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Ultracold bose gas systems can perform quantum simulationstogh temper-
ature superconductors in certain parameter regimes. Speaily, 2D bose gases at
low temperatures exhibit a super uid to thermal gas phase &nsition analogous to
the superconductor to insulator transition in certain supeonductors. The unbind-
ing of thermally activated vortex pairs drives this phase t@nsition, and disorder is
expected to a ect vortex motion in this system. In addition,disorder itself can drive
phase transitions in superconductors.

We have designed and built a system which produces two 2D wtrold Bose gas
systems separated by a few microns. In addition, we have afg@duced a disordered
speckled laser intensity pattern with a grain size of 1. m, small enough to provide
a disordered potential for the two systems. We have observéte super uid phase
transition with and without the presence of disorder. The deerence of the system,
which is related to super uidity, is strongly reduced by thepresence of disorder,
even at small disorder strength, but the e ect of the disordeon observed vortices

in the system is less clear.
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Chapter 1
Background

1.1 Introduction

The study of ultracold gases has proven to be a very versatileld. The abil-
ity to engineer simple designer Hamiltonians has driven inmation in the types of
science that can be done in these systems. Within the last feyears, the capa-
bility to control and investigate the role of strong intera¢ions between particles in
these systems has increased their usefulness in understagdscience that cannot
be analyzed in other systems$ [25]. The basic building blocks$ these systems are
not di cult to understand, but an amazing number of Hamiltonians can be built
from these few components. Variable parameters in ultracbkystems include di-
mensionality, temperature, atom number, density, quantunstates, and strength of
interactions. Great physical intuition about the behaviorof these systems can be
found in the simple Schroedinger equation, and the rudimesty level of complica-
tion added by mean eld theory for weak interactions goes emefarther in aiding
understanding. Still, once strong interactions are addedtthe system, it becomes
more di cult to model these systems, and experiments are nessary to determine
the physics governing the behavior of the particles.

In fact, because of their versatility and simplicity, ultrecold atom systems are

ideal candidates to do quantum simulation. Quantum simulabn allows us to under-



stand complicated quantum mechanical systems. Richard Fayan recognized that
simple quantum systems can often reveal key properties of rmacomplex material
systems||60]. Frequently, even the behavior of these simglgstems is still theoret-
ically intractable, so the outcome of experiments on analagystems, i.e. quantum
simulators, can provide otherwise unavailable insights. ofe important quantum
systems, such as high-Isuperconductors, are not easily amenable to direct calcula
tion, and may have many important parameters that are not segrately adjustable in
experiment. Strong interactions between a large number oégicles make these sys-
tems complex, and their description using Bose condensatiof Cooper pairs makes
these systems quantum. Ultracold atom systems, through quam simulation, may
be able to shed light on the behavior of complicated solid ggss.

The layout of this chapter is to rst provide some motivationfor studying 2D
ultracold Bose gases with disorder, and show that they can heed as quantum
simulators. Then, the work that has already been done in 2D stems will be
reviewed in Sec[1]3. Disorder in ultracold gases will be &1y summarized in Sec.
1.4, followed by the small amount of work done with disordeni2D bosons in Sec.

LS.

1.2 Motivation: 2D Ultracold Bose Gases with Disorder

When designing an experiment on ultracold atoms, it is necgsy to restrict
the available number of parameters to focus on a speci c typaf science. We are

focusing on the physics of disorder. Disorder is ubiquitous nature, and we wish



to examine its e ects in ultracold atom systems. Specicaj this thesis examines
the role of disorder in 2D systems.

There are a few reasons for studying 2D systems. Keeping witie theme of
guantum simulation, many of the high temperature (high-Tc)superconductors are
governed by two-dimensional Bosonic physids |24]. Althougihseems odd to model
a solid's electronic properties with a gas of neutral atomg, turns out that many
of the models governing type-Il superconductivity have a gat deal of similarities
to a 2D gas of bosons. First, superconductivity is mediatedybCooper pairs -
pairs of electrons bound together acting as composite bosonSuperconductivity
comes about when these Cooper pairs become phase coheremt,ia 2D the pairing
temperature and superconducting transition temperature an di er signi cantly,
which is di erent than in 3D [119]. Bosonic models are applable in any temperature
range when pairing has occurred, and thus the transition tohase coherence can be
analogous in ultracold gases. In addition, most of the highe superconductors are
stacks of 2D planes weakly coupled together, meaning that cluof the physics is
2D. Finally, although electrons interact via the Coulomb iteraction, most models
of high-Tc superconductivity replicate the fundamental bleavior of these materials
without including these long-range interaction e ects[[6]

It is worth noting that there are models of high-Tc superconaktivity which
do not make these assumptions, and there is no current agresmh about which
model is correct. The systems are too complicated to calctdaexactly, and clean
measurements on solids that reveal microscopic physics aliecult to make. Ul-

tracold gas systems can be used to measure cleaner indicatof the microscopic
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mechanisms predicted by bosonic models of supercondudtiviHowever, bosonic
systems cannot address the many open questions about therpay mechanisms in
superconductors. Our system only simulates the correct pbigs after the electrons
are bound into Cooper pairs. Thus, we can only use a system dd dosons to
replicate and perhaps constrain bosonic models of high-Teperconductors.

Predictions about the physics of 2D superconductors with slorder are given
by the \dirty boson" model [62,[149]. This model is summarizkby the phase di-
agram given in Fig. [I.1. As a function of temperature, we seeahwe have the
two transitions mentioned earlier. AtTy, we have the bulk 3D pairing temperature,
below which the Bosonic description becomes correck,, meanwhile, is the super-
conducting transition, where the pairs develop partial log-range phase coherence.
A good starting point on pairing in superconductors is Ref[IB1], and our system
cannot simulate this type of physics. Therefore, we will exaine the microscopic
physics of bosonic 2D systems, which our system can simulate

2D systems exhibit \marginal" behavior. Peierls argued in 935 that in an
in nite uniform 2D system, there can be no long-range ordei[L5], and it has since
been rigorously shown [83,108, 107]. In a 2D uid, thermal ctuations at any non-
zero temperature will destroy true Bose-Einstein condenten (BEC) [26] 56,57/1],
when the multiparticle state of the system has all of the paitles in the same
single-particle ground energy state. BEC is also indicatday the rst order Bosonic
correlation function being constant in the limit of in nite distance. In an interacting
uid system, at low enough temperature, a super uid ( ow without friction) can
still exist without true BEC. In this case, we can de ne a lochsuper uid order
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Figure 1.1: Generic phase diagram of a 2D superconductor vdisorder strength
as a function of temperaturel . . is the critical disorder strength, T, is the critical
temperature for the superconducting transition, andly is the pairing temperature

for Cooper pairs. Figure from[[149].



parameter, and the transport properties of the system exhibsuper uidity, but
without all of the particles being in the ground state. In ths 2D super uid, the
rst order Bosonic correlation function always falls o algebraically, preventing true
BEC. This is in contrast to 3D, where BEC and super uidity hagpen at the same
time. The super uid transition is often identi ed with the s uperconducting phase
transition - the Cooper pairs become super uid.

The mechanism for the transition between this super uid ané normal uid is
elucidated by the theory of Berezinskii, Kosterlitz, and Touless (BKT) [95,94[ 15,
[I7]. This theory says that just above zero temperature, thehermal excitations in
the super uid take two forms - long-wavelength phase uctuaons called phonons
and also pairs of bound vortices. A vortex is a spot of zero dsty in the super uid
with locally circular ow around this spot, and a bound pair d these is two vortices
with opposite directions of circulation very close togethre Since the derivative of
the phase of the super uid order parameter is the velocity dhe uid, vortices can
be thought of as phase defects. If the vortices are closelyuma together, they
do little to disturb the overall long-range phase coherencef the uid, since their
e ects cancel away from the pair. The long-range phase cokece falls o slowly
only through phonons. However, as the temperature is raisethe binding of the
vortex pairs starts to loosen, and the vortices start to moven the uid. When the
pairs start to unbind and move about the uid, the phase cohamnce of the uid is
destroyed, and the super uid transitions to a normal uid, a the superconductor
becomes an insulator.

BKT theory has been remarkably successful in describing anutedicting the
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physics of 2D super uids. It is applicable to many other typs of systems as well,
including Coulomb gases [110], exciton systems [139] 31d|guiton systems[[91] 4],
and spin-polarized hydrogen [133]. Torsional oscillatoxperiments in thin Ims of
super uid “He showed excellent agreement with the predicted critical ngperature
[20,[21]. However, in a nite system, especially an inhomogeous system, the
transitions between the di erent phases become more di culto discern. In fact,
true BEC becomes possible in 2D in a nite system (SeC._1.3)ddntifying both the
macroscopic and microscopic indicators of transitions be¢en the various phases is
still of experimental interest [75], especially in ultradd gases.

Now we can look at the e ects of disorder in the phase diagram Fig. [L.1. At
low disorder strengths, both transition temperatures areolwered, until at a critical
disorder strength ., the transition temperature for coherence is lowered to zer
Above this critical disorder strength there is no superconating state, as a quantum
phase transition occurs between the superconducting staa@d an insulating state.
This phase transition has received a great deal of attentioThere are experimental
[98, [80] and theoretical works[[34, 68, 62] indicating thathe transition happens
straight from the superconductor to insulator phase. Somehéoretical work has
indicated that there is a nite universal conductivity right at the separatrix between
the two phases([149, 63, 33, 1T40]. Stemming from some expenis [88], many
theorists now put forth that there should be an intervening retallic phase [[48],
which could be a phase glas§ [4[7, 155,/ 43]. Two good reviewshef 2D phase
transition are given in Refs. [[69, 119].

| will brie y summarize some of the controversy from the abaw papers. Exper-
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imentally, one measures the resistance of a sample as a fumttof temperature for
di erent values of disorder strength, which is often tuned ¥ changing the thickness
of the superconducting layer in the sample. Thinner layerdlaw more disorder to
enter the layer from the substrate. In the case where there® intervening metallic
phase, there is a separatrix between the resistivity - it agyptotically approaches
either 0 orl as the disorder is tuned through the critical point (Fig.LL.2. However,
in some materials, there is a range of disorder strengths owehich the resistance
seems to level as the temperature is lowered, as in Fig.11.3hiF would indicate a
metallic phase, since it is neither insulating nor supercdncting.

The idea of a metallic phase for Bosonic Cooper pairs is prebiatic in 2D.
In low dimensions, not even non-interacting electrons caremain metallic at zero
temperature in the presence of disorder [119]. So, a metlpphase must have an
exotic explanation, such as a phase or vortex glass [155],iethcould have a nite
resistivity. Perhaps the pairing amplitude of the Cooper pias begins to uctuate, or
long range Coulomb interactions become important in this ntallic state. There is
no current agreement about the cause or physical mechanisiintlois metallic state.

There are a few reasons why an investigation into this systensing cold gases
might serve to answer some of the outstanding questions in Zhperconductors.
First, cold atom systems have better control and reproducility of disorder strength
and size. As shown in Se¢._4.2, we can carefully control andiloedte our disorder.
Second, there is no \pairing amplitude" to worry about. If there is a quantum
phase transition in our system, it is a Bosonic one. Also, ouapticles interact only

through low-energy s-wave scattering, so we can rule out theng-range e ects of
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the Coulomb interaction causing any observed transition. iRally, the measurements
which can be made in cold atom systems can directly access fitease of the order
parameter, a very di cult feat in superconductors. Our cold atom system spans
a smaller, more controllable set of the parameter space thémat available to true
solid systems, and can thus eliminate or constrain some ofeite theories.

Finally, for reasons that do not involve quantum phase trangons, it is im-
portant to understand the interplay between disorder and wtices, which might
be investigated in 2D ultracold gases. Superconductors akaown for the Meiss-
ner e ect, an expulsion of all magnetic elds inside the supeonductor. However,
most high-Tc superconductors are type Il, meaning that abeva critical amount
of magnetic eld, ux penetrates the material in quantized \ortices. These vortices
are small areas of non-superconducting material, shieldé@m the rest of the su-
perconductor by the Meissner e ect. The magnitude of exteal eld required to
penetrate the superconductor is often very small, perhap<s, meaning that these
systems almost always have vortices penetrating the supenductor. These vortices
repel one another and form lattices when the ux is large, cating \vortex lattices"
[2]. Because the vortices are bundles of magnetic ux, theysa move perpendicular
to current ow in a superconductor, causing a small amount ofesistance as they
traverse the material.

In fact, this resistance would make high-Tc superconductemearly useless if
not for the fact that vortices can be pinned by disorder [24]If vortices are pinned,
they don't move in the presence of current, so there is no rence caused by their
movement. Dissipation-free ow in the superconductor is stored. A great deal of
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work is currently focused on maximizing this pinning by chaging doping and carrier
concentrations, allowing superconductors to work in a wideariety of magnetic eld
strengths. Thus, it is important to understand the interplay between disorder and
vortex transport. If the true microscopic mechanism for thd8KT phase transition
is the unbinding of vortex pairs, then we expect that adding idorder near this
phase transition should help us to understand how a disordet potential interacts
with vortices in 2D systems. Because of the ne control and ugue measurements
possible in cold atom systems, we should be able to explore amgrements that
cannot be done in other systems.

The long-term motivation for studying disorder in 2D ultramld Bose gases is
therefore to answer some interesting questions and gainigtg into the mechanisms
behind high-Tc superconductivity. With better understandng of these materials,
room-temperature superconductivity might become possil an achievement possi-
bly on par with the discovery of the transistor. Because of #ir Lego-like building
block characteristics, ultracold gases make excellent quiam simulators. However,
there are some hurdles to be overcome, mainly due to the nitgze, non-uniform
density, and interparticle interactions in ultracold gass. These hurdles are discussed

in the next section.

1.3 2D Ultracold Gases

This section describes the work that has been done so far wittiracold Bose

gases in 2Dwithout disorder. There are many interesting questions still unan-
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swered. We wish to discern what types of phases and transii® can exist in 2D
ultracold Bose gas systems. The four possible phases arettiermal gas, super uid,
BEC, and quasicondensate - BEC with a uctuating phase. Theystem considered
is a dilute gas of bosons which has very precisely controllabtemperature. Ex-
perimentally, the external trapping potential con ning these systems modi es the
density, and interactions between atoms become very impartt at the high densi-
ties and low temperatures required for any transition. Thigives us four total cases
to consider: with or without an external trapping potential and with or without
interactions. For a uniform system in 2D, there is no possilty of BEC, with or
without interactions. However, there can still be a transitn to a super uid at low
temperatures if there are interactions. There is a criticalemperature at which the
system transforms from a super uid to a regular uid, mediaed by vortices. This
is a BKT transition in a super uid system. In the absence of iteractions, there is
no phase transition, but the rst-order correlation function gradually changes from
a Gaussian to exponential function.

Next, consider a harmonically trapped system. For a trappedieal gas with
no interactions, a true BEC is possible[][11]. In an ultracoltrapped atom system
with weak interactions (the regime of most current experinés), a true BEC is
expected at near-zero temperature, with a BKT transition taa super uid at slightly
higher temperatures, and nally a transition to a quasicondnsate non-super uid at
a higher temperature [[138/_38]. So, for the four di erent cas considered, true
BEC is only theoretically possible for a trapped gas, and fa trapped gas with

weak interactions, only in the case of near-zero temperatir However, a BKT
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BEC, non-BEC super uid, as well as a uctuating-phase, norsuper uid quasicon-
densate([[3B]. There is no phase transition in a non-interacg homogeneous system
(not shown). Figure adapted from[[143].

type transition to a super uid occurs in all cases except thén nite uniform non-
interacting uid. This information is summarized in Fig. [1.4

The phenomena of super uidity and BEC are closely related,ut the connec-
tion is very subtle. Super uidity is the more general phenomnon. Super uidity is
de ned by its transport properties, while BEC is a descripton of the multi-particle
guantum state. A non-condensed super uid in 2D lacks the orAgody correlation
length coherence of true BEC. A true condensate is phase cm# over its entire
area, while a quasi-condensate can still have phase uctuans, and also be non-
super uid. For a more detailed explanation of the subtle camection between BEC,

guasicondensate and super uid, see the appendix bf [25].
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1.3.1 Non-Interacting Systems

For the case of no interactions between the particles in ouystem, there are
two di erent behaviors depending on the presence of a harmiarirapping potential.

We are always interested in the behavior of the rst order coelation function

DA E
au(r) yryto) (1.1)

where { r) is the annihilation operator for a particle at a positionr. The long
range behavior of this quantity tells us about the phase of thsystem. For a BEC,
0, stays nite as r approaches innity. In 2D, as has been mentioned, this is an
impossibility. Long wavelength phonons always causgg to decay as a function of
by causing positional uctuations of the phase of the quantm state. However, the
functional form of g, can di er above and below any phase transition, even if true
long range coherence does not exist.

For the case of a uniform non-interacting uid, there is no phse transition.
However, there is still a gradual change in the functional far of g;, which goes
from Gaussian in the regular phase to exponential when the abe space density
gets very largel[[75]. The length scale of the decay of theseretations is related
to the thermal deBroglie wavelength = h:IO 2mk g T, with m the mass of the

particle and T the temperature. Thus, in the high temperature regime

r2=2,

au(r) ne , (1.2)

with n the particle density. Meanwhile, at much lower temperaturg

n 2=2

gl(r) e r=|; with | —894:: (13)
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From Eq. [1.3, we see that we can increase the correlation I&mg by reducing
the temperature of the system. This indicates that true BEC nght be possible
in a nite system, as we could perhaps lower the temperatureotthe point when|
spans the entire system. Indeed, it can be shown that for a namteracting Bosonic
collection of atoms in an isotropic trapU(r) = Uy(%) , BEC occurs at the critical

temperature [11]
2
Nh2U,
2 2ma2gy( ; 0)

Kg Télrz)c = (

)= (L4)

where N is the number of atoms, and
2 2
R(;0=(-+1) (-+1); (1.5)

with  the Reimann Zeta function and the gamma function.

1.3.2 Interactions in a Uniform System

In order to describe how interactions a ect 2D physics, we nai describe how
the particles interact. We would like to describe two-dimesional scattering using a
contact interaction g, (Xx) in two dimensions, but in general the scattering potential
is energy dependent, so this cannot be done. However, for lonesyy scattering
in a situation where the con nement in the third dimension isnot too tight, we
can get an approximateg, which is energy independent. Consider two particles of
massm moving in a two dimensional plane with low energy so that thecsttering
is isotropic. The scattering state is[[3]

r B eikr

O (P (1.6)
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wherek is the incident wave vector and (k) the dimensionless scattering amplitude

for the relative energyE = ~?k?=m. At low energy, the scattering amplitude is

4 | 4

P = — i+ 2in(i=kay) + 1

(1.7)

which de nes the two dimensional scattering lengtla,.
We are interested then in a value ofh,. We will assume that we have a
system in three dimensions tightly con ned inz such that the potential alongz,

V(z) = m! 2z?=2 con nes the atoms in the Gaussian ground state. This meankat

;kgT  ~!I',. The scattering amplitude has been calculated using bounthges to
be [117/118, 53]
r r_
l,
() = I, §eXp 53 (1.8)

with B = 0:905, a the 3D scattering length, andl, = [~=(m! ,)]**? the relevant
con nement length scale in the third dimension. Plugging Eq(L.8) into Eq. (I.1)

yields

— n 4 .
f (k)= P marn(B=(KaA2)+ 1 (1.9)

In all 2D experiments performed so far, the con nement lengtl, has been much
larger than a so that the imaginary term and the logarithm in the scatterirg ampli-

tude are negligible, meaning that

f (k) e

| ©

G; (1.10)

z

wheregy is a dimensionless scattering length. We can uggte-characterize virtually

all of the behavior of the interactions in our 2D system.
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In a uniform interacting system, there is one phase transagn from a normal
uid to a super uid via the BKT mechanism. As described in Sec[l.2, the micro-
scopic mechanism behind this transition is the binding of viex pairs. A simple
argument gives a remarkably satisfying expression for theiteccal temperature of
this phase transition. We would like to calculate the free esigyF = U TS of an
unbound vortex, with U the energy of the vortex,T the temperature of the uid,
and S the entropy of the vortex. First, we can assume, without losef generality,
that the system is circular with sizeR, and say that the size of the vortex core is
ro. We can calculate the energy of a vortex by assuming that theshocity eld is

v =(~)=(mr). Then

Z
U= m  Vv3r)rdr =

2

R
In — ; (2.11)
o

with  the super uid density. The entropy is determined by the number of ways

that we can place a vortex of sizey in a system of sizeR, giving

RZ
S=kgln — ; (1.12)
ro
which means that
~2 R R? ke T
F = n — keTln — = =—( 2 4)In(R=ry): 1.1
o kT =S5 F AR (1.13)

We can immediately see that the free energy changes sign wherf = 4, with
again the deBroglie wavelength. Because the system sRas much larger thanry,
the coe cient of the free energy is large, meaning that thisree energy goes from

being large and negative to large and positive at the transitn. This corresponds
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to a free vortex being thermodynamically either very likelyor very unlikely, and
provides clear evidence of the phase transition.

