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In recent years, a considerable amount of money has been spent on Real-time 

Transit Passenger Information Systems (RTPISs), which provide timely and accurate 

transit information to current and potential riders to enable them to make better pre-

trip and en-route decisions. Understanding traveler responses to real-time transit 

information is critical for designing such services and evaluating their effectiveness. 

To answer this question, an effort is made in this dissertation to systematically 

conceptualize a variety of behavioral and psychological responses travelers may 

undertake to real-time transit information and empirically examine the causal effects 

of real-time information on traveler behavior and psychology. 

This research takes ShuttleTrac, a newly implemented real-time bus arrival 

information system for UMD’s Shuttle-UM service, as a case for empirical study. In 

Part 1 analysis, using panel datasets derived from three-waved online campus 



  

transportation surveys, fixed-effects OLS models and random-effects ordered probit 

models are estimated to sort out causal relations between ShuttleTrac information use 

and general/cumulative behavioral and psychological outcomes. In addition, a two-

stage instrumental variable model was estimated to examine the potential change in 

habitual mode choices due to real-time transit information use. The results show that 

with a few months of adjustment, travelers may increase their trip-making frequency 

as a result of real-time transit information use, and positive psychological outcomes 

are more prominent in both short and longer terms. 

In Part 2 analyses, using the cross-sectional dataset derived from the onboard 

survey, OLS models and ordered logit models were estimated to examine the trip-

specific psychological effects of real-time transit information. The results show that 

these trip-specific psychological effects of real-time transit information do exist in 

expected directions and they vary among user groups and in different scenarios. A 

finding consistent across two parts of analyses is that accuracy of information plays a 

greater role in determining traveler behavior and psychology than the mere presence. 

This research contributes to the general discussion on traveler behavior under 

advanced information by 1) developing an integrative conceptual framework; and 2) 

providing useful insights into the issue with much empirical evidences obtained with 

revealed-preference data and sophisticated modeling techniques. 
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Chapter 1: Introduction 

 

1.1 Background 

Public transit is widely recognized as an environmentally sustainable 

transportation mode. However, in the U.S. where low-density suburban expansion has 

prevailed for decades, transit’s market share of urban travel has been continuing to 

fall, as it often fails to compete with the automobile which offers great convenience 

and flexibility. U.S. transit market share dropped to 1.51 percent of the total in 20051. 

Facing the great challenge of providing adequate transit service in American cities, 

transportation researchers and policy-makers in this country have shown an 

increasing interest in learning from international experiences and exploring 

innovative approaches. One of the new strategies for high-quality transit service is the 

development of Real-time Transit Passenger Information Systems (RTPIS)2 (Pucher, 

2004). These systems provide timely and accurate transit information to current and 

potential riders to enable them to make better pre-trip and en-route decisions. 

While the part of real-time traveler information systems accessed and used by 

the travelers is often relatively simple (e.g., a sign giving the next bus arrival time), 

the “system” behind what the user sees can be rather complex (Raman et al., 2003). 

The high-view of a RTPIS is shown in Figure 1.1. Even though, as we will discuss in 

Chapter 3, a wide variety of transit-related information can be provided to travelers in 

                                                 
1 U.S. Urban Personal Vehicle & Public Transport Market Share from 1900. 
http://www.publicpurpose.com/ut-usptshare45.htm. Accessed July 10, 2007. 
2 An interchangeable term used in this dissertation is Real-time Transit Information System (RTIS). 
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real-time, the most frequently provided real-time transit information includes vehicle 

arrival times, and service disruptions and delays. In order to project vehicle arrival 

times, an Automatic Vehicle Location (AVL) system, mostly GPS-enabled, is needed 

to provide the real-time vehicle location data first. The system then uses the current 

vehicle location to compute the estimated arrival time at the upstream stops using 

data that may include vehicle speed, distance, travel time history, and traffic flow 

history. In many applications, a countdown to the arrival of the next vehicle (e.g., 

next bus in 5 minutes) is used. Note that these systems are typically integrated with 

transit management systems (see Figure 1.1). 

The distribution of real-time transit information takes many forms and can be 

at any geographical and temporal point. Figure 1.1 has shown some major media for 

information dissemination, including Internet, wayside/at-stop kiosks and Dynamic 

Message Signs (DMS), landline or cell phones, and wireless devices. Thanks to the 

variety and ubiquitousness of these Information and Communication Technologies 

(ICT)-enabled information dissemination media, travelers are able to access the real-

time transit information at any time point during a journey. In other words, pre-trip, 

en-route, or even post-trip information acquisition is possible and travel decisions can 

be altered according to the information anytime in the course of the trips.  
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Figure 1.1 Real-time Transit Information System (integrated with the Transit 

Management System) (Source: Raman et al., 2003) 
 

A considerable amount of money is being spent on real-time transit 

information systems all over the world (Cham et al., 2006). The underlying reasons 

for deploying this kind of system include both economic and social considerations. 

Transit agencies in particular expect these systems to boost the ridership, and hence 

revenues, by attracting new passengers and increasing transit usage of existing 
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patronage. From transit users’ perspective, the travel time savings caused by real-time 

transit information use is certainly an economic benefit. Besides, transit agencies may 

want to boost their public images by making such visible efforts to improve their 

service. Also from the perspective of users, they may greatly improve their personal 

waiting and riding experience during transit trips due to the presence of real-time 

information. Perhaps a deeper social consideration is that social inequity in American 

cities, worsened by suburbanization and segregation, may be narrowed to some extent 

by improving transit service for the disadvantaged population who are largely captive 

transit riders. 

Accompanying the implementation of such, often expensive, real-time 

information systems, many authorities are conducting their own evaluations to learn 

about the effects and to justify their investments. All underlying considerations 

presented above, either from providers’ or users’ point of views, can be ultimately 

attributed to the question of how individual travelers will use such systems and 

respond to them accordingly. The changes in travel behaviors and psychology at an 

individual level, no matter how small individually, can be summed up to show rather 

considerable aggregate changes in the market. As we will review in Chapter 2, 

understanding of such question to this date is very much sparse and inconclusive. The 

primary goal of this research is to develop a generic framework of traveler’s 

behavioral and psychological responses to real-time transit information and 

empirically examine the causal relationships between these behavioral and 

psychological outcomes and real-time transit information. 
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1.2 Research Question 

Relating to the general question of traveler behavior in the presence of real-

time transit passenger information, there involves a number of closely interrelated 

sub-questions from the perspective of service users (adapted from Lappin and 

Bottom, 2001): 

�  Need of information: what types of information would passengers want to 

access under what scenario? 

�  Willingness-to-pay: how much would they be willing to pay to acquire the 

information? 

�  Use of information: what are determinants of use or acquisition of real-time 

transit information when provided? 

�  Response to information use: how would travelers respond to the information 

they acquire, at once and in iteration? 

Each sub-question listed above is no doubt worth a certain amount of 

investigations in order to ascertain the real effects of RTPISs. The overarching 

research question this dissertation is particularly interested in is actually the last one: 

�  What are the traveler’s behavioral and psychological responses to real-

time transit information? 

The critical importance of this particular question lies in its direct relation to 

tangible and intangible effects and benefits of RTPISs at both disaggregate and 

aggregate levels. The network-level impacts of RTPISs can be determined by 

aggregating the individual responses of many travelers to the information, but in 

doing this the interactions of the travelers on the transit network must also be taken 
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into account. For example, individual travelers’ behavior under information may 

cause changes in transit network conditions (e.g. transit network assignment, 

congestion), and in turn affect other travelers’ behavior. Therefore, this dissertation is 

aimed at addressing this particular research question in order for providing theoretical 

basis for evaluation of the real-time transit information systems as well as providing 

some empirical insights into understanding of such issue. 

1.3 Research Objectives 

There have been a relatively small number of studies in recent years intended 

to answer above research question and explore the effects of real-time transit 

information. A detailed discussion of related literature is provided in Chapter 2. 

While all these studies offer some interesting features, as discussed in Section 2.2, 

they all embed major drawbacks in terms of drawing systematic causal relations 

between real-time transit information and traveler behavior/psychology. The main 

objective of this study, as we have mentioned above, is to develop a generic 

framework of traveler’s behavioral and psychological responses to real-time transit 

information and then empirically investigate the causal relationships between these 

behavioral and psychological outcomes and real-time transit information. More 

specifically, there are some sub-objectives that are: 

�  To review the critical points of the current knowledge concerning traveler 

behavior and psychology under advance traveler information in general and 

real-time transit information in particular. This review will provide sound 

theoretical basis and useful insights for understanding the topic of this 

research. 
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�  To develop a generic, comprehensive conceptual framework of individual 

traveler’s responses to real-time transit information, taking into account 

traveler behavior and psychology as well as different response time frames 

(general/cumulative vs. trip-specific responses). This framework will identify 

major components of effects, conceptually formulate linkages between real-

time transit information and these effects, and provide a basis for empirical 

investigation of this study and potential future research. 

�  To empirically analyze the traveler’s general/cumulative behavioral and 

psychological responses with a quasi-experimental research, as well as 

traveler’s trip-specific psychological responses to real-time transit 

information, using revealed-preference data. 

1.4 Research Scope 

The scope of this research is specified as follows: 

The RTPISs are briefly introduced in Section 1.1. The information such 

systems distribute to the public has more than one dimensions in terms of its contents, 

costs, places, and quality. The conceptual framework presented in Chapter 3 is a 

generic one in that the four dimensions of RTPIS are incorporated in such framework. 

However, the empirical investigation was actually limited to only one type of real-

time transit information – real-time bus arrival information – and its accuracy, due to 

the characteristics of the real-world case I look at. Real-time bus arrival information 

(e.g. a countdown to the arrival of the next vehicle in this case) is perhaps provided 

most frequently with a RTPIS, and how this kind of information influences traveler 

decisions is of primary interest to the studies in the related literature. In comparison 
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of other public transportation modes (rail mostly), bus is somewhat special in that the 

quality of real-time bus arrival information is highly dependent on the complexity of 

road transportation. Nevertheless, our research will shed some lights on how real-time 

transit information, in a general sense, will affect traveler’s behavior and psychology. 

This research acknowledges that a large portion of effects of real-time transit 

information system are more of a psychological nature. In other words, even if 

traveler behaviors hardly change as a result of real-time transit information 

acquisition, they will still make some changes in psychological conditions, which 

bring along some intangible benefits. In this regard, in addition to travel behavior, 

travel psychology under real-time transit information is particularly conceptualized 

and investigated in this research.  

It is generally agreed that there are two stages before effects of real-time 

transit information occur: first travelers must acquire the information and second the 

acquired information must lead to some behavioral and psychological changes of 

travelers. Information acquisition/use is referred to as that information is searched for 

or paid attention to by travelers and processed by her (Chorus et al., 2006a). The 

question of what determines people’s decision of acquiring information is an 

important issue too. And as a premise to traveler’s responses, the use of real-time 

transit information may directly determine the existence and/or magnitude of effects 

of real-time information. 

However, in order to sharpen the focus of research, this dissertation is only 

concentrated on the second stage of this process. That is, I would like to investigate 

the behavioral and psychological change as a result of acquired real-time transit 
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information, without explicitly accounting for the process of information acquisition. 

There is only one exception here: to address the potential self-selection bias, the 

process of information use was explicitly modeled as the first stage in the two-staged 

model for commuting mode choice. Please see Section 5.3 for details. 

1.5 Organization of this Dissertation 

The rest of dissertation is organized as follows. Chapter 2 provides a detailed 

review of a large body of literature concerning traveler behavior and psychology 

under advance traveler information in general and real-time transit information in 

particular. Chapter 3 presents a generic, integrative conceptual framework of traveler 

behavioral and psychological responses to real-time transit information, which lays 

down the foundation for understanding and examining behavioral and psychological 

effects of RTPISs. In Chapter 4, the research methodology of this dissertation is 

presented, including research design, surveys and measures, and analytical methods. 

Chapter 5 particularly looks at the general/cumulative behavioral and psychological 

responses of travelers, followed by Chapter 6, which turns to trip-specific 

psychological responses. Both chapters present results of a variety of empirical 

models and following discussions. The final chapter, Chapter 7, draws the conclusion 

of this study and presents recommendations for future research. 
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Chapter 2: Literature Review 
 

 

2.1 Introduction 

 Chapter 2 is intended to review the critical points of the current knowledge 

concerning traveler behavior and psychology under advance traveler information in 

general and real-time transit information in particular. This chapter is organized as 

follows. First, drawing on three pieces of review articles, Section 2 presents a review 

of both the empirical and the conceptual literature concerning the use and effects of 

Advanced Traveler Information System (ATIS) service. It provides sound theoretical 

basis and useful insights for understanding travel behavior under real-time transit 

information system. Section 3 reviews the relatively small body of literature that is 

most relevant to this dissertation’s topic and classifies them into two categories in 

terms of their methodological approaches. Advantages and disadvantages of two 

different approaches are discussed in this section. These two sections are mostly 

about travel behaviors and focuses on literature in the field of transportation. The 

following Section 4 turns to literature of psychology of waiting for service, trying to 

review the effects of providing information of waiting duration on customer 

psychology during waiting for services. Finally, based on reviews in previous 

sections, Section 5 points out several major gaps in the knowledge regarding this 

topic and provides this research with directions. 
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2.2 Traveler Behavior with Advanced Traveler Information 

Advanced Traveler Information System (ATIS) makes use of a variety of 

information and communication technologies to deliver to a wide range of travelers 

static or real-time information on traffic conditions, schedules, road and weather 

conditions, special events, tourist information, and so on. Providing travelers with 

such information is generally acknowledged as enabling travelers to make better 

travel choice and support better use of transportation facilities. Nowadays ATIS is 

widely available and becoming more advance every year. Policy makers in many 

countries have fairly high expectations of the potential effects of ATIS service on 

altering traveler behaviors in ways that would reduce passenger transportation 

externalities such as congestion, greenhouse gas emission, noise, etc. (e.g. 

Commission of the European Communities, 2001; Dutch Department of Transport, 

2002; UK Department of Transport, 2004). Not surprisingly there is a large body of 

literature which has, over the last two decades or so, investigated traveler’s behavioral 

change under the ATIS service.  Unfortunately, although ATIS does not necessarily 

exclude Real-time Transit Passenger Information System, only an extremely small 

portion of the literature is concerning traveler behavior with real-time transit 

information. Nevertheless, studies on traveler behavior under auto-oriented ATIS do 

provide with theoretical basis of and useful insights into that under transit-oriented 

ATIS. In this section, I will briefly review such topic by mainly drawing on three 

excellent review articles, i.e., Lappin and Bottom (2001), Chorus et al. (2006a), and 

Chorus et al. (2006b). All of them have reviewed a large number of relevant studies 
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from the past 20 years or so and provided complete pictures in regard with traveler 

behavior with ATIS. 

Relating to the general question of traveler behavior in the presence of real-

time traveler information, there involves a number of closely interrelated sub-

questions (Lappin and Bottom, 2001): 

�  Need of information: what types of information would travelers want to 

access? 

�  Use of information: what are determinants of ATIS use and information 

acquisition? 

�  Response to information use: how would travelers respond to the information 

they receive, at once and in iteration? 

�  Willingness-to-pay: how much would they be willing to pay to receive the 

information? 

Chorus et al. (2006a) summarized some dominant theories on travelers’ 

decision on information use, including utility maximization (Von Neumann and 

Morgenstern, 1947), satisficing (Simon, 1955), habit execution (Triandis, 1997), and 

effort-accuracy trade-off (Payne et al., 1993, 1996). All the theories, according to 

them, have in common that the use of information, being it for alternative generation 

or assessment, can be framed as a cost-benefit decision.  

Empirical findings related to ATIS use were reviewed by all works. A large 

number of variables have been identified as determinants of ATIS use, including:  

�  Travelers’ socio-economic characteristics. For example, high tendency of 

ATIS use was found among male, highly educated, high-income travelers 
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(Petrella and Lappin, 2004), professionals (Emmerink et al., 1996), groups 

who appear to attach greater importance to making an accurate choice (Hato et 

al., 1999), and travelers who have mobile phones (Polydorpoulou and Ben-

Akiva, 1998). Also distinct market segments were delineated among ATIS 

users based on their personal traits, such as control seekers, web heads, and so 

on (Mehndiratta et al., 1999). 

�  Trip purpose and context. Commuter trips (Petrella and Lappin, 2004) and 

especially business trips (Emmerink et al., 1996) seem to induce the search for 

and use of ATIS, perhaps mainly because they are arrival time-sensitive trips. 

Expected congestion or expected volatility in travel times (Hato et al., 1999), 

traveling in peak hours (Peirce and Lappin, 2004), longer trips (Targa et al., 

2003), and bad weather during the trips (Polydoropoulou and Ben-Akiva, 

1998) also increase the likelihood of ATIS use. 

�  Existence and characteristics of travel alternatives. Travelers tend to search 

for information regarding alternatives of which they are aware, refer or often 

use (Polak and Jones, 1993; Srinivisan et al., 1999). Also, if the alternatives 

are viable and promising for the trips to be made, information will be actively 

searched for and acquired by travelers. In addition to travel time and costs, 

information of seemingly less tangible characteristics of travel alternatives, 

such as convenience, privacy and comfort, is of interest to travelers to acquire 

for decision-making (e.g. Steg et al., 2001; Bos et al., 2004; Steg, 2005)   

�  Characteristics of ATIS service. The importance of information quality is 

always emphasized. Specifically, reliability, timeliness and coverage of the 
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information provided are keys to ATIS use (Polydoropoulou and Ben-Akiva, 

1998). Also, if the information use entails high prices or difficulty, the 

likelihood of ATIS service use is lower as the expected benefits of ATIS use 

may be outweighed by the costs (Chorus et al., 2006a).  

 

Next to information acquisition or use, it is natural to ask an adjacent 

question: how do travelers respond to such traveler information? Mainly based on 

empirical studies, Lappin and Bottom (2001) made a relatively complete list of 

potential responses to real-time traveler information at individual level, which can be 

classified into two categories: those involving trip-making context and those 

involving trip-making itself. According to them, trip context responses to ATIS 

include: 

�  Reduce stress and anxiety (see Khattak et al., 1995; Lee and Douglass, 2000). 

This is actually the only psychological response they have mentioned in the 

review.  

�  Affect non-travel activities at the trip endpoints. For instance, a Mitretek study 

(Shah et al., 2001) found that pre-trip ATIS use had reduced the number of 

late arrivals by 62% and the total late schedule delays by 72%.  

�  Adjust daily activity schedule. Reliable information on travel times and traffic 

conditions may allow people to eliminate some of the “slack” originally 

needed in their scheduling decisions to reduce the risk of disruptions due to 

worse-than-expected travel conditions. 
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�  Adjust habitual trip-making behavior. For example, Uchida et al. (1994) 

found that a VMS that provided predicted travel time information may 

significantly affect traveler’s strategic response (i.e., the change over time in 

selection of their habitual route). However, the reluctance to change habitual 

route is still strong, even when the VMS repeatedly showed it to be an inferior 

alternative. 

�  Adjust residence and/or employment location. A variety of changes brought 

by ATIS could in a longer run lead people to reconsider their residential 

and/or employment location choice. Through these kinds of effects, ATIS 

could ultimately have an impact on urban form and structure (Hamerslag and 

van Berkum, 1991). However, this kind of effect may not be noticeable with 

current scale of ATIS. 

 

Also the tactical trip-making or trip-specific responses to ATIS are: 

�  Decision to travel or not. Information about sufficiently bad travel conditions 

or alternatives could make travelers cancel their intended trips, particularly 

discretionary trips (Khattak et al., 1999). 

�  Choice of destination(s). A set of Internet-based stated preference survey was 

used to investigate the effects of ATIS on shopping trip destination and route 

choice (Krann et al., 2000; Mahmassani et al., 2003). They found that 

switching destination and route was prominent when information on traffic 

delays was presented. 
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�  Departure time choice. Departure time choice may be influenced by pre-trip 

ATIS use since the reduced travel time variability caused by real-time 

information may change when travelers choose to leave origins. The 

perceived accuracy of pre-trip information is important in determining 

whether commuters take account of it in their decision-making, including 

departure time choice (Khattak et al., 1991). 

�  Mode choice. Extremely unfavorable information about one mode, such as 

unexpected delays, may force travelers to turn to other modes. And very 

favorable information about one mode may, on the other hand, may induce 

travelers to shift from intended mode to it. Polydoropoulou and Ben-Akiva 

(1999) found a detectible effect of prescriptive recommendations to take 

public transport on mode shift, especially in situations of unexpected delay on 

roads predicted by ATIS. 

�  Route choice. Perhaps driving route change is the effect that ATIS use is most 

capable to generate (Khattak et al., 1999). Considerable empirical evidence 

has been found regarding driver route choice responses to ATIS information 

(e.g., Khattak et al., 1995).    

�  Incident diversion response. A special case of the route choice response 

occurs when a driver becomes aware of an incident or disruption affecting 

traffic conditions on the current route.  

�  Driving behavior. For example, the warning messages of adverse road 

conditions may reduce driving speed (Ng and Mannering, 2000). 
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�  Parking search and choice. Parking guidance and information (PGI) systems 

inform drivers about the availability and locations of parking. Allen (1993) 

has summarized four types of benefits of PGI systems, which may be 

quantified in modeling traveler responses to such parking related information. 

 

Not surprisingly, only few responses such as departure time choice, route 

choice, have received certain amount of empirical research attention. Others basically 

remained in the stage of conceptualization. Despite the number of publications in this 

field, Lappin and Bottom (2001) concluded, the understanding of traveler responses 

to ATIS is still in its initial stages. The current state of knowledge provides at best 

general qualitative conclusions. Nevertheless, two important messages were conveyed 

from the above review: 1) dynamic real-time information does make a difference in 

travelers’ behaviors; and 2) Using appropriate methodology and data, the effects of 

real-time information can be measured quantitatively. 

It is commonly acknowledged that information will not change the objectively 

measurable reality regarding travel alternatives, but rather affect a traveler’s 

perception of this reality (e.g. BenkAkiva et al., 1991) and in turn travelers base their 

travel choices, which include the traveler responses summarized above, on 

perceptions of, or beliefs regarding, reality instead of on the reality itself (e.g. Recker 

and Golob, 1976). Based on this theory, Chorus et al. (2006a) constructed two paths 

along which perceptions can be updated with information provision and further 

influence travel choices: 
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“[…]firstly, information on travel possibilities may serve in the 

process of generation of travel alternatives by updating a traveler's 

perception of availability (i.e. awareness) of travel alternatives, or in other 

words, his choice set. Secondly, information on travel costs may serve in the 

process of assessing the travel alternatives a traveler is aware of by updating 

his perception of characteristics of travel alternatives.”(Chorus et al., 2006a, 

p.137) 

 

 Based on these ideas, the following iterative decision scheme was presented 

by them for a traveler’s acquisition of travel information (Figure 2.1). Detailed 

explanation of this scheme can be found in the article. Similar scheme can also be 

found in early theoretical works (Ben-Akiva et al., 1991). This scheme is a rather 

good, generic framework for explaining the mechanism of information acquisition 

and its effect on trip-specific choice making and execution. The trip-specific 

responses listed above can be substituted for the travel choice square in the diagram, 

to represent conceptually how these responses take place with real-time information 

provision. 
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Figure 2.1 Traveler Information acquisition and effect on travel choice in 
iteration (Source: Chorus et al., 2006a) 

 

Another literature review also by Chorus et al. (2006b) focused on three types 

of behavioral responses to ATIS that are expected to reduce passenger transport 

externalities: 1) mode shift from private car to public transportation 2) departure time 

change, and 3) route change. On a basis of the review on empirical evidences from 

more than 15 years of studies, the authors have derived a number of generic, 

integrative insights, including: “it appears that our expectations with respect to the 

effects of information provision on travel choices in general may be mildly optimistic, 

particularly for behavioral changes not involving changes in mode-choice. In the 

longer term, the effects of information provision, when presented to travelers in 

suitable formats, are likely to be somewhat stronger than the short term effects, due to 

learning dynamics.” (Chorus et al., 2006b, p.354) 



 

 20 
 

A brief recap of these review articles, with a few hundred studies as backdrop, 

provides us with some sound theoretical basis and valuable insights for understanding 

travel behavior under real-time transit information, a special subset of ATIS service 

essentially.  

2.3 Traveler Behavior with Real-time Transit Information: Two approaches 

Traveler’s behavior under auto-oriented ATIS has been studied for about two 

decades with a body of abundant literature, as demonstrated by our review in previous 

section. When it comes to real-time transit information, however, there exist only a 

small number of studies to date.  

Parallel to what are asked regarding travel behavior with ATIS, from the 

traveler’s perspective, several interrelated questions concerning travel behavior with 

real-time transit information have been asked by scholars: What kind of transit 

information is useful and attractive to users? What determines travelers’ use of real-

time transit information? What is the value, measured by traveler’s willingness-to-

pay, of this kind of information? And how travelers would actually respond to real-

time transit information behaviorally and psychologically? Of particular interest to 

this dissertation is the last question. Previous studies addressing this question can be 

classified into two categories – effectiveness evaluation study and modeling study – 

in terms of their methodological approaches. 

The first approach is the empirical evaluation of transit rider reactions to real-

time transit information systems. When a RTPIS is being deployed in real world, the 

agency is likely to conduct some evaluation study in order to evaluate the effects and 

justify the investment. Typically both a before survey and an after survey among 
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transit users were carried out by transit agencies to obtain information on individual 

characteristics, use of and attitude toward transit service, and use of and attitude 

toward real-time information. Based on such data, statistical comparisons of before-

and-after aggregated indicators regarding effects of such systems are generally 

performed to see whether these systems have effectively generated some desirable 

outcomes.  

For example, the landmark survey that measured people’s reactions to the 

London Countdown system was reported by Smith et al. (1994).  This survey covered 

perhaps one of the most complete sets of issues related to real-time information, 

including system reliability, bus service reliability, ergonomics, passenger behavior at 

stops, passenger perceptions and valuation of Countdown, and ridership and revenue 

generation. Several frequently cited key findings are 1) video survey and interview of 

passenger behavior at stops suggested much reduced stress; 2) the average perceived 

waiting time dropped from 11.9 minutes to 8.6 minutes; and 3) passenger valued 

Countdown at an average of 31cents.  

Two well-known examples in the U.S. are Transit Watch (TW) in Seattle, 

Washington (Mehndiratta et al., 2000), and Transit Tracker in Portland, Oregon 

(Science Applications International Corporation, 2003). The agencies responsible for 

these systems both carried out surveys to evaluate system effectiveness. One of the 

important findings from the TW satisfaction evaluation survey was that although TW 

and the improved information is perceived as a real benefit by its users, the users did 

not seem to think that it increased their overall satisfaction with the transit experience. 

Likewise, the Transit Tracker survey found no significant difference between 
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satisfaction ratings before and after Transit Tracker was in place. It could be 

attributed to the fact that riders were already very satisfied before the deployment of 

Transit Tracker. In terms of ridership, the study found no changes in nighttime 

ridership at the bus stops as a result of deploying Transit Tracker. 

A recent study focused on psychological effects of real-time train arrival 

information (Dziekan and Vermeulen, 2006). The authors collected a panel sample of 

travelers (N=53) for before-and-after time points.  They found the perceived wait 

time decreased by 20 percent, while no effects on perceived security and ease of use 

were identified.  

An even more recent study was the evaluation of OneBusAway, a real-time 

arrival information system operated by King County Metro in Seattle, Washington 

(Ferris et al., 2010). The survey directly asked OneBusAway users to self-report how 

they respond to the system. Relying on respondents’ self-reports, the study shows a 

set of behavioral and psychological positive outcomes: strongly increased overall 

satisfaction, decreased waiting time, increased transit trips per week, increased 

feeling of safety, and even a health benefit in terms of increased distance walked. The 

limitations of self-report bias and lack-of-control-group were actually recognized by 

authors.  

The advantages of this type of studies are that they collect data in real-world 

environments and often look at both behavioral and psychological responses. 

However, these practice-oriented evaluation studies rarely make a careful experiment-

like design or apply sophisticated modeling techniques to empirical data. As a result, 

one could hardly infer the causal effects of real-time information on the behaviors or 
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perceptions because many confounding factors that influence the outcomes may very 

well exist.  

The second approach is modeling study. Stated-preference survey or 

simulation was often applied to model the effects of real-time information on transit 

passengers at individual level. For example, two studies utilized stated-preference 

surveys to explore potential impacts of advanced transit information on mode 

preference (Abdel-Aty et al., 1996; Abdel-Aty, 2001; Reed and Levine, 1997). 

Travelers were asked how likely they would consider transit use when given certain 

advanced transit information. Both studies found promising potential of advanced 

transit information (real-time schedule information in second case) in increasing the 

preference for transit. 

