitude difference in the time represented by taking that 

average, there was no measurable effect.  However, in order to resolve the time 

correlation function, it was necessary to sample at 100 kHz.  Taking a smaller 

window than 1000 samples, even down to only 50 samples also had no detectable 

effect because of the large number of demeaned points averaged over in a typical run. 

 Great care was taken to strip down and optimize the code as much as possible 

in order to insure that there was enough computing power to guarantee that running 

the code at a high sampling rate would not cause the computer to miss data points.  

The overall Labview program has diagnostic tools installed to allow one to see how 

much time a given cycle of the code takes from the computer.  There are also tools to 

shut down unneeded processes from sources other than Labview in order to free up 

computing power when running Labview. For the computer that was used indoors, 

100kHz sampling rates were easily obtainable.  For the laptop that was used outdoors, 

it was not possible to sample at a rate greater than 20kHz. In any case, 100kHz was 

also the maximum possible sampling rate of the National Instruments 9215-A DAQ 

that was used.   
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Hotwire Annenometry 

 In order to create a point of comparison with other experimental techniques 

and to compare with the existing literature, measurements were also made with a 

hotwire anemometer. Special thanks must be extended to Professor James Wallace of 

the University of Maryland for lending both his equipment and expertise to this 

endeavor.   His excellent book on the topic was also of very great use. 

 Hotwire anemometers work on the principle that a heated thin wire will cool 

as air blows over it via forced convection, and that the resulting change in resistance 

of the wire, can be measured and directly related to the velocity of the flow that 

caused the cooling.  The wires commonly used for such an application vary in length 

from .15 mm to 1.5 mm.  In general, their diameters vary from 0.5 m  to .5 m . 

[23].  The wire of a hotwire probe is mounted on a small two pronged fork and is 

usually mounted such that the wire is perpendicular to the direction of the average 

flow. 

 For small changes in temperature, it is legitimate to use a linear approximation 

for the relation between temperature and voltage 

 1 ( )s f s fR R T T      (2.1) 

where R Is resistance and T is temperature.  The subscripts s and f refer to sensor and 

fluid respectively and  is a constant of proportionality which is dependent on the 

type of wire and measured in reciprocal degrees.  Bernard and Wallace report that 

 is approximately 0.004 K
-1

 for tungsten and platinum wires. In our experiment, 

fR = 3.26  and  = 0.0036.  

 The next step is to develop a relationship between convection and wind speed.  
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In general, the thermal energy balance of a hotwire probe is modeled by a simple 

differential equation. 

 
dQ

P F
dt

   (2.2) 

 

where 2P I R IV  and F represents the total rate of heat transferred to the fluid.  V 

is the voltage drop across the hot wire.   

 From (2.2) it can be quickly inferred that hotwire probes can be run in either a 

constant current mode or a constant voltage mode.  In our experiment, a constant 

voltage probe was used. A constant temperature hotwire circuit is essentially a 

Wheatstone bridge that is dynamically balanced while the resistance of the hotwire 

itself changes. 

 In general F is a complicated function of the Nusselt number, the Prandtl 

number, the angle of attack of the flow relative to the wire and the physical properties 

and dimensions of the hotwire probe itself.  Fortunately, for a broad range of 

applications, forced convection and the relationship between temperature changes, 

output voltages and hence, air speeds can be modeled via King’s law. 

 2 nV A Bu   (2.3) 

Here, V is the voltage drop.  A, B and n are constants and u is the average local fluid 

speed. To calibrate the hotwire probe, one must measure the average voltage output 

from the anemometer for a given flow speed and use a fit of this curve to determine 

the constants A, B and n. The constant n is equal to 0.45 for most laboratory 

situations.[23] 
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 For our experiment, we employed an AN-1003 hotwire anemometer, which 

was manufactured by AA Lab Systems.  This was the unit which contained all of the 

electronics.  The probe itself was a Dantec Dynamics 9055P0011.  Only one probe 

was used for our hotwire data collection.  The time correlation was recorded from that 

one probe, which was mounted so that rested in the middle of the illuminated region 

of the flow. The hotwire was perpendicular to the flow. The hotwire signals 

themselves were transmitted to the same DAQ as used by the optical experiment and 

processed with the same software on the same computer.  This equipment was 

graciously lent to us by Professor James Wallace. 
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Chapter 3: Experimental Results 