An important point here is that is the super uid density of the system,
and not the bare system density. These two quantities are n@&ynonymous, and
they can be very di erent, especially in a non-uniform systa at nite temperature.
Therefore, calculation of the transition temperature for a interacting cold atom gas
is complicated. A combination of analyticall[6/1] and numeti[123,124] e orts have

led to the critical phase-space density
C
Dc=(n ?c=1In - ; (1.14)

wheren is the total system density andC = 380 3 has been calculated by classical
eld Monte-Carlo technique [123]. In a uniform system, thiss expected to be the

transition point from normal uid to super uid.

1.3.3 Interactions in a Harmonic Trap

Things get more complicated when a harmonic trap is added tdis picture.
The density is non-uniform, which means that the phases in ¢éhtrap can become
mixed. There are many ways to approach this, with the most initive being the
use of the local density approximation (LDA). The local dengy approximation is

made by substituting a local chemical potential of the form75,[116]
2mg
(M= V@) =), (1.15)

into the equation of state for the number of atoms in the gas.nlthis equation,
is the bare chemical potentialV (r) is the external trapping potential, andn(r) is
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the density of the atoms. The equation of state for the phaseace densityD of
spinless bosons is
YA 1
dx
D= — = In1 2); 1.16
, Te 1= @ 2) (1.16)
whereZ = e is the fugacity. It is interesting to note that using the LDA in the

case of no interactionsd~= 0) yields a prediction for the critical atom number for

the BEC transition with no interactions in an isotropic harmonic trap of frequency

I [758]:
ke T 2

N9(T) g - (1.17)
This is the same result that can be derived straight from the ehsity of states of
spinless non-interacting bosons. However, this result ugitthe LDA corresponds to
a diverging spatial density in the center of the trap.

In the presence of interactions, the behavior of the equaticof state changes
signi cantly. As one might reasonably guess, the repulsivatieractions prevent the
divergence of the spatial density at the center of the trap,ral thus prevent BEC.
Experimental results suggest it is valid to assume that the BT phase transition
happens when the density at the center of the trap using the L®reaches the density
given by Eq. [1.14, the critical density in a uniform system. tican be shown that

the critical atom number to reach this central density in thepresence of interactions

using this mean- eld version of the LDA is[[85]84]

(mf) 3
c | _ 2.

— @ =1+ =D& (1.18)
C

This is a fairly simple and powerful equation for determinig the critical atom

number. In practice, the most important corrections to Eq.CII8 come from the
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fact that the experiments are \quasi-2D". There are generi still some atoms in
the excited states along the tightly con ned z-direction, \mich modi es the volume
assumed to getN{®. The excitations along this direction can be accounted for
either semiclassically[]86] or with quantum Monte Carlo caililations [85], with the
result that the critical density has to be 4-5 times higher than predicted in Eq.
118 due to deviation of the density distribution from the stictly 2D case [/7]. It was
di cult to see this correction experimentally, as at the BKT phase transition, there
is no discontinuous jump in any quantity other than the non-bservable super uid
density. The critical point was eventually extrapolated fom data showing the linear
dependence of interference contrast on atom numbeér [96], ialhdoes seem to have
sharp jump at the transition.

Now that we have developed some intuition for the BKT phase trssition,
we need to address the two other phases represented in theenaicting trapped
case in Fig. [(IK. It has been shown using a classical eld Men€Carlo analysis
that the atom cloud develops an extended phase coherencerave entire cloud at
temperatures 10-20% above the BKT transition temperature2P]. This could be
regarded as a non-super uid condensate; the BKT transitiohas not happened, so
there is no super uidity, but there is some coherence, with aictuating phase [90].
This uctuating phase prevents true super uidity. Meanwhile, it is theoretically
predicted that at very low temperatures, a true BEC can be olatined, although
this has not been observed yet [25]. It should be noted that ¢he has been a
great deal of theoretical work on the di erent phase transibns in an interacting

trapped sample beyond what was presented here. | hope to hayeen the most
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straightforward and easily understandable approach to thproblem, even if it is not
the most involved or the approximation is not accurate. Stij the mean- eld LDA
does match the experiments discussed in the next section.rFoore information on
other theoretical work, see the reviews available in Refé(5,[25/122] and references

therein.

1.3.4 2D Ultracold Bose Gas Experiments

A large number of experiments have been performed in 2D ultald Bose gas
systems. The goal of most of these experiments is to identifige di erent phases
of the gas by examining correlation lengths or density/monmeéum distributions.
Some of the earliest investigation was done in the group of Wiigang Ketterle [71]
and Massimo Ingusciol[[30], and early work with phase defectsms done in the
group of Jean Dalibard [[78["144, 143]. This was followed byvestigations of the
BKT transition as a function of temperature [7/6] and atom nurber [96,38,77].
The most recent experiments have revealed the equilibriunmedsity distribution of
a quasi-2D Bose gas [126] and shown universal scale invacgmight at the BKT
phase transition [87].

Most of the experiments have struggled with the di erencesdiween 2D and
3D. In 3D, the ideal gas approximation is surprisingly accate, while the 2D physics
is strongly dependent on the interactions and uctuations bthe atoms near the
critical region. In addition, the appearance of a bimodal diribution in momentum,

the consequence of Bose-Einstein condensation in a 3d hanmedrap, is a relatively
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easy experimental signature of the 3D BEC phase transitiorthe appearance of a
bimodal distribution or even phase coherence, observed bydrfering the system
with a phase reference, is not enough to show a phase trarmitiin 2D, and so
experimental signatures of 2D phase transitions are moredilt. It now seems that
the BKT phase transition happens at a phase space density sewhat higher than
where the system develops phase coherence or a bimodal istion. However,
this region is still within reach of the experiments, and theheory developed in
this section provides strong corroborative evidence of thabservation of the BKT
super uid phase transition. There is still no consensus a® twhether true BEC is
possible in experiments involving trapped interacting atms, and no evidence has

yet been put forth.

1.4 Disordered Ultracold Gases

There are many groups working on experimental implementains of disorder
in ultracold gasesl]59]. Aside from investigation into the lsac behavior of atoms in
a disordered potential[[35,-39, 45, 41, T01], there has beebig push to observe two
di erent types of physics typically associated with condesed matter systems. The
rst is Anderson localization [5], the lack of di usion of noninteracting particles
in the presence of a disordered potential. This e ect has beeealized in ultra-
cold gasesl[19], along with an experimental observation g12f localization in the
closely-related Aubry-Ande model [10]. The second pursuis for an experimental

observation of a Bose glass phase [64] in an optical latticé/ork in this direction
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has been done in Ref[[58], and the corresponding disordeimse-Hubbard model
has also been explored in Refs. [106, 151]. These experirne@ateal that the e ects
of disorder in ultracold gas systems are analogous to the ets in solids, and add
credence to the motivation of using ultracold gases in quamnh simulation.

For the purposes of the work performed in this thesis, the mibaseful results
from these experiments analyze how a BEC responds to a disereld potential.
It turns out that in equilibrium, disorder introduces small density modulations in
quasi-1D BEC's [35[ 39]. When the atoms are released from ttnap, these initially
small modulations quickly convert (via mean- eld interactons) into phase uctua-
tions which lead to large density modulations later in the gpansion, when the atoms
are typically imaged [39]. If the disorder strength is inci@sed to the point that the
condensate fractures initially, then the random phases oheh of these pieces de-
stroy the modulations during expansion. There has not beenuch work done on

this outside of quasi-1D systems, but the physics should biengar.

1.5 Disordered 2D Experiments

There has been very little work done on Bosonic 2D systems tvilisorder. One
very recent experiment in ultracold atom systems has obsed anisotropic di usion
in 2D in the presence of a disordered potentigl [130], moskédily as a precursor to
a measurement of Anderson localization. There has also beemg experimental
work on the BKT transition in disordered thin Ims of “He [99] or Cak, [100], along

with a theoretical e ort to explain the results [12]. These gperiments showed that
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disorder broadens the sharp jump in super uidity, but this woadening might be
caused by the nite size of the system.

We can use the body of knowledge about 2D ultracold gases tadeour in-
tuition about experiments with disorder in 2D. The results 6 these experiments
can help us to constrain models of superconductivity, det@ining whether observed
phase transitions in superconductor systems are truly basic or perhaps whether
they involve the Coulomb interaction. The ability to obsenre vortices and measure
correlations in ultracold atom systems should lead to new sights which cannot
be gleaned from condensed matter systems. The interactionstween disorder and
vortices might be better understood through these investagions as well.

It should be emphasized that the di erence between the experents presented
here and previous experiments on 2D ultracold gases is thedétn of disorder.
Until now, there has been no experimental study of the e ect oflisorder on the
properties of the BKT phase transition in ultracold gases,hiough the phase transi-
tion without disorder has been investigated (SeC._1.B.4). Preliminargsults in our
system indicate that disorder smoothly destroys the integted visibility of interfer-
ence patterns that indicate long range phase coherence. dtless clear whether the
disorder has any e ect on the thermally activated vorticesn the system.

The structure of this thesis is to provide a background for th basic experi-
mental apparatus used to create BEC's in Chaptdrl 2, followebly a detailed look
at this process in Chaptef B. Chapterl4 details how we con neuo 3d BEC to two
dimensional dynamics and add a disordered potential. Firgl the measurements

and results are presented in Chaptédi 5.
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Chapter 2
Experimental Sequence

2.1 Overview

This section describes the physics behind our basic expeeintal set-up. | have
chosen to separate the theory behind our experimental sep-from the construction.
Much of the theory has been well described in the referencasen in this section.
Therefore, this is a very brief introduction to the method tlat we use to obtain Bose-
Einstein condensates. Where possible, | will point out howuo set-up di ers from
the \typical" BEC set-up. Putting the theory rst will help m otivate the reasons
behind the physical construction of the apparatus descriden Chapter[3.

The starting point of almost everything that we do is a BEC. Inorder to
form a BEC in a dilute gas, we must trap and cool a source of theal atoms at
373 Kelvin to temperatures of only a few tens or hundreds of naKelvin, nearly
ten billion times colder. To date, there are only a few ways ddttaining these
tremendously cold temperatures in dilute gases [116]. Theam method to do the
bulk of the cooling is laser cooling, followed by evaporatigf92], with con nement
in either an optical [72] or magnetic trap([18]. In our expement, we use both types
of con nement. In addition, it is not uncommon to transport aoms to other areas
of a set-up, as in[[73], which we also do. A typical experimaitsequence consists

of the following steps:
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1. Zeeman slow a thermal beam of atoms

2. Load a Magneto-Optic Trap (MOT)

3. Transfer from the MOT to a magnetic trap

4. Cool using radio-frequency evaporation (can cool to BEC)

5. Load an optical trap

6. Transport the atoms to a science chamber

7. Turn on the second optical trapping beam for additional aonement

8. Optically evaporate to BEC

2.2 Thermal Source and Zeeman Slower

Our source of atoms is a heated pool of rubidium inside our wamm chamber.
It is described in more detail in Section 3.212 and in[55]. Ehatoms are heated to
100 C, and then sent through a tube so that a beam of atoms entersdhregion
where we do our trapping and cooling. If the tube length is clsen appropriately,
then the transverse velocity of the beam can be made small.

The atoms in the beam are moving too fast to be captured by the ®IT, so the
rst stage of cooling is done using a Zeeman slowing techng(120, 14109, 49].
This is one of many cooling techniques that makes use of thecfahat photons
carry momentum. When an atom absorbs a photon, it absorbs themomentum

of the photon. At a later time, it will re-emit this photon thr ough spontaneous
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emission, getting a momentum kick oppaosite to the directionf emission. However,
because the direction of spontaneous emission is random aymmetric (such as
a dipole pattern), the average momentum kick after many ensgn events is zero.
Therefore, if an atom absorbs a large number of photons fromlaser, there will be

a net momentum transfer in the direction of laser propagatig as the re-emission
kicks will average to zero. This momentum transfer can be u$#o slow the forward

velocity of the beam.

Since the atoms only absorb an appreciable number of photoristhe laser
frequency is within a few linewidths of the atoms' resonantréquency (6 MHz for
87Rb), the only trick to this technique is keeping the laser onasonance with the
atoms. The atoms have a changing e ective resonance frequgras they slow due
to their changing Doppler shift. This is compensated by a cimging magnetic eld
as the beam propagates.

We use a *-  hybrid slower design, as in Ref.[]15, 154]. Since di erent
atomic hyper ne levels shift di erently in a magnetic eld, the laser will only be
on resonance between two hyper ne levels. Therefore, o@lgumping to di erent
sublevels should be kept to a minimum. In original slower dgms, this was imple-
mented by picking either * or for the polarization of the slower beam. With
this polarization the atom only makes transitions betweenvio states. For example,
for * polarization, with the laser on resonance for the F = 2 to = 3 D, transition
hyper ne state (Fig. 2.1), the F = 2, mg = 2 ground state magnetic sublevel can
only make a transition to the P = 3, mg = 3 excited state, even in zero magnetic
eld, and the only allowed decay is back to the ma = 2 ground state, creating an
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e ectively two-level \stretched state" system. If the lase was polarized, the atom
could be pumped and decay among di erent magnetic sublevelsossibly shifting
the atom completely o resonance if a magnetic eld is presén

The two di erent polarizations require two di erent magnetic eld pro les
to keep the atoms on resonance, as shown in Fifg.12.2. For polarization, the
energy levels get closer together in higher eld, while for* polarization, the energy
levels get farther apart in higher eld. Since the Doppler sit pushes the excited
state to lower energy, . slowing requires adecreasingmagnetic eld as a function
of position, with the laser frequency above the bare (no eladr Doppler shift)
resonance, while slowing requires the opposite. A hybrid slower starts in a
high eld as a * slower, but the eld crosses zero at some position, switchsgn,
increases in magnitude again, and becomes a slower. Only one laser is needed
for this. At the zero crossing, the atoms must be moving fasheugh to diabatically
change their spin from the \+" stretched state to the \ " stretched state. Because
the direction of the eld has changed, the polarization of te incoming beam changes,
now becoming light for the new switched magnetic eld axis.

This approach has advantages over each of the non-hybrid dgs. The *
slower design has the disadvantage that because the magoegild must be small at
the exit of the slower, the slowing laser must be close to resmce. Since the atoms
are supposed to be captured in a MOT after slowing, the slowbeam always passes
through the MOT, making it undesirable for the slower beam tdoe near resonance.
The  slower solves this problem, since the magnetic eld will bailge at the exit

of the slower. The advantage of the hybrid slower over the design is that the
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total amount of required current is less. The total amount o$lowing is proportional
to the total di erence in magnitude of the eld. Because the eld in the hybrid
design crosses 0, the total magnituddi erence can be large without either of the
individual maximums being large. This results in a lower ovall amount of current
in the coll, less required power and cooling, and less stragld at the end of the

slower.

31



2.3 MOT

The MOT is perhaps the most important tool in cold-atom physss [125[ 109].
It combines the momentum transfer technique used in the Zeam slower with a
position-dependent force supplied by a magnetic eld graeint. This traps the atoms
in a volume on the order of mm at temperatures on the order of 100's ofK.

To get an idea of how a MOT works, it is easiest to consider a 1xxample.
Imagine that an atom is sitting at the intersection of two coater-propagating beams,
each detuned slightly below the atomic resonance of the atorif the atom starts to
move, its Doppler shift will make the beam propagating oppds to its velocity seem
closer to resonance. This makes it more likely to absorb ploots which will slow its
velocity, supplying a velocity-dependent force. Howeverhis force does not con ne
the atoms, since there is no position dependence to the ligfirce. A magnetic
eld gradient is then applied to add position dependence tohe light force, as in
Fig. Z3. Imagine that the atom has only one ground state witlzero spin, and the
excited state has three spin states. If the light carries theorrect polarization, then
the atom will be more likely to absorb a photon and transitiorto the level that is
shifted closer to resonance. For example, in Fig._2.3, if th@om is to the right
of the center, the m = -1 level is closer to resonance, and the light propagating
to the left has polarization. This makes absorbing a photon from that beam
more likely. The reverse is true if the atom is to the left of th center of the trap.
Thus, the combination of light polarization and magnetic dd gradient supplies a

position-dependent force to the atoms. A MOT then suppliesdth cooling, due
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to the velocity-dependent absorption, and trapping, due tdhe position-dependent
absorption. Generalization to 3D requires six beams, twodm each direction, and
a quadrupole eld, creating the correct magnetic eld gradents in each direction.

It should be noted that real atoms have more complicated leMstructure than
shown in Fig. [Z3. In particular, in 8’Rb, there is another ground state lower in
energy (F = 1). The atom can make o -resonant transitions to F= 2 and then
decay to the F = 1 ground state (see Fig[_2l1). This requires pamper lasers in
both the slower and the MOT to put the atoms back into the cychg transitions.
If this is not done, it only takes a few milliseconds for all ofhe atoms to end up in
the wrong ground state.

There are many di erent ways to create the required combin&ins of lasers
and magnetic elds for a MOT. Our MOT magnetic eld is createdby a U-shaped
wire sitting a few mm away from the atoms, plus a constant bia®ld, similar to
[74,[135,153]. This eld geometry restricts optical accesso we have a \mirror
MOT" (Fig. Z4). Instead of sending six beams at the atoms, #re are four large
beams. Two of the beams are re ected o of a mirror sitting in letween the atoms
and the U-shaped wire. Since the beams are large, these two rsahit the atoms

both before and after re ection. For more details, see Seoti[3.4.

2.4 Magnetic Trap

The momentum transfer of the laser-atom interaction is useff to cool the

atoms to a certain point, but the energy gain from each absoedl photon will set a
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Figure 2.3: Simplied schematic of a MOT. The laser frequenc! | is detuned
lower than resonance to compensate the Doppler shift. A magfic eld gradient
shifts the excited states so that on one side of the zero eldhe mg=+1 level is
closer to resonance, with the opposite true on the other sidé¢ zero eld. The laser
polarizations must be as shown to make the transition to theocrect spin state.
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Figure 2.4: Schematic of \Mirror MOT" operation. Each beam fts the atoms
(black circle) before and after bouncing o of the mirror, initating perpendicular
sets of counter-propagating beams.
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lower limit on attainable temperatures in a MOT. Therefore,we transfer from the
MOT to pure magnetic trapping.

Before transferring to the magnetic trap, we have a stage oflditional cooling
known as \optical molasses". Optical molasses has attain@btemperatures on the
order of a few K. Temperatures in a MOT are limited by the high atom density
through\radiation trapping”. Photons emitted by one atom have a good chance
of being reabsorbed by another atom in the MOT, creating an ¢ward radiation
pressure at typical MOT densities. This e ect can be mitigatd by decreasing the
density of the MOT, which we achieve by momentarily turning othe magnetic eld
gradient and detuning the MOT beams farther from resonancevhich decreases re-
absorption. Because the magnetic eld gradient is o, therés no longer con nement
for the atoms, but there is cooling due to the beams. The tempaure quickly drops,
and then the atoms start to leave the original trapping areaWe con ne them in a
magnetic trap before the size of the cloud grows too large.

Referring to Fig. [Z1, we see that there are two di erent grood states, F =
1 and F = 2. In addition, as seen in Fig.[ 212, these two levels ereach split into
di erent spin states which have di erent energies in non-z® magnetic elds. We
choose to trap the F = 2, m = 2 spin state, which is at its lowest potential energy
at the minimum of a magnitude eld. An optical pumping pulse isapplied just
before turning on the magnetic trap to ensure that most of th@atoms are in the
correct state (Sectior.35b).

Magnetic trapping works on the principle that the potentialenergy of an atom
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with a magnetic moment

F=0O Mg B (2.1)

with g= the Lande g-factor and g the Bohr magneton, is given by

V= + B(H (2.2)

If you make the assumption that the atom is cold enough that & spin adiabatically
follows the direction of the magnetic eld, then only the magitude of the magnetic
eld matters. Then, the sign of  determines whether the atom is high- eld seeking
or low- eld seeking. Because Maxwell's equations forbid @&3magnetic eld maxi-
mum in free space, magnetically trappable states are genkydow- eld seeking. In
8’RDb, these states arethe F=2, m=1and mg =2 statesorthe F=1, mg =-1
state (due to the change of sign afr between the two di erent F levels).