Another kind of rider behavior that was researched was passenger path choice 

with real-time transit information. Hickman and Wilson (1995) developed one of the 

first dynamic path choice frameworks that take into account information on bus 

arrival at stops and its accuracy. It was assumed that the strategy of passengers to 

board a vehicle is to minimize total expected travel time, which can be informed to 

passengers through real-time information. To evaluate path choices and travel time 

benefits resulting from the information, the model was applied to a case study 

corridor, using a computer simulation to model vehicle movement and passenger path 

choice. The results suggest that real-time information yields only very modest 

improvement in passenger service measures such as the travel time and the variability 

of trip times, but significant changes in path assignments. Further they found 

improving information accuracy has only a slight effect in improving travel times. 
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A recent study by Gentile et al. (2005) developed a general framework for 

investigating passenger’s path choice in transit networks when online information 

about carriers’ arrival times at stops are available. They assumed that passenger’s 

ultimate objective is to minimize the total travel time. The numerical example found 

drastic differences in terms of proportions of passengers boarding slow and fast 

common lines, while the differences on total travel times are less important yet 

relevant. 

The study by Mishalani et al. (2000) is unique in that it took passenger utility 

as the dependent variable. The utility is assumed to be a function of the difference 

between the estimated waiting duration acquired by the passenger upon arriving at the 

bus stop and the actual time that passenger waits for the bus. Then passenger arrivals 

and transit bus operations were simulated as a stochastic system. Passenger utilities 

under different real-time information provision scenarios were computed based on 

simulation. The problem of this study is the vague definition of utility and 

unconvincing utility function. It is not clear as why utility was defined based solely 

on the consistency of predicted and actual waiting time.  

A recent study by Chorus et al. (2006c) first presented a theoretical model of 

travel information use and effect by incorporating Bayesian updating into a regret-

based framework of travel choice, and used numerical simulation to model non-

habitual car drivers’ mode choice with presence of real-time transit information. Their 

results showed that even in the case where transit information is acquired, and the 

message is favorable to transit, its impact on mode choices will be limited. Thus the 
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study suggested conservative estimates of the impact of transit information provision 

on modal shifts. 

With generally sound theoretical frameworks and sophisticated modeling 

techniques, these modeling studies have provided useful insights about how travelers 

would respond to real-time transit information. The major weakness of this kind of 

studies is that they used stated-preference and simulation methods rather than 

revealed-preference data, which is likely due to the lack of real-world cases of this 

emerging technology application. The stated-preference approach is characterized by 

the hypothetical nature of the exercise. Respondents are placed in unfamiliar 

situations in which complete information is not available. In reality, travelers would 

not necessarily respond in the ways stated-preferences and simulations suggest. 

Therefore this approach suffers from an inherent lack of external validity as no real-

life behavior is observed. 

The literature has painted a somewhat mixed picture at best. On the one hand, 

stated-preference and simulation studies generally found positive influences of real-

time information on mode shift or other travel behavior. On the other hand, real-

world applications have not provided definitive evidence of increase in ridership due 

to real-time transit information, although positive psychological responses were 

usually detected. Therefore, the small volume of empirical research completed to date 

and the disparities among the findings point to the necessity for further study. 

2.4 Psychology of Waiting with Real-time Information 

Waiting is an important component of transit experience. For a typical transit 

trip, 10-30% of travel time is spent waiting (VTPI, 2010). In transportation studies, 
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total transit trip time is often decomposed into in-vehicle time and out-of-vehicle time 

(including walking time/access time and waiting time). As a major part of out-of-

vehicle time, passenger waiting time is found to be more onerous than in-vehicle time 

and often cited as one of the most important factors that influence choice of transit 

modes (see Wardman (2004) for a review). However, waiting-time savings is not only 

of great economic importance, but also existence of other costs of a psychological 

nature associated with waiting should not be ignored. 

2.4.1 Psychology of Waiting for Service 

People regard time to be a valuable resource and actively consider time costs 

during decision makings. Perceptions and attitudes of consumers waiting time are of 

great importance for service industries in which consumer waiting has a significant 

impact on satisfaction and global evaluation of service quality (Durrande-Moreau and 

Usunier, 1999). 

As noted by Katz, Larson, and Larson (1991), there are basically two ways for 

a service provider to manage waiting. The first is to decrease the actual length of wait 

through operation management techniques (e.g., increase bus frequency in transit 

setting). In addition, it has been argued that managing the psychological experience of 

a customer’s waiting can reduce perceived waiting time and thus is as effective as 

reducing the wait time itself (Maister, 1985). A seminal article by Maister (1985) has 

theoretically proposed eight “propositions” of psychology of waiting lines. Two more 

propositions were incorporated later (Davis and Heineke, 1994; Jones and Peppiatt, 

1996). Therefore, ten universally-recognized propositions on the psychology of 

waiting are as follows: 
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1) Unoccupied time feels longer 

2) Pre-process/post-process waiting feel longer than in-process 

3) Anxiety makes waiting seem longer 

4) Uncertain waiting is longer than known, finite waiting 

5) Unexplained waiting seems longer 

6) Unfair waiting is longer than equitable waiting 

7) People will wait longer for more valuable services 

8) Waiting alone feels longer than in groups 

9) Physically uncomfortable waiting feels longer 

10) Waiting seems longer to new or occasional users 

Building upon above conceptual propositions, researchers have identified a 

number of individual and situational factors that influence people’s psychological 

responses to waiting. For many years, scholars have examined the effects of these 

situational factors empirically in order to provide implications for manipulation of 

waiting psychology. Durrande-Moreau (1999) surveyed 18 empirical studies on a 

comparative basis. 

Prior studies (Taylor and Fullerton, 2000; Durrande-Moreau, 1999) have 

identified three levels of outcome variables of waiting experience. The first level is 

perceived waiting time, defined as the “customer’s perception of the length of time 

over which the person is engaged in waiting” (Taylor and Fullerton, 2000, p.174). 

The second level is affective reactions to the wait, which is referred to as feelings and 

emotions people have toward the wait. Stress, anxiety, irritation, frustration, and 

boredom are commonly mentioned concepts of affective reactions in the context of 
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waiting for service. The third level is consumer’s evaluation of, or global satisfaction 

with, service quality provided. This service evaluation is often assessed as the 

ultimate dependant variable of service waits. And empirical results suggest that it is 

less sensitive to wait experience because the wait is just one element of the service 

delivery. 

What is of great relevance to this dissertation is one of Maister’s propositions 

that “uncertain waiting feels longer than known waits.” Based upon this proposition, 

it is often hypothesized that providing information about waiting length would 

decrease the uncertainty, and thus generate positive effect on waiting experience. 

Theoretical discussions tend to favor this argument (Maister, 1985; Osuna, 1985; 

Larson, 1987). For instance, Osuna (1985) developed a theoretical basis for analyzing 

building up process of stress during the waiting period. The results gave theoretical 

support to the providing “real-time” information to people in waiting situations, 

particularly in the operation of public transportation systems.  

But empirical evidence from a limited number of existing studies has been 

mixed so far. For example, Ahmadi (1984) found that when informed of waiting 

length, people tend to report shorter perceived waiting time for short waits of less 

than 5 minutes. Hui and Tse (1996), however, found duration information provision 

influenced perceived waiting time only in longer waits (15 minutes). Katz et al. 

(1991) in their field work in a bank found that providing wait time information 

reduced perceived waiting time but did not affect stress levels and satisfaction of 

customers. Similar results were reported by later empirical studies in other settings 

(Antonides et al., 2002; Groth and Gilliland, 2006). Hui and Zhou (1996) even found 
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no effect of providing waiting duration information on perceived waiting time. And 

according to them, the more favorable attitude toward service due to waiting duration 

information can be attributed to increased sense of control over wait and higher 

acceptance level of wait. 

Besides several laboratory experiments, most field experiments were carried 

out in settings of post offices, shops, banks, hospitals, or telephone services. Very 

little has been focused on psychologies of waiting for public transportation.  

2.4.2 Passenger Actual and Perceived Waiting Time 

As concerns the study of waiting time, there are two interrelated concepts 

involved: actual waiting time and perceived waiting time. The definitions of two 

concepts are as follows (Durrande-Moreau and Usunier, 1999).  

�  Actual waiting time: objective time individual spends in waits, based on 

reality, as measured by clocks, watches, and chronometers.  

�  Perceived waiting time: subjective time individual experiences in waits, based 

on perceptions. Subjective time is often depicted as perceptual, flexible, 

changeable, and elastic, susceptible to various factors.  

In transportation field, objective time is of primary interest to researchers and 

practitioners, as time savings is one of the major economic incentives for 

transportation policy and projects.  

Passenger waiting times, in objective sense, depend on patterns of passenger 

arrivals and bus arrivals at boarding stops. The latter is directly influenced by the 

schedule.  
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Traditional model suggests that expected passenger waiting time is one-half of 

the transit headway (Hall, 2001). This is based on the following assumptions: (a) 

passengers arrive at stops randomly; (b) passengers get on the first vehicles that 

come; and (c) the service is reliable, i.e. the vehicles arrive regularly. When service 

reliability is considered a problem, it is found that the average passenger waiting time 

is expected to be longer. Therefore, when the third assumption is relaxed, the well-

known model was developed to estimate the expected waiting time shown as follows 

(Mohring, et al., 1972): 

� � � �
� ��

� 	


 	 �

�
                                                      (2.1) 

Where 

W is expected passenger waiting time, 

h is mean headway between vehicles, and 

S2 is variance of headway between vehicles. 

Empirical results show that the first assumption (i.e. random distribution of 

passenger arrivals at stops) holds true when headway is small (e.g., random arrivals 

dominate below a short headway threshold between 5 and 10 min; Jolliffe and 

Hutchinson, 1975). When headway becomes longer or transit service is more 

infrequent, it is expected that some passengers might plan their arrivals at the stops 

according to timetables to reduce their waiting times. That is, passenger arrivals 

would become less random as headway increases.  

In this regard, it is generally theorized that passengers fall in two classes, 

those who are aware of schedules and plan their arrivals (“aware” passengers), and 

those who are not (“unaware” passengers) and arrive at random (Jolliffe and 
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Hutchinson, 1975; Turnquist, 1978; Bowman and Turnquist, 1981). Empirical 

evidences show that those aware passengers arrive by non-stationary patterns, with 

peak arrival rates a few minutes before scheduled vehicle departures. In coordinating 

their arrivals with timetables, “aware” passengers implicitly trade-off the risk of 

missing their buses against the added time of allowing larger safety margins (Hall, 

2001). 

There appears to be little research on how trip characteristics, passenger 

demographics and stop environment are related to passenger arrival patterns and 

waiting time at stops. Fan and Machemehl (2009) developed an OLS model 

investigating the relationship between observed passenger waiting time and a set of 

explanatory variables including bus headway, service reliability, location, traffic 

periods, gender, ethnicities, and access modes. Hall (2001) also built an OLS model 

with reported waiting time as a function of a host of trip and rider characteristics. 

Their results show that, in addition to traditionally recognized determinants (i.e. 

service frequency and reliability), some of the trip and passenger characteristics may 

significantly influence passenger waiting time (either actual or reported), such as 

driving as access mode, need of arriving by a set time. In Hall’s study, knowledge of 

schedule has a highly significant and negative effect on reported waiting time, 

meaning that “aware” passengers tend to experience shorter waiting times. 

 

Literature of psychology has shown that, although highly dependent of each 

other, actual time may not be readily translated into perceived time. Psychologists 

have found a number of temporal and non-temporal variables that might account for 
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the differences in time perception. Allan (1979), on the basis of a few early 

experiments, has concluded that a linear function probably exists between perceived 

and subjective time. It has been consistently shown by empirical studies that the 

function between subjective and objective time represents that the subject's response 

is a simple linear transformation of perceived time. Other factors that may influenced 

perceived durations include non-temporal characteristics of activities (e.g. the nature 

of the activity, personal enjoyment from the activity), personal characteristics (e.g. 

male vs. female), or spatial schemes (Hornik, 1984).  

There exist a small number of studies that examine the correlation between 

actual and perceived waiting times in the context of public transportation. Moreau 

(1992) found that passengers overestimate the average waiting time (of 3.5 minutes) 

by 14%. The shorter people waited, the greater the overestimation of the waiting time. 

With 5-minute waiting time, the perceived waiting time is reported correctly, and 

with up-to-15-minute waiting time, the perceived time is slightly underestimated.  

The same pattern is reported in Van Hagen et al. (2007). Collecting a small-sized 

sample from a stop (N=83), Mishalani et al. (2006) reported a 14.6% overestimation 

of mean perceived waiting times (6.61 vs. 5.77 minutes).  

2.4.3 Summary 

Psychology of waiting for service is a subfield that has been explored for 

many years. Theoretical discussions agree that providing information about waiting 

duration will decrease the perceived waiting time, positively influence affections of 

waiting, and in turn increase customer’s overall satisfaction with service. Empirical 

investigations of this proposition give mixed information so far, suggesting that the 
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aforesaid benefits of providing information of waiting duration may not occur or may 

take place under certain conditions.  

Public transportation is a kind of special service provided to the public by 

transit agencies. Waiting for transit service constitutes a crucial component of transit 

trips. Transportation researchers and practitioners mostly concentrate their eyes on 

actual waiting time as time savings in waiting are one of major benefits of transport 

policies and projects. Thus they tend to neglect psychological aspects of waiting for 

transit service. When it comes to real-time transit passenger information provision, 

using before-and-after indicators, many project evaluation studies have shown that 

real-time transit vehicle arrival information may decrease perceived waiting times and 

cast positive psychological effects on passengers (See Dziekan and Kottenhoff, 2006 

for a summary).  

However, so far there exists little study that draws on psychological 

framework to model impacts of transit information on passenger waiting psychology. 

2.5 Chapter Summary 

  From above review of relevant literature, several knowledge gaps in 

understanding traveler behavioral and psychological responses to real-time transit 

information can be identified as follows: 

�  Although there is a fairly large body of literature on traveler behavior with 

ATIS, the real-time transit information, as a subset of ATIS service, and its 

effects on travelers have only been studied with a limited number of studies. 

And the research to date employed two types of approaches, either of which 

has intrinsic weaknesses in inferring real and realistic causal relationships 



 

 34 
 

between travel decisions and real-time transit information. And a mixed 

picture has been painted so far based on previous research on this topic. 

Research using revealed-preference empirical data collected in real-world 

settings, valid research design, and sophisticated inference techniques is 

needed so badly, if we want to deepen our understanding of such particular 

question.  

�  There is a lack of an integrative, comprehensive conceptual framework for 

understanding such issue. Effects of real-time transit information were put 

forward fragmentally. An integrative, comprehensive conceptual framework 

linking real-time transit information with all major potential effects in a logic, 

systematic way is needed as a basis for further investigations.  

�  Psychological responses are largely neglected in the previous research 

framework of traveler behavior with ATIS, probably with stress reduction as 

an exception. However, when it comes to real-time transit information, its 

potential psychological effects are not ignorable since travelers’ responses to 

such information may of a psychological nature mostly. Also some of those 

psychological effects were identified in practice-oriented system evaluations, 

psychological outcomes of real-time are hardly incorporated into the 

framework as well as in scientific examination in the transportation field. 

�  Literature on psychology of waiting for service has provided some theoretical 

basis and empirical evidences regarding psychological costs and outcomes of 

providing real-time information to customers in waits. However, very little is 

set in the context of public transportation.  
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This dissertation aims at filling in some, if not all, of these gaps by 1) 

proposing an integrative conceptual framework, 2) carefully designing research 

structure and collecting revealed preference data from a case of real-world real-time 

transit passenger information system; 3) modeling both behavioral and psychological 

responses to such information with sophisticated modeling techniques.  
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Chapter 3: Conceptual Framework 

 

3.1 Introduction 

Potential traveler behavioral and psychological changes due to real-time 

transit information were put forward and explored by a variety of studies, including, 

but not limited to, modal shift (Abdel-Aty et al., 1996; Reed and Levin, 1997; Abdel-

Aty, 2001; Chorus et al., 2006c), path choice (Hickman and Wilson, 1995; Gentile et 

al., 2005), increased transit trips (Ferris et al., 2010), adjusted behavior such as 

utilization of wait time and stop change (Nijkamp et al.,1996); reduced perceived 

waiting time (Smith et al., 1994; Infopolis2, 1998; Dziekan and Vermeulen, 2006), 

increased feeling of security (Infopolis2, 1998; Dziekan and Vermeulen, 2006), 

increased ease-of-use (Stradling, 2002; Dziekan and Vermeulen, 2006), reduced 

stress or anxiety (Schweiger, 2003; Smith et al., 1994), increased customer 

satisfaction (Mehndiratta et al., 2000; Science Applications International Corporation, 

2003).  

However, effects of real-time transit information put forward by previous 

research were fragmental at best, rather than under an integrative, systematic 

framework. Dziekan and Kottenhoff (2007) tried to use a mind map to depict seven 

possible main effects of at-stop real-time information displays (Figure 3.1). This 

mind-map format framework is insightful yet incompetent to systematically capture 

the relationships among real-time transit information and potential traveler behaviors 

and psychology.  
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Figure 3.1 Mind map on possible effects of at-stop real-time information displays 
(Source: Dziekan and Kottenhoff, 2007) 

 
This chapter is aimed at presenting a conceptual framework for understanding 

and examining behavioral and psychological effects of real-time transit information. 

The organization of this chapter is as follows: the overarching conceptual framework 

and hypotheses are presented in Section 2, followed by two sections elaborating 

traveler trip-specific responses as well as general or cumulative responses in details 

respectively. Finally, section 4 summarizes this chapter. 

3.2 Overarching Framework and Hypotheses 

The conceptual framework contains the key factors, the variables and 

presumed relationships amongst them (Miles and Huberman, 1994). The overarching 

conceptual framework is presented in Figure 3.2.  
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Figure 3.2 Overarching conceptual framework of traveler responses to real-time 
transit information (Source: Author) 

 

Let us suppose that some transit agency provides travelers with real-time 

information about transit service (e.g real-time bus arrival information, bus seat-

availability information) with intention to induce a change of travel-related behavioral 

change in ways that are beneficial to the transportation system and generate positive 

change in attitudes towards and perception of public transit service. In order for such 

change to occur, first travelers must acquire the information and then the acquired 

information must lead to the desirable behavioral and psychological outcomes. 

Information acquisition/use is referred to as that information is searched for or paid 

attention to by travelers and processed by her. However, this dissertation, as I 

describe in Chapter 1, is only focused on the second stage of this process. That is, I 

would like to examine the behavioral and psychological change as a result of acquired 

real-time transit information, without accounting for the process of information 

acquisition. 
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Traveler responses to real-time transit information are classified into two 

constructs – traveler behavioral responses and traveler psychological responses. The 

former refers to what travelers physically act upon real-time information. The latter 

means the traveler’s change in psychological outcomes (e.g., attitudes and 

perceptions) concerning transit trips and service due to real-time transit information. 

It has been generally acknowledged by scholars and practitioners that, unlike ATIS 

for drivers, a large portion of effects of real-time transit information system are 

considered to be more of a psychological nature (Dziekan and Vermeulen, 2006). 

Bearing that in mind, many transit agencies paid particular attention to psychological 

benefits when they considered deploying the systems and many evaluation studies 

tried to assess these psychological benefits. This dissertation joins these scholars and 

practitioners by arguing that traveler’s psychological responses should be conceived 

as an indispensible component of traveler responses to real-time transit information, 

when it comes to considering and assessing effects of real-time transit passenger 

information systems.  

Further, each type of responses is divided into two categories in terms of the 

response time frame. Real-time information directly influences a transit user’s 

behavioral decisions and psychological conditions around specific transit trips he or 

she engages in. Trip-specific behavioral and psychological responses comprise the 

first category. 

Given a much longer response time frame, with cumulative experience from a 

certain number of stand-alone journeys, traveler’s general travel behavior and general 

perceptions on transit service may adapt due to acquisition of real-time transit 
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information. This is what I call general traveler responses. The general activity-travel 

behaviors can be either a simple accumulation of deliberate trip-specific travel 

decisions or some change in habitual travel behaviors. For example, for every trip, a 

traveler deliberately shifts the mode choice from intended private car to transit 

because of favorable information. Her cumulative number of trips by transit mode 

increases accordingly. Alternatively, a few trials of transit under real-time 

information may make people aware of the attractiveness of transit, break their bad 

travel habit (e.g., driving to work), and then build a new habit in favor of transit. 

As for psychological responses, psychological literature suggests that the 

choice of temporal reference period (i.e. response time frame) shall be an important 

consideration in assessing the psychological conditions (Terry et al., 2005). Details 

about trip-specific and general responses will be elaborated in the following two 

sections. 

The construct of real-time transit information has several major dimensions: 

1) Information content.  

Abdel-Aty (2001) has found that commuters seek several types of transit 

information using a stated-preference survey, including information about operating 

hours, frequency of service, fare, transfers, seat availability, walking time. Many 

types of such transit information are potentially able to be provided real-time to 

transit users. The white paper on real-time transit information issued by FTA (2002) 

provides a summary of various types of real-time information that can be provided, 

such as (adapted from FTA (2002)): 
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�  Estimated arrival or departure times for, or “countdown” to, the next 

vehicles, 

�  Vehicle locations, 

�  Service disruption/delay information, 

�  Seat availability for the next vehicles, 

�  General information on service area, fares, routes, and travel times, 

�  Information on transfers and other local/regional transportation services, 

�  Other real-time information, such as date, time, and weather, and 

�  Peripheral information, such as advertisements, security related 

information and updates during terrorist/emergency events, and other 

general events in the local area.  

It is a fact that the first type of real-time information (i.e., predicted real-time 

transit vehicle arrival times) is most often referred to when real-time transit 

information is mentioned and comprehended. And this dissertation does focus on this 

type of advanced transit information. In spite of that, it is noteworthy that other types 

of real-time information may also very much influence traveler’s choice and 

psychology. For instance, a recent study by Kim et al. (2009) has shown that real-

time seat availability information does have an effect on passenger choice of a bus.  

2) Place of information.  

Thanks to the advancement of modern information and communication 

technologies, real-time transit information can be disseminated via a variety of media. 

The white paper by FTA (2002) has summarized those interactive or non-interactive 

media including Internet, Dynamic Message Signs (DMS), Interactive voice response 
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(IVR) via telephone, video monitors, interactive/non-interactive kiosks, PDAs, 

Wireless Application Protocol (WAP)-enabled mobile telephones, cable television, 

and Short Message Service (SMS). Peng and Jan (1999) assessed some of the means 

of advance transit information delivery. And a recent stated-preference research 

(Caulfield and O'Mahony, 2009) shows that providing real-time transit information 

via a mobile phone short message service (SMS) can give riders very high utility.  

However, it is believed by the author that, what matters most to use and effect 

or real-time transit information is where such information is disseminated by media 

and acquired by travelers, rather than the dissemination media per se. The variety of 

media for information dissemination offers high flexibility of place of information 

use. Two fundamentally different types of information acquisition places are pre-trip 

information acquisition and en-route information acquisition (e.g. access, at-stop, 

onboard, and at-transfer-point information acquisition). Specifically, travelers can 

search for pre-trip information to update perceptions and make pre-trip travel choices 

(such as mode, path, departure time); or they can acquire information in the course of 

trip, and thus modify their behaviors and psychology accordingly. Of course, one can 

argue that post-trip information acquisition is also possible. But generally speaking, 

the use and effects of such post-trip information are marginal. 

3) Cost of information.  

The literature generally states that there is among travelers a low willingness-

to-pay for information provided via ATIS service (e.g. Khattak et al., 2003), 

especially for transit information among passengers (Molin and Chorus, 2004), as 

transit riders mostly feel they have already paid for such information by purchasing 
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tickets. In addition to monetary costs of information, searching for or acquiring 

information may also entail other costs depending on the ease-of-use or accessibility 

of the system, such as time costs and psychological costs associated with information 

acquisition and comprehension. Those monetary and non-monetary costs of real-time 

transit information are expected to not only determine whether information is going to 

be used, but also affect traveler’s choice and perceptions of transit service after using 

it. 

4) Information quality.  

Almost every study on ATIS stresses the importance of information quality. 

Accuracy, reliability, timeliness and coverage of the information are conceived as the 

key to ATIS use and traveler’s responses. A DOT’s white paper on data quality in 

ATIS applications (Ahn et al., 2008) defines six measures: accuracy, completeness, 

validity, timeliness, coverage, and accessibility. The accuracy of real-time 

information is always one of the top concerns for ATIS service. For example, a 

stated-preference study (Fox and Boehm-Davis, 1998) showed that 40 percent 

accuracy of traffic information would not support user trust and compliance, but that 

60 percent accuracy probably would. The white paper (Ahn et al., 2008) also 

recommends only 10
17% error range for travel time estimation in terms of prediction 

accuracy. The distinction between accuracy and another seemingly similar measure, 

accessibility, was given by Schweiger (2003): accuracy refers to whether or not the 

information presented is correct, and reliability refers to whether or not the 

information is presented consistently (e.g., updated on a regular basis to be timely).  
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The key to accurate predictions of real-time transit vehicle arrival times is 

two-fold: the prediction algorithm or model, and the data that are used as input to the 

algorithm (Schweiger, 2003). The bus arrival time prediction models have been 

generally based on historical arrival time patterns and/or other explanatory variables 

correlated with the arrival time, including historical arrival time (or travel time), 

schedule adherence, weather condition, time-of-day, day-of-week, dwell time and 

road-network condition (e.g. Lin and Zeng, 1999; Shalaby and Farhan, 2004). 

Accuracy of real-time transit information is more of an issue for bus than for train 

because of the higher complexity and dynamics of road conditions.  

Parallel to findings in the field of traffic-related ATIS, I would like to 

hypothesize that quality of real-time transit information is also a key to travel 

behavior and psychology under such system. 

 

Other factors that influence traveler behaviors and psychologies are classified 

into two categories: individual factors and situational factors. Individual factors refer 

to individual or household socio-economic characteristics, such as age, income, car 

ownership, etc. Situational factors are those that are not able to be controlled by 

individuals, including travel time and cost, weather, built environment, and so on.  

The causal links among constructs are illustrated as well in the diagram. Note 

that traveler behavior and psychology are causally interrelated. On the one hand, it is 

well documented that travelers’ perceptions of environment is actually in the middle 

between the object, measurable environment and the actual travel choices (Chorus et 

al., 2006a). On the other hand, travelers’ behavioral adjustment will also directly 
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change their psychology on travel and travel service. These interactions take place in 

iterations, as illustrated in Figure 2.1. 

Based on above framework, two general hypotheses are proposed: 

H1: Travelers will modify their travel behavior according to high-quality real-

time transit information use in ways that their travel becomes more 

efficient and in favor of public transit in general. 

H2: High-quality real-time transit information will positively affect 

passengers’ psychology on public transit. 

3.3 Trip-specific Responses to Real-time Transit Information 

3.3.1 Trip-specific Behavioral Responses 

This sub-section presents a behavioral framework for a transit trip under real-

time transit information provision. Passenger’s dynamic travel behaviors concerning a 

specific transit trip with real-time transit information acquisitions can be represented 

by a hierarchy of pre-trip and en-route choices as illustrated in Figure 3.4. Similar 

framework for dynamic driver behavior under real-time driver information system 

can be found in Ben-Akiva et al. (1991). As a basis of proposed behavioral 

framework, I adopt the generic framework by Chorus et al. (2006a) for traveler’s 

decision process. 
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Figure 3.3 Traveler Information acquisition and effect on travel choice in iteration  
(Source: Chorus et al., 2006a) 

 

In this framework, a transit trip (either repetitive or non-repetitive) is 

separated into two phases, namely a pre-trip phase and an en-route phase. Pre-trip 

information acquisition updates the perceptions of alternatives regarding available 

paths, stops, and departure times. Based on the updated perceptions, passengers make 

up the choices of intended path, stop and departure time. Note that alternatives among 

paths or stops may not be always available. When there is a transit network with 

common lines facing a passenger, she may choose between lines with different arrival 

times and travel times. With pre-trip real-time carrier arrival information, one may 

choose the express line even the bus comes after the slow one. Also, with more than 

one transit stops available for a passenger to access, she may choose the one with 

more desirable environment (e.g., more sheltered, lightning) even if it is further from 
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where she begins the trip, because she acquires and processes the real-time 

information and is sure that there is no risk missing the coming bus. Be aware that the 

passenger may choose the slow bus or undesirable stop if the real-time arrival 

information is unfavorable to the express line or desirable stop.  

After the passenger reaches the intended stop, she can acquire the at-stop real-

time information to update her perceptions for the first time (is she did not acquire 

pre-trip information) or again (if she did acquire pre-trip information). Note that this 

at-stop information acquisition can take place any time between the arrival of the 

passenger and the vehicle, and can take place multiple times. For example, Nijkamp 

et al., (1996) found from the case of the STOPWATCH in Southampton, UK, that 

more than 50% passengers looked at the at-stop electronic information several times. 