 

Some Details and Terminology 

 Before entering into a discussion of the results, some details in labeling need 

to be pointed out. The overall air speeds associated with labeling a given data set are 

those measured at the mouth of the blower. This speed was chosen so as to estimate 

the Reynolds number and categorize the flow. Downstream, the mean velocity of the 

flow lessens as its kinetic energy is converted to turbulent scales and dissipated to 

heat. For example, 60 cm from the hotplate, in the stream wise direction, the mean 

velocity of the flow would be on order of 7 m/s for a flow that left the mouth of the 

blower at 12 m/s.  Similarly, the temperatures reported were those taken over the 

hotplate, at the level of the mouth of the blower, with the hot plate on and the blower 

off.  The temperature given is recorded as a reference to distinguish different flows.  

It is not the mean temperature of the flow in the illuminated region. In general, the 

temperature dropped off very rapidly with distance downstream. For example, on one 

day’s run, the ambient laboratory temperature was 23.6 0.1 C and the temperature 

in the interaction region, 60 cm away from the mouth of the blower, with the blower 

pushing air at 12 m/s, was 24.3 0.1 C when the temperature measured at the 

mouth of the blower was 88C.  By the time the flow crossed the interaction region, 

its mean temperature was essentially room temperature, particularly for flows where 

the hot plate was not on the maximum setting.   
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 The hotplate, when on, was certainly contributing a disturbance in the air of 

its own.  No attempt has been made to completely model the flows under 

consideration.  However, using the basic phenomenology of turbulence and an 

estimate for the Reynolds Number based on the flow rate at the blower, and a length 

scale generated by taking the diameter of a circle to be equal to the area of one of the 

blower’s mesh cells, we can produce the following table as a loose guide to the flows 

in this experiment. 

 

 Re  u(m/s)  2( / )m s   (mm)      difft (s) 

_____________________________________________________________________ 

 24,800  12  615.68 10x   1.6  0.17 

 20,000  9.7  615.68 10x   1.9  0.24 

 18,000  8.7  615.68 10x   2.1  0.28 

 
Table[3.1] A loose guide to characterize the different flows in the experiment based solely on 

the phenomenology of turbulence, the air speed at the mouth of the blower and our estimate 

of Re. 2( / )m s was taken for air at room temperature and one atmosphere.  The quantity   

is taken from phenomenology, 
3

4~ ReL


 and will be refined by direct measurement. 

 

 

 In order to orient a discussion of the results, I mean the following things by 

the following statements.  Horizontal displacements are those taken in the streamwise 

direction.  If the stream is in the x direction, this means that one detector is translated 

parallel to the stream, in the x direction, in the x-y plane.  Likewise, vertical 

displacements are those perpendicular to the flow, in the y direction, in the x-y plane.  

The expanded beam comes in along the z axis, across the interaction region with the 

turbulent flow, and its cross section is a circle in the x-y plane.   



 

 77 

 

 Time correlation, when used by itself, refers to the time delayed correlation 

function taken at zero separation between the detectors.  Autocorrelation refers to the 

first point of a time cross-correlation curve for a given separation.  Spatial correlation 

refers to the aggregate of autocorrelations collected at different displacements for the 

same flow.  The value recorded at 1mm on a given space correlation, for example, is 

the zero (as in zero time delay) of the time cross correlation taken at 1 mm separation 

between the two detectors. The zero of a spatial correlation function is the time 

autocorrelation at zero separation, or, the zero of the time cross correlation of the two 

detectors when they are looking at the same column of light.  

  

A note on errors and error bars 

 All time correlation curves presented in this work are comprised of one 

hundred points.  Each point corresponded to a time delay equal to one sample cycle. 