The type of trap we use is an lo e-Pritchard trap [109, 18]. Imgine four
in nitely long current-carrying wires situated equidistant from each other. Each
wire runs current in the opposite direction as its nearest mghbors. By symmetry,
the magnetic eld for these wires is constant along the axisf éhe wires. For any
given plane along the wires, the magnetic eld will be 0 at theenter, and then
increasing in any direction away from the center, as in Fig_2. This con guration
provides trapping for low- eld seeking atoms in the plane. Rinch coils" running
current so the eld from each coil points in the same directio are used to con ne
the atoms in the third direction. It is worth noting that the pinch coils run current
in the same direction to prevent Majorana spin ips[[Z8/145]The magnetic eld
magnitude would be zero at the center of the trap if the currda in the pinch coils
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Figure 2.5: Vector eld pro le of 2D quadrupole. Direction d arrow indicates eld
direction, length of arrow indicates magnitude of eld.

are opposite. If the atoms see a zero eld, their spins cannbe de ned, since there
is no preferred axis in space. Then, if the atoms move away rfinahe center of the
trap, they might have ipped their spin with respect to the direction of the eld
they enter, causing them to become untrapped. Our trap uses @ld pro le very

similar to this, but created in a very di erent way (Section[3§).

2.5 RF Evaporation

RF evaporation in a magnetic trap is used to increase the phaspace density

of the gas by many orders of magnitudé [82,92]. It works by treame principle as
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regular evaporation. In a trapped gas sample, the atoms haaeVlaxwell-Boltzmann

distribution of energy. Our trap has a nite depth, and the aibms most likely to be
found near the top of this trap have the most energy. If we lowehe depth of the

trap slightly, some of the atoms with the most energy will lez the trap. The atoms

that are left will then rethermalize via collisions[[102]. Wden they do, the average
energy of the gas will be lower, indicating a lower temperate. This process can
be repeated until the number of atoms gets too low to retherrtiae e ciently. The

e ciency of the process and lowest attainable temperature @pend crucially on the
collisional properties of the gas.

The RF photons lower the depth of the trap by causing transions from
trapped spin states to untrapped spin states. As seen in Fig.2 the magnitude of
the magnetic eld changes the relative energy spacing beter di erent spin states
in a given F hyper ne manifold. This energy corresponds to dho frequencies, and
the energy between states is greater in a larger magnetic del The magnetic eld
magnitude gets larger farther from the center of the trap, ath atoms with more
energy will sample the regions of higher magnetic eld. If a1 RF frequency is set
to resonantly drive transitions between spin states for a ngmetic eld that only
the highest energy atoms will sample, then the depth of thedp is e ectively made
smaller. The RF photons do not drive transitions for any atore whose trajectories
do not have enough energy to take them through the resonant igaetic eld. If the
RF power is set correctly, the process of ejecting atoms frotime trap can be made
nearly 100 percent e cient. By varying the frequency of the B radiation, the trap
depth can be modi ed to be nearly any value. Any atom with enoug energy to
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have a trajectory that samples the resonant magnetic eld Vae will be ejected from

the trap.

2.6 Optical Trap

Though RF cooling can be used to cool the sample below the BE€nsition
temperature, we often want to move the atoms to the \sciencehamber”, a small
glass chamber with better optical access than the region ustr magnetic trapping.
We use an \optical tweezers" technique [73], loading the atts into a focused-beam
trap and then translating the focus to move the atoms.

Atoms interact with o -resonant light through the induced electric dipole mo-
ment. It can be shown that potential felt by a two-level atom m the presence of

o -resonant light is given by [72]

3c?

U(r) = 2'_8

—1(¥); (2.3)

with c the speed of light,! ; the natural resonant frequency of the atom, the
detuning of the laser from atomic resonance, the decay ratef the excited state,
and| (¥) the intensity of the laser. Equation’”Z.B shows that the atonfeels a potential
which is linearly proportional to the intensity of an incident laser. In addition,
the sign of the detuning determines whether the atom is attrided or repelled from
regions of high intensity. We detune our laser below the atamtransition frequency,
meaning that the atoms are attracted to the focus of the beamSince the optical
potential is not very deep, it is necessary to pre-cool usirigF evaporation before
loading atoms into the optical potential.
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Once the atoms are loaded into the optical trap, the focus ohé beam is
translated and the atoms follow, moving a distance of approxately 30 cm. With
the atoms in the science chamber, an additional beam is usedl ihcrease the con-
nement of the atoms. More cooling will be required once thetams are moved, as
the collision rate in the optical tweezer is insu cient.

Optical evaporation proceeds based on the same principlesRF evaporation.
In this case, the depth of the trap is lowered by simply decrsang the intensity of
the beam. However, the oscillation frequencies of the optldaap in the radial (! )

and axial (! ;) directions are [72]:

S
| = 4;:!(%) (2.4a)
S
_ 2U(0),
= T (2.4b)

with U de ned in Eq. [Z.3,! o the resonance frequency of the atorm the mass of the
atom, andzg = ! 3= the Rayleigh range of the laser with wavelength. Therefore,
the oscillation frequencies, and hence the collision ratelso depend on the intensity
of the beam [[11R]. Optical evaporation must follow a di ereintrajectory of trap
depth vs. time as the oscillation frequencies change durimyaporation. Despite
this, optical evaporation can still be very e cient, as the nitial con nement is
typically very tight, allowing a high collision rate. Our optical evaporation produces
BEC's after about 10 seconds of evaporation.

The above experimental sequence producing BEC's in eithdre magnetic or
optical trap is the starting point for most of the experimens that we do. A more
detailed look at the technical details of the above sequentalows below, and the
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design and implementation of lattices and disorder is desiced in chapter[4.
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Chapter 3
Technical Details of BEC Production

3.1 Overview

This chapter details the experimental apparatus used to cage BEC's. The
intended audience is people that will be working in this labni the future, or peo-
ple that are building a BEC apparatus. Many of the topics coved here are also

discussed in Ref.[]55], including many of the part numbersrfthe equipment.

3.2 Vacuum

3.2.1 Main Chamber

In order to achieve Bose-Einstein condensation, we must béla to con ne
our gas of atoms with lasers and magnetic elds for about 30@@nds. This requires
an ultra-high vacuum environment, on the order of 10'* Torr, as collisions with
background gases limit the amount of time we can hold atoms & trap. In order
to get and maintain this type of vacuum, all vacuum connectias on the chamber
are con at-type, sealing with a stainless steel knife edgdagdjing into a both sides
of a copper gasket. There are two sections to the chamber, mained at di erent
pressures. The main UHV chamber is on the order of 18 Torr, while the Rubidium

oven is at 10° Torr. Originally, the chamber was designed without an overysing
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Figure 3.1: Picture of the outside of the main vacuum chambeiThe 4 way cross is
visible, as are 3 of the 4 coils attached to the spherical ogan. The ion pump is
attached to the left side of the 4-way cross.

Rb getters instead [[55].

The main UHV chamber is pictured in Fig. (31l. The bottom is a spheal
octagon, with 8 2-3/4" Con at connections. This is connecté on the top by 4-
way 6" con at cross. Attached at the top of the cross and hangig down into the
spherical octagon is the structure shown in Figl—3.2, used toeate the magnetic
elds for our MOT and magnetic trap (see Secs[3.4,-3.6). Onéds of the cross
is an ion pump with a titanium sublimation pump. The other sice of the cross is

reduced to 2-3/4" con at and attached to a 2-3/4" T in order to put in a nude ion
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Figure 3.2: Structure to hold and cool the U and Z shaped wiresed for the MOT
and magnetic trap. The whole structure is mounted upside dowfrom this picture
inside the vacuum chamber.

45



gauge to measure the pressure in the chamber.

The spherical octagon has 5 of its 8 ports attached to vacuumindows, and
a large 6" window on the bottom. Three of the windows are antie ection (AR)
coated for 780 nm normal-incident light (MOT), while 2 of then are AR coated for
normal-incident light at 1550 nm (optical trapping) (Fig. 33). The large window
on the bottom is coated for 45-incident 780 nm light. The other three ports on the
octagon are used for the Zeeman slower, an extension for a mahannel plate (for
studies on Rydberg atoms), and a science cell. The chamber floe microchannel
plate is a 2-3/4" cube attached to a 2-3/4" nipple. The cube'$ other sides have 2
blanks and 3 windows. The window on the microchannel plate amber which looks
in on the main chamber is coated for 1550 nm light, while the bér two windows
are coated for 780 nm.

The science cell is a quartz uorometer cell available fromt&na cells, part
number 3/Q/20. Itis 12.5 x 22.5 x 45 mm. We have this cell attadwed to a quartz-to-
metal seal connected to a con at ange by a company called Baro. Interestingly,
Bomco claims that the quartz to metal seal is insensitive toeimporal temperature
gradients. They said that just after making the seal at highémperatures, they dip
the seal in liquid nitrogen to cool it. We have the optics shopnd glass blower at
NIST attach the uorometer cell to the quartz to metal seal. A dsc that is the
same size as the cylinder attached to the ange is fritz-sesl to the cell, and then
the glassblower attaches the disc to the cylinder (Fig. 3.4)

The structure inside the vacuum chamber has 2 leads for the Uaped wire

to create the MOT magnetic eld, 2 leads for the Z-shaped wirased to create the
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Figure 3.3: Top view of spherical octagon forming the bottonpart of the main
vacuum chamber. Beams entering each window are shown, alomgh externally
mounted coils. Arrows indicate eld direction on exterior cds, and current ow in
the U and Z-shaped wires. Windows are anti-re ection (AR) cdad at 90 incidence
for 780 nm (slower axis, y-axis) or 1550 nm (MCP axis, x-axis)The science cell is
not AR coated. Not shown in this picture are the coil wound aroush the bottom
ange used for the MOT or the MOT beams entering from the botten of the
chamber at 60 in the x-z plane.
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Figure 3.4: Photo of science chamber attached to the main waem chamber.
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magnetic trap, and 4 leads which were previously used to rumrcent for Rubidium
dispensers [55], but which now serve as electrodes used ipegiments with Rydberg
atoms. In addition, there are two water feedthroughs whichekd a stainless steel
can attached to a copper block, in turn connected to a piece aluminum-nitride in
which sit the U and Z-shaped wires. Aluminum-nitride was ches for this purpose
because although it is an electrical insulator, it is a goodermal conductor. On top
of the wires sits a gold mirror used to re ect MOT beams, heldni place by metal
clips screwed to the copper block behind the aluminum-nitgte. The gold mirror is
a silicon wafer coated with gold by the Fab Lab at the Universyt of Maryland and

then broken into a 3 cm square.

3.2.2 Rubidium Oven

A schematic of the inside of the Rb oven is shown in Fig. 3.5 ama [55]. An
additional picture showing the cold plate, ball valve, and d of the collimator is
shown in Fig. 3.6. The Rb sits in a 1-1/3" inch bellows which wese to crush the
ampoule that contains the Rb. This hangs from a 1-1/3" \tee" vhich is connected
to a spherical square chamber on one side and blanked o on tbéher side. The
spherical square chamber (2-3/4" on sides, 4-1/2" on the toand bottom) is con-
nected to the tube for the Zeeman slower on the side opposit€he connection on
the bottom has both a 3/4" copper feedthrough and a rotary fefthrough; one side
is an all-metal valve, one side is a window, and the top is coected to an extender

tube and then to a 30 L/s ion pump. The all-metal valve is useda rough out the
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Figure 3.5: Cut-away side view schematic of the Rb oven.

system before turning on the ion pump, and the extender tube needed to decrease
the e ect of the fringing magnetic elds from the ion pump.

Inside the bellows, next to the ampoule, we put a gold mesh (doevaporated
on a stainless steel mesh). This is an attempt to mimic the \callestick source™
[148, 79]. Once the ampoule is broken and the bellows is hehtéhe Rb should
turn into a liquid, and the mesh should stick into this liquidand then up out of the
bellows into the tee. However, it is unclear whether our meslerses as a source of
atoms from the top of the mesh or recycles atoms back into theopl of Rb. The
original candlestick source has two di erent meshes for daof these purposes. If

the mesh is at a higher temperature at the top, then capillanaction drives the Rb
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up to the top, and the heat at the top drives the atoms o of the nesh, so the
top of the mesh acts as a source of hot atoms. However, if the inas cooler at
the top, atoms can collect there, and then gravity and capdry action can carry
them back down the mesh into the pool of Rubidium. According t¢79], the reason
gold-plated stainless steel is used is that Rb will only weitstainless steel if the
stainless steel is very clean. The process of gold platinggess to electropolish the
surface of the stainless steel, making it very clean. The Rbrins an alloy with the
gold, e ectively removing it, and then wets to the stainlessteel. In our case, the
oven seems to work with the mesh, so we continue to use it.

Inside the tee sits a tube to collimate the beam of atoms. This a copper
tube, approximately 2 inches long and tapered to two di ereindiameters. The
larger diameter, closer to the bellows, serves to sit justterior to the tee to help
hold the tube in place. The smaller diameter closer to the chaer serves as the
actual collimator. The smaller diameter is about 2 mm inner idmeter. The tube
is held in place by a spring which pushes from the blank on theabtk side of the
tee. Additionally, the smaller part ts snugly into the gaske holding the tee to the
reducer which connects it to the spherical square chamberh& gasket is a copper
disc which was drilled out with a 3/8" hole to hold the collimding tube.

Closer to the main chamber, sitting about 2" from the the end fothe colli-
mating tube, in the spherical square chamber, is a 3" diameateopper plate with
a hole drilled in it. This plate is attached to the copper feeithrough, and we cool
the feedthrough to approximately -10 C with a large copper block attached to a

thermoelectric cooler (TEC). The back of the TEC is cooled wh a Thermaltake
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Figure 3.6: View looking down into spherical square chambeugt in front of the
Rb source.
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closed-loop water cooler intended to cool computer processfor overclocking. The
plate provides additional collimation for the atomic beam ad also catches the Rb
which sprays outside the con nes of the beam. This is impont#, as Rb will ruin
the ion pump on the source side.

Next, closer to the main chamber and Zeeman slower, is a sphefe 1" di-
ameter with a large hole drilled through the center. This s just in front of the
tube used to maintain the pressure di erential between the ain chamber and the
oven chamber. It is connected to the rotary feedthrough, and is used to reduce
the conductance to the main chamber when we are not activelgdding the MOT.
The ball rotates so that during the MOT load atoms are free to mve through the
large opening, but that opening is perpendicular to the presre di erential tube
at all other times. The tube to maintain the pressure di eretial between the oven
and the main chamber is the last object between the oven and mahamber. This
tube serves to maintain a pressure di erential of 2-3 ordersf magnitude. Based on
the pressure reading in the main chamber, we expect that thegssure in the oven

is maintained at a few 10° Torr.

3.3 Lasers

There are four lasers currently used in the experiment. Twa@ diode lasers,
a Toptica DLX-110 and a Sacher Lynx laser. We also have a Titamn-Sapphire
(Tekhnoscan TIS-SF-07) laser pumped by a 10 W 532 nm Coherevierdi V-10.

Finally, we have a 15 W ber laser (IPG photonics ELR-1567-LFSF). Both diode
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lasers are 780 nm diodes. The Sacher is 100 mW and used for repung on the
MOT and Zeeman slower beams. The Toptica is 500 mW and used tbe MOT
beams, slower beam, optical pumping, and probe lasers. Theplica actually has a
1 W diode installed, but because it was refurbished, it stithas a low power optical
isolator which restricts the output to 500 mW. The Titanium-Sapphire (Ti-Saph)
laser is tunable between 750 and 850 nm, outputs approximétel Watt of power
when fully tuned near its peak wavelength, and is used for apal lattices and the
creation of speckle disorder. The ber laser outputs 15 W at563.8 nm and is used
for the optical trap. Beam path diagrams for the diode laserare in Ref. [55], while
the ber laser beam path diagram is in section 3.8, and the Tsaph diagram is in

chapter 4.

3.3.1 Frequency Stabilization

The two diode lasers have to be frequency stabilized to drisgomic transitions.
The frequency width of the laser should be less than the linalth of the transition
that the laser is driving. For®'Rb, the linewidth of the D, transition is about 6 MHz
[142]. For the trapping laser, the requirement is actually ore stringent than that,
since measurements are made using absorption of this light the atomic sample.
If the frequency width of the laser is too wide, the absorptiowill be inconsistent,
even with repeated measurements of the same sample. Therefdhis frequency is
stabilized to 500 kHz. The requirements on the repumper areske stringent, so a

less complicated lock set-up is required.

54



In order to lock the frequency of a laser, we must generate altege signal
proportional to the frequency of the laser which switchesgn at the frequency at
which we want to lock. The output of a feedback circuit can the be used to \push"
the frequency back to the desired value by applying a voltage either the piezo
controlling the grating feedback to the laser, or to the dioé current, or both. For
the Toptica (trapping) laser we feed back to the current, wheé we apply feedback
to the piezo of the Sacher (repumper) laser.

The error signal input to the lock is generated from the trapimg laser using
a technique similar to Pound-Drever-Hall [23]. An electro-de modulator (EOM)
phase modulates the beam at 14 MHz. This generates frequen@ebands at the
driving frequency which are 180 out of phase with one another. When the laser
frequency is sitting exactly at the peak of an absorption féare, both sidebands
are absorbed equally by symmetric absorption on either sidé¢ the peak. However,
if the center frequency is changed to the side of the absormti feature, one of the
sidebands will be absorbed more than the other, giving an ensity modulation at
the sideband frequency. The phase of this modulation will gend on which side
of the resonance the center frequency is. This can then be mikwith the driving
sideband frequency to give an appropriate locking signalsimg the set-up shown in
Fig. 3.7. When the phase of the modulation switches, the mideoutput voltage
switches sign. Electronically, the bias-T directly after he photodiode prevents any
DC voltage from going to the sensitive RF ampli er used to amigy the 14 MHz
signal. Because there are many higher frequency sidebaneésnerated, the output

of the mixer must be Itered to obtain the low-frequency locksignal. This laser is
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Figure 3.7: Electronics setup to generate error signal uséal lock trapping laser.
\MC" indicates a Mini-Circuits part. The dotted line is the pump beam used to
generate the Doppler-free spectrum of the atomic resonance

locked with a commercial feedback circuit, the Precision FRionics LB1005 (now sold
by Newport). The Doppler-free absorption feature is generatl using a saturated
absorption technique [103, 50, 51], illustrated by the cremg of the additional strong
pump beam (dotted) in Fig. 3.7.

The repumper laser is locked using a DAVLL method [42]. Due tdé energy
level shift in a magnetic eld shown in Fig. 2.2, the resonanfrequency for *
polarized light is shifted from that of  in a non-zero magnetic eld, since each
type of light drives a di erent transition. A beam with a mixt ure of the two po-

larizations is sent through a Rb vapor cell with magnets alaside it. The beam is
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subsequently split into its constituent polarizations wih a polarizing beam-splitter

and then the absorption pro le of the two is directed onto twoseparate photodiodes
and electronically subtracted. This gives a zero right in th middle of the absorption
feature, where each polarization is absorbed equally, andein an opposite voltage
on each side of the feature. Since the absorption spectrumnst Doppler-free in

this case, the feature is much wider than the locking signakad on the other laser.
In addition, the magnetic eld from the magnets used to form lhe magnetic eld

in the cell is very sensitive to temperature changes. Thewmgk, we put the magnets
and vapor cell inside a box and stabilize the temperature. Weave an additional

Doppler-free saturated absorption signal which we use as r@dquency reference to
adjust the lock point.

Since the other two lasers used in the experiment are far o senance for
the atoms, they do not need to be frequency stabilized. The @ ber laser for
the optical trap has a linewidth of 5.5 MHz (FWHM). The Ti-Saph ®mes with an
electronic control box which can be used to lock the frequenby dithering a piezo

on the thick etalon and feeding back, but we rarely use it.

3.3.2 Intensity Stabilization

The requirements on the intensities of the di erent lasersra reversed from
their frequency requirements. The two diode lasers' inteities do not matter much,
while the Ti-Saph and ber lasers must have their intensitie stabilized. For the ber

laser, this is because the depth of the optical trap is dirdgt proportional to the
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intensity. When we evaporate in the optical trap, we must belae to precisely control
this depth. For the Ti-Saph, many of our measurements requra precise knowledge
of the depth of the optical lattices formed by the laser, whit are proportional to
intensity.

The two di erent lasers share the same basic lock set-up. A sithamount of
light from the beam is sampled after either an EOM or an acoustoptic modulator
(AOM). This light is used as the input error signal for the lo&, and the feedback
goes to the AOM or EOM.

There is an EOM in the beam path for the ber laser which can be sed
to control the intensity of the light. A voltage across the cystal will change the
polarization of the light traveling through the EOM, and a bem cube converts this
polarization change to an intensity change. A Thorlabs photdiode is placed behind
the mirror directly after this EOM. The leakage light through the mirror is enough
to lock the laser, since the photodiodes we use (Thorlabs DETC) are very sensitive
at 1550 nm. The signal from the photodiode goes to a home-hiuilansimpedance
ampli er and is used as one input to a Precision Photonics LEBID5. The other input
to the LB1005 is an analog voltage from the computer controlThe output of the
lock will feedback to adjust the intensity on the photodiodeso that the photodiode
output voltage matches the computer control voltage. Theres a low-pass RC lter
between the computer control and the lockbox. This helps agat deal in preventing
noise on the computer control signal from being written ontthe intensity of the
laser. However, it greatly restricts how fast we can changedhntensity of the laser.

