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In the United States, flight operators may schedule flights to most airports at 

whatever time best achieves their objectives.  However, during some time periods, 

both at airports and in the airspace, these freely-developed schedules may become 

infeasible because weather or other factors reduce capacity.  A plan must then be 

implemented to mitigate this congestion safely, efficiently, and equitably.  Current 

planning processes treat each congested resource independently, applying various 

rules to increase interoperation times sufficiently to match the reduced capacity.  

However, several resources are occasionally congested simultaneously, and ignoring 

possible dependencies may yield infeasible allocations for flights using multiple 

resources. 

In this dissertation, this problem of developing coordinated flight-slot 

allocations for multiple congested resources is considered from several 

perspectives.  First, a linear optimization model is developed.  It is demonstrated 

that optimally minimizing flight arrival delays induces an increasing bias against 



 

 

flights using multiple resources.  However, the resulting allocations reduce overall 

arrival delay, as compared to the infeasible independent allocations, and to current 

operational practice.  The analytic properties of the model are used to develop a 

rule-based heuristic for allocating capacity that achieves comparable aggregate 

results.  Alternatively, minimizing delay assigned at all resources is considered, and 

this objective is shown to mimic the flights’ original schedule order.   

Recognizing that minimizing arrival delays is attractive because of its 

tangible impact on system performance, variations to the original optimization 

model are proposed that constrain the worst-case performance of any individual 

user.  Several different constraints and cost-based approaches are considered, all of 

which are successful to varying degrees in limiting inequities. 

Finally, the model is reformulated to consider uncertainty in capacity.  This 

adds considerable complexity to the formulation, and introduces practical 

difficulties in identifying joint probability distributions for the capacity outcomes at 

each resource.  However, this new model is successful in developing more robust 

flight-slot allocations that enable quick responses to capacity variations. 

Each of the optimization models and heuristics presented here are tested on 

a realistic case study.  The problem studied and the approaches employed represent 

an important middle ground in air traffic flow management research between single 

resource models and comprehensive ones. 
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1. Introduction 

In the United States, flight operators are free to schedule and operate flights 

to most airports at whatever time and by whatever route best achieves their 

objectives.  However, during congested time periods, both at airports and in the 

airspace, these freely-developed schedules may become infeasible.  At that time, the 

system operator, the Federal Aviation Administration, must develop a plan to 

mitigate this congestion safely and efficiently.   

At some times, several resources are congested simultaneously.  Current 

planning processes treat each of these resources independently, and apply various 

rules and processes to increase interoperation times sufficiently to match the 

reduced available capacity.  This assumption of independence may yield infeasible 

capacity allocations in the case that some flights are using multiple resources. 

For example, a flight may travel through a region of airspace congested 

because of weather before arriving at an airport that has closed one of its runways.  

Each of these disruptions necessitates a systematic plan for preventing local 

congestion, but it is likely that the plans developed independently will not be 

compatible with one another for this flight.  Previous research has either not 

addressed this coordination problem, or has taken a comprehensive view, in which 

assumptions about operator rights are disregarded, that allocates capacity at every 

airport and division or airspace, regardless of expected congestion. 

This dissertation focuses on strategies and models to develop coordinated 

slot allocations at multiple resources without the assumption of independence, 

while considering only congested and connected resources.  In the next section, the 

capacity allocation principles and systems used in practice, and those proposed by 

researchers, are outlined.  Then, the problem of coordination between capacity 

allocation programs is described in greater detail. 
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1.1 Capacity rationing principles and systems 

Congested resources in the airspace system require intervention to maintain 

safety.  In the United States, the FAA is provided the statutory authority to make 

these interventions and operate the air traffic system so as “to prevent a collision 

between aircraft operating in the system and to organize and expedite the flow of 

traffic, and to provide support for National Security and Homeland Defense.” 

(Federal Aviation Administration 2008).  The means to achieve this objective can be 

loosely categorized according to their time scales: air traffic controls reflects tactical 

actions made primarily for safety, while air traffic flow management (ATFM) reflects 

strategic interests made to maximize and balance efficiency and equity in the 

system. 

One of the primary roles of the ATFM system is to allocate capacity at 

congested resources.  These processes proceed under the assumption that 

congested resources, and the expected duration of the demand-capacity imbalance, 

have been identified by some external process.  Given this information, they develop 

a detailed plan to match projected demand with a resource’s expected capacity.  It is 

important to note that these allocations are developed simply as plans and that 

flight operators have considerable leeway, within their share of the allocation, in 

managing their own operations.  The mechanisms, operational systems, and 

advanced research that inform this process are described in this section.  In a 

broader sense, this problem represents one of a general class of resource allocation 

models. 

1.1.1 Principles 

Underlying virtually all ATM tools are rationing principles, because, at their 

core, these are all procedures to ration scarce resources.  These rationing principles 

are important, and will be used throughout the remainder of this research.  Each 
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rationing principle begins with some notional baseline from which the procedure 

begins.  Several pieces of data about each flight provide good candidates as the 

starting point for allocating priority, including both a flight’s scheduled time and 

currently projected time at each congested resource they encounter.  Scheduled 

time is used for several reasons outlined below. 

Flight operators publish schedules indicating only departure and arrival 

times months in advance.   Aircraft trajectories are well understood, enabling a 

reasonably accurate projection of the flight’s position between origin and 

destination.  This allows for inference of the “scheduled” time to arrive at some en 

route resource.  Airline schedules are published long in advance, which effectively 

prohibits gaming to gain advantage in any individual capacity rationing program on 

the day of operation.  However, there are many non-scheduled flights, including 

both business and general aviation, which present unique challenges in using 

schedule time as a baseline, as they lack this data. 

Alternatively, projected time may be used for each flight.  Before departure, 

all users operating in airspace with which this work is concerned must file flight 

plans indicating their proposed flight path.  In addition, flight operators share with 

the FAA information about planned departure and arrival times.  These may differ 

from scheduled times as a result of a variety of factors occurring on the particular 

day in question.  Based on this information, and using the same projection methods 

as for scheduled times, a time-varying projection of flight position can be developed, 

yielding projected arrival times at each resource.  This baseline is more complete 

than schedule because all flights can be projected based on current data.  However, 

it provides an incentive for users to falsify information to gain advantage.  For 

example, users may gain higher priority by providing false information about flights 

that they know will be delayed. 
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Of these two baselines, schedule time is generally used.  This is primarily to 

avoid the possibility of gaming by users by encouraging truth-telling.  Schedules are, 

by their nature, long-term and strategic in nature.  Their development is an 

intensive process, and in a network environment such as that used by air carriers, 

changes in one location have a system-wide impact.  All this argues that users will 

find it difficult to game the system with schedules.  In the original implementations 

of airport capacity rationing used in the United States, projected time was used, and 

this approach encountered considerable difficulties that led to the introduction of 

scheduled arrival time as the standard for rationing.  The problems with this 

approach are described in greater detail in (Vossen and Ball 2006). 

Thus, the most basic procedure for rationing capacity in the U.S. airspace is 

known as Ration By Schedule (RBS).  When rationing becomes necessary under 

reduced capacity, flights are prioritized according to their published arrival times.  

This process works, at a basic level, by simply stretching out the schedule of flights 

to match some reduced capacity.  A trivial example of this is shown in Figure 1-1, 

wherein ten flights are nominally scheduled with two minute interarrival times.  

Due to some reduction in capacity, however, interarrival times must be increased to 

four minutes.  Flights must be delayed to meet this new target.  The first flight 

receives no delay, while subsequent flights receive linearly increasing delays. 

A somewhat more complex example of the RBS principle is shown in Figure 

1-2, wherein the schedule is nonuniform.  In general, flights are scheduled with two 

minute interarrival times, but there are several periods during which no flights are 

scheduled.  Thus, flights that are scheduled after an unscheduled period receive a 

better arrival time than they would have under a uniform schedule. 
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Figure 1-1 – Ration By Schedule with uniform schedule 

 

 

Figure 1-2 – Ration By Schedule with non-uniform schedule 
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Several alternate standards for rationing have been proposed to replace RBS.  

These have been developed in an effort to improve in some way upon the properties 

of the RBS allocation.  These include rationing by aircraft size, by number of 

passengers (Manley 2008), by aircraft fuel burn, and by distance (Ball, Hoffman and 

Mukherjee 2009).   

Of these, Ration By Distance seems to have the most interesting properties, in 

that it explicitly mitigates against uncertainty concerning the ending time of the 

disruption to minimize total expected delay.  An example allocation for a limited set 

of flights is shown in Figure 1-3.  The flights are assigned their best feasible slot in 

order of the length of the flight.  This allows for the quick release of shorter flights if 

the disruption ends early.  Clearly this comes at a severe cost to the equity principles 

established by RBS by heavily penalizing shorter flights.  This property has been 

subsequently explored in (Glover and Ball 2010). 

 

 

Figure 1-3 – Ration By Distance principle 
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In practice, the RBS procedure is more complex, as it incorporates 

exemptions and has several other algorithmic components that attempt to achieve 

greater efficiencies.  However, at its core, the RBS allocation is formed simply by 

stretching the original schedule order of flights.  While in the previous rationing 

examples, only a single airline was considered, in reality many airlines are included 

in the rationing process.  The implications of this will be addressed, along with 

descriptions of the specific operational systems used to allocate capacity and 

variances from the above procedure, in the next section. 

1.1.2 Operational systems 

In the U.S., there are several tools that apply these rationing methods to 

demand-capacity imbalances in the U.S.  Ground Delay Programs (GDP) and 

Airspace Flow Programs (AFP) handle this problem on the ground and in the air, 

respectively.  These initiatives operate independently from one another and are 

employed sparingly – under nominal conditions they are typically not used.   

In Europe, a more integrated approach is employed.  The Central Flow 

Management Unit (CFMU) uses a dynamic heuristic to identify expected demand-

capacity imbalances throughout each flight’s route and constantly issue new control 

times to prevent them.  Thus, the European system takes a much more control-

oriented philosophy in contrast to the U.S. system, which puts a greater onus on the 

flight operator.  This system is employed continuously, always adjusting flight 

control times. 

Ground Delay Programs function according to the RBS principle outlined in 

the previous section.  They have been in use in some fashion for a long time.  They 

are planned by the FAA after it has identified a period of expected demand-capacity 

imbalance at some airport.  Typically, they are planned several hours in advance and 

are expected to last for several hours.  Only arrivals are explicitly controlled, as 
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keeping flights on the ground, either departures to or from the airport under 

consideration, is inherently safer and less expensive than delays in the air. 

An important feature of GDP’s is that airlines have great flexibility to modify 

the flight-slot allocations assigned to them.  Because each airline has their own 

internal business objectives, they may prefer to prioritize one flight over another, 

even to the point of cancelling a flight to move others much earlier.  This may yield 

them tremendous benefit.  They are only permitted to do this because they agree to 

share information about the cancellation in advance of the planned departure.  This 

information sharing is a key part of the Collaborative Decision Making (CDM) 

paradigm in rationing capacity, as described in (Wambsganss 1997).   

If the airline is unable to make use of all the capacity that it is allocated after 

it has made cancellations and substitutions, then other airlines flights are moved 

earlier in the allocation according to their schedule order.  This process is known as 

compression. 

Until the summer of 2006, airspace capacity was not explicitly rationed.  At 

that time, however, to address increasing airspace congestion, airspace flow 

programs (AFP) were introduced, employing the same principles and software to 

manage disruptions as are used for GDP (Krozel, Jakobovits and Penny 2006).  The 

development of the production system to implement AFP is described in (Brennan 

2007).  AFP provides a mechanism for airspace operators to directly control the 

flow of aircraft using a particular region of airspace.  The regions of airspace 

controlled are drawn primarily from a set of predefined regions, as depicted in 

Figure 1-4. 
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Figure 1-4 – Predefined AFP regions 

The same software tools are used to implement GDP and AFP in practice, 

with the primary difference between any programs being the new interarrival times 

employed.  In practice, however, the origin and veracity of these interarrival times is 

somewhat more challenging to address than for GDP.  Airport runway capacity 

constraints driving a GDP are fairly straightforward to characterize because of the 

well-defined separation standards that must be enforced between operations.  In 

the airspace, however, and particularly for a fairly large volume that might be 

employed in an AFP, the features defining the capacity constraints may be 

significantly more difficult to characterize.  As a result, AFP capacity is estimated 

through expert opinion, and is not treated as a hard constraint.  Violations of this 

notion of capacity are regularly admitted to help ensure feasible operational 

schedules. 

It is important to note that the problem of coordinating capacity allocation 

for flights using multiple resources only appeared after the introduction of AFP.  

Prior to that time, only airport capacity was explicitly allocated.  Because each flight 
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may only arrive to a single airport, there existed no mechanism for conflicting 

allocations. 

Another rationing method employed in airspace operations is the Ground 

Stop (GS).  For whatever reason, the resource being considered is completely 

unavailable for some period of time.  Causes of such stoppages include severe 

weather, equipment breakdown, and security situations, among others.  No flights 

can be accepted, and so all that were scheduled to arrive during that time are 

delayed until after the stoppage.  In a sense, GS is an extension of the above 

rationing principles, with a single period of extremely large interarrival times. 

It is important to note that, in the U.S. system, each GDP or AFP functions 

independently of any others being used simultaneously – no account is made for 

coordination.  As a result, flights may receive conflicting access times if they are 

using multiple congested resources.  The inertia behind the U.S. approach dictates 

that this or some derivative system will continue to be used into the foreseeable 

future.  However, increasing congestion at key points in the aviation system, both on 

the ground and in the airspace, requires that greater attention be paid to 

implementing some form of coordination between the slot allocations at various 

resources.  

1.1.3 Research and development 

The previous sections presented here explored the basic principles and the 

operational systems that are used in rationing capacity in the aviation system.  

Practical and cost considerations, as well as institutional barriers, keep such 

systems in use, even in the face of more complex systems that have the potential to 

streamline operations and reduce delays.  A variety of models and systems have 

been developed from the research community to address these problems and to 

create comprehensive systems for allocating capacity.  In this section, several of 
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these models and systems will be described to provide the setting in which the 

research proposed here will fit. 

Several groupings of models are considered here.  Models may be divided 

simply by whether capacities, or any other data, are treated deterministically or 

stochastically.  Alternatively, models may be divided according to the scope of 

resources and decision-making processes that they cover.  These two divisions are 

illustrated in the Venn diagram shown in Figure 1-5.  Some multi-resource models 

consider network effects, while others do not.  In general, the least complex 

problems in this figure are the deterministic single resource models, while the most 

complex are those that consider multiple resources and network effects under 

stochastic capacity.  The number of research efforts varies undertaken correlates 

well with these measures of complexity. 

 

 

Figure 1-5 – Division of capacity allocation research 
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When the tremendous complexity of the air traffic system is considered in 

concert with the uncertainty associated with so many parts of the system, there 

clearly exists tremendous potential for the application of models to aid decision-

making.  However, most of the models proposed for these purposes do not explicitly 

adopt the same principles (e.g., RBS) as are used in practice, but take a more general 

delay or cost minimizing approach for some stakeholder group. 

1.1.3.1 Single resource models 

The first category of models considered are those that address capacity 

allocation at a single resource, either under deterministic or stochastic capacity 

assumptions.  The first models designed for strategic air traffic management focused 

on allocating ground holding.  The ground holding problem (GHP) was first 

systematically described in (Odoni 1987).  This was formalized in (Terrab and 

Odoni 1993) to examine the Single Airport Ground Holding Problem (SAGHP).  This 

linear optimization model minimized the total ground holding cost for a set of 

flights.  An example of the scope of this problem is shown in Figure 1-6, wherein 

only flows into a single congested airport are the subject of explicit control. 

 

 

Figure 1-6 – Single airport ground holding problem scope 
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Several extensions to this deterministic SAGHP formulation were proposed, 

including (Hoffman 1997) and (Hoffman and Ball 2000), which extended this SAGHP 

formulation to include banking constraints requiring subsets of flights to arrive 

within small time windows.  This addition models the connections that occur at hub 

airports to transfer passengers and cargo.   

The other important dimension to consider in the SAGHP is the uncertainty 

associated with capacity values.  In the previous papers, zero uncertainty was 

assumed.  Clearly this is a limiting assumption, and several researchers have 

addressed it.  A static stochastic integer program was proposed in (Richetta and 

Odoni 1993) to solve the SAGHP with uncertain capacities.  Two later papers 

(Hoffman 1997) and (Ball, Hoffman and Odoni, et al. 2003) formulated a similar 

model to Richetta and Odoni, with the primary focus being on determining the 

optimal numbers of arrival slots to create under uncertainty.  More recent efforts 

have also developed models that allow for dynamic updates, although their 

application is limited due to computational complexity (Mukherjee and Hansen 

2007). 

Efforts have been made to improve the computational properties of 

stochastic SAGHP models.  The static stochastic SAHGP was shown to have strong 

computational properties under a limited set of conditions in (Kotnyek and Richetta 

2006).  In addition, (Glover and Ball 2010) introduced new stochastic SAGHP 

formulations that dramatically reduced solution times. 

1.1.3.2 Multiple resource models 

While early research focused assigning ground delays for a single resource 

with deterministic capacity, it quickly progressed to consider multiple resources 

simultaneously (Vranas, Bertsimas and Odoni 1994), (Vranas, Bertsimas and Odoni 

1994) as the Multiple Airport Ground Holding Problem (MAGHP).  This model 
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focused on physical connections between aircraft operating multiple flights, 

although each flight was affected by at most one congested resource.  This reflects a 

type of coordination in allocating capacity, however the scope differs from that 

examined here, and it did not represent realistic decision making ability.  These 

early models considering multiple resources were computationally difficult.  The 

scope of this model is depicted in Figure 1-7. 

 

 

Figure 1-7 – Multiple airport ground holding problem scope 

A significant body of research for ATFM models began with the introduction 

of the Bertsimas and Stock Patterson (BSP) model (Bertsimas and Stock Patterson 

1998).  This integer programming formulation, termed the Traffic Flow 

Management Problem (TFMP) attempted to capture the ground and airborne 

holding decision, along with airframe connectivity, in the same framework.  It has 

reasonable mathematical properties that allow for it to be used for regional 

scenarios, but applying it to a nationwide problem is problematic computationally.  

This model did not directly address routing, but provides the base for several others 

that did.  Evolutions of this model for multi-resource problems have addressed 
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peculiarities of the European ATM system (Lulli and Odoni 2007), or have provided 

improved equity properties (Fearing, et al. 2009).  Efforts have been undertaken to 

improve computational times (Rios and Ross 2008) (Rios and Lohn 2009) as well.  

Because of the model’s inherent complexity, only limited efforts have been made 

thus far to consider stochasticity in capacity parameters (Chen 2009). 

However, these Bertsimas models have seen limited use because they take a 

modeling approach incompatible with the operational patterns employed in the air 

traffic system.  Primarily, they require knowledge of time-varying capacities for 

every resource, and plan accordingly.  This lies in stark contrast to the operational 

approach of considering only congested resources for strategic intervention. 

Finally, a separate group of optimization models for optimizing demand-

capacity imbalances and for choosing flight routings have been developed in 

(Sherali, Staats and Trani 2003) and (Sherali, Staats and Trani 2006). 

1.1.3.3 Network models 

The third category of ATFM models examined here focus on allocating 

capacity in a network setting.  Clearly there is significant overlap between these 

models and those highlighted in the previous section.  The distinction is somewhat 

arbitrary, but lies primarily in whether the models include some notion of the 

network that connects the various resources in the airspace system.  One of the 

earliest such network models for this problem was proposed in (Helme 1992), but 

this model was intractable because of its size.  The general scope of these network 

models is depicted in Figure 1-8, wherein airports and airspace sectors are 

considered. 

An essential difference in network models is whether they take an Eulerian 

perspective considering agglomerations of aircraft comprising flows, or a 

Lagrangian one considering many combinations of decisions for individual aircraft. 
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Figure 1-8 – Traffic flow management problem scope 

Several significant research efforts have produced Eulerian models, including 

the original Helme model, building on the flow-based nature of the air traffic system.  

Such models typically retain superior computational properties to the individual 

flight models, but sacrifice tangible meaning.  As a result, mechanisms must be 

developed to disaggregate the results of these models to utilize their results.  

Eulerian models have been developed with a control theoretic framework (Sridhar, 

et al. 2004), as well as a cell transmission framework (Sun and Bayen 2008).  The 

NetFM model (Myers and Kierstead 2008) is another such aggregate model, but has 

improved computational performance.  It models the NAS as a set of 

multicommodity flows, and is used to examine demand-capacity imbalance and 

tradeoffs between ground delays and alternate routing strategies.   

The Bertsimas lineage of models takes a Lagrangian view more tangibly 

connected to the operation of the air traffic system.  Several of these were described 

previously as multi-resource models, but they have some network properties as 

well.  The same research team followed up the BSP model with a revised version 

that considered route choice in conjunction with the previous decisions (Bertsimas 
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and Stock Patterson 2000).  The additional dimension of complexity obviated some 

of the valuable mathematical properties of the earlier model, and as a result, this 

version has seen little use. 

More recently, a reformulation of the first BSP model has been introduced to 

better include the routing decision (Bertsimas, Lulli and Odoni 2008) (BLO).  This 

model seems to retain the valuable mathematical properties while incorporating the 

entire gamut of flight decisions: ground holding, airborne holding, rerouting.  This 

model led to (Churchill, Lovell and Ball 2009), which represented a simplification of 

BLO to consider only congested resources.  That model inspired the various 

formulations presented later in this dissertation.  

An additional model, separate from those described above, was proposed in 

(Ganji, et al. 2009).  This IP rations capacity under uncertainty for a single en route 

resource, but considers the additional dimension of allowing a flight to route around 

the disruption along the network present in the airspace. 

The many research efforts presented in this section represent valuable 

contributions for ATFM.  However, the single resource models do not provide the 

necessary complexity to model the problem coordination examined here.  The multi-

resource and network models focus on different relationships between resources, or 

on developing a comprehensive plan for all resources.  Thus, the research presented 

here fills a gap in both physical and temporal scope in examining the problem of 

coordinating capacity allocation at several connected resources. 

1.2 Coordination in ATFM 

In operations in the United States, access to specific congested aviation 

resources is controlled by a system of capacity allocation wherein flights are 

assigned to slots at specific times.  This U.S. approach is well-accepted and efficient, 

but it is not well-equipped to handle the problem faced when a single flight is 
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included in more than one capacity allocation program, as may now happen when a 

flight plans to travel through congested airspace before arriving at a congested 

airport.  The question of which, if any, initiative takes precedence over the others is 

not easily answered.   

The number of flights affected by multiple resources is not negligible, as 

shown in Figure 1-9, using data from Metron Aviation Inc.  Using data from summer 

2008 for all days on which multiple resources were in use, this frequency chart 

depicts the fraction of flights visiting more than one.  According to this sample, the 

mean fraction of flights affected by multiple initiatives is 11.1%.  This data includes 

flights affected by GDP, AFP, and GS. 

 

 

Figure 1-9 – Distribution of number of initiatives per flight 

Operationally, these multiple capacity rationing initiatives operate 
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same criterion – schedule, with some exemptions for flights already en route or 

coming from international destinations – but do not coordinate slot assignments 

between one another to minimize delay across multiple initiatives or multiple flight 

legs. 

A key illustration of this failing is seen in the northeastern portion of the U.S., 

wherein a single flight may be affected simultaneously by initiatives to ration both 

airspace capacity to enter the region, as well as airport arrival capacity.  This conflict 

is illustrated notionally in Figure 1-10 with flights classed into flows based on which 

resources they are using.  Assume that two points of reduced capacity have been 

identified – a region of airspace (labeled FCAA03) commonly used for AFP controls, 

and an airport (JFK) commonly beset by congestion.   

 

 

Figure 1-10 – Canonical case for coordination 

Flow 1 comprises those flights passing through FCAA03 but not arriving at 

the compromised airport, while Flow 2 represents those flights arriving at JFK, but 

not using the congested airspace.  In isolation, rationing the capacity of each of these 

resources is a well-solved problem, as Flows 1 and 2 can be treated separately 
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without consequence.  However, in this case, consider also Flow 3, which comprises 

those flights passing first through FCAA03 before arriving to JFK.  It is these flights 

in Flow 3 that complicate the ATFM process in the U.S. paradigm, as they must 

participate in the rationing initiatives at both resources.  Treated separately, there is 

no guarantee that the flights within Flow 3 will receive slot assignments compatible 

with one another at each resource.   

To continue the example shown in Figure 1-10, assume that these two 

resources lie 90 minutes flying time apart, and that one of the flights in flow 3 

received the slot assignments shown in the space-time diagram in Figure 1-11.   

 

 

Figure 1-11 – Example slot allocation 

This flight could wait on the ground at its origin airport until departing to use 

the 12:30 slot at FCAA03.  However, to then meet its 14:05 slot at JFK, a 75 minute 

travel would be required.  This likely represents an infeasible speed increase.  

Although the precise limit at which a speed increase or decrease becomes infeasible 

may vary with flight and operator, there clearly exists some bound both above and 

below.  Further, this example considers only one flight.  Obviously, there are many 

instances where this conflict would not exist, and many others in which it would be 
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far more severe.  In any case, choosing the flights to which an advantage should be 

granted, and those that should be disadvantaged is a challenging proposition. 

A simple strategy to resolve this conflict is to prioritize one initiative or the 

other, while granting free passage at the non-prioritized resource at whatever time 

is most expedient.  The assignment shown in Figure 1-12, wherein the airport 

initiative is prioritized and a new slot created in the airspace initiative, represents 

the system currently employed operationally by the FAA to resolve this 

incompatibility.  Likewise, the airspace initiative could be prioritized, as shown in 

Figure 1-13.  This example assumes simultaneity in planning, but the same 

phenomenon could certainly be observed when planning capacity allocations 

iteratively as well. 

In either case, this approach causes several problems.  This method of 

“creating” slots works to a certain degree in the airspace because the notion of 

airspace capacity itself is fairly ill-defined.  For aircraft departing or arriving at an 

airport, the interoperation separation requirements are well-defined and flights 

generally operate close to those limits under congestion, essentially nullifying the 

ability to create slots in this fashion without sacrificing safety and violating protocol.  