Sampling was in general taken at 100kHz and the correlation algorithm was allowed 

to integrate for three minutes, unless otherwise noted. This means, in general, that 

each point represented on such a time correlation curve was generated by evaluating  

18,000,000 data points from the incoming signals of the two detectors.  This large 

number of samples, that were evaluated for any given reported point, on a correlation 

function, gives rise to very high accuracy.  Due to this, graphs of time correlation 

functions will have their error bars suppressed. This is not an attempt to sweep 

anything under the rug. In general, the average signal coming from a given detector, 

for a given run, was very close 1V (averaged after 18,000,000 samples).  The 

standard deviation was of order .02V.  Using the standard error, then propagating that 
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error through the correlation function, gives errors bars with scales on the order of 

610 . This error estimate was also confirmed by watching the correlation function 

integrate in real time over the course of the run and stabilize at five significant 

figures. However, as noted before, the fifth significant figure was the result of 

averaging over outputs from a DAQ that only had four completely noiseless 

significant figures when read by the computer.  On a graph, for a single run, 

compared to a scale of order 1, the error bars would appear simply as lines through 

the data points.  No attempt was made to determine the potential, but certainly much 

smaller, effect of rounding errors from the processing.  As noted in the experimental 

procedure section, the limiting factor in accuracy was the bit resolution of the DAQ 

used. 

 The time correlation itself is an effective measure of the local flow speed. The 

measured time correlations were very nearly Gaussian. For the 0.5 mm apertures, 

fitting a Gaussian to one of them and extracting the width consistently produced 

velocities that were close to the local velocity measured by the hand held 

anemometer.  This is because the time correlation would decorrelate when the slug of 

air would pass the view of an aperture. 
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Fig [3.1] A representative time correlation shown with a Gaussian fit.  As can be seen, the 

curve is very nearly Gaussian. In this case, the curve was produced with 0.5mm apertures at 

zero separation with a Re = 20,000 flow and the beam axis 30 cm from the mouth of the 

blower. By taking the width of the Gaussian (0.065 msec) and using that to divide width of 

the aperture (0.5 mm) one obtains a velocity of 7.7 m/s, which agrees with the local mean 

flow velocity of 7.5 +/- 0.2 m/s as measured by the hand held anemometer.   

 

 Time correlations generally had widths of order 0.05ms to 0.1 ms depending 

on the flow in question.  They measured how fast a given pattern would flow past an 

aperture. A greater mean flow speed meant a shorter width of a fitted Gaussian. The 

fitted Gaussian widths corresponded to the mean flow speeds when the aperture width 

was divided by that width.  
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 Spatial correlation functions were constructed by plotting the time cross 

correlation peaks at different detector separations. The zero of the spatial correlation 

was the time autocorrelation at zero separation. In other words, successive points in a 

spatial correlation were the time cross-correlations taken the reported separation 

distance. One might think this means that for a spatial correlation function, there were 

more than 1.8 million independent samples taken per three minute run at 100 kHz.  

Any given run for the spatial correlation would have an error on the order of 510 for a 

given point, for one given run as well, if one simply assumed that the error involved 

would be the same for the time correlation.  However, there were larger deviations 

than that from one run to the next in the recorded value of the spatial correlation 

function.  Those deviations were still quite small overall.  This resulted from the 

constraint that in order to resolve the time correlation, sampling was done at 100kHz.  

However sampling at that rate insured that over the required time for a light pattern to 

pass out of view of the detectors, (0.1 - 0.2 msec) the samples would not be 

completely independent as far as a spatial correlation was concerned.  Because of this 

oversampling, actual errors in the spatial correlation measurements for any given 

point of the spatial correlation are over an order of magnitude greater than for the 

time correlation. 

 Spatial correlation graphs, were produced by averaging these correlations over 

multiple runs and there were slight deviations in the values of the cross correlations at 

any given point from one run until the next.  In order to compensate for the overlap in 

sampling, a standard deviation of the averages at one point, taken over 3-20 runs, was 

constructed for each point, and a standard error calculated.  The resulting error bars 
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were still exceptionally small. However, error bars are visible in those graphs.  In 

general, the errors were small enough that attempting to increase accuracy by taking 

more runs was considered a matter of extremely diminishing returns. 