Meanwhile, the overall bandwidth of the lock is limited to albut 200 kHz by the
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EOM high voltage controller.

Due to the comparatively lower power involved in the beamsdm the Ti-Saph
(<250 mW per beam), there are bers used to direct the beams to ¢hexperiment.
The AOM's used to control the intensity of these beams are ptad before the inputs
of the bers, with the rst order di racted beam used as the ber input. Then, the
beam is sampled using either a glass slide or a Thorlabs beamkp (BSF10-B).
A short focal-length lens is used to focus the sampled beamtorthe photodiode
(Thorlabs PDA36A). If the beam is small at the pick-o, then the re ections from
the front and back surfaces can be separated and a razor blazde be used to block
one of the re ections to prevent interference on the photodde. Feedback from
an electronic lockbox adjusts the RF power (with a voltage edrolled attenuator,
Mini-circuits ZX73-2500+) to the AOM to maintain a constant optical power in the
beam after the ber. One disadvantage to this set-up is the sing thermal beam
steering of the AOM. We must be careful to keep the RF power iment on the
AOM's constant so that when we want the beam on, it is alignednto the ber.
Otherwise, when the AOM has cooled down, the injection intohe ber will be
poor, leading to a low maximum output until the AOM is fully warm. A shutter is
in place so that the RF power to the AOM's only has to be o for the time required

to open the shutter, on the order of tens of milliseconds.
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Figure 3.8: Calculated magnetic eld pro le of the Zeeman slWwer. The source is at
distance zero.

3.4 Zeeman Slower and MOT

The Zeeman slower is designed with 7 separate coils wound anauminum
tube of 3" diameter. Each coil is 2" wide, and the coils are alwound on the tube
butted up against the next coil in line. The rst four coils (2arting from the source)
are two layers of 25 turns of 14 AWG rectangular wire, while ds 5 and 7 are four
layers, and coil 6 is six layers. The eld at the center of eacboil is 27 G/A for
each layer on the coil. A calculated eld pro le for the sloweis shown in Fig. 3.8.
To drive currents to the coils, a single linear supply is usedh conjunction with 7
transistors [55] to divide the current to the separate coils

The MOT quadrupole eld is created by the U-shaped wire showmiFig. 3.9
with the addition of an external bias eld opposing the eld fom the at middle
section of the U [74, 135, 153]. The elds from the leads cah@ach other at the

minimum, so that no eld is felt from the leads by the atoms. Tle bias eld for the
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Figure 3.9: Pictures of the wire traps used to form the MOT andnagnetic trap
(from Ref. [55]).

U-shaped wire is created by two coils external to the chambemownd in Helmholtz-
type con guration (\x-bias" in Fig. 3.3). These coils are sgare shaped hollow wire
which create a eld of magnitude 0.75 G/A, and we cool them by noning water
through them [55]. In order to run the water through the coilsshort (1") sections
of round copper tubing are soldered (with a blowtorch) to thends of the wire, and
then swagelock connections are made from the copper to plagubing. In addition
to this bias eld, there is also a coil wound directly aroundlie large bottom window
of the chamber. This \tilts" the MOT eld and facilitates loa ding of the MOT. The
widening of the central bar of the U has a similar purpose.

The U-wire is attached to the vacuum chamber with the structue shown in
Fig. 3.2, and on top of it is the gold mirror used for two of thedur MOT beams,
as shown in Fig. 2.4. These beams enter the vacuum chamberabgh the large
window on the bottom at an angle of approximately 60from vertical. Because a

MOT requires laser light from 6 perpendicular directions,iie beams which hit the
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mirror have diameters of approximately 1.5", and they hit tke atoms both before and
after re ecting o of the mirror, providing a mirror MOT [128 , 97]. This provides
four of the six beams, with the other two coming in perpendidar to the plane of
the mirror in two of the windows of the octagon. All four MOT beans come from
the four outputs of a ber splitter, which has four inputs as vell. Two of the inputs

of the splitter are coupled to all four outputs, while two of he inputs are coupled
to only two of the outputs. The repumper light for the MOT is canbined onto the
two beams incident on the gold mirror using one of the \two-aput" ports of the

ber splitter. We typically load for approximately 8-10 seonds, collecting on the

order of 10 atoms in the MOT.

3.5 Optical Molasses/Optical Pumping

Our optical molasses step occurs just after the MOT step in thexperimental
sequence. The elds from the coils are extinguished quicklysing insulated gate
bipolar transistors (IGBT) [55], while the MOT beams are datned almost ve
linewidths further from resonance ( 28 MHz). During this time, it is important to
have no magnetic eld where the atoms are sitting, as magnetield causes a drift
in *-  cooling. In order to zero the eld, we have trim coils wound irHelmholtz
con guration glued directly to the anges on the vacuum charber, including the
bottom and top of the chamber. We also have a single coil gluegposite the slower

to compensate any stray elds from the slower (Fig. 3.3). Tlsi molasses step lasts

for about 5 ms, a time long enough to cool the atoms to 40K while only about
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5% of the atoms leave the trapping area.

Just after the optical molasses, we apply an optical pumpingulse to spin-
polarize the ensemble. After the MOT and molasses, the spinstiibution of the
atoms is unknown, although probably close to isotropic. Wedp the F =2, mg =2
spin state, so the light for the optical pumping is tuned fronthe F = 2 ground state
to the F°= 2 excited state, and the light is . polarized. Using this combination
of frequency and polarization assures us that once an atomimsthe desired ground
state, it no longer makes resonant transitions. The allowetlansition would be to
the F°= 2, mg = 3 state, which does not exist. This limits heating during tte
optical pumping pulse. We use a pulse time of 350 - 508 with a power of 250 -

350 W in a beam of 1 cm diameter.

3.6 Magnetic Trap

The magnetic trap that we use is an lo e-Pritchard trap (Sec.2.4) [74, 135,
153]. It is created by the Z-shaped wire shown in Fig. 3.9, wdfi sits on top of the
U-wire on the structure in Fig. 3.2, electrically insulated ¥ a sheet of Kapton. As
the eld from the center wire falls o linearly inversely with the distance from the
wire, a uniform bias eld cancels the eld at a distance ¢ from the wire. The eld
increases in magnitude radially aroundgrin the plane perpendicular to the center
bar of the Z-wire. The same exterior coils used in the MOT forrthe bias used to
de ne ro. The leads of the Z do not compensate one another, unlike fdret U, so

these leads play the role of the \pinch coils" in a regular lce-Pritchard type trap.
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In addition, we have another set of Helmholtz type coils outde the vacuum (0.4
G/A) which enhance the eld from the leads and signi cantly canpress the trap.

Because the atoms are not far away from the Z-trap compared tbe size of
the wire, a calculation of the magnetic eld at the atoms musigo beyond the thin
wire approximation. In order to calculate the trapping fregiencies of the magnetic
trap, we rst nd a closed form solution for the magnetic eld of a nite length
in nitely thin wire. Then, this solution is numerically int egrated over the plane of
the actual spatial distribution of the entire Z-shaped wireby parameterizing each
section's current ow. In order to model the current densityin the sharp corners of
the wire, the solution is found for all of the current owing nto each corner, and
then all of the current owing out of each corner, and then auvaged. Once the eld
from the wire is calculated, the uniform bias eld from the eterior coils is added
to the calculation, and a 1D minimum is found as a function of idtance from the
Z-wire. Typical magnetic traps have a minimum approximategl 2-3 mm from the
wire. Once the minimum is found, the potential is assumed toebharmonic about
the minimum, and the second derivative is calculated in allhree dimensions to get
trap frequencies. A more advanced solution would use niteleament analysis to
model the actual current density in the wire, but we get faigf good agreement with
experimentally measured trap frequencies using this mettho A plot of magnetic
trap frequencies versus current in the \pinch" bias coil isigen in Fig. 3.10, with
the other bias and Z-wire current at 75 Amps.

We load approximately 2 X 16 atoms in a large volume, weakly con ning trap
for approximately 10 ms, and then immediately compress theap for 250 ms to its
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Figure 3.10: Magnetic trap frequencies as a function of \pah" bias current with
other two coils running 75 A.
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nal value. Because the depth of the trap is set by the bias @ opposing the center
bar of the Z-wire, the compression, which increases this biaeld, serves to deepen
the trap as well as tighten it. We typically have trapping frequencies between 100
and 400 Hz in the tight directions of the trap (the plane perpedicular to the center
bar of the Z), and 30 to 100 Hz in the loose direction. The highefequencies
correspond to currents of 75 A in the z-wire, 75 A in the bias #¢s opposing the eld
from the center bar, and 65 A in the coils supplying bias elds the same direction
of the leads of the z-wire. The temperature of the atoms aft@ompression to this
trap is around 500 K.

Once the atoms are loaded into the magnetic trap, we can coblem using RF
evaporation all the way to BEC, or stop the process at some puiin order to load
them into an optical trap (Sec. 3.8). The RF coil is approximiely 3 turns of wire
wound in an oval shape of 4" x 2" . This is placed nearly againste large bottom
window of the vacuum chamber, aligned so that the minor axisf ¢he colil sits in
between the entering beams for the MOT. The RF function genator controlling
the RF sweep is connected to a 4 Watt RF ampli er, and then a BNCable. The
center lead of the BNC cable is then soldered to the wire forngrthe antenna, and
the other side of the antenna is soldered to another BNC cablermected to a 50
terminator. The ground braids of the two BNC cables on eitheride of the antenna
are soldered together to close the circuit. The RF frequensyeep goes from about
40 MHz down to frequencies of 1 to 8 MHz, depending on the trapgrcurrents.

Typically, in order to load the atoms into the optical trap, the evaporation
in the magnetic trap is stopped and the atoms are decompreds® a trap with
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frequencies of 115 x 65 Hz in a 250 ms linear ramp of the curretdss5 A (z-wire),

75 A (center bar bias), and 40 A (z-wire lead bias).

3.7 Power Supplies and Grounding

The supplies which run the MOT and magnetic trap are SorensddLM-600
model supplies. The bottom coil for the MOT is run by a SorensoXLT-60 supply,
and the trim coils used in the optical molasses are run by Kep@ATE15-3 supplies.
There is an interlock circuit to keep the water-cooled coiléncluding the U and Z
wire) from being run without the water cooling, and IGBTs areused to turn o the
coils quickly for expansion measurements of the atoms [55].

The initial ramp of the power supplies is also critical to caguring atoms in
the magnetic trap. Since the IGBT's are not part of the servodop which controls
the current output of the supplies, it is possible to get trasients when switching the
supplies on. If the supplies are being commanded to drive aayount of current
while the IGBT's are preventing current from running, the spplies will then rail
at their maximum voltage as they try to drive current to the open loop. As soon
as the circuit closes, this voltage will cause a spike in cemt before the supply can
e ectively feed back to manage the current. In fact, even ifite supply has been
commanded to a value of O or less than 0, there will be a delayfbee the feedback
starts once the supply is commanded to switch to some posgivoltage. Therefore,
to get a linear ramp of current when the supplies turn on, theiming control of

the analog voltage to the supplies running current during th magnetic trap must
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be such that the commanded current is less than zero duringgfMOT, and then
driven positive for a time on the order of 10's of ms before thamp is to start. This
ensures a linear turn-on of the magnetic elds for the magniettrap.

Ground loops are a large problem for any magnetic trap. If the is any
resistance between the grounds of supplies, there can be atbey due to the phase
di erence of the 60 Hz power input to the DC power supply. This bating gives us
current noise on our supplies at 60 Hz, a frequency slow enoufgin the atoms to
respond to, especially if any of the trapping frequenciesenear 60 Hz or a harmonic
of 60 Hz. To mitigate this, we tie all of the grounds of our Soreson supplies to the
optical table using AWG 6 wire. The optical table, in turn, isconnected to both
the ground of one of the wall circuits via a grounding braid ahalso tied to a large
pipe running across the ceiling of the lab. The wire runningotthe pipe is AWG
1/0, and another wire of this type is run to the 19" rack which ve use to break out
all of our computer control (Sec. 3.10.1).

In addition, to prevent 60 Hz noise on the analog inputs whichontrol the
current output of the supplies, we use a USB to optical convest which breaks the
ground connection to the computer control (Icron USB 2.0 Rareg 442) for our USB
DAQ card (NI USB-6229). One further step to eliminate 60 Hz noiss that digitally
triggerable low pass lters are placed between the USB DAQ cdrand the power
supplies. These can be turned on once the magnetic trap cyblas started. If they
are turned on too early, they limit the bandwidth of the contol signals to the power
supplies. Despite all of these precautions, there is stillteap frequency dependent
heating rate ( 100 nK) which we attribute to magnetic eld noise, although i did
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Figure 3.11: Optics and optical path for control and shapingf the 1550 nm optical
dipole trap.

seem to be lessened by these changes when we made them.

3.8 Optical Trap

The beam path for the optical trap is shown in Fig. 3.11. A bearaube is used
to purify the polarization of the beam before it goes througthe EOM used to lock
the intensity, and an AOM is used to split the beam power to besed for a crossed

dipole trap in the cell. The main beam used for the optical twezer passes through
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a telescope which expands the beam, and then through an f = 660n focusing lens
on a translation stage. The beam is then relay imaged to the@ns in the chamber.
Meanwhile, the cross beam passes through a lens to expandaitd then through a
focusing lens of f = 20 cm, set on a translation stage, beforeossing the tweezer
beam in the science chamber.

For most optical traps, it is bene cial to have a small beam wigt. This
increases the trapping frequencies, giving a large coltisirate and tight con nement.
For our setup, there is approximately 30 cm between the endtbie quartz cell science
chamber and the position of the atoms during the initial trasfer to the optical trap.
Since the beam must travel through the end of the cell beforatiing the atoms, it
must be smaller than the smallest dimension of the cell fac& ¢m) in order to pass
into the chamber with a minimum amount of di raction. A Gausdan beam waist
w(z) expands along its axiz as

S

w(z)=wy 1+ z ; (3.1)
ZR

with zg = w3 the Raleigh range, andvy the waist of the beam at its smallest point.
This equation shows that a more tightly focused beam divergdaster, which sets a
minimum waist size of 40 m for our tweezer beam.

In addition, when we initially set up the optical trap, di ra ction was a problem
all along the beam path. We were not careful to follow the gerad rule that the
diameter of any aperture for a beam should be four times the &m waist to prevent

di raction [81]. When a beam diracts from a circular aperture, the size of the
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waist of the beam doesn't change much, but power is redistrited to the wings of
the intensity distribution. We spent a good deal of time measing beam waists
using a razor blade on a translation stage, always coming upthv waists which
were pretty close to what we expected. However, the measuredpping frequencies
of our optical trap (dependent only on intensity and wavelegth) were much lower
than we expected. Characterization of the beam pro le is hapered by the fact
that CCD cameras (and Silicon photodiodes) are not sensigvat 1550 nm. So, it
turns out that the razor blade and translation stage methoddr measuring beam
waists that we were using did not have the spatial resolutioto see the deformation
of the beam due to diraction. We nally discovered the probem after modeling
the system in Oslo optical design software, and then measugi the intensity pro le
using a 2 m pinhole translated with a New Focus Picomotor.

The rst problem with di raction is that the aperture diamet er on the EOM
is only 2.7 mm. However, the damage threshold for the crystad 500 W/cn?. In
order to avoid di raction, we focus the beam through the EOM,and the intensity
is 3000 W/cn? - well above the damage threshold for the crystal. A discussi with
Con-Optics revealed that the damage threshold is very comsative, and that as
long as there were no fast temporal changes in beam power, siag large thermal
gradients, the crystal would probably not crack. After that poblem was solved,
the focusing lens for the optical trap was changed from 1" chaeter to 2" diameter.
The relay optics were also an issue, as the beam waist at eaehd changes as the
stage moves. The beam waist is much larger at the second retgtic, meaning that

this optic has to be larger than the rst one. The nal solution uses a Gradium
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lens (Lightpath GPX40-150) for the rst optic and a pair of f = 300 mm, D = 50.4
mm achromat lenses for the second relay optic. The rst opticannot be a typical
achromat because the waist of the beam gets very small wheretktage is near its
back position. Typical achromats are held together with gle, so they are damaged
by high-intensity beams. The second relay optic never seesigh intensity. Paired
achromats are used for the second relay optic because achabienses are designed
to focus a collimated beam to a point. Pairing two f = 300 mm leses allows us to
image the focus of the beam while still using each lens to faca collimated beam.
The system was modeled in Oslo with the exception of the Gradh lens, which
did not have an Oslo-compatible lens le. The company uses &max for optical
modeling, and Oslo was unable to open the Zeemax les.

The main goal of the optical trap is to produce a BEC in the scieee chamber.
Intuitively, the easiest way to accomplish this would be toransfer a BEC from the
magnetic trap into the optical trap and then transport it to the science chamber. In
practice, there is large amount of heating (6-8K) in the transfer from the magnetic
trap to the optical trap, making this scheme an impossibilit. Instead, after some
RF evaporation, a 22 K thermal sample of 2.5 X 10 atoms is transferred from the
magnetic trap to the optical tweezers, with 25% transfer e gency, giving 5 X 16
atoms at 10 K in the optical trap.

The e ciency of the transfer is optimized with slow changesn the two traps.
After evaporation in a relatively tight magnetic trap (400 Hz x110 Hz), the magnetic
trap is decompressed to a trap with frequencies 115 X 65 Hz. Shserves to both
move the magnetic trap farther from the surface of the gold mor used to form
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the MOT and also to adiabatically cool the atoms. Since theriting factor in the

transfer between the two traps is the depth of the optical trg, the transfer can be
made more e cient with this adiabatic cooling prior to transfer to the optical trap.

The optical trap is linearly ramped up to half power in 250 ms féer the magnetic
trap decompression, and then ramped to full power while theagnetic trap currents
are linearly ramped to zero in 1.5 seconds.

The oscillation frequencies in the tweezer beam are 1000 Hzda.5 Hz in
the radial and axial directions, respectively. These wereaasured with observation
of dipole (axial) and quadrupole (radial) mode oscillation [46, 89]. To excite the
dipole mode along the axis of the optical trap, the waist of # trapping beam is
o set 2.5 mm from the position of the magnetic trap. After the doms are transferred
from the magnetic trap, their position will oscillate aboutthe waist of the optical
trap. This oscillation occurs at the frequency of the trap inthat dimension. To
measure the radial trapping frequency, a quadrupole moder@athing) oscillation is
excited by snapping o the optical trapping potential for 5@ s and then turning it
back on. After a variable hold time, the cloud is imaged after s of time-of- ight
expansion, and the radial size oscillates at twice the trapyg frequency.

A calculation for the trapping frequencies of the tweezer lben as function of
power and waist for our wavelength (1567 nm) including the ect of gravity and

the counter-rotating term yields [72]

r—
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where! | is the radial trapping frequency,! , is the axial trapping frequency, P is
the power in the beam, andv is the Gaussian waist of the beam, with all quantities
in Sl units. It is evident from these equations that an estimi@ for the waist of the

beam is given by

|
w = ;—r 353 10’ (3.3)
- Z

This is an easy way to nd the waist of the beam once the trappopfrequencies are
measured.

With the crossing beam on (described later), the trapping &quencies become
a function of the powers and waists of both beams, as well asetlerossing angle
between them in thex z plane. Taking the second derivative of the total trapping
potential at the potential minimum for each of the original xes of the tweezer trap
gives an indication of the trapping frequencies. Once theass beam is added, the
eigenaxes of the trap rotate, but a rough estimation of the &pping frequencies can

still be obtained by considering the old eigenaxes. Theseduencies are given by

S
P, 8P 2 317 10 13P,Sin( )2
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with !, the frequency in the direction of gravity,! , the frequency along the original

axial direction of the tweezer beam, andl, the frequency in the direction orthogonal
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to the other two directions. The subscripts 1 and 2 refer to ea of the two beams,
and is the crossing angle between the two beams, and again all tsrare SlI.

The 1/e lifetime of the atoms in the optical trap is estimatedo be 10 seconds,
based on holding in the trap after loading. This is not exacyl the lifetime. Trap
heating also causes atom loss, as the initial temperature thle atoms corresponds
to an energy near to the maximum con neable energy. HoweverQ Beconds is also
the lifetime measured after evaporation in the cross-beanptical trap. This lifetime
is shorter than the lifetime of the magnetic trap, indicatirg that it is not vacuum-
limited [134]. For a period of time, we found that the lifetine of the atoms in the
optical trap was 3 seconds when the atoms were in the sciened.cThis was caused
by di use scattered near-resonant light, which we remedietly enclosing all of the
trapping and cooling lasers in black boxes, with shutters tkeep all scattered light
inside the boxes. This scattered light was enough to e ect thatoms despite the
fact that there were no beams visible near the chamber even Wehlooking through
an IR viewer with all of the room lights o .