In the airspace, however, considerably greater slack exists because aircraft do not 

operate so close to the separation limits.  In addition, the very notion of what 

comprises an individual resource is somewhat ill-defined, as flights along several 

parallel, but far separated routes may be rationed together, when in fact it is not 

immediately clear that they are dependent operations. 
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Figure 1-12 – Slot allocation for airport priority 

 

 

Figure 1-13 – Slot allocation for airspace priority 

However, recognizing that better defining airspace capacity is an open 

problem, this dissertation will take the approach that, in the abstract, some capacity 

value (interoperation headways) can be defined for some airspace resource.  

Primarily, this allows for the development of models and for comprehensive 

analysis, but this is also employed because this is consistent with the approach long 

taken in managing air traffic at airports in the U.S. 
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Regardless of the capacity impacts, these approaches may create inequities 

for flights not able to receive such exemptions.  It is this problem, in particular, that 

adds considerable complexity when considering many flights.  The ultimate 

objective of a solution to such a problem is to balance the winners and losers (equity 

between users) while keeping overall delays at some reasonable level.  The many 

possible combinations yielded by considering many flights create a complex 

combinatorial problem, and models presented in this dissertation address this 

problem from a variety of assumptions. 

1.3 Contribution and contents 

This dissertation makes several contributions, all related new approaches to 

finding solutions to the coordinated capacity allocation problem described in the 

previous section.  This represents a new problem in both spatial and temporal 

scope, representing greater complexity than single resource problems, but less 

complexity than comprehensive ATFM models.  Thus, neither the single resource 

models, nor the network models, including the Bertsimas lineage, are appropriate to 

address this problem. 

• A new optimization model for coordinating slot allocations for flights 

using multiple congested resources is proposed and demonstrated.  

This model is novel in its approach to modeling the resources and 

their connectivity, as well as the unit-capacity construct employed.  An 

analysis of the advantages of this approach is included.  In addition, an 

analysis the objective of minimizing arrival delays, commonly used in 

ATFM, demonstrates a clear preference for single-resource flights in 

place of flights using more resources.  This objective’s analytic 

properties are used to develop a rule-based heuristic that produces 

quality solutions. 
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• Recognizing the biases induced by the two objective functions 

considered in the base model, new constraints and objectives are 

proposed that explicitly or implicitly regulate the equitable treatment 

of various users to enhance this optimization model.  

• The impact of uncertainty on this coordination problem is explicitly 

quantified.  A stochastic optimization model is proposed that explicitly 

includes these considerations to develop more robust slot allocations 

and recourse plans for each capacity scenario outcome. 

The body of this dissertation is structured according to the three primary 

contributions, with each comprising an individual chapter in which models are 

formulated, analyzed, tested, and evaluated. 
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2. Deterministic coordinated airspace capacity rationing 

This chapter examines the general problem of coordinating capacity 

rationing at multiple resources during air traffic flow management (ATFM) 

processes using several methodologies.  Building on the example case of conflicting 

slot assignments shown in the previous section, the models presented in this section 

develop coordinated slot assignments for several flights using one or more of a 

series of congested airspace resources. 

This chapter addresses this problem through several approaches.  First, the 

general planning paradigm and modeling assumptions employed are outlined.  

Then, an optimization model for the problem is formulated.  However, recognizing 

the difficulty in implementing such a system operationally, and for several other 

reasons to be discussed in detail later, a system of priority rules is described to 

mimic the optimal solutions generated by the optimization model.  Finally, a case 

study comparing these various approaches is shown and several practical 

considerations are addressed. 

The optimization model presented in this chapter is similar in spirit to the 

multi-resource models, in particular the Bertsimas family.  However, as will be 

outlined, it focuses more specifically on a subset of the problems addressed by those 

models.  It is more compact in some respects and follows several alternative 

planning paradigms. 

2.1 Planning paradigm and assumptions 

It is important to carefully outline the assumptions, particularly with respect 

to scope and authority, built into modeling this problem.  The first, and perhaps 

most impactful, assumption is that resource capacity is treated deterministically.  

Explicitly, the time-varying evolution of capacity at each resource is assumed to be 

known with certainty at the time of planning.  This is a strong assumption, but valid 
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for several reasons.  First, developing a deterministic model is a precursor to any 

useful stochastic model.  Second, it is largely consistent with the type of data 

available for use for ATFM.  Finally, it is consistent with operational practice. 

Of critical importance is the scope of airspace resources considered in 

modeling this capacity allocation problem.  Only resources expected to be congested 

are considered.  Flights that do not use a congested resource are not considered.  

Thus, some rudimentary predictive capabilities must be employed to remove from 

consideration those resources for which congestion is highly unlikely.  This must be 

done using some other model, expert judgment, or a combination of the two.  While 

this assumption potentially adds a bias based upon the selection of resources, it is 

justified in several ways.  First, some regions of the United States, particularly the 

Upper Midwest, will naturally have a very low traffic density. Undue control of such 

resources is an inefficient use of resources.  Further, this approach is consistent with 

the philosophy employed in the U.S. air traffic system, wherein control is only 

exerted when it is explicitly needed.  This lies partially in contrast to the approach 

employed in other parts of the world.  Finally, excluding uncongested resources 

allows for simpler and more-compact models than considering all resources. 

Another assumption employed in addressing this problem is that, in general, 

plans for all resources being considered are developed simultaneously.  This stands 

in contrast to the piecemeal approach employed in practice, which is largely based 

upon the lead times and availability for the capacity data used.  Strategies for 

relaxing this assumption will be discussed for each methodology employed. 

Finally, the models presented do represent, in some respects, a greater 

degree of control than is currently exerted by system operators.  The paradigm is 

compatible, nevertheless, with the principles of collaborative decision making 

(CDM) that have been so widely adopted in ATFM.  These CDM principles 

(Wambsganss 1997) encourage information sharing between users and system 
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operators to enhance planning and increase both equitable and efficient outcomes.  

The decisions developed in this model represent the initial assignments that would 

be made for flights, but there is no reason that individual airlines or users, with their 

collections of slots at each resource, could not perform their own swaps or trades to 

meet internal objectives.  While trading slots may detract from the system-level 

objectives espoused by this model, it represents the ability of users to optimize their 

operations within the construct provided. 

2.2 Optimization formulation 

The first approach presented in this chapter for coordinating ATFM decisions 

is a linear optimization model.  The broad objective of the proposed model is to 

ration access rights to each of several capacitated airspace resources, as depicted 

notionally in Figure 1-10, while minimizing delays.  Specifically, the model assigns 

flights to arrival times at each of a sequence of congested resources that the flight 

encounters between origin and destination.  A resource may be an airport, some 

congested portion of airspace, or any other airspace resource of finite capacity.  The 

model takes as input a list of these resources and their associated time-varying 

capacities, as well as a list of flights and their respective scheduled times to arrive at 

each resource.  The outputs of the model are the slot times to which each individual 

flight is assigned.   

Structurally, allocation at each resource is considered as an assignment 

problem, but side constraints are added that link each of the resources together and 

guarantee that each flight using multiple resources receives compatible slot 

assignments.  Although the structure of the model is different, this concept was 

proposed in (Churchill, Lovell and Ball 2009), wherein only those regions under 

adverse conditions are expressly controlled.  However, the application considered 

here is more specific than the system-wide plan developed in that work. 
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2.2.1 Input data 

Several input data are required for this optimization model, categorized 

generally as pertaining to individual flights or to capacitated resources.  Each will be 

described in detail in this section. 

2.2.1.1 Flight data 

Both schedule and path data are required for each flight considered in this 

formulation.  If flights are indexed as f in the set F, and resources as i in the set I, 

then the scheduled (or planned) arrival time of flight f to resource i is defined as 
i

f
α .  

Flight departure time is not required for this formulation, but is defined as δf.  All 

flights are treated as having identical characteristics. 

This model assumes that routes for each flight are fixed.  Flight paths are 

defined using two data constructs: Vf defines the set of capacitated resources a flight 

f visits, and 
i

f
N defines the next resource a flight f travels to after resource i to 

maintain ordering.  For a flight to be included 
fV  must be greater than zero.  

Example flight paths are shown for two flights (f, g) in Figure 2-1.  In this example, 

flight f visits resources i, j, and k, and so { }, ,
f

V i j k= .  Flight g visits resources l and j, 

and so { },
g

V j l= .  The data for the next resources are shown in the figure. 

 

 

Figure 2-1 – Flight path definitions 
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2.2.1.2 Resource data 

Resources for which capacity is to be rationed are indexed as i in the set I, 

and may include airports or critical airspace regions.  Each initiative i has its own 

independent slot set Si, with each slot s in Si having a time marker i

sτ .  The number of 

slots must equal or exceed the number of flights, as shown in (2.1).   

 S F≥   (2.1) 

This condition is trivial to enforce when developing an instance.  Many 

additional slots with small headways may be created after the planned rationing 

time to represent the unconstrained operation of the airport.  This simulates the 

reality at most airports, at which permissions to operate revert to a first-come, first-

served system after rationing has concluded.  Further, absent this condition, the 

problem will lack a feasible solution. 

Resource capacities are obviously critical in this model.  There are two 

important points to address concerning the capacities employed.  The first of these 

focuses on the actual values, while the second concerns the description of these 

capacities in the model itself.   

In practice, as described in §1, flights using multiple resources are granted an 

exemption through airspace resources, effectively prioritizing the allocations made 

at airports.  This practice is based upon the notion that capacity in the air is a soft 

constraint.  While there is some truth to support this, some maximum capacity for 

any arbitrary region also exists based upon geometry, controller workload, and a 

variety of other factors.  Modeling these as such is beyond the scope of this research.  

However, clearly there must be some limit to the number of exemptions that may be 

feasibly granted, and the research described here assumes that such a value has 

been identified.  The actual value used in the model may be somewhat less than this 

upper bound to provide additional margins of safety, but in the base model and the 

results presented, the capacity values represent hard constraints.  Further, capacity 
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at each resource is treated independently of the anticipated fleet mix.  All flights are 

considered as equivalent with respect to the “amount” of capacity that they utilize. 

The descriptions of capacities employed in this formulation represent a 

departure from previous work and warrant additional exploration.  Many previous 

ATFM models, including (Bertsimas, Lulli and Odoni 2008) and (Ganji, et al. 2009), 

among others, consider capacitated time periods.  Under this construct, the entire 

planning period is partitioned into a lattice of time blocks of equal length.  Each time 

block is assigned some capacity, typically greater than one.   

For example, if an arrival rate of 30 flights per hour is to be modeled using 

15-minute time blocks, then in 1 hour, the four time blocks in each must have values 

of 7, 8, 7, and 8 in some order.  Although the intention is to model constant 

headways of 2 minutes, headways will alternate between 1.88 and 2.14 minutes 

because of the varying rates.  Thus, for specific combinations of time block length 

and capacity, a sawtooth-type pattern of capacity values is developed.  The errors in 

modeling headways induced by this sawtooth pattern are shown in Figure 2-2.  The 

various shades in this figure indicate the degree of severity of the error.  In general, 

the errors in modeling headways induced by time blocks are relatively small for 

reasonable combinations, but are nonzero. 
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Figure 2-2 – Error in headways induced by time blocks 

In contrast, capacities in this model are represented by time slots of unit 

capacity.  This provides several advantages over the previous construct, beginning 

with the ability to model constant headways without the sawtooth phenomenon.  In 

addition, greater flexibility is provided for dynamic situations, wherein the 

headways between every subsequent pair of slots may be defined individually, as 

the model is not tied to fixed time blocks.  To accomplish this, slot indices are 

decoupled from the time associated with that slot.  This adds an additional 

qualification (discussed later) to some of the summation terms.  Thus, resource 

capacity is specified as a list of slots with individual times, rather than a list of time 

blocks each with associated capacities.   
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In addition, unit capacity slots provide the advantage of precisely specifying 

estimated flight arrival times within the model.  When using time blocks, the model 

is forced to assign each flight within that block the same nominal arrival time for the 

purposes of determining delays.  In truth, however, those flights’ actual arrival times 

must be spaced somewhat uniformly throughout that time block, as simultaneous 

arrivals would be both inefficient and infeasible.  Thus, this approximation induces 

an error in measuring assigned delays.  This approximation error is compounded by 

the sawtooth pattern needed to model arrival rates that are not multiples of the 

time block length.  The impact of these effects is depicted in Figure 2-3, with the 

color scale indicating the average delay induced by this approximation effect. 

 

Error 

(minutes per 

flight) 

0–3 3–6 6–9 9–12 12–15 15–18 18+ 

Figure 2-3 – Error in delay measurement induced by time blocks 
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The above two analyses represent the essential tradeoff required in using 

time blocks for modeling such problems: decreased bin width reduces error induced 

by arrival times, but this comes at the cost of increased headway approximation 

error.  This trade is avoided in developing the formulation presented in this section 

through the use of unit capacity slots.  Additionally, although the formulation affords 

these increases in precision, it remains compatible with the time block 

methodology.  The reverse is typically not true of other such models. 

Whereas the use of slots instead of time blocks avoids the approximations 

mentioned above, it comes at the cost of increased formulation size.  Figure 2-4 

shows the ratio of the number of unit slots required to the number of time blocks 

required to model a variety of capacity rates and bin widths.  For a given bin width, 

the number of time blocks required is 60 times its inverse, while the number of slots 

required is simply equal to the arrival rate.  As can be seen in this figure, the region 

over which the slot system reduces formulation size is small and relatively 

unimportant.  However, the region over which the ratio is below a factor of five is 

fairly large and covers a number of useful and realistic points.  That said, the time 

block model is clearly superior in terms of reduced formulation size. 

The large increase in the number of entities needed to represent capacities 

does not translate directly to the same increases in formulation size.  Conditions on 

feasible arrival times for each flight at each resource are used to limit the number of 

decision variables created, helping to control this increase in complexity. 
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Error (ratio of 

number of 

entities) 

0–1 1–5 5–10 10–15 15–20 20–25 25–30 

Figure 2-4 – Difference in number of variables required 

Although the formulation presented in this chapter considers only 

deterministic capacity, this description of capacity provides advantages when 

considering a stochastic formulation.  In that case, this methodology may greatly 

simplify formulations and solutions.  For example, in cases in which capacity may 

only increase over time in various scenarios, this paradigm greatly simplifies 

solutions, as flights will stay assigned to the same slot index, but the operation time 

associated with that index will decrease. 

Weighing the tradeoff between headway errors, delay measurement errors, 

formulation size, and flexibility for future model developments, unit capacity slots 

will be used in this formulation. 
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2.2.2 Decision variables 

The decision variables 
i

fs
x  are constrained as shown in (2.2), taking a value of 

one when flight f is assigned to slot s at resource i and zero in all other cases.   

 
  

i

fs
x binary  , ,

i

f f
f F i V s Q∀ ∈ ∈ ∈  (2.2) 

Generically, the set of feasible slots for each flight is identified as 
i

f
Q .  The 

simplest definition for this set is shown in (2.3), in which any slot after the flight’s 

scheduled arrival time becomes feasible.  

 { }:
i i i i

f s fQ s S τ α= ∈ ≥   (2.3) 

The inclusion of the 
i i

s f
τ α≥

 
condition helps to reduce the size of the 

constraint matrix by eliminating unnecessary decision variables, as was addressed 

previously.  In principle, the excluded variables could be considered, but would be 

necessarily fixed to zero, because, by policy, a flight cannot be assigned an arrival 

time before that in its published schedule. 

2.2.3 Assignment constraints 

The first constraint set is shown in (2.4).  This enforces the condition that 

each flight must be assigned to exactly one slot in each rationing initiative that it 

visits.  This constraint is visualized in Figure 2-5 – exactly one of the highlighted arcs 

will be selected. 

 1
i
f

i

fs

s Q

x
∈

=∑  , ff F i V∀ ∈ ∈  (2.4) 

 

 

Figure 2-5 – Assignment constraint I 

12:00

12:03

12:06

Flight 1
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The second constraint set, (2.5), enforces the capacity of each slot at each 

initiative to be at most one flight.  As discussed, the construct of using single-flight 

slots is somewhat unique.  The structure of this constraint is shown in (2.5), 

wherein at most one of the highlighted arcs will be selected.  This constraint could 

be modified to match precisely with the assignment problem if it were changed to 

equality, so long as a number of slack flights with zero cost were created to fill the 

extra slots.  This adds complexity to the formulation, however, and provides little 

tangible benefit. 

 
:

1

f

i

fs

f F
i V

x
∈

∈

≤∑  ,
ii I s S∀ ∈ ∈  (2.5) 

 

 

Figure 2-6 – Assignment constraint II 

Although this model is described in the context of unit capacity slots, the 

formulation is compatible with time blocks allowing multiple flights as well, so long 

as the right-hand side of (2.5) is changed to reflect the increased capacity of each 

time block.  The reverse is not true for other ATFM models, as the constraints 

linking multiple resources rely on the uniformity of the underlying time blocks and 

tend to include them in indices themselves, rather than as conditions on 

summations as here. 

2.2.4 Linking constraints 

The two constraint sets shown above, in isolation, will allocate flights to slots 

at only a single resource.  The objective of this research, however, is to create 

12:00

12:03

12:06

Flight 1

Flight 2

Flight 3
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feasible slot allocations for each flight using multiple resources.  As a result, linking 

constraints are added to these assignment problems.  A notional depiction of the 

structure of these linking constraints is shown in Figure 2-7.   

 

 

Figure 2-7 – Feasible range example 

In this example, two resources are located 1 hour apart; thus, if a flight is 

assigned the 12:06 slot at the first resource, then the 1:06 slot at the second 

resource would be preferred.  However, to help ensure feasible solutions, some 

slack is provided around that ideal assignment.  In this example, this flight may be 

assigned a slot three minutes earlier, or up to six minutes later.  The physical reality 

being modeled is that a flight can only increase speed so much within its own 

performance limits, and within the limits imposed on it by the air traffic system.  

Likewise, a flight may only slow down so much or enter an airborne holding pattern 

for so long, based largely upon its fuel load.  It is likely, however, that this time limit 

is longer than that for increasing speed, as is reflected in the figure.  These values 

are parameters of the model.  Mathematically, the constraint set that links together 

these multiple resources is shown in (2.6) 

12:00
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12:06

12:09

12:12
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1:06
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 0
ij
fs

i j

fs fk

k R

x x
∈

− ≤∑  , , , : 0
i i i

f f f f
f F i V j N s Q N∀ ∈ ∈ = ∈ >  (2.6) 

If 
i

fs
x  takes on a value of one, indicating that flight f is using slot s at initiative 

i, then one of the feasible slots in the following initiative must also take on a value of 

one.  Because of the assignment constraints however, only one of these subsequent 

slots may be selected.  In the case that 
i

fs
x  is zero, then it is still possible for one of 

the feasible slots in the subsequent initiative to be used because the feasible ranges 

in j for different slots in i may overlap.  If only unconnected initiatives are 

considered, then the value 
i

f
N  is always empty, and none of this constraint set is 

present in the formulation.  In that case, the formulation becomes separable for each 

initiative. 

The range 
ij

fs
R  is defined in (2.7) to control the feasible reassignment range 

for downstream resources.  It defines the time period during which flight f could 

feasibly arrive at initiative j, conditioned upon its using slot s in initiative i.  It begins 

at the sum of the slot time at the upstream resource ( i

sτ ), the inter-resource travel 

time (
j i

f f
α α− ), and the negative of the early arrival parameter πL.  It ends at the sum 

of the earlier slot time, the inter-resource travel time, and the late arrival parameter.  

 ( ){ }: max ,
ij j j i j i j i j i

fs f s f f L k s f f U
R k S α τ α α π τ τ α α π= ∈ + − − ≤ ≤ + − +  (2.7) 

The implicit assumption in this model is that the values of the early arrival 

parameter πL and the late arrival parameter πU will be small.  They are not intended 

to permit the assignment of larger airborne delays to develop feasible slot 

assignments – only to allow a small amount of slack to accommodate inconsistent 

lattices between resources.  The early arrival parameter would likely be smaller 

than the late arrival parameter, simply because the ability of an aircraft at cruise 

speed to decrease speed is greater than its ability to increase speed. 
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The magnitudes of these parameters directly affect the existence of feasible 

solutions to this problem.  As each tends to zero, the likelihood that a feasible 

solution exists decreases, as each flight using multiple resources has very few 

options for subsequent slots of which to make use.  In practice, it would be difficult 

to reach this limit simply because there would not be an overwhelming number of 

flights with this limited flexibility.  However, in a pathological case, it may be 

necessary to increase the magnitude of each of these parameters to generate a 

feasible solution. 

2.2.5 Objective functions 

Most useful objective functions for this problem will attempt to minimize 

some function of flight delays.  Conversely, they may be viewed as maximizing some 

metric of system efficiency.  This is consistent with virtually all other ATFM models.  

Delay is often a focus because of its direct impact on measurable system 

performance, as well as its direct cost to aircraft operators.   

However, in this formulation, careful attention will be paid to precisely which 

delays are being minimized.  Delays may be aggregated by flight or by resource, as 

listed below: 

1. All delays at all resources: some delays are double counted, as a 

subset of flights uses multiple resources. 

2. All delays at specific resources: may result in double counting, and 

may favor certain resources. 

3. All flights upon arrival: reflects the delays truly experienced by flight 

operators and passengers.  This is a special case of item 2, with each 

flight’s destination being the specific resource for that flight. 

4. Subset of flights upon arrival: favors some flights. 
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Several additional considerations are included in designing this objective 

function.  Because this model treats capacity deterministically and sufficient 

capacity at the origin airport is assumed, all delays are planned to be taken on the 

ground before departure.  Thus, there is no need to consider a cost differential 

between air and ground delays.  A comprehensive model that schedules all points 

along a flight’s route, or one that considers capacity stochastically, however, fails 

this assumption.  The early and late arrival parameters are assumed to induce 

delays sufficiently small as not to warrant inclusion beyond the base delays for the 

individual flights.   

In addition, a superlinear function of delay length is used to favor the 

assignment of two short delays over a single long delay.  This principle contributes 

to equity between different flight operators because flights that are similar a priori 

are assigned similar delays, as has been employed in previous ATFM models 

including (Bertsimas, Lulli and Odoni 2008) and (Churchill, Lovell and Ball 2009). 

Two objective functions, items 1 and 3 in the above list, are considered in 

greater detail.  The first objective, referred to as the “total delay objective,” 

represents the sums of all “delays” assigned at each resource, as defined in (2.8). 

  ( )
1

min
i

f f

i i i

s f fs

f F i V s Q

z x
ε

τ α
+

∈ ∈ ∈

= −∑∑ ∑   (2.8) 

In this case, the measurement of delay is always taken with respect to the 

planned arrival time at each resource in a flight’s path, rather than singularly at the 

flight’s destination.  Thus, some delays may be considered as “double counted” 

according to (2.8) because they are counted twice but truly impact the flight only 

once, upon its arrival at its destination.   

However, this objective is desirable to consider for several reasons.  First, it 

is consistent with operational practice, in that delays at each and every capacity 

rationing initiative are included.  Obviously there are interventions to slot 



 

41 

 

assignment made through the use of the model, but the total delay objective 

nonetheless calculates the delay metric identically.  At a deeper level, this objective 

seems as if it should encourage equitable treatment of flights because the mass 

contributed to the objective function from each flight is comparable to the 

complexity it induces in the system.  The implications of this will be explored in the 

next section. 

The second objective, considering only the delay at the flight’s final initiative, 

is shown in (2.9).  It will be referred to as the “final delay objective.”  These final 

resources are identified through the use of the condition stating that a flight has no 

subsequent resource to visit ( 0
i

fN = ) for the flight to be included in the 

summation. 

 ( )
1

:

0

min
i

f f
i
f

i i i

s f fs

f F i V s Q

N

z x
ε

τ α
+

∈ ∈ ∈

=

= −∑ ∑ ∑  (2.9) 

In the case that a flight’s last controlled resource is not its destination airport, 

the model assumes that the delay assigned at that resource translates directly to the 

flight’s destination.  This objective is considered for several reasons.  The first 

reason is that it is a very popular metric for other ATFM models and warrants 

consideration in this formulation for that reason alone.  Again, however, the reasons 

for consideration are more complex.  This objective function represents a more 

systematic view of the inherent network structure of the airspace system, in that it 

should automatically include interactions. 

These two objectives seem to pose divergent views of the ATFM planning 

process.  The first represents, to a degree, the independence of each resource 

included in the current system.  The second caters to a more-robust, system-level 

objective by minimizing the delays that are actually experienced by each flight.  The 
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implications of these differences are quite significant, and will be explored 

analytically in the next section. 

2.2.6 Objective function implications 

The implications of the two objective functions outlined above are not 

obvious upon first analysis.  To summarize, the final delay objective tends to 

prioritize flights using fewer resources, while the total delay objective tends to 

maintain schedule order.  Although the final delay objective is apparently more 

desirable from a systematic point of view, this bias has serious implications for its 

utility.  Conversely, the total delay objective seems somewhat obtuse, but the 

principles underlying it, of maintaining schedule order, are extremely valuable and 

consistent with accepted equity practices.  Each of these points will be explored 

analytically in this section. 

Before proving the analytic properties of each objective function, it is 

valuable to explore the notion of fairness implicit in the final delay objective a bit 

further.  There is a reasonable argument to be made that prioritizing flights by the 

number of congested resources used is a valid rationing system.  This follows from 

several arguments.  First, flights that use multiple resources introduce complexity 

into the airspace system and should have to bear that cost, rather than distribute it 

to other users.   

Further, some congested resources in the en route airspace may be avoidable 

by flights making use of alternate routings.  It might be argued, for example, that 

convective weather patterns appear more often in the summer in some areas than 

others, and a flight operator may be able to choose avoiding the potentially risky 

portion of airspace, even if this extends the trip distance somewhat.  Therefore, 

flight operators that choose to use these resources should be forced to internalize 

this cost.  This argument faces one significant counterpoint – namely, identifying 
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which resources might be avoided by which flights is a highly loaded question.  