 Once either time or space correlation curves were created, the primary mode 

of analysis was to fit a Gaussian to the curve and to extract a width.  Without 

imposing a preconception of what sorts of correlation curves should be predicted 

theoretically, this was deemed an obvious and easily reproducible method to extract 

meaningful information from the data.  The strongest argument that this was a valid 

method of analysis lies in the strong agreement with the small scales of turbulence as 

measured by other researchers by other means in similar flows. 

  

Time correlation functions 

 We begin our main discussion of the results by demonstrating that the 

transmission pattern of a given small slug of turbulent air is unique. As will be seen 

below, for the flows studied; length scales were on average, less than one millimeter.  

By placing 1mm apertures on the detectors, we were not resolving down to the scale 

of individual small structure eddies.  Instead, we were capable of observing an entire 

pattern of these smallest structures dissipate as it moved down stream with the mean 

flow, which is shown in figure [3.2].  It should be pointed out that with an evaluation 

time of three minutes, it is impossible that any correlation at all could have occurred 

down stream unless the two detectors were looking at the same structures. The plural, 

“structures” rather than “structure” was used carefully in the last sentence.  There are 

many scales in a turbulent flow, while as discussed; the smallest scales dissipate the 
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fastest.  As the flow moves down stream, we observe the peaks of the correlation 

diminishing.  This is caused by the decay of the smallest structures, and is in general, 

a feature of freely evolving turbulence.  The larger eddies live longer and thus make it 

further downstream.   
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Fig.[3.2] A succession or time correlation curves observed by displacing detectors fitted with 

1mm apertures in a stream wise direction at 0.5 mm steps for the same flow.  Each curve was 

generated with a different separation distance between the detectors.  The highest peaked 

curve is the time autocorrelation, where both detectors were looking at the same column of 

light.  Even though this data is represented as smooth curves, in an effort to make a clear 

image, each “curve” consists of 100 data points corresponding to 100 steps of time delay, and 

averaged over 3 minutes at 100kHz.  Each curve represents a single data run.  Error bars are 

suppressed. 
 

The flow that generated the curves in figure [3.2] was the highest speed (~12 m/s) at 

the blower mouth with a temperature of 88o C measured at the same point.  If we 



 

 83 

 

sample just the peaks of the decaying correlation functions vs. the displacement of the 

detectors, we find that the subsequent peaks decay in an approximately Gaussian way. 
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Fig[3.3] The peak of each time correlation function as a function of distance.  The detectors 

were fitted with 1mm apertures and displaced in steps of 1mm parallel to the flow, producing 

a time lag, as a slug of air moved from one detector to the next.   Since the slugs of air are 

moving downstream with the mean flow, this graph could easily have been labeled in terms 

of time delay.  Error bars are suppressed in this graph because they would be too small to be 

of use.  The data points are shown with a polynomial fit as a guide to the eye only.  To extract 

a width, the first four data points were fit with a Gaussian. 

 

 The proof that we really are looking at the same, decaying slug of turbulent air 

comes from the fact that if one divides the separation distance of the detectors, by the 

time delay from peak to peak one obtains the local mean flow velocity of 7.14 m/s.  

The hand held anemometer had measured 7.1 +/- 0.2 m/s for this flow in the 

interaction region.  Fitting a Gaussian to the decay of the first four peaks gives a 
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width of 2.03 +/- 0.12 mm, which corresponds to a decay time of 0.28 seconds.  It 

should be noted that by simply using the phenomenology of Ch.1, 

2 2~ / /diff difft l    , for this flow, with Re~24,800, the eddy turnover time, for those 

eddies dissipating to viscosity is: 0.17 seconds.  This measurement agrees with the 

phenomenology to within a factor of two.   

 The peaks above do not fall on a Gaussian. The graph of the peak decay 

should not be confused with the time correlation measured at a given separation. 

Actual time correlations did fall on very nearly Gaussian curves – particularly for the 

autocorrelation. For certain, we are comparing one approximation to another by using 

a Gaussian fit to discuss a prediction from basic phenomenology. What matters is that 

these structures can be observed by our experimental technique and that useful 

information about a given flow can be extracted with that technique.  The results that 

we get are results that should be expected and are easily explained by what is known 

about how turbulence behaves. A detailed numerical simulation of the turbulence 

coming off this particular blower, using this particular hotplate, under these particular 

conditions, would be of little use to anyone – in addition to being impossible to do 

with the computing power available.  