Once the atoms are loaded into the optical trap, an air-bearg translation
stage (Aerotek ABL20040-10-LT40AS-NC) is used to translate an=f 600 mm fo-
cusing lens to translate the waist of the beam. For an approjate velocity pro le
(Sec. 3.10.2), the atoms will follow the focus of the beam astiknce of 30 cm to the
qguartz science cell chamber. The entire movement can be domngh 90% transfer
e ciency in as little as 1.5 seconds. We typically use a time foapproximately two
seconds. The stage only checks for a trigger signal every 1§, and so the timing

of the movement is synchronized with the rest of the experim&al cycle only to 100
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ms. Since the experimental cycle is 30 seconds, this is a drpalrturbation which
can be handled by allowing a little bit of extra time in the timing step controlling
the movement.

With the atoms in the science cell, we need to perform furthesvaporation
to reach quantum degeneracy. Since the collision rate in tlgngle beam alone is
insu cient to evaporatively cool the atoms e ciently, a second crossing beam is used
to increase the collision rate by greatly increasing the tpping frequency (originally
6.5 Hz) along the axis of the original beam. The naive approa¢h increasing this
frequency is to overlap the other beam at a perpendicular @sing angle, overlapping
the strongest con ning direction of each beam with the weaké con nement of the
other beam. However, for the power we have available, the vole and depth of
the crossed trap is insu cient to load a signi cant number of the atoms into the
overlap region. This is probably due to the large spatial egnht (3 mm) of the
atoms along the axis of the rst beam when the cross beam is ngd on. A simple
classical calculation of the dynamics of the cross loadingveals that the maximum
temperature of an atom captured in the cross-beam trap can lgeeatly increased by
decreasing the crossing angle between the two beams. We ently use an angle of
16.9 between the beams, bringing the cross beam in through the edgf the same
face of the science cell as the tweezer beam. At full powerethross-beam trap has
frequencies of 950 X 950 X 200 Hz.

Finally, we have to be very careful to turn o the optical trap cleanly. Ideally,
we would like all of the trapping potentials to turn o in a tim e short compared to

the atoms' movement, which means we would like to turn o the bams in about
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10 s. There are multiple hurdles to overcome in our system. Firsthe intensity
stabilization has a 60 Hz Iter on the input control, meaning hat the light inten-
sity cannot be changed faster than about 16 ms with the analagpntrol from the
computer. In addition, the EOM only has an extinction ratio d 100:1, which means
that there is still an appreciable amount of light incident @ the atoms even when
the EOM is turning the beam \o". The cross beam can be turned overy fast
independently of the tweezer beam by simply turning o the A, but we do not
want to kick the atoms by deforming the potential before it igurned o . A shutter
can be used to fully extinguish the beams, but shutters are fycally slow, on the
order of 100's of s.

We use a combination of EOM, AOM, and a shutter to entirely exhguish the
optical trap. A digital multiplexer (Analog Devices ADG201HSMNZ) is placed at the
output of the intensity stabilization feedback to the EOM hgh-voltage controller.
This can be used to quickly switch the EOM voltage to its miniram output value.
A shutter is placed at an intermediate focus of the tweezer Bm between the two
relay optics. Because the beam is small there, and for a setighr speed a smaller
beam is turned o faster, it can be extinguished in 125s. The EOM is switched
o inless than 10 s just before the shutter enters the beam, and then the AOM is
switched o (dumping all of the power into the shutter) midway during the closing
of the shutter. The shutter is a 0.5" mirror glued to the arm ofa disassembled

laptop hard drive [104, 136]. The mirror directs the beam to Beam dump.
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3.9 Data Collection (Imaging)

Acquisition of data in this experiment is always done throughbsorption imag-
ing, usually after a signi cant amount of free expansion oftte atoms. Absorption
imaging works on the principle of Beer's law for the amountdht absorbed by the
sample:

R
L(Gy) = lo(x;y)e » Moo (35)

Here, | (x;y) is the observed intensity of the light after the samplelq(x;y) is the
light intensity incident on the sample, A is the absorption coe cient of the atoms,
n(x;y; z) is the density of the sample, and the probe beam illuminatmthe atoms
is presumed to travel along the z-axis. By taking two image®ne with the atoms
and one without the atoms, and then dividing the two images ahtaking the log of

the result, the optical depth (O:D:) can be recovered:

z
O:D:(x;y)= a n(xy;2z)dz: (3.6)

Obviously, determination of the correct optical depth reques knowledge of

the absorption coe cient , for a two level atom:

3 2 _
AT 2 2@+ La) 3.7)

I sat

where is the wavelength of the probe light,| is the intensity of the probe, |4

is the saturation intensity of the atoms (3.58 mW/cn# for isotropically polarized
light on the D, transition in 8’Rb), and is the detuning of the atoms from atomic
resonance. The factor og in front of the expression changes depending on the po-
larization of the light illuminating the sample, and is usedo adapt the expression
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to a multi-level atom. Assuming linearly polarized light anddoing an approximate
optical pumping calculation for the atoms yields a factor og, while circularly po-
larized light gives a factor of 3 [65]. Most of the time, we wkrin the limit of low

saturation intensity and on resonance, which makes the demmator in Eq. 3.7
particularly simple, and has the additional advantage of ghinating any positional
dependence of o from the calculation of optical depth in Eq. 3.6. The resultig
signal used in all of our analysis (Sec. 3.10.2) allows us tetdrmine the 2D density
of the atoms after integration over the direction of probe bem propagation.

One technical detail which is very important in the above arlgsis involves the
determination of 1 o(X;y). We desire to know the intensity of the probe beam exactly
as seen by the atoms. The way this is typically done is to getdriof the atoms and
then take another picture of the probe beam alone, under thessumption that the
condition of the probe beam will be exactly the same during th second picture as
it was for the rst picture. However, invariably, there are finges and distortions
in the probe beam intensity, and if any of the optics move or # intensity of the
beam drifts slightly between the two pictures, these feates are written onto the
optical depth, causing noise in the image. The most e ectivmethod to eliminate
this noise is to make sure that the two images are taken veryoske together in time.
The limiting factor here is almost always the camera frame te, although there are
certain cameras which have modes allowing multiple images be taken with small
delays.

One promising method to help eliminate this type of noise isaied \principal
component analysis" (PCA) [137, 105]. | rst heard about thigechnique from Dr.
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lan Spielman. Basically, the idea is that if we were to take atge number of images
of the probe beam, we would see all of the di erent permutaties of the possible
fringe patterns that could come about. Then, we can think ofa&h image as a
set of pixels which we could easily arrange into a vector. Theet of all of these
background \vectors" can then be diagonalized. Since the igmal vectors were
most likely degenerate, a much smaller subset of these newsisavectors represents
most of the information from the entire set. So, if we now takan image with atoms,
we can project that image (minus the small area occupied by eéhatoms) onto this
basis set. This projected image becomes the new \backgrolnchage used in the
division to obtain the O:D: If the basis set truly contains the information available
from all of the background images, this can make for much cleer looking data.
One caveat is that the number of images it is necessary to keepthe basis set to
obtain all of the information is not precisely de ned, so it § di cult to quantify
errors from the truncation of the basis set.

Once these issues are minimized, characterization of a gahémaging system
is complicated by the choice of metrics to use in the characteation, and an imaging
system for absorption imaging is perhaps even worse. Typligawe can look at the
modulation transfer function or point spread function as arnndication of how good
an imaging system is. These are still considerations in alppbon imaging. We
would like to form an image of the density distribution, and he resolution we have
in that image is limited by camera pixel size (5 m) and the numerical aperture of
the imaging system. The fact that the atoms are in vacuum mearthat the window

of the vacuum system is also part of the imaging system, so teendow must be
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considered when attempting to image with high resolution. Heever, we must also
consider the nite depth of the object, which limits the imagng resolution to 7
m for a BEC of 50 m extent along the axis of the beam [29].

In addition, the imaging system in absorption imaging mustake into account
the rays from the probe beam which are una ected by the atomss well as those
rays which propagate through the atoms. An easily-understaable approach to the
process of absorption imaging (taken roughly from Ref. [1]}Gs that we have a
plane wave represented as parallel rays impinging on the ate. As these rays pass
through the atoms, pure absorption does not de ect them unss the density starts
to vary on wavelength-size scales. Therefore, after pasgithrough the object, each
ray is unde ected, but has been absorbed di erently dependg on where it went
through the cloud. Each of these rays starts to di ract afterthe object, and we can
now propagate them using the Helmholtz wave equation in frepace, starting with
the initial condition of the wavefront having an amplitude nversely proportional
to the density of the atoms. However, we must pay attention to ake sure that
the rays passing on either side of the atoms do not end up on odetector in the
position of the atoms, a situation which can easily occur wiei recreating the object
using a combination of lenses.

Our solution here is to use a \4f" imaging system. We place thebject at the
focusf 1 of the rst lens, then place a second lens at the sum of the tWocal lengths
f 1+ f 2 of the lens, followed by a camera at the back focéi of the second lens.
This set-up has the advantage that it images both a plane wawnd the object, thus

preventing the problem of the probe light getting imaged omtthe wrong place on the
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camera. The magni cationM of the system is simply given by the ratid 2=f 1. In
our system, the imaging set-ups on the magnetic trap and theohzontal imaging in
the science cell usél = f 2 = 100 mm to giveM =1, while the vertical imaging in
the cell used 1 = 50 mm andf 2 = 100 mm to giveM = 2. In order to calibrate the
magni cation of the horizontal imaging systems, we plot theposition of the freely
falling atoms after release from the trap, which should be aapabola determined by
gravity. To calibrate the value of M in the vertical direction, we compare the size
of the cloud on that camera to the size of the cloud on the hoontal camera.
Finally, we must be careful to calibrate the optical depth othe atoms, total
counts, and actual intensity of the probe beam at the atoms.f the optical depth
of the atoms gets too high, then the probe beam can be fully alybed, giving large
uctuations in O:D: with only a few counts of noise on a pixel. The greate€2:D:
which can be measured is thus limited by the dynamic range dhé camera, which
is 22 = 4096 counts in our case. We can always increase this dynamimge to that
limit by either increasing the length of the probe pulse or icreasing the intensity of
the probe beam. However, we would like nd a good regime wherket pulse time
is not too long that the atoms move during the pulseq 250 s), the intensity is
still much less thanl s, but we get a large number of counts on each pixel without
saturating it. In our case, a pulse time of 150s with a 150 W beam of a few
mm waist ful lls these conditions. Still, in most cases of BE, the O:D: of the cloud
should be kept< 2, which can be done with free expansion of the cloud or detugi
of the probe. However, detuning of the probe can introduce rattion in the cloud,

which makes analysis more di cult.
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There are also a few alternatives to using absorption imagjn All of these
methods rely on the fact that the atoms phase-shift light ifhe probe is not exactly
on resonance, and they work in the limit of very low absorptio By making some
assumptions, we can recreate the initial density of the olijeby either interfering it
with a phase reference or computationally determining whahe di raction pattern
means. Examples of these methods include phase contrast gimg [7], polarization
contrast imaging [27], or defocus-contrast imaging (DCI)146, 147]. These tech-
niques have two advantages. First, because the absorptiansmall, there is no need
to worry if the density of the cloud is too high. Second, the tghniques are somewhat
non-destructive, since the probe light is far o resonanceThis allows for multiple
pictures of the same sample, an impossibility with absorgin imaging. The major
disadvantage of these techniques is that they are more di duto implement and
use.

We have implemented the software to do DCI in our experimenhut have not
really tested it yet (Sec. 3.10.2). This technique is actulgl fairly easy to setup, as
it only requires defocussing the imaging system and detugjrthe probe beam from
resonance. The basic idea is that with these changes, we tak® images just like
in absorption imaging. However, the image of the atoms in thisase will look like a
di raction pattern. If we know exactly how detuned we are anchow far the camera
is defocused, an algorithm can be implemented to recover tbeginal 2D density
of the atoms, similar to absorption imaging. The disadvanige to using this type
of imaging is that it is strongly dependent on the distance ahe camera from true
focus, which is a free parameter in the algorithm, so it is dicult to quantify errors.
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Figure 3.12: Diagram showing the hardware and software coot setup for the
experiment.

3.10 Control and Analysis

3.10.1 Hardware

A schematic of the computer hardware and software control siem is shown
in Fig. 3.12. Three computers are used for this purpose, atihgh \computer #3"
is dedicated solely to controlling the translation stage @sl to transport the atoms
to the science cell. \Computer #1" is dedicated to hardware @ntrol, containing
almost all of the digital and analog output channels used toontrol the equipment,
while \computer #2" is used mainly for data acquisition and analysis, except that

it also controls the RF evaporation.
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The main experimental timing is controlled by a PulseblastePB24-100-PCI-
512 in computer #1. The Pulseblaster is a digital output cardwith 24 channels
which has a 100 MHz clock with a resolution of 10 ns and a minimupulse time of
50 ns (5 clock cycles), as well as an on-board memory of 5124$n The timing of
everything in the experiment is synchronized to this card @ble A.1).

One digital line from the pulseblaster is used to trigger thenalog output
cards in order to generate analog control signals to di erérpieces of equipment
(Table A.2). The digital lines control anything that only takes on two dierent
states during the cycle (such as a shutter), while the analogutputs control any
piece of equipment which needs to take on a continuous rangestates (e.g., coils
producing magnetic elds). Two 19" rack panel BNC boards brdaout all of the
digital and analog outputs (except the four channels from # USB card), and BNC
cables are run to the equipment in the apparatus.

There are three di erent analog output cards. Two are NI PCI-813 analog
output cards, and one is a NI USB-6229. The two PCI cards are in mputer #1,
and the USB card is connected to computer #1 through an opticdink, as described
in Section 3.7. This gives a total of twenty analog outputs -aeh of the PCI cards has
eight, while the USB card has four. We use the four from the USB @hto control
the most noise-sensitive pieces of equipment in the expeent - the magnetic trap
coils and the intensity of the optical dipole trap. Becauséie analog channels do not
have enough output current to drive a 50 load, each channeki rst run through
a current bu er (Analog Devices BUF634P) before the 19" rack pzel board.

Computer #2 controls both the RF evaporation cycle and the caeras. A
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second Pulseblaster (PB24-50-PCI-32K-SP2) occupies a PgIdt in this computer.

It is di erent from the pulseblaster card in computer #1 in that it has a slower clock
(50 MHz) and more on board memory, up to 32000 steps. In additipthe wiring of

the internal header pin outputs are di erent, and the windovg drivers are di erent

(indicated by the SP2 designation). This card is used to dreva frequency synthe-
sizer (PTS-160) that controls the RF evaporation sequence the magnetic trap.

The function driver takes four digital bits per digit of frequency resolution, with the

binary value of the four bits controlling which value that dgit has. The binary value

has to be between 0 and 9. The only exception is the \ten MHz" dig which can

go to 10 to represent 100 MHz. The RF frequency scan is preloddato the Pulse-

blaster (which can take up to 20 seconds) so that a digital gger from computer
#1 can simply trigger the scan at the appropriate time in the &perimental cycle. A

glitch in the particular Pulseblaster card running the RF syithesizer requires that
a second digital signal be sent to the \hardware reset" bit othis Pulseblaster just
before the signal to trigger the sequence. With 24 digital ts from the Pulseblaster,
we can have 6 digits of resolution, corresponding to 100 Hz meduency resolution.
A typical frequency sweep starts at 40 MHz and ends between 2dat0 MHz at

BEC.

There are three cameras currently in use in the experiment. hE camera
imaging in the main chamber is a Pixel y QE made by Cooke Corpation, while the
two on the science chamber are a Flea2 and Flea2G from PointégyrResearch, Inc.
All three cameras have pixels that are approximately 4.5m square. In addition,

each camera outputs 12 bits of data, but the S/N is better on # Pixel y, and
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the Flea2G has a much better sensitivity at 780 nm, the waveigth that we use
for imaging. Both Flea cameras have an IEEE-1394 (Firewirepterface with the
computer, which has a Firewire card occupying one of its PClats. The Pixely
interfaces with a Framegrabber card, also in a PCI slot in theomputer. The trigger
inputs for the Flea cameras are available from a connector #te camera, while
triggering of the Pixel y takes place at the framegrabber. Br more information on
the imaging systems, see Sec. 3.9.

The third computer only controls the Aerotech air-bearing sige used to trans-
port the atoms in the optical tweezers, which comes with itsven PCI card that
controls a brushless servo motor to drive the stage. The s&agequires air at 80 PSI,

and we use both a dryer and a lIter to clean the air before it gstto the stage.

3.10.2 Software

There are three di erent software programs in use to contrahe equipment.
The bulk of the interface and control is done with NI Labview, \ile the majority
of the analysis is done with Igor Pro from Wavemetrics. The estage has its own
control software as well. The original software in Labviewrad Igor was written by
Dr. Trey Porto and then modi ed by Dr. lan Spielman before | com gured it for
use in our experiment. An overview of how the two main controlrpgrams work
is given in Fig. 3.13. There is a set of master global varialsleshared by the two
programs \CycleX.vi" and \SetList.vi". Operation typicall y runs in a loop, with

CycleX looping a set of timed commands (de ned in the globalaviables) to each

87



Figure 3.13: Diagram showing the control software used ing¢hexperiment. A set of
global variables is shared between two programs, with Sestiprimarily interacting
with the user, while CycleX primarily interacts with the hardware.

piece of equipment and then restarting the loop unless stopg by the user. The
Setlist VI has a graphical user interface (GUI) to accept inpuand write it to the set
of global variables, while CycleX reads these global varis, loads the hardware,
and triggers the experimental cycle.

An example of the main interface of the setlist is shown in Fig3.14. Time
runs in the vertical direction. Each green circle represesia digital output from the
pulseblaster, while the analog outputs are in the columns dhe right. The value of
the \delay" column is how long each set of outputs is held befe switching to the
next row of outputs. In addition, linear ramps from one analg output to the next
can be implemented in the \option" column on the left-hand gle. This implements

a linear ramp for any analog output values which are changeadh @ahe \ramp" step.
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Figure 3.14: Graphical user interface for the software cawlling the apparatus.
Green circles represent digital outputs, while red numbeere analog outputs. Each
set of outputs is held for the amount of time in the \delay" colimn.

In addition, the setlist can run automated scans of analog lizes or delays, stepping
through a set of de ned variable values, scanning multiplealues at once if required.
The timing is controlled so that each experimental cycle detministically moves on
to the next value in the scan. This timing control is implemeted by allowing only

one of CycleX or Setlist to have access to the global variablat one time. CycleX
allows Setlist access once per cycle, and if in scan mode, Betlist updates the
variables every time it has access. The name of the scannedialles can be input
as well, and communicated to Igor using DDE, a communicatioprotocol between
programs and computers.

Digital line #23 is used to trigger the analog channels. Basally, the set of all

analog values including ramps is loaded onto the analog cardequentially during
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the \load hardware" phase of CycleX sequence. Since all thiening is controlled by
the Pulseblaster, the analog cards store the entire list ohalog values and switch to
the next value with every trigger from the Pulseblaster. All bthe analog channels
can be scaled and named in NI Measurement and Automation Expér (MAX).
The scaling maps a value de ned with arbitrary units to the atual voltage required
to output that value. For instance, if a 1 Volt output sets a function generator to 80
MHz, then the scaling can be changed so that the user inputs 80Hd to the GUI,
and the software automatically outputs 1 V to the function geerator. Meanwhile,
every time a channel is renamed, the name must be correspargly changed in the
list of channels programmed by CycleX during the load hardwa phase.

The Pulseblaster accepts instructions as an 80-bit \word" Twenty-four bits
control the state of each of the 24 outputs, 4 bits de ne an \ogode", allowing
the pulseblaster to do loops and accept external triggersQ 2its de ne a data
eld corresponding to the op code, and 32 bits de ne the delaiime to hold that
particular command. The data eld means something di erentfor each op code,
specifying things such as the number of loops to perform dog a \loop" command.
One example of the use of a \loop" op code is implemented foregtanalog voltage
ramps. Each time a ramp is requested, the analog voltage vakifor the ramp are
loaded onto the analog cards. Then, the digital outputs forhe pulseblaster on the
ramp step are duplicated into two steps with the exception ofhe trigger to the
analog card, which is changed from low to high on the seconekpt while setting the
delay time equal to the total time of the ramp divided by twicethe number of ramp

steps. Looping these two pulseblaster commands will keep @ the digital output
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commands the same and trigger the analog cards to go their nesaved value. In
this way, only two command steps are stored in the Pulseblastmemory, while the
analog voltage can be ramped from its start to end value in asany steps as the
user wants.