Clearly airports are not avoidable resources, despite the fact that flight operators 

chose to allocate some of their resources to that airport.  It is likely that any user 

would argue that making use of any “optional” en route resource was strictly 

necessary, when in fact there may be considerable controversy.  Adopting an 

arbitrary paradigm of this nature clearly introduces a considerable number of 

complications. 

Therefore, in this research, no position is taken as to advocating for either 

the total or final delay objective functions over the other.  Both are explored and 

presented with respect to their individual strengths and weaknesses. 

2.2.6.1 Identical schedule case 

To demonstrate analytically the properties of these two objective functions, a 

case of three flights (1, 2, and 3) using two resources (i, j) will be examined.  Flight 1 

uses both resources, while Flights 2 and 3 each use one of the resources.  Assume 

that Flights 1 and 2 have the same scheduled time to resource i and that Flights 1 

and 3 have the same scheduled time to resource j.  This schedule is depicted 

notionally in Figure 2-8, with the arrows and numbers representing flights and the 

circles representing slots in each program. 

 

Schedule 1 

 

Figure 2-8 – Identical schedule 

There are two possible allocations, identified here as A and B, for these three 

flights, depicted in Figure 2-9.  The difference between these two allocations lies in 

1

32
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whether the flight using both resources is given the first pair of slots, or if the other 

two flights are awarded those earlier slots.  An explicit assumption is that each of 

these allocations is feasible.  This means that the slots to which these flights are 

assigned are associated with sufficient delay so that the earliest slot has a time equal 

to or greater than the maximum of the flights’ scheduled times. 

 

Allocation A 

 

Allocation B 

 

Figure 2-9 – Feasible allocations 

Now, both allocations are compared according to the objective functions 

outlined above.  The value df indicates the delay assigned to flight f under Allocation 

A.  Table 2-1 shows the contributions to the total delay objective function, using the 

superlinear function of delay length, from each allocation, as well as the total 

contribution from the three flights under consideration.  It is clear that the model 

should be indifferent regarding choosing one of these two allocations as part of the 

optimal solution when using the total delay objective function. 

 

 Allocation A Allocation B 

Flight 1 
1

1
2d ε+  1 1

2 3
d dε ε+ ++  

Flight 2 
1

2
d ε+  1

1
d ε+  

Flight 3 
1

3
d ε+  1

1
d ε+  

Total 
1 1 1

1 2 3
2d d dε ε ε+ + ++ +  1 1 1

1 2 3
2d d dε ε ε+ + ++ +  

Table 2-1 – Total delays assigned for identical schedule 
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Table 2-2 compares the two allocations shown above according to their 

contributions to the final delay objective function.  In this comparison, the two 

allocations are not equivalent.  The value of Allocation B is less than that of 

Allocation A by 1 1

2 1

ed d ε+ +− .  By construction, 
2 1

d d> , and so 1 1

2 1

ed d ε+ +> .  Accordingly, 

the objective function contribution from Allocation B is strictly less than that from 

Allocation A.  As a result, the model will unilaterally prefer Allocation B for inclusion 

in the optimal slot allocation. 

 

 Allocation A Allocation B 

Flight 1 
1

1
d ε+  1

3
d ε+  

Flight 2 
1

2
d ε+  1

1
d ε+  

Flight 3 
1

3
d ε+  1

1
d ε+  

Total 
1 1 1

1 2 3
d d dε ε ε+ + ++ +  1 1 1

1 1 3
d d dε ε ε+ + ++ +  

Table 2-2 – Final delays assigned for identical schedule 

Thus, the final delay objective prefers to make any swaps that move earlier 

flights using fewer resources while moving later flights using more resources.  

Intuitively, this bias originates from the measurement of delay used – delays are 

counted only upon the final arrival.  Because each flight’s “pain” is only realized at 

one instance, it may be possible to swap assignments in such a manner as to achieve 

outcomes that, while optimal, are unsatisfactory from a variety of other viewpoints.  

While the mathematics of this trade are such that the values of objective function, 

and hence delays, are reduced, the policy implications are somewhat more difficult 

to discern, and will be explored further in subsequent sections.   

The case shown in this section applies only when the considered flights have 

equal scheduled arrival times.  In the following section, the more-complex cases, in 

which schedule order varies, are examined. 
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2.2.6.2 Variable schedule cases 

The example shown in the previous section illustrating the bias when flights 

with identical schedules are considered is useful.  However, it does not address the 

full scope of initial schedules, nor their interactions with the two feasible 

allocations.  In this section, the remaining schedules are evaluated.  It will be shown 

that the total delay objective function prefers to maintain schedule order, while the 

final delay objective function unilaterally prefers Allocation B.  To this end, four 

variations on this initial schedule of three flights are shown in Figure 2-10.   

 

Schedule 2 

 

Schedule 3 

 

Schedule 4 

 

Schedule 5 

 

Figure 2-10 – Variable schedules 
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These four variations reflect all the situations in which the three flights have 

different scheduled arrival times.  While four additional variants exist with pairs of 

flights sharing arrival times, they are not shown here.  Those four additional cases 

lead to the same results, so for the purposes of brevity only these cases are shown. 

Because each flight has different scheduled arrival times at each resource, 

the analytic exploration of changes in assigned delays becomes more complex than 

for the identical schedule case.  To help account for this, the value qi will be used to 

represent the delay assigned to Flight 1 at resource i under Allocation A.  To 

represent the new variations in the schedule, the parameter 
iδ  will represent the 

scheduled headways between the two flights under consideration at resource i.  The 

spacing of the slots, or the interoperation times under reduced capacities, to be 

allocated must also be accounted for, and will be notated as 
ih . 

The four schedules are evaluated for the total delay objective function for 

both allocations in Table 2-3.  The relationship between the values is not as readily 

apparent as it was for the identical schedule case; however the trend is the same.   

In general, the model’s preference for one allocation or the other relies on the 

fact that the superlinear delay function is marginally increasing.  Based on this, it is 

clear that the total delay objective will prefer Allocation B for Schedule 2, Allocation 

A for Schedule 3, and will be indifferent between these allocations for Schedules 4 

and 5.  Each case is consistent with the principle of maintaining schedule order. 

Similar results are shown in Table 2-4 for the final objective function.  In each 

case, the cost of Allocation B is higher than Allocation A for Flight 1.  The double 

decrease realized by Flights 2 and 3 in going from Allocation A to Allocation B will 

always be greater than that increase.  Therefore, Allocation B will be universally 

preferred, and the model will continue to favor flights using fewer resources.  
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Schedule 2 Allocation A Allocation B 

Flight 1 ( ) ( )
1 1

1 2
ε ε+ +

+q q  ( ) ( )
1 1

1 1 2 2
ε ε+ +

+ + +q h q h  

Flight 2 ( )
1

1 1 1
ε

δ
+

+ +q h  ( )
1

1 1
ε

δ
+

+q  

Flight 3 ( )
1

2 2 2
ε

δ
+

+ +q h  ( )
1

2 2
ε

δ
+

+q  

Schedule 3  

Flight 1 ( ) ( )
1 1

1 2
ε ε+ +

+q q  ( ) ( )
1 1

1 1 2 2
ε ε+ +

+ + +q h q h  

Flight 2 ( )
1

1 1 1
ε

δ
+

− +q h  ( )
1

1 1
ε

δ
+

−q  

Flight 3 ( )
1

2 2 2
ε

δ
+

− +q h  ( )
1

2 2
ε

δ
+

−q  

Schedule 4  

Flight 1 ( ) ( )
1 1

1 2
ε ε+ +

+q q  ( ) ( )
1 1

1 1 2 2
ε ε+ +

+ + +q h q h  

Flight 2 ( )
1

1 1 1
ε

δ
+

− +q h  ( )
1

1 1
ε

δ
+

−q  

Flight 3 ( )
1

2 2 2
ε

δ
+

+ +q h  ( )
1

2 2
ε

δ
+

+q  

Schedule 5  

Flight 1 ( ) ( )
1 1

1 2
ε ε+ +

+q q  ( ) ( )
1 1

1 1 2 2
ε ε+ +

+ + +q h q h  

Flight 2 ( )
1

1 1 1
ε

δ
+

+ +q h  ( )
1

1 1
ε

δ
+

+q  

Flight 3 ( )
1

2 2 2
ε

δ
+

− +q h  ( )
1

2 2
ε

δ
+

−q  

Table 2-3 – Total delays assigned for each variable schedule case 
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Schedule 2 Allocation A Allocation B 

Flight 1 ( )
1

2
ε+

q  ( )
1

2 2
ε+

+q h  

Flight 2 ( )
1

1 1 1
ε

δ
+

+ +q h  ( )
1

1 1
ε

δ
+

+q  

Flight 3 ( )
1

2 2 2
ε

δ
+

+ +q h  ( )
1

2 2
ε

δ
+

+q  

Schedule 3  

Flight 1 ( )
1

2
ε+

q  ( )
1

2 2
ε+

+q h  

Flight 2 ( )
1

1 1 1
ε

δ
+

− +q h  ( )
1

1 1
ε

δ
+

−q  

Flight 3 ( )
1

2 2 2
ε

δ
+

− +q h  ( )
1

2 2
ε

δ
+

−q  

Schedule 4  

Flight 1 ( )
1

2
ε+

q  ( )
1

2 2
ε+

+q h  

Flight 2 ( )
1

1 1 1
ε

δ
+

− +q h  ( )
1

1 1
ε

δ
+

−q  

Flight 3 ( )
1

2 2 2
ε

δ
+

+ +q h  ( )
1

2 2
ε

δ
+

+q  

Schedule 5  

Flight 1 ( )
1

2
ε+

q  ( )
1

2 2
ε+

+q h  

Flight 2 ( )
1

1 1 1
ε

δ
+

+ +q h  ( )
1

1 1
ε

δ
+

+q  

Flight 3 ( )
1

2 2 2
ε

δ
+

− +q h  ( )
1

2 2
ε

δ
+

−q  

Table 2-4 – Final delays assigned for each variable schedule case 
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This analysis of the properties of the two objective functions provides 

valuable insight into the biases that each exerts.  These properties will be further 

explored in the case study, and will also be used to motivate the development of a 

rule-based solution technique in a subsequent section. 

2.2.7 Computational considerations 

In this section, several issues relating to computational implementations of 

this model are explored.  First, the worst-case conditions for the size of the 

constraint matrix will be outlined.  Then, two sets of valid inequalities that may 

improve the strength of the optimization model will be introduced.  These two 

constraints will be introduced here and tested for efficacy in the case study at the 

conclusion of this chapter. 

2.2.7.1 Formulation size 

One measure of formulation strength and computational tractability is the 

size of the constraint matrix.  The theoretical worst-case numbers of constraints and 

variables are shown in Table 2-5.  These worst-case values are achieved by 

pathological cases using unusual combinations of slot counts and times.  Several 

realistic numerical problem sizes are shown as well, in Table 2-6. 

 

Entity Worst case size of entity 

Constraint set (2.4) f

f F

V
∈

∑  

Constraint set (2.5) 
i

i I

S
∈

∑  

Constraint set (2.6) 
∈ ∈

∑ ∑i

f

i I f F

S V  

Decision variables { }i

fsx  
f

i

f F i V

S
∈ ∈

∑∑
 

Table 2-5 – Theoretical problem size 
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F  I  
i

S  Number of 

constraints 

Number of 

variables 

10 2 10 440 200 

100 3 150 135,750 45,000 

Table 2-6 – Practical problem sizes 

2.2.7.2 Backward linking constraints 

The first of two valid inequalities is introduced in this section.  The objective 

of considering this additional constraint as part of the formulation is to try to 

strengthen the underlying linear program.  This, and the following valid inequality, 

will be tested computationally as to their efficacy. 

This first valid inequality represents the inverse of the linking constraint 

presented earlier.  Rather than identifying those slots to which a flight might go in 

the next resource, this backward linking constraint identifies those slots from which 

a flight must have come.  This is illustrated in Figure 2-11.  Exactly one of the 

highlighted arcs must be selected if the selected slot at resource j is used. 

 

 

Figure 2-11 – Backward feasible range example 

Similar to the construction of the forward linking constraint, the backward 

linking constraint is specified as shown in (2.10). 
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 0
ij
fs

j i

fs ft

t E

x x
∈

− ≤∑  , , , : 0
i i i

f f f f
f F i V j N s Q N∀ ∈ ∈ = ∈ > (2.10) 

The range of feasible slots 
ij

fs
E  in the prior rationing initiative is shown in 

(2.11).  Again, the range must account for the possibility of the slack parameter 

reaching past the scheduled arrival time.  In this case, the lower bound of the range 

must be specified as the maximum of the desired range and the scheduled time. 

 ( ){ }: max ,
ij j i j j i j j j i

fs f s f f U k s f f L
E k S α τ α α π τ τ α α π= ∈ − + − ≤ ≤ − + +  (2.11) 

2.2.7.3 Summation inequality 

The second valid inequality explored in this section is depicted in Figure 

2-12.  This constraint works by forcing equality of a sum in each pair of subsequent 

resources for each flight.  For each feasible slot s for flight f in resource i, the earliest 

possible arrival at resource j can be computed.  The sums from the beginning of the 

feasible slot range for this flight for each resource must then be equal.  In the figure, 

this is represented by the two colored ranges. 

 

 

Figure 2-12 – Summation valid inequality 

This constraint is enforced as shown in (2.12), indicating that the sum of 

decision variables representing assignments for some range in one resource must 
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be equal to the sum of decision variables representing assignments for a related 

range in the next resource. 

 
∈ ∈

≤∑ ∑
i i
fs fs

i i

fr ft

r G t H

x x  
, , , :

0

i i

f f f

i

f

f F i V j N s Q

N

∀ ∈ ∈ = ∈

>
 (2.12) 

The two ranges appropriate for this constraint are shown below.  In (2.13), 

the range of slots to be summed begins at the flight’s scheduled arrival time and 

proceeds until the slot s under consideration. 

 { }:
i i i i i

fs f r sG r S α τ τ= ∈ ≤ ≤   (2.13) 

The more complex range, for the second resource, is found in (2.14).  This 

range begins at the earliest arrival time (schedule) at resource j, and continues until 

the earliest possible arrival time, conditional on the flight having used slot s at the 

previous resource i. 

 { }:α τ τ α α π= ∈ ≤ ≤ + − +j j j j i j i

fs f r s f f LH r S  (2.14) 

2.2.8 Practical considerations 

There are many practical considerations that should be taken into account in 

developing instances or in using this model in more-practical or -specific settings 

than those presented generally here.  Each is considered briefly here in the 

following subsections. 

2.2.8.1 Violating capacity constraints 

Although this model was formulated to respect capacity constraints at each 

resource at being absolute, it is possible in some situations that this could or should 

be relaxed.  In this section, modifications to the formulation are proposed to permit 

this by creating a second set of slots mixed within the original, each of which has a 

higher cost of use than the original sets Si. 
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To create the framework for exceeding the nominal resource capacities, first 

define a new set of slots i

VS  at each resource i I∈ .  Each of these slots i

Vs S∈  has an 

associated time marker i

sτ  as before.  These new slot sets and their associated times 

should be defined such that they overlap the previous sets, as depicted notionally in 

Figure 2-13. 

 

 

Figure 2-13 – Capacity-violating slots 

To permit the assignment of flights to these new slots, the original 

constraints must be modified to recognize them.  At each location where the set Si is 

referenced, the constraint must now consider the union of the two sets i i

VS S∪ .  

Thus, the definition of both decision variables and constraint sets must be reworked 

to recognize this. 

In addition, the objective function must be modified both to recognize this 

second shadow set of slots, and to assign higher costs thereto.  The new objective 

10:34

10:46

10:50

10:54

10:58

11:02

10:38

10:42

10:30

10:56

10:44

10:32

i
S

i

V
S



 

55 

 

proposed in (2.15) should be used.  The first term represents the cost of assigning 

flights to those slots in the original standard set.  The second term considers only 

the cost of assigning flights to slots in this new set, and assigns a cost differential χ  

to account for the capacity violation. 

 ( ) ( )
1 1

:

min
i i i i

f ff f V

i i i i i i

s f fs s f fs

f F i V f F i Vs Q S s Q S

z x x
ε ε

τ α χ τ α
+ +

∈ ∈ ∈ ∈∈ ∩ ∈ ∩

= − + −∑∑ ∑ ∑∑ ∑  (2.15) 

2.2.8.2 En route flights 

The first boundary condition addresses those flights already airborne when 

this optimization model is run.  Because they are already airborne and have planned 

for a certain route and arrival time, it would be inappropriate, except in very serious 

conditions, to assign considerable delays or deviations from their plan.  Accordingly, 

and consistent with operational practice, they are exempted from the controls 

exerted by such capacity rationing programs. 

In principle, these flights could be included in the instance, and their 

appropriate decision variables fixed to a value of one for the slots corresponding to 

their current plan.  However, this increases the size of the formulation while adding 

little value.  Instead, the slots at their respective arrival times will simply be 

removed from consideration by the model. 

Figure 2-14 depicts an example case of exempted en route flights.  Assume 

that the slot list shown corresponds to some resource, either an airport or an 

airspace region, and that the flights shown are already en route when planning 

begins for the coordinated capacity rationing.  The arrows indicate the planned 

arrival times to this resource for each of these flights.  Because of the limited 

flexibility these flights have, the time slots corresponding to their planned arrival 

times are marked and simply removed from consideration by the model as part of 

the preprocessing routines. 
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Figure 2-14 – Sample flight exemptions 

It is possible that this approach may lead to providing sufficient capacity for 

the number of exemptions required, if both the capacity drop is sufficiently large 

and enough flights are already en route.  If, rather than removing the slots, the 

flights are fixed using decision variables, then the optimization algorithm itself will 

quickly detect this condition as an infeasibility.  If the approach of removing slots is 

used as is suggested here, then the modeling process should include a preprocessing 

step that checks whether sufficient capacity exists for the exempted flights.  If 

infeasible conditions are detected, then the model should recommend serious 

remedies, including assigning airborne delays and flight diversions. 

This confluence is unlikely, however, because of the lead times typically 

provided by forecasts of future capacity availability.  The number of flights already 

en route, and hence unable to revise significantly their planned arrival times, varies 

inversely with the lead time used in planning the capacity rationing.  For example, if 

the planning process begins two hours before the capacity drop is expected to occur, 

then the number of flights already en route will be small indeed, and only in the 
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most extreme of circumstances will this violate the new bound.  Because such 

events should be extremely rare, they will in general be ignored in modeling this 

problem.  However, for those few flights that are already en route, the mechanism 

presented in this section may be employed. 

2.2.8.3 Flights scheduled immediately before rationing 

Flights scheduled to arrive immediately before a capacity rationing program 

is set to begin represent a challenge in this model if they are delayed beyond their 

planned arrival time sufficiently so that their new arrival time falls within the time 

bounds of the program.  In this case, their delayed arrival implicitly includes them in 

the rationing program.  This may force flights explicitly included to experience 

airborne delays to comply with flight spacing requirements.  In sufficient numbers, 

flights spilled over into a program such as this may force a revision to the initial 

plan, which of course has greater impacts when considering connected resources.  

However, this would be a fairly rare phenomenon.  Further, sufficient slack is 

typically included in planning these capacity rationing programs to allow minimal 

spill from earlier time periods.  As a result, this will be ignored. 

2.2.8.4 Planning lead time 

An important issue in developing instances and in using the results of this 

optimization model is the lead time provided for decision making.  This problem is 

not unique to the coordinated scenario addressed here, but impacts single resource 

problems as well. 

In general, plans of this nature could be made at any time and implemented 

almost immediately.  However, the quality of the weather forecasts used to generate 

resource capacities varies inversely with the lead time used in making the forecast.  

Conversely, implementing such decisions as early as possible provides the greatest 

amount of freedom, as more flights remain on the ground as the lead time increases.  
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Thus, it is prudent to wait until good enough information is available, but while 

sufficient freedom exists to implement a useful capacity rationing plan. 

2.2.8.5 Setting program length 

Another important practical issue is setting the length of time during which 

capacity rationing is taking place at each resource.  Once again, this is not a problem 

unique to the coordinated case, but also impacts single resource models as well. 

Assuming a simple model of capacity, as depicted notionally in Figure 2-15, 

there are several candidates for the end time of capacity rationing.  The first of these 

would correspond to some time before t1, or before the end of the capacity 

disruption.  This is clearly not sensible and is contrary to the objectives of this work, 

and so is not considered here. 

 

 

Figure 2-15 – Simple model of capacity 

Two other cases are examined here: ending the capacity rationing program 

at the expected end time of the disruption (t1) or at some time after that (t2).  If the 

schedule during the disruption is sufficiently sparse, then ending at t1 may be 

sensible.  However, this is unlikely.  As a result, one must determine the precise 

value of t2.  This is a difficult problem, and it must incorporate both the schedule 

density as well as the uncertainty associated with the capacity forecast.  The 

uncertainty is truly the key issue in this case, as the end time is potentially a long 

time from the time at which the capacity rationing procedure is being undertaken. 
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2.2.8.6 Simultaneous planning and dynamic execution 

An important assumption taken, mentioned earlier, in modeling this problem 

is that an integrated plan is developed simultaneously for all resources under 

consideration.  For coordination between resources to have some meaningful 

impact, this strong assumption is important.  Of course, in practice, simultaneously 

and confidently identifying several resources expected to experience congestion is 

difficult.  If one resource is identified as confidently expected to experience 

congestion and another less so, one may try to wait out the second resource to 

determine if intervention will be needed.  The difficulty in this approach is that the 

freedoms available for rationing at the first resource dwindle as time advances.  

Thus, it is clear that some system must be available for initial planning with the 

possibility of revisions. 

The simplest method to conduct these revisions is by incorporating the en 

route flight paradigm described in the first of these subsections.  Using that, flights 

that have already departed under the previous capacity rationing plan will be 

exempted from revisions.  Then, the new resources and flights can be added to the 

instance, and the entire problem can be solved again.  In principle, the solution 

should be simpler to find because potentially many of the variables will be fixed by 

the en route conditions.   

Revisions may also be necessary if a more complex model of capacity 

evolution is adopted under which conditions may deteriorate.  In this situation, this 

model can continue to be employed, but the slack parameters used in making the 

linked assignments may need to increase to allow for the assignment of airborne 

delays.  In this situation, it may also be useful to employ some heuristic method for 

assigning revised delays.  In any case, if there is a reasonable suspicion of needing a 

revision, then explicitly including this information in the model may be productive.  

A stochastic formulation to address this is described in §4. 
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2.2.8.7 The ghost in the machine 

The final practical concern described in this section describes the challenges 

of employing optimization on practical problems.  Optimization models find 

solutions based only on the feasible region and the costs as they have been defined.  

They do not “know” whether a variable represents assigning a flight to a time slot, 

ordering 1,000 more widgets, selecting a new location for a construction project, or 

any other decision.  The constraints and costs are simply mathematical expressions, 

and could represent any number of systems. 

One of the primary symptoms of this blindness that optimization models 

experience is their lack of transparency.  In one sense, a set of constraints and an 

objective will yield one of a set of optimal solutions, if such exists.  However, the 

means by which this solution is derived are somewhat opaque to users.  This may 

introduce a multitude of unintended consequences.  An excellent example of these 

unintended consequences was demonstrated previously, with the discussion of the 

biases introduced by each objective function.  While a user may expect that each of 

these objectives will yield different solutions, the means by which the optimization 

model arrives at them is rarely immediately apparent. 

Further, in a practical and distributed setting such as air traffic management, 

it is inconceivable that every user, including airlines and private aviation, should 

maintain a separate installation of complex and expensive optimization software, 

along with the personnel to use it.  Further, given that the input data must be 

processed such that they are compatible with the optimization system, additional 

layers of software beyond the solver libraries themselves are needed.   

Finally, even if all users have agreed to use an optimization methodology for 

managing some system, there are no, or limited, guarantees that the models will 

yield optimal, or even feasible, solutions quickly.  Experimental evidence will show 

that it is typical to achieve good solutions quickly; however, this is not as a rule true.   



 

61 

 

Each of these factors has limited the application of optimization models in 

operational air traffic systems.  While an academic setting affords the possibility to 

carefully analyze the unexpected consequences of an optimization model, in a 

distributed operational setting, it is preferable that processes be transparent to and 

easily replicable by all participants.   

2.2.9 Formulation summary 

In this subsection, the formulation is repeated for clarity. 
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The above equations represent only one version of this formulation.  

Alternatively, the final delay objective function (2.9) may be replaced with the total 

delay objective function shown in (2.8). 

  ( )
1

min
i

f f

i i i

s f fs

f F i V s Q

z x
ε

τ α
+

∈ ∈ ∈

= −∑∑ ∑  (2.8) 

2.3 Rule-based capacity rationing 

In an effort to obviate the concerns expressed in the previous section about 

using optimization for a practical problem in a distributed system, this section 

introduces a rule-based procedure to address the same problem.  Many of the above 

practical considerations represent fixes for the unintended consequences of using 

an optimization model.  Rather than build a model within a flexible environment, in 
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this section, a solution methodology described is designed specifically for the 

problem at hand.  A rule-based procedure is described here to help allay concerns 

about transparency and complexity in employing optimization models for practical 

situations. 

The primary advantage of this rule-based procedure is that it explicitly 

provides transparency.  The rules by which each decision and allocation occur are 

specified and are easily comprehended.  Additionally, the rules and data structures 

needed for these procedures can be coded in a variety of computational 

environments, including spreadsheets.  This provides a high degree of availability to 

many user groups, and greatly lowers the entry barriers to active participation in 

the process.  Also, execution times for these procedures will be very short.  Finally, 

one of the procedures proposed in this section is designed explicitly to mimic the 

results of the final delay optimization model.  Developing an algorithmic approach 

that can achieve results comparable to those from an optimization model is a 

valuable achievement in itself. 