In this sense, the perceptions of travel choice sets may be updated more than one 

time. On a basis of the updates of perceptions of alternatives, a series of choices are to 

be made by the traveler:  

(1) Trip quitting or modal shift. The traveler may forgo the trip (especially when 

this trip is not mandatory) or turn to another mode when she is aware of a long 

wait time from the real-time information acquisition. For instance, Nijkamp et 

al. (1996) report that in case of a long wait time as indicated by the at-stop 

displays, of the people who leave the stop, about 39% walked all the way, and 

7% hailed a taxi/lift. In either way, the transit trip is put in an end. 

(2) Stop change. Facing the long wait as suggested by the real-time information, 

if the passenger chooses to continue the trip with transit mode, she can make 

another decision to tackle the long wait – walking to a different stop. Again in 
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the case of STOPWATCH, Nijkamp et al. (1996) report that of those who 

leave the stop, 30% walked to another stop. Also in a stated-preference survey 

(Ferris et al., 2010), 78% respondents reported they were more likely to walk 

to a different stop, of whom about 70% would like to walk to a different route, 

50% further down the route, and 25% back up the route. Passengers make this 

stop change decision for various reasons. The most prominent one is 

obviously to turn to a presumably faster route in order to reduce the waiting 

time and total travel time. If the real-time information for alternative routes is 

acquired at the stop and it turns out to be favorable (e.g. much less waiting 

time), it makes more sense to turn to that route by walking to other stop. Other 

reasons for walking to a different stop are 1) choosing a stop with desirable 

environment (e.g., with shelters, lights, seats) to address some concerns (e.g. 

comfort, safety); 2) walking backward the route to beat the waiting crowd and 

increase a chance of getting a seat in bus; 3) walking downward the route for 

exercise or just for occupying the waiting time. Mathematicians have tried to 

compute some mathematically optimal “bus waiting strategy” (e.g. Saniee, 

1987; Chen et al., 2008). However, with real-time arrival information, waiting 

strategy may be even more truly optimal.  

(3) Diversionary activities around stop. This is another choice a passenger can 

make to cope with a long wait. When a passenger is aware of the bus arrival 

time, she may leave the stop to undertake various activities nearby and return 

when the bus is due (Science Applications International Corporation, 2003). 

In the case of STOPWATCH, around 20% of those who leave stop walked to 
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a shop or bank nearby (Nijkamp et al., 1996). A variation of this behavior 

would be that if the passenger acquires bus arrival time via other media (e.g., 

phone, SMS, WAP website) on her way to the stop and is aware of the long 

wait, she can drop by some shops or banks before arriving at the stop.  

(4) Path choice. There are two scenarios when a passenger may divert from her 

intended transit path. First, as discussed above, long wait time suggested by 

real-time information induces the passenger to walk to another route with 

faster speed or less waiting time. Second, when there are two common lines – 

an express line and a slow line, the passenger is often faced with the problem 

of choosing between either to board the arriving slow bus or to wait for a 

express one. If with real-time information system the passenger knows that the 

express bus is only 1-2 minute after the slow bus, chances are that the 

passenger will skip the slow bus coming first to wait for the express bus, in 

order to minimize the total travel time. This scenario has actually been 

simulated by Hickman and Wilson (1995) and Gentile et al., (2005). Both 

frameworks hold the assumption that a passenger’s strategy is to minimize her 

total travel time. Drastic differences of the passenger loads on express and 

slow lines were found. 
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Figure 3.4 Trip-specific travel behaviors with real-time transit information (Source: Author) 

 
 

The dynamic nature and complexity of these en-route travel behaviors under 

real-time information is noteworthy. As mentioned above, multiple information 

acquisitions and perception updates are possible. Thus at any point before the 

passenger boards a vehicle, she can always go through the process of acquiring 

information, updating perceptions, and making and executing any of these choices, 
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again and again. In addition, these choices are arranged in the framework with a 

plausible, logical sequence. However, one can argue that these decisions are being 

made simultaneously and some of the choices are even alternatives to each other. For 

instance, in face of an expected long wait for the intended bus, the following decision 

tree is possible for the passenger (Figure 3.5). Another note related to the general 

hypothesis H1 is as follows. Some of the changes in trip-specific behavior presented 

above may seem not to be in favor of transit (e.g. trip quitting, modal shift). However, 

in all cases either travel efficiency is achieved (e.g., less waiting time, less travel 

time, better use of time) or some concerns are addressed (e.g., comfort, safety). 

Therefore, higher utility associated with specific trip-making is almost always the 

consequence when high-quality real-time information is acquired and travel behavior 

is adjusted accordingly. 

 

Figure 3.5 A possible decision tree when long wait is expected (Source: Author) 

 

3.3.2 Trip-specific Psychological Responses 

The proposed conceptual model for trip-specific psychological responses to 

real-time passenger information system is illustrated in Figure 3.6. 
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This model is based on the theoretical framework that research on psychology 

of waiting for service has built, taking into account the distinctions of public 

transportation. The outcome variables are classified into three levels as suggested by 

prior work. The lower levels of outcomes may influence the high levels of outcomes.  

 

 

 
 

Figure 3.6 Conceptual framework for trip-specific psychological responses to real-time passenger 
information (Source: Author) 

 

The first level is perceived waiting time. Real-time transit information has 

actually direct and indirect effects on this critical psychological response. The 

intermediate construct along the indirect path is actual waiting time, which is no 

doubt one of determinants of perceived waiting time. In fact, psychological literature 

suggests a linear function between perceived and actual waiting time (Allan, 1979). 

Passengers who acquire real-time transit information may adjust their behavior to 

reduce their actual waiting time. In turn, passenger perceived waiting time is reduced. 

The direct link between real-time information and perceived waiting time suggests 

that, even if actual waiting time is the same, providing real-time bus arrival 
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information may psychologically address the problem of exaggeration of perceived 

waiting time. Mishalani et al. (2006) even assumed that  passengers take the predicted 

bus arrival times, which are indeed the actual waiting times if accurately predicted, as 

their perceived waiting times. 

The second level is affective reactions to the waits. Anxiety is one of 

commonly mentioned affective reactions. While waiting for the coming transit 

vehicles, as the clock ticks, passengers easily feel stressed or anxious about such 

threats as missing the vehicles, missing the connections, being late to the 

appointments, until they board on the right vehicles and make sure that the vehicles 

will get to the destinations within their schedule. It is generally accepted that after 

having to wait for a certain amount of time, anxiety and stress start to build up in an 

individual, due both to the sense of waste and the uncertainty involved in a waiting 

situation (Osuna, 1984). Real-time information is presumed to lower this waiting 

anxiety by significantly reducing the uncertainty associated with waiting. The 

backward link from anxiety to perceived waiting time is derived from Maister’s third 

proposition: Anxiety makes waiting seem longer.  

Another outcome of the second level, feeling of security, is a special one to 

the public transportation service. Since waiting for transit service mostly takes place 

at outside transit stops, passengers are subject to incidental crimes. In the model, it is 

hypothesized that decrease in perceived waiting time caused by real-time information 

use will increase passenger’s feeling of safety. In addition, just the mere existence of 

such an information feedback system creates a general sense of trust in the public 

transport system (Dziekan and Kottenhoff, 2007).  
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The ultimate outcome variable is the passenger satisfaction with this trip-

specific transit service offered by the operators. Unlike attitudes which exist prior to 

and subsequent to encounters with a product or service, satisfaction is a direct 

response to a product or service (Friman and Gärling, 2000). Outcomes of previous 

two levels contribute to this overall satisfaction. Besides, the mere provision of arrival 

information boosts passenger satisfaction with transit service consumed by 

passengers for particular transit trips.  

3.4 General Responses to Real-time Transit Information 

Two major general travel behaviors with real-time transit information are 

identified in the framework: transit trip increase and habitual mode shift. 

Ridership increase is always one of the main reasons for transit agencies to 

invest in real-time transit passenger information system, because this kind of increase 

can be directly translated into revenues (Schweiger, 2003). Nijkamp et al. (1996) 

listed various induction effects of STOPWATCH on new transit traffic. To 

summarize their propositions among others, ridership effect of real-time transit 

information is actually twofold: either travelers shift from other modes to public 

transportation (especially for new or infrequent transit riders), or they make more 

trips than before with transit as the mode for additional trips (more likely for frequent 

transit riders). In either way, from the standing point of individual travelers, their 

transit trip-making frequency is hypothesized to increase because of real-time transit 

information use. 

The habitual travel choice is defined as repeated choice of a travel behavior 

without deliberation (Gärling and Axhausen, 2003). For instance, travelers may 
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repeat his commuting mode everyday without deliberately search for alternatives, 

which can be referred to as habitual mode choice. Any attempt at influencing the 

travel choice may fail if choices are habitual. At least it takes additional measures to 

make the choices deliberate before they can be changed (Dahlstrand & Biel, 1997). 

Fujii et al. (2001) found that a forced change of a routine mode choice (driving to 

work) did make people aware of the attractiveness of other alternatives (public 

transportation). Providing travelers with real-time transit information is also 

hypothesized to have the potential of making travelers deliberately choose transit first 

and then use transit as their habitual mode with a certain period of adaption.  

A variety of service quality attributes/factors of public transportation have 

been identified by different studies (e.g., Andreassen, 1995; Eboli & Mazzulla, 2007) 

including, but not limited to, service availability, frequency, reliability, time traveling, 

cost, information, safety, quality of vehicle (see TRB(1999) for an example list of 48 

transit service quality measures). Theoretical and empirical studies suggest that transit 

rider’s perceptions of these quality areas influence their overall satisfaction with 

transit service to various degrees (see a model in Figure 3.7). Customer satisfaction is 

the accumulated experience of a customer’s purchase and consumption experiences. 

Assuming that the customer is capable of evaluating the service quality, the result is 

compared to expectations prior to purchase or consumption. Any discrepancy leads to 

disconfirmation; i.e. positive disconfirmation increases or maintains satisfaction and 

negative disconfirmation creates dissatisfaction (Andreassen, 1995). 
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Figure 3.7 A (dis)satisfaction model (Source: Andreassen, 1995) 

We know that real-time transit information does not change the objective 

service quality attributes, except for the information availability. Rather it may 

change or update rider’s perceptions of some quality measures, and in turn these 

changes may contribute to higher overall satisfaction. Perceived service quality 

attributes that may be modified by use of real-time transit information are identified 

as follows. Note that we focus on general perceptions accumulated from specific trip 

experiences that may be influenced by real-time transit information every time.   

1) Increased general feeling of security. Real-time traveler information 

contributes to an increased general feeling of security against crimes at public 

transport stops in general and especially after dark (Dziekan & Vermeulen, 

2006). The reasons are multifaceted: first, reduced perceived waiting time 

makes passengers feel less time of exposure to potential danger or crime; 

second, when real-time arrival information is provided, travelers may choose 

to adjust her behavior in order for obtaining higher safety, such as walking to 
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a different stop, turning to a different mode; third, even if waiting is 

inevitable, reduced uncertainty with knowledge of real-time but arrival time 

may boost travelers’ sense of security, especially at night or at unsavory stops. 

2) Increased perceived on-time performance. Schedule adherence or on-time 

performance refers to the level of success of the transit service remaining on 

the published schedule. The GPS-enabled real-time information system may 

virtually improve the on-time performance since dispatcher can monitor for 

any route or time deviations and provide the drivers with guidance in real 

time. On the other hand, even if the on-time performance keeps unchanged, 

the passenger may have a feeling of increased adherence of bus service, with 

real-time information provision. 

In addition to the change in perceptions of service quality, there is a special 

type affective reaction to experience of waiting for public transportation, which is:   

3) Decreased general waiting anxiety. Cumulatively, stress or anxiety passengers 

build up while waiting for transit in the course of specific transit trips will lead 

to a general level of anxiety. By hypothesis, real-time information use will 

lower the general waiting anxiety, which will generate some health benefit. 

4) And finally, the ultimate construct of general psychological response, higher 

overall satisfaction (or cumulative satisfaction). Two conceptualizations of 

satisfaction are presented by literature in psychology and business – 

transaction-specific satisfaction and cumulative satisfaction (Johnson et al., 

1995). Overall satisfaction is viewed as “a cumulative, abstract construct that 

describes customers’ total consumption experience with a product or service 



 

 58 
 

to date” (Johnson and Fornell, 1991). Satisfaction, in this view, is not a 

transient perception of how happy a customer is with a product or service at 

any given point in time. It is a customer’s overall evaluation of his or her 

purchase and consumption experience to date. Because this cumulative 

satisfaction directly affects customer loyalty and subsequent profitability, it 

serves as a common denominator for describing differences across firms and 

industries. In sum, while a transaction-specific view of satisfaction provides 

valuable insight into particular, short-run product or service encounters, 

cumulative satisfaction is a fundamental indicator of a market’s (or firm’s) 

current and long-run performance. This has depicted exactly the difference 

between the trip-specific satisfaction and the overall satisfaction with transit 

service in the context of public transportation. Parallel to previous discussion, 

the effect of real-time transit information on overall satisfaction may take two 

paths: The direct path is that the provision of real-time information per se is 

considered as a type of effort the transit agencies make to improve the transit 

service, and passengers generally appreciate this effort and feel more satisfied 

with overall service. The indirect path is that use of real-time transit 

information first updates passenger’s psychological outcomes of lower levels 

(e.g. feeling of security, perception of on-time performance, anxiety), and in 

turn boosts the global satisfaction. 

3.5 Chapter Summary 

This chapter presents an integrative, systematic conceptual framework for 

exploring major behavioral and psychological effects of real-time transit information 
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system. This framework takes into account changes in both traveler behavior and 

psychology in different response time frames. In addition to the overarching 

framework, trip-specific and general responses were elaborated as well. This chapter 

has provided with a solid basis for analyzing effects of real-time transit information 

with empirical data.
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Chapter 4: Methodology 

 

4.1 Introduction 

The purpose of this dissertation is to empirically examine behavioral and 

psychological effects of real-time transit information acquisition with revealed-

preference data. The research methodology is presented in this chapter with following 

organization. Section 2 presents the detailed research design, with justification of 

revealed-preference approach, introduction to the case for study, and elaboration of a 

quasi-experimental design for studying general responses. Section 3 details about a 

number of surveys conducted for collecting first-hand empirical data. Section 4 

presents a variety of variables that measure the key constructs in the conceptual 

framework, followed by a brief summary of analytical methods in Section 5. Finally, 

Section 6 summarizes this chapter. 

4.2 Research Design 

4.2.1 Consideration of Data Collection 

When considering the issue of data collection for travel behavior analysis, 

arguably there are three main categories of data-types that together represent the bulk 

of the theoretical and empirical research efforts in this field: 

1) Simulated data. Hypothetical travelers who have certain personality traits, 

such as preferences, decision styles, knowledge levels, are created. By simulating 

their travel choices, insights can be gained into the working of behavioral models at 

the individual level, or even at a network level. Thanks to the low costs and high 
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flexibility, simulated data have been quite popular throughout the years, especially as 

a first step towards empirical model validation and estimation when services are not 

yet available. For example, a behavioral model of transit path choice built by 

Hickman and Wilson (1995) was tested with simulated data and the effect of real-

time arrival information was then explored.  

2)  Stated-preference (SP) data. SP survey presents participants with 

hypothetical alternatives, and asks them to indicate which of the available alternatives 

they would choose in real life, or asks them to state their needs, willingness to pay 

for, or preferences for the alternatives. The advantage of SP-methods also first lies in 

their low-cost, flexibility and efficiency. For example, it is possible, by careful 

design, to control experimental conditions in such a way that variations in choices or 

preferences can be efficiently attributed to each of the explanatory variables being 

studied. Another advantage of SP-approach, also shared with simulation approach, is 

the capability to evaluate the demand for products and services that are not yet 

available in the market at the time of the investigation. The principal drawback of SP 

approach is its limited external validity: individuals' stated preferences may not 

correspond closely to their actual preferences. They may diverge because of 

systematic bias in SP responses or because of difficulty in carrying out the SP survey 

(Wardman, 1988). Examples of SP approach include early studies by Abdel-Aty et al. 

(1996) and Reed and Levine (1997), mostly because of unavailability of real-time 

transit information systems at that time. 

3) Revealed-preference (RP) data. RP-surveys collect data concerning choices 

that are actually made, or behaviors that are actually performed, by travelers in the 
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real world. The advantage of RP data is that it is based on actual decisions, which 

gives RP data high reliability and face validity. The notable disadvantages to the use 

of RP-data, when compared to SP, are the following: Firstly, sometimes RP-data 

simply do not exist as the service is not available in real life. Secondly, as the level of 

experimental control is low, RP-data often suffer from little variation in, and 

collinearity among, explanatory factors; therefore, a large number of observations 

might be needed in order to obtain meaningful parameter estimates. Another flaw of 

RP-data is that the service, which is to be evaluated, may not be randomly used by 

travelers. The non-stochastic nature of treatment in RP data may threaten the validity 

of results. 

As we have reviewed in Chapter 2, the majority of scientific studies to this 

date employed either simulated or SP data, since probably the real-time transit 

passenger information systems were not ubiquitous when these studies were 

conducted. Therefore, the external validity of these studies is presumably low.  

Recently, the real-time transit passenger information systems are being more 

and more popular in many countries. Thus it is more feasible to collect RP data in 

order for gaining higher external validity. This dissertation is intended to fill in the 

gaps and utilize revealed-preference approach as data collection methodology. The 

case of Real-time Transit Passenger Information System (RTPIS) that is to be 

examined is the ShuttleTrac system deployed and operated by Departments of 

Transportation Services (DOTS) at University of Maryland, College Park.   
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4.2.2 A Case of ShuttleTrac System 

University of Maryland, College Park operates a Shuttle-UM system with a 

60-vehicle fleet, serving College Park campus and commuters from nearby 

communities. The students, faculty and staff of the university may use Shuttle-UM 

free of charge3.  During summer 2006, the University’s DOTS started to implement a 

GPS-based Real-Time Passenger Information System, named ShuttleTrac. For this 

project, DOTS contracted with transit technology integrator Connexionz, Ltd., based 

in New Zealand, to develop a Real-time Tracking and Passenger Information (RTPI) 

system. The cost of this venture was $350,000 (UMCP, 2007). 

The ShuttleTrac system is composed of five components (Figure 4.1):  

1) 30 touch-enabled BusFinder terminals at select on-campus and off-campus 

stops. These terminals are battery powered and receive tracking 

information via radio signals. A passenger simply pushes the button for 

the particular route of interest, and the terminal displays the estimated 

arrival time of the next bus on that route at that respective bus stop.  

2) A large display screen at an activity center, Stamp Student Union. Nearly 

all shuttle lines either depart from this stop or pass by it. Arrival 

information for routes that pass next to the Stamp Student Union is 

displayed on this screen, much like an airport arrival & departure screen. 

3) An Interactive Voice Response (IVR) system for telephone inquiry. The 

passengers may contact an Interactive Voice Response (IVR) system, 

                                                 
3 In fact, students have to pay for the Shuttle-UM service as a portion of mandatory fees charged every 
semester. The Shuttle-UM student fee is $61.5 per semester in Fiscal Year 2006, and $65.7 per 
semester in Fiscal year 2007. However, these are essentially hidden costs.  
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enter the passenger stop number, and receive the estimated arrival times of 

buses scheduled to arrive at that stop within the next 30 minutes.  

4) A website for Internet inquiry. Passengers may visit the website by 

following a link from the main DOTS website (www.dot.umd.edu). He or 

she will then choose which route they wish to ride, and the passenger stop 

at which they wish to board, and the system will display arrival times for 

buses arriving at that stop within the next 30 minutes. 

5) A website for WAP-enabled handheld inquiry. The user simply points his 

or her browser to www.shuttle.umd.edu and enters the passenger stop 

number to acquire the arrival times of shuttles for that stop within the next 

30 minutes.   

Therefore, travelers can acquire real-time shuttle arrival information 

(estimated arrival times of buses scheduled to arrive at that stop within the next 30 

minutes) via various media both pre-trip and en-route.  
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Figure 4.1 Five ways to use ShuttleTrac (Source: www.dot.umd.edu) 

Figure 4.2 Online query of real-time Shuttle arrival information (Source: www.dot.umd.edu) 
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Each bus is equipped with a GPS and radio transmitter BusPack which is 

constantly in communication with the Real-time Tracking server (RTT). This 

information, coupled with data from the Historical server, is used to estimate arrival 

times. After the BusPacks were installed during the summer of 2006, timing/schedule 

adherence data was gathered on each route throughout the fall semester and first half 

of the spring semester. This extensive data gathering and fine tuning of the route 

schedules allow the system to increase accuracy of arrival predictions. The Shuttle-

UM dispatchers use an automatic vehicle location (AVL) application to track the 

buses on their routes and monitor for any route or time deviations. Although since 

December 2006 ShuttleTrac has been accessible via Internet and telephones, it has 

been fully functional only since the early April of 2007. All in all, this system 

represents the-state-of-practice of real-time transit passenger information system. 

There are several advantages and disadvantages in utilizing this system as the 

case study. One of the advantages is pertinent to timing of this dissertation research. 

This research was proposed right before the deployment of systems and therefore a 

carefully designed before-and-after research was applicable so that higher validity can 

be obtained. One special feature of ShuttleTrac system is that acquisition of real-time 

bus arrival information requires a certain amount of effort, such as pushing the 

buttons on BusFinder, getting online or calling the phone number. One good thing 

about it is that not all of travelers will make the effort, even if the system is available 

for a while. Therefore, two groups of travelers, either with (users) or without 

treatment (non-users), can be easily differentiated. However, the downside of this 
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feature is that we have to take into account the non-randomness of ShuttleTrac use in 

our research design and analysis, so as to increase the validity of our results. 

Another inevitable challenge to this case is the generalizability of research 

findings concerning such system in the context of a special transit system (i.e. 

ShuttleUM). It is obvious that Shuttle-UM system differs from other typical urban 

public transportation systems in many aspects including fares, coverage, to name a 

few. The principle difference lies in the population of service: Shuttle-UM serves 

only the university community, whose travel behaviors and preferences are likely to 

be different from general public. This issue will be discussed in details in the final 

chapter.  

Nevertheless, ShuttleTrac system provides a good opportunity to be selected 

as the case for studying traveler responses to the real-time shuttle arrival information.  

4.2.3 Quasi-experimental Design 

Different research designs were employed to study general and trip-specific 

traveler responses to real-time passenger information. As discussed in Chapter 3, 

general responses are accumulated from response in individual encounters or 

experiences. It is then feasible to measure the cumulative behavioral and 

psychological variables before and after the deployment of ShuttleTrac system and 

infer the causal effects of such system out of the before-and-after comparison. 

Therefore, the quasi-experimental design, more specifically, a pretest posttest 

nonequivalent group design, was utilized in this research in this natural-experiment 

setting, as illustrated in Figure 4.3.  
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Figure 4.3 Quasi-experimental design of research on general responses (Source: Author) 

As shown in the diagram, the “treatment” of our interest is the real-time 

information use. Hypotheses proposed in Chapter 3 state that, with use of real-time 

transit information, travelers modify their behaviors in favor of transit (i.e., as for 

general response, increase transit trip-making frequency and shift habitual mode to 

transit) and positively change their perceptions of and attitudes towards transit. In 

terms of information use, there are two groups: information users in the treatment 

group and non-information users in the control group. In our research design, if one 

traveler reports in the survey that he or she ever used ShuttleTrac at least once, he or 

she is then assigned into the treatment group.  Efforts demanded for making the 

actions to acquire real-time information ensure that the number of persons in each 

group is comparable with each other. If some Variable Message Signs were installed 

at every stop, people in treatment group will very likely outnumber people in control 

group as information ease-of-use is much higher in this case. 
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In this quasi-experimental design, one pre-test (Pre-test, i.e. Wave1) and two 

post-tests (Post-test 1, i.e. Wave2; and Post-test 2, i.e. Wave3) are proposed in order 

to ascertain effects of real-time transit information at different time points. Because 

the treatment (first ShuttleTrac use) can take place either between Pre-test and Post-

test 1 or between Post-test 1 and 2, three groups can be identified as follows (see 

Figure 4.3A): Group 1 contains travelers whose first use of ShuttleTrac is before 

Post-test 1; Group 2 contains travelers who use ShuttleTrac between Post-test 1 and 

Post-test 2; and Group 3 consists of those travelers who never use ShuttleTrac.  

To examine the effects of ShuttleTrac use at Wave2, the treatment and control 

groups can be identified (see Figure 4.3B): Group 1 is equivalent to treatment group 

as travelers in this group use ShuttleTrac before the time point; and Group 2 and 3 

comprise the control group. Similarly, if we turn to examine the effects of ShuttleTrac 

use at Wave3, the treatment group is then composed of Group 1 and 2, and Group 3 

comprises the control group (see Figure 4.3C). 

The Quasi-experimental designs are considered better than pre-experimental 

studies in that they employ a means to compare groups. They fall short, however, on 

one very important aspect of the experiment: randomization of treatment (Campbell 

and Stanley, 1963). In our case, conceivably the ShuttleTrac use, as the treatment on 

travelers, is unlikely to randomly occur among travelers. Some types of travelers are 

inherently more inclined to acquire real-time shuttle arrival information. In other 

words, self-selection bias may occur in this case as those travelers, whose travel 

behaviors and preferences favor Shuttle-UM, deliberately sort themselves into the 
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ShuttleTrac user group.  Different statistical approaches are utilized to try to address 

this potential self-selection problem in the next Chapter.  

Note that so far what we are talking about is only traveler’s general/ 

cumulative responses to real-time information. As far as trip-specific responses are 

concerned, I did not propose a similar quasi-experimental design framework because 

of two reasons. Firstly, collecting information concerning trip-specific decisions and 

feelings normally involves on-site surveys. It is simply not feasible to find the same 

group of respondents (a panel) who can fill out the questionnaires two times. The best 

one can do is to collect two repeated cross-sectional datasets for pre- and post-

deployment time points. Secondly, trip-specific behaviors and perceptions are binding 

to each specific trip, and thus behaviors and psychologies concerning specific trips 

before real-time information systems may not constitute good references for after 

using the real-time information. After all, these decisions or feelings are very much 

trip-dependent. As a matter of fact, in travel behavior studies rarely are panel data 

used to model trip-specific travel decisions.  

As a result, one cross-sectional dataset after the deployment of ShuttleTrac is 

sufficient to conduct a research to examine how real-time transit information 

influence traveler’s behavior and psychology for specific shuttle trips.  

4.3 Survey 

To examine travelers’ responses to new ShuttleTrac system and evaluate its 

effectiveness, DOTS at the University of Maryland, College Park sponsored a 

comprehensive study which consists of three types of surveys –three-waved panel 

online campus transportation surveys, two-waved panel one-day travel diary surveys, 
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and repeated two-waved cross-sectional shuttle onboard surveys, all designed and 

administered by the author. Data used in this dissertation were extracted from the 

three-waved online surveys and the cross-sectional onboard survey in Wave2 (See 

Figure 4.4). The Wave1 and Wave2 surveys were conducted within an academic year 

of 2006-07, and Wave3 survey was conducted in the first semester of academic year 

2007-08. There was no other major change regarding shuttle service such as 

scheduling or routing. This makes the surveys more valuable in sorting out the effects 

of ShuttleTrac. 

 

Figure 4.4 Surveys conducted by author and used for this research (Source: Author) 

4.3.1 Campus Transportation Survey 

The online Campus Transportation Survey was conducted for pre- and post-

ShuttleTrac periods. Wave 1 started on September 13, 2006 and ended on October 12, 

2006. Wave 2 started on April 19, 2007, two weeks after campus-wide marketing of 

ShuttleTrac, and ended on May 13, 2007. Wave 3 started on November 6, 2007, and 

Wave 1 
Sep. 13 – Oct. 12, 2006 

Wave 2 
Apr. 19 – May. 13, 2007 

Wave 3 
Nov. 6 – Nov. 23, 2007 

Wave1 Online Survey Wave3 Online Survey Wave2 Online Survey 

Wave1 Onboard Survey 

Wave1 Travel Diary 
Survey 

Wave2 Onboard Survey 

Wave2 Travel Diary 
Survey 

Deployment 
Dec. 2006 

Marketing 
Apr. 2007 

Note: Only data extracted from four surveys (shaded) were used in analysis. 
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ended on November 23, 2007. The purpose of the before-and-after survey is to 

explore potential shuttle trip increase, and overall attitude/perception change because 

of real-time shuttle arrival information.  

Questions in the online questionnaires for all three waves asked about three 

types of information: 1) commuting pattern for off-campus residents, 2) use and 

perceptions of Shuttle-UM, and 3) personal characteristics. Additional questions 

about awareness and use of ShuttleTrac (if any) were presented in Wave2 and Wave3 

questionnaire (see Appendix 1). 