In computer #2, a second Pulseblaster is programmed in a silar way in
order to control the RF synthesizer which sweeps the radiatn used for evaporation
in the magnetic trap. In this case, there is a Labview VI which @epts an arbitrary
number of linear frequency ramps with an arbitrary number odteps up to the 32000-
step memory of the Pulseblaster. Each user-speci ed rampdsvided into time and
frequency steps in Labview, and then the appropriate comtation of digital outputs
is loaded into the pulseblaster memory. A trigger from the st Pulseblaster sends
this series of commands to the function generator, with an atog voltage controlling
the amplitude of the RF output signal from the function geneator.

The third control software program runs the airstage in ordeto move the
atoms out to the science cell in the optical tweezer beam. IneR [36], it is found
that a trapezoidal acceleration pro le is appropriate for he movement of the stage
in order to minimize heating and loss during the movement ohe atoms. A constant
value for the jerk results during each part of the movement. Ais pro le is very close
to having a sinusoidal position as a function of time, whichan be programmed fairly
simply in the stage software. First, we calculate the velagi and position pro le
that we want and determine what the maximum velocity is duriig this movement.
Then, setting a ramp command to be half of the value of the totaime required for

the move and commanding the distance with this same maximunelcity generates
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an appropriate pro le. In this case, the stage must be set toat smooth the velocity

pro le (command \g9") during the move to give the correct resilt. In the past, we

divided the required movement into a series of discrete tinsteps and fed them to
the stage, but this requires signi cant processing powerdm the computer running
the stage, and does not seem to be advantageous compared t® turrent scheme.
The software driving the stage is similar to the \C" programning language, but it

has its own set of functions and commands.

The pictures are all acquired in Labview on computer #2 usingNational In-
struments drivers for the cameras. The Pixel y camera hasstown drivers, while
the Flea cameras use generic Firewire camera drivers. Fonsoreason, the Pixel y
images are straightforward to obtain and analyze using Lakew driver VIs, but
there are some tricks for the Flea cameras. The IMAQdXx driverfor these cameras
are not part of a standard Labview installation, and are onlyavailable in the \Vi-
sion" Labview add-on. In addition, the settings for the cam@as must be adjusted
in NI-MAX. Each camera sends 16 bits of data, but 4 bits are set toébalways 0, so
MAX must be set to ignore the appropriate bits in each pixel. Th correct settings

for this in MAX are:

Actual Bit Depth 12 bits
Bit Alignment MSB
Byte Order Little Endian
In addition, the speed of the cameras was limited by windows X&ervice pack
updates, so patches from Point Grey Research had to be apglieo use the full
frame rate of these two cameras - 15 fps for the Flea2 and 30 fps the Flea2G.
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Finally, the Flea2G has an unresolved triggering issue, wiii seems to trigger it at
the wrong point in the experimental cycle occasionally, dpge the fact that we use
the same trigger signal for all of the cameras.

One recent modi cation allows the Labview VI which acquires iptures from
the Flea2 cameras to take and save scope traces from a TekixoMDS2014B oscil-
loscope. These traces can be sent to Igor along with the piods, as well as saved
to the hard drive. We typically use these traces to monitor th intensity locks of
lattice or speckle beams.

Finally, all of the analysis on the absorption images is don@& a program
called Igor Pro. Igor receives two images via DDE - one of théoans and one of the
probe beam without atoms, with the background image alreadgubtracted from
each of them. By dividing these two images we can calculate apiities such as
temperature, phase space density, chemical potential, aignsity. The software is
advanced enough that most of these quantities can be calcad in real-time as the
images come in, since the creation of our sample typicallykies about 30 seconds.

As each image comes in, the density pro le is t with either a Gassian func-
tion, Thomas-Fermi function ([46, 32]), or a combination dboth. From the Gaussian
width and amplitude plus the user-supplied values of the egpsion time and trap
frequencies, the number and temperature of the thermal at®srcan be calculated.
The Gaussian width of an initially Gaussian atom sample of width o with indi-

vidual atomic massesn and temperatureT after an expansion timet in 1D is given
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by (see appendix A of Ref. [150]):

= 3 ; (3.8)

with kg Boltzmann's constant.

Since the total energy for a particle traveling between Xq in a harmonic trap
with frequency! is %m! 20, We can equatexg with o and use the equipartition
theorem for a harmonic oscillator to nd

1 1
EkBT = Em' 2 cz): (39)

Substituting this into Eqg. 3.8 yields an expression for therginal size of the cloud
that depends only on the initial trap frequency, expansioniine, and size after ex-
pansion. These two relationships are used in the software talculate both the
temperature and the original size of the cloud. In order to ge¢he number of atoms
in the cloud we can assume that the image we see is the opticaingdity as a func-
tion of two spatial coordinates and then assume that the clauis Gaussian in the
third dimension and that the absorption image has integraté over that dimension.
The optical depth is related to the atomic density via Beer'saw (Sec. 3.9), and so
integration of the Gaussian optical depth yields an expreiss for the total number
N based on the widths of the cloud x and , the amplitude A of the absorption

and the absorption coe cient 4:

N = Y. (3.10)

With the number and temperature now determined, the phase spe density

of the atoms in the trap psp = % 3z can be calculated. In this expressiorV is
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the volume of the trap and gg is the deBroglie wavelength of the atoms in the trap.
For particles in a harmonic trap, the volume of the trap can bealculated similarly
to above by relating the temperature of the atoms to the endputs of the motion.

This yields:
NI, ,~3 2
8kiTs 7

PSD — (3.11)

where! ; is the trap frequency in each direction.

Once the atoms are cold enough that they condense into a BEQely can
be t with a Thomas-Fermi function, which is a truncated upsde-down parabola.
This t assumes that there enough atoms in the condensate théhe Thomas-Fermi
approximation holds, which is the usual situation in most BE experiments. The
ts yield an amplitude A and a width of the distribution given by the Thomas-Fermi
radius Rrg,, the x or y-value of the t when the z-value goes to zero. The mber
of atoms in the condensate can be calculated in a similar wag & the Gaussian
case, by assuming a 3D Thomas-Fermi density distribution dnthen integrating
that distribution over all space to determine the relationkip between the number
of atoms in the BEC Ngec and the t parameters A, Rrg,, and Rrg,, as well as

the absorption coe cient ,:

_ 2AR 1, RyE,
BEC = ;
S5 A

(3.12)

In addition, because of the relationship between betweeneaanical potential and to-
tal atom number, there is a relationship between the trap figuencies, Thomas-Fermi

radii, and atom number, eliminating the amplitude of the t from the calculation,
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but adding in dependence on the trap frequencies:
|

_»° 5
avo (RreRre, Rre)™

15 A aHo (3.13)
q__
Here,apo = W and! yo = (! x!y! 2)*=3. Once the total number of atoms has
been determined, the chemical potential of the BEC is simply given by
~lho 15Na
= X 3.14
> Wl (3.14)

wherea is the scattering length of the atoms. If the sample containthermal atoms
and condensed atoms, the software can use a combination Gaas and Thomas-
Fermi tto tthe distribution, calculating parameters in a similar way to that given
above, yielding separate attributes for each part of the biodal distribution.

The experimental parameters such as coil currents for the maetic trap or
beam powers for the optical trap are passed to Igor using DDEhus, the user inputs
these values in the Setlist.vi GUI, and then Igor uses theseluas to calculate trap
frequencies using the methods described in Secs. 3.6 and 3The numerically
calculated magnetic trap frequencies as a function of coiurents are preloaded
into the Igor software and used as a lookup table, while the tipal trap frequencies
are calculated each time from the simple algebraic relatisrgiven in Sec. 3.8.

In addition, there are two sets of functions implemented inhe software that
have not really been utilized yet, but have been tested and esa to work. One
set of functions allows for defocus contrast imaging [146417], while the other set
of functions can build and use a PCA basis (Sec. 3.9)[137]. &ldefocus contrast
imaging functions allow the user to select (in the Labview iaging software) the
type of imaging being done and specify a distance defocusethe software then
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applies the defocus contrast imaging algorithms to the inpumages in order to
generate the optical depth. In order to build a PCA basis, a faction can be called
in IGOR which will take a set of images and use the second piceu(probe beam
background) from each of the images to generate a basis sehen, a checkbox in
the Igor front panel allows the user to divide by the projectin of the absorption
image onto the PCA basis rather than the incoming backgrounsihage to get the

optical depth. This may result in cleaner images.
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Chapter 4

Advanced Experimental Setup

Now that | have detailed the how the apparatus creates Bose+tiStein con-
densates, | will use this chapter to detail how we interact wh the condensate to
perform experiments. In general, we use o -resonant lighbtmanipulate the sample,
forming either a periodic or disordered potential, or a conibation of both. This
light is produced by the Ti-Sapphire laser, and its beam patkiagram is shown in

Fig. 4.1.

4.1 Incommensurate Lattices

The rst experiments performed on this apparatus were donaithe magnetic
trap [54], and the disorder in this case was provided by incanmensurate lattices
- two or three superposed optical lattices of incommensuratperiod. An optical
lattice is a periodic potential created by a standing wave dight, which provides a
periodic spatial intensity pattern, and therefore a periot potential (Eq. 2.3). The
easiest way to create this standing wave is to re ect a beam daon itself, providing
a sinusoidal intensity at a period of half of the wavelength. However, this could
just as easily be two independent beams with the same freqegrand polarization

(Fig. 4.2). In this case, we can also intersect the beams at angle less than 180,
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Figure 4.1. Beam path for Ti-Saph laser used to create lates and disorder. Feed-
back to the AOM stabilizes beam intensities at the outputs ofhe bers on the top
left.
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Figure 4.2: Intersecting two lattice beams at an angle changes the period of the
lattice (Eq. 4.1).

which changes the period of the lattice as

9= SinG)’ (4.1)

We use this property to change the period of our lattices in gtnchamber. The
speci cs are detailed in [55, 54], but the basic idea is thatevuse the in-vacuum
mirror to re ect our lattice beams. If the beam is incident nomal to the mirror,
then the period of the lattice is /2, which gives a period of 400 nm for our
lattice. However, if the beam is incident on the mirror at an agle, and the beam
is large enough to hit the atoms both before and after re eatn, then the angle of
intersection between the incident and re ected beams willomlonger be 180, and
the period of the lattice will be longer. We could put as many saathree beams in at
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once, each creating a lattice with a di erent spacing, with atios of d;=d,  0:806
and d;=ck  0:919, whered; = =2 is the beam at normal incidence. The gold
mirror provides a convenient node in all three standing wase allowing the lattices

to be e ortlessly phase-locked, normally a di cult task.

4.2 Speckle Disorder

In the science chamber, our disorder is provided by a speckiéensity pattern,
similar to [45, 152, 151, 35, 101, 40, 41]. The eld of opticapeckle is very broad,
and there has been signi cant investigation into its propdres [70]. Basically, if
laser light incident on a rough surface is subsequently fosed, there will be a disor-
dered intensity pattern at the focus, with a smaller averagéeature size for a larger
numerical aperture of the focusing lens.

Our speckle disorder is created with a collimated Gaussiaredm hitting a
phase di user made by Luminit, model #L.5P1-2. This phase duser is a surface
relief structure replicated from a holographically recoreld master. It acts as a series
of micro-lenslets, and diverges the incoming light by a spesd angle, 0.5 in our
case. The result can be thought of as randomizing the phasetbé wavefront. We
focus this randomly phased wavefront onto our sample using@&adium lens made
by Lightpath Technologies, model #GPX10-10. Gradium lensegse a varying index
of refraction along the lens to allow lower f-numbers at lasy working distances.
This lens has a 1 cm back focal length and a diameter of 1 cm, lif/# 1.1.

Physically, because we also want to send a probe beam along ftath of the
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Figure 4.3: Implementation to create speckle potential. Téngold mirror has a hole
in the middle to allow the focused probe light to pass througto the gradium lens
and onto the atoms. The large speckle beam is re ected by theld mirror through

the gradium lens.
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speckle, the optics are arranged as shown in Fig. 4.3. The ieatsetup is on a
translation stage in order to allow ne alignment of the spdde potential on the

atoms. The two beams are combined with a 1" square gold mirrarhich has a 1-2

mm hole in the center, fabricated at the Fab Lab at UMD by platirg gold on an

optical at. The probe beam is tightly focused through this lole, goes through the
gradium lens, and ends up roughly collimated at the atoms. Ehspeckle beam is
large and collimated when it hits the gold mirror, and so it iSocused at the atoms.
The small hole in the mirror does not seem to have a large e ecin the speckle
pattern, as aberrations do not a ect the random pattern.

To characterize the disordered potential, we need to know twthings: the
size of the features and the average strength of the poteritiaThe rst of these
can be simply characterized by taking the speckle system ane and measuring the
autocorrelation length of the intensity. The autocorrelaion function C(+) of an

intensity | (¥) is de ned as

Z
C(r)= 1(nI(r rIdrs (4.2)
and the width of the peak around zero represents a measure bétaverage feature
size of the speckle pattern, known as the correlation lengfil, 152]. We need this
feature size to be much less than the size of our condensateondler to make a
disordered potential, and so we would like a peak width on therder of 1 m.
We observed the speckle pattern on a CCD camera by imaging Wwitnicro-
scope objective to get the necessary spatial resolution. Arsple speckle image is

shown in Fig. 4.4. In addition, by translating the entire imging system by small
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Figure 4.4: Example of radial speckle intensity pattern uskfor random potential.

Figure 4.5: Example of a cut along the axis of a speckle intetyspattern used for
random potential.
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amounts, we can map out the speckle pattern as a function ofiakdistance along
the beam by piecing together separate pictures at30 nm separation. The images
are then corrected for small camera jitter by computationd) translating each image
to minimize the radial correlation function between it and he previous image. A
cut along the center of such an analysis is shown in Fig. 4.5t i$ clear that the
feature size along the axis of the beam is much larger than tfeature size radially.
A plot of the 2D autocorrelation function for both the radialand axial intensity

is shown in Fig. 4.6. An exponential t can be used to de ne an &ocorrelation
length [59], and the t yields widths of the peaks of 700 nm radially and 6 m
axially. However, these images are taken with a Helium-Neon &s which has a
wavelength of 633 nm, and we use a wavelength of 800 nm in th@esment, which
increases the correlation length by the ratio of the wavelgths. We thus expect
correlation lengths of 885 nm radially and 7.5 m axially. The radial size of the
speckle is still much smaller than the size of our BEC. Finail because the speckle
is smallest at the focus of the beam, we would like to know howrssitive the radial
correlation function is as a function of axial distance fronthe focus. This will tell
us how sensitive the alignment of the beam is. A plot of the tresverse correlation
function peak height between consecutive images after cection for camera jitter
is shown in Fig. 4.7. It shows that the transverse correlatiolength does not change
much over 100 m, since the correlation function peak height does not chaagnuch
over this distance. We also simulated the wall of the vacuunhamber in the beam,
nding that it did not make any dierence in the speckle size,as expected for
random speckle. Most of the above characterization and agals was performed by
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Figure 4.6: 2D autocorrelation function along the axis of t speckle beam and in
one transverse direction. The origin is at the focus of the bm.

our postdoc, Dr. Tao Hong.

Now that we have characterized the size of the features in thesdrder, we
need to have some way to characterize the overall averageestyth of the potential.
Since the potential depth is equal to the light shift that theatoms experience, we
could measure the light shift directly [41]. Another possikel way to measure this
strength is to displace the beam slightly from being centedeon the atoms, which
should apply a force that displaces them [152]. We decided trse the e ect of a
short pulse of light on a thermal ensemble of atoms to measutee strength of the
potential. For a short pulse of light, each atom should rece an impulse which is
proportional to the derivative of the intensity at that point. The result is that the
shape of the momentum distribution of the atoms stays the saam but the width

of the distribution (the e ective temperature) becomes lager. We can measure
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Figure 4.7: Unnormalized correlation peak height of consdtte images as a function
of distance from the focus of the disordered beam, correctit camera jitter.
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this increase in momentum width by pulsing the speckle bearmdhe atoms and
then immediately allowing them to expand and measuring theaverage momentum
width before and after pulses of di erent strengths.

In order to translate this information into an average stregth, we must be
able to compare the resulting increase in momentum width witsome theory. The
process can be simulated by rst modeling a speckle intengipattern, using an
algorithm from [70]. We can then model the atoms because wedm the initial
momentum distribution, and because the trap is harmonic, walso know the initial
spatial distribution. We use the size of the initial spatialdistribution to determine
the size of the speckle distribution that the atoms sample,sauming that we know
the correlation length of the speckle from the o ine measunments. Then we can
use a Monte-Carlo simulation to randomly choose an atom fromime appropriate
momentum distribution. This atom receives an impulse progtional to the deriva-
tive of the intensity at a point randomly chosen from the partof the speckle being
sampled. If we do this for a large number of atoms, it shouldrsulate the e ect of
a speckle pulse on a thermal ensemble of atoms.

This process is then repeated for di erent speckle patternsince the process
of simulating speckle changes the pattern from realizatiadio realization. In fact, in
order to make sure that we are using correctly-sized speck¥ee take the autocorre-
lation of the generated pattern and use that for calibratioron every new run. Then,
we have to scale the speckle by an overall \strength" which rsb closely matches
the e ect of the pulse in the experiment. This strength is theaverage potential
value that we are looking for. Because of the nature of the press, each step must
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be averaged - we use di erent speckle distributions, stretitg, and many atoms for
each run. The result allows us to calibrate the strength of # speckle to within
10%.

With the information about both the speckle grain size and arall average
strength of the speckle potential, we know all the parameternecessary to use it
in the experiment. Sample images of the e ect of speckle diser on a 3D BEC
are shown in Fig. 4.8. After creating a 3D BEC, the disorder pettial is linearly
ramped on in 500 ms, and then the atoms are held for 200 ms bef@6.95 ms of free
expansion. The axis of the speckle beam is horizontal in tleegnages, leading to
striations and increased width in the vertical direction. Tis is due to the fact that
the speckle correlation length is anisotropic, and thus srath along the horizontal

axis of the image.

4.3 2D System Creation

If we want to investigate the e ects of disorder on 2-dimensnal systems, then
we must tightly con ne our 3-dimensional condensate in oneimension. In order to
be in the 2D regime, the oscillation energy! in the tight direction must be much
greater than both the thermal energykg T and the chemical potential of the BEC.
For typical BEC parameters, this works out to bezi— 3 kHz.

There have been many methods used to create 2D ultracold ga§él, 38, 132,
67, 87]. One conceptually simple way to create a stack of 2Dsga is with a deep

optical lattice [113, 30, 93, 111, 141]. In this case, evem felatively shallow lattices,
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Figure 4.8: E ect of disorder on 3D BEC. The disordered potdial was linearly

ramped on in 500 ms to 0 (top), 750 Hz (middle), or 4 kHz (bottom)and the atoms
were held for 200 ms in the potential before 26.95 ms of fregparsion. The axis of
the speckle beam is horizontal in these images.
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the oscillation frequency in each plane can easily be largeoeigh to place the gas
strongly in the 2D regime. The disadvantage to the optical téce is that the spacing

of the planes is small, and a typical 3d BEC creates many 2D $gms. With many

2D systems, only average quantities can easily be measurd@dhe method that we

use to overcome this problem is to bring in the lattice beamst @ shallow angle,
which greatly increases the lattice period (Fig. 4.2) [78,44, 76]. This will allow

us to create a small number of 2D systems at the expense of adovescillation

frequency in the tight direction. However, there is an expanentally accessible 2D
parameter regime which creates only 1 or 2 2D systems.

Since many of the quantities that we are interested in are &kd to the phase
coherence of our sample, it is actually advantageous to hafeplanes instead of 1,
so that one of the planes can be used as a phase reference imugum interference
experiments. For our wavelength near 780 nm, an angle betwethe beams of 15
generates a lattice spacing of about 6m, which should divide our 3D BEC into
two planes along its shortest axis.

Since the shallow angle weakens the lattice, we must use ag@rintensity
or tune our lattice beams relatively close to atomic resonar in order to get the
required oscillation frequencies to reach the 2D regime. Hewver, we must also
minimize the absorption and rescattering of photons, whicbauses heating. We do
not observe signi cant heating in our lattice, observed by amping the lattice on
and then back o. The issue of heating in an optical lattice isstill an interesting
one [66].