The next portion of this section discusses the heuristic itself and defines a 

procedure that it calls for flights using multiple resources.  These are introduced 

generically, so the section concludes with two different approaches to defining the 

parameters of the heuristic. 

2.3.1 Outline of procedures 

In this section, two heuristics are formally presented.  The first, the rule-

based capacity rationing (RCR) procedure, is the critically important portion of this 

section.  It defines the procedure by which flights are prioritized and allocated to 

slots.  If only flights using a single resource are considered, then RCR represents 

simply a generalization of the widely employed Ration by Schedule (RBS) 

procedures.  However, it is the second procedure, called by the first, which brings 
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the coordination problem into this section.  The multi-resource feasible slot 

identification (MFSI) procedure is used to identify feasible slot combinations for 

flights using multiple resources.   

2.3.1.1 Rule-based capacity rationing procedure 

At a high level, this procedure is a greedy heuristic for feasibly allocating 

flights to slots.  Flights are sorted according to several criteria.  They are then 

assigned iteratively to the best available slots that are feasible for their operations.  

Conditions for feasibility include slot times later than planned/scheduled arrival 

times at each resource and compatibility with slots at adjacent resources.  The 

procedure is parameterized to allow different priority rules to be employed.  It is 

presented for the case in which the maximum number of resources visited, 
fV  is 

two or less.  The generalization is straightforward, but is not presented for 

simplicity.  To track available slots, define an indicator variable for each slot t at 

each resource j j

tI  that takes on a value of one when a flight has been assigned to it 

and zero otherwise. 

Procedure RCR 

1. Sort flights using several keys to create an ordered list Φ of flights.  

Sufficient keys must be used to ensure that there are no ties.   

2. Remove the first flight from the list Φ and call if f. 

3. Identify the first resource i visited by flight f according to 

( ){ }: min
f

i l

f f f
l V

i i V α α
∈

= ∈ = . 

4. Find the set of available and feasible slots Σi at resource i, according to 

{ }: 0,
i i i i i

s s fs S I τ αΣ = ∈ = ≥ . 

5. Identify and remove the earliest slot s from Σi, such that 

{ }: min
i i i

s t
t

s s S τ τ
∈Σ

= ∈ = . 

6. If 1fV = , then assign flight f to slot s at resource i, set 1
i

sI = . 



 

64 

 

7. If 1fV > , then execute procedure MFSI.  If it identifies a feasible slot t 

at the next resource 
i

fj N= , then assign flight f to each of these slots, 

and set 1
i

sI =  and 1
j

tI = .  Otherwise, if MFSI cannot identify a feasible 

slot at resource j, given that flight f uses slot s at resource i, then 

another candidate slot must be tested, so go to step 5. 

8. If Φ = ∅  is empty, then end.  Otherwise, go to step 3. 

It is possible that this allocation procedure could yield slots to which no flight 

is assigned.  It is likely, depending of course on the instance under consideration, 

that there will be unassigned slots at the end of the sequence.  This is of little 

concern, as they present no loss to efficiency.  However, empty slots in the midst of 

others that are assigned present the possibility that the heuristic has found a bad 

allocation.  These gaps will only occur because no feasible slot combinations for 

flights using multiple resources could make use of that orphaned slot.  Otherwise, all 

flights are assigned the earliest possible available and feasible slot.  As a result, these 

empty slots should be quite rare, and will not be addressed through a separate 

swapping procedure. 

2.3.1.2 Multi-resource feasible slot identification 

The most complex portion of the above procedure is identifying compatible 

slot pairs for flights using multiple resources.  To simplify the exposition of the 

generic procedure, this is presented separately here.  The procedure takes as input 

some candidate slot s has been identified at some resource i for flight f.  For 

simplicity, assume that i is the first of two resources visited by flight f.  The 

procedure is applicable to longer sequences, or to resources on the interior, or at the 

end of the sequence, but these cases are not presented.  Denote the next resource in 

the sequence after i, 
i

fN , as j. 
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As an example to introduce the procedure, examine Figure 2-16.  The 

procedure works for scanning from available slots at resource i for feasible and 

available slots at resource j.   

 

 

Figure 2-16 – MFSI example 

In this example, assume that the travel time between the two resources is 1 

hour and that the maximum deviation allowed in linked assignments is 5 minutes in 

each direction.  It would begin with the 12:05 slot at resource i, but upon scanning 

resource j, find no compatible slots.  Accordingly, it would next examine the 12:20 

slot.  In that case, the 1:15 slot at j is available and within the appropriate time 

range, so these two slots will be returned as a compatible pair.  The other 

compatible pairs that it would identify through further scanning are (12:25, 1:30) 

and (12:30, 1:30). 

Procedure MFSI 

1. Identify the set of feasible and available slots jΖ  at resource j, 

according to { }: 0,
j j j j j

t t ft S I τ αΖ = ∈ = ≥  
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2. Calculate the time difference between each of these slots in 
jt∈Ζ  and 

the preferred arrival time at resource j, ( )ij j i j i

st t s f fδ τ τ α α= − + −  

3. Find the minimum absolute value of this array according to 

*
min

ij

st
t

δ δ= , and the slot index 
*t associated with this minimum 

deviation, as in { }* *
:

j ij

stt t S δ δ= ∈ = . 

4. Compare the deviation *

ij

st
δ  associated with this slot 

*t , to the range 

established by the maximum deviation parameters 
Lπ  and 

Uπ , 

according to [ ]
?

,
ij

st U Lδ π π∈ − .  If this condition shown is true, then the 

slot 
*t  is feasible.  Otherwise, no feasible slot at resource j exists for 

flight f, given that it uses slot s at resource i. 

This heuristic procedure for identifying feasible slot pairs at subsequent 

resources will find the earliest combination that exists at both resources.  In the next 

two sections, specific parameters for prioritizing flights as input to the RCR 

procedure are defined. 

2.3.2 Final delay procedure outline 

The first rule-based approach to coordinated capacity allocation builds on 

the analytic discussion of the final delay objective shown previously.  It was 

demonstrated that this objective will move as late as possible flights using multiple 

resources, in an effort to move earlier in time flights using fewer resources.  This 

principle is used here to derive a rule-based approach for developing coordinated 

capacity allocations.  This procedure is named Final Delay Priority (FDP). 

The procedure RCR from above is used with the following sort keys.  The first 

two should break most ties, and the third is guaranteed to break any that remain. 

• Key 1: Number of resources visited by flight f, 
fV  (increasing) 

• Key 2: Scheduled arrival time of flight f to its destination, max
f

i k

f f
k V

α α
∈

=  

(increasing) 
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• Key 3: Tail registration number (N number) of the aircraft used to 

operate flight f (increasing) 

2.3.3 Resource priority procedure outline 

An alternative rule-based procedure for creating coordinated slot allocations 

is to allocate capacity at specific resources first, rather than focusing on flight 

characteristics.  This policy replicates the procedure used in practice, wherein 

allocations at airports take precedence over those at airspace resources.  This 

procedure is named Resource Allocation Priority (RAP). 

For this case, some preferred ordering of the resources themselves must be 

provided, called Γ.  If airports are to be prioritized, then all airports will precede 

airspace resources in this ordering.  Global sort keys are used per se – the ordering 

of the flights must be developed iteratively, as described below.  Thus, because of 

the alternative sort procedure, when implementing RAP, these steps replace step 1 

in the RCR procedure. 

1. Remove the first resource from the list Γ and call if i. 

2. Identify the subset of flights that visit i at some point during their 

route, according to { }:
i

ff F i VΦ = ∈ ∈ . 

3. Sort the list Φi according to the following sort keys: 

o Key 1: Scheduled arrival time of flight f to resource I, i

fα  

(increasing) 

o Key 2: Tail registration number (N number) of the aircraft used 

to operate flight f (increasing) 

4. Append the sorted list Φi to the end of the master list of flights Φ 

5. If Γ = ∅  is empty, then end.  Otherwise, go to step 1. 
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2.4 Case study 

The efficacy of the both the optimization and rule-based approaches 

proposed in this chapter are explored here through a case study.  Schedule data are 

randomly generated, but represent a realistic situation such as is encountered 

during summer convective weather over the northeastern United States.  First, the 

physical and temporal characteristics of the case study will be described, then 

several categories of results concerning overall model performance, equity, and 

computational issues will be evaluated. 

2.4.1 Input data 

Essential to the results of this case study are the input data used to drive the 

models.  This section describes the physical and schedule-related data used. 

It is important to note that artificial, but realistic, data are used.  This is 

primarily motivated by the myriad challenges present in acquiring, cleaning, and 

processing historical records.  Because much of the required data are not generally 

publicly available, simply identifying a day as a case study is very challenging.  Even 

if a suitable time period is identified, flight records are often incomplete or 

corrupted.  Capacity data, as they are envisioned by these models, are particularly 

difficult to obtain as well.  For these reasons, randomized procedures are used to 

generate flight routes and schedules in this work.  They will be described where 

applicable. 

2.4.1.1 Physical configuration 

A simple physical configuration was chosen for this case study.  There are 

two airports (B, C) for which capacity is being rationed, and one disruption (A) in 

the en route airspace for which rationing must take place, as depicted notionally in 

Figure 2-17.  This notional layout is comparable to the real case shown in Figure 
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1-10 for the northeastern portion of the United States.  Travel times between 

resources are taken as a constant 60 minutes for each flight. 

 

 

Figure 2-17 – Case study layout 

To better visualize the problem setup, some results will be discussed in 

terms of flows, as labeled in this figure.  Flow 1 comprises flights crossing the en 

route disruption, but not traveling to either of the two disrupted airports.  Flows 3 

and 5 travel to Airports B and C, respectively, but do not cross the en route 

disruption.  The most interesting flows, 2 and 4, cross the disrupted airspace before 

arriving at the disrupted airports (B and C, respectively).  It is these two groups of 

flights that confound the traditional single-resource rationing methods. 

2.4.1.2 Flight schedules 

Flight schedules are the primary driver of complexity in these problems.  For 

this case study, these are generated randomly using the procedure outlined below. 

1. Generate uniform schedule using full capacity for each resource:  For 

this case study, the airspace resource has a capacity of CA flights per 
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hour, while each airport may accept at most CB and CC flights, 

respectively. 

2. Randomly remove a fraction of the uniform schedule:  These airports 

are assumed to be fairly busy, so each flight is removed from the 

uniform lattice with probabilities pB and pC.  Flights are more likely to 

be removed from the airspace resource, at probability pA. 

3. Choose fraction of airport flights to use multiple resources:  Of the 

remaining flights at each airport, each is given a fM probability of also 

using the airspace resource.  Those chosen by this method are 

assigned an arrival time to the airspace resource corresponding to the 

correct inter-resource travel time tij.  Adding them to the airspace 

resource schedule in this fashion requires the removal of a large 

fraction of flights from the uniform schedule, as specified in the 

previous step, to avoid an overly congested airspace schedule. 

4. Randomly generate flight length according to some probability 

density function:  Although the data are not used explicitly in this case 

study, for completeness, flight departure times are also calculated.   

For the procedure described above, the parameter values shown in Table 2-7 

were used.  A discrete distribution shown in Figure 2-18 is used to generate flight 

lengths.  Each flight samples from this distribution to choose a length range.  Within 

the bounds of that range, a precise flight length is generated randomly by sampling 

from a uniform distribution. 
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Name Description Value 

CA Nominal capacity of Resource A 60 

CB Nominal capacity of Resource B 50 

CC Nominal capacity of Resource C 50 

pA Probability for removal  at Resource A 0.5 

pB Probability for removal  at Resource B 0.2 

pC Probability for removal  at Resource C 0.2 

fM Fraction of multi-resource flights 0.4 

tAB Travel time from A to B (minutes) 60 

tAC Travel time from A to C (minutes) 60 

Table 2-7 – Scheduled generation parameter values 

 

 

Figure 2-18 – Distribution of flight length ranges 

After the above procedure was completed, a complete schedule for all flights 
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4 are simply shifted by 1 hour from their appearance in the Resource A schedule to 

their appearances in the Resource B and C schedules, respectively. 

The schedule is assumed to terminate after the flights shown in Figure 2-19.  

While potentially unrealistic, this simplifies considerably the conditions 

surrounding the end of the program because the flights expected to arrive after the 

end of the program are not subject to rationing. 

 

Airspace 

Resource A 

 

Airport B 

 

Airport C 

 

Flow 1 Flow 2 Flow 3 Flow 4 Flow 5 
Available 

throughput 

Figure 2-19 – Nominal resource schedules 

0

8

16

24

8:00 8:30 9:00 9:30 10:00 10:30 11:00 11:30N
u

m
b

e
r 

o
f 

fl
ig

h
ts

Local time

0

4

8

12

16

8:00 8:30 9:00 9:30 10:00 10:30 11:00 11:30N
u

m
b

e
r 

o
f 

fl
ig

h
ts

Local time

0

4

8

12

16

8:00 8:30 9:00 9:30 10:00 10:30 11:00 11:30N
u

m
b

e
r 

o
f 

fl
ig

h
ts

Local time



 

73 

 

Because the capacity reduction is sufficiently extreme relative to the 

scheduled number of aircraft, the optimization model will assign flights to nearly 

every slot.  Thus, the time-varying profile of flights after the model has run will 

match precisely with the reduced capacity line until the entirety of the set of flights 

has been assigned. 

2.4.2 Computational testbed 

The computational experiments in this case study were performed using 

powerful computer hardware and software.  The system used has four dual-core 

Intel Xeon X5355 processors and 12GB of memory.  It runs software in a 64-bit 

environment under Windows Server 2003 Enterprise edition. 

The optimization tests were conducted using Fair Isaac’s Xpress 2008b 64-

bit software.  Models were coded using the Mosel language and executed through 

Xpress’ graphical interface, Xpress-IVE.  The rule-based approaches were coded in 

MATLAB R2008a running on the same hardware. 

2.4.3 Justification of approach 

Before going into details about the allocations generated by the various 

solution methodologies proposed in this chapter, it may be useful to demonstrate 

empirically that the need for coordination exists in realistic case studies. 

The most basic method by which the need for the method proposed here may 

be evaluated is to determine the number and severity of infeasibilities induced by 

the independent allocation process.  To this end, the independent Ration By 

Schedule allocation for each resource was determined.  For those flights using two 

resources, the travel time required by these independent allocations was compared 

to then nominal 60 minute travel time.  A histogram of these deviations from 

nominal is shown in Figure 2-20.  The bars corresponding to those flights that would 

have been feasible under the speed-up/slow-down assumptions of the model are 



 

74 

 

depicted in red.  Of the flights that used multiple resources, only 40% would have 

received a feasible allocation from the independent process, while 60% would not.  

Deviations of up to -17 minutes were indicated. 

 

 

Figure 2-20 – Feasibility analysis for case study 

The results of the above analysis indicate clearly that considering resources 

independently cannot generate feasible capacity allocations for the majority of the 

included flights.  To that end, the next section compares the approach of simply 

prioritizing resources against the optimization models. 

2.4.4 Aggregate comparison of assigned delays 
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the independent RBS allocations are not feasible for a significant proportion of 

flights.  In Table 2-8, the total amount of delays associated with every resource, as 

well as the arrival delays associated with every flight are shown for several 

allocation methods.   

The base formulation with each of the two objective functions is evaluated.  

The rule-based method that prioritizes flights based on the number of resources 

they visit (FDP), and the airport priority method (RAP) are also considered.  

Objective function values are not compared.  The two optimization models sum 

different terms, and there is no reason to believe that their relative magnitudes 

should be related.  In addition, the rule-based methods do not yield objective 

function values per se.   

 

Solution methodology 
Total delay assigned 

(minutes) 

Arrival delay assigned 

(minutes) 

Independent RBS 14169 10798 

Total objective 14169 10723 

Final objective 14394 8927 

FDP 19947 10215 

RAP 14305 10585 

Table 2-8 – Aggregate comparison of allocation 

The first line in this table indicates the total amount of “delay” assigned at 

each resource by the independent RBS process.  By construction, this quantity 

represents the minimum value of total delay that can be allocated.  However, 

because only some of these “delays” are realized, this value is strictly larger than the 

amount of arrival delay realized by flights.  As a result, there is no reason to suspect 

that this allocation should minimize arrival delays.  In fact, it does not.  Several other 

allocations, most notably the optimization model with the final delay objective, have 

lesser amounts of arrival delay.  These results indicate that it is possible to derive 

allocations that minimize total assigned delay, as with the independent RBS process.  
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However, it is also possible to allocate lesser arrival delays through other means.  

These other mechanisms have the potential to improve system performance and 

will be examined now in greater detail. 

The final row, RAP, is an approximation of the approach employed in practice 

of prioritizing the airport allocation.  According to these metrics, this allocation does 

improve upon the independent process, as well as the total delay optimization 

model.  However, it assigns considerably greater total arrival delays than does the 

final delay optimization model and its proxy, the FDP. 

An additional aggregate comparison of results is shown in Table 2-9.  In this 

case, the optimization results are compared to the heuristic results at several time 

milestones.  This provides a snapshot of the computational performance of these 

models. 

 

Metric 
Solution 

time 

Solution methodology 

Total Final FDP RAP 

Total delay 

(minutes) 

2 minutes 14169 14169 

19947 14305 30 minutes 14169 14554 

Optimal 14169 14394 

Final delay 

(minutes) 

2 minutes 10703 10723 

10215 10585 30 minutes 10718 10333 

optimal 10723 8926 

Table 2-9 – Comparison of assigned delays 

One important caveat in evaluating these aggregate results is that those for 

the final delay objective function model are not optimal.  The solution algorithm was 

terminated after 36 hours with a gap from the best available bound of 0.44%. 

The most apparent trend is that each of the optimization methods, total and 

final delay objectives, minimizes their respective associated metrics at optimality, as 

shown by the bolded cells in the table.  This result is expected, but confirms the 

validity of each.  Neither of the rule-based methods achieves an allocation of equal 

quality.   
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Another important property displayed in the table above is the evolution of 

the solutions from the optimization models.  The total delay model seems to yield an 

optimal, or nearly optimal, solution very quickly.  On the other hand, the final delay 

model shows a great difference between the initial values of delay assigned versus 

the optimal amount.  This evolution will be explored in greater detail in §2.4.6. 

2.4.5 Comparison of treatment of various flows 

The next analysis of these allocations considers a different metric of the 

distribution of flight delays.  The first aggregation, in terms of flight destination, is 

shown in Table 2-10.  These results are interesting because they demonstrate that 

three of the four solution methods find allocations of equal efficiency for the airport 

resources, B and C.  However, the distribution of delays at these resources clearly 

differs, as indicated by the various standard deviation values shown.  The FDP 

method induces some inefficiency at the airports, as indicated by the increased 

amount of delays assigned there.  However, the intent of this table is to indicate 

again that the final delay optimization model minimizes delays by reducing them for 

those flights using a single resource, in this case, airspace resource A. 

 

Dest. 
Number 

of flights 

Mean arrival delay (standard deviation) 

Total  Final  FDP RAP 

A 58 32.0 (14.6) 1.1 (0.7) 1.1 (0.7) 29.7 (11.8) 

B 107 42.4 (19.1) 42.4 (25.1) 49.0 (54.2) 42.4 (18.8) 

C 107 40.5 (19.1) 40.5 (25.4) 45.9 (52.1) 40.5 (19.0) 

Table 2-10 – Comparison of average delays by destination 

Of course, the analysis of the optimization objectives shown previously 

indicated that, for a single destination, the distribution of flights may vary 

significantly.  Using the flows defined in Figure 2-17, aggregated delays are shown in 

Table 2-11.  Although the flights within each flow are distributed over time, the fact 

that they use the same sequence of resources suggests that an equitable model 

would treat each of these flights within the flow equally. 
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Flow 
Number 

of flights 

Mean arrival delay (standard deviation) 

Total  Final  FDP RAP 

1 58 32.0 (14.6) 1.1 (0.7) 1.1 (0.7) 29.7 (11.8) 

2 48 40.1 (17.4) 58.3 (16.5) 105.1 (28.0) 42.5 (19.1) 

3 59 44.2 (20.4) 29.4 (23.3) 3.4 (2.1) 42.3 (18.8) 

4 47 38.1 (17.8) 55.3 (20.2) 99.9 (30.5) 39.8 (19.3) 

5 60 42.4 (20.1) 28.9 (23.0) 3.6 (2.4) 41.0 (18.9) 

Table 2-11 – Comparison of average delays by flow 

There are several trends readily observed in these results.  First, the two 

optimization models tend to distribute delays in a markedly different fashion, as 

should be expected from the analytic results presented earlier.  Qualitatively, FDP 

seems to match the trends exhibited by the final delay objective model, and RAP 

seems to match the trends exhibited by the total delay objective model. 

It is important to evaluate each of these comparisons quantitatively as well.  

Table 2-12 represents the results of a series of t-tests at a 1% significance level used 

to compare the various flows.  The numbers in this table represent the number of 

flows whose delays are statistically indistinguishable from one another for the pair 

of flows specified.  Comparisons from a model to itself are made with respect to the 

overall mean delay for that model.  Large numbers in this table represent a high 

degree of correspondence between the two models. 

 

 Total  Final  FDP RAP 

Total 4 0 0 5 

Final - 2 1 0 

FDP - - 0 0 

RAP - - - 4 

Table 2-12 – Flow-wise comparisons of model results 

On the diagonals of this table, the models are compared to their overall 

means.  In each case, not all five flows have delays that are statistically 

indistinguishable from the mean.  This suggests that each model treats some flows 
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differently from others.  The Total and RAP models perform best according to this 

metric, but in each case, Flow 1 is assigned a statistically significantly lower amount 

of delay. 

These statistical tests also confirm the apparent trend that the RAP results 

mimic well those of the total delay model.  While not the intention of examining this 

rule-based method, it is a valuable result worthy of further examination.  

Conversely, the results suggest that FDP does not do a very good job emulating the 

results of the final delay model.  The magnitudes of the differences indicate that FDP 

is more aggressive in disadvantaging multi-resource flights than is the final delay 

model.  Strategies to mitigate these differences are worthy of further consideration. 

2.4.6 Computational performance 

Another important issue highlighted in the first section of results was the 

differences in computational performance between each solution technique.  The 

priority rule methods are excluded here because they are obviously extremely fast. 

The important difference reflected in these results is that the optimization 

model with the total delay objective typically solves to optimality very quickly, while 

the final delay objective, which differs very minimally mathematically, takes 

considerable time to solve to provable optimality.  While this difference is 

interesting, from a highly practical perspective, it is also important to quantify how 

quickly any good solution can be found by the final delay model, as it presents the 

greater computational challenge. 

The metrics of computational performance are shown in Table 2-13.  The 

data here reflect the amounts of time required to reach three milestones: finding the 

first integer feasible solution, finding the optimal solution, and proving that the best 

integer feasible solution is optimal.  For these results, each model run time was 
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capped at 36 hours, or when a gap from the best bound fell below 0.01%.  The final 

delay model achieved only a 0.44% gap after this time. 

 

Metric 
Model 

Total Final 

Time to first integer solution (seconds) 4.6 5.6 

Time to find optimal solution (seconds) 79.3 >129600 

Time to prove optimality (seconds) 79.3 >129600 

Table 2-13 – Computational time comparison 

An alternative method of visualizing the computational performance of these 

two formulation variants is depicted in Figure 2-21.  In this, the time-varying 

optimality gap in both models is compared.  On this time scale, the total model 

solves almost immediately, while the final model slowly decreases toward zero. 

 

 

Figure 2-21 – Model computational performance 
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What is apparent from the previous table and figure is that both models 

rapidly find integer feasible solutions, although for the final delay model, these are 

not provably good.  Solving other instances using these models has shown trends 

wherein the best integer feasible solution quickly achieves stability, but the bounds 

require many more minutes or hours to increase sufficiently to match this.  In that 

case, the numbers typically reported for the gap are not representative of the 

difference from the optimal solution, but only from the poor bounds found thus far.  

This large deviation from the best known bounds represents the weakness of the 

linear programming relaxation.  To this end, several techniques that seek to improve 

the strength of this formulation are explored in the next section. 

2.4.7 Valid inequalities 

In this section, the value of the two valid inequalities presented earlier is 

explored.  The intention of introducing these valid inequalities is to strengthen the 

optimization formulation.  Given the relative ease with which the optimization 

model solves when using the total delay objective function, only the final delay 

objective function is considered in conjunction with these valid inequalities.  A 

comparison of solution evolution is shown in Figure 2-22. 

Performance is depicted for three variations: the base model with the final 

delay objective, the same with the backward-linking constraints added, and the base 

with the summation inequality added.  Adding both valid inequalities precluded 

finding any integer feasible solutions within the allotted 15 minutes.  These results 

suggest that the summation inequality improves model performance, as a lower 

bound is achieved most quickly of these three cases.  It reached 1.0% first, after 8 

minutes.  The base model required nearly 15 minutes to reach that same milestone.  

However, although the performance is somewhat improved, the magnitude of the 
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difference is not sufficient to unilaterally declare that this valid inequality improves 

performance significantly. 

 

Base case Backward link Summation inequality 

Figure 2-22 – Comparison of valid inequality performance 
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on busy days in the U.S. air traffic system. 

The first approach proposed to address this problem was a linear 
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complicate the formulation.  Two objective functions were considered for this 

formulation, and the implications of each were explored analytically.  The total delay 

objective function encourages allocations consistent with the schedule used as a 

baseline, while the final delay objective prefers in general to prioritize flights based 

upon the number of resources they use. 

However, recognizing some of the practical problems of employing 

optimization models, a rule-based approach was described.  This was presented as a 

greedy heuristic that took as inputs the same data as the optimization models.  The 

heuristic was also designed to take as input the explicit priority system intended.  

To this end, two priority schemes were evaluated – one that attempted to mimic the 

bias induced by final delay objective optimization model and one that attempted to 

model the operational implementation for coordination by prioritizing specific 

resources for allocation before others. 

To demonstrate the efficacy of the two optimization variants, as well as the 

rule-based approach, a case study was undertaken.  This confirmed the bias induced 

by the final delay objective function and aptly demonstrated that each approach 

performs as expected by minimizing the appropriate metrics.  The rule-based 

approaches developed quality solutions very quickly.  Their allocations matched 

fairly well with those from the optimization models. 