The sampling strategy is as follows: in wave1, online recruiting methods were 

used targeting the entire university community, including 1) recruiting emails sent to 

various campus email-lists three times, 2) recruiting message published on campus-

wide daily online FYI system twice, and 3) advertisement on DOTS website. To 

ensure adequate presence of shuttle riders grouping the sample, some supplementary 

recruiting methods were used, including 1) posters at two campus shuttle shelters, 2) 

fliers handed out at a major shuttle hub, and 3) advertisement on shuttle onboard 

survey forms. In wave 2, we sent out emails directly to the respondents of Wave1 

survey three times, trying to recruit them for Wave2 survey. Meanwhile, new 

participants were recruited using similar methods as in wave 1. In Wave3, only 

emails were directly sent to respondents of Wave1 and Wave2 three times in order to 

recruit as many respondents from previous two waves as possible. No new 

respondents were recruited this time. Because it was impossible for us to keep the 
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to calculate the response rate

Figure 4.5 Samples of Three

 

The sample sizes 

Out of 1679 Wave1 respondents, 623 (37%) participated in 

(42.6%) participated in Wave3 survey (see Figure 4.6)

respondents did not participate in 

required to make the commitment of doing it again

the attritions from the study w

Different panel dataset

analysis becomes more and more popular in transportation research

advantages over cross-sectional data. Not only panel data are particularly useful in 

answering questions about the dynamics of change, but also they provide stronger 

evidence for causal inference than cross

heterogeneity was controlled for.

                                                
4 Total population of the university in Academic Year 2006
student: 24,776; Graduate student: 
architects.com/comparing/campuses/illustrations/umcp.html
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record of the number of people who received the recruiting message, there is no way 

to calculate the response rate4. 

 

Samples of Three-waved Online Surveys (Source: Author) 

 of Wave1, Wave2, and Wave3 are 1679, 1367, and 1089

respondents, 623 (37%) participated in Wave2 survey

(42.6%) participated in Wave3 survey (see Figure 4.6). A large number of 

respondents did not participate in Wave 2 or Wave 3 survey because they were not 

he commitment of doing it again in the first place. We assume that 

from the study were random.  

datasets was used for analysis in this dissertation. Panel data 

analysis becomes more and more popular in transportation research because of its 

sectional data. Not only panel data are particularly useful in 

answering questions about the dynamics of change, but also they provide stronger 

evidence for causal inference than cross-sectional data because unobserved

heterogeneity was controlled for. 

         
Total population of the university in Academic Year 2006-07 is 39,414 (breakdowns: Undergraduate 
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Sample Size
Wave 1 1679 
Wave 2 1367 
Wave 3 1089 
Wave 1+2 panel 623 
Wave 1+3 panel 750 
Wave 2+3 panel 715 
Wave 1+2+3 panel 376 

record of the number of people who received the recruiting message, there is no way 

 

67, and 1089. 

survey, 715 

. A large number of Wave 1 

survey because they were not 

. We assume that 

. Panel data 

because of its 

sectional data. Not only panel data are particularly useful in 

answering questions about the dynamics of change, but also they provide stronger 

sectional data because unobserved 

(breakdowns: Undergraduate 
http://www.asg-

Size 



 

 74 
 

A concern of wave2 survey is that it started only two weeks after extensive 

marketing of the ShuttleTrac service and insufficient time had passed adequately to 

test the impact of the intervention. Some components of ShuttleTrac had already been 

functional and available to the public before the marketing of ShuttleTrac. For 

instance, phone numbers and Internet had worked since the beginning of the spring 

semester. But it was not until early April that the busfinders were deployed and 

extensive marketing was run. Therefore, travelers may not have enough time to adjust 

their behaviors and perceptions. Nonetheless, we consider Wave2 survey data as an 

adequate empirical basis for understanding how travelers respond to the ShuttleTrac 

system in a short run. To complement Wave2 survey, Wave3 survey was conducted 

to further understand the responses in a longer run. 

4.3.2 Shuttle-UM On-board Survey 

The Shuttle-UM on-board survey was administered between April 24 and 

May 10 by the author to ascertain riders’ trip-specific responses to ShuttleTrac. The 

author has done the most of field survey with help from some friends as surveyors. 

All 17 shuttle lines were covered in the survey. A questionnaire was distributed on-

board buses in paper form (see Appendix 2). As passengers boarded the bus and sat 

down, the surveyor announced the survey before asking each passenger whether they 

want to fill out a brief survey about their trips. The registration to win an iPod shuffle 

was offered to those who completed a survey as the incentive. Because most of the 

passengers are UMD students who are willing to help, the response rate is between 

90% and 100%. The questionnaire consists of 32 questions, and was designed to be 
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completed in about five minutes, making it feasible for most riders to finish the 

survey during the course of their ride.  

The focus of the questionnaire was on ShuttleTrac usage and accuracy, along 

with rider’s psychological conditions while waiting. It included questions concerning: 

1) Trip characteristics, such as boarding and alighting stops, origin, destination, 

access modes, and purpose; 

2) Perceived waiting time at the boarding stop; 

3) ShuttleTrac usage (when, where, and what media) and perceived accuracy; 

4) Perception of on-time performance of the bus; 

5) Activities passengers were engaged in while waiting; 

6) Passenger’s general attitudes towards Shuttle-UM and ShuttleTrac; and 

7) Personal characteristics. 

The sample size of Wave2 onboard survey is 686. Even though the total 

number of riders approached by surveyors was not kept track of, from the observation 

it is safe to say that the response rate of onboard survey is fairly high (about 80%-

90%) as Shuttle-UM riders were generally very cooperative. 

 

In the original research plan for this dissertation, on-board surveys and travel 

diary surveys were proposed to capture some, if not all, of trip-specific behavioral 

choices induced by real-time information, as conceptually discussed in Chapter 3. 

However, it turned out that the trip-specific behaviors are not feasible to be examined 

in our case because: 1) the Shuttle-UM has only little common lines, thus path choice 

may not be a feasible decision for riders to make; 2) onboard surveys were inherently 
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limited in only interviewing riders on the vehicle, so some choices (e.g. trip quitting, 

modal shift) made by non-riders cannot be captured; 3) Wave2 travel diary survey 

only gave a very small number of ShuttleTrac users, perhaps because of the timing of 

Wave2 survey. As a result, there will be no empirical analysis in trip-specific 

behavioral responses to real-time transit information in this dissertation, and it will 

remains in conceptualization. This is one of the major limitations of this research 

acknowledged by the author. Details about this limitation and future research toward 

this issue will be discussed in the final chapter.  

4.4 Measures 

The objective of my analysis is to figure out the relationships between real-

time bus arrival information acquisition and the behavioral and psychological 

responses as hypothesized in the conceptual framework in Chapter 3. Before I turn to 

the analytical methods, the measures of the constructs I propose in the conceptual 

framework are presented in this section. The measures are all derived from the self 

reports of respondents in surveys. 

Considering the special properties of ShuttleTrac, two sets of variables are 

operationalized to measure different dimensions of the construct of real-time transit 

information for examination of general responses and trip-specific responses 

respectively (see Table 4.1).  
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Table 4.1 Measures of Real-time Transit Information 

Dimension Variable Type 

For general responses 

Information acquisition 
Whether traveler has used ShuttleTrac anytime 
before survey 

Dummy 

Information accuracy 
Whether traveler perceives that the ShuttleTrac is 
50% or below accurate 

Dummy 

For trip-specific responses 

Information acquisition and 
place 

Whether rider used the ShuttleTrac to acquire pre-
trip information for this trip 

Dummy 

Whether rider used the ShuttleTrac to acquire at-
stop information for this trip 

Dummy 

Information accuracy 

Whether rider thinks the bus was early against 
ShuttleTrac prediction for this trip 

Dummy 

Whether rider thinks the bus was late against 
ShuttleTrac prediction for this trip 

Dummy 

 

Our principle interest is in the effect of ShuttleTrac use. For study on general 

response to ShuttleTrac use, firstly a dummy explanatory variable was extracted from 

the Wave2 and Wave3 online surveys to indicate whether or not the shuttle rider has 

ever used one of the devices of the new ShuttleTrac system to acquire real-time 

information. Although respondents told us how many times they have used 

ShuttleTrac, the frequency of ShuttleTrac usage was not directly incorporated in 

models to avoid likely endogeneity, which is caused by reverse causality – more 

shuttle trips and positive perceptions on shuttle cause more ShuttleTrac use.  

Secondly, another variable is the perception of ShuttleTrac accuracy. Based 

on ShuttleTrac user’s reply to the question regarding their general perceived accuracy 

of ShuttleTrac prediction (five categories are always accurate, mostly accurate, 50% 

accurate, rarely accurate, and never accurate), a dummy variable was generated to 

show whether the individual real-time information user perceives that that the 

accuracy of ShuttleTrac is 50% or below (i.e. respondents checked 50% accurate, 

rarely accurate or never accurate). Naturally, the reference group is those who 
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checked always accurate or mostly accurate. According to the hypothesis, this kind of 

user perception of “mis-information” would negatively influence their behavior and 

psychology. 

Four measurable variables were derived from the Wave2 onboard survey to 

capture ShuttleTrac information use and perceived accuracy. There are five means for 

passengers to find out real-time bus arrival time. In the onboard survey questionnaire, 

passengers were asked whether they acquired real-time bus arrival information before 

trip or at stop. Two dummy variables of our principle interests are generated 

accordingly to capture the acquisition of pre-trip and at-stop real-time bus arrival 

information. Based on the conceptual framework, it is hypothesized that acquiring 

pre-trip and at-stop real-time information will generate positive effect on their at-stop 

psychology, i.e., increasing feeling of security at stop, decreasing waiting anxiety, 

and increasing satisfaction with transit service. 

Not only is presence of information important, but also quality of information 

is essential to information users for specific transit trips. The accuracy of real-time 

bus arrival information is more of an issue than that of train arrival information 

because of the higher complexity and dynamics of road conditions. Passengers were 

asked, in comparison to the real-time bus arrival time they initially acquired, whether 

they think the bus arrived early, within +/- 1 minute, or late. Based on their answers, 

three variables were formulated to represent the accuracy of real-time bus arrival 

information perceived by users. The consistency of these three accuracy variables was 

checked with the real-time information acquisition variables.  Statistical tests show 

that the real-time information acquisition at stop is significantly correlated with the 
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accurate perception. Therefore, to eliminate the problem of multicollinarity, the 

variable “within +/1 minute accurate” is dropped. 

Table 4.2 Measures of Traveler Responses to be Examined 

Traveler Response Variable Type 

General responses 
Transit trip increase Number of monthly shuttle trips  Continuous 

Number of monthly campus-based shuttle trips Continuous 
Habitual mode shift Dominant commuting mode of transportation   Nominal (4 

alternatives) 
Increased feeling of security General feeling of security about riding shuttle at 

day 
Ordinal (1-5) 

General feeling of security about riding shuttle at 
night 

Ordinal (1-5) 

Increased perception of on-
time performance 

General perception of on-time performance of 
shuttle service 

Ordinal (1-5) 

Reduced waiting anxiety General anxiety while waiting for shuttle Ordinal (1-5) 
Increased overall satisfaction Overall satisfaction with Shuttle-UM service Ordinal (1-5) 
Trip-specific responses 
Reduced perceived waiting 
time 

Perceived waiting time Continuous 

Increased feeling of security Feeling of security at the stop while waiting for 
shuttle 

Ordinal (1-5) 

Reduced waiting anxiety Anxiety while waiting for shuttle at the stop Ordinal (1-5) 
Increased satisfaction Satisfaction with shuttle service at the stop Ordinal (1-5) 

 

In the online survey respondents rated their frequency of shuttle use for past 

month to take part in eight different activities (i.e. going to class, going to work, 

shopping, personal business, going to meals, social/recreational activities, returning to 

home, and others5) by choosing among 6 options: “never”, “less than once a month”, 

“less than once a week”, “1-2 days a week”, “3-4 days a week”, and “5 or more days 

a week”. Based on their answers, a continuous variable named “monthly frequency of 

shuttle use” was generated by assuming a middle value for each category and 

aggregating trip counts for all purposes.  

                                                 
5 There is actually one more type of activity: connect to Metro. Assuming that riders ride Shuttle to 
connect to the nearby College Park Metro Station, those trips do not count as Shuttle trips.  
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In addition, I further hypothesize that the number of campus-based shuttle 

trips will increase since the ShuttleTrac system mainly serves the campus (e.g., 24 out 

of 30 Busfinders are installed at on-campus stops). More specifically, with real-time 

arrival information, university students or faculty/staff members may use shuttle more 

to engage in campus-based non-mandatory (maintenance or discretionary) activities 

such as going shopping, meeting friends, having meal, etc. Therefore, trip counts for 

those activity purposes (shopping, personal business, meal, social/recreational) were 

aggregated to generate a new dependent variable named “monthly campus-based 

shuttle trip-making frequency.” Note that shuttle trips for maintenance or 

discretionary activities are not necessarily campus-based. One can of course take the 

shuttle from an off-campus site to another for maintenance or discretionary purposes. 

But it rarely happens because all shuttle routes start from the campus and it is not 

convenient to travel between two off-campus sites unless they are on the same route. 

Respondents who live off-campus were asked in online surveys about their 

primary commuting mode to campus every day in past week. The question noted that 

if respondent used more than one mode of transportation during a commuting trip, the 

primary mode for this day was the one used for most of the distance. Eight options 

were provided as the candidates of primary commuting modes: “Drive along”, 

“Carpool”, “Shuttle-UM”, “Metrobus or other bus system”, “Metro, MARC or other 

rail system”, “Walk”, “Bicycle”, and “Other”. Consistency was checked to ensure 

that the sum of answers to such question is equal to the answer to a prior question of 

“In the past week, how many days did you travel from where you live to the College 

Park campus.”  
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Based on answers to this question, we can construct a nominal dependent 

variable representing the dominant mode of transportation for commuting to the 

UMD campus. To make the alternatives more manageable and, more importantly, to 

ensure the property of Independence of Irrelevant Alternatives (IIA), eight options 

presented in the question were collapsed into four modes of transportation, namely 

“Car” (the first two options), “Shuttle-UM”, “Transit” (fourth and fifth options), and 

“Non-motorized mode” (sixth and seventh options). Respondent’s dominant 

commuting mode is the one out of four by which one used for the largest number of 

days in past week. For instance, a respondent commuted to the campus for 5 days in 

past week. He used car (either drive along or carpool) as his primary mode for 4 days, 

and transit for 1 day. In this case, car is considered as his dominant commuting mode 

to travel from where he lives to the university campus. When two or more modes 

were used for the same number of days (e.g. car for 2 days, shuttle for 2 days, transit 

for 2 days), I selected dominant mode according to a priority list: non-motorized 

mode > shuttle > transit > car. The main reason for doing so is to make sure that there 

are sufficient numbers of respondents using modes other than private vehicles. 

Conceivably, this variable of dominant commuting mode measures the habitual 

commuting mode. A more preferable way of dealing with this problem is to randomly 

select the dominant mode when two or more modes have the same number of days. 

However, because of the already uneven distribution of modes, this may cause a 

problem of underrepresentation of non-private-car modes. 

The five psychological dependent variables are feeling of security about riding 

shuttle during the day time, feeling of security about riding shuttle at night, 
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perception of shuttle on-time performance, general anxiety level while waiting for 

shuttle, and overall satisfaction level of shuttle service. They measure shuttle riders’ 

general/cumulative perceptions on shuttle service. In survey questionnaires, questions 

for the first four of these variables were presented using 5-point likert scales with 

only the lowest and highest points labeled. Question for overall satisfaction level was 

presented using a 10-point likert scale. For the sake of comparability, I collapsed 

satisfaction ratings into 5 levels. Another transformation is the order reverse of 

waiting anxiety level. Originally, 1 means “not anxious at all” and 5 “extremely 

anxious”. 

Perceived waiting time is a continuous variable, transformed from the 

categorical answers in the onboard survey using the middle point value (e.g. 1.5 for 

“1-2 minutes”, 30 for “more than 30”). If a passenger reports that she boards on the 

bus without waiting, her perceived waiting time is 0. 

Three variables that measure passengers’ psychology at boarding stops are 

derived directly from three questions in the on-board survey: “feeling of security at 

the boarding stop”, “anxiety level while waiting” and “satisfaction with service at the 

boarding stop”. Note that because of the survey was conducted onboard, there is no 

way one can give you her satisfaction rating for the service during entire journey. 

Therefore, respondents were asked to rate level of satisfaction with at-stop service 

instead. In survey questionnaires, questions for these three variables were presented 

using 5-point likert scales with only the lowest and highest points labeled (i.e. Feeling 

of security: 1=very unsafe, 5=very safe; anxiety level: 1=not anxious at all, 

5=extremely anxious; satisfaction level: 1= extremely dissatisfied, 5=extremely 
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satisfied).  Note that the order is reversed for waiting anxiety level in order to 

guarantee the consistency with other two variables (i.e., highest means most 

desirable). After the reverse, 1 means “extremely anxious” and 5 “not anxious at all”. 

In terms of measures of other individual and situational factors, I will cover 

them in details in the corresponding sections in the following two chapters.   

4.5 Analytical Methods 

The major analytical methods used in this dissertation are statistical 

multivariate regression models that were estimated to find out causal relationships 

between dependent variables of traveler responses and independent variables of real-

time information, controlling for other individual or situational factors (see Figure 

4.3). Details about modeling techniques and specifications will be elaborated in 

corresponding chapters. Note that the potential self-selection bias in models for 

general responses is to be addressed using different approaches (see Chapter 5).  

�Table 4.3 Analytical Methods 

Dependent variable Dataset Statistical modeling method 

For general responses 
Monthly Shuttle-UM trip-
making frequency (total and 
campus-based) 

Wave 1+2 full panel dataset 
Wave 1+3 full panel dataset 
Wave 1+2+3 full panel dataset 

Fixed-effects linear regression 
(OLS) model 

Dominant commuting mode 
Wave3 commuter cross-
sectional dataset 

Two-stage instrumental 
conditional logit model 

Feeling of security about riding 
shuttle (at day or night) 

Wave 1+2 rider panel dataset 
Wave 1+3 rider panel dataset 
Wave 1+2+3 rider panel dataset 

Random-effects ordered probit 
model 

Perception of general on-time 
performance 
General waiting anxiety 
Overall satisfaction with shuttle 
service 
For trip-specific psychological responses 
Perceived waiting time 

Wave2 onboard survey rider 
cross-sectional dataset 

Linear regression (OLS) model 
Feeling of security 

Ordered logit model Waiting Anxiety 
Satisfaction with at-stop service 
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4.5 Chapter Summary 

This chapter is a complete presentation of research methodology adopted in 

this dissertation. This research takes a real-world case of a real-time transit 

information system, ShuttleTrac, and collects revealed-preference data. In addition, a 

quasi-experimental design was proposed for studying traveler’s general/cumulative 

responses to real-time information. All these conditions lead to a higher validity of 

this study than previous research regarding this issue. What is more, surveys, 

measures and analytical methods are presented before the empirical findings are 

reported in following chapters. 
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Chapter 5: General Responses to Real-time Transit Information 
 

 

5.1 Introduction 

In the online Campus Transportation Surveys, respondents answered 

questions about their use and perception of Shuttle-UM for one pre-ShuttleTrac and 

two post-ShuttleTrac periods. Therefore, it is possible for us to examine both 

behavioral and psychological effects of ShuttleTrac using the panel datasets. In this 

chapter, three behavioral variables and five psychological variables measuring 

traveler’s general responses to real-time transit information were modeled to be a 

function of real-time transit information use. This chapter is organized according to 

the dependent variables: models for trip-making frequency, dominant commuting 

mode, and psychological variables are presented respectively, followed by the 

summary of empirical findings and discussion. 

 

5.2 Monthly Trip-making Frequency 

5.2.1 Datasets and Variables 

According to the conceptual framework, real-time transit information may 

entice drivers away from their cars and encourage patrons to ride buses more. In this 

case study, as discussed in Chapter 4, I constructed two variables to measure the 

shuttle trip-making frequency – monthly number of shuttle trips, and monthly 

campus-based shuttle trips. The specific hypothesis, based on the general H1, is that 
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ShuttleTrac use would increase monthly frequency of shuttle use of university 

travelers, no matter they are existing riders or not. 

The datasets utilized in this analysis are three panel datasets – Wave1+2, 

Wave1+3, and Wave1+2+3. Note that here “full dataset” means that all travelers are 

included in the datasets, no matter whether they have used Shuttle-UM before or not. 

Conceivably, the non-Shuttle riders (or potential riders) may be enticed to use Shuttle 

as the mode of transportation in some trips due to the use of real-time transit 

information. Descriptive statistics of three full panel datasets are displayed in Table 

5.1, Table 5.2, and Table 5.3. Note that there are some missing values for different 

variables, which are excluded from all calculations. 

A number of individual characteristics were incorporated into regression 

models as independent variables. Variables that do not vary among three surveys are 

time-invariant variables, which in our case are sex (male=1), race (white=1), and 

citizenship (foreign=1). As shown later in the discussion of model specification, time-

invariant variables will be canceled out in fixed-effects models. Age is dropped too 

because everyone has the same one year increment. Note that age square was 

included in five psychological models to capture possible non-linear effect of age on 

psychological dependent variables. 

Three vehicle-related variables indicate whether a respondent has a valid 

driver license, regular car access, and a campus parking permit. All three are 

hypothesized to be negatively related to number of shuttle trips. Correlation tests 

show that they are not highly correlated. In addition, model sensitivity test further 

proves that there is no problem of multicollinearity among them.  



 

 87 
 

Based on the question of “how far is where you live from the nearest shuttle 

stop”, I derived three dummy variables to indicate their accessibility to shuttle service 

– “less than 5 min walk”, “5-10 min walk”, and “10-20 min walk”. The baseline 

category is “more than 20 min walk” and “don’t even know”, indicating the shuttle is 

not accessible from where respondent lives. Presumably, nearer to shuttle stops, more 

shuttle trips.  

Another important locational variable is whether a respondent live on campus 

or off campus. On-campus students very likely ride shuttle more often than off-

campus commuters, especially for various non-mandatory activities. One more 

locational characteristic is the number of commuting-to-campus days in past week for 

commuters, ranging from 0 to 7. More commuting days possibly bring more shuttle 

commuting trips. But more likely, since all shuttle lines are campus-based, more 

commuting days mean more days on campus and consequently more shuttle use. 

Because students living on campus skipped this question, a reasonable transformation 

is to consider them commuting to campus 7 days a week.  This way we did not have 

to lose a large number of cases of on-campus students. This variable is dropped in the 

psychological models because of the problem of multicollinearity. 
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Table 5.1 Descriptive Statistics of Wave1+2 Full Panel Dataset 

  Wave1 (Pre-test)  Wave2 (Post-test1)   

Variables  N  Min  Max  Mean  SD  N  Min  Max  Mean  SD  

# of shuttle trips a month  623 0 116 10.92 17.82 623 0 154 10.33 17.75 
# of campus-based 
shuttle trips 623 0 94 2.85 7.21 623 0 94 2.68 7.06 

Use of ShuttleTrac  N/A 623 0 1 0.413 0.49 

Perceived inaccuracy  N/A 623 0 1 0.069 0.25 

Age 610 16 72 30.94 11.94 610 17 73 31.94 11.94 

Male  615 0 1 0.4 0.49 time-invariant   

Foreign citizen  618 0 1 0.17 0.37 time-invariant 

White  614 0 1 0.68 0.47 time-invariant   

Student 622 0 1 0.64 0.48 619 0 1 0.63 0.48 

Driver license  616 0 1 0.94 0.24 612 0 1 0.95 0.21 

Car access  623 0 1 0.76 0.43 620 0 1 0.78 0.42 

Campus parking permit  623 0 1 0.56 0.50 620 0 1 0.56 0.50 

Live on campus 623 0 1 0.15 0.36 623 0 1 0.15 0.36 
# days of commuting to 
campus a week 623 0 7 5.09 1.49 623 0 7 5.08 1.61 
<5 min walk to nearest 
stop  623 0 1 0.37 0.48 623 0 1 0.37 0.48 

5-10 min walk to stop 623 0 1 0.1 0.3 623 0 1 0.09 0.29 

10-20 min walk to stop 623 0 1 0.07 0.26 623 0 1 0.06 0.24 
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Table 5.2 Descriptive Statistics of Wave1+3 Full Panel Dataset 

  Wave1 (Pre-test)  Wave3 (Post-test2)   

Variables  N Min  Max  Mean  SD N Min  Max  Mean  SD 

# of shuttle trips a month  750 0 92 10.67 18.20 750 0 94 7.45 14.73 
# of campus-based 
shuttle trips 750 0 62 2.33 5.77 750 0 48 1.34 4.18 

Use of ShuttleTrac  N/A 750 0 1 0.43 0.50 

Perceived inaccuracy  N/A 750 0 1 0.07 0.25 

Age 729 17 74 31.60 12.04 729 18 75 32.60 12.04 

Male  737 0 1 0.41 0.49 time-invariant   

Foreign citizen  744 0 1 0.17 0.38 time-invariant 

White  737 0 1 0.69 0.46 time-invariant   

Student 749 0 1 0.63 0.48 746 0 1 0.61 0.49 

Driver license  742 0 1 0.94 0.24 745 0 1 0.96 0.21 

Car access  750 0 1 0.78 0.42 746 0 1 0.83 0.38 

Campus parking permit  750 0 1 0.58 0.49 746 0 1 0.59 0.49 

Live on campus 750 0 1 0.13 0.33 750 0 1 0.11 0.31 
# days of commuting to 
campus a week 750 0 7 5.1 1.39 750 0 7 4.82 1.72 
<5 min walk to nearest 
stop  750 0 1 0.34 0.47 750 0 1 0.32 0.47 

5-10 min walk to stop 750 0 1 0.12 0.32 750 0 1 0.09 0.29 

10-20 min walk to stop 750 0 1 0.06 0.24 750 0 1 0.65 0.25 
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Table 5.3 Descriptive Statistics of Wave1+2+3 Full Panel Dataset 

  Wave1 (Pre-test)  Wave2 (Post-test1)   Wave3 (Post-test2)   

Variables  N Min  Max  Mean  SD N Min  Max  Mean  SD N Min  Max  Mean  SD 

# of shuttle trips a month  376 0 89 11.43 17.99 376 0 154 10.88 18.82 376 0 94 7.80 14.56 
# of campus-based 
shuttle trips 376 0 42 2.35 5.40 376 0 80 2.36 6.76 376 0 28 1.21 3.34 

Use of ShuttleTrac  N/A 376 0 1 0.28 0.45 376 0 1 0.49 0.50 

Perceived inaccuracy  N/A 376 0 1 0.06 0.23 376 0 1 0.07 0.25 

Age 371 18 72 32.46 12.57 371 19 73 33.46 12.57 371 19 73 33.46 12.57 

Male  374 0 1 0.40 0.49 time-invariant  time-invariant   

Foreign citizen 374 0 1 0.17 0.37 time-invariant   time-invariant   

White 372 0 1 0.69 0.46 time-invariant time-invariant 

Student 376 0 1 0.61 0.49 372 0 1 0.60 0.49 374 0 1 0.59 0.49 

Driver license  370 0 1 0.95 0.23 367 0 1 0.95 0.21 373 0 1 0.96 0.19 

Car access  376 0 1 0.76 0.43 372 0 1 0.77 0.42 374 0 1 0.81 0.39 

campus Parking permit  376 0 1 0.56 0.50 372 0 1 0.55 0.50 374 0 1 0.58 0.49 

Live on campus 376 0 1 0.14 0.35 376 0 1 0.14 0.35 376 0 1 0.11 0.31 
# days of commuting to 
campus a week 376 0 7 5.08 1.46 376 0 7 5.11 1.52 376 0 7 4.90 1.67 
<5 min walk to nearest 
stop  376 0 1 0.37 0.48 376 0 1 0.36 0.48 376 0 1 0.32 0.47 

5-10 min walk to stop 376 0 1 0.09 0.29 376 0 1 0.10 0.30 376 0 1 0.09 0.28 

10-20 min walk to stop 376 0 1 0.07 0.26 376 0 1 0.06 0.24 376 0 1 0.09 0.28 
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5.2.2 Model Specifications 

Two behavioral dependent variables, total number of shuttle trips per month 

and number of campus-based shuttle trips per month, were transformed by adding .5 

to all scores and then taking the natural logarithm. This transformation was chosen 

because it both reduced the skewness of the distribution of trip counts and ensured 

that the model did not predict trip counts less than zero. An alternative approach 

would be to assume that number of shuttle trips has a Poisson distribution. This was 

not chosen because results from the Poisson analysis and the log-linear OLS analysis 

were virtually identical in the two-period case (Allison, 1994).  