   As will be seen below, the small scales that we observed with this apparatus 

were on the scale of tenths of millimeters. This particular measurement, which 

employed 1mm apertures to insure entire vortices were included, did not quickly and 

asymptotically approach zero like a proper Gaussian. Our curve has a tail that is too 

fat.  This is likely due to the fact that the quickest structures to decay will be the 

smallest scales, while the larger scales will survive longer to go downstream further. 



 

 85 

 

 In summary, the time autocorrelation measurements taken with 0.5 mm 

apertures measured one shadow pattern pass in front of both apertures simultaneously 

when they were looking at the same region. Those measurements are primarily a 

reflection of how fast the shadow patterns are blowing by. This measurement of the 

peak decays taken with 1mm apertures, was following the same slug of air as it 

evolved and moved downstream.  Before continuing, there should be some discussion 

of how .5mm apertures were settled on for the bulk of the measurements in this work. 

Choosing the proper aperture size 

 

 The first spatial correlation measurements taken with the apparatus, once it 

was functional, were with 2.0 mm apertures. While the correlation curve did 

eventually reach zero, it had a surprisingly gentle slope and it was very clear, that 

there was insufficient resolution.  The initial decay was in a straight line.  A pair of 

1.0 mm apertures were tried next. Those apertures showed a remarkably faster 

descent to zero, however the initial decay still was quite linear in appearance.  

Finally, 0.5 mm apertures were settled on as giving sufficient detail of the correlation 

to be able to extract a decorrelation width that was physically meaningful.  

Overlaying the 1mm and 0.5 mm results showed that both had the same essential 

features.  The 0.5 mm apertures produced more of the shape of the actual correlation 

curve. Sampling with even smaller apertures would surely give more detail, however, 

the fact that the 1.0mm and 0.5mm zeroed so closely together indicated that the 

apertures were already on the scale of the structures scattering the most.   
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Fig[3.4] The spatial correlation function as measured by different apertures for the same flow.  

In this case, with a horizontal displacement sampled at 10kHz. With 2.0mm apertures, the 

details of the correlation function are obscured and the curve takes a misleadingly long time 

to decorrelate.  With 0.5 mm apertures, the details of the curve are sufficiently resolved to 

make fits and extract widths. 

 

 

 Once it was determined that 0.5mm apertures were sufficient to resolve the 

spatial correlation function, the next step was to examine different flows. 

 

Spatial Correlations 

  

 The first set of experimental runs were done with displacements in the 

streamwise horizontal direction at a 60 cm displacement of the beam axis from the 
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mouth of the blower.  Most experimental runs were done at this displacement because 

it was assumed that this distance would give sufficient room for full turbulence to 

develop.  For comparison, later runs were done with the beam axis displaced by 

30cm.  In the following set of data runs, five types of flow condition were chosen as a 

way to examine the abilities of the device on a wide range of flow conditions.  The 

blower used had three speeds which correspond to the given Reynolds number 

approximations.  For the measurement labeled “pure convection,” an electric hot pad 

was placed on the optical bench, in front of beam expander in the same area where 

the flow would normally traverse.  This plot represents a flow that is not turbulent. 

Only gentle convective motions were produced in the air. Nevertheless, they 

produced a clear signal. The reported temperature was taken at the level of the beam 

expander. The plot labeled as “still air” represents data with no flow or heating 

conditions present.  This was a sanity check.  As expected, with nothing to scatter off 

of, the light remained correlated across the displacement. 



 

 88 

 

0 1 2 3 4 5 6

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

 Displacement (mm)

 C
o

rr
e

la
ti
o

n

 T = 88
o
C, Re~24,800

 T = 38
o
C, Re ~ 20,000

 T = 38
o
C, Re~18,000

 Pure Convection, T= 30
o
C

 Still Air

 
Fig[3.5] The spatial correlation taken with horizontal displacement for different flow 

conditions with the beam axis 60 cm from the mouth of the blower.  The plot of “still air” 

was taken with no fluid disturbances.  