Physically, because space is tight around the science chamlwith the cross-
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Figure 4.9: Orientation of shallow angle lattice for creatig 2D systems and speckle
beam for producing a disordered potential. The thinner beasrare the lattice, while
the sharply converging beam is the speckle beam.

beam optical trap, speckle beam and probe beam optics, thétiee enters the science
chamber from above at 45from vertical. A schematic showing the orientation of
the lattice and speckle beams is shown in Fig. 4.9. This gedmyegives us planes
oriented vertically, so that the speckle beam's axis is nomhto the planes. This
gives us the smallest speckle size in the planes, and since fllanes are so close
together, the disordered pattern should not be appreciablgi erent between the
two planes. With 100 mW in each beam at a wavelength of 776.5 nme can
predominantly load two planes with oscillation frequence greater than 8 kHz in
the tight direction. However, one thing which we did not fullyappreciate about this

geometry is that the lattice is not along a symmetry axis of ta original trap. Since
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the cross beam comes in at an angle of 16ia the horizontal plane, the symmetry
axis of the condensate is at 8 from the lattice axis, which causes a position o set
in the two planes that load (Chap. 5).

In order to create the two beams, a second platform is install above the
science cell, with a slot cut in the middle above the sciencelc An output ber
coupler generates a beam which goes through a polarizing treaube to clean up
the polarization, followed by a pick-o for intensity stabilization. This beam hits a
50/50 beam splitter, and the re ected and transmitted beamsre focused by an f =
150 mm lens onto the atoms. The camera used for vertical imagiis also mounted
on this platform.

Typically, one can calibrate the depth of an optical latticeby observing the
population in higher momentum modes. Atoms in an optical ldice populate only
discrete states in momentum at the reciprocal lattice vects [9, 52], and the deeper
the lattice, the more atoms populate the higher modes. For aEHC in a typical
optical lattice, these higher order momentum peaks can elysbe distinguished from
the atoms with no momentum transferred from the lattice. Theopulation in these
other peaks is a simple function of the depth of the lattice.t tan be measured after
either pulsing the lattice [114] or adiabatically loading lie lattice [44], and then
observing the resulting momentum distribution after a peond of free expansion
(Sec. 3.9). In either case, we are interested in the populati in the rst-order
di raction peaks - those atoms that have made the rst discree jump in possible
momentum transfer.

However, with a large-period lattice, the higher order moméumm states are not
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signi cantly separated from the rest of the cloud after fre@xpansion, since a larger
period lattice has a smaller reciprocal lattice. If the rstorder peaks aren't separated
signi cantly from the rest of the cloud, it is di cult to meas ure the population in
these peaks. If we are indeed loading just two wells in the tate, then after free
expansion, the two planes will overlap and exhibit a sinusial interference pattern.

After an expansion timet, the period d of that interference pattern is [8]
ht

d= powt (4.3)
where h is Planck's constant andm is the mass of the atoms. For reasonable
parameters, this gives an interference pattern witd 10 m, which is much smaller
than the normal mean- eld-produced 100 m width of the cloud after expansion.
Without the rst-order peaks being separated from the rest bthe atoms, the typical
lattice calibration tools are not available. Also, becauseewdo not control the phase
of the lattice, and there is only really one or two nodes of thittice hitting the
cloud, a pulse will signi cantly kick all of the atoms one wayor another depending
on where the nodes hit the cloud, which varies randomly fronhst to shot.

The method we use to calibrate the depth of the lattice is takefrom Ref.
[143]. If the atoms are tightly con ned in the planes, then wean assume that the
atoms are in the Gaussian ground state of each of the wells wiiare occupied. The
sizeZ of the cloud after expansion from each of the wells (ignorirthe initial size
of the cloud) is

q___
Z= ZZ+(vt)% (4.4)

wherev is the average particle velocity in the cloudZ, is the size of the cloud after
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expansion in the limit of no lattice, andt is the expansion time. To nd the average
velocity, we assume that because the atoms are in the groundte of the potential,
the total energy E = 3~! 2, with ! the oscillation frequency in each well. At any

given time, this is evenly split between kinetic and potendil energy, so that the

q

average velocityv = % ~1 2, This is where the depth of the lattice comes in.

1
4
There is a relationship between the depth of the lattice andhe oscillation frequency

in each well. We can write the lattice potential as

U(x) = UpCos % : (4.5)
where U is the depth of the lattice we are interested in andl = —— the lattice

25in(5)

spacing, since is the angle between the lattice beams. By taking the second
derivative of Eq. 4.5 and setting it equal tom! 2, we can nd ! in terms of Uy, to

nally end up with

— L 2
el (4.6)
This equation can be used to t the size of the cloud as a funcin of lattice depth,
as shown in Fig. 4.10.
This calibration technique su ers from two assumptions wigh may not be true.
The rst assumption is that the atoms are not interacting duiing the expansion from
the lattice, which is almost certainly violated. The secon@ssumption is that the
atoms are tightly con ned only in the ground state of the latice, which is true only

if the temperature is very low or the con nement is very tight However, since it

was used in Ref. [78], we expect that it should be close to thermect calibration.
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Figure 4.10: Cloud width as a function of lattice depth, withUmax and Z, as t
parameters, in units of Umax = 4.4 0.2 X 10 %7 J, with Zo =98 5 m. Error
bars are standard deviations of three scans.
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Chapter 5
Experimental Methods and Results

5.1 2D Systems and Observation of BKT Transition

After setting up the lattice we would like to observe the BKT plase transition.
Once we are sure that the oscillation frequency in the lattecis high enough to
put us in the 2D regime, there are two main experimental indators of the BKT
phase transition to a super uid [76]. As the system starts to eivelop long-range
phase coherence and turn super uid, two independent systenwill interfere with
one another if they overlap during free expansion (Fig. 5.1) Because each of
the systems expands most rapidly in the tightly con ned diretion after release,
there will be total overlap if the two systems are within a fewmicrons of each
other. The phase of this interference pattern will be randonfrom realization to
realization, set by the overall uncontrolled phase of eaclysem, and the average
fringe visibility over many shots is related to the coherergclength of the two systems
[121, 127]. In addition, the freely expanding distributiorwill become bimodal, with
a narrow distribution on top of a broader thermal background The appearance of
an interference pattern coincides with the appearance ofa@tbimodal distribution.

Another indicator of the BKT phase transition is the occasioal appearance
of \fringe dislocations” in the interference pattern, whit indicate vortices. At

temperatures near the phase transition, the appearance aké vortices becomes
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more and more likely. Vortex pairs are also more likely, buthey annihilate early
in the expansion of the cloud, and so we cannot observe then®].7 The phase of
the order parameter of a single 2D system containing a singlertex wraps by 2
around that vortex. If we interfere this system with anothersystem with a smooth
phase, then the 3D interference pattern will take on a corksaw shape along the axis
of the interference. The spot of zero density in the center tie vortex will be lled
by the uniform phase reference cloud, and thus turn into a spof zero visibility.
Since absorption imaging integrates over one dimension dfig pattern (Sec. 3.9),
the signature of a single vortex in one of the planes is a phadislocation (or \fork™)

in the observed interference pattern. The appearance of e phase dislocations in
a bimodal interference pattern as we increase the phase spatensity tells us that
we are observing the BKT phase transition.

Experimentally, in order to observe these signatures, weaporate in the op-
tical trap to obtain a 3D BEC at di erent temperatures (Sec. 38), and then ramp
up the intensity of the lattice beams to their nal value in 5@ ms, splitting the
3D BEC into two 2D systems. After a 200 ms hold, all of the poterdls are shut
o, and the atoms are allowed to fall for a variable amount ofitne before they are
imaged (Sec. 3.9). The ramp and hold times are chosen to mintfose used by
group of Jean Dalibard [76], which has determined these timé¢o be adiabatic and
in equilibrium in a very similar system. The imaging is in thevertical direction
(from above in Fig. 4.9), so that we can observe the two systemafter they overlap
during expansion.

Our rst attempts to observe this phase transition yielded song suggestive
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Figure 5.1: Sample absorption images of the interference 22D systems after 37
ms of free expansion. Images are from the side of the initialht systems, as shown
schematically. After expansion, the two systems are compédy overlapped due to
the fast expansion in the initially tightly con ned direction. The image on the top
shows no phase dislocations, indicating that each systemsha smooth phase. The
image on the bottom shows a fringe dislocation caused by a tex being present
in one of the systems just before release. The phase and geoynef each of the

systems before expansion is schematically illustrated ohe left.

evidence of the transition. We saw a bimodal distribution viih an interference pat-
tern after expansion (Fig. 5.1), and some of the images yield vortices, as we
expected. With increasing temperature, the fringe visibty and bimodal distribu-
tion disappeared (Fig. 5.2). The spacing of the fringes aft85.95 ms TOF indicated
that the original lattice spacing separating the two 2D sygms was 5.6 m, as we
expected.

However, the fringes of the interference pattern were tiltedt an angle with
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Figure 5.2: Scan of fringe visibility as a function of nal tap depth in the 5.6 m
lattice. The X-axis is roughly 30 nK per data point, increasig in temperature to
the right, starting at the lowest temperature that we see atms. The Y-axis is the
maximum value of the peak in Fourier space in the small regiotorresponding to

observed frequencies of the interference pattern. Errortsaare 1 standard deviation
of the average of ve images at each point.
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respect to the angle of the lattice. This angle changed somieat from shot to shot,
with an average of 60 . In addition, the frequency of the fringes depended on the
angle, with the projection of the frequency along the direan of the lattice being
constant. The widest direction of the cloud is perpendicufao the lattice, so the
angle is easy to see. In the 2D limit, we expect that the kinetienergy of the atoms
dominates their expansion, causing them to expand as freerpieles. Calculations of
the free expansion of two Gaussian wavepackets with our i@t conditions indicate
that this tilt and frequency change could be caused by an indl relative velocity
between the two planes as small as 0.2 mm/s. However, we trieeeey conceivable
experimental method for changing or eliminating a velocitgluring the loading and
turn o of the lattice, and the angle did not change. Its non-ero average indicated
a systematically induced velocity on every shot, althoughavhad no mechanism for
such a velocity.

A second problem that we were experiencing was instability the visibility of
the fringes. Under the same conditions, the shot to shot visllty of the interference
pattern was erratic. In addition, there seemed to be a long e drift that would
occasionally yield virtually no visibility for a series of Bots despite the fact that the
bimodal distribution still existed.

An explanation for both of these phenomena can be found by exanmg how
the BEC loads into the lattice. The lattice planes are in the dlection of the tweezer
beam for the optical trap. The long axis of the BEC without a l&tice will be
approximately midway in between the angle between the tweezbeam and the

crossing beam. Thus, the planes should be o set from one ahet, as the minimum
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Figure 5.3: Optical lattice potential with and without the lattice on showing the
position o set of the lattice planes. Note the unequal scalemn the axes. The o set
of the planes is 70.

potential at each plane will be separated along the axis of ¢htweezer beam (Fig.
5.3). Looking at Fig. 5.3, we can measure the angle of o set taeen the planes,
and it comes out to 70, which is very close to the angle of the fringes that we
observe. Since the lattice spacing is so large, we can alsperknentally image the
atoms after only 10 s of free expansion and see the atoms loaded into each plane
of the lattice (Fig. 5.4). We do indeed see this position o ge

In addition, in Fig. 5.4 we see that most of the atoms seem to beaded into
one site in the lattice. The amplitude and size of the absorjain at that one site
is much greater than any other site, although an exact analigsof atom number is
di cult. The relative number of atoms in this site uctuates from shot to shot, as
we do not control the phase of the lattice, and there are sombaas where barely
any atoms appear at any other site. We believe this to be the gse of the fringe

visibility uctuations. In order to get consistent fringes, we must be loading a
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Figure 5.4: Absorption images after 10 s expansion from 5.6 m lattice. The top
picture shows that the lattice (along with some di raction) is visible on the camera
over the extent of the cloud. The bottom image is zoomed in jusn the center of
the cloud, with darker colors indicating higher density. Tw planes are visible in
the zoomed image, with the majority of the density in just oneThe centers of the
planes are o set by 6 m horizontally and 20 m vertically. Vertical Gaussian
ts on each plane have a 29 m width.
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nearly equal number of atoms into the two interfering planesThis also explains

weird fringe patterns like in Fig. 5.5, as with few atoms in teB second plane, we
only get signi cant interference where the two clouds ovep, which changes from
shot to shot. This problem is exacerbated by the long expaisi times that we use

so that the fringe period is above our imaging resolution. Iaddition, fewer atoms

in the second plane might mean that we do not reach the densf required for the

BKT phase transition in that plane on every shot.

One thing which must be addressed in this explanation of thelted fringes
is that the observed position o set of the clouds does not gavtilted fringes in
simulations of freely expanding Gaussian wavepackets. TH@nge angle is set by
the dierence in the overall direction of the momentum vecto between the two
planes. Because the momentum is so high transverse to thermsa, this simulation
always yields fringes along the lattice direction. Howevewe cannot ignore the e ect
of interactions, which produce momentum along the planest ik straightforward to
do a calculation of our system in the opposite limit, ignorig the kinetic energy and
considering only the interaction energy in the mean- eld gproximation [32]. In this
case, the interactions do indeed produce tilted fringes @i 5.6). However, we are
not really in this limit. In the mean- eld approximation, we can simulate our system
including both interactions and kinetic energy using the Grss-Pitaevskii equation
[116]. We are currently working on this simulation in ordera verify the tilt in our
system is not due to a systematic non-zero velocity, but raér due to interactions
and the initial position o set.

In order to try to resolve the problems with fringe visibility, we decreased
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Figure 5.5: Absorption images of interference patterns aft@7 ms expansion which
do not extend over the whole cloud due to the lack of completeerlap between the
two planes or lower density in the second plane.
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Figure 5.6: Calculated interference pattern of two 2D systes using system param-
eters similar to ours. Pattern is calculated after expansiousing the Castin-Dum
scaling [32]. In this simulation, the fringes tilt due to anmitial position o set of the

two planes.
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the spacing of our lattice in order to more equally load two phes. Physically, we
changed the focusing lens for the lattice beams and moved loser to the atoms.
With the same separation at the lens, this produces a largemgle between the
beams, which gives a smaller spacing. This also means thaethattice frequency is
higher at a lower value of the potential depth, so a neutral desity Iter was installed

and the lattice was recalibrated. In addition, we moved thesalktice frequency farther
from resonance to 773 nm. With this con guration, the fringgattern is much more
stable, although it still sits at an average angle of 20 . The lattice spacing in this
new con guration is approximately 2.6 m, which is smaller than the resolution of
our imaging system, so we cannot directly image the latticelWe assume that the
new spacing has decreased the o set along the planes. Exaepbsorption images

of this new setup after free expansion are shown in Fig. 5.7.

5.1.1 Analysis of Interference Patterns

The main quantities that we would like to extract from imagessuch as those
in Fig. 5.7 are fringe visibility and phase. In addition, we g often interested
in temperature, atom number, and the ratio of atoms in each paof a bimodal
distribution. These latter quantities can be determined fom the methods described
in Sec 3.9, with some small modi cations described later.

If we label the axes of the images as shown in Fig. 5.7, with Zoal the

fringes and X along the cloud, then we can t the pro leF (x; z) of the image with
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Figure 5.7: Absorption images after 26 ms of free expansiontab 2D systems from
a 2.6 m period lattice. Two planes are predominantly loaded in tisi con guration,
with a small occupation of exterior planes. The image in the isldle has a fringe dis-
location, indicating a vortex, while the curves in the frings indicate long-wavelength
phonon-like excitations.
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a function of the form
22 .2z
F(x;z)= A(xX)e 2 1+ C(x)Sin o + X)) (5.1)

with D = % as in Eq. 4.3. We are interested in the values & (x) and (x),
which represent the fringe visibility and the phase of the terference pattern. The
visibility is related to the coherence of the the two planesand we are interested in
the phase because the fringes are straighter at temperatarbelow the transition,
producing a constant (x). In order to extract these, we do not directly t the
image. Rather, we perform two Fourier transforms, one a 2D dnsform and the
other a series of 1D transforms of Z as a function of X (Fig. 5.8

The 2D Fourier transform gives us the dominant angle of the ifrges with
respect to the axis of the lattice, which is still typically ron-zero in all of our current
images, and changes slightly from shot to shot. The peak in 2Bourier space
appears at an angle with respect to the axes of the image whiththe same as
the angle of the fringes. As mentioned previously, althougthé angle of the fringes
changes from shot to shot, the projection of the frequency tanthe Z-axis does not
change, as it is set by the lattice spacing. If the angle chaesg} the fringe frequency
changes in order to keep this projection the same. Therefptbe overall frequency
of the fringes changes along with the angle, and the peak inetf2D transform in
Fig. 5.8 moves up and down along the@, axis of the image. We perform a 1D
Gaussian t of the peak in Fourier space along, in order to determine the angle

of the fringes in every image. This will be used to nd (x) accurately.

The 1D Fourier transform of a function of the form of Eq. 5.1 irthe Z direction
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Figure 5.8: Absorption image after 26 ms of free expansion @fd 2D systems from
a 2.6 m period lattice with both 2D (middle) and 1D (bottom) positive-spectrum
Fourier transforms. The position of the peak in the 2D Fourietransform can be
used to nd the dominant fringe angle, while the peak in the 10Fourier transform
gives the visibility and phase of the interference pattern.
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Since we are interested in values @ (x) and (x), we rst observe that at p,=0,

Eq. 5.2 simplies to

é&% 1 coe 2 sin( () (5.3)

However, the exponential is negligible, and so the amplitudef the Fourier peak
at p,=0 is related only to the value of A(x). Similarly, if we look atthe peak at
p, = 2=D, we see that Eq. 5.2 simpli es to

52 2 . )
P35 Ale P L iAC()e | 0 @ 0 g @) (5.4)

Again the exponentials eliminate two of the three terms, leavg us with the peak

value atp, = 2=D of
Ep—ziA (X)C(x)e ®: (5.5)

We can see then that dividing the value of the Fourier transfon at p, =2 =D by
the value atp, = 0 and multiplying by 2 gives us the value ofC(x). In addition, we
see that Eq. 5.5 also allows us to calculate the value of the gde (x) by nding
the phase angle of the peak.

The other way to nd C(x) and (x)isto do a tto the cloud, which turns out
to be very sensitive to the initial tting parameters and guesses for the functional
form of the observables. The analysis above is a simple fastufier transform plus

some simple algebra, so it is much easier, with a few caveafsirst, the peak at
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p, =2 =D is not a delta-function in Fourier space, so we have to know wre that
frequency sits exactly. Also, there is a nite step size in Foier space, and if the
true frequency lies in between two of these steps, which israst inevitable, then
the amplitude is split between two pixels. We do not know the @ual position of
this peak by any other method than observing it, so we actugllsum two pixels to
get the e ective visibility. This probably overestimates he actual value ofC(x), but
as a relative measure it should be consistent, and we are abhalways interested in
relative changes. The second subtlety of this analysis meith is that our fringes are
at an angle with respect to the axis of the 1D Fourier transfon. This means that

(x) has a linear part to it with the slope being the angle of the inges. We account
for this by nding the angle of the fringes in each image and #n subtracting o
this linear tilt from the phase. This produces the actual untted (x).

The total analysis proceeds as follows: Each image is initia tted with a
Gaussian to represent the thermal fraction of the cloud. Hower, the expansion
of the cloud in the tightly con ned direction overlaps the thermal cloud in this
direction, so the thermal t is only done in the X-direction. Then, a bimodal t is
performed in the X-direction using the initially t thermal p arameters as guesses
for the thermal cloud t coe cients. Once this t converges, the thermal coe cient
values are used in the Z-direction, and a dual t is done in tlsi direction while
not changing the thermal coe cients. This relies on the isatopic expansion of
the thermal part of the sample, and allows us to t the overallenvelope of the
thinner part of the bimodal distribution in both directions. Once this is performed,
the analysis in Sec. 3.9 is used to extract the atom number ira@gh part of the
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distribution, as well as widths of each part, and the tempetare of the ensemble.
The analysis of visibility and phase can then be performed oust the thinner
\condensed" part of the distribution, as described above.

Many of the images do not have a signi cant thermal fractionand thus cannot
be used in this type of analysis. When we report atom number drtemperature,
we have used only those images where the dual t could be perfed. In addition,
correct calibration of atom number and temperature are di alt, especially in a
lattice. There can be large systematic uncertainties, leady many experimental
groups to just assume 10% error bars on these measurments. r @amperature
measurement is even more inaccurate owing to its 1D nature. Wever, if we are
interested in relative changes, then we expect that applygnconsistent methods
should yield consistent relative results. If we are truly iterested in an accurate
measurement of the temperature and atom number, we must do aone careful
job of calibrating our imaging system.C(x) also su ers from absolute calibration
error owing to our analysis method, while (x) may be slightly modi ed by the
subtraction of the linear tilt. However, if we are only intersted in visibility, we can
make some gains against statistical error by performing a mestable Gaussian t
on just the thinner portion of the cloud, ignoring the therm& component. We then
nd C(x) and (x) on just this part, which allows us to increase the number of

images that can be used for averaging these quantities.
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5.1.2 BKT Transition in 2.65 m Lattice

To verify that we can observe the BKT phase transition in a 2D Bse gas,
we calibrated the lattice to have a depthUy=h = 1 MHz, which gives an oscillation
frequency in each well of , = 18 kHz. We create a 3D BEC at a variable temperature
and then ramp the lattice on in 500 ms and hold for 200 ms to atept to ensure
equilibrium. We then turn o all of the potentials and image the interference pattern
after 26.95 ms of free expansion, collecting images such lagse in Fig. 5.7. These
images are analyzed and quantities are extracted using thechniques given above
in Sec. 5.1.1. Table 5.1 summarizes the parameters of theteys for the data in
the following sections.