For each time point, we have one linear equation for a sample of individuals 

labeled i=1,…, n. In our two-wave case, we have the following two-equation model: 

� �� � ������������� � �� �� � �� � � � � � � ��       (5.1) 

� �� � � � �� � � �� �� � �� � � � � � � ��        (5.2) 

Here, Yit is the transformed number of trips for individual i at wave t, Z is a 

vector of measured explanatory variables that are constant over time (time-invariant 

variables), W is a vector of measured explanatory variables that vary with time, and �  

and �  are vectors of coefficients. Our principle interest is in � , which may be regarded 

as the effect of the event X, which, in our case, represents the use of ShuttleTrac. 

Some of these individuals experience the event (use of ShuttleTrac) between two 

measurements (Xi=1), other do not (Xi=0).  The � s are time-specific random 

disturbances that are assumed to be independent of the explanatory variables, and of 

� i. It is permissible for � 1 to be correlated with � 2 in our two-period case. Therefore, 

no autocorrelation test is necessary for the two-wave models. The � i represents 
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unobserved differences across individuals (unobserved heterogeneity) that are 

constant over time. 

The main reason for collecting panel data is to deal with the unobserved 

heterogeneity � i. One approach, called within transformation, is to time-demean the 

data. Specifically, we average equations 5.1 and 5.2, subtract the averaged equation 

from equation 5.1 and 5.2, and obtain two equations as follows: 

� �� � � � � �� !"# � � $%� �� � � � & � ' ( �� � ( � )                   (5.3) 

� �� � � � � � !"# � � $%� �� � � � & � ' ( �� � ( � )                      (5.4) 

Consequently, time-constant unobserved heterogeneity � i was cancelled out 

and no longer a problem. Then equations 5.3 and 5.4 can be pooled to estimate 

coefficients �  and �  with the OLS estimator. The OLS estimator with time-demeaned 

data is normally called fixed-effects (FE) estimator or within estimator. One character 

of the within transformation is that all time-invariant variables Z are canceled out too. 

An alternative to fixed-effects model is random-effects (RE) model. It is 

assumed that � i is random variables and is not correlated with any independent 

variable (i.e. W, Z and X). Here � i is no longer a problem, but serial correlation is. A 

pooled GLS estimator, namely random-effects estimator, can be used to deal with 

serial correlation. 

I chose the FE estimator over the RE one based on the theoretical 

considerations and the statistical test. RE estimator demands the assumption that 

unobserved heterogeneity is uncorrelated with explanatory variables. In randomized 

experiments, the possibility of correlation between treatment and unobserved 

heterogeneity is reduced by random assignment. In that case, RE estimator is 

appropriate. In non-experimental scenarios, however, the possible biasing effects of 



 

 93 
 

“unmeasured selectivity” or “self-selection” could be a serious problem (Allison, 

1994).  It is commented by many scholars that the fixed-effects estimator is nearly 

always preferable for estimating causal effects of events with non-experimental data. 

Essentially our data is quasi-experimental in that the treatment (use of ShuttleTrac) is 

not randomized among riders. Therefore, theoretically the FE estimator is preferable 

in our case. Moreover, the Hausman specification test were performed to test the null 

hypothesis that the coefficients estimated by the RE estimator are the same as the 

ones estimated by the consistent FE estimator. If the p-value is significant, random-

effects estimator can be deemed to be biased. In all models for two trip-making 

frequency dependent variables, the p-values from Hausman tests are all highly 

significant, suggesting that FE estimators are superior to RE estimators in all cases. 

For three-wave dataset, linear equations for a sample of individuals labeled 

i=1,…, n for three waves could be formulated as follows: 

� �� � *������������ � $� +� � ,- � � . � � ( ��        (5.5) 

� �� � * � "# �� � $� +� � ,- � � . � � ( ��        (5.6) 

� �/ � * � "# �/ � $� +/ � ,- � � . � � ( �/        (5.7) 

Where Xi2 denotes whether the individual i used ShuttleTrac between Wave1 and 

Wave2, Xi3 denotes whether the individual i used ShuttleTrac between Wave1 and 

Wave3. Presumably, if Xi2=1, then Xi3=1.  

Using the within transformation introduced above, we can obtain: 

� �� � � � � �
�

/
" ' #�� � # �/ ) � $%� �� � � � & � ' ( �� � ( � )                   (5.8) 

� �� � � � �
�

/
" ' 0#�� � # �/ ) � $%� �� � � � & � ' ( �� � ( � )                   (5.9) 

� �/ � � � �
�

/
" ' 0#�/ � # �� ) � $%� �/ � � � & � ' ( �/ � ( � )                   (5.10) 
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In this case, the unobserved heterogeneity � i which is constant across three 

waves was also cancelled out. 

As discussed in Chapter 4, endogeneity caused by self-selection is potentially 

a problem to the models. To represent this problem using the equations listed above, 

Xit as the non-randomly assigned treatment might be correlated with the two 

components of unobserved disturbances – � i and � it. A nice thing about FE estimator 

is that unobserved individual differences (� i) as a part of unobserved disturbance are 

canceled out. If we assume that the endogenous variable Xit is only correlated with the 

unobserved individual heterogeneity � i, the self-selection is no longer a problem with 

FE estimators. This assumption seems to be reasonable because literature review in 

Chapter 2 has suggested that use of real-time information to an extent can be 

attributed to individual differences (see Section 2.1). 

5.2.3 Modeling Results 

Results for modeling two trip-making frequency dependent variables using 

panel datasets are displayed in Table 5.4 and 5.5. Since the fixed-effects (FE) 

estimator was chosen, four time-invariant variables are dropped, including age, 

gender, race, and foreign citizenship. Note again that the dependent variables are 

natural logarithm of trip counts. 
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Table 5.4 Estimated Results for Number of Monthly Shuttle Trips 

# Monthly Shuttle Trips 
Model 1-1 
Wave 1+2 

Model 1-2 
Wave 1+3 

Model 1-3 
Wave 1+2+3 

Independent varaibles Coef. t Coef. t Coef. t 
Wave 2 dummy -0.042 -0.69 N/A -0.104 -1.47 
Wave 3 dummy N/A -0.371a -5.54 -0.504a -6.30 
Use of ShuttleTrac 0.034 0.35 0.231b 2.27 0.245b 2.46 
Accuracy of ShuttleTrac: 
50% or less 

0.185 0.95 -0.593a -2.90 -0.051 -0.27 

Age  dropped dropped dropped 
Male  dropped dropped dropped 
Foreign citizen  dropped dropped dropped 
White dropped dropped dropped 
Student 0.021 0.05 0.008 0.02 0.178 0.48 
Driver license  -0.452 -1.45 -0.528 -1.53 -0.540c -1.77 
Car access  0.124 0.65 -0.838a -5.00 -0.339b -2.03 
Campus Parking permit  -0.617a -3.50 -0.622a -4.72 -0.551a -3.99 
Live on campus -0.137 -0.51 -0.253 -1.24 -0.525b -2.48 
# commuting days a week 0.070c 1.86 0.067c 1.83 0.053 1.53 
<5 min walk to stop  0.413b 2.05 0.682a 4.29 0.615a 3.84 
5-10 min walk to stop 0.067 0.32 0.463b 2.48 0.257 1.36 
10-20 min walk to stop 0.287 1.47 0.360c 1.87 0.176 1.00 
_cons 1.247a 2.89 1.869a 4.89 1.639a 4.41 
       
within R2 0.046 0.214 0.149 
Overall R2 0.359 0.416 0.465 
# obs 1196 1419 1097 
# groups 606 713 372 
NOTE: Significant values are boldfaced. 
a: p<0.01; b: p<0.5; c: p<0.1 
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Table 5.5 Estimated Results for Number of Monthly Campus-based Shuttle Trips 

# Monthly campus-based 
Shuttle trips 

Model 2-1 
Wave 1+2 

Model 2-2 
Wave 1+3 

Model 2-3 
Wave 1+2+3 

Independent varaibles Coef. t Coef. t Coef. t 
Wave 2 dummy -0.042 -0.74 N/A -0.022 -0.41 
Wave 3 dummy N/A -0.174a -3.59 -0.274a -4.59 
Use of ShuttleTrac 0.109 1.20 0.006 0.09 0.066 0.89 
Accuracy of ShuttleTrac: 
50% or less -0.337c -1.88 -0.533a -3.62 -0.093 -0.67 

Age  dropped dropped dropped 
Male  dropped dropped dropped 
Foreign citizen  dropped dropped dropped 
White dropped dropped dropped 
Student -0.139 -0.38 0.241 1.03 0.243 0.88 
Driver license  -0.256 -0.89 -0.178 -0.72 0.043 0.19 
Car access  -0.219 -1.24 -0.679a -5.61 -0.538a -4.32 
Campus Parking permit  -0.202 -1.24 -0.203b -2.13 -0.242b -2.36 
Live on campus 0.896a 3.58 0.268c 1.82 0.357b 2.26 
# commuting days a week -0.008 -0.24 0.020 0.78 -0.009 -0.36 
<5 min walk to stop  -0.004 -0.02 0.203c 1.77 0.135 1.13 
5-10 min walk to stop -0.402b -2.08 0.350b 2.59 0.056 0.40 
10-20 min walk to stop -0.088 -0.49 0.230c 1.66 0.063 0.48 
_cons 0.754c 1.90 0.448 1.62 0.409 1.48 
       
within R2 0.052 0.175 0.119 
Overall R2 0.243 0.326 0.374 
# obs 1196 1419 1097 
# groups 606 713 372 

NOTE: Significant values are boldfaced. 
a: p<0.01; b: p<0.5; c: p<0.1 

 

First of all, the wave3 dummy variables in Model 1-2 and Model 2-2 are 

found to be significantly related to number of shuttle trips. The negative sign suggests 

that, everything else being equal, travelers tend to use Shuttle-UM less in November 

2007 than in September 2006. This systematic change may be due to seasonal factors. 

On the other hand, wave2 dummy variables in Model 1-1 and 2-1 have insignificant 

coefficients, implying that no systematic changes between wave1 and wave2, if 

everything else are kept unchanged. 

The variable of our primary interest, ShuttleTrac use, has shown interesting 

patterns in three models regarding monthly shuttle trip rate. ShuttleTrac use dummy 
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shows a positive effect on monthly shuttle trip-making frequency at a significant level 

of .05 in Model 1-2 and 1-3, but not in Model 1-1 (see Table 5.4). The insignificant 

coefficient in Model 1-1 suggests that, between wave 1 and 2, travelers may not 

increase their number of shuttle trips in response to use of real-time bus arrival 

information. In contrast, the significant coefficient in Model 1-2 shows that, between 

wave 1 and 3, the use of ShuttleTrac is to increase the number of monthly shuttle trips 

by 23.1%, other factors being fixed. 

Conceivably it is the adjustment period and learning dynamics that makes a 

difference in two models. For this natural experiment, the treatment is use of real-

time bus arrival information system. Therefore, individual travelers have various 

adjustment periods, starting precisely from the day they first use ShuttleTrac to the 

survey time points. An apparent explanation for the insignificant effect between wave 

1 and 2 is that our wave 2 survey was only about 2 weeks (less than a month) after the 

extensive marketing, there was not enough time for most travelers to adjust their 

travel behavior, even if they used ShuttleTrac once or more times. For the panel of 

wave 1 and 3, the adjustment periods are much longer. If we assume a random 

distribution of first-time ShuttleTrac use, the average adjustment duration for 

respondents who reported ShuttleTrac use in Wave 3 survey is 3.5 months (or 2 

months if excluding summer break). Actually, the distribution of first-time 

ShuttleTrac use is skewed to the left, with a large portion of ShuttleTrac users used it 

already before Wave 2 survey. Using the descriptive statistics of the three-waved full 

panel as reference, we may get the following information: 28% of riders used 

ShuttleTrac before Wave2 survey point, which gives them 7 months for adjustment 
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before Wave3 survey point (4 if summer break excluded); and another 21% of 

respondents reported they used ShuttleTrac between wave 2 and 3 survey points (see 

Table 5.3), which gives them an average of 3.5 months for adjustment (2 if summer 

break excluded), assuming a random distribution; in sum, for all ShuttleTrac users, 

their average adjustment period at Wave3 survey point is about 5.5 months (3.14 

months if excluding summer break). Thus, the results imply that the exposure to real-

time bus arrival information system will induce more shuttle trips for travelers, but 

this kind of effect will only be in place with an average of five and a half months of 

adjustment. 

The coefficient of ShuttleTrac use dummy in Model 1-3 is also significant and 

has similar magnitude as in Model 1-2. But interpretation of this result is somewhat 

tricky. It seems to tell that use of ShuttleTrac will immediately increase monthly 

shuttle trip-making frequency by 24.5% and this effect will keep constant in the 

future time. This time path for the effect can be illustrated in Figure 5.1A.  

 
Figure 5.1 Possible time paths for the effect of ShuttleTrac use on monthly trip rate 

(Source: adapted from Allison, 1994) 
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However, from above discussion, we have learned that the use of ShuttleTrac 

cannot immediately alter travelers’ shuttle trip rates. More plausible time paths for the 

effect shall be like Figure 5.1C or Figure 5.1D, indicating that there is a longer-term 

effect of ShuttleTrac use. More specifically, when travelers first use real-time 

passenger information system, they will not immediately modify their transit usage. It 

takes time for them to gradually increase their transit trip rates. The comparison of 

model results of Model 1-1 and 1-2 has implied this phenomenon. It is just not clear 

that which form, linear (as in Figure 5.1C) or curvilinear (as in Figure 5.1B), this 

longer-term effect takes though. 

In addition to Model 1-3, another model specification has been tried to capture 

this longer-term effect using three-wave panel dataset by including a longer-term 

variable – a product of ShuttleTrac use dummy with time variable. However, it does 

successfully depict the form of longer-term effect because of two reasons. One reason 

is that there are only three waves, thus it is not possible to detect non-linear effect of 

any kind. A more important reason is that the adjustment durations for so-called “new 

users” of ShuttleTrac in two waves are systematically different. In other words, a new 

value of 1 for ShuttleTrac use in wave 2 and 3 means totally different things. In wave 

2, the adjustment period is mostly less than 2 weeks (maybe with only a few 

exceptions because of the test run). In wave 3, travelers who newly reported 

ShuttleTrac use have an average of 3.5 month of adjustment duration, assuming a 

random distribution of first use. In this sense, it is not appropriate to treat these 1s as 

identical, which is actually the case in the models using the three-wave panel dataset 
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such as Model 1-3. Therefore, as a matter of fact, result for this particular variable in 

Model 1-3 provides no more than a mere repetition of Model 1-2. 

Nevertheless, the results in Model 1-1 and 1-2 have given us an adequately 

clear picture of how a significant longer-term effect of exposure to real-time bus 

arrival information system on transit trip rate takes place as travelers’ adjustment 

periods grow. 

With insignificant coefficients for ShuttleTrac use in Model 2-1, 2-2, and 2-3, 

the same kind of effect of real-time transit information system use on monthly 

campus-based shuttle trip rates has not been found. 

Another ShuttleTrac-related variable is the perceived inaccuracy of 

ShuttleTrac prediction (accurate 50% or less).  In Model 1-2, this variable is found to 

be negatively related to number of shuttle trips at a very high significance level (t = -

2.90). Other factors being kept unchanged, between wave 1 and 3, the number of 

monthly shuttle trips is to decrease by about 59% when riders feel ShuttleTrac’s 

prediction accuracy is generally poor. This impact cannot be found between wave 1 

and 2, implying that there is also latency in this effect. The magnitude of this effect is 

about 2.5 times higher than that of ShuttleTrac use. Suppose a rider has used real-time 

passenger information and somehow obtained the perception that the prediction 

accuracy is poor, with some period of adjustment, his transit trip rate is to decrease by 

about 36%.  Interestingly, the same effect is found in Model 2-2, indicating that, 

during the period between wave 1 and 3, the mere use of ShuttleTrac is not to 

increase campus-based shuttle trip rates, but once passengers perceive that the 

prediction of ShuttleTrac is problematic, they will reduce their campus-based shuttle 
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trips by about 53%. These findings highlight the issue of mis-information, which shall 

be a caution to information providers. 

For other variables in Model 1 and 2, I will mainly report the results in three-

wave models, Model 1-3 and 2-3. In Model 1-3, six variables are significantly related 

to the number of shuttle trips. The highly significant coefficient for wave 3 dummy 

shows that, as a general trend, UMD travelers in Fall semester of 2007 tend to reduce 

their Shuttle-UM trip rates by about 50% as compared to Fall 2006. Three vehicle-

related variables all have negative coefficients at various significance levels (all 

meeting the significance level of 0.1). The results show that, other things being 

constant, the action of obtaining a driver license, regular access to a private vehicle 

(e.g., buying a car), or a campus parking permit is to reduce the shuttle trip rate by 

54%, 34%, and 55% respectively. The magnitude of these effects is rather large. 

Suppose a young student takes all of these three actions by getting a license, buying a 

new car, and applying for a parking permit. All these negative effects on shuttle usage 

may add up, and as a result this young student is most likely to give up Shuttle as his 

or her transportation mode entirely. 

Moving from an off-campus residence to an on-campus one will also reduce 

the shuttle trip rates. This finding is somewhat contradictory to our expectation. 

However, this result should be interpreted together with other findings discussed 

below. First, the opposite effect was actually found for number of monthly campus-

based trips, suggesting that campus-based shuttle trip rate is to increase by about 36% 

if one moves from off-campus to on-campus (see Model 2-3). Another significant 

variable in Model 1-3 is “<5 min walk to nearest shuttle stop”. Similarly, it suggests 
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that moving from a place where shuttle is not accessible by walk to one where nearest 

shuttle stop is less than five minutes away increases the overall shuttle riding 

frequency by 61.5%, another huge effect. 

Again let us suppose a scenario, in which one student moves from an off-

campus residence where Shuttle-UM is not accessible by foot to an on-campus 

residence hall with just less-than-five-minute walk to the shuttle lines (which is true 

for nearly all on-campus residence halls). Other things being equal, the first effect of 

movement on his or her shuttle-riding behavior is that campus-based shuttle trip-

making frequency is to increase by 36%. Second, on-campus living is to reduce 

his/her overall shuttle trip rate. However, this negative effect is fully offset by the 

positive effect caused by higher accessibility to shuttle service (-53% vs. 62%, see 

Model 1-3). As a result, this student is about to maintain his/her monthly shuttle trip 

rate, perhaps with a little bit increase, and in the mean time he/she is riding more 

Shuttle-UM for some non-mandatory activities, such as going to downtown College 

Park for shopping and/or meals. 

5.3 Dominant Commuting Mode 

5.3.1 Datasets and Variables 

The dataset used for analyzing the dominant commuting mode is limited to the 

Wave 3 commuter cross-sectional dataset because of several reasons. First, Wave2 is 

not considered because it is believed that this kind of habitual mode shift cannot take 

place immediately after first-time use of real-time information. Second, I did not pool 

Wave1 and Wave3 cases to get a Wave1+3 commuter panel dataset, simply because 

there is a lack of statistical package that is able to handle multinomial logit model 
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with panel data using FE or RE estimator. I have tried the GLLAMM6 with the 

Wave1+3 panel dataset, but the instability of such program could not give successful 

estimation. Thus only the cross-sectional dataset extracted from the Wave3 survey is 

used in the model, with a two-stage instrument variable technique to address potential 

self-selection problem. 

Explanatory variables commonly used for mode choice models include travel 

times and costs for each alternative mode. I have tried to manually generate different 

types of travel times and costs for alternative modes for each case following steps as 

follows.  

�  Each off-campus living respondent was geocoded on Google Maps 

(http://maps.google.com/) based on address (or intersection) he provided in 

online survey. 

�  Taking his location as the origin and Stamp Student Union as the destination, 

driving time (In-vehicle time (IVT) for car mode) and distance (D) were 

derived with Google Maps direction function. Egress time from the parking 

lot to respondent’s buildings on campus (EgTime) was set at a constant 

number of 2 minutes. Out-of vehicle time (OVT) is simply equal to egress 

time for car mode.  

�  Travel costs for car mode were computed using the simple equation: Cost = 

Distance * Gas Price / MPG. Average retail gas prices in Maryland in 

September 2006 and November 2007 were $2.50 per gallon and $3.05 per 

gallon respectively according to U.S. Energy Information Administration 

                                                 
6 A famous Stata program to fit generalized linear latent and mixed models. Random-effects 
multinomial logit model is said to be able to be fit with GLLAMM. (see www.gllamm.org) 
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(EIA)7. Average Miles per Gallon (MPG) for passenger cars in 2006 and 2007 

was 22.5 according to EIA8. 

�  Respondent’s geocoded address was checked against the nearest Shuttle-UM 

stop. Access time to the stop (AccTime) was derived with Google Maps with 

address as origin and the nearest shuttle stop as destination. Shuttle riding 

time from the stop to Stamp Student Union or Regents Drive Garage (In-

vehicle time (IVT) for shuttle mode) was extracted from published Shuttle-

UM timetable. Initial waiting time (WaitTime) and egress time from final stop 

to the destination building (EgTime) were both set as 2 minutes. Out-of 

vehicle time (OVT) for shuttle mode is a sum of AccTime, WaitTime and 

Egtime. Travel cost for shuttle mode is set to be 0 because Shuttle-UM is free 

of use for qualified passengers.  

�  Travel times and costs for transit mode were entirely relied on the Trip 

Planner tool provided on Washington Metropolitan Area Transit Authority 

(WMATA) 9. The respondent’s address was input as origin, and the Stamp 

Student Union on campus was input as destination. Moreover, 8:00am was 

input as departure time in order to resemble the morning commute, a weekday 

during survey periods was set as the travel day. In addition, minimizing 

traveling time and allowing walking distance up to 0.6 mile were set as two 

rules for planning trips (see Figure 5.2A for the interface of Trip Planner).  

The output page is exampled as in Figure 5.2B. Access times (AccTime), in-

                                                 
7 http://www.eia.doe.gov/oil_gas/petroleum/data_publications/wrgp/mogas_history.html, accessed in 
May 2008. 
8 http://www.eia.doe.gov/emeu/mer/pdf/pages/sec1_17.pdf, accessed on May 20 2008. 
9 http://www.wmata.com/rider_tools/tripplanner/tripplanner.cfm accessed in June 2008. 
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vehicle times (IVT), transfer times (XferTime), number of transfers (Xfer), 

and transit fares (Fare) were all extracted from the output mostly by hand. 

Initial waiting times (WaitTime) and egress times (EgTime) were set as 2 

minutes. Out-of-vehicle time (OVT) for transit mode is a sum of AccTime, 

WaitTime, XferTime, and EgTime. 
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Figure 5.2 Interface of online transit trip-planner at WMATA (Source: Author) 
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�  Respondent’s travel time by non-motorized mode is computed simply using 

the equation of Time = Distance / Speed. The travel speed depends on bike 

availability. If the respondent reported that he owns a bicycle, average bicycle 

speed is designated as 20 mph. Otherwise, I use average walking speed of 3 

mph. These parameters I used are commonly used. Travel time by bike or 

walk constitutes out-of-vehicle time (OVT) for non-motorized mode. 

�  Each respondent may not have all four modes as his available options. I set up 

some rules to exclude one or more modes that I deem as unavailable for the 

respondent. Car mode is not available for respondents who reportedly have no 

regular access to cars. Shuttle mode is not available for respondents whose 

locations are not within 20 minutes away from the nearest shuttle stop. Transit 

mode is not available for those whose residences are more than 0.6 miles 

away from stops. And non-motorized mode is unavailable for respondents 

whose travel time by this mode is greater than 60 minutes.  

 

Admittedly some of the treatment is somewhat arbitrary. Nevertheless, 

following above steps, these variables can be generated to measure the travel times 

and costs for each alternative commuting mode. In addition, sensitivity tests showed 

that different values of access times and egress times (0, 2, 4 minutes respectively) 

made no significant difference in modeling results.  The descriptive statistics of this 

dataset is displayed in the following Table 5.6. 

  



 

 108 
 

 
Table 5.6 Descriptive Statistics of Wave3 Commuter Dataset 

 N Min Max Mean SD 
Car 

In-vehicle time 237 2 95 11.86 9.89 
Out-of-vehicle time 237 2 2 2 0 
Fuel cost 237 0.08 3.95 0.49 0.41 
Campus parking permit  237 0 1 0.56 0.50 

Shuttle-UM 
In-vehicle time 258 3 50 19.90 10.30 
Out-of-vehicle time 258 6 19 8.85 4.28 
Use of ShuttleTrac 258 0 1 0.57 0.50 
Perceived inaccuracy 258 0 1 0.11 0.31 

Transit 
In-vehicle time 247 3 89 18.39 11.83 
Out-of-vehicle time 247 5 50 12.71 7.53 
Fare 247 0.75 4.05 1.35 0.47 

Non-motor 
Out-of-vehicle time 184 3.56 54.6 17.47 9.06 
      

# respondents = 290 
Chosen mode: Car = 150; Shuttle = 63; Transit = 14; Non-motor = 63 
 

5.3.2 Model Specifications 

Conditional Logit Model, an extension to multinomial logit model, is 

commonly used for modeling transportation mode choice, since it may include 

explanatory variables that are attributes of choice alternatives (alternative-specific 

variables). In this part of analysis, conditional logit model is utilized to model 

traveler’s choice of dominant commuting mode. 

The utility functions for four alternatives are formulated as follows:  
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I can use ShuttelTrac use dummy and perceived inaccuracy dummy, two 

variables specific to shuttle mode, in the utility function for shuttle mode so as to 

estimate effects of these two variables on the probability of commuter choosing 

shuttle as dominant mode of transportation. However, there exists a highly potential 

self-selection problem, as commuters who use shuttle as their dominant modes sort 

themselves into the group of ShuttleTrac users. If that is the case, the parameter of 

Tracuse would be correlated with the error term � Shuttle, and the estimates for the 

variable in the equation would be biased and inconsistent. A common solution when 

independent variables are correlated with the error term is to use instrumental 

variables. Therefore, in this study, the Two-Stage Instrumental Variable Model, 

similar to what was used in Khattak and Rodriguez (2005) for addressing self-

selection in residential choice, was adopted to address self-selection bias. 

In the first stage, I rely on instruments to estimate a binary logit model for 

choice of ShuttleTrac use, because this choice is dichotomous. The equation of the 

binary logit model is as follows: 

- � � , U
5 � , 5# � � ( �                              (5.15) 

Where Zi is the logit for individual i, X is the vector of instrumental variables, and �  

is the vector of coefficients to be estimated.  

Then for each individual i, the probability of choosing to use ShuttleTrac is 

given as follows: 
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                  (5.16) 

In Stage Two, the conditional logit model presented previously is employed, 

with the replacement of Tracuse dummy variable. Using estimated coefficients, 
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predicted probability of using ShuttleTrac for each individual is used to substitute 

ShuttleTrac use dummy in utility function for shuttle mode in stage two. Thus, utility 

equation 5.12 is replaced by the new equation given as follows: 

1FGH++IJ
� � , �

5678� � , �
5978 � � , K

5?� ' 8A@L1<M) � , N
5OLLPA@LQ� � ( FGH++IJ

�    (5.17) 

 

The key to the two stage approach is to find appropriate instruments. 

Generally, instrumental variables should satisfy two criteria: they must be correlated 

with the endogenous variable they are predicting (“relevance”), but not be 

significantly correlated with the error term of the Stage-Two equation (“exogeneity”) 

(Mokhtarian and Cao, 2008). In this case, the endogenous variable is choice of 

ShuttleTrac use, and error term of the Stage-Two equation represents unmeasured 

variables explaining utility associated with choosing shuttle mode as dominant 

commuting mode. Some of the personal characteristics variables that I think are 

correlated with ShuttleTrac use choice were incorporated into the Stage-One binary 

logit model to predict probability of using ShuttleTrac, including age, gender, race, 

nationality, and campus status. While some other personal characteristics are also 

considered to be related to ShuttleTrac choice, but conceptually they are very much 

correlated with the error terms in the utility function in conditional logit model. These 

variables are ones measuring driver license ownership, regular access to vehicles, 

campus parking permit ownership, and accessibility to shuttle stops. Although 

incorporating these variables will enhance the predictive power of Stage-One 

equation, they were not included in order to ensure “exogeneity” of instruments.  
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The conditional logit model depends on the independence of irrelevant 

alternatives (IIA) assumption. That is, the relative probabilities between choices must 

be independent of other alternatives. An example of IIA violation is the well-known 

"Blue Bus / Red bus" case. In this study, relative probabilities of choosing between 

shuttle and transit are likely to be dependent of each other because both may be 

deemed as public transportation modes and thus IIA assumption is likely to be 

violated. The Hausman specification tests (Hausman and McFadden, 1984) were 

performed to check whether the violation of IIA is the case. The tests can be 

conducted by eliminating a subset of the choices from the choice set and re-

estimating the model. If the parameters of the restricted model are not systematically 

different from the parameters of the full model, then the IIA property holds. 