However, computational evidence suggests that using the final delay 

objective function makes solving this problem through optimization much more 

difficult than using the total delay objective function.  To this end, the computational 

performance was evaluated in greater detail, and it was found that good integer 

solutions are achieved rapidly.  But, the bounds used in the branch and bound 

procedure are of low quality, thus giving the impression of low-quality integer 

solutions that would require long run times to alleviate. 
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The case study described in this chapter provides interesting material for 

analysis.  However, although the final delay objective function is attractive for 

several reasons, implementing it or any rule-based approach based on it is 

impractical because of its impact on equity between users.  To this end, the next 

chapter presents several approaches that extend those in this chapter to directly 

and explicitly control equity between users. 

 



 

85 

 

3. Equitable coordinated airspace capacity rationing 

In the coordinated rationing scenario described in this paper, there is an 

inherent bias against flights using multiple resources when considering only flight 

arrival delays with the final delay objective function.  This has been demonstrated 

empirically in the initial case study, as well as analytically in the previous argument.  

Although the resulting allocations, measured in objective terms, have desirable 

aggregate properties, the inequities introduced between user groups create an 

untenable political situation. 

At first analysis of this problem, this bias represents a classic example of the 

unintended consequences of an optimization model – one class of users is 

disadvantaged to better the objective function.  While the resulting solution is in 

mathematically optimal, practical concerns argue against it because it does not 

encompass other considerations that might render it optimal in a more global sense.  

In this section, several approaches for limiting or bounding the worst case 

performance of any individual user are proposed.  Introducing such constraints will 

necessarily limit the resultant allocations to be at best no better than those derived 

from the base formulation, at least as measured in the aggregate. 

This chapter is devoted to examining several mathematical methods to 

enforce or encourage fairness in the allocations developed by the optimization 

model shown in §2.  First, several baselines from which deviations may be measured 

will be described.  Then, several variations of maximum deviation constraints will 

be outlined that may be used to replace the assignment constraints in the base 

formulation from the previous chapter.  Then, a cost-based approach is described 

that has various trades with respect to the constraint approach.  Finally, the case 

study from the previous chapter is extended with several analyses to demonstrate 

the efficacy of explicitly including equity considerations in modeling this problem. 
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The constraint and cost-based approaches presented in this chapter all rely 

on having some baseline allocation of flights to slots that is reasonably accepted as 

being fair.  This requires that some heuristic step precede any optimization or 

priority approach to determine this baseline allocation.  The baseline to be used in 

this work as the fair allocation at each resource is the Ration By Schedule (RBS) 

allocation.  It has long provided the basis for capacity rationing in the airspace 

system, and is accepted by user groups as fair because it is based on long term data 

(the published schedule) that cannot be manipulated for short-term gain.   

The RBS procedure works by spacing out the nominal schedule to fit the 

newly defined lattice.  Each flight is assigned, in schedule order, to the earliest slot 

that it can use.  Denote the resulting RBS allocation slot time for flight f at resource i 

as 
i

f
a , and its position in that ordering as 

i

f
c .  Recall that each flight has a scheduled 

arrival time 
fα  and scheduled arrival position 

fγ .  By construction, the following 

inequalities must hold: 

 
i i

f f
a α≥   (3.1) 

 
i i

f f
c γ≥   (3.2) 

3.1 Maximum deviation constraints 

The first method examined for bounding the performance of an individual 

user is to place a hard constraint upon the maximum permissible deviation from the 

RBS allocation.  This method provides a direct control upon the worst case 

performance of any individual user.  This type of constrained assignment was first 

examined for managing air traffic by (Dear 1976).  It has also been recently 

reexamined for real time systems to maximize runway throughput by reordering 

flights already en route and in the terminal area (Balakrishnan and Chandran 2010).  

In both of those cases, the application varies, but the intention remains the same: 
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constrain individual user performance by limiting deviations for the accepted fair 

sequence, that which is derived from the schedule order. 

Two steps are included to implement this maximum deviation constraint: 

one is strictly necessary, while the other is convenient to decrease the size of the 

formulation.  The first step is to change the set of possible assignments for each 

flight, while the second is to reduce the set of decision variables defined, as a 

consequence of the first step. 

Equation (3.3) mirrors Assignment constraint I shown in (2.4), stating that 

each flight must be assigned to exactly one of some set of slots.  In this section, 

several replacements for the set 
i

f
Q  are proposed to meet the objectives of 

constraining the maximum deviation.  In the original formulation, this assignment 

set was large, beginning at 
i

f
α  and lasting until the end of the rationing program.  In 

each of these cases, this set is smaller. 

 1
i
f

i

fs

s Q

x
∈

=∑  , ff F i V∀ ∈ ∈  (3.3) 

Following the same reasoning, when creating the decision variables { }i

fsx , 

the new sets proposed here can be used to define existence.  In each case, the 

number of variables created should be strictly less than in the base model, 

potentially improving computational performance. 

Two alternative baselines are used for measuring the maximum deviation, 

drawing from the definition of the RBS allocation presented in the previous section: 

both the RBS allocation slot time 
i

f
a

 
and the RBS allocation position 

i

f
c .  While in 

many situations, there is a mapping between the results from these two baselines, 

dynamic capacity conditions will render these mappings invalid, making these two 

standards unequal in general.  In using position shift metrics, time conditions are 

unnecessary, as in previous definitions, as the limits of the set are defined directly 

by the nominal position. 
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Although the mathematical differences between these two baselines are 

fairly subtle, the practical implications of this choice are somewhat more interesting.  

Specifying a maximum deviation as a length of time may be preferable because it 

provides a more tangible connection to the typical metrics of airline performance.  

Further, it may be simpler to specify any flight’s worst case performance as, for 

example, 30 minutes.  This type of standard would likely be useful across programs 

of varying capacities.  Conversely, position may be desirable in this situation as a 

baseline because it provides an absolute measurement of flight performance 

irrespective of the resource capacities. 

One complication in using time-based deviations is that they may not align 

precisely with the lattice of the slots to which the flight is assigned, as would 

position-based deviations.  For example, if headways were 3 minutes under the 

capacity rationing, but the maximum deviation parameter was 20 minutes, then the 

seventh slot would not be fully encompassed in the range.  In this model, however, 

the beginning time of each slot is used as the measurement point, and so the seventh 

slot would be included in this case. 

Two types of deviations are admitted by these constraints.  In the first type 

examined, only assignments later than the RBS allocation are permitted.  In the 

second, both positive and negative deviations from the RBS allocation are 

permissible, but in either case, these are capped. 

3.1.1 Negative deviations 

The first standard used for measuring deviations from a nominal assignment 

is that of negative deviation.  In this case, a flight may only be moved later than its 

nominal assignment, but not earlier.  This is depicted notionally in Figure 3-1, with 

the parameters 
Uψ and ωU controlling the maximum time or position shift, 

respectively.  The time deviation parameter 
Uψ

 
is equivalent in use to that 
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employed in constraining the Ration By Distance algorithm described in (Ball, 

Hoffman and Mukherjee 2009). 

 

 

Figure 3-1 – Negative deviation constraint 

Two new sets of slots to employ in the assignment constraints are shown 

here: (3.4) is used for time-based deviations, while (3.5) is for position shifts. 

 { }:
i i i i i

f f s f UA s S a aτ ψ= ∈ ≤ ≤ +   (3.4) 

 { }, ,
i i i

f f f UC c c ω= +…   (3.5) 

An interesting implication of these negative deviation constraints is that the 

solutions, while hopefully more equitable with respect to distribution of delays, may 

be poorer in the aggregate.  In each case, the beginning of the set for feasible 

assignments begins with the RBS allocation, rather than the schedule.  As a result, 

some flights will be disadvantaged with respect to what they would have received 

under the unconstrained allocation.  The set of feasible solutions is smaller. 
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3.1.2 Absolute deviations 

Similar to the concept proposed in the previous section, the deviation 

constraint here admits both earlier and later assignments, relative to the nominal 

RBS assignment.  Earlier assignments are allowed up to ψ L
 time units or ωU 

positions before the RBS assignment.  Later assignments are again constrained by 

ψU
 or ωL.  The nature of this constraint is depicted notionally in Figure 3-2.  The set 

of slots permitted for a flight’s assignment will be larger in this case than in the 

negative deviation case.  To prevent conflicts with a flight’s schedule, the lower 

bound of this time range is defined as the maximum of the deviation or the 

scheduled arrival time. 

 

 

Figure 3-2 – Absolute deviation constraint 

Two sets are again proposed to replace 
i

fQ : (3.6) for time shifts and (3.7) for 

position shifts.  One complication with these ranges is the necessity to set the lower 

bound at the maximum of the permissible deviation or the scheduled arrival time or 
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position.  This tightens the set of permitted slots, as by assumption, flights may not 

be assigned to a slot earlier than their schedule. 

 ( ){ }: max ,
i i i i i i

f f f L s f U
B s S a aα ψ τ ψ= ∈ − ≤ ≤ +  (3.6) 

 ( ){ }max , , ,γ ω ω= − +…

i i i

f f f L f U
D c c  (3.7) 

Again, the solutions admitted by these constraints may be no better than 

those from the base formulations.  However, in this case, it is certainly possible that 

the solutions would be very similar, as permitting earlier deviations will admit 

many of the changes that yield the quality solutions from the base model. 

3.1.3 Practical concerns 

There are many practical concerns related to employing some variety of 

these maximum deviation constraints.  Because these constraints extend the 

formulation shown in the previous chapter, the practical considerations outlined 

there apply here as well.  Although these maximum deviation constraints could be 

used with either of the proposed objective functions, there is little argument for 

employing them with the total delay objective, and a strong argument for doing so 

with the final delay objective.  Because the total delay objective tends to maintain 

the flights schedule order, few large deviations will be observed.  The final delay 

objective, however, provides the motivation for this chapter itself, because of the 

undesirable properties that its allocations exhibit.  

The very first issue is which type of constraint should be employed: negative 

or absolute deviation, and time or position based.  No specific choice is advocated 

here, but the positive and negative attributes of each choice will be addressed.  On 

the first point, it seems that permitting both positive and negative deviations may 

decrease equity between users.  Under the absolute deviation construct, two 

otherwise equivalent users may be shifted in opposite directions, magnifying any 
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deviation needed to create feasible coordinated allocations.  Permitting only 

negative deviations limits this inequity. 

In either case, some users will be disadvantaged relative to what they 

believed they were due, and further, relative to what other users received.  There is 

no easy solution available to placate these users.  Although compliance according to 

law may be most desirable, it may be infeasible and may generate considerable ill 

will and discord.  As a result, some system of credits compensating users for 

negative deviations may be employed.  This is beyond the scope of the work 

proposed here, but has been explored elsewhere. 

For either the absolute or negative deviation cases, some baseline must be 

employed against which deviations are measured.  The two metrics proposed here 

were time and position.  Time has the advantage of being conceptually easier, but 

may also complicate matters depending on the precise value chosen.  A small value 

may limit extremely the set of slots to which a flight may be reassigned.  Position is 

conceptually more complex, but provides more control in an absolute sense over 

how far a flight may stray from its nominal assignment. 

Even if the above issues have been overcome, setting the precise value of the 

maximum deviation remains a difficult question.  At any level, some users will 

object, however the value itself must be set large enough to provide any utility at all.  

If it is too small, there exists a possibility that no feasible coordinated slot allocation 

will even exist.  This issue will be explored experimentally in the case study 

described later in this chapter. 

3.2 Deviation costs 

In this section, an alternative approach to limiting the performance of each 

individual flight is explored.  In the previous constraints, the delay minimizing 

objective was employed with constraints on the maximum deviation from a nominal 
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assignment.  In this section, the objective itself will be changed to minimize 

deviations from the nominal assignment.  Again, either the total or final delay 

construct could be employed with these objectives.  However, given that the total 

delay objective function already produces allocations with some desirable 

properties, it may not be useful to consider in this context. 

This approach is fundamentally different in that it does not explicitly place a 

bound on any flight’s worst case performance.  However, by measuring costs 

relative to the preferred ordering, the model is given a strong incentive to keep 

deviations from that preferred allocation small.  However, because a hard constraint 

on the maximum deviation is not employed explicitly, there remains the possibility 

that a phenomenon such as that shown with the final delay objective could develop.  

This approach may allow longer delays (relative to RBS allocation) than are 

preferred, but this may allow allocations with other desirable properties.  This may 

lead to undesirable outcomes, but needs to be explored more fully. 

Of course, some variety of the maximum deviation constraints could be 

employed in concert with this new objective.  That approach would provide the 

benefits of decreasing the formulation size, as was discussed in the previous section 

while allowing the model to determine the optimal deviations from the RBS 

allocation.  This combined approach will be explored experimentally in the next 

section.  As in the previous section, several methods of measuring deviations are 

considered, encompassing both positive and negative shifts, and using both time 

and position in the ordering as a baseline.   

3.2.1 Deviation objective functions 

In this section, several objective functions are defined to leverage the RBS 

allocation as a baseline for the coordinated allocation to be developed by the 

optimization model.  The following measurements of deviation are included: 
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• Difference between assignment and baseline allocation: This 

approach assigns later deviations a positive cost and earlier 

deviations a negative cost.  A minimization problem will clearly prefer 

the negative costs, and thus, may move some flights much earlier and 

others later to yield a net zero objective function.  A superlinear 

function cannot be employed because of the earlier deviations 

permitted by this approach.  This measurement is used in (3.8) and 

(3.11). 

• Difference between assignment and baseline allocation with zero 

lower bound: This approach assigns positive costs to later deviations, 

and zero cost to earlier deviations.  Thus, the incentive for moving 

flights earlier than their RBS allocation is removed, increasing equity 

between flights.  However, no disincentive is provided against these 

earlier deviations.  A superlinear function of delay length may again 

be employed to encourage multiple shorter delays because of the zero 

lower bound.  This measurement is used in (3.9) and (3.12). 

• Absolute difference between assignment and baseline allocation: The 

final metric considered assigns equal cost to both positive and 

negative deviations of equal magnitude.  Thus, an equal disincentive is 

used to encourage that all flights receive allocations as close as 

possible to the baseline.  This measurement is used in (3.10) and 

(3.13). 

The above three deviation metrics are combined with two baselines against 

which the deviation can be measured.  These are again the RBS allocation slot time – 

used in (3.8), (3.9), and (3.10) – and the RBS allocation position – used in (3.11), 

(3.12), and (3.13). 



 

95 

 

 ( )
:

0

min
i

f f
i
f

i i i

s f fs

f F i V s Q

N

z r xτ
∈ ∈ ∈

>

= −∑ ∑ ∑   (3.8) 

 ( )
1

:

0

min max 0,
i

f f
i
f

i i i

s f fs

f F i V s Q

N

z r x
ε

τ
+

∈ ∈ ∈

>

= −∑ ∑ ∑  (3.9) 

 
1

:

0

min
i

f f
i
f

i i i

s f fs

f F i V s Q

N

z r x
ε

τ
+

∈ ∈ ∈

>

= −∑ ∑ ∑   (3.10) 

 ( )
:

0

min
i

f f
i
f

i i

f fs

f F i V s Q

N

z s c x
∈ ∈ ∈

>

= −∑ ∑ ∑   (3.11) 

 ( )
1

:

0

min max 0,
i

f f
i
f

i i

f fs

f F i V s Q

N

z s c x
ε+

∈ ∈ ∈

>

= −∑ ∑ ∑  (3.12) 

 
1

:

0

min
i

f f
i
f

i i

f fs

f F i V s Q

N

z s c x
ε+

∈ ∈ ∈

>

= −∑ ∑ ∑   (3.13) 

As described previously, each of these objective functions could be combined 

with the maximum deviation constraints from the previous section.  In that case, the 

set 
i

f
Q  in the summations should be replaced as appropriate.  In addition, using one 

of the maximum deviation constraints may render the issue of deviation costs less 

than zero as moot, as the negative deviation constraints explicitly prevent early 

assignments. 

3.2.2 Practical considerations 

Using a cost-based approach to limiting the maximum deviation from a 

nominal allocation introduces several practical issues that bear addressing.  As 

previously, these proposed objective functions represent an extension to the 

optimization formulation presented in the previous chapter.  As a result, the caveats 

outlined there continue to apply. 

However, one unique and pressing concern arises with this cost-based 

approach.  Although this approach should tend to develop allocations close to the 
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baseline, there is no guarantee that they must do so, as in the previous section.  

Consequently, undesirable allocations such as those in the previous chapter with a 

specific class of users disadvantaged remain feasible.  As a result, the most prudent 

approach to employing these cost-based approaches may lie in conjunction with the 

maximum deviation constraints. 

3.3 Multiobjective deviation costs 

This section presents a generalization of the previous objective functions 

presented for the optimization approach to this problem.  The objective presented 

in this section minimizes a weighted combination of flight arrival delays and 

deviations from the baseline allocation. 

The general form of this multicriteria objective function is shown in (3.14).  

The summations follow the usual pattern established for the objectives presented 

previously considering delays at the time of each flight’s arrival.  The parameter σ is 

used to create a convex combination of the two objectives under consideration: 
1i

fs
∆  

for the final delay for each flight, and 
2i

fs
∆  for the absolute deviations from the 

baseline RBS allocation. 
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Equations (3.15) and (3.16) reflect the formulae used to calculate the final 

delay and deviation from the RBS allocation for each flight, respectively. 

 ( )
1

1i i i i

fs s f fs
x

ε
τ α

+

∆ = −   (3.15) 

 
1

2i i i i

fs s f fs
r x

ε
τ

+

∆ = −   (3.16) 

This objective function is a generalization.  Taking σ = 1 yields the final delay 

objective, while taking σ = 0 gives the absolute RBS time deviation objective.  Any 

value of σ between these extremes provides a weighted combination of these two.   
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The primary utility of this objective function is to examine various weighted 

combinations.  Solving a single instance while varying this convexity parameter 

between 0 and 1 in small steps will allow for the identification of an efficient 

frontier representing the tradeoff made between efficiency (sum of final delays) and 

equity (sum of absolute deviations from RBS).  This frontier will be examined in the 

case study that follows.  Obviously this approach does not quickly lend itself to 

heuristic approximations, but may provide useful insight into this classic equity-

efficiency tradeoff as it applies to this coordinated slot allocation problem. 

3.4 Case study 

To examine the efficacy of the equity-based methods proposed in this 

chapter, the case study first shown in Chapter 2 is extended.  The same physical and 

temporal configuration is employed, with three congested resources.  Several 

categories of results are examined, covering aggregate and detailed performance 

metrics for each variation proposed.  Results are included for comparison from the 

previous case study where appropriate.  Many of the analyses in this section are 

comparative.  However, objective function values are not compared directly, as 

different objectives are employed in some cases.  As a result, various properties of 

the allocations themselves are compared.  The primary metrics used are the total 

delay, summed at each resource, and the final delay (arrival delay), summed for 

each flight upon arrival. 

3.4.1 Overall comparison 

The first set of result presented for the equity-based models are shown in 

Table 3-1.  This is an extensive list comparing each of the equity-based models with 

both of the base models using the total and final delay metrics, measured in minutes.  

The two columns for each metric depict its value after two minutes of solution time, 

and at the optimal solution.  For the models using maximum deviation constraints, 
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shown in the second block of the table, the values used were 30 minutes or 15 

positions, depending on which standard for measuring deviations was employed.   

 

Model 
Total delay Final delay 

2 minutes optimal 2 minutes optimal 

Base – total 14169 14169 10703 10723 

Base – final 14554 14394 10333 8926 

Negative time deviation 15134 15134 11072 11072 

Neg. position deviation 15123 15123 11072 11072 

Absolute time deviation 14337 14394 9409 9406 

Abs. position deviation 14374 14374 9843 9843 

Time cost 14725 14853 9177 8926 

Time cost with ZLB 14370 14370 10506 10506 

Absolute time cost 14709 14709 10815 10820 

Position cost 15405 14881 9494 8926 

Position cost with ZLB 14361 14361 10490 10490 

Absolute position cost 14700 14681 10804 10801 

Table 3-1 – Comparison of equity-based models 

There are many trends apparent from the many results shown in Table 3-1.  

First, one check of the validity of the results is made by confirming that the optimal 

allocations determined by the base models are no worse than any allocation 

developed by the cost-based or maximum deviation models.    Next, the results 

demonstrate that both the time/position cost and absolute deviation models are 

able to produce quality allocations quickly.  The negative deviation models are of 

lesser quality, but this should be expected because the set of feasible solutions must 

exclude any allocation in which flights are moved earlier in the sequence than they 

are due.  Third, the results reported after 2 minutes and at optimality are equal for 

many of the models.  This suggests that these models may identify an optimal 

solution quickly.  Finally, it appears that the impact of the negative deviation 

constraints on the overall quality of the allocations is significant, given the 

difference in the amount of delays assigned versus the base models.  Each of these 

issues, and others, will be explored in subsequent sections. 
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3.4.2 Computational performance 

There is an important, but perhaps unintended, implication of employing the 

various equity-based methods shown in the previous section that is not entirely 

apparent.  Some of these methods improve considerably the computational 

performance of the model in finding a good allocation. 

Figure 3-3 compares the computational performance of the base model using 

the final delay objective against each of the maximum deviation constraint methods.   

 

 

Figure 3-3 – Maximum deviation constraint computational performance 

The metric used for the comparison is the so-called “optimality gap,” which 

reflects the percentage difference between the best integer feasible solution and the 

best bound located thus far in the solution tree.  Each of the maximum deviation 

constraint methods performs better during the entire solution process than the base 

model.  The two negative deviation constraints perform better than the absolute 

ones, and the position-based models tend to solve more quickly than the time-based 
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ones.  Each of these trends indicates that these maximum deviation constraints have 

value not only in bounding the worst-case performance for any user, but also in 

improving the somewhat difficult computational problems presented by the first 

problem.  Likely, the origin of this improvement is that the set of feasible allocations 

is smaller because the length of the time period over which each flight may be 

assigned is smaller. 

Likewise, Figure 3-4 presents a comparison of the computational 

performance of each of the cost-based models against the base model.   

 

 

Figure 3-4 – Cost-based model computational performance 

In this case, the results are somewhat less compelling, but nonetheless 

suggest that these alternate equity-based models may improve computational 

performance.  From this figure, it appears that the time and position cost models 

performance quite well.  This is an especially promising result, given that each 

produced an allocation with an amount of arrival delay equivalent to that from the 
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base model.  As before, the equity properties of this allocation are suspect, and will 

be explored next. 

3.4.3 Deviations from fair allocations 

An important metric of the performance of these models that seek to 

constrain the performance of any individual user is the actual deviations that each 

admits.  A summary of the time-based deviations, measured in minutes, from the 

RBS allocation is shown in Table 3-2, while a summary of the position-based 

deviations is shown in Table 3-3.  The data in these tables reflect the maximum 

positive (earlier), negative (later), and mean deviations from the RBS allocation. 

Several trends are apparent in these tables.  First, it is instructive to examine 

the second block of models – these represent the maximum deviation constraints.  

Three of these four models make use of the entire slack provided to them, excepting 

the negative time deviation.  Remaining with the maximum deviation constraints, it 

is also interesting that the mean time and position deviations for the negative 

deviation models are greater than those for the absolute models.  This is reasonable 

as the only feasible allocation for each flight is at or later than the RBS allocation. 

Another trend is related to the size of the spread between minimum and 

maximum deviations.  The largest spread is observed for the time/position cost-

based models.  These models permit any assignment later than a flight’s scheduled 

time, as do the base models, but admit much greater deviations from nominal. 

The absolute deviation cost-based models also develop allocations with 

interesting properties.  The spread for each of these models is fairly small, although 

not the smallest in either case.  As will be shown in the next section, these models 

also derive fairly equitable allocations. 
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 Model 
Deviation from RBS allocation time 

Positive Negative Mean 

Base – total -12.0 13.2 0.00 

Base – final -52.9 81.3 0.58 

Negative time deviation 0.0 21.0 2.63 

Neg. position deviation 0.0 15.0 2.60 

Absolute time deviation -30.0 30.0 0.61 

Abs. position deviation -21.6 24.0 0.56 

Time cost -61.2 166.4 1.86 

Time cost with ZLB -31.0 18.0 0.55 

Absolute time cost -8.6 20 1.47 

Position cost -61.2 181.3 1.94 

Position cost with ZLB -31.0 18.0 0.52 

Absolute position cost -8.6 17.0 1.40 

Table 3-2 – Time deviations from fair allocations 

 

Model 

Deviation from RBS allocation 

position 

Positive Negative Mean 

Base – total -9 9 0.00 

Base – final -51 62 0.58 

Negative time deviation 0 21 2.24 

Neg. position deviation 0 15 2.20 

Absolute time deviation -30 27 0.61 

Abs. position deviation -15 15 0.56 

Time cost -51 139 1.76 

Time cost with ZLB -31 18 0.55 

Absolute time cost -6 20 1.44 

Position cost -51 150 1.87 

Position cost with ZLB -31 18 0.52 

Absolute position cost -6 17 1.37 

Table 3-3 – Position deviations from fair allocations 

3.4.4 Comparison of treatment of various flows 

The next analysis considers the treatment of each flow, as defined earlier, by 

the above models.  A comparison of these delays is shown in Table 3-4.  The multi-

resource flights are those in flows 2 and 4.  The base model flow results 

demonstrated empirically the induced bias against multi-resource flights. 
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Model 
Flow 

Mean 
Std. 

dev. 1 2 3 4 5 

Base – total 32.0 40.1 44.2 38.1 42.4 39.4 18.6 

Base – final 1.1 59.2 28.6 55.3 28.9 32.8 28.3 

Negative time deviation 33.5 43.6 43.2 41.3 42.4 40.7 19.0 

Neg. position deviation 33.5 43.5 43.3 41.4 42.4 40.7 19.0 

Absolute time deviation 9.3 51.9 34.6 50.0 33.1 34.6 23.4 

Abs. position deviation 16.9 48.0 37.7 46.0 36.1 36.2 21.4 

Time cost 1.1 65.0 23.9 61.4 24.1 32.8 43.8 

Time cost with ZLB 28.3 42.5 42.2 39.7 41.1 38.6 18.6 

Absolute time cost 33.7 42.5 42.3 39.7 41.1 39.8 18.6 

Position cost 1.1 67.3 22.0 59.4 25.7 32.8 44.3 

Position cost with ZLB 28.0 42.5 42.2 39.7 41.1 38.6 18.6 

Absolute position cost 33.4 42.4 42.3 39.6 41.2 39.7 18.5 

Table 3-4 – Summary of average arrival delays by flow 

There are many interesting trends evident in this table.  First, the negative 

deviation models exhibit higher overall delays because they are not permitted to 

allocate flights earlier than they are due.  However, the resulting allocations are 

more equitable, and achieving this was the target.  Next, the absolute deviation 

constraints seem to mimic the trends observed for the base model with the final 

delay objective.  This should also be expected, as these models will strive to develop 

allocations as close to that, while staying within the bounds set for them.    For the 

cost models, it is clear that the simple time and position cost functions yield results 

even more extreme, with multi-resource flights being more disadvantaged, than 

those from the base model.  The cost models with ZLB and the absolute cost models 

each perform well, and several actually dominate the base model with the total 

delay objective function, which may be considered in this context as the standard for 

coordinated equity. 