 

 To extract widths from the data, first, the data was normalized to one by 

division with the peak value of the autocorrelation at zero separation. The data points 

and the calculated errors associated with each point were fit with a Gaussian to 

produce a width.  We interpret that width as a representation of the typical length 

scales measured in the flow.  A slug of air passing in front of the detector will be 

comprised of fluid motions on many different scales. Flows with higher Re and higher 

temperatures invariably had only one inflection before crossing zero.  However, flows 

with lower Re and lower temperature could have more than one inflection point.  For 

such flows it is possible that two distinct concentrations of small scales are being 
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observed.  All of these measurements were compiled from three runs of three minutes 

duration at 10 kHz. 

 The other piece of data commonly extracted was the scintillation.  

Scintillation is a measure of the strength of intensity fluctuations that were observed 

during the run.  It is the geometric mean of the ratios of the standard deviation of the 

signal voltage to the mean of the signal voltage, of the two channels.  The scintillation 

is dimensionless and given by A B

AB

 
. 

 

 

  Still Air  Convection u = 8.7 m/s u = 10 m/s u = 12 m/s 

      T = 38 C T = 38 C T = 88 C 

        

 

Re  N/A  N/A  ~ 18,000 ~ 20,000 ~ 24,800 

 

Gaussian  N/A  2.06 mm 0.715 mm 0.502 mm 0.426 mm 

Width    +/- 0.074 +/- 0.010 +/- 0.008 +/- 0.006 

 

Scintillation 0.0017  No Data 0.0155  0.0204  0.0319 

 

Table [3.2] A summary of the fitted scales corresponding to the correlations shown in Fig 

[3.5]. The scintillation is a measure of the ratio of the standard deviation of the signal to the 

mean signal. 

 

 Several points should be very strongly emphasized from this data.  The scales 

measured get smaller as Re increases and the scales measured are comparable to 

measures of  the Kolmogorov microscale as reported by other researchers who used 

hotwire anemometry to investigate similar flows (see table 3.4).  All small turbulent 

scales would be expected to get smaller as Re increases and the correlation curves 

reflect this.  Second, as Re increases, the error bars get smaller and the scintillation 

increases.  This is also what would be expected.  Stronger turbulence implies more 

numerous smaller scales that dissipate more energy to heat.  Those structures will 
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produce more scattering in comparison to the structures in a slug of air produced by 

more placid conditions.  The scintillation for still air represents a certain noisy 

baseline voltage fluctuation as ultimately input into the computer.  The largest source 

of this noise is likely the noisy three bits on each channel of the DAQ. For turbulent 

flows, the scintillation is more than an order of magnitude larger than it is for still air.   

 As noted before however, a horizontal correlation, in the direction of the flow 

allowed same slug of air to blow from the view of detector A to the view of detector 

B.  One would expect this could make a false contribution to correlation length 

measurements by slightly increasing them.  This is what was observed.  Local 

isotropy in fully developed turbulence is assumed. A vertical displacement of the 

detectors would be expected to give spatial data just as theoretically relevant.  

However, it would not suffer from any possibility of the same slug of air being 

registered by both detectors.   

 This effect is clearly seen in fig [3.6].  The characteristic length scale of this 

flow was determined to be close to 0.5mm.  The first step of the horizontal 

displacement decreases markedly less than the vertical displacement does over an 

interval of 0.5mm.  However, the two curves overlap significantly more at greater 

displacements since they are larger than the characteristic scales of the flow, and a 

pattern seen at detector A will not have the ability move in time to be seen at all by 

detector B in the time interval of one cycle of the correlation calculation.    
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Fig[3.6] Horizontal (streamwise) vs. Vertical displacement in comparison for the same flow.  

Individual data runs were taken for four minutes instead of the normal three. 

 

 All subsequent data was taken with vertical displacements. In order to make 

the best possible fit to the initial decay in correlation, the first four data points of each 

set were fit with a Gaussian.  This was justified since the correlations were always 

close to zero at a 1 mm separation.  Fig[3.7] is an example of such a fit.  
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Fig [3.7] A representative Gaussian fit to the vertical data.  In this case, the displacement is 

vertical and the flow is Re ~ 24,800, T = 88 C and the beam axis is 60 cm from the mouth of 

the blower. 