I tried to eliminate four alternative modes from the choice set one by one and 

perform the Hausman tests. Hausman tests gave � 2 test statistics of 14.79 (p=.0663), 

45.91 (p=.000), 14.96 (p=.0921) and 15.99 (p=.0671), all of which are significant at 

10% level. Therefore, in all cases, we cannot reject the hypothesis that the IIA 

property holds for the choice set. Thus conditional logit model is justified to be the 

proper specification for Stage-2 model for estimating commuting mode choice.  

5.3.3 Modeling Results 

The estimated results of stage-1 binary logit model and stage-2 conditional 

logit model are together presented in Table 5.7, with ShuttleTrac use coded as 1 and 

non-ShuttleTrac use coded as 0. The result shows the first stage of estimation, using 

instruments of personal characteristics. The model fit is reasonable (Pseudo 

R2=0.113), and two variables of personal characteristics are statistically significant at 
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the 10% level, namely gender and race. The results suggest that male and non-white 

people are more likely to use ShuttleTrac, other things being equal. The predicted 

probabilities of using ShuttleTrac are saved as a new variable (for Shuttle mode) for 

use in Stage Two of the model. 

Table 5.7 Results for Dominant Commuting Mode 
 Coef. Z. 
Stage-1: Binary Logit Model for ShuttleTrac use 
Age -0.066 -0.80 
Age square 0.0003 0.26 
Male 0.532c 1.84 
Student 0.361 0.82 
White -0.796b -2.32 
Foreign citizenship 0.314 0.83 
Constant 2.085 1.26 
   
# obs 249 
Log Likelihood -150.396 
Pseudo R2 0.113 
 
Stage-2: Conditional Logit Model 

In-vehicle time 0.018 0.90 
Out-of-vehicle time -0.053a -2.43 
Monetary cost 1.31a 3.43 

Car 
Campus parking permit 2.566a 6.94 

Shuttle-UM 
Probability of ShuttleTrac use 0.372 0.47 
Perceived inaccuracy -0.066 -0.13 

Constant 
Car -0.558 -0.82 
Transit -3.135a -3.54 
Non-motor 1.408a 2.20 

   
# obs 906 
Log Likelihood -189.211 
Pseudo R2 0.411 
NOTE: Significant values are boldfaced. 
a: p<0.01; b: p<0.5; c: p<0.1 

  

The second stage is to estimate the dominant commuting mode choice, with 

predicted probability of ShuttleTrac use substituted for ShuttleTrac use dummy. The 

results of the mode choice model are also presented in Table 5.7. As discussed 

previously, in addition to the predicted probability of ShuttleTrac use and perceived 
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inaccuracy of prediction, the independent variables included are three commonly used 

alternative-specific variables such as in-vehicle travel time, out-of-vehicle travel time, 

and out-of-pocket travel cost, as well as two other ones such as parking permit 

ownership for car mode and less-than-five-minute distance to shuttle lines for shuttle 

mode.  

The stage-two model shows a reasonably good fit (Pseudo R2=0.415). Two of 

three dummy variables for alternatives (Transit and Non-motor) are statistically 

significant at a 0.05 level. The negative sign of coefficient for transit mode indicates 

that, other things being equal, transit mode is less preferable than shuttle mode. And 

the positive sign for non-motorized dummy shows that other factors being equal, 

commuters tend to prefer to walking or cycling to the campus in comparison with 

shuttle. The insignificant coefficient for car mode suggests that between car and 

shuttle commuters are likely to be neutral when factors are equal.  

Out-of-vehicle travel time is found to be significantly related to commuting 

mode choice. The variable has a negative coefficient as expected, indicating that the 

higher the out-of-vehicle travel time for a mode, the lower the possibility of traveler 

choosing this mode. Travel cost has a statistically significant yet positive correlation 

with mode choice and in-vehicle travel time has not shown a significant relationship 

with mode choice. Both findings are somewhat inconsistent with prior expectation. I 

actually have little idea of explanation of these counterintuitive findings. Probably it 

is because of the less satisfactory data I generated. 

As far as two variables of our interest – ShuttleTrac use and perceived 

inaccuracy – are concerned, the signs are consistent with our expectation, but the 
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effects are not statistically significant, showing that the probability of using real-time 

information systems will not significantly increase commuter’s probability of using 

shuttle as their dominant commuting mode. Interestingly, if we look at the model with 

original ShuttleTrac use dummy, this variable has a positive coefficient on at a very 

high significance level of 0.01 (coef. = 2.20, z = 4.43), which seems to suggest a 

positive effect of use of real-time information system on commuting mode choice. In 

light of the results of two-stage models, we may conclude that the positive effect 

found in such model is largely due to self-selection bias. In other words, controlling 

for the self-selection and other variables, we cannot find significant impact of real-

time passenger information system on the commuting mode choice decision, even 

with a few months of adjustment. 

5.4 Psychological Responses 

5.4.1 Datasets and Variables 

Similar to trip-making frequency, three panel datasets were used in modeling 

psychological responses to real-time information. But these panel datasets are 

different in that they exclude respondents whose monthly shuttle trip count is zero for 

each one of the waves in respective panel dataset (e.g. for Wave1+2 panel, 

respondents with zero shuttle trip in both wave 1 and 2 are excluded). The underlying 

rationale is that only riders of Shuttle-UM have perceptions of and attitudes towards 

Shuttle-UM through their shuttle riding experience. In fact, many non-riders did not 

answer the questions regarding attitudes toward Shuttle-UM because they think these 

questions are not applicable to them. See Table 5.8, 5.9 and 5.10 for descriptive 

statistics for three rider panel datasets. 
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Table 5.8 Descriptive Statistics of Wave1+2 Rider Panel Dataset 

  Wave1 (Pre-test)  Wave2 (Post-test1)  

Variables  N Min  Max  Mean  SD N Min  Max  Mean  SD 
feeling of security at 
day 453 1 5 4.81 0.52 460 1 5 4.75 0.55 
feeling of security at 
night 414 1 5 3.99 1.03 429 1 5 4.06 1.02 
perception of on-time 
performance 422 1 5 3.62 0.79 419 1 5 3.77 0.61 

waiting anxiety level 436 1 5 1.86 1.11 448 1 5 2.00 1.1 
overall satisfaction 
level  442 1 5  3.83  0.91  454 1 5  3.92 0. 87 

ShuttleTrac use  482 0 1 0.51 0.50 

Perceived inaccuracy  482 0 1 0.09 0.29 

Age  475 16 72 28.68 10.75 475 17 73 29.68 10.75 

Age square 475 256 5184 937.94 797.11 475 289 5329 996.31 818.30 

Male  478 0 1 0.42 0.49 time-invariant  

Foreign citizen  479 0 1 0.20 0.40 time-invariant  

White  477 0 1 0.66 0.47 time-invariant   

Student 481 0 1 0.72 0.45 479 0 1 0.72 0.45 

Driver license  478 0 1 0.92 0.27 477 0 1 0.94 0.24 

Car access  482 0 1 0.69 0.46 480 0 1 0.72 0.45 
campus Parking 
permit  482 0 1 0.48 0.50 480 0 1 0.47 0.50 

Live on campus 482 0 1 0.19 0.39 482 0 1 0.19 0.39 
<5 min walk to 
nearest stop  482 0 1 0.44 0.50 482 0 1 0.45 0.50 

5-10 min walk to stop 482 0 1 0.12 0.32 482 0 1 0.11 0.31 
10-20 min walk to 
stop 482 0 1 0.08 0.28 482 0 1 0.06 0.25 
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Table 5.9 Descriptive Statistics of Wave1+3 Rider Panel Dataset 

  Wave1 (Pre-test)  Wave3 (Post-test2)  

Variables  N Min  Max  Mean  SD N Min  Max  Mean  SD 
feeling of security at 
day 432 1 5 4.82 0.56 438 1 5 4.80 0.54 
feeling of security at 
night 407 1 5 4.06 0.99 422 1 5 4.05 0.96 
perception of on-time 
performance 416 1 5 3.59 0.86 409 1 5 3.82 0.54 

waiting anxiety level 427 1 5 1.76 1.12 421 1 5 1.98 1.07 
overall satisfaction 
level 435 1 5 3.83 0.89 431 1 5 4.00 0.77 

ShuttleTrac use N/A 464 0 1 0.64 0.48 

Perceived inaccuracy N/A 464 0 1 0.10 0.30 

Age  452 17 72 28.51 10.56 452 18 73 29.51 10.56 

Age square 452 289 5184 924.31 795.89 452 324 5329 982.34 816.67 

Male  457 0 1 0.43 0.50 time-invariant   

Foreign citizen  461 0 1 0.25 0.43 time-invariant   

White  458 0 1 0.64 0.48 time-invariant   

Student 463 0 1 0.76 0.42 462 0 1 0.74 0.44 

Driver license  460 0 1 0.90 0.30 461 0 1 0.93 0.25 

Car access  464 0 1 0.65 0.48 462 0 1 0.74 0.44 
campus Parking 
permit  464 0 1 0.43 0.50 462 0 1 0.47 0.50 

Live on campus 464 0 1 0.18 0.38 464 0 1 0.16 0.37 
<5 min walk to 
nearest stop  464 0 1 0.47 0.50 464 0 1 0.44 0.50 

5-10 min walk to stop 464 0 1 0.16 0.36 464 0 1 0.13 0.34 
10-20 min walk to 
stop 464 0 1 0.08 0.27 464 0 1 0.07 0.26 
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Table 5.10 Descriptive Statistics of Wave1+2+3 Rider Panel Dataset 

  Wave1 (Pre-test) Wave2 (Post-test1) Wave3 (Post-test2) 

Variables  N Min Max Mean SD N Min Max Mean SD N Min Max Mean SD 

feeling of security at day 245 1 5 4.84 0.51 255 1 5 4.81 0.48 891 1 5 4.74 0.62 
feeling of security at 
night 228 1 5 4.11 0.96 239 1 5 4.16 0.96 850 1 5 3.91 1.02 
perception of on-time 
performance 234 1 5 3.61 0.81 237 1 5 3.81 0.63 735 1 5 3.83 0.53 

waiting anxiety level 242 1 5 1.84 1.13 251 1 5 2.08 1.11 773 1 5 2.04 1.07 
overall satisfaction 
level 243 1 5 3.88 0.87 255 1 5 3.98 0.87 808 1 5 3.97 0.79 

Use of ShuttleTrac  N/A 262 0 1 0.39 0.49 262 0 1 0.65 0.48 

Perceived inaccuracy  N/A 262 0 1 0.08 0.27 262 0 1 0.09 0.29 

Age 261 18 72 29.24 11.12 261 19 73 30.24 11.12 261 19 73 30.24 11.12 

Age square 261 324 5184 978.31 843.89 261 361 5329 1037.80 865.80 261 361 5329 1037.80 865.80 

Male  262 0 1 0.41 0.49 time-invariant   time-invariant   

Foreign citizen  262 0 1 0.23 0.42 time-invariant time-invariant 

White  261 0 1 0.67 0.47 time-invariant   time-invariant   

Student 262 0 1 0.73 0.44 260 0 1 0.72 0.45 261 0 1 0.70 0.46 

Driver license  259 0 1 0.92 0.27 258 0 1 0.93 0.25 260 0 1 0.95 0.23 

Car access  262 0 1 0.66 0.48 260 0 1 0.68 0.47 261 0 1 0.73 0.45 

campus Parking permit  262 0 1 0.42 0.50 260262 0 1 0.40 0.49 261 0 1 0.47 0.50 

Live on campus 262 0 1 0.20 0.40 260 0 1 0.19 0.39 262 0 1 0.15 0.36 
<5 min walk to nearest 
stop  262 0 1 0.48 0.50 262 0 1 0.48 0.50 

 
262 0 1 0.42 0.49 

5-10 min walk to stop 262 0 1 0.13 0.33 262 0 1 0.13 0.33 262 0 1 0.12 0.32 

10-20 min walk to stop 262 0 1 0.10 0.29 262 0 1 0.07 0.25 262 0 1 0.11 0.31 
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5.4.2 Model Specifications 

The five psychological dependent variables consist of discrete values, and therefore 

the OLS estimation is not appropriate. Furthermore, because these variables are all ordered 

responses, a good approach is to estimate ordered probit or logit models. Parallel to above 

discussion, the fixed effects estimator is preferable to the random effects estimator in our 

panel dataset. However, fixed-effects ordered logit/probit model is not commonly used 

because of its estimation difficulty. In psychology and economics literature (e.g., Karni et al., 

2008), random effects ordered probit model is commonly utilized to explain categorical 

dependent variables with natural order in panel data. Hence I used this type of model to 

examine ShuttleTrac’s effect on shuttle riders’ perceptions on Shuttle-UM.  

The random-effects ordered probit model can be described as follows: 

Q�+
] � ,# �+ � ^ �+_ C � `_ a _ b_ = � `_0�' =c;�c@dM)�;A�`_0_e'=�AMM�c@dM) 
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0�������Cp�*� r Q �+
] q * / _

e�������Cp�*/ r Q �+
] q * >_

s������������������Cp�*> r Q �+
]

t                                                           (5.18) 

Where, Q�+
]  is an unobserved latent variable, and yit is the observed ordered categories in the 

data; µi is the J-th cut-off point for the categories; Xit are observable explanatory variables; � it 

is a time-varying error term, normally distributed, uncorrelated with Xit; and � i is the 

unobserved individual heterogeneity, normally distributed, constant over time and 

uncorrelated with Xit (assumption of random-effects). The cross-period correlation of u��  is � . 

If �  is significantly different from 0, it indicates there is cross-period correlation with respect 
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to u��  (Greene, 2002). Readers are referred to Frechette (2001) for details of estimation 

process. I used “reoprob” command in Stata 9, written by Frechette, to estimate coefficients. 

Note that the time-invariant variables are not canceled out in this specification. 

With a random-effects estimator, unobserved individual heterogeneity � i will not be 

eliminated. Thus the assumption of independence between explanatory variables and � i has 

to be met. In this regard, the solution to self-selection bias used for modeling trip-making 

frequency is not available here. However, self-selection is considered to be less likely a 

problem for psychological models because 1) some of the individual traits that are considered 

to be determinants of first use of ShuttleTrac, were explicitly incorporated into the models 

already; and 2) some are not hypothesized to be related to psychological outcomes as to 

behaviors. Therefore, the unobserved error term can be assumed to be uncorrelated with 

ShuttleTrac use. In other words, I assume that those who have more positive perceptions of 

shuttle do not sort themselves into the group of ShuttleTrac users. Admittedly, even though 

this assumption is reasonable to a certain extent, yet it is a compromise due to a lack of 

appropriate methods to deal with the potential violation to this assumption.  

5.4.3 Modeling Results 

1) Feeling of security about riding the shuttle. 

Table 5.11 and 5.12 summarize estimation results of models regarding feeling of 

security about riding the shuttle in daytime and nighttime. The significant, negative 

coefficients of Wave2 dummy and Wave3 dummy in Model 3-1 and 3-2 respectively show 

that riders feel less safe at day during riding Shuttle-UM in Wave 2 or Wave 3 than in Wave 

1. The Wave3 dummy in Model 4-2 has also significant coefficient, suggesting that riders 

also tend to feel less safe at night in Wave 3 compared to Wave 1. Presumably, the 



 

 120 
 

systematic decrease in feeling of security along time is due to the longer exposure to 

potential threats and accumulation of, if any, bad experience. 

In Model 3-1 and 3-2, the positive coefficients of ShuttleTrac use dummy have 

significance levels of 0.1 and 0.05 respectively. The similar pattern has been found also in 

Model 4-1 and 4-2, with both coefficients having a significance level of 0.1. This seems to 

suggest that the real-time information system has shown somewhat impacts on passenger’s 

general feeling of security both during daytime and nighttime, and that these kinds of effects 

not only occur immediately after the first use of the system, but last for at least a few months.  

Table 5.11 Estimated Results for Feeling of Security at Day 

Feeling of security at day 
Model 3-1 
Wave 1+2 

Model 3-2 
Wave 1+3 

Model 3-3 
Wave 1+2+3 

Independent varaibles Coef. z Coef. z Coef. z 
Wave 2 dummy -0.410a -2.66 N/A -0.357 -1.92 
Wave 3 dummy N/A -0.352b -2.51 -0.327 -1.50 
Use of ShuttleTrac 0.343c 1.73 0.398b 2.22 0.283 1.42 
Accuracy of ShuttleTrac: 
50% or less -0.812a -2.73 -0.092 -0.27 -0.303 -0.99 

Age  0.126b 2.46 0.137a 3.05 0.137b 2.30 
Age square -0.001b -2.02 -0.001a -2.76 -0.001c -1.86 
Male  0.493a 2.91 0.528a 3.18 0.133 0.66 
White -0.018 -0.10 0.385b 2.22 0.180 0.80 
Driver license -0.061 -0.17 0.454 1.32 -0.601 -1.35 
Car access  -0.145 -0.66 0.065 0.28 0.166 0.68 
Campus Parking permit -0.082 -0.43 -0.473a -2.57 -0.155 -0.69 
Live on campus  -0.022 -0.09 0.373 1.47 0.186 0.68 
Student 0.186 0.77 0.426c 1.92 0.360 1.22 
Foreign citizen 0.031 0.13 0.268 1.17 0.204 0.72 
<5 min walk to stop 0.476a 2.30 0.325c 1.75 0.225 0.96 
5-10 min walk to stop 0.279 1.05 0.180 0.78 0.118 0.40 
10-20 min walk to stop 0.452 1.48 0.697b 2.34 0.494 1.46 
_cut1 -1.153 -1.15 0.119 0.13 -0.909 -0.76 
_cut2 -0.892 -0.90 0.313 0.34 -0.155 -0.13 
_cut3 -0.227 -0.23 1.124 1.22 1.206 1.01 
_cut4 1.310 1.32 2.369b 2.53   
rho 0.488a 5.90 0.545 7.08 0.462a 5.45 
    
# obs 886 815 734 
# groups 469 431 257 
Log Likelihood -452.795 -382.856 -326.799 
P-value 0.0001 0.0000 0.185 
NOTE: Significant values are boldfaced. 
a: p<0.01; b: p<0.5; c: p<0.1 
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Table 5.12 Estimated Results for Feeling of Security at Night 

Feeling of security at Night 
Model 4-1 
Wave 1+2 

Model 4-2 
Wave 1+3 

Model 4-3 
Wave 1+2+3 

Independent varaibles Coef. z Coef. z Coef. z 
Wave 2 dummy -0.054 -0.44 N/A -0.077 -0.58 
Wave 3 dummy N/A -0.268c -1.94 -0.302c -1.92 
Use of ShuttleTrac 0.264c 1.66 0.306c 1.95 0.363b 2.35 
Accuracy of ShuttleTrac: 
50% or less 

-0.016 
-0.06 0.294 1.19 0.111 

0.44 

Age  0.083c 1.74 0.078c 1.86 0.093c 1.80 
Age square -0.001 -1.40 -0.001 -1.52 -0.001 -1.44 
Male  0.716a 4.48 0.554a 3.67 0.437b 2.29 
White 0.361b 2.02 -0.057 -0.35 0.206 0.97 
Driver license  0.013 0.04 -0.030 -0.11 0.056 0.18 
Car access  -0.116 -0.60 -0.165 -1.00 -0.142 -0.75 
Campus Parking permit -0.211 -1.20 0.051 0.35 -0.097 -0.55 
Live on campus 0.133 0.60 -0.123 -0.63 0.108 0.47 
Student 0.006 0.02 0.001 0.00 0.082 0.31 
Foreign citizen 0.092 0.41 -0.207 -1.05 0.023 0.09 
<5 min walk to stop 0.281 1.52 0.188 1.18 0.027 0.14 
5-10 min walk to stop -0.211 -0.93 -0.248 -1.25 -0.152 -0.66 
10-20 min walk to stop 0.080 0.32 -0.146 -0.64 0.015 0.06 
_cut1 -1.344 -1.44 -1.918b -2.25 -1.377 -1.32 
_cut2 -0.115 -0.12 -0.727 -0.87 -0.206 -0.20 
_cut3 1.194 1.28 0.502 0.60 0.989 0.96 
_cut4 2.549a 2.73 1.879b 2.24 2.437b 2.36 
rho 0.616a 14.82 0.534a 11.04 0.581a 12.97 
    
# obs 818 775 692 
# groups 445 414 251 
Log Likelihood -974.733 -909.052 -767.069 
P-value 0.000 0.005 0.111 
NOTE: Significant values are boldfaced. 
a: p<0.01; b: p<0.5; c: p<0.1 

 

It we want to see whether the immediate effect is going to increase or decrease along 

with time (illustrative examples shown in Figure 5.1), the mere comparison of magnitudes of 

two coefficients is not appropriate. Instead, we may construct a dummy variable representing 

the continuation of ShuttleTrac use in wave 3 and incorporate it into two three-wave models 

(Model 3-3 and 4-3). Any person who uses ShuttleTrac in wave 2 will get a value of 1 for 

this variable in the Wave 3 record10, while others, including those newly self-reported 

                                                 
10 In the random-effects ordered probit models, each person has three records for three waves respectively.   
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ShuttleTrac users in wave 3 survey, will get a value of 0. The coefficient of this variable 

actually reflects the slope of the presumed linear function that the potential longer-term effect 

may take. To save space, I do not present the full estimation results here. Results of the new 

specifications for two models both give us insignificant coefficients for the newly-

incorporated variable11. It seems to tell us that the ShuttleTrac’s immediate boosting impact 

on feeling of security is likely to be constant over time as illustrated in Figure 5.1A. 

However, there is a caveat for adopting this constant form of longer-term effect on feeling of 

security. As I discussed before, the newly self-reported ShuttleTrac users in wave 2 and 3 

have systematically different adjustment periods. Thus the constant form of longer-term 

effect suggested in models using the three-wave panel dataset stands only if we hold the 

assumption that the new ShuttleTrac users in wave 3 survey have an average of around 2 

weeks of adjustment period.  

The perceived inaccuracy of prediction has shown insignificant impacts on feeling of 

security about riding the shuttle in all models except for Model 3-1. It seems that once 

passengers have the perception that ShuttleTrac provides inaccurate bus arrival information, 

they are less likely to feel safe while riding buses.   

Other factors that influence passenger feeling of security about riding the shuttle are 

age and gender. Age is found to be positively correlated with feeling of security in daytime 

and nighttime. The results indicate that as respondent age grows, they generally feel safer 

about riding the transit. The dummy variable of gender has a significant coefficient only in 

Model 4-3, telling that male feels safer about riding transit during night time. These findings 

are consistent with our expectations.    

 
                                                 
11 For Model 3-3, coef. = .182 (z = .51); for Model 4-3, coef. = -.045 (z = -0.18) 
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2) Perception of On-time Performance. 

Results for models regarding perception of on-time performance are shown in Table 

5.13. This time we found significant increase in perception of on-time performance over the 

time, other things equal, according to the coefficients of two wave dummy variables. This 

may probably be attributed to either the increased familiarity of the system or the measures 

that the operator adopted to actually improve the on-time performace. Yet if statistics of 

missing or delays of Shuttle-UM are available, the causes of such systematic changes in 

perceived on-timeness can be sorted out. 

Table 5.13 Estimated Results for Perception of On-time Performance 

Perception of on-tim 
performance 

Model 5-1 
Wave 1+2 

Model 5-2 
Wave 1+3 

Model 5-3 
Wave 1+2+3 

Independent varaibles Coef. z Coef. z Coef. z 
Wave 2 dummy 0.269c 1.91 N/A 0.647a 3.81 
Wave 3 dummy N/A 0.368b 2.08 0.573a 2.76 
Use of ShuttleTrac 0.495a 2.76 0.273 1.40 0.224 1.16 
Accuracy of ShuttleTrac: 
50% or less -1.144a -4.21 -0.984a -3.94 -1.034a -3.78 

Age  -0.053 -1.11 -0.037 -0.80 -0.051 -0.83 
Age square 0.001 1.29 0.001 0.88 0.001 0.88 
Male  -0.179 -1.18 0.084 0.53 -0.046 -0.22 
White  -0.216 -1.24 -0.090 -0.52 0.048 0.20 
Driver license 0.101 0.36 0.430 1.60 0.414 1.21 
Car access  -0.115 -0.62 -0.034 -0.19 0.159 0.72 
Campus Parking permit 0.062 0.36 0.136 0.84 -0.071 -0.35 
Live on campus -0.381c -1.71 -0.097 -0.46 -0.377 -1.41 
Student -0.461b -1.97 -0.357 -1.49 -0.570c -1.84 
Foreign citizen 0.108 0.49 0.174 0.81 0.392 1.34 
<5 min walk to stop -0.421b -2.27 -0.561a -3.08 -0.504b -2.17 
5-10 min walk to stop -0.571b -2.42 -0.610a -2.74 -0.549b -1.97 
10-20 min walk to stop -0.158 -0.60 -0.260 -0.97 -0.248 -0.85 
_cut1 -4.917 a -5.15 -3.973a -4.18 -4.615a -3.71 
_cut2 -3.840a -4.10 -2.977a -3.20 -3.431a -2.81 
_cut3 -2.448a -2.65 -1.619c -1.77 -2.055c -1.70 
_cut4 1.299 1.42 1.979b 2.16 2.272c 1.89 
rho 0.557a 10.29 0.550a 9.49 0.607a 11.20 
    
# obs 817 769 690 
# groups 450 418 253 
Log Likelihood -684.769 -659.353 -488.982 
P-value 0.000 0.000 0.000 
NOTE: Significant values are boldfaced. 
a: p<0.01; b: p<0.5; c: p<0.1 
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Again we first look at the effects of ShuttleTrac use and perceived inaccuracy. Our 

estimation results show that ShuttleTrac use has a significant effect on perceptions of shuttle 

on-time performance in Model 5-1, but not in Model 5-2 or 5-3 (see Table 5.13). More 

specifically, other things being constant, shuttle riders do tend to feel the shuttle on-time 

performance is better immediately after they use the real-time information system. But this 

effect seems not to last in a medium or long run. Let us try to give plausible explanations for 

this phenomenon in two different scenarios. First, suppose that the actual on-time 

performance of transit service keeps unchanged between before and after periods. The 

immediate positive effect of real-time information system on the perception of on-time 

performance is most likely a temporary illusion caused by the provision of real-time arrival 

times. As time goes, this kind of illusion disappears as riders gradually find out that the on-

time performance is not actually being improved. Alternatively, we may suppose that the 

actual on-time performance does get improved due to better management with real-time 

tracking system. The immediate effect of real-time information on the perception of on-time 

performance likely comes directly from this virtual lift of service punctuality. However, 

because transit riders are well-known to be adaptive yet demanding, they tend to be 

accustomed to and thus less appreciative of the improvement in a longer run. In this regard, 

the perception of transit service punctuality may return to a level where room is made by 

demanding passengers for further improvement.  The question of which scenario is more 

likely the case depends on how measures of on-time performance actually change over time 

before and after the real-time information system is deployed. 

The perceived inaccuracy of ShuttleTrac has shown a very strong negative effect on 

the on-time performance perceptions in all three models. This is to indicate that whenever a 
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transit rider maintains the perception that real-time arrival time prediction is poorly 

estimated, he or she will think the transit service itself is poor in terms of punctuality. In 

practice, the accuracy of bus arrival time estimation and transit on-time performance are not 

necessarily connected. In fact, when the bus is not on time, accurate bus arrival estimation 

can be provided to passengers waiting at the stop. Alternatively, when inaccurate prediction 

is provided, the bus can still arrive on time pursuant to the print timetable. However, our 

findings seem to suggest that in general passengers perceive that they are correlated. In other 

words, perception of inaccurate real-time information contributes to perception of unpunctual 

transit services, and likely vice versa.   

Coefficients of wave 2 and wave 3 dummies show that in general riders felt on-time 

performance of shuttle service is higher in wave 2 or 3 than in wave 1. Findings for other 

variables shown in Model 5-3 are presented as follows. For shuttle on-time performance, 

students feel worse than faculty and staff members do, perhaps because students tend to be 

pickier about shuttle which is one of their major transportation modes. Some interesting 

findings are about shuttle accessibility variables. People who live within 5 min walk to a 

nearest shuttle stop feel shuttle service is less punctual. Those who live 5-10 minute walk to a 

stop have the same negative feeling about shuttle on-time performance.  

 

3) Waiting Anxiety. 