3.4.5 Effects of varying maximum deviations 

An important issue from political, practical, and computational perspectives 

is the effect of varying the maximum deviation parameters in the four constraints 
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proposed in this chapter.  If the maximum deviation, specified either in time or 

position terms, is sufficiently small, then the model may struggle to find a feasible 

solution.  Conversely, if the range is excessively large, the model essentially defaults 

to the base model proposed in the previous chapter.  From a practical and 

computational perspective, it is important to know what maximum deviation value 

admits a quality solution, but is solvable quickly.  Finally, political concerns dictate, 

to a certain degree, the range of maximum deviation values that may be used.  

Clearly, choosing the best value is a difficult proposition.  In this subsection, both the 

absolute and negative position deviation constraints are examined.  These are used 

in place of the time-based constraint because of their superior computational 

performance, which is an asset when solving the many instances for this analysis. 

The analysis in this section is built upon solving many instances of the base 

model with the maximum position deviation at various values.  For the absolute 

case, symmetric deviations were used, and in each case the solution process was 

stopped when the optimality gap reached 1.0%.  The negative deviation case is, in 

general, easier to solve, and so an optimality gap of 0.1% was employed. 

The first set of results pertains to the relationship between the maximum 

deviation admitted and the quantity of delay assigned, as depicted in Figure 3-5.  As 

expected, the smaller the maximum deviation permitted within in the absolute 

model, the greater the amount of arrival delay assigned.  Using any maximum 

deviation less than 5 yielded infeasible problems.  The rate of change of this curve is 

interesting in itself.  At a maximum deviation of seven positions, the slope changes 

significantly.  Below that point, the allocations quickly become much worse, while 

above it, the rate of change is much slower and quite steady.   

For the negative deviation model, the results are significantly different.  No 

feasible solutions are admitted below a maximum deviation of 12 positions, but 



 

105 

 

there is essentially no variation in average delays over this range.  This suggests that 

increasing the maximum has little marginal effect on the optimal allocation. 

 

 

Figure 3-5 – Variation in assigned delay with maximum position shift 

The curve goes only to a maximum deviation of 45 units – it would need to 

proceed to a negative deviation of 51 and a positive deviation of 62 for the absolute 

model to achieve the optimal solution found by the final delay base model. 

The results in the first figure indicate that increasing the maximum 

permitted deviation in each model yields different results.  For absolute model tends 

to improve with an increasing range, while the negative model changes little.  This 

behavior is confirmed in Figure 3-6, which shows the maximum permitted deviation 

against the maximum assigned deviation.  The absolute model uses, in every case, all 

the slack made available to it.  In constraints, the negative model uses less slack than 

it could beyond a maximum of 20 positions. 
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Figure 3-6 – Maximum assigned position shift 

The above results begin to suggest that increasing the maximum deviation 

beyond a certain point will yield no marginal benefit for the negative model, and will 

yield marginally decreasing benefits for the absolute model.  However, the size of 

this maximum deviation permitted also has an effect on the solution time required 

for each instance.  Thus, it is prudent to choose an optimal value based not only 

upon its delay-minimizing benefits, but also according to its solution time.  Figure 

3-7 depicts the variation in solution time with the permissible maximum deviation.  

The obvious trend in this figure is that, for the absolute model, solution time 

increases directly with the maximum position shift.  Despite the noise in this curve, 

the trend is apparent.  This phenomenon likely occurs because the larger deviations 

admit a greater number of feasible solutions.  Thus, it takes more time to search 

these feasible integer solutions and find the optimal one.  Again, the trend in the 
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negative deviation model is that increasing the maximum position shift induces little 

variation. 

 

 

Figure 3-7 – Variation in solution time with maximum position shift 

Although average delay assigned for a given maximum position shift is an 

interesting metric, it covers only one half of the efficiency-equity trade of which this 

chapter is concerned.  In Figure 3-8, the standard deviation of assigned arrival 

delays is shown as a function of maximum permitted position shift.  The same trend 

as observed above continues – the relationship is positive for the absolute model, 

and constant for the negative model.  Again, the absolute results are consistent with 

expectations because the greater the maximum permitted deviation, the closer the 

allocation will be to that derived from the base unconstrained model.  For the 

negative deviation constraint, these results again suggest that there is little marginal 

benefit to increasing the maximum deviation beyond the minimum feasible value. 
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Figure 3-8 – Variation in standard deviation with maximum position shift 

Finally, the results of the efficiency and equity analysis are consolidated into 

a single figure.  In Figure 3-9, each pair of mean arrival delay and standard deviation 

of arrival delay are plotted against one another.  For the absolute model, this forms a 

fairly smooth curve characterizing the tradeoff between efficiency and some notion 

of fairness.  The results for the negative deviation constraint model however are 

reduced to a single point in the figure.  This confirms finally that there is no benefit 

for efficiency or equity in increasing the maximum deviation beyond the minimum 

value to ensure feasibility.  Given the rapid solution times for this model, and the 

valuable property of constraining worst-case performance of any user, applying it 

iteratively to find the minimum value may be a very effective strategy for 

developing coordinated capacity allocations. 
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Figure 3-9 – Efficiency/equity frontier 

Several sections have examined the properties of allocations derived from 

the maximum deviation constraints and the cost-based approaches separately.  In 

the next section, these two concepts are combined. 

3.4.6 Combining equity methods 

Building on the results shown in the previous section, the approach proposed 

here aims to combine the cost-based and maximum deviation methodologies.  The 

intention here is two-fold.  First, high quality solutions may be obtained very quickly 

by combining the most efficient equity-based methods.  Second, the resulting 

solutions will retain the desirable properties of each approach. 

The first summary of these results is shown in Table 3-5.  The aggregate 
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constraint defines the set of feasible allocations, whereas the objective function only 

chooses the best of these.  However, speed gains in determining these solutions are 

negligible, rendering this approach of questionable utility. 

In Table 3-6, the performance of each model in allocating delays to each flow 

is examined.  Similar trends are observed, in that the combined models assume the 

properties of the constrained model. 

For this instance, the approach of combining constraints and cost-based 

equity methods is of little utility, in that it does not yield improved allocations and 

improves solution time only marginally.  These combinations may be of greater 

utility for larger instances in which solution time may become a more critical factor. 

 

Model 
Total delay Final delay 

2 minutes optimal 2 minutes optimal 

Base – final 14554 14382* 10333 8926* 

Negative time deviation 15134 15134 11072 11072 

Time cost 14725 14853 9177 8926 

Time cost &  

negative time deviation 
15132 15132 11072 11072 

Neg. position deviation 15123 15123 11072 11072 

Position cost 15405 14881 9494 8926 

Pos. cost & neg. pos. dev. 15150 15150 11104 11104 

Table 3-5 – Average delay comparison for combination method 

 

Model 
Flow 

Mean 
Std. 

dev. 1 2 3 4 5 

Base – final 1.1 59.2 28.6 55.3 28.9 32.8 28.3 

Negative time deviation 33.5 43.6 43.2 41.3 42.4 40.7 19.0 

Time cost 1.1 65.0 23.9 61.4 24.1 32.8 43.8 

Time cost &  

negative time deviation 
33.5 43.3 43.5 41.9 42.0 40.7 19.3 

Neg. position deviation 33.5 43.5 43.3 41.4 42.4 40.7 19.0 

Position cost 1.1 67.3 22.0 59.4 25.7 32.8 44.3 

Pos. cost & neg. pos. dev. 34.0 43.4 43.4 41.4 42.3 40.8 19.3 

Table 3-6 – Summary of average delays by flow 
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3.4.7 Multiobjective optimization 

The final analysis presented here considers the multiobjective model 

proposed earlier in this chapter.  The intention of this analysis is to examine the 

frontier of solutions formed by convex combinations of the final delay and the 

absolute time deviation objectives.   

Figure 3-10 depicts the tradeoffs in efficiency (average arrival delay) with 

variations in the convexity parameter.  The curve in this figure forms an interesting 

shape with the exception of the points at 0.60 and 0.65.  This break is simply due to 

the poor computational performance (large optimality gap) for those two cases.  

This figure suggests that the optimal convexity value for minimizing delays 

(maximizing efficiency) lies at 1.0, or setting the objective function simply equal to 

the total delay model. 

Again, however, this figure represents only efficiency.  Figure 3-11 shows the 

variations in the equity metric (standard deviation of assigned arrival delays) 

against the convexity parameter.  Noise is again observed in the same range.  

However, it is clear that minimizing the variance in assigned delays (maximizing 

equity) requires that the convexity parameter be as small as possible.  This 

corresponds to the absolute RBS time shift objective. 

Clearly the above two conclusions contradict one another.  It may be most 

efficient to select a combination near the center of this range to apply equal weights 

to the two objective functions.  Alternatively, Figure 3-12 presents the efficiency-

equity frontier, comparing the mean delays with their respective standard 

deviations.  The noise in this figure prevents the identification of a concrete 

inflection points.  The results of this analysis do not provide any compelling 

arguments for employing this objective function as a means to determine the 

optimal tradeoff between efficient and equitable allocations. 
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Figure 3-10 – Variation in average arrival delay with convexity parameter 

 

 

Figure 3-11 – Variation in standard deviation with convexity parameter 
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Figure 3-12 – Efficiency/equity frontier 

3.5 Conclusions 

In this chapter, numerous variations on the base optimization model 

presented in §1 were presented.  These aim to explicitly control equity in making 

coordinated slot allocations.  This chapter necessarily began with a discussion 

outlining what is the equitable allocation from which deviations should be 

measured.  Based on this, constraints limiting either the absolute or negative 

deviations from the baseline were proposed.  Then, several cost-based approaches 

were outlined. 

Two baselines were used for measuring deviations, both derived from the 

initial RBS allocation.  The time slot to which a flight was assigned under RBS, as 

well as the position in the ordering, were both considered.  The constraint 
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the assigned slot and the RBS allocation, that difference with a zero lower bound, 

and the absolute value of that difference. 

Many results were presented in this section, covering the efficiency and 

equity properties of each of the variations proposed.  The constrained models 

developed high quality allocations, each in alignment with its expected properties.  

The cost-based models produced interesting results, but none provided a 

compelling candidate for explicitly regulating the equity of coordinated capacity 

allocations.   

The effects of varying the maximum deviation parameter for the constraints 

proposed were examined.  These produced the interesting result that, for the 

negative deviation constraints, increasing the maximum beyond the minimum value 

required for feasibility produced little marginal benefit.  This is a very valuable 

result, as it indicates that every flight’s worst-case performance can be tightly 

bounded, while simultaneously developing a quality allocation.  As an additional 

benefit, these constraints strengthen the optimization formulation and yield shorter 

solution times. 

The equity-based variations on the base optimization model presented in this 

chapter represent useful compromises in developing an optimization-based 

approach to deterministic coordinated capacity rationing.  However, none of the 

models presented in this, nor the previous chapter, address the possible 

uncertainties present in this system.  In the next chapter, these uncertainties will be 

examined, and a new model formulated that explicitly considers them. 
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4. Stochastic coordinated airspace capacity rationing 

Air traffic flow management decisions are highly sensitive to capacity 

disruptions lasting several hours or more at a time.  Airports, regions of airspace, 

and specific control points throughout the airspace system may be affected.  

Disruptions may be caused by a variety of phenomena including primarily weather 

systems, but also equipment outages, security concerns, and military operations. 

Many models have been proposed and employed in making ATFM decisions.  

The primary influencing factor in these models and their resulting decisions is the 

balance between demand and capacity.  These models are necessarily sensitive to 

the uncertainty included in the predictions for available capacity under disrupted 

conditions.  Considerable unpredictability is induced in the ATFM system by both 

the demand and capacity processes, and some researchers have attempted to 

explicitly include these uncertainties within several ATFM decision-making models, 

including rationing access to a single resource (Richetta and Odoni 1993) 

(Mukherjee and Hansen 2007), and to a limited degree, the multi-airport problem 

(Vranas, Bertsimas and Odoni 1994). 

These capacity disruptions may be characterized, at a simple level, by several 

parameters: onset, severity, and duration.  Each of these parameters is, however, 

difficult to predict for many types of disruptions.  Weather systems in particular are 

inherently stochastic because of the myriad factors that drive their evolution.  

Further, the impact of the weather on the available capacity at any airspace resource 

is difficult to quantify, adding an additional level to the uncertainty involved in 

planning around capacity disruptions. 

In this chapter, the problem of developing coordinated slot allocations at a 

sequence of connected resources is considered under stochastic assumptions about 

capacity, using the simple model described above.  First, the impact of capacity 

uncertainty is quantified for allocations made using the deterministic optimization 
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model introduced in §2.  Because this analysis demonstrates that capacity 

uncertainty has a significant impact, an integer programming model is developed 

that explicitly includes information about the stochastic evolution of resource 

capacities.  After the formulation is described, a case study is shown that builds on 

those for the deterministic formulations. 

4.1 Assessing the impact of stochastic capacity variation 

This research quantifies the effects of random variation on models 

considering only deterministic forecasts of capacity.  While the base model 

proposed in §2 is employed, it is representative of the general class of ATFM 

decision-making models available.  The several parameters characterizing capacity 

disruptions are considered, with random variations added to each, across many 

random demand scenarios.  This Monte Carlo simulation technique allows for 

generalized, statistically meaningful conclusions about the impact of stochastic 

variations in capacity disruptions for airspace resources. 

To improve planning models and procedures, it is important to understand in 

quantifiable terms what impact these uncertainties have on the system, and on 

decision-making.  Thus, to assess the impact of random variations or mispredictions 

in available resource capacity, the deterministic optimization model for coordinated 

air traffic flow management decisions introduced in §2 is employed.  Particularly 

with an optimization model such as this, it is important to understand whether 

results are a function of the model structure, large trends in the input data, or 

smaller, seemingly random variations in parameters, as well as the sensitivity of the 

model to each of these variations. 

In the next subsection, the several modes of capacity variation are described 

in greater detail and the experimental design used in constructing the simulations is 
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outlined.  Then, results are reported evaluating the impact of these variations on the 

coordinated ATFM model. 

4.1.1 Modes of capacity variation 

To examine model sensitivity to variations in capacity data, several modes of 

capacity variation are considered.  These are included as they represent three 

parameters of a simple model of capacity variation.  Under this construct, a resource 

(e.g., an airport or airspace sector) has some nominal capacity at which it is 

operating.  Then, due to a disruption, typically the movement of a weather system 

into the area, the capacity is reduced for some amount of time.  The resource 

capacity remains at this reduced value until the disruption clears.  At that time, the 

resource capacity returns to nominal.  This simple model is considered for both 

airports and congested airspace regions.  This model of capacity is employed 

because its simple structure allows for systematic analysis of the effect of capacity 

variation.  Limiting the degrees of freedom in this manner simplifies the 

computational analysis needed to generate meaningful results.  Simple models of 

capacity of this nature have been employed before in ATFM model, typically 

focusing on disruption end time, as in (Ganji, et al. 2009) and (Cook and Wood 

2009). 

 The three modes of capacity variation considered are shown in Figure 4-1.  

The first mode, shown in Figure 4-1a, is the length of the disrupted period.  This is 

the amount of time during which the nominal capacity is lowered to the reduced 

value, and the primary period over which access rights must be strictly controlled.  

This value is measured in units of time. 
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(a) Duration of 

capacity 

disruption 

 

(b) Magnitude of 

capacity 

reduction 

 

(c) Magnitude of 

nominal 

capacity 

 

Figure 4-1 – Modes of capacity variation. 

The second mode of capacity variation, shown in Figure 4-1b, is the decrease 

from nominal capacity.  This represents the amount by which capacity is reduced 

during the disruption.  This may be measured as a relative change (percentage) or 

as an absolute change (flights per hour). 

The final mode considered in this study is shown in Figure 4-1c.  It does not 

deal directly with the severity of the capacity disruption, but rather with the 

nominal capacity level against which the disruption is measured.  It is measured in 

units of throughput or capacity, typically flights per hour.  

4.1.2 Simulation model structure 

To examine the impact of these systematic variations in capacity, a Monte 

Carlo simulation model is employed.  Each iteration of this simulation model will 

consist of solving the previously described optimization model with a random 

variation on demand and capacity profiles for each resource considered.  After many 

such iterations, the results are aggregated to identify useful trends. 
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Under such an approach, however, it is important to carefully define which 

parameters may vary randomly, and by what means this may occur.  In this case, 

there are many candidates: three modes of capacity variation (individually or in 

concert), schedule parameters including numbers of flights and their paths, and the 

number of airports and airspace regions considered.  The primary objective of the 

research is to examine the result of varying capacity parameters, but only very 

limited conclusions might be drawn, without also varying the other parameters in 

some fashion. 

To this end, the following procedure is employed: 

1. Identify system configuration: number of airports and airspace 

regions, and baseline schedule parameters 

2. Identify parameter(s) of capacity variation to be examined 

3. Generate random variation on baseline schedule 

4. Generate capacity profiles spanning possible range of variations (e.g., 

±40%) 

5. Solve model with generated demand and each capacity profile 

6. Repeat steps 2-5 until statistically valid conclusions are reached 

Following these steps will allow for generating conclusions conditioned on 

some baseline system configuration and mode of capacity variation, rather than on a 

specific demand profile or generic capacity description.  This process works because 

the parameters identified in the simple model of capacity variation allow for 

systemic variation.  Rather than having to generate many random permutations of 

the capacity profile, this process simply sweeps across a range of reasonable 

variations to generate results.  In addition, solving the model for each of several 

demand scenarios for the range of capacity variations helps to eliminate 

dependencies on unique, but random, features of a single demand scenario. 
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Thus, this analysis is in fact a sensitivity analysis against systematic 

variations in capacity.  Randomness is introduced to the schedules considered to 

provide greater validity for the results, as they will not rely simply on the structure 

of a single demand instance.  It is important to recognize that both demand and 

capacity vary in each instance, with demand doing so randomly, according to the 

methodology proposed in the case study in §2, and the capacity varying 

systematically around some nominal value. 

4.1.3 Numerical results 

The model described in §2 with the total delay objective function was tested 

according to its sensitivity to variations in the three capacity modes described 

above.  The spatial configurations for these experiments follow nominally from that 

shown in Figure 1-10, but are defined precisely in Table 4-1. 

 

Characteristic 
Spatial configuration 

(1) (2) (3) 

Number of 

airports 
1 2 3 

Number of 

airspace 

regions 

1 1 1 

Inter-resource 

travel time 

(minutes) 

60 60 60 

Table 4-1 – Spatial configurations for base scenarios 

Flight paths were generated randomly for each flight, with flights using only 

one resource with probability 60%, and two resources with probability 40%.  Each 

resource had a nominal schedule of 60 flights per hour; however as part of the 

randomness introduced in the simulation process this was reduced.  At airports, 

flights were eliminated from this nominal schedule with probability 20%, while at 

the airspace regions, flights were eliminated with 50% probability.  This larger 

fraction was used to allow space for flights destined for affected airports. 
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Capacity parameters were varied systemically for each of the three modes.  

The nominal length considered for each disruption was three hours, but this was 

varied in small steps up to ±40% for each demand scenario.  Likewise, the fraction 

of capacity lost during the disruption was nominally 40%, but this was varied in 

small steps ±40% from the nominal value.  Finally, the nominal initial capacity was 

60 flights per hour, but this varied in small steps ±40%. 

The primary results of the simulation are shown in Table 4-2.  The results 

here are measured in terms of elasticity of average delay per flight with respect to 

unit changes in the capacity mode being considered.  Thus, higher values reflect 

greater sensitivity to a particular parameter.  Each elasticity value is the median of 

all those calculated over each range of capacity variation, each for ten demand 

scenarios.  In nearly all cases, the quantity of delay assigned is elastic to unit 

changes in capacity.  The effect decreases with increasing spatial complexity, but 

nonetheless suggests that this model is sensitive to perturbations in the precise 

values of capacity input.  That many demand scenarios were evaluated for each 

combination of spatial configuration and capacity mode lends credibility to the 

results that they do not represent one lucky permutation. 

 

Spatial 

configuration 

Capacity Mode 

(a) (b) (c) 

(1) 1.82 2.27 4.56 

(2) 1.26 1.54 3.23 

(3) 0.78 1.03 2.36 

Table 4-2 – Median elasticity of average delays to capacity variations  

Another method to examine the variations across configurations and modes 

of capacity variation is shown in Figure 4-2.  In this case, the various lines represent 

the average delay per flight, as it varies across the capacity scenario considered.  

Each line represents the average of all the demand scenarios considered for that 

particular experiment.  Thus, for a given configuration, the lines for each of the 
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capacity modes should cross at the 0% deviation mark, indicating that each scenario 

was being solved for the nominal conditions.   

Further, the varying shapes of the curves depicted in Figure 4-2 provide 

useful information.  For variations in capacity modes (a) and (c), the curves appear 

to be concave up, indicating that variations in capacity lead to marginally increasing 

variations in average delay assigned.  Capacity mode (b) exhibits a different 

behavior, of marginally decreasing.  It is interesting to note that despite being 

marginally decreasing in this domain, changes in average delay as shown in Table 

4-2 are still elastic with respect to variations in capacity. 

 

 
Capacity mode:  (a) (b) (c) 

 Spatial configuration: (1) (2) (3) 

Figure 4-2 – Relationship of average delay and capacity deviation 

A summary of the computational performance of these results is shown in 

Table 4-3, with sample sizes and median solution times (in seconds) for each 
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combination of spatial configuration and capacity mode examined.  For each 

capacity mode and spatial configuration, 17 capacity scenarios were used, each of 

which with 10 demand scenarios.  This represents at most 1530 integer 

programming models to solve; however only 1475 were used as they converged to 

within 5% of optimality within 30 minutes.  A total of 546 hours of computational 

time were required to solve these models.  This was reduced considerably by 

solving several cases simultaneously on an eight core, 16GB Xeon computer system 

with Xpress 2008b.   

 

 
Capacity 

mode 
(a) (b) (c) 

Spatial 

configuration 

Number of 

cases used 
499 497 479 

(1) 509 4 7 5 

(2) 497 76 380 133 

(3) 469 2230 2651 2397 

Table 4-3 – Sample size and median solution times 

The experiments described in this section provide an interesting example of 

the interplay between simulation and optimization techniques.  The methods 

described here provide an empirical method to quantify the sensitivity of a 

particular optimization model to various input data.  Systematically quantifying this 

relationship for any optimization model provides a greater understanding of their 

often opaque nature.  In this case, a better understanding of this relationship 

provides excellent motivation for the natural evolution of the model to explicitly 

include stochastic, scenario-based data.   
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4.2 Stochastic capacity descriptions in ATFM 

To frame the model proposed in this chapter, it is important to understand 

the nature of stochastic descriptions of aviation capacity that are available.  The 

varieties useful in this context, and for the previous research described, are based 

upon scenarios that are realized at some time.  Two varieties considered here may 

be described separately as disjoint, or tree-based. 

An example of a disjoint stochastic description is shown in Figure 4-3, 

derived from data from (Liu, Hansen and Mukherjee 2008).  In this example, there 

are four different capacity profiles that may be realized on a given day.  They are 

specified as disjoint - it becomes known immediately which scenario will occur.   

 

 

Figure 4-3 – Discrete capacity scenarios 

While this approach is compatible with the model presented here, it is likely 

more suited to longer term planning efforts such as (Churchill 2007) because the 

value of the recourse actions suggested by the optimization model becomes dubious.  
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An expanded model in (Buxi and Hansen 2010) attempts to develop these scenarios 

on a time scale more useful to ATFM processes, but the utility of these is not 

considered here because alternative specifications that are more detailed about the 

dynamics of capacity evolution are available. 

An alternative method to consider stochastic capacity is through the use of 

tree-based descriptions.  Under this paradigm, a tree branches into different 

capacity realizations at specific time epochs.  This construct is generalizeable to an 

n-stage decision process and was employed to allocate capacity at a single resource 

in (Mukherjee and Hansen 2007).  However, this construct accommodates simpler 

models of capacity evolution.  For example, a commonly explored issue in 

characterizing stochastic capacity evolution is to examine the variation in end times 

for a capacity disruption.  In this case, at each time epoch, the issue is whether the 

weather has yet cleared, and conditions returned to nominal.  This may be modeled 

using a simple binary tree, as depicted in Figure 4-4.  In this example, weather 

clearance has some probability at each half hour interval, and must clear by 12:00. 

 

 

Figure 4-4 – Simple binary scenario tree 
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To implement this decision structure, data such as that shown in Figure 4-5 

are used.  In this example, the time spacing between decision points is only 30 

minutes, but the cumulative distribution function of the possible clearance times is 

depicted as well as each interval. 