The results are shown in Fig. 5.9. There are two di erent waythe data is
analyzed. In either case, the integral of the visibility owvethe \condensed" part of

the sample of lengthL is calculated:

Z

L
C(x)e Mdx: (5.6)
0

V =

|~

For the top two plots, this is shown on the Y-axis. For the botton two plots, (x)
is assumed constant. The reason for this is that it is predietl and observed that as
the BKT transition region is approached from below, the phasof the interference
pattern exhibits more and more curvature [76]. This is ind&ted by the phase
varying over the cloud. We see a small di erence in the slopes the two types
of analysis, indicating that the phase curvature does redacthe growth of fringe
visibility and coherence in Eq. 5.6. Each pair of plots showsoth raw data and
average binned data in 20 nK bins.
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Table 5.1: 2D System Parameters

f, 18 kHz
fy 28 Hz
fy 117 Hz
Number of Atoms Per Plane 50000
Temperature 35 nK
Chemical Potential in Each Plane ggc 7 kHz
Thomas-Fermi RadiusR+g, 70 nm
Rte, 45 m
Rre, 11 m
Angle between lattice beams 16.7
Lattice spacing 2.65 m
Lattice depth Up=h 1 MHz
Harmonic Oscillator Lengthl, = | m,z 80 nm
g 0.34

Critical Phase Space DensiyD;=In 2% 7.0
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Figure 5.9: The visibility at di erent temperatures in the 2.65 m lattice. In the
top 2 plots, representing raw (top) and 20 nK binned averageath, the visibility is
calculated using Eg. 5.6, while the bottom two plots assumeanstant (x) in the
integral calculation.
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The data indicates that as the temperature decreases lowdnan 300 nK,
the visibility of the fringes slowly grows, leveling at 175 nK. This is similar to the
results seen in Ref. [76], and is a strong indication that weeobserving the BKT

phase transition.

5.2 2D Systems with Disorder

We see from Fig. 5.9 that there is a range of temperatures ovethich the
visibility is fairly insensitive to temperature changes. i order to observe the e ects
of disorder in our system, we evaporated to this temperaturange and then followed
a similar procedure as above. This time, both the speckle disler potential and the
lattice are ramped on at the same time. Typical images are sho in Fig. 5.10. As
the disorder gets stronger, the visibility decreases anddtsample starts to look more
disordered overall. Similar to Fig. 4.8, the axis of the spkle beam is horizontal,
so the predominant e ect of the speckle is in the vertical daction. A systematic
study of the changes in the atomic cloud is shown in Figs. 5.8hd 5.12.

Fig. 5.11 shows that as the speckle depth is increased, thenther of atoms
in the thermal part of the distribution increases while the nmber of atoms in the
\condensed" part of the distribution decreases. The tempature seems to stay
constant. There is a signi cant e ect on these quantities een when the disorder
strength is much lower than the chemical potential in each phe, indicating that
we are not just \fracturing” the BEC. It should be noted that there were many

images in this data set with no signi cant thermal fraction,especially at low speckle
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Figure 5.10: Typical absorption images of 2D systems in thegsence of speckle
disorder after 27 ms of expansion. The top image is at a spexklepth of Us=h =
750 Hz, while the bottom image ha&Jo=h = 4 kHz.

depths. For the purposes of measuring temperature and numbéese images were
not used, as we do not have a good method to measure the numbfethermal atoms
or the temperature in these pictures. Thus, the number of peis used in averaging
at each speckle depth in Fig. 5.11 is as low as 10, but as high3@sat the higher
speckle depths.

Fig. 5.12 shows that as the disorder depth increases, theegrated visibility,
with or without assuming a constant (x), decreases. These ts were not bimodal
ts, and thus the error bars are standard deviations of at lest 35 images in each
case. We assume from the constant temperature data shown ilgF5.11 that even
in images where the temperature could not be measured due titlé or no thermal
fraction, the temperature was still not signi cantly di er ent from the images with

measurable temperatures. Again, we note a signi cant e ectfdhe disorder on the
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Figure 5.11: Number of thermal atoms, condensed atoms, totalom number, and
temperature as a function of disorder strength in the 2.65m lattice. Error bars
are one standard deviation of the measurements at each dider strength.
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Figure 5.12: The visibility at di erent disorder strengthsin the 2.65 m lattice.The

visibility is calculated using Eq. 5.6 in the top plot, whilethe bottom plot assumes
a constant (x) in the integral calculation. Error bars are the standard deiations

of at least 35 images at each disorder strength. \No lattice’hdicates the visibility

calculated this way with zero visibility in the interferene pattern, using images with
0 lattice depth.
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visibility at strengths of 500 Hz - 1/14 of the chemical potenal in each plane. Only
a small amount of disorder produces a signi cant e ect.

One other thing that must be addressed is the role of vortices this system.
As we have seen, vortices do appear in our interference pattey and we would like
to know how the disorder a ects them. As seen in the middle catn of Fig. 5.13,
the phase of the fringes does not seem to change across disendduced valleys in
the visibility along the X-axis. However, vortices still appar in some images, as the
right column in Fig. 5.13 shows. Vortices can be counted byd&ing at the phase
of the interference pattern across the cloud and looking fgumps in the phase.
This was done for two cases; 8 out 37 images with zero disorderd 10 out of 36
images with 750 Hz disorder strength contained a vortex. If wassume that vortex
appearance follows a binomial distribution, then the proHaility of observing either
number of vortices is consistent with a true vortex probahbiy of 25.2%. Thus, it
seems that the disorder has little e ect on the probability & observing a vortex.
However, a more systematic way of counting vortices must bewd#oped, and more
images must be taken to get better statistics on the number ebrtices observed.

The decrease of both the number of atoms in the condensed pafthe bimodal
distribution and the visibility of interference fringes ae consistent with a decrease
in the coherence in the system, but theoretical support wihe necessary to work out
the subtleties of exactly what is happening microscopicgll It is unclear from the
data taken so far whether the disorder has any e ect on the vtices appearing near
the BKT phase transition. We need to take more data at di ereh temperatures
to discern if the suppression of visibility occurs at the saendisorder strength, and
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Figure 5.13: Each column shows an absorption image after 26.ms expansion from
the 2.65 m lattice, as well as a vertical cut of the visibility (middlg and phase (top)
of the interference pattern across the sample. The image ametleft has no disorder,
with a nearly constant phase where the visibility is high. Tk image in the middle
has 750 Hz disorder strength, and the phase still seems neatbnstant across the
cloud. The image on the right is also at 750 Hz disorder strerigtbut this time a
vortex is indicated by the phase shift and loss of visibility near the center of the

cloud.
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try to determine a critical temperature as a function of disaler strength. We
should explore higher disorder strengths to see where thefye visibility completely
vanishes, perhaps at strengths near the chemical potentialeach plane. In addition,
we need to take more images and develop a more systematic whgaunting vortices

to see if the disorder a ects the vortex statistics.

5.3 Conclusions

We have designed and built a system to study the e ect of disder in ultracold
2D bose gases. According to many models, this system shouldniai the behavior
of high-Tc superconductors under the Cooper pairing tempaiure. 2D super uid
systems exhibit a phase transition to a normal uid at a critcal temperature which
is expected to be analogous to the superconductor to insubattransition in high-Tc
superconductors, where the uid is formed of Cooper pairs. e BKT mechanism of
the unbinding of vortex pairs is expected to drive this phasgansition, and because
disorder strongly e ects vortex transport in high-Tc supeconductors, we expect
disorder to strongly a ect this phase transition.

Experimentally, we create two 2D bose gas systems with a cooitable tem-
perature and atom number. We observe the experimental signge of the BKT
phase transition in this system as the appearance of an interence pattern and
bimodal distribution in the overlap region of the two systera during free expansion.
In addition, the microscopic mechanism of the BKT phase trasition is revealed

by phase jumps in the interference pattern which indicate vtces in the system.
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The addition of disorder while deforming the system from 3Dcat 2D smoothly re-
duces both the visibility of the interference pattern and tle proportion of atoms in
the \condensed" part of the bimodal distribution. Disorderstrengths much smaller
than the chemical potential of the systems still have a note&able e ect on these
guantities. The number of vortices observed in repeated maaements does not
seem to be e ected by the disorder. More work, including a tloeetical treatment
of our system, will be necessary to fully characterize whahése observations mean.
The apparatus is now in a good position to carry on further warin the area of

disordered 2D ultracold gases.
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Appendix A

Digital and Analog Outputs

Table A.1: Digital Outputs

Digital Channel Number

Equipment Controlled

0

1

10

11

12

13

14

Zeeman slower shutter
IGBT for x bias Coils
RF scan trigger
IGBT for y bias coils
MOT shutter
AOM for Optical Pumping
Repumper shutter
UMOT IGBT/Dipole trap shutter
Z-wire IGBT
Ti-Saph shutter
Probe AOM
Optical pumping shutter
Second probe shutter

z-coil (Bottom) IGBT

Ti-Saph AOM #1
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15

16

17

18

19

20

21

22

23

Hardware Reset for RF
Slower repumper shutter
60 Hz lters for magnetic trap
Dipole trap AOM
Ti-Saph AOM #2 and #3
Stage movement trigger
1st Probe shutter
Camera trigger

Analog cards trigger

Table A.2: Analog Outputs

Analog Channel Number Rack Breakout # Equipment Controlled
Device 1 (PCI)
0 16 U-Wire
1 4 Rydberg E- eld
2 15 AOM #1 (Ti-Saph)
3 3 Z Bias Coil (Bottom of Chamber)
4 14 Not in Use
5 2 Trim Coils
6 13 MOT AOM Frequency
7 1 Probe AOM Frequency
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Device 2 (PCI)

0

1

6
7

Device 3 (USB)

24

12

23

11

22

10

21

Optical Pumping Frequency
IPG AOM Amplitude
Not in Use
RF Power
Ball Valve Motor
Slower Detuning
AOM #3 (Ti-Saph)

AOM #2 (Ti-Saph)

0

1

X-Bias Coils

Z-Wire

Y-Bias Coils

IPG EOM
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Appendix B

1D Gross-Pitaevskii Equation Solution

In our previous publication [54], we did some calculations hich solved the
Gross-Pitaevskii equation (GPE) [46, 116]. This appendixedails how these calcu-
lations were done.

The GPE equation has been extremely successful at descripithe behavior
and dynamics of near zero-temperature condensates comnyoptoduced in exper-
iments. It is similar to the linear Schmedinger equation, wh the addition of a
nonlinear term which takes into account the interactions te/een the atoms in a
mean- eld approximation. Thus, it is single particle soluion that includes a term
accounting for how all of the other particles a ect the partcle being simulated.
Since all of the particles in a BEC are in the same state, sinating the dynamics
of one particle in this way describes the behavior of all of éhparticles.

The GP equation takes the form

i~@(@rp;tt) = %r 2 (rit)+ V(r) (rit)+ NUoj (r;t)j® (r;t); (B.1)

wherer = (Xx;y;z) is the three-dimensional position vectort is time, (r;t) is the
order parameter describing the particleV (r) is the potential the particles experi-
ence,m is the mass of one of the atoms, and is the number of atoms.U, describes
the strength of the interactions between the atoms as

4 ~%a
U = ; B.2
0= (B.2)
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with a the s-wave scattering length between the atoms. The wave fttion in this
case is normalized to 1:

y
 (rippdr =1 (B.3)

Our solution to the GP equation follows the recipe given in Re [13]. The
equation is solved using the time-spectral splitting algghm that works by break-
ing the Hamiltonian into two parts, the part that commutes with the momentum
operator and the part that commutes with the position operatr. Typical quan-
tum mechanical propagators for each part are assigned segiaty. A small time
step t is taken with the position propagator operating on an initihguess for the
order parameter (r;0). Then, a Fast Fourier Transform (FFT) is performed on

(r; t), followed by operating the momentum part of the propagatofor t on the
transformed . The inverse FFT is performed, and then the position operatas
applied for another step of t, and then these three steps are repeated. Because
commutes with the Hamiltonian in both position and momentum de to the FFT,
propagation is simply multiplication by a number in each cas If t is kept small,
the error in time propagation using this method can be made st.

We use this method to both nd the ground state of atoms in a latce and
simulate the process of turning on a lattice potential on thé8EC. We can use an
imaginary time propagation algorithm to easily nd the grownd state of the system
[37]. The idea behind this is that the energy of the ground sta is the smallest
energy in the problem. If we change the time in Eq. B.1 to it, the propagator

will cause all of the eigenstates in the problem to decay in aginary time, with the
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decay constant set by the energy of each eigenstate. Becatlwgeground state is the
lowest energy, it will be the only one to have any amplitude tdr a long imaginary
time, and thus propagation in imaginary time converges to # ground state and
ground energy of the system.

Although our system does not ful Il the criterion for being ore-dimensional, for
the problems we are considering, all of the dynamics are hagpng in the direction
of the applied 1D incommensurate lattices. Therefore, in der to make the problem
more tractable, we reduced the 3D GP equation to its 1D coumgart. In addition
to the assumption of separability, this reduction also reqres assuming density
distributions in the two directions not being simulated, an then using those to
calculate a new 1D coe cient for the nonlinear term in Eg. B.1 In addition, to
make the calculation easier, all of the variables are scaléu order to make the
computation easier. Our particular scaling uses the latteewavevector as the length
scale, but the basic method for determining the scaling coséom [13].

Our potential energyV (r) is
V(r) = g(! 524 122 41 22%) 4 VpSin(kx); (B.4)

with the ! ;'s the harmonic trapping frequencies and the Sine functiorepresenting

the lattice. Let us assign new scaled variables in Eq. B.1 adlbws:
F=rk, t=1gt, (D) =k 32 (r;1); (B.5)

with | r = % With these substitutions, Eq. B.1 becomes

@(HD _
@

1 Vo o . 2~
o (DE L iR S Sin?t) + TR D T );
"R R
(B.6)
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whereEg = 53X and . From this point on, | will drop the \tilde" on the

= NUgk®
Er
scaled variables to make the notation cleaner.

We assume that the dynamics in they and z directions can be ignored, and
we separate the order parameter, kinetic energy, and potéait energy parts of Eq.
B.6 into three parts, one for each direction, and we ignore ¢y and z equations.
However, we need to scale the nonlinear interaction term fose in the 1D equation

for the x variable, since it cannot be separated out. We do this by deing a 1D

interaction coe cient
Z

= 25(Y; 2)dydz; (B.7)

where
YA 1=2
2(y;2)= | g(xy;2)j*dx (B.8)
is the x-trace of the ground state position density 4(x;y;z)j?. Forj 4(Xy;2)j?

we use the ground state Thomas-Fermi approximation for thet@ms in a harmonic

trap (Eg. B.6 minus the Sine term):
S

1

XYzt = g(xyiz)e 't = = . (12x2+12y2+1272) e ''; (B.9)

4 2
with  the chemical potential of the atoms. Before the lattice is tuned on, this is

expected to be the state of our system. Normalization ofy gives

151 10, 2
!

&2 ; (B.10)

W<

so that we plug Eq. B.10 into Eq. B.9, then plug that solutionnto Eq. B.8, and

nally use Eq. B.7 to nd

A (B.11)




With the value of 5, we can now simulate our system by applying the time

splitting spectral method to the 1D GP equation

@ (x;t) _
@t

1 Vo . : :

ro2 (gt + ! 22+ Z2Sin2(kx) (st + 1 (612 (1)
4z Er

(B.12)

An algorithm to do this, written in Matlab, is included in Appendix C, and was

used to do the calculations in Ref. [54].

152



Appendix C

1D Gross-Pitaevskii Equation Solver in MATLAB
function [Psi3, Energy] =

evolvestrang(Ntau, N, tau, Lx, PsiO, Ux, Uxtime, UO, J)

%of

This function does time evolution or ground state wave funain
calculations in 1D using a split step operator method, using
fast fourier transform to switch between momentum space and
position space. This makes the operators very easy to deattwi
It includes a psi*2 term for modeling the Gross-Pitaevskii
equation, and allows a linear ramp of part of the x-dependent
potential (Uxtime). The momentum operator is de ned in this
function, and may need to be changed depending on the units
scaling that is done. The variable J determines whether the
function does time propagation (J=i) or imaginary time evaoltion
to nd the ground state wave function (J=1). The nonlinear term
is calculated using a predictor-corrector loop, taking arne

step, calculating the wave function, and using the averagé o

the new psf*2 and the old psf2 to actually take the time step.
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%g

deltax=Lx./(2.*N-1); %px step size
deltak=2*pi/(Lx); %momentum step size
x=(-N:1:(N-1)).*deltax; %x array
k=(-N:1:(N-1)).*deltak; %momentum array
ks= tshift(k);

%move zero order momentum component to beginning of array

%Normalize Psi0
Psi0O=Psi0./sqgrt(sum(abs(Psi0)"2).*deltax);
tic %timing

Jtau=J.*tau; %time step (real or imaginary, depending on J)

Up=ks."2; %Kinetic energy operator

%Build time evolution functions
Uxtau=Ux.*Jtau;
Uxtautime=Uxtime*Jtau;
Uptau=Up.*Jtau;

UOtau=U0*Jtau;

%lInitialize energy array
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Energy = zeros(1, Ntau);
PotEnergy=zeros(1,Ntau);
KinEnergy=zeros(1, Ntau);
%Plot initial wave function
gure(1);

plot(x, abs(Psi0)"2);
axis([-100 100 0 1J);

axis'auto y';

%If statement to avoid unnecssary normalization if doing
%time evolution
if J==1
%Ground state evolution Loop
for 11=0:1:(Ntau-1)
Psistar=exp(-(Uxtau+Uxtautime*Il...
+UOtau*abs(Psi0).”2)/2).*Psi0;
Psistarstar =i t(exp(-Uptau).* t(Psistar));
%Kinetic Energy (momentumum space)
Psi3=exp(-(Uxtau+Uxtautime*Il...
+UOtau*abs(Psistarstar).2)/2).*Psistarstar;
%position space
Psi3=Psi3./sqrt(sum(abs(Psi3)"2).*deltax);
%Normalize
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KinEnergy(ll+1)=sum(abs( t(Psi3)). "*2.*Up)...
Jsum(abs( t(Psi3). *2));
PotEnergy(l1+1)=sum(abs(Psi3)."2.*(Ux+Uxtime*Il)...
+U0.*abs(Psi3).n4).*deltax;
Energy(l1+1)=KinEnergy(l1+1)+PotEnergy(l1+1);
%Calculate some sort of energy,

although this is not true energy

PsiO=Psi3;

end

elseifJ==i

for 11=0:1:(Ntau-1)
Psistar=exp(-(Uxtau+Uxtautime*Il...
+UOtau*abs(Psi0).”2)/2).*Psi0;
Psistarstar =i t(exp(-Uptau).* t(Psistar));
%Kinetic Energy (momentum space)
Psi3=exp(-(Uxtau+Uxtautime*lI+UOtau...
*abs(Psistarstar)2)/2).*Psistarstar;
%position space
Energy(ll1+1)=sum(abs( t(Psi3)). *2.*Up)...
Jsum(abs( t(Psi3). 2))+sum(abs(Psi3)2...
F(Ux+Uxtime*[1)+U0.*abs(Psi3). "~4).*deltax;
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%Calculate some sort of energy, although this is not true ey
KinEnergy(ll1+1)=sum(abs( t(Psi3)). ~2.*Up)...

Jsum(abs( t(Psi3). *2));
PotEnergy(l1+1)=sum(abs(Psi3)."2.*(Ux+Uxtime*Il)...
+UO0.*abs(Psi3).M4).*deltax;
Energy(l1+1)=KinEnergy(ll1+1)+PotEnergy(ll+1);

PsiO=Psi3;

end

else

'Incorrect J value'

end

toc

%plot nal wavw function
gure(2);

plot(x, abs(Psi3)2);
axis([-100 100 0 1J);
axis 'auto y';

%plot energy array
gure(3);
plot(Energy)

gure(4)
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plot(KinEnergy)

gure(5)

plot(PotEnergy)

%plot momentum distribution
gure(6);

plot(k,abs( tshift( t(Psi3))). ~2...

J(sum(abs( t(Psi3). *2)*deltak)));

axis([-6 6 0 1]);

axis ‘auto y';
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