Results for models regarding passenger anxiety in waiting are shown in Table 5.14.  
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Table 5.14 Estimated results for Waiting Anxiety 

Waiting anxiety 
Model 6-1 
Wave 1+2 

Model 6-2 
Wave 1+3 

Model 6-3 
Wave 1+2+3 

Independent varaibles Coef. z Coef. z Coef. z 
Wave 2 dummy 0.224a 2.13 N/A 0.300b 2.52 
Wave 3 dummy N/A 0.197 1.48 0.247c 1.70 
Use of ShuttleTrac 0.002 0.01 0.188 1.27 0.073 0.52 
Accuracy of ShuttleTrac: 
50% or less 

-0.353 -1.52 -0.599a -2.81 -0.387c -1.72 

Age  0.014 0.37 0.016 0.43 0.031 0.67 
Age square 0.000 0.18 0.000 0.08 -0.000 -0.21 
Male  0.143 1.16 0.140 1.10 0.205 1.20 
White  0.379a 2.65 0.147 1.07 0.530a 2.74 
Driver license 0.095 0.39 -0.012 -0.05 -0.060 -0.21 
Car access  -0.168 -1.08 0.004 0.03 0.068 0.40 
Campus Parking permit 0.117 0.84 -0.043 -0.34 -0.078 -0.50 
Live on campus -0.161 -0.88 -0.025 -0.14 -0.151 -0.73 
Student -0.277 -1.51 -0.159 -0.83 -0.292 -1.19 
Foreign citizen 0.147 0.82 -0.206 -1.22 0.326 1.41 
<5 min walk to stop 0.103 0.68 0.159 1.14 0.117 0.67 
5-10 min walk to stop -0.174 -0.93 0.163 0.93 0.018 0.09 
10-20 min walk to stop 0.368c 1.78 0.217 1.05 0.288 1.31 
_cut1 -1.162 -1.57 -0.964 -1.32 -0.690 -0.74 
_cut2 0.252 0.34 0.114 0.16 0.553 0.59 
_cut3 1.465b 1.98 1.482b 2.03 1.940b 2.08 
_cut4 2.787a 3.73 2.713c 3.69 3.482a 3.71 
rho 0.493a 11.51 0.461a 9.76 0.544a 13.27 
    
# obs 860 802 714 
# groups 461 431 256 
Log Likelihood -1198.548 -1126.167 -945.930 
P-value 0.000 0.001 0.000 
NOTE: Significant values are boldfaced. 
a: p<0.01; b: p<0.5; c: p<0.1 

 
 

The coefficients for use of ShuttleTrac in three models have positive signs as 

expected. But this effect is found to be insignificant in either Model 6-1 or 6-2 in Table 5.14, 

indicating that the use of ShuttleTrac has no significant impact on how anxious passengers 

feel while waiting for shuttles, no matter how much time is given to them for adjustment. For 

perceived inaccuracy of ShuttleTrac dummy, the significantly negative coefficient in Model 

6-2 tells that if passengers think the bus arrival time prediction is 50% or less accurate, they 

will tend to increase their general waiting anxiety level. Combining above findings, we may 
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say that provision of real-time passenger information system may not reduce passenger’s 

anxiety in waiting. However once they have a perception that these estimated bus arrival 

times are inaccurate in general, chances are that they will feel more anxious when waiting for 

buses. Another variable that is found to be significantly related to waiting anxiety is white 

dummy, suggesting that white people generally feel more anxious in waiting for shuttles.   

 

4) Overall Satisfaction with Shuttle-UM Service. 

Estimation results for models with overall satisfaction as the dependent variables are 

shown in Table 5.15. The wave dummy variables are insignificant in all models, showing 

that in general travelers do not have difference in satisfaction about Shuttle-UM over the year 

(Fall 2006-Fall 2007), if nothing is changed. 
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Table 5.15 Estimated Results for Overall Satisfaction 

Overall satisfaction Wave 1+2 Wave 1+3 Wave 1+2+3 

 
Model 7-1 

w/o oth 
Model 7-2 

w oth  
Model 7-3 

w/o oth 
Model 7-4 

w oth  
Model 7-5 

w/o oth 
Model 7-6 

w oth  

Independent varaibles 
Coef. 
(z) 

Coef. 
(z) 

Coef. 
(z) 

Coef. 
(z) 

Coef. 
(z) 

Coef. 
(z) 

Wave 2 dummy 
-0.003 
(-0.03) 

-0.103 
(-0.74) 

N/A 
0.043 
(0.33) 

-0.081 
(-0.55) 

Wave 3 dummy 
N/A 

0.026 
(0.18) 

0.005 
(0.03) 

-0.026 
(-0.17) 

-0.107 
(-0.61) 

Use of ShuttleTrac 
0.524a 
(3.31) 

0.272 
(1.59) 

0.384b 
(2.41) 

0.151 
(0.92) 

0.508a 
(3.31) 

0.336b 
(2.07) 

Accuracy of ShuttleTrac: 
50% or less 

-0.859a 
(-3.31) 

-0.467b 
(-1.74) 

-0.620a 
(-2.68) 

-0.257 
(-1.11) 

-0.633a 
(-2.67) 

-0.317 
(-1.30) 

Age  
-0.066 
(-1.44) 

-0.121a 
(-2.75) 

0.028 
(0.68) 

0.016 
(0.43) 

0.025 
(0.51) 

0.008 
(0.17) 

Age square 
0.001c 
(1.85) 

0.002a 
(3.11) 

-0.000 
(-0.02) 

0.000 
(0.38) 

-0.000 
(-0.01) 

0.001 
(0.46) 

Male  
0.028 
(0.19) 

0.028 
(0.20) 

0.159 
(1.13) 

0.077 
(0.63) 

-0.155 
(-0.86) 

-0.097 
(-0.62) 

White  
-0.484a 
(-2.75) 

-0.560a 
(-3.42) 

-0.151 
(-0.98) 

-0.153 
(-1.15) 

-0.034 
(-0.17) 

-0.165 
(-0.92) 

Driver license 
0.018 
(0.06) 

-0.042 
(-0.16) 

0.019 
(0.08) 

-0.124 
(-0.57) 

-0.174 
(-0.57) 

-0.244 
(-0.87) 

Car access  
-0.252 
(-1.36) 

-0.068 
(-0.39) 

-0.147 
(-0.93) 

-0.194 
(-1.34) 

-0.091 
(-0.50) 

-0.175 
(-1.01) 

Campus Parking permit 
0.235 
(1.41) 

0.151 
(0.93) 

0.257c 
(1.83) 

0.357a 
(2.68) 

0.307c 
(1.82) 

0.442a 
(2.68) 

Live on campus 
-0.119 
(-0.54) 

-0.145 
(-0.71) 

0.120 
(0.63) 

0.055 
(0.31) 

0.120 
(0.53) 

0.182 
(0.86) 

Student 
-0.485b 
(-2.17) 

-0.305 
(-1.40) 

0.096 
(0.47) 

0.204 
(1.08) 

-0.030 
(-0.12) 

0.162 
(0.69) 

Foreign citizen 
0.141 
(0.64) 

0.035 
(0.18) 

0.003 
(0.01) 

-0.128 
(-0.79) 

0.402 
(1.64) 

0.269 
(1.26) 

<5 min walk to stop 
0.114 
(0.63) 

0.157 
(0.91) 

0.050 
(0.32) 

0.133 
(0.92) 

-0.043 
(-0.23) 

-0.048 
(-0.26) 

5-10 min walk to stop 
-0.161 
(-0.74) 

-0.040 
(-0.18) 

-0.326c 
(-1.70) 

-0.170 
(-0.94) 

-0.060 
(-0.26) 

-0.010 
(-0.05) 

10-20 min walk to stop 
-0.372 
(-1.55) 

-0.374 
(-1.52) 

-0.423c 
(-1.92) 

-0.408c 
(-1.85) 

-0.421c 
(-1.81) 

-0.496b 
(-2.08) 

(Table continues in the next page) 
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Table 5.15 (continue) 

Overall satisfaction Wave 1+2 Wave 1+3 
Wave 
1+2+3 

� � �

 
Model 7-1 

w/�  oth 
Model 7-2 

�  oth  
Model 7-3 

w/�  oth 
Model 7-4 

�  oth  
Model 7-5 

w/�  oth 
Model 7-6 

�  oth  

Independent varaibles 
Coef. 
(z) 

Coef. 
(z) 

Coef. 
(z) 

Coef. 
(z) 

Coef. 
(z) 

Coef. 
(z) 

Feeling of security at day NA 0.475a 
(3.81) 

NA 0.475a 
(4.17) 

NA 0.513a 
(3.42) 

Feeling of security at night 
NA 

0.084 
(1.16) 

NA 0.115c 
(1.76) 

NA 
0.013 
(0.17) 

Perception of on-time 
performance 

NA 0.827a 
(8.35) 

NA 0.888a 
(9.56) 

NA 0.816a 
(7.60) 

Waiting anxiety 
NA 0.363a 

(5.84) 
NA 0.213a 

(3.84) 
NA 0.285a 

(4.42) 

_cut1 
-4.977a 
(-5.32) 

-1.330 
(-1.40) 

-2.278a 
(-2.78) 

2.005b 
(2.45) 

-2.760a 
(-2.72) 

0.609 
(0.61) 

_cut2 
-3.875a 
(-4.23) 

-0.058 
(-0.06) 

-1.406c 
(-1.75) 

3.045a 
(3.71) 

-1.767c 
(-1.77) 

1.950b 
(1.97) 

_cut3 
-2.703a 
(-2.99) 

1.216 
(1.31) 

-0.237 
(-0.30) 

4.429a 
(5.28) 

-0.621 
(-0.63) 

3.225a 
(3.25) 

 
_cut4 

-0.192 
(-0.21) 

3.926a 
(4.12) 

2.121a 
(2.62) 

6.794a 
(7.70) 

1.856c 
(1.86) 

5.775a 
(5.64) 

rho 
0.614a 
(15.15) 

0.479a 
(7.56) 

0.519a 
(10.73) 

0.291a 
(4.12) 

0.561a 
(12.62) 

0.400a 
(6.53) 

       
# obs 870 734 820 705 729 628 
# groups 461 402 454 399 259 243 
Log Likelihood -945.435 -689.393 -871.523 -649.029 -722.252 -559.392 
P-value 0.000 0.000 0.000 0.000 0.001 0.000 
NOTE: Significant values are boldfaced. 
a: p<0.01; b: p<0.5; c: p<0.1 

 
Results of Model 7-1 in Table 5.15 show that ShuttleTrac use has significantly 

positive effects on riders’ overall satisfaction with shuttle service at the 0.01 level. In ordinal 

models, magnitude of coefficients only has meaning for the latent variable. To interpret the 

coefficient of ShuttleTrac use, I predict probabilities for different situations12. Other variables 

being kept fixed at mean values, ShuttleTrac use decreases the probability of one rating 

satisfaction level 4 by 0.008 (from 0.562 to 0.554), while increases the probability of rating 5 

                                                 
12 Postestimation commands (mfx or predict) are not useable for “reoprob”. Therefore, I used “predict” for 
“regoprob2” to compute the possibilities for two hypothetical records with mean values of all variables but Use 
of ShuttleTrac.  
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by about 0.1 (from 0.186 to 0.285). In terms of time frame, this positive effect arises almost 

immediately after the deployment of ShuttleTrac. 

Results of Model 7-3 in Table 5.15 also give a positive coefficient of ShuttleTrac use 

dummy variable at a significance level of 0.05, suggesting that passenger satisfaction rating 

tends to rise due to ShuttleTrac use, even after a few months. To interpret the coefficient, 

other variables kept fixed at mean values, ShuttleTrac use decreases the probability of one 

rating satisfaction level 4 by 0.004 (from 0.584 to 0.580), while increases the probability of 

rating 5 by about 0.078 (from 0.179 to 0.257). Comparing the effects of ShuttleTrac use on 

overall satisfaction in above two models, it is to imply that the use of real-time passenger 

information system may immediately lift passengers’ satisfaction with transit service and this 

boost will continue after a number of months, but the magnitude of this positive impact 

seems to decrease with a considerable period of adaption.  

Similar to what has been tried previously, I incorporated a new dummy variable 

representing ShuttleTrac usage in wave 2 in Model 7-5, aiming at capturing the slope of 

linear function the longer-term effect takes. The estimation results of new specification give 

us an insignificant coefficient13, showing that the slope is not significantly different from 

zero. However, as we have discussed, this finding is also strongly binding to the assumption 

that new ShuttleTrac users in wave 3 made their first use within a couple of weeks prior to 

wave 3 survey time points.  

The dummy variable of perceived inaccuracy of ShuttleTrac shows negative impact 

on overall satisfaction rating in both Model 7-1 and 7-3 in Table 5.15 at a high significance 

level of 0.01. This tells that, everything else being equal, if passengers have the impression 

that ShuttleTrac estimates bus arrival times only 50% or less accurately, they tend to rate 
                                                 
13 For Model 7-5, coef. = -.047 (z=-0.25). 
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their overall satisfaction lower. The absolute values of the variable are greater than those of 

ShuttleTrac use dummy in respective models, which imply that passengers are very much 

more concerned about accuracy of real-time information. We suppose that a passenger has 

used ShuttleTrac and felt that it is generally inaccurate (both ShuttleTrac use dummy and 

perceived inaccuracy dummy take value of 1). Other variables being fixed at means, 

compared with those who have never used ShuttleTrac and no adverse impression of 

ShuttleTrac accuracy, the probability of this passenger rating satisfaction at 5 decreases by 

0.052 (from 0.193 to 0.141), and the probability of rating satisfaction at 4 decreases by 0.019 

(from 0.563 to 0.544). These results are applicable in Model 7-1 in Table 5.15. In Model 7-3, 

the decrease in probability of rating satisfaction at 5 is 0.063 (from 0.198 to 0.135), and 

decrease in the probability of rating satisfaction at 4 is 0.019 (from 0.583 to 0.564), other 

variables kept at their means. This case has clearly shown how perceived inaccuracy of real-

time information lower passengers’ overall satisfaction ratings in both short and medium 

runs, even with positive impact of real-time information system per se.  

As discussed in Chapter 3, there exist both direct and indirect paths linking real-time 

transit information to overall satisfaction. The results from three models (Model 7-1, 7-3, and 

7-5) in Table 5.15 show the satisfaction effect of real-time information as a combination of 

impacts from both paths. To distinguish the direct and indirect effects, I further estimated 

three models, explicitly incorporating ratings of lower-level psychological outcomes as 

independent variables, including feeling of security at day and night, perception of on-time 

performance, and waiting anxiety. Note that it is generally not recommended to directly use 

the ordinal ratings of these variables in the models. A more preferable way is to convert the 

ratings into dummy variables. However, in doing so a lot of degree of freedom will be lost 
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because in total 16 new dummy variables are to be included for these four psychological 

outcomes. In view of that, I did not take this approach. 

The coefficients of these four variables in three models (Model 7-2, 7-4, and 7-6 in 

Table 5.15) are highly significant in general, showing that they are highly correlated with 

overall satisfaction, which is consistent with our expectations. When these intermediate 

psychological variables are controlled for, the ShuttleTrac use variable does not show 

significant effect in Model 7-2 or 7-4. It seems to imply that the direct path linking real-time 

transit information use and overall satisfaction may not be as prominent as the indirect path. 

The perceived inaccuracy is found to be significant in Model 7-2, suggesting that, even if 

other psychological outcomes were controlled for, the inaccurate prediction per se makes 

passengers lower their satisfaction with the transit service. The insignificant coefficient of the 

same variable in Model 7-4 can be explained this way: given a period of adjustment, 

perceived inaccuracy of information will not continue to directly affect passenger’s overall 

satisfaction level, because they have already learned to adjust their expectation of the new 

real-time information system. Referring back to the (dis)satisfaction model shown in Figure 

3.7, even if the perceived service quality is still poor, the lowered expectation makes the 

negative disconfirmation is less likely the case. And in turn, in a longer run the overall 

satisfaction is not going to be significantly decreased solely due to poor quality of the real-

time transit information system. 

5.5 Findings and Discussions 

5.5.1 Summary of Findings 

Modeling findings regarding relationships between real-time passenger information 

systems and traveler’s general responses can be summarized in the Table 5.16.  This table 
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entails three dimensions. The first dimension is the two variables regarding real-time 

information system, namely, use of ShuttleTrac and perceived inaccuracy of prediction. The 

second dimension includes three behavioral variables and five psychological variables 

measuring traveler’s general behavioral and psychological responses to real-time information 

systems. Using panel datasets derived from online surveys for one pre-system wave and two 

post-system waves, we can furthur distinguish the effect of each of the two variables in the 

first dimension on each one of variables in the second dimension into immediate and longer-

term effect in terms of the third dimension – adaption period. 

Table 5.16 Summary of General Responses to Real-time Transit Information 

 ShuttleTrac use Perceived inaccuracy of ShuttleTrac 

 
Immediate effect 

Longer-term 
effect 

Immediate effect 
Longer-term 

effect 
Shuttle trip rates No Yes No Yes 
Campus-based trip rates No No Yes Yes 
Commuting mode choice N/A No N/A No 
Feeling of security at 
day Yes Yes Yes No 

Feeling of security at 
night 

Yes Yes No No 

Perception of on-time 
performance 

Yes No Yes Yes 

Waiting anxiety No No No Yes 
Overall satisfaction Yes Yes Yes Yes 
 

Use of ShuttleTrac has shown none immediate effect on traveler’s general behaviors, 

which is understandable because travelers do need time to adapt and adjust according to real-

time information systems. Interestingly, providing a few months for adjustment, those who 

used real-time information system are likely to increase their transit trip-making frequency. 

That means a longer-term effect of real-time transit information use on transit trip rate has 

been found with our panel dataset. Although the magnitude of effect may not be large (about 

23% increase), still it is a very encouraging message to advocates of such systems.  
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Dominant commuting mode has not been found to change because of ShuttleTrac use, 

even with a few months of adjustment, suggesting that real-time transit information system 

itself is not sufficient to shift commuter’s dominant mode of transportation. This is not 

surprising because as Gärling et al. (2002) pointed out, a change of travel mode is perceived 

by a traveler as a relatively costly adaption, when compared to changes in departure times or 

routes. Also this finding echoes what was suggested using a numerical simulation in the 

study by Chorus et al. (2006c).   

The perception of information accuracy also plays a role in influencing traveler’s 

transit trip-making frequency, especially when more adjustment time is given. Negative 

longer-term effect of perceived inaccuracy of information was found to be significant on both 

the total number of monthly shuttle trips and the number of campus-based shuttle trips. The 

findings show that if somehow travelers got the impression that real-time information has 

very poor accuracy, they will decrease their transit trip-making frequency. Again the 

perception of information accuracy has no significant relationship with commuter’s choice of 

dominant commuting mode.  

Unlike for behavior, immediate effects are actually found to be significant for some 

of psychological outcomes, including feeling of security about riding buses at day and at 

night, perception of on-time performance, and overall satisfaction with transit service. 

Results tell that immediately after using the real-time information systems, passengers tend 

to feel safer about riding buses at day or night, feel transit service more on-time, and feel 

more satisfied with the transit service. These immediate effects tend to persist for at least 

several months, except for perception of on-time performance. However, because of the 
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limitation of our datasets, it remains unclear whether the magnitude of these effects are 

decreasing or holding constant. 

As for perception of information accuracy, some immediate and longer-term effects 

were also found for a few psychological outcomes. Immediately after use of real-time transit 

information system, with perception of inaccurate prediction of such information, passengers 

are likely to feel less safe about riding the shuttle at day, feel the service less on-time, and 

feel less satisfied with the service. Given a few months, if passengers still have this 

perception of information inaccuracy, they will continue to feel the service less on-time and 

less satisfied with the service, and will generally feel more anxious while waiting for buses. 

In terms of effect magnitude, the general finding is that the negative effects caused by 

inaccurate prediction on rider’s general psychology are higher than the positive effects of 

using real-time information. That is, no matter how much positive psychological effect the 

real-time information systems can generate, these effects may be offset or surpassed by the 

negative impacts caused by poor information. 

5.5.2 Discussions 

This chapter is concerned about traveler’s behavioral and psychological responses to 

the real-time transit passenger information system. The design of ShuttleTrac system 

provides us with the opportunity to differentiate two groups of people, ShuttleTrac users 

(treatment group) and non-users (control group), and explore changes in their travel behavior 

and perceptions of and attitudes toward shuttle service. It is noted that behavioral and 

psychological outcomes we examined in this chapter are not about specific trips or system 

use. Instead they are general in nature in that travelers are given time to adapt and adjust after 

their first use of such system.  
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Travel behaviors that were examined are monthly shuttle trip-making frequency, 

monthly campus-based trip-making frequency, and dominant commuting mode choice. Our 

hypothesis is that, with real-time transit information system, travelers will increase their trip-

making frequency and shift their commuting mode to transit more, especially with a longer 

period of adjustment. The empirical results generally do not support our hypotheses, except 

that the longer-term effect of ShuttleTrac on monthly trip rate was found with an average of 

five and a half months of adjustment.  

This significant longer-term effect on trip-making frequency is a surprisingly 

encouraging finding for advocates and providers of real-time passenger information systems, 

because it validates their anticipation of ridership increase as a result of deployment of such 

advanced systems. However, we need to emphasize several precautions before one becomes 

too excited about such good news. First, the effect size may not be as large as one expects. 

23% increase in transit trip-making frequency seems to be somewhat large if it can be 

directly translated into the increase in ridership. However, it is not that easy. For one thing, 

this increase at an individual level may vary to a great extent among different user groups 

(e.g. frequent riders have smaller increase, infrequent riders have higher increase) thus make 

such figure (23%) difficult to be directly interpreted as the aggregate ridership increase rate. 

For another thing, as we will further discuss in Chapter 7, the special characteristics of 

Shuttle-UM prevents us from generalizing such effect to the typical urban public transport 

systems without special considerations. Early estimates (more like guesses) for ridership 

increases, as a result the deployment of advanced traveler information systems, range from 

1% to 3% (Goeddel, 2000). It is safe to say that our empirical findings confirm the existence 
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of ridership effect of real-time information in a longer run, but there is no definitive answer 

of how much. 

Second, one cannot expect this increase to occur immediately after the deployment of 

a new system. At least a few months is needed to allow this effect to surface as travelers 

gradually adjust their transit riding behavior. Third, the question of whether this positive 

effect will hold constant or drawback in a longer future is not clear because of a lack of 

evidence. Fourth, the perception of real-time transit information accuracy also shows a 

longer-term effect on trip-making frequency. And the effect size is about 2.5 times higher 

than mere exposure to the system. The implication for system providers is that if you want to 

deploy such system, please try to provide accurate information, because inaccurate 

information might very well ruin all of your efforts and actually generate decrease in 

ridership.   

A stated-preference survey in Chicago shows that about 67% of all respondents said 

that they would increase transit usage when provided with real-time transit information, 60% 

for current users and 70% for non-current users (Tang and Thakuriah, 2006). In light of our 

results, such stated preference may need to be considered with reservation and patience. 

Psychological outcomes, on the other hand, are found to be generally influenced by 

real-time information system. Not only some immediate impacts are found, but also latent 

psychological effects are prominent, suggesting that the positive effects are able to persist for 

a while. These findings are consistent with what most evaluation studies have reported. 

Therefore, even if transit agencies and scholars might not be too optimistic about achieving 

ridership increase or shifting commuter’s mode by providing real-time information to 

travelers, they can expect immediate and lasting positive psychological benefits to transit 
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riders. However, again, the perception of information accuracy has shown greater effect on 

traveler’s general attitude towards transit service than mere use of system does. What is 

reinforced by these findings is the following message to transit agencies: if you want to do it, 

please do it right.  

In this semi-natural experimental environment, the treatment is the use of ShuttleTrac 

system. From the day travelers first use such system, they are being classified into the 

treatment group, no matter how many times they use thereafter. It is realized that such 

treatment is not likely to be randomly assigned among travelers because they may 

deliberately select whether they start to use it or not. Therefore, endogeneity caused by self-

selection is a potential problem when causal relationships are being examined between 

treatment and outcome. It is noted that the frequency of system use was deliberately excluded 

from models as it is conceived to be a more problematic endogenous variable. Different 

approaches were utilized to address this possible endogeneity issue for our key variable.  

First, for trip-making frequency models, panel datasets were used for estimating the 

models with fixed-effects (FE) estimator. A nice thing about FE estimator is that unobserved 

individual differences as a part of unobserved disturbance are canceled out. In other words, 

FE models allow for endogeneity of all the regressors and the unobserved individual effects. 

If we assume that the endogenous variable is only correlated with the unobserved individual 

heterogeneity which is likely the case, the self-selection is no longer a problem. Second, for 

commuting mode choice model, because cross-sectional dataset was being used, I adopted a 

two-stage modeling approach with instruments as substitute for the endogenous variable. 

Third, for psychological outcomes, panel datasets were used for modeling the relationships 

with random-effects (RE) estimators. It is true that with RE estimator unobserved individual 
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heterogeneity is not eliminated and hence non-correlation shall be assumed between it and 

explanatory variables. However, the use of real-time passenger information system is 

considered to be less likely correlated with unobserved disturbance for psychological models 

as discussed above. Therefore, self-selection bias is less of a problem for models of 

psychological outcomes. 

Our results also suggest that other approaches (e.g. building more on-campus student 

housing, rerouting lines or rearranging stops to make shuttle within walking distance for 

more students, or increasing the price of a campus parking permit) would increase shuttle 

usage significantly. This is consistent with previous studies (e.g., Toor and Havlick, 2004). 

Universities may consider such approaches, along with other proven policies (e.g. unlimited 

access (Brown et al., 2003) and promoting non-motorized mode (Toor and Havlick, 2004)), 

if they want to achieve goals such as increased transit ridership and promote sustainability in 

campus community. 

5.6 Chapter Summary 

The good timing of ShuttleTrac deployment offers me a good opportunity to make a 

quasi-experimental design and undertake a empirical study in order for genuine 

understanding of causal effects of real-time bus arrival information on traveler’s 

general/cumulative behavior and psychology. This chapter presents the empirical analyses 

that, using panel datasets derived from three online surveys, examine the relationships 

between real-time information and three behavioral and five psychological variables 

measuring traveler general behavior and psychology. Several interesting findings were 

reported and discussed. This part of analysis has shown that real-time transit information 



 

 140 
 

systems do make a difference in transit trip-making frequency and passenger’s perceptions of 

and attitudes toward transit.   
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Chapter 6: Trip-specific Psychological Responses to Real-time 
Transit Information 

 

6.1 Introduction 

Suppose a passenger is going to take a specific journey to the destination, which 

involves a transit mode. When real-time transit information is provided and acquired by the 

passenger, she may or may not change her travel behaviors accordingly. However, in spite of 

non-change in behavioral responses, chances are that the real-time information will induce 

some psychological responses as the passenger is experiencing the journey. This kind of trip-

specific psychological response to real-time information is different from the general 

attitudes toward transit service in terms of their time frames. But cumulatively trip-specific 

psychological response may build up to some general attitudes, as we discussed in Chapter 3. 

Chapter 5 has examined the short-term and medium-term changes in general attitudes 

toward Shuttle-UM service caused by real-time information. Now the focus is turned to trip-

specific psychological responses. The objective of Chapter 6 is to empirically investigate 

whether real-time bus arrival information would change passengers’ psychological 

conditions during specific transit trips, and how these trip-specific psychological effects of 

real-time information vary among user groups and under different conditions. Using data 

collected from a shuttle on-board survey conducted immediately after the extensive 

advertising of ShuttleTrac, a series of models can be estimated to try to capture the 

correlations between provision and accuracy of real-time information and four psychological 

outcome variables, i.e. perceived waiting time, feeling of security, waiting anxiety, and 

satisfaction with at-stop transit service. 
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The structure of Chapter 6 is as follows. Section 2 describes the methodology used in 

analysis in details, followed by Section 3, which is the report of modeling results. Section 4 

further discusses the results and conclusions are drawn in Section 5. 

6.2 Modeling Methodology 

6.2.1 Datasets and Variables 

The dataset employed in this part of research is the cross-sectional dataset derived 

from the onboard survey conducted after the deployment of ShuttleTrac. I further divide the 

respondents into two groups: waiters (who have been waiting for the coming bus) and non-

waiters (who boarded buses without waiting). It is conceivable that some of the 

psychological effects are only concerning waiting experience, such as feeling of security and 

anxiety while waiting. Therefore, actually two datasets were used in different models for 

these four dependent variables. The descriptive statistics are shown in Table 6.1. 