 

 

 It is expected that different parts of the flow would demonstrate different 

characteristics.  The initial vorticity generating disturbances are primarily caused by 

the grid over the mouth of the blower.  Close to the mouth of the blower, that 

vorticity has not yet had the chance to diffuse through the flow.  Due to this one 

would expect the small scales to be smaller on average than further down stream 

where the full turbulent cascade has had a chance to develop.  This effect was also 

observed.   
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Fig [3.8] Triangles represent data taken with the beam axis 30 cm from the mouth of the 

blower.  Squares were taken at a 60 cm beam distance.  The same flow was used for both data 

sets.  Re ~ 24,800 and T = 88 C. 

 

 The results of the vertical data runs are collected in table [3.3]. 

  

   u = 8.7 m/s u = 10 m/s u = 12 m/s u = 12 m/s 

   T = 88 C T = 88 C T = 88 C No Heating 

        

 

Re   ~ 18,000 ~ 20,000 ~ 24,800 ~ 24,800 

 

Gaussian   0.446 mm 0.395 mm 0.320 mm 0.349 mm 

Width (60 cm)  +/- 0.026 +/- 0.029 +/- 0.008 +/- 0.005 

 

Gaussian  0.370 mm 0.361 mm 0.357 mm No Data 

Width  (30 cm)  +/- 0.016 +/- 0.018 +/- 0.022  

 

Table [3.3] Collected results for data taken with vertical displacements and the beam axis at 

distances of 30 cm and 60 cm from the mouth of the blower.  No heating denotes a run done 

without using the heater.  The device can see turbulent structures even without extra heat as a 

decoration.  
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 As was noted in the first chapter, as Re increases, the small scales of 

turbulence become smaller.  Clearly the hot plate was a source of convective 

turbulence to the flow.  The “no heat” data, shows that for the same blower settings at 

Re ~ 24,800 the scales were larger than those in the same flow with a convective heat 

contribution added.  What is striking is that the heating adds a comparatively small 

effect to high Re flows.  The flow with Re 20,000, yet full heating, has scales which 

are greater in size, in comparison to the non heated data at Re 24,800 than that data is 

in comparison to the heated Re 24,800 data.  It is important to stress that the device 

can detect small turbulent scales without having to heat the flow first. The use of the 

device has a much broader range of applicability than it would otherwise.   

 The next question to be addressed is of which small scales the device is 

measuring.  From the start, the scales are much smaller, by two orders of magnitude, 

than any reasonable estimate of the outer scale of the system which is on the order of 

centimeters.  The outer scale here is estimated to be 34mm and is the same dimension 

used in the approximation of Re.  The next scale down, that is commonly measured, is 

the integral scale, which as discussed, is in effect a weighted average (by population) 

of all the scales in the inertial convective range.  This too would be expected to be on 

the scale of centimeters for flows like the ones examined. The scales measured are 

small.  The question becomes, are they comparable to the Taylor scale, the 

Kolmogorov microscale or somewhere between? 

 To answer this, a literature search for other flows which were measured by 

hotwire probes was performed, and our own hotwire measurements were made. 
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Hotwire Anemometry 

 

 Mouri, Hori and Kawashima [24] made wind tunnel measurements of grid 

generated turbulent scales, in flows similar to ours, with hotwire probes. Zhou, 

Antonia et al. report a range of  of 3.1mm – 6.7mm and a range of   of 0.21mm – 

0.49mm in a grid turbulence experiment with similar conditions to ours.[25]  

 

u (m/s)   9.37  8.33  8.82  12.4  12.6 

 

d (m)   2.0  3.5  8.0  3.5  8.0 

 

 (mm)   4.85  7.13  10.2  5.59 8.24 

 

 (mm)   0.208  0.242  0.327  0.177  0.245 

Table [3.4] Data taken from Mouri, Hori and Kawashima [24]. The parameter d is the 

distance of their probes from the grid. 

 

 In these experiments, the Taylor scale is an order of magnitude greater than 

the Kolmogorov microscale. However, the reported values of the microscale fit the 

ranges of our optical experiment very well.  As remarked earlier, one would expect 

the smallest scales to scatter the most and produce the strongest signals. 