 

 

Nominal capacity Possible early clearance 
Cumulative probability 

of early clearance 

Figure 4-5 – Two stage capacity scenarios 

In this example, the resource is experiencing decreased capacity, but it 

becomes possible starting at 10:00 that conditions will clear and capacity will 

return.  Each subsequent time epoch is assigned a probability of this clearance, with 

the cumulative function of these probabilities shown in the figure.  By 12:00, 

capacity will definitely have returned to nominal, and thus the CDF reaches 1.0 at 

that time.  This type of capacity construct is employed in (Ganji, et al. 2009), (Cook 

and Wood 2009), and (Glover and Ball 2010) among others. 
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Building on the need for coordination in ATFM, and the available stochastic 

resource capacity descriptions, the next section introduces a stochastic integer 

program to explicitly model these coordination effects under uncertainty. 

4.3 Optimization formulation 

Evidence from the first section of this chapter suggests that the deterministic 

optimization models considered in this thesis are sensitive to variations in capacity.  

Explicitly considering stochastic capacity evolution should then, in some contexts, 

provide benefits to coordinated slot allocations.  In this section, a stochastic integer 

programming extending the base model described earlier is introduced.   

Specifically, this model assigns flights to arrival times at each of a sequence of 

resources that the flight encounters between origin and destination.  A resource 

may be an airport, some congested portion of airspace, or any other airspace 

resource of finite capacity.  Only resources expected to be congested are considered.  

Structurally, each resource is considered as an assignment problem, but linking 

constraints are included to insure that each flight using multiple resources receives 

compatible slot assignments.   

Uncertainty in capacity outcomes is incorporated through the use of a two-

stage stochastic formulation, wherein both an initial plan and conditional plans for 

each outcome are developed.  The model presented here considers the simple model 

of capacity disruptions presented in the previous section.  The formulation and the 

case study shown here are designed to consider only responding to uncertainty 

regarding the end time of the capacity disruption.  A discussion for relaxing this 

assumption to consider more general capacity models is included, but a complete 

reformulation is not presented. 

The two stage formulation allows for only a single change in the capacity 

conditions experienced, allowing for tractable models to be developed.  For each 
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scenario, a plan corresponding to that capacity outcome is developed.  These 

recourse actions represent those that should be undertaken, given the prescribed 

set of initial decisions, to optimally respond to the changes realized in capacity.  The 

nature of the recourse actions specified will of course depend on the capacity 

changes for that scenario, but may include dispatching flights currently on the 

ground, further delaying flights on the ground, or assigning airborne holding to 

flights already en route. 

The model presented here represents a greater degree of control than is 

currently exerted by system operators today, but is not incompatible with the 

principle of collaborative decision making (CDM) that have been so widely adopted 

in ATFM.   The decisions developed during the first stage of the model represent the 

initial assignments that would be made, but there is no reason that individual 

airlines or users, with their collections of slots at each resource, could not perform 

their own swaps or trades to meet their internal objectives.  While this may detract 

from the system-level objectives espoused by this model, they do represent the 

ability of users to optimize their operations within the construct provided.  The 

second stage decisions prescribed here do not represent decisions that must be 

implemented, but rather, are the optimal decisions, given the appropriate set up 

provided by the first stage decisions. 

The same model inputs and notation are used from the presentation of the 

base model, with the addition of data to represent the stochastic capacity outcomes.  

This is included here through a set of scenarios Q, as described in the previous 

section.  For each q in Q, there is an associated probability of occurrence (pq) and 

realization time (tq).  The realization time represents the time at which it becomes 

certain that a given scenario will occur, but may not necessarily represent the time 

at which the capacity change occurs.  It is used to model the ability to forecast 

capacity improvements, typically because of expected weather clearance.  In 
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addition, each scenario has associated slot times qi

sτ .  The slot times in qi

sτ  are 

equivalent to those in i

sτ
 
before tq, but begin to vary then or at some later time.  The 

initial conditions are included as a scenario in the set Q to allow some probability to 

be assigned thereto.  For the simple model of capacity employed here, each scenario 

will represent a different potential early end time for the capacity disruption. 

In the remainder of this section, the mathematical structure and properties 

of this formulation are described, including decision variables, constraints, objective 

functions, and computational properties. 

4.3.1 Decision variables 

Two related sets of binary decision variables are employed in this 

formulation.  The first set is used to define the initial decisions, the second to define 

the conditional decisions for each scenario. 

The first set of decision variables, { }i

fsx , defines the initial plan – a value of 

one indicates that flight f was assigned to slot s at airspace resource i. These 

variables are defined for each flight, and for each slot that it may feasibly use – 

namely those with a beginning time equal to or later than the flight’s scheduled 

arrival time, as shown in (5.1). 

 
  

i

fs
x binary  , ,

i

f f
f F i V s Q∀ ∈ ∈ ∈  (5.1) 

The second set of decision variables { }q

fsy  are similar to the first, in that a 

value of one indicates the assignment of flight f to slot s at airspace resource i.  For 

this set however, the additional dimension q indicates the capacity scenario for 

which this conditional plan is developed.  The existence conditions, shown in (5.2), 

are similar to the previous set of decision variables, in that they require the revised 

slot time to be later than or equal to the flight’s scheduled arrival time. 

 

  
qi

fs
y binary  , , ,

qi

f f
q Q f F i V s Q∀ ∈ ∈ ∈ ∈  (5.2) 
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Again, a range is employed to limit the existence of decision variables.  

Building on the earlier definition of feasible slots for each flight 
i

f
Q , the stochastic 

equivalent range 
qi

f
Q  is defined in (5.3), conditional on the slot times for outcome q. 

 { }:
qi i qi i

f s fQ s S τ α= ∈ ≥   (5.3) 

4.3.2 Initial decisions 

The constraints defining initial decisions in this formulation are equivalent to 

those for the deterministic formulation presented earlier.  They are repeated here 

for clarity.  Two sets of assignment constraints are employed to ensure feasible 

allocations at each resource.  The first set, shown in (5.4), enforces the condition 

that each flight, under the initial plan, be assigned to exactly one slot at each 

resource 
fi V∈  it will utilize. 

 1
i
f

i

fs

s Q

x
∈

=∑  , ff F i V∀ ∈ ∈  (5.4) 

Constraint set (5.5) enforces the first stage capacity constraints that each slot 

receives at most one flight. 

 
:

1

f

i

fs

f F
i V

x
∈

∈

≤∑  ,
ii I s S∀ ∈ ∈  (5.5) 

The two constraint sets shown above, in isolation, will allocate flights to slots 

at only a single resource.  The constraint set that links together these multiple 

resources is shown in (5.6).  It enforces that condition that if slot s is chosen at 

resource i, then some slot t whose time falls in the range 
ij

fs
R  must be chosen at 

resource j. 

 0
ij
fs

i j

fs kt

k R

x x
∈

− ≤∑  , , , : 0
i i i

f f f f
f F i V j N s Q N∀ ∈ ∈ = ∈ >  (5.6) 
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4.3.3 Revised decisions 

The constraints defining the first stage decisions are rewritten for each 

potential capacity outcome q Q∈  using the appropriate { }qi

fsy
 
variables in (5.7), 

(5.8), and (5.9). 

 
:

1
i

qi i
s f

qi

fs

s S

y

τ α
∈

≥

=∑  , , fq Q f F i V∀ ∈ ∈ ∈  (5.7) 

 
:

1

f

qi

fs

f F
i V

y
∈

∈

≤∑  , ,
iq Q i I s S∀ ∈ ∈ ∈  (5.8) 

 

0
qij
fs

qi qj

fs fk

k R

y y
∈

− ≤∑  
, , , , :

0

i qi

f f f

i

f

q Q f F i V j N s Q

N

∀ ∈ ∈ ∈ = ∈

>
 (5.9) 

The range defining the feasible arrival times at a subsequent resource is also 

rewritten to accommodate the additional dimension of indices used for each 

scenario outcome, shown in (5.10). 

 ( ){ }: max ,
qij j j qi j i qj qi j i

fs f s f f L k s f f U
R k S α τ α α π τ τ α α π= ∈ + − − ≤ ≤ + − +  (5.10) 

4.3.4 Consistency 

The constraints defining both the initial decisions, as well as the revised 

decisions under the stochastic outcomes are, in isolation, equivalent to the 

deterministic problem shown in §2.  Of course, for a model optimizing allocations 

simultaneously over multiple uncertain capacity outcomes to be useful, the various 

outcomes must be linked.  The formulation presented here represents only a two 

stage decision process, hence only a single change in capacity is permissible.  Two 

constraint sets are required to ensure consistency at the time of that change.  The 

first fixes the values of first and second stage variables preceding the change to be 

equal, while the second ensures that the two allocations are consistent 

The first of these consistency constraints is shown in (5.11).  Assuming that it 

is possible for the flight to arrive before the revision time tq, this constraint set fixes 
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the values of the first and second stage decision variables to be equivalent.  In 

principle, this constraint could be eliminated by defining the second stage variables 

to exist only after the revision time; however this would complicate the second 

consistency constraint, as well as the objective function. 

 
i qi

fs fk
x y=  , , ,

qi

f fq Q f F i V s G∀ ∈ ∈ ∈ ∈  (5.11) 

The range of slot times over which constraint (5.11) is defined is defined as 

qi

f
G , as shown in (5.12).  It begins at the flight’s arrival time and ends at the scenario 

realization, at which time consistency is no longer valid and a flight may be 

reassigned accordingly. 

 { }:
qi i i i q

f f sG s S tα τ= ∈ ≤ ≤   (5.12) 

The second consistency constraint is shown in (5.13).  It is logically more 

complex and requires greater explanation. 

 

0
qi
fs

i qi

fs fk

k T

x y
∈

− ≤∑  , , ,
i

f f
q Q f F i V s Q∀ ∈ ∈ ∈ ∈  (5.13) 

Notionally, this constraint requires that all flights receive feasible revised slot 

allocations, in particular, that those flights that have not yet arrived by the revision 

time receive compatible assignments under the new allocation, with respect to their 

original allocations.  For flights en route, this means that they not have to speed up 

or hold excessively.  For flights still on the ground, this means that they not be 

assigned slot arrival times any sooner than the required travel time from origin to 

each resource. 

The structure of this constraint is quite similar to the linking constraints 

employed to guarantee feasible slot allocations between subsequent airspace 

resources: the difference of a possible initial allocation and the sum of several 

possible secondary allocations must be nonpositive.  In this case however, the 

critical difference lies in the range of feasible slots in the secondary allocation 
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considered.  This constraint is evaluated for each combination of flight and feasible 

first stage slot allocation for each feasible second stage allocation. 

The range of feasible second stage reassignments 
qi

fs
T , conditional on a flight’s 

first stage assignment, is precomputed.  It must encompass feasible reassignments 

both for flights still on the ground, and for those already in the air.  The 

consideration of these flight states, however, is not dynamic: each possible outcome 

is constrained separately by (5.13). 

To illustrate qualitatively the ranges of slots to which a flight may be 

reassigned, consider the example shown in Figure 4-6.  Eligible slots for the initial 

assignment are shown in the left column, while slots under the revised, second 

stage, assignment are shown in the right.  In this case, under the revised scenario, 

the interarrival time has been decreased for some period under the revised plan.  A 

flight is determined to be on the ground at the revision time tq if its first stage 

allocation is at a time greater than the sum of the revision time and the flights 

required travel time.  In that case, a flight may be reassigned as shown in Figure 4-6.  

In this example, if a flight was initially assigned to arrive to Slot 6, and is still on the 

ground because the corresponding departure time has not yet been reached, then in 

the new allocation, it may be assigned to any slot later than the sum of the current 

time, tq, and the required travel time.   

However, if a flight is initially assigned to arrive at a slot such that it must 

have already departed, then the range of slots to which it may be reassigned is likely 

smaller, as shown in Figure 4-7, because this reassignment-induced change must be 

absorbed while the flight is in the air.  Of course, if interarrival times were to 

increase under the revision, it may be necessary to assign significant airborne delay 

to this flight. 
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Figure 4-6 – Feasible reassignment range for flights on ground 

 

 

Figure 4-7 – Feasible reassignment range for flights en route 
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The range encompassing these two example conditions is shown in (5.14), 

but the reasoning and necessity underlying each term will be presented in the 

subsequent discussion, as a relatively high degree of complexity is incorporated.  

The difficulty in formulating this feasible slot time range lies in the fact that the 

flights being reassigned may, or may not, have already departed, depending on their 

initial slot assignment.  The range of feasible slots for those flights still on the 

ground is much larger than for those in the air because en route flights carry a finite 

amount of fuel and thus cannot hold indefinitely.  The upper and lower bounds in 

the range 
qi

fs
T  are designed to accommodate this duality.  Importantly, this process 

represents computations and procedures undertaken to generate inputs to the 

optimization formulation described. 

 

( )

( )( )

max ,min ,

:

max ,

α τ κ α δ τ

τ κ τ α δ

  − + − ≤ ≤  
= ∈ 

 + − + − 
  

i i q i qi

f s L f f k
qi i

fs
i i q i

s U s f f

t

T k S
M t

 (5.14) 

4.3.4.1 Lower consistency bound 

The lower consistency bound is developed to enforce the condition that, 

under a revised plan from this model, a flight may only be reassigned a certain 

amount earlier than it was under the initial plan.  This allowable deviation depends 

on several factors, including whether or not the flight would already have taken off, 

had it been initially assigned to the slot being considered. 

A flight f is deemed to have already departed in this model if the “current” 

time tq is later than the difference between the considered slot s and the travel time 

required (
i

f f
α δ− ) for flight f.  The “current” time in this situation is the time at 

which the reallocation is made: the scenario realization time tq.  However, if the sum 

of the current time tq and the required travel time is less than the slot s under 

consideration, then the flight is deemed to not yet have departed.  To determine the 

lower bound of the feasible reassignment range, the minimum of these two 
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quantities must be considered, as shown in (5.15).  The parameter κL is included 

because, by assumption, an en route flight may be reassigned up to κL units earlier 

than originally planned, representing a speed increase or other actions to expedite 

the arrival of the flight.  This parameter is analogous to the πL used in the linking 

constraints in that it controls the maximum permissible increase in speed, but the 

two are not necessarily equal. 

 ( )min ,
i q

s L f ftτ κ α δ− + −   (5.15) 

The expression (5.15) is nearly sufficient for the lower bound.  However, by 

assumption, a flight may not be assigned an arrival time before its published 

scheduled time of arrival.  Thus, the lower limit of this range is the expression in 

(5.15), or the flights scheduled time, whichever is greater, as shown in (5.16). 

 ( )max , min ,
i q

f s L f f
tα τ κ α δ − + −   (5.16) 

4.3.4.2 Upper consistency bound 

The upper consistency bound is constructed similarly.  In this case, flights 

already en route may be assigned near to their originally assigned arrival time, or 

possibly much later if capacity conditions degrade significantly.  Flights still on the 

ground, however, may be assigned as late as the end of the capacity rationing 

program. 

To begin, a flight f is still on the ground if the condition shown in (5.17) is 

true.  The condition defined here is such that the difference between now (tq) and 

the slot being considered ( i

sτ ) must be greater than the required travel time (

i

f f
α δ− ). 

 ( ) 0
i q i

s f ftτ α δ− + − >   (5.17) 

If this condition is true, then the flight is still on the ground, and the upper 

bound on the new slot assignment is the end of the assignment program.  To allow 
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for this, a large value M is multiplied with the value of this difference to form a large 

value for the bound.  Note that this M value simply represents some very large 

number and is only used here in preprocessing to generate the feasible slot ranges.  

Its presence is not appreciated directly in the formulation, thus avoiding the 

numerical problems that often accompany using M in the traditional optimization 

sense. 

However, if the difference shown in (5.17) is nonpositive, then the flight must 

have already departed.  In that case, the upper bound on the new slot time must be 

the sum of the old slot time and some parameter κU to represent the maximum 

amount of slowing permissible for the flight.  Given that the flight is already en 

route, the product of the large number M and the difference in (5.17) will be 

negative, and so using a maximum operator will select the correct value for these en 

route flights, as shown in (5.18). 

 ( )( )max ,
i i q i

s U s f f
M tτ κ τ α δ + − + −

 
 (5.18) 

Further, it may be useful to make the reassignment window parameters κL 

and κU functions of the time remaining until the flight should arrive under the 

instance of the consistency constraint under consideration.  This variation follows 

the idea that a flight located quite far from a rationing initiative has more time to 

increase or decrease speed, whereas one about to arrive at an initiative has very 

little flexibility about the time at which it is to arrive there. 

A simple means by which this condition might be included is to specify the κ 

values as a monotonically decreasing function of the difference between the original 

and new slots, i q

s tτ − .  The functions ( )L
tκ  and ( )U

tκ  would be defined over the 

domain (0, f fα δ −  , and would take on zero values as t = 0 and much larger values 

at the upper end of the function’s domain.  This upper range could be as large as 45 



 

138 

 

minutes, as all commercial flights participating in such ATFM actions carry at least 

that much fuel in reserve. 

4.3.5 Objective function 

Generically, the objective of this formulation is to minimize the sum of 

assigned delays.  There are two specific issues to be addressed in developing this 

objective function, however: how to incorporate the costs of each scenario outcome, 

and again at which resources to sum delays. 

There are several potential methods by which the costs of the various 

recourse outcomes may be included.  Based on the assumption presented earlier 

that the initial plan is always included as a second stage outcome with non-zero 

probability; all costs may be represented in the second stage.  As a result, an 

expected value of the total cost may be calculated using these costs and the 

associated scenario probabilities.  This is notationally simpler than the alternate 

convention of expressing first stage costs and second stage marginal costs. 

The second issue in developing the objective function again concerns which 

delays to include in the sum.  As was discussed in detail in §2, reasonably arguments 

can be made for considering the sum of delays at all resources, or only those delays 

at arrival airports.  Both will be examined as to their effects on this problem under 

capacity uncertainty. 

The total delay objective function for this problem is shown in (5.19).  It is 

expressed as the expected value of the sum of all second stage allocations.  It 

represents the ground delays assigned to each flight under each scenario outcome, 

with the length of the delay represented by the difference between the assigned slot 

and the scheduled time.  A superlinear function of delay length is again employed to 

encourage more equitable distribution of delays.  To consider only arrival delays at 

destination airports, the condition 0=i

fN  must be added to the summation in Vf. 



 

139 

 

 ( )
1

min
ε

τ α
+

∈ ∈ ∈ ∈

= −∑ ∑∑∑
i

f f

q qi i qi

s f fs

q Q f F i V s Q

z p y  (5.19) 

4.3.6 Formulation size 

As with the previous optimization models presented, the formulation size is 

considered here.  Table 4-4 includes the worst case numbers of constraints for each 

set, while Table 4-5 lists the worst case numbers of variables for each set of decision 

variables. 

 

Constraint Worst case count 

(5.4) f

f F

V
∈

∑  

(5.5) 
i

i I

S
∈

∑  

(5.6) 
i

f

i I f F

S V
∈ ∈

∑ ∑  

(5.7) f

f F

Q V
∈

∑  

(5.8) 
i

i I

Q S
∈

∑  

(5.9) 
i

f

i I f F

Q S V
∈ ∈

∑ ∑  

(5.11) 
i

f

i I f F

Q S V
∈ ∈

∑ ∑
 

(5.13) 
i

f

i I f F

Q S V
∈ ∈

∑ ∑  

Table 4-4 – Worst case number of constraints  

for stochastic linked formulation 

 

Variable Worst case count 

{ }i

fsx  
f

i

f F i V

S
∈ ∈

∑∑  

{ }qi

fsy  
f

i

f F i V

Q S
∈ ∈

∑∑  

Table 4-5 – Worst case number of variables  

for stochastic linked formulation 



 

140 

 

Although the results in the above tables appear extremely large, in realistic 

instances, they are considerably smaller.  The various sets limiting the ranges over 

which constraints and variables are defined ensure this.  However, as with most 

stochastic integer programs, formulation size remains a concern. 

4.3.7 Generalized model of capacity evolution 

The model presented above assumes that uncertainty will admit only 

improved capacity conditions, by examining the range of possible early end times 

for a disruption.  To examine more general cases, several changes must be made to 

this formulation.  These are presented separately because they may increase 

significantly the complexity of the model, and because they are not used in the case 

study examined in the next section. 

To make this model compatible with more general models of capacity 

evolution, several changes are needed.  First, the parameters of the consistency 

range defined previously must be specified so as to allow potentially large airborne 

delays.  These may be necessary in the even that capacity conditions deteriorate 

significantly.  However, when potentially lengthy airborne delays are admitted, the 

overriding assumption of the small time deviations permitted by the linking and 

consistency constraints becomes tenuous.  To that end, a mechanism must be 

included for tracking the cost of these delays. 

To track the cost of airborne reassignment delays, a third set of decision 

variables is introduced.  This set { }qi

fskz
 
is employed to track slot reassignment of 

flights already en route to their destination.   These are flights that have already 

departed when a new scenario is realized that requires the flights to be reassigned 

with potentially significant airborne delays.  The indices show that flight f must be 

reassigned from slot s to slot k under capacity outcome q at airspace resource i, as 

shown in (5.20).  The variables have a value of unity when this condition is realized 
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and zero otherwise.  They are defined over some precomputed range 
qi

fs
U  that 

identifies flight-slot-scenario combinations that might yield airborne holding. 

 

  
qi

fsk
z binary  , , , ,∀ ∈ ∈ ∈ ∈ ∈i qi

f f fsq Q f F i V s Q k U  (5.20) 

These new decision variables represent the confluence of two conditions: 

that a flight already en route was initially assigned to slot s at resource i and that a 

flight was, under outcome q, reassigned to slot k at resource i.  This can be 

formulated as a logical AND constraint, and could be incorporated by examining the 

product of the two decision variables corresponding to the above assignments.  

However, to maintain linearity of the formulation, the construct shown in (5.21) was 

employed.  These three constraint sets, employed together, set the value of 
q

fsk
z  

equal to the logical AND value of 
i

fs
x  and 

qi

fk
y , constrained to lie within some range 

qi

fs
U .    

 

1

qi i

fsk fs

qi qi

fsk fk

qi i qi

fsk fs fk

z x

z y

z x y

≤

≤

≥ + −

 
, , , , :

,τ α τ

∀ ∈ ∈ ∈ ∈ ∈

≥ ∈

i i

f

i i qi qi

s f k fs

f F i V s S k S q Q

U
 (5.21) 

Once the appropriate decision variables have been defined, a cost must be 

assigned to them.  To this end, a second term is added to the expectation shown in 

(5.19).  This function, shown in (5.22), represents the cost of airborne delays 

introduced as a result of flights receiving slot reassignments at the realization of a 

new capacity scenario.  The parameter φ  represents the cost ratio of airborne to 

ground delays, because reassignment delays are realized by flights already en route.  

While the reassignment delay may be either positive or negative, depending on 

whether the flight was given and earlier or later slot, only the magnitude is 

considered.  Again, a superlinear function of delay length is employed.  The cost of 

early and late “delays” are treated here as being equivalent, although in practice 

different values may be assigned to each of these.  The range 
qi

f
L  is defined such that 
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only flights that could already be en route for slot s under scenario q are included in 

the summation. 

 
1

0

2
qi i

ff

i qi qi

s k fsk

k Qs L

z
ε

φ τ τ
+

∈∈

Ω = −∑ ∑   (5.22) 

4.4 Case study 

To test the effectiveness of the model proposed in this chapter, a realistic 

case study is examined here.  The intent of this case study is to consider the output 

of this stochastic model to identify trends and patterns in the proscribed allocations.  

The same physical configuration and schedule data are used as in the earlier case 

studies, but the capacity data clearly must be changed to reflect the multiple 

possible outcomes. 

4.4.1 Stochasticity in capacity data 

Stochasticity in the capacity data is introduced by varying only a single 

parameter of the simple model of capacity used in this chapter.  For this case study, 

the effect of uncertainty regarding disruption end time at each resource is 

examined.  The disruption is initially planned to last 120 minutes at resource A and 

150 minutes at resources B and C.  Two additional scenarios are included with the 

disruption ending either 30 or 60 minutes early.  Only the airspace region (A) and 

one airport (B) are assumed to have variable disruption end times.  Airport C is 

assigned a fixed duration of 150 minutes, to help allow the examination of the value 

of the stochastic scenarios, as well as to prevent symmetry in the case study.  Each of 

the early end times is assigned probability 0.3, while the initially planned duration is 

assigned 0.4.  The scenarios are realized jointly, that is, both resources A and B end 

early by the same amount, or neither does.  These resource capacities are illustrated 

in Figure 4-8. 
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Airspace 
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Airport B 

 

Airport C 

 

Figure 4-8 – Capacity scenarios for each resource 

Two variations on the case study are used to examine the effect of scenario 

realization times.  In the first, the capacity increase is not anticipated – the end time 

of the disruption, or the onset increased capacity, is unexpected.  In the other case, 

30 minutes after the beginning of the disruption, the remaining evolution of the 

capacity becomes clear – this represents improved predictive ability or weather 

forecasting technology.  Unless otherwise noted, the results presented represent the 

case in which this lookahead ability is not present. 

0.0

0.5

1.0

0

5

10

15

8
:0

0

8
:3

0

9
:0

0

9
:3

0

1
0

:0
0

1
0

:3
0

1
1

:0
0

1
1

:3
0

C
D

F
 o

f cle
a

ra
n

ce

A
rr

iv
a

l 
ra

te
Local time

0.0

0.5

1.0

0

5

10

15

8
:0

0

8
:3

0

9
:0

0

9
:3

0

1
0

:0
0

1
0

:3
0

1
1

:0
0

1
1

:3
0

C
D

F
 o

f cle
a

ra
n

ce

A
rr

iv
a

l 
ra

te

Local time

0.0

0.5

1.0

0

5

10

15

8
:0

0

8
:3

0

9
:0

0

9
:3

0

1
0

:0
0

1
0

:3
0

1
1

:0
0

1
1

:3
0

C
D

F
 o

f cle
a

ra
n

ce

A
rr

iv
a

l 
ra

te

Local time



 

144 

 

Several categories of results are presented to illustrate the power of this 

model.  They are intended to evaluate both the properties of this model, as well as 

the value of stochastic information in the coordinated ATFM process.  Each set of 

results will be discussed in a separate subsection. 

4.4.2 Computational testbed 

The computational experiments in this case study were performed using 

powerful computer hardware and software.  The system used has four dual-core 

Intel Xeon X5355 processors and 12GB of memory.  It runs software in a 64-bit 

environment under Windows Server 2003 Enterprise edition. 

The optimization tests were conducted using Fair Isaac’s Xpress 2008b 64-

bit software.  Models were coded using the Mosel language and executed through 

Xpress’ graphical interface, Xpress-IVE.  The rule-based approaches were coded in 

MATLAB R2008a running on the same hardware. 

4.4.3 Summary results 

The first set of results in this case study considers the aggregate performance 

of this formulation using both the total and final delay objective functions according 

to both the total and final delay metrics, as shown in Table 4-6.   

 

Metric Objective 

Assigned delays (minutes) 

Expected 
Initial 

plan 
Scen. 1 Scen. 2 Scen. 3 

Total delay 

(minutes) 

Total 14894 16373 12952 14865 16373 

Final 14027 16182 11165 14380 15908 

Final delay 

(minutes) 

Total 11246 12223 9946 11244 12223 

Final 8619 9813 7272 8738 9540 

Table 4-6 – Comparison of assigned delays 

Several trends are apparent in this data.  First, the allocation developed by 

the final delay objective dominates that from the total delay objective, as both 

metric are minimized by the final model in expectation as well as for each scenario.  
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However, this trend is explained by two phenomena.  It is important to note that the 

two solutions represented here, evaluated according to both the total and final delay 

metrics, do not represent optimal solutions, although the optimality gap in each case 

was fairly small.  In addition, the data shown in Table 4-6 describe the properties of 

the allocations themselves – they do not represent the functional values being 

minimized. 

However, despite this initial quirk, the appropriate pattern in the delays 

assigned under each scenario is observed for each case.  The several scenarios 

represent early end times, and as such result in some delay savings. 

This aggregation represents only one possible examination of the data.  In 

the following sections, different aggregations will be examined to identify trends 

and draw conclusions about the efficacy of these various models. 

4.4.4 Comparison to deterministic results 

After confirming that the stochastic models proposed here generally perform 

as expected, the next issue of interest lies in comparing their performance with that 

of the models considering deterministic capacity.  In Table 4-7, the expected values 

of delays assigned by the stochastic models are compared to the values of delays 

assigned by the deterministic models.  Again, both objective functions and both 

metrics are considered. 

 

Metric Objective 
Capacity model 

Deterministic Stochastic 

Total delay 

(minutes) 

Total 14169 14894 

Final 14439 14027 

Final delay 

(minutes) 

Total 10723 11246 

Final 8929 8619 

Table 4-7 – Comparison of deterministic and stochastic model results 

Again, the stochastic model using the total delay objective function performs 

relatively poorly, for the reasons outlined above.  For both metrics, it produces the 
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poorest results.  Only expected results are compared here, however if these 

numbers are compared to those for each outcome in Table 4-6, then it becomes 

clear that the total delay objective with stochastic capacity may produce superior 

allocations, given the recourse actions used.  The stochastic model using the final 

delay objective takes full advantage of the recourse made available and produces 

allocations with superior properties in expectation to all those others.   

4.4.5 Comparison of treatment of various flows 

The next set of analyses examine whether the two objective functions 

continue to exhibit the same biases under stochastic capacity assumptions as they 

did under deterministic.  The total delay model prefers to maintain schedule order, 

while the final delay model prefers to prioritize flights using fewer resources.  Table 

4-8 examines the nature of the solution with respect to the number of resources 

used.  This provides some measure of the equity between flights.   

 

Number of 

resources 

Number 

of flights 
Obj. 

Arrival delays (minutes/flight) 

Exp. 
Initial 

plan 
Scen. 1 Scen. 2 Scen. 3 

1 177 
Total 41.8 45.3 37.1 41.7 45.3 

Final 18.3 19.2 19.3 17.4 18.2 

2 95 
Total 40.6 44.2 35.6 40.6 44.2 

Final 56.6 67.6 40.5 59.6 66.5 

Table 4-8 – Comparison of delays according to number of resources used 

This table makes it clear that the same property extends to stochastic 

capacity assumptions.  The delays assigned to single resource flights by the final 

delay model are markedly lower than those assigned for multi-resource flights.  In 

contrast, the delays assigned by the total delay model to both single and multi-

resource flights are very similar. 

The comparison of delays assigned to flights using either one or two 

resources is only a partial view of the bias and equity properties of these models.  A 
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more specific examination of equity and stochasticity is depicted in Table 4-9, with 

the expected minutes of delay per flight shown for each flow.  This division of flights 

follows the flows defined in Figure 2-17. 

 

Flow 
Number of 

flights 

Objective 

Total Final 

1 58 40.2 8.0 

2 48 36.7 54.3 

3 59 40.9 20.4 

4 47 44.5 59.1 

5 60 44.2 26.1 

Table 4-9 – Results according to flow and capacity scenario 

The same trends identified above, as well as in §2, continue in these results.  

Flows 2 and 4 are assigned uniformly larger delays by the final delay model, while 

flights 1, 3, and 5 receive smaller delays.  Flows 4 and 5 do receive larger delays in 

expectation.  This trend will be explored further in the next section. 

4.4.6 Comparison of delays by destination 

When specifying the stochastic capacity scenarios for this case study, airport 

C was chosen to lack variability.  This represents the condition in which either no 

information about alternate outcomes is available, or in which conditions are known 

with certainty, and so no random outcomes need be considered.  In the previous 

analysis, it seemed that flows 4 and 5, destined for airport C, received larger delays.  

In this section, this trend is examined in greater detail. 

One measure of the value of stochastic capacity information is provided in 

Table 4-10.  Resources A and B have stochastic capacity descriptions, while resource 

C does not – no early end times are considered there.  It is clear that flights destined 

for airport C receive generally larger delays than those destined for airport B.  The 

delays for flights destined to resources A and B may be reduced by the possible 

early end times in scenarios 1 and 2.  However, because there is no possibility of 
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early an early ending to the disruption at airport C, delays assigned under both the 

initial plan and realized under each scenario are equivalent. 

 

Destination 
Number 

of flights 
Obj. 

Arrival delays (minutes/flight) 

Exp. 
Initial 

plan 
Scen. 1 Scen. 2 Scen. 3 

A 58 
Total 40.2 44.2 34.9 40.1 44.2 

Final 8.0 10.8 2.0 10.4 10.8 

B 107 
Total 39.0 46.0 29.7 39.1 46.0 

Final 35.6 44.1 26.4 35.6 42.6 

C 107 
Total 44.3 44.3 44.3 44.3 44.3 

Final 40.6 41.8 40.5 40.5 40.7 

Table 4-10 – Comparison of delays according to destination 

4.4.7 Effect of flight length on model results 

Another bias that may be introduced when considering stochastic capacity 

outcomes is that against flights of different durations.  In Table 4-11 and Table 4-12, 

the effect of flight distance on model results is examined from the total and final 

delay objective functions, respectively.   

For the total delay model, it is important to note here that shorter flights 

experience greater decreases in assigned delay with improved capacity conditions 

(earlier scenarios), both in relative and absolute terms, compared to longer flights.  

This comes as a result of the Ration By Distance principle explored in (Ball, Hoffman 

and Mukherjee 2009).  It appears that this property extends to the multiple resource 

case when using the total delay objective; however quantifying this property for this 

more general model poses a considerably greater challenge. 

The results from the final delay model are somewhat different.  The same 

trend of increased savings with earlier end time scenarios is again observed.  

However, in this case, shorter flights tend to receive shorter delays.  Likely this 

arises as a result of the correlation between the length of a flight and the number of 

resources that it can feasibly visit.  Shorter flights are naturally more likely to visit 
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fewer resources; ergo the trend observed for decreased expected delays for shorter 

flights is another reflection of the model’s bias against multi-resource flights. 

 

Destination 
Number 

of flights 

Arrival delays (minutes/flight) 

Expected 
Initial 

plan 
Scen. 1 Scen. 2 Scen. 3 

30 61 46.3 50.8 40.2 46.4 50.8 

45 89 44.4 48.5 39.1 44.3 48.5 

60 62 38.1 41.7 33.4 38.0 41.7 

75 20 35.3 37.0 32.9 35.5 37.0 

90 19 36.8 38.5 34.5 36.8 38.5 

105 7 24.5 25.1 23.0 25.1 25.1 

120+ 14 37.9 41.3 33.6 37.6 41.3 

Table 4-11 – Delays by distance category for total delay model 

 

Destination 
Number 

of flights 

Arrival delays (minutes/flight) 

Expected 
Initial 

plan 
Scen. 1 Scen. 2 Scen. 3 

30 61 19.2 22.4 20.6 17.4 19.6 

45 89 32.2 34.9 30.1 31.4 34.3 

60 62 35.1 42.1 25.4 36.3 41.6 

75 20 34.5 40.4 24.8 37.1 39.8 

90 19 37.1 42.4 26.8 40.8 42.2 

105 7 40.5 44.5 30.5 45.2 44.4 

120+ 14 51.8 57.5 38.7 57.5 57.3 

Table 4-12 – Delays by distance category for final delay model 

Another method of visualizing these results is shown in Figure 4-9.  In this 

figure, the delay savings under each early end time are depicted, according to flight 

distance category.  The results shown in this manner clearly indicate that shorter 

flights realize greater savings upon early end times, while longer flights realize 

smaller savings, in keeping with the RBD principle.  The 120+ category represents 

an anomaly, likely due to the small number of flights in this grouping. 
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Figure 4-9 – Delay savings under early end times by distance 

4.4.8 Value of lead time in making decisions under uncertainty 

In Table 4-13, the value of forecast lead time is examined using a comparison 

of two cases for each objective.  The only difference between these two cases is the 

time at which the capacity variation becomes known, tq.  In the case without 

lookahead, the change to a scenario is known only upon its occurrence.  With 

lookahead, the true scenario is known at after 30 minutes of disrupted conditions.   

The obvious trend in these results is that having lookahead ability earlier, or 

gaining knowledge about the capacity scenario to be realized, has value in reducing 

delays.  However, it is also clear that this benefit is greater for allocations made 

under the total delay objective function that for those made under the final delay 

objective.  This reflects the differing priorities of the models in making allocations. 
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Case Obj. 

Arrival delays (minutes/flight) 

Expected 
Initial 

plan 
Scen. 1 Scen. 2 Scen. 3 

Without 

lookahead 

Total 41.3 44.9 36.6 41.3 44.9 

Final 31.7 36.1 26.7 32.1 35.1 

With 

lookahead 

Total 38.1 41.6 33.3 38.1 41.6 

Final 31.3 36.4 26.6 31.5 34.6 

Table 4-13 – Effect of varying capacity scenario realization time 

4.4.9 Computational performance 

A summary of the computational performance for each of the four cases 

described here is shown in Table 4-14.  Each run was terminated upon finding the 

first integer feasible solution, however in each case this solution was of reasonable 

quality.  No special routines were employed in solving these instances – only branch 

and bound was used. 

 

Objective Lookahead 
Solution time 

(seconds) 

Gap from 

best bound 

Total 
Without 

lookahead 
4226 2.8% 

Total 
With 

lookahead 
1074 0.4% 

Final 
Without 

lookahead 
33537 2.3% 

Final 
With 

lookahead 
15433 3.4% 

Table 4-14 – Computation performance 

It is obvious from these results that the formulations encompassing 

stochastic capacity are more difficult to solve than the deterministic models shown 

earlier, even for the modest sized problem examined in this case study.  This 

computational performance reflects a grave challenge to the utility of these models.  

The implications and strategies for mitigating this will be explored in the next 

section. 
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4.5 Practical considerations 

There are many reasonable considerations about practical applications of the 

stochastic model for coordinated capacity allocation presented in this chapter.  In 

this section, some of these will be specifically highlighted and discussed.  As before, 

many of the previously-mentioned considerations relating to employing 

optimization in a practical setting continue to apply. 

Complex integer programs reflecting stochastic systems face challenges both 

in development and wider acceptance.  Primarily, they are limited by structural 

complexity, resistance from system users, and poor availability of useful stochastic 

description of capacity evolution.  The first limitation may require considerable 

mathematical modeling efforts to overcome, and doing so has a distinct value in and 

of itself (Glover and Ball 2010), (Rios and Ross 2008), (Rios and Lohn 2009).  As a 

practical concern, the size of realistic problems, reflected both in the number of 

flights, as well as the number of joint scenarios that may be examined is certainly 

constrained by the strength of the formulation. 

One important concern in using a decision-making model with recourse is 

the application of the conditional plans developed for each outcome.  The severity of 

the impact of this concern depends primarily on the hypothetical policy used to 

implement these plans.  A distributed and collaborative system, as is operated today 

might only make use of the initial plan for allocations, and would allow airlines to 

make whatever plans for their individual flights upon the realization of any 

subsequent capacity changes.  Conversely, in a system that did not foster such 

collaboration, decisions from this model could be used to dictate all operations.  

This would represent a severe and likely unrealistic change from today’s 

operational paradigm. 

Fortunately, there is precedent for an intermediate solution.  Some research 

and development efforts for the Next Generation Air Traffic System (NextGen) have 
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been devoted to implementing conditional plans input by airlines (Metron Aviation 

2009).  Under this paradigm, airlines could submit plans corresponding to each of 

the discrete capacity scenarios.  The system operator could use a stochastic model 

as presented here to make the initial allocations, and to recommend optimal 

recourse plans.  Airlines would not be bound by these recommendations of course, 

and would be able to submit their own conditional plans. 

The third limitation identified here is the limited availability of information 

about uncertainty in capacity forecasts.  The utility of the stochastic model 

presented in this chapter hinges on the availability of stochastic descriptions of 

airspace and airport capacities.  The quality and availability of such data should be 

greater for airports than for arbitrary airspace resources.  Airport capacity 

constraints are easier to characterize because the airport system is better bounded 

and the constraints that define the capacity itself (physical separation of aircraft) 

are more concrete.  Airspace regions are more challenging for several reasons.  First, 

it is more difficult to sense and quantify the weather conditions in them because of 

their distributed nature.  Second, even if the weather conditions are well 

understood, the meaning of capacity is much more notional, given the large 

separations used in practice between aircraft and between disparate routes that 

may use the same region of disrupted airspace. 

Some research has been conducted to this end, primarily on characterizing 

the stochastic nature of the airport capacities..  Robust statistical techniques have 

been used to develop scenarios based upon very short term forecasts (Buxi and 

Hansen 2010), for longer term trends (Liu, Hansen and Mukherjee 2008), or for very 

specific situations such as San Francisco’s marine stratus layer (Cook and Wood 

2009).  Developing stochastic characterizations of capacity disruptions is an active 

and important area of research in ATFM. 
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The model presented here is particularly difficult, however, because it 

requires that scenarios for capacity outcomes be specified jointly for the several 

resources considered.  Thus, in approximating some joint distribution of outcomes, 

there will be some loss in fidelity, or an increasingly large number of scenarios 

needed to accurately represent capacity outcomes. 

However, despite these challenges for this model, advancements have been 

made in quantifying the weather uncertainty for arbitrary airspace resources.  

These do not necessarily incorporate the step of translation to meaningful capacity 

numbers, but represent an essential input to models such as that presented here.  

Models that quantify uncertainty surrounding convective weather are typically 

based primarily on numerical, statistical, or expert guidance methods.  Numerical 

methods provide inputs for some statistical or expert-guided models.   

Numerical weather forecasts utilize complex dynamical models of the 

atmosphere to produce forecasts of weather outcomes.  The most relevant model is 

the Rapid Update Cycle (RUC).  The underlying structure of the latest version of this 

model is described in (Benjamin, Dévényi, et al. 2004) and (Benjamin, Grell, et al. 

2004).  Multiple runs of this model are utilized to develop a probabilistic estimate 

for convective activity.  This output is known as the RUC Convective Probability 

Forecast (RCPF), as described in (Weygandt and Benjamin 2004) and (S. S. 

Weygandt, et al. 2008). 

One statistical weather model shown here is the Localized Aviation Model 

Output Statistics Program (LAMP).  This model is based upon the Model Output 

Statistics (MOS) technique in which the results from numerical weather prediction 

models are processed with regression models.  The numerical models do a good job 

predicting large-scale weather patterns and the regression models on their output 

are used to correct for variations in surface weather.  The latest iteration of the 

LAMP model was proposed in (Ghirardelli 2005).  The LAMP model produces many 
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statistical forecasts of weather activity, including ceiling (Weiss and Ghirardelli 

2005), winds (Wiedenfeld 2005), and thunderstorm probability (Charba and Feng 

2005).  An example of the thunderstorm probability data is shown in Figure 4-10. 

 

 

 
May 15, 2009 issued at 2100Z for +1-3 hours ahead 

(from AvMet Applications Inc.) 

Figure 4-10 – Sample LAMP thunderstorm probability 

Finally, some probabilistic weather products reflect a combination of the 

above models with expert guidance.  These include the Collaborative Convective 

Forecast Product (CCFP), which shows the expected occurrence of convection at 

two, four, and six hours ahead of the issuance time, and the Experimental Enhanced 

Thunderstorm Outlooks (EETO), which depicts contours representing regions of 

equal probability of convective activity.   

The CCFP is specifically designed to be used for strategic planning for en 

route operations in ATFM (Aviation Weather Center 2005).  This differentiates it 

from some other products that are designed to be applied in the terminal area or for 
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tactical decisions.  Regions of airspace are included in the CCFP if they meet 

conditions about size, coverage density, cloud tops, and forecaster confidence score.  

Information about expected movement of the region may also be included.  An 

example of several CCFP regions is shown in Figure 4-11. 

 

 
Confidence: 25-49% 50-100% 

Coverage: Sparse: 25-49% Medium:  50-74% Solid: 75-100% 

May 15, 2009 issued at 2100Z for +2 hours ahead 

(from AvMet Applications Inc.) 

Figure 4-11 – Sample CCFP regions 

The EETO is also intended for strategic use, given the lengthy time horizon 

and limited spatial and temporal resolution (Storm Prediction Center 2009), 

limiting its utility for tactical operations.  The contours are identified by expert 

forecasters using a variety of observations and numerical predictions to guide their 

assessments.  An example of the output of this forecast is shown in Figure 4-12. 
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May 15, 2009 issued at 1635Z for 2000Z-2359Z 

(from National Weather Service Storm Prediction Center) 

Figure 4-12 – Sample EETO forecast 

From this discussion, it should be clear that one of the primary concerns in 

using stochastic models such as that presented here for practical ATFM systems is 

the availability of data characterizing weather uncertainty.  This is an active 

research area, and one in which advancement is essential to permit the 

development of more sophisticated decision support tools. 

4.6 Conclusions 

In this chapter, the problem of coordinating flight to slot assignments in 

multiple congested resources under uncertain capacity conditions is considered.  

First, the impact of stochastic variations in several capacity parameters is 

quantified.  The results of this simulation showed that the model being evaluated is 

quite sensitive to some capacity parameters.  Results indicate that model sensitivity, 

measured in terms of elasticity of assigned delay with respect to variations in 

capacity, decreases with model size, measured in number of resources considered.  
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However, in most cases, the assigned delay is elastic with respect to capacity 

variations, in that a unit change in the capacity parameters yields more than a 1% 

change in assigned delay. 

That this ATFM model is so sensitive to variations in some capacity 

parameters suggested that more robust solutions may be derived through the use of 

a model that explicitly considers all possible modes of stochastic variation.  To this 

end, a two stage formulation with recourse was introduced.  Given a set of resources 

expected to be congested, for example several airports and an airspace region, and 

the set of flights expected to use those resources over some time horizon over 

several hours, a coordinated matching of flights to slots is developed.   

Using a realistic, but artificially generated case study, this model was 

evaluated.  The results of this analysis demonstrate this model functions as 

expected.  Delays are reduced versus the deterministic analog, and are assigned, to 

some degree, equitably.  The Ration By Distance principle is observed, as short 

flights are held back to provide a reserve pool of flights able to be dispatched and 

take advantage of newly available capacity. 
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5. Conclusions 

This dissertation has examined the problem of coordinating capacity 

allocation between several resources in the airspace system, including multiple 

airports and airspace regions.  Current practice, and many research efforts, treats 

each congested resource in the airspace system as an entirely independent capacity 

allocation problem.  In reality, these resources are connected by flights that use 

multiple of them in sequence.  Recognizing the conflict that may exist in solving 

these capacity allocation problems independently, several approaches were 

proposed in the three technical chapters of this dissertation. 

The first set of approaches to develop coordinate capacity allocation plans 

were presented in §2.  There, an integer optimization model was first described, and 

the properties of its resulting allocations analyzed.  This formulation was unique in 

the problem scope that it approached, as well as in the representation of time-

varying capacities using time slots, rather than aggregate time bins.  The analysis of 

the model allocations for two different objective functions demonstrated that 

optimizing a superlinear function of the arrival delay of each flight yielded 

allocations that disadvantaged flights using multiple resources whenever it was 

possible to prioritize several flights using fewer resources.  The essence of this bias 

is derived from the measurement of delay taking place only upon arrival.  In 

contrast, minimizing the sum of all “delays” assigned at each resource, whether they 

were realized as arrival delays or not, guaranteed maintenance of the flights 

schedule order. 

Recognizing these implications, and several of the general problems 

associated with employing optimization models in a practical distributed system 

such as this, rule-based heuristic solution techniques were next examined.  Two 

different priority schemes were evaluated – one of these mimicked the analytic 

principles of the optimization model, and the other prioritized individual resources 
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over others to mimic the operational systems employed today.  Results suggested 

that each of these models was able to generate quality allocations in very little time. 

Building further upon the results of the analysis in §2, several variations on 

this base optimization model were proposed in §3.  In this chapter, several 

approaches were presented to explicitly control the equity properties of the 

resulting allocations.  These efforts were undertaken to mitigate the phenomenon 

demonstrated earlier, wherein one class of users (multi-resource flights) may be 

disadvantaged at the expense of another (single resource flights).  Both constraints 

on the maximum permissible deviation from the fair allocation, as well as cost-based 

approaches were considered. 

The results of these equity models introduced several interesting trends.  

First, computational performance was improved in most cases, while still deriving 

desirable and efficient allocations.  However, the purpose of these models was to 

improve the equity properties of the resulting allocations, and this was also 

successful.  One important result from this analysis demonstrated the optimal 

solution when admitting flights-slot assignments only at or after the agreed earliest 

fair arrival time (that from the RBS allocation) did not vary significantly with the 

maximum deviation permitted.  That is, when only such negative deviations were 

permissible, there was nearly no marginal benefit to increasing the slack the model 

was permitted.  Thus, once this minimum feasible deviation has been identified, it 

seems that the optimal strategy, both to maximize efficiency (minimize average 

arrival delay) and to maximize equity (minimize maximum deviation) is to set the 

maximum deviation parameter equal to its minimum value. 

The first two technical chapters provided a comprehensive overview of 

methods and issues in solving coordinated capacity allocation problems under 

deterministic capacity.  In §4, the problem was reexamined with relaxed capacity 

assumptions.  First, the expected impact of variations in capacity was quantified 
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through an analysis that combined simulation and optimization techniques.  This 

study demonstrated that the basic optimization model proposed for this problem is 

quite sensitive to variations in capacity, often yielding several percentage points 

increase in average delay for a single percentage point change in some capacity 

parameters. 

Thus, recognizing that this problem itself is sensitive to uncertainty in 

capacity values, an optimization model was proposed that explicitly included this 

information.  This two-stage model with recourse made use of one set of the same 

constraints as for the deterministic formulation for each capacity scenario, and 

added linking constraints to ensure that feasibility was maintained across the 

scenario realization boundary.  The model was described in the context of modeling 

uncertainty surrounding the end time of a capacity disruption, but generalizations 

were proposed that would admit a greater range of possible capacity variations. 

The case study for this stochastic model indicated that more robust 

allocations could be developed by explicitly considering uncertainty surrounding 

the end time of a capacity disruption.  Because the model provides recourse actions, 

there is a mechanism to anticipate capacity increases and subsequently take 

advantage for them when they are realized.  In addition, the model results 

demonstrated that the Ration By Distance principle for minimizing expected delays 

under uncertainty seems to extend to the multi-resource case examined in this 

dissertation. 

There are several directions for interesting avenues of continued research 

that may be derived from this dissertation.  These focus on strengthening the 

optimization formulations presented, improving the rule-based methods, and 

incorporating greater realism to improve the argument that such models be used for 

designing better capacity allocations in operational systems. 
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Given the increasing congestion and complexity of the air traffic system, the 

first area of continuing work lies in reformulating or strengthening the formulation 

of the optimization models in each chapter.  The consideration different modeling 

assumptions, including capacitated time periods in place of slots, as well as the 

specification of a maximum delay parameter as used in (Bertsimas and Stock 

Patterson 1998) may help reduce formulation size.  However, these simplifications 

come at the expense of precision and reduce the ability of the modeler to include 

complex capacity profiles.  In addition, formulation improvements such as those in 

(Glover and Ball 2010) or computational techniques such as those in (Rios and Ross 

2008) have the potential to improve solution times and allow for the solution of 

larger case studies. 

In addition, the rule-based approaches specified in §2 have the potential to 

provide even more powerful tools than any of the optimization formulations.  

However, they require additional refinement to realize their potential utility.  In 

addition, a modified version of the final delay priority rule may provide a very useful 

mathematical result in demonstrating a heuristic approach that very closely 

approximates the results of an optimization model. 

Finally, because the models in this dissertation address such a practical 

problem, they and their derivative principles have the potential to contribute to 

improving efficiencies in the air traffic system.  To this end, an in-depth analysis of 

them with respect to their interactions with the practical and operational nuances of 

this system should be undertaken.  In this way, they may be better integrated with 

the body of research and development efforts currently underway to modernize the 

air traffic system. 
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