 The last step in answering which scales exactly were observed came from 

attempting to make our own hot wire experiments.   As remarked earlier, the Taylor 

scale is extracted from hot wire data via the x intercept, of a parabola created from the 

first two terms of the Taylor expansion of a fit to the spatially transformed correlation 
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data from a hotwire probe. The run shown here was for a Re 24,800, T = 88 C data 

set, with the hotwire probe displaced 60 cm from the mouth of the blower. 
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Fig [3.9] Hotwire data for a Re 24,800, T = 88 C flow at a beam displacement of 60 cm. 

Local flow speed was 7.1 m/s.  Run time was 3 min. Sampling was done at 100 kHz. Error 

bars are suppressed. 

 

Analysis of this data reveals one of the key results of this research.  For this flow, 

3.67 mm   and 0.34 mm  .  In comparison, the Taylor scale measured with the 

hotwire probe corresponds well with the hotwire work of others and the optically 

measured width for this flow, using our device (as measured by a vertical 

displacement) was 0.320 mm!  While it is likely that the closeness of this match is 

serendipity, from this and other considerations, it seems very likely that the scales 

being directly measured by the optical probe are indeed the Kolomogorov microscale. 
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As a final remark on our results, the apparatus was mounted on mobile optical 

breadboard that was affixed to a tripod.  Data were collected during several days over 

the summer over a path of 100 ft.  The beam axis was approximately 1.5m over a 

sidewalk.  It was felt that convective rolls off of the sidewalk coupled with gusts of 

wind would produce a strong optical turbulence.  We were not disappointed.  

Unfortunately, unless conditions were exceptionally placid, it proved impossible to 

create reproducible results.  Over the course of a single three minute run, conditions 

could change substantially.  If the day was gusty, it was even impossible to reproduce 

results from one run until the next with 30 second runs.  Beam wander was also a 

major issue.  This technique is not effective at long range in the regime where most 

optical experiments in this field are performed.   

 

Closing Remarks, Conclusions, and the Future 

 

 A new device which can observe the smallest scales in clear air turbulence 

was created and demonstrated to probe the smallest scales of turbulence in a robust 

manner.  There are many directions that the development of this device could go.  

One could imagine, instead of using only two detectors using a bank of detectors 

arrayed horizontally and vertically.  In principle, the entire spatial correlation function 

could be taken at once.  Even without going to that length, simply automating the 

translation of the detectors and data acquisition could make this device much more 

easy to use. 
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 As it is though, it is substantially easier to set up and operate than a hotwire 

probe.  It very quickly produces extremely accurate results without disturbing the 

flow in any way, or requiring the addition of any sort of tracer particle.  In any fluid 

application where there would be interest in the smallest scales of turbulence, such a 

device could find a use.   

 There are numerous theoretical questions that need to be explored.   The 

nature and origin of the negative portions of the correlation functions is an obvious 

place to start.  The correlation functions produced certainly contain much more 

information than simply the width of a fitted Gaussian.  Even though certain two 

point velocity field correlations as measured by multiple hotwire probes, do go 

negative, and have shapes very similar to the correlations seen here [26]. It is not yet 

clear exactly how those correlations relate to the optical correlations.  However 

tempting it may be to claim the two have a one to one correspondence, or even a 

direct proportionality to each other, more study needs to be done before such a claim 

can be made.  

 A promising potential application of this device might be to exploit its ability 

to recognize different flows, in real time, and hence provide greater safety for aircraft.  

Turbulent conditions on runways are a dangerous cause of accidents for many small 

aircraft.  A version of this device could be set up at the end of a runway sufficiently 

far enough back where it would not be likely to be hit by aircraft which were taking 

off or landing.  The entire set up could fit within a square meter.  With sufficient data 

collection to create profiles of dangerous conditions to compare measured 
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correlations against, this instrument could be used as a warning device to wave off 

aircraft when conditions were unsafe. 
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Appendix 
 

The Labview code.  The diagram begins on the next page, continues on the page after 

and flows from top to bottom in its current alignment. 
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