The four dependent variables to be modeled are: 1) perceived waiting time. The 

average perceived waiting time is 6.21 minutes for waiters, and 4.58 minutes for all riders; 2) 

feeling of security while waiting; 3) waiting anxiety level; and 4) satisfaction with at-stop 

service. It is hypothesized that use of real-time bus arrival information will make a difference 

in these four variables. The derivation of these dependent variables was introduced in 

Chapter 3 in details. 
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Table 6.1 Descriptive Statistics of Wave2 Onboard Survey Dataset 

 Waiter dataset Full dataset 
 N Min Max Mean SD N Min Max Mean SD 

Perceived waiting 
time 502 1.5 30 6.21 5.33 680 0 30 4.58 5.33 
Feeling of security 495 1 5 4.23 1.04 N/A 
Waiting anxiety 490 1 5 3.76 1.27 N/A 
Satisfaction 492 1 5 4.10 0.29 668 1 5 4.16 0.87 
Pre-trip ShuttleTrac 
use 499 0 1 0.08 0.27 670 0 1 0.09 0.28 
At-stop ShuttleTrac 
use 499 0 1 0.23 0.42 670 0 1 0.19 0.39 
Perceived bus 
earliness against 
real-time info 508 0 1 0.05 0.21 686 0 1 0.05 0.22 
Perceived bus 
lateness against 
real-time info 508 0 1 0.06 0.25 686 0 1 0.05 0.21 
Pre-trip timetable 
awareness 504 0 1 0.63 0.48 681 0 1 0.64 0.48 
At-stop timetable 
awareness 504 0 1 0.19 0.39 681 0 1 0.17 0.37 
High frequency 508 0 1 0.35 0.48 686 0 1 0.34 0.48 
Night 508 0 1 0.23 0.42 686 0 1 0.20 0.40 
On campus stop 507 0 1 0.54 0.50 684 0 1 0.55 0.50 
Status: student 475 0 1 0.86 0.35 647 0 1 0.85 0.36 
Gender: male 471 0 1 0.44 0.50 642 0 1 0.44 0.50 
Race: white 468 0 1 0.44 0.50 637 0 1 0.43 0.49 
Age 457 16 75 24.19 7.72 622 16 75 24.24 7.77 
Age square 457 256 5625 644.84 549.93 622 256 5625 648.00 550.51 
On-time perception: 
always on-time 487 0 1 0.15 0.36 662 0 1 0.17 0.38 
On-time perception: 
mostly on-time 487 0 1 0.62 0.49 662 0 1 0.62 0.49 
How important to 
arrive on time: 2 503 0 1 0.09 0.29 N/A 
How important: 3 503 0 1 0.18 0.39 N/A 
How important: 4 503 0 1 0.25 0.43 N/A 
How important: 5 503 0 1 0.40 0.49 N/A 

 

Timetable is the static information that passengers can acquire. Two variables about 

timetable knowledge are “pre-trip timetable knowledge” and “at-stop timetable knowledge”. 

In hypothesis, knowledge of scheduled bus arrival time will be positively influences on 

passenger’s behavior and psychology.  
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The perceived lateness of the bus is a representation of the difference between actual 

and scheduled arrival times. If the passenger thinks a bus is late in comparison to the 

published timetable, he will generally have negative perceptions on the transit service. 

It is a general understanding that campus is a safer place than places outside of the 

campus. Especially some of the neighborhoods (e.g. College Park, Springhill Lake, etc.) 

nearby the university are known for their unsafely. Therefore, waiting at an on-campus stop 

is hypothesized to be positively related with feeling of security.  

Three activity engagement variables are derived from the question about what 

activities the passenger is engaged in while waiting for the bus. “Reading” and “Listening to 

music” are classified as self engagement, while “talking with people” is classified as 

communicative engagement. If a passenger spends some of the waiting time in nearby place, 

he is engaged in a diversionary activity.  

A number of individual characteristics were incorporated into regression models as 

independent variables, including gender (male=1), race (white=1), status (student=1), and 

age. Age square was also included in psychological models to capture possible non-linear 

effect of age on psychological dependent variables. 

Bus service frequency is a key factor that will substantially influence passenger 

perception on service quality. The headway of the boarding stop was extracted from the 

timetable. The headway variable was coded into a dummy variable named “High-frequency” 

(1 if headway <= 20 minutes; 0 otherwise). The breaking point (20 minutes) is identified 

according to literature and actual situation of Shuttle-UM. In general, within-campus and 

nearby-community shuttle lines enjoy higher frequency with headway is no greater than 20 

minutes. Also the shuttle line to the Greenbelt Metro Station has a high frequency. Other 
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distant-community shuttle lines suffer a much lower frequency, some even with headway of 

90 minutes.  

Passenger psychology, especially feeling of security, may change dramatically from 

day to night. A dummy variable named “night” is generated showing whether the boarding 

time is after 8pm. It is hypothesized that at night feeling of security decreases and waiting 

anxiety increases. 

The previous perception on bus service may well influence passenger’s trip-specific 

psychological responses. In the onboard survey a question was asked about respondent’s 

perception on the usual on-time performance of the particular line he or she intended to ride.  

The answers were re-coded into three dummy variables: “Always on time”, “Mostly on 

time”, and “no more than 50% on time”. The first two were incorporated in the models to 

represent the general perception on on-time performance. 

6.2.2 Model Specifications 

Perceived waiting time was transformed from categorical to continuous. Therefore, a 

multivariate linear regression specification (OLS) is used to model effects of real-time 

information and other explanatory variables on perceived waiting time.  

?�8 � . � ,# � (                        (6.1) 

Where, PWT denotes perceived waiting time, X the vector of independent variables, �  

coefficient of constant to be estimated, �  coefficients of vector X to be estimated, and �  the 

error term.  

 

When the dependent variable takes more than two values, but these values have a 

natural ordering, the ordered probit model would be appropriate. It would be inappropriate to 
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use the multinomial logit because this model does not account for the ordering of the 

dependent variable. Further, a regression model would not be appropriate because it assumes 

differences between categories of the dependent variable to be equal, whereas, the data are 

only ordinal. The results would be substantially different if ordered dependent variables are 

analyzed using regression instead of using the ordered probit. 

Consider a latent variable model of the following form, where y* is the unobserved 

dependent variable, X a vector of explanatory variables, �  vector of an unknown parameter to 

be estimated and �  the error term. 

Q] � , 5# � (                               (6.2) 

Instead of y*, the following is observed: 

v � ��wx��v ] q �  

v � `�wx��� r Q ] q � �  

Q � 0�Cp��*� r Q ] q * �                                                                              (6.3) 

����  

v � y�wx���z{� r Q ]  

Where y is the ordered dependent variable and µ the vector of unknown threshold parameters 

that is estimated with coefficients �  vector. �  is assumed to have a standard logistic 

distribution. The threshold between the lowest and the next lowest categories is always set to 

0. Moreover the threshold values must be ordered from lowest to highest. Resulting from the 

standard logistic distribution, the probability that yi falls into the jth category is given by:  

|} ~v� � • €� •‚� ƒ � � 5� �„ � •‚� ƒ{� � � 5� �„                  (6.4) 

Where µj and µj-1 denote the upper and lower threshold values for category J, and �  is the 

cumulative standard normal. 
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The likelihood function for the model is given by: 

… � † † ‚•%� ƒ � � 5� �& � •%� ƒ{� � � 5� �&„
‡ˆ‰Š

ƒ‹�
Š
�‹�           (6.5) 

Since three dependent variables about feeling of security, anxiety and satisfaction are 

all ordinal, ordered logit models are adopted to estimate the coefficients of explanatory 

variables. Ologit command in Stata was used to execute the estimations. 

6.3 Modeling Results 

6.3.1 Perceived Waiting Time 

According to previous review, passengers who are aware and unaware of timetables 

will show fundamentally different arrival patterns and thus generate different patterns of 

actual waiting time. Two models for unaware and aware passengers were estimated to model 

how real-time transit information influence passenger perceived waiting time. The 

passengers who boarded without waiting (i.e. waiting time is 0) are also included.  
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Table 6.2 Modeling results for perceived waiting time (Full) 

 Unaware Model (full) Aware Model (full) 

Variables Coef. t Coef. t 
Headway 0.101a 3.33 0.009 0.74 
Pre-trip ShuttleTrac use -2.382 -0.73 -1.050 -1.32 
At-stop ShuttleTrac use 1.207 1.32          0.815 1.12 
Perceived bus earliness against 
real-time info 

2.410 0.98 -0.228 -0.21 

Perceived bus lateness against 
real-time info 

2.501 1.17 2.363c 1.87 

Perceived bus lateness against 
timetable 2.848b 2.19 2.812a 3.75 

Night 0.300 0.34 1.846b 2.52 
Access mode: walking 0.918 0.88 0.611 0.90 
At campus origin stop 0.269 0.32 0.053 0.10 
Status: student -0.291 -0.23 -0.374 -0.43 
Gender: male -0.248 -0.31 -0.496 -1.06 
Race: white -0.015 -0.02 0.857c 1.78 
Age -0.319 -1.22 -0.172 -1.20 
Age square 0.0039 1.02 0.0022 1.18 
On-time perception: always on-
time 

-2.119 -1.50 -1.403c -1.68 

On-time perception: mostly on-
time -0.078 -0.09 -0.836 -1.19 

Anxiety -0.136 -0.43 0.031 0.16 
Constant 7.318 1.59 6.149b 2.17 
   
Number of obs 195 370 
R2 0.1826 0.1445 
NOTE: Significant values are boldfaced. 
a: p<0.01; b: p<0.5; c: p<0.1 
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Table 6.3 Modeling results for perceived waiting time (stepwise) 

 Unaware Model (stepwise) Aware Model (stepwise) 

Variables Coef. t Coef. t 
Headway 0.100a 3.72 -- -- 
Pre-trip ShuttleTrac use -- -- -1.320c -1.92 
At-stop ShuttleTrac use 1.677b 2.10          -- -- 
Perceived bus earliness against 
real-time info 

-- -- -- -- 

Perceived bus lateness against 
real-time info 

-- --           2.921b 2.46 

Perceived bus lateness against 
timetable 2.837b 2.50 3.185a 4.65 

Night -- -- 2.023a 2.86 
Access mode: walking -- -- -- -- 
At campus origin stop -- -- -- -- 
Status: student -- -- -- -- 
Gender: male -- -- -- -- 
Race: white -- -- 0.744 1.64 
Age -0.441c -1.94 -- -- 
Age square 0.0059c 1.74 -- -- 
On-time perception: always on-
time -2.628b -2.22 -- -- 

On-time perception: mostly on-
time -- -- -- -- 

Anxiety -- -- -- -- 
Constant 9.341a 2.71 3.061a 9.34 
   
Number of obs 195 370 
R2 0.1611 0.1276 
NOTE: Significant values are boldfaced. 
a: p<0.01; b: p<0.5; c: p<0.1 

�
In traditional models, headway plays a vital role in determining passenger’s waiting 

time. Here the effect of headway in different scenarios can be clearly found in the Unaware 

Model and Aware Model. In Unaware Model, headway has positive impact at a high 

significance level 0f 0.01. The coefficient indicates that 10-minute increase in headway will 

generate 1-minute increase in passenger perceived waiting time. In Aware Model, this 

significant effect was not found, showing that aware passengers do plan their arrivals 

according to timetable, thus waiting times are not influenced by bus headways. This finding 

confirms validity of differentiation of aware passengers and unaware passengers in terms of 

their timetable knowledge and arrival patterns, as suggested by literature.  
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Results of two real-time information acquisition variables show interesting patterns. 

Pre-trip ShuttleTrac use has shown significantly negative effect only in Aware Model, 

suggesting that if passengers knew the scheduled bus arrival time and also acquired real-time 

arrival information before trip, the passenger perceived waiting time will decrease by 1.32 

minutes, other things being constant. This effect is perhaps mainly due to the passenger’s 

better planning of the departure time to coordinate with predicted bus arrival time. In this 

sense, actual waiting time, as the intermediate variable, was reduced by acquiring real-time 

information and thus making more efficient pre-trip travel decisions.  

At-stop ShuttleTrac use has shown significant effect on perceived waiting time in 

Unaware Model, but the sign is positive. This seems to imply that when passengers are 

unaware of scheduled timetable and arrive at stop at random, acquisition of real-time bus 

arrival time at stop will increase perceived waiting time by 1.68 minutes, other variables 

being kept constant. This may indicate the reverse causal link, that is, while not knowing the 

timetable, the longer the passenger has being waiting for the buses, the more likely he or she 

is going to inquiry the real-time arrival information.  This effect was only found in Unaware 

Model.  

The perceived accuracy of real-time prediction in general shows insignificant relation 

with perceived waiting time, except for the perceived lateness against real-time information 

in Aware Model. The results seem to say, in the scenario of passenger knowing the timetable, 

if passengers think the buses arrive later than predicted arrival time, their perceived waiting 

times will increase by 2.92 minutes. Let’s suppose one passenger used pre-trip real-time 

information and thinks the bus is late in comparison with the prediction. Other factors being 

kept fixed, the perceived waiting time of this passenger will increase by 1.6 minutes (2.92-
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1.32). This magnitude difference shows that accuracy of information plays a relatively 

greater role in determining passenger perceived waiting time than mere presence of pre-trip 

information. 

In Aware Model, perceived bus lateness against timetable shows greater effect on 

waiting time than perceived lateness against real-time information. The results also show 

that, perceived waiting time is increased by 2.02 minutes at night for aware passengers, 

everything else being constant. Two age variables are found to be significant, showing that as 

the age increase, passenger perceived waiting time will decrease, but the decreasing rate is 

being smaller. For unaware passengers, if they perceive on-time performance of the bus 

service as always on-time, their perceived waiting time will decrease by 2.63 minutes. This 

means that when passengers have confidence on the reliability of bus service, even they 

randomly arrive at the stops without knowing the timetable, they feel less waiting duration.  

6.3.2 Feeling of Security 

Three models are estimated to capture the relationship between real-time information 

acquisition and accuracy and feeling of security at the stop. Those passengers who boarded 

bus without waiting are excluded. The results of three models (Overall, Night, and Day 

models) are shown in Table 6.4.  
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Table 6.4 Modeling Results for Feeling of Security 

 Overall Model Night Model Day Model 

Variables Coef. z Coef. z Coef. z 
Pre-trip ShuttleTrac 
use 

0.135 0.34 -1.069 -0.91 0.277 0.63 

At-stop ShuttleTrac 
use 0.538c 1.93 0.975c 1.74 0.330 1.01 

Perceived bus earliness 
against real-time info -1.877a -3.79 -2.711c -1.93 -1.991a -3.64 

Perceived bus lateness 
against real-time info 

-0.625 -1.46 -0.324 -0.36 -0.664 -1.30 

Perceived waiting time -0.005 -0.21 0.005 0.10 -0.007 -0.25 

Pre-trip timetable 
awareness 

-0.250 -0.81 -0.919 -1.41 -0.185 -0.49 

At-stop timetable 
awareness 

-0.464 -1.36 -0.723 -1.34 -0.388 -0.85 

On campus stop 0.359c 1.77 -0.408 -0.83 0.585b 2.41 
High frequency 0.171 0.65 0.309 0.52 0.022 0.07 
Status: student 0.347 1.05 0.022 0.03 0.587 1.52 
Gender: male 0.314 1.53 0.190 0.41 0.236 0.98 
Race: white 0.415b 2.02 -1.098b -2.46 0.850a 3.38 
Age 0.062 1.15 0.046 0.44 0.090 1.07 
Age square -0.0007 -0.98 -0.0005 -0.40 -0.001 -0.78 
On-time perception: 
always on-time 1.719a 4.69 2.732a 2.76 1.750a 4.18 

On-time perception: 
mostly on-time 0.826a 3.42 0.910b 1.67 0.892a 3.12 

Night -0.964a -3.74 n/a n/a n/a n/a 
/cut1 -1.572  -3.105  -0.513  
/cut2 -0.611  -1.692  0.235  
/cut3 0.523  -0.644  1.472  
/cut4 2.081  1.231  3.031  

 
Number of obs 432 99 333 
Log likelihood -470.41731 -119.4827  
Pseudo R2 0.0676 0.1056 0.0704 
NOTE: Significant values are boldfaced. 
a: p<0.01; b: p<0.5; c: p<0.1 
 

First of all, the dummy variable “Night” in Overall Model has a highly significant 

coefficient, whose sign is negative. This result suggests that waiting for bus in nighttime will 

make passengers feel less safe than in daytime, other things being equal. This is consistent 

with expectation and to a certain extent justifies the differentiation of Night Model and Day 

Model.  
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Four explanatory variables regarding real-time passenger information show 

interesting relations with passenger feeling of security in waits. In Overall Model, 

coefficients of both pre-trip and at-stop real-time information acquisition variables have 

positive signs. But only at-stop acquisition variable shows positive effect on feeling of 

security at a significance level of 0.1, other factors being fixed. This suggests that passengers 

may enhance their feeling of security in waits by querying the real-time bus arrival times at 

the transit stops. The odds for those who acquired at-stop real-time arrival information to 

have rated their feeling of security at 5 (very safe) instead of at 1-4 are about 1.713 times14 

as high as those who did not acquire at-stop real-time information, other things being equal. 

In Night Model, at-stop information acquisition also has a significantly positive impact on 

feeling of security in waits at night. The odds ratio in this case is 2.651, showing that 

magnitude of the positive effect of at-stop information acquisition is relatively higher at 

night. However, in Day Model, the corresponding coefficient is insignificant. It seems to 

suggest that, at night when passengers feel less safe, querying at-stop real-time bus arrival 

information could assure passengers and boost their feeling of safety by informing them how 

long they are going to wait. While in the daytime, this kind of impact is not the case, because 

in general safety is less a problem and there is little room for improvement.  

In terms of perceived accuracy of ShuttleTrac, two variables regarding perceived 

earliness and lateness of buses show negative effects, with perceived earliness being highly 

significant at a significance level of 0.01. The result implies that if passengers thought buses 

arrive early in comparison to the real-time arrival information they acquired (either pre-trip 

or at-stop), they are likely to rate their feeling of security lower. This shows that, as far as 

safety is concerned, passengers are truly concerned about accuracy of prediction of bus 
                                                 
14 Odd ratio is exponentiation of the coefficient. 
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arrivals. This finding holds unchanged for all three models, except that the absolute value of 

the coefficient in Night Model is larger than in other two, which implies that accuracy of bus 

arrival time prediction is more of a concern to passengers regarding their safety in nighttime 

than in daytime.   

The perceived waiting time has negative signs in three models, but the results are 

insignificant. On-campus stop have significant and positive coefficients in Overall Model and 

Day Model, suggesting that passengers who are waiting at on-campus stops fell safer in waits 

in general and in daytime. Two variables for attitudes toward on-time performance show 

highly significant effects in all three models. The results demonstrates that if passengers 

think the bus line they are waiting for is always or mostly on time, they tend to rate their 

feeling of security in waits higher, other things being equal.  

6.3.3 Waiting Anxiety 

Three models are also estimated to capture the relationship between real-time 

information acquisition and accuracy and waiting anxiety at the stop (passengers who 

boarded bus without waiting are excluded). The results of three models (Overall, High-

frequency, and Low-frequency models) are shown in Table 6.5.  
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Table 6.5 Modeling Results for Waiting Anxiety 

 Overall Model High-frequency Model Low-frequency Model 

Variables Coef. z Coef. z Coef. z 
Pre-trip ShuttleTrac 
use 

-0.402 -1.03 -0.956 -0.75 -0.627 -1.45 

At-stop ShuttleTrac 
use 

0.197 0.74 1.191a 2.65 -0.269 -0.77 

Perceived bus earliness 
against real-time info 

-0.286 -0.60 -0.907 -0.96 -0.167 -0.29 

Perceived bus lateness 
against real-time info -0.983b -2.21 -1.667b -2.27 -0.796 -1.38 

Perceived waiting time -0.007 -0.34 0.047 1.03 -0.030 -1.16 

Pre-trip timetable 
awareness 

0.049 0.16 -0.175 -0.39 0.534 1.11 

At-stop timetable 
awareness 

-0.234 -0.70 -1.204a -2.72 0.795 1.37 

On campus stop 0.364c 1.87 0.067 0.19 0.525b 2.07 
Night -0.787a -3.04 -0.725b -2.07 -0.946b -2.16 
Status: student -0.140 -0.43 -0.219 -0.39 -0.020 -0.05 
Gender: male 0.055 0.28 -0.052 -0.14 0.073 0.30 
Race: white 0.764a 3.87 0.438 1.27     0.920a 3.64 
Age -0.031 -0.53 -0.062 -0.72 -0.147 -1.42 
Age square 0.0004 0.54 0.0004 0.37 0.0025 1.56 
On-time perception: 
always on-time 1.734a 4.99 1.749b 2.42 1.738a 4.04 

On-time perception: 
mostly on-time 0.638a 2.80 0.198 0.52 0.868a 2.87 

How important to 
arrive on time: 2 -0.862c -1.82 -1.617b -2.18 -0.747 -1.14 

How important to 
arrive on time: 3 

-0.557 -1.30 -1.149c -1.76 -0.315 -0.53 

How important to 
arrive on time: 4 -0.785c -1.87 -1.643b -2.38 -0.501 -0.89 

How important to 
arrive on time: 5 -1.294a -3.11 -1.425b -2.17 -1.212b -2.15 

High frequency 0.498c 1.92 n/a n/a n/a n/a 
/cut1 -3.365  -5.757  -4.127  
/cut2 -2.162  -4.607  -2.855  
/cut3 -0.910  -3.197  -1.575  
/cut4 -0.077      -2.155  -0.542  

 
Number of obs 428 154 274 
Log likelihood -570.86648 -190.98234 -366.09143 
Pseudo R2 0.0698 0.1056 0.0878 
NOTE: Significant values are boldfaced. 
a: p<0.01; b: p<0.5; c: p<0.1 
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The dummy variable “High frequency” does show a positive impact on waiting 

anxiety at a significance level of 0.1. This indicates that when waiting for high frequency bus 

service, passengers are more likely to fell less anxious.   

Significantly positive effect was found for at-stop ShuttleTrac use on anxiety level in 

High-frequency Model, seemingly suggesting that for high frequency shuttle service, 

acquiring real-time bus arrival time at stop may reduce passenger waiting anxiety, other 

factors being fixed. The insignificant coefficient of corresponding variable in Low-frequency 

Model seems to indicate that the same effect cannot be found in low-frequency service. It is 

perhaps because passengers are mostly aware of scheduled arrival time from timetable for 

low-frequency lines, thus they would not be worried much about bus arrivals. Providing the 

real-time information will not make a difference to their anxiety level. While in waiting for 

high-frequency service, passengers more likely arrive at random and expect short waiting 

duration. Therefore, knowing how long exactly they are going to wait for next bus will 

effectively assure passengers’ wait and reduce their waiting anxiety.  

Another interesting related finding is that at-stop timetable knowledge shows a 

negative effect on waiting anxiety level, indicating that knowing the scheduled arrival time of 

next bus will actually increase passengers’ anxiety in waits. It is perhaps due to the fact that 

high-frequency bus service tends to have poorer on-time performance in perceptions of 

passengers15. Therefore, the bus timetables at stops for high-frequency service may generate 

adverse effect on waiting anxiety.   

In both Overall and High-frequency Models, perceived bus lateness against real-time 

information show significant effects on anxiety level. The results seem to suggest that, if the 

                                                 
15 On-time performance perception: High-frequency service mean=2.113; Low-frequency service mean=2.009 
(the lower, the better perceived on-time performance). T-test shows that the difference between two means is 
significant. 
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bus was considered late (not within +/- 1 minute) against predicted real-time bus arrival time 

acquired initially, passengers tend to feel more anxious. Therefore, the accuracy of prediction 

of real-time arrival time will influence passenger anxiety level while waiting, especially 

when the service is frequent.  

Four dummy variables indicating level of perceived importance to arrive at 

destination on time have significantly negative coefficients in general (except for firs three in 

Low-frequency Model), suggesting that the higher the requirement of arriving at destinations 

on time, the more anxious passengers feel while waiting. This result is consistent with 

previous studies (e.g. Hall, 2001). Perceptions on on-time performance show significant 

effect as well in all three models, the positive signs indicate that passengers who think the 

shuttle lines are always or mostly on time are likely to feel less anxious in waits, as opposed 

to those who think the lines are 50% or less on time, everything else being unchanged.  

Other findings include: a) Passengers who wait at on-campus stops are likely to feel 

less anxious in waits for shuttles. This effect is of high significance for low-frequency 

service; b) Passengers have higher waiting anxiety level in nighttime than in daytime, other 

factors being equal, for both high- and low-frequency services. 

6.3.4 Satisfaction 

Two models are estimated to model the relationships between real-time information 

and customer satisfaction with service at stop. The Overall Model includes those who 

boarded without waiting (i.e. perceived waiting time is 0). And in Waiter Model, those 

respondents are excluded. The modeling results are shown in Table 6.6. 
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Table 6.6 Modeling Results for Satisfaction 

 Overall Model Waiter Model 

Variables Coef. z Coef. z 
Pre-trip ShuttleTrac use -0.071 -0.20 -0.049 -0.12 
At-stop ShuttleTrac use -0.005          -0.02        -0.166          -0.62 
Perceived bus earliness against 
real-time info -0.876b -2.12 -1.052b -2.04 

Perceived bus lateness against 
real-time info -0.847b -2.01 -0.787c -1.84 

Perceived waiting time -0.035c -1.88 -0.045b -2.05 

Pre-trip timetable awareness 0.082           0.32 -0.226 -0.73 
At-stop timetable awareness 0.135 0.46 -0.169 -0.05 
On campus stop -0.359b -2.05 -0.316 -1.55 
Night 0.268 1.09 0.218 0.81 
High frequency         0.247           1.06 0.126 0.47 
Status: student  0.077 0.25 0.071 0.20 
Gender: male 0.198           1.14 0.396c 1.96 
Race: white         0.012 0.07 -0.007 -0.03 
Age 0.106c 1.94 0.121b 1.96 
Age square -0.0010 -1.37 -0.0014 -1.58 
On-time perception: always on-
time 2.547a 7.66 2.458a 6.20 

On-time perception: mostly on-
time 1.056a 4.75 1.080a 4.30 

Feeling of security at stop 0.438a 4.25 0.439a 3.83 
Anxiety at stop 0.278a 3.81 0.260a 2.96 
/cut1 -0.177  -0.209  
/cut2 1.529  1.439  
/cut3 4.098  3.878  
/cut4 6.235  6.004  

     
Number of obs 577 429 
Log likelihood -562.47096 -427.63286 
Pseudo R2 0.1437 0.1472 
NOTE: Significant values are boldfaced. 
a: p<0.01; b: p<0.5; c: p<0.1 
 

Results for two models are mostly consistent, with coefficients of similar signs, 

significance levels, and magnitudes, for all variables. It indicates that there is no systematic 

difference between waiting passengers and the general population. In reporting the results, 

the Overall Model will be focused on. 

Two ShuttleTrac usage variables are not found to be significantly related to passenger 

satisfaction with at-stop shuttle service. However, the two variables indicating accuracy of 

real-time bus arrival time prediction show negative impacts on satisfaction level at 
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significance levels of 0.05. The results seem to suggest that, presence of real-time bus arrival 

times does not matter to passenger satisfaction, but inaccurate prediction of this kind of 

information (either underestimation or overestimation) will actually lower passengers’ 

satisfaction with transit service.  

As expected, for the first time, waiting time perceived by a passenger shows a 

significant (p<0.1) and negative effect on satisfaction level. For one minute increase in 

perceived waiting time, the odds of passenger rating his satisfaction level as 1 versus 2-5 are 

1.036 times greater, given the other variables are held constant in the model. 

Age is found to be positively related to satisfaction, indicating that the satisfaction 

level goes up as passenger age increases. Passengers waiting at on-campus stop tend to rate 

their satisfaction level lower. This is somewhat intriguing, because on-campus stops were 

found to have positive effects on feeling of security and waiting anxiety in previous models. 

Statistical tests did not find any multicollinearity between this variable and any one of others. 

This phenomenon can be explained as follows drawing on the (dis)satisfaction model 

illustrated in Figure 3.7. As previous model results have shown, on-campus stops are more 

desirable places for passengers as people waiting at those stops tend to have higher safety 

feeling and lower anxiety level. However, at the undesirable off-campus stops, passengers 

are less critical about the service and have relatively lower expectation. In this regard, the 

discrepancy between the expectation and service quality at off-campus stops tends to lead to 

a relatively positive disconfirmation. Thus, the same level of transit service will generate 

higher satisfaction level in these undesirable environments than in desirable environments. In 

other words, to achieve the same level of customer satisfaction, better level of service has to 

be provided in desirable environments, in this case, on-campus stops. 
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6.3.4 Summary of Findings 

The model findings regarding interactions between real-time information variables 

and psychological variables can be summarized in the following Table 6.7. 

Table 6.7 Summary of modeling results 

 
Perceived waiting 

time 
Feeling of security Waiting anxiety Satisfaction 

Pre-trip acquisition Positive effect in 
Aware Model 

No effect No effect No effect 

At-stop acquisition 
Negative effect in 
Unaware Model 

Positive effect in 
Night Model 

Positive effect in 
High-freq model 

No effect 

Perceived earliness 
against real-time info 

No Effect Negative effect No effect Negative effect 

Perceived lateness 
against real-time info 

Negative effect in 
Aware Model 

No effect 
Negative effect in 
High-freq model Negative effect 

NOTE: Positive and negative are not signs of coefficients. Rather they mean whether it generates psychological 
benefits to passengers. 
 

In addition, the conceptual model shown in Figure 3.6 can be modified based on the 

empirical findings. The links verified by empirical results are kept, and unverified links are 

removed. The resulting framework is shown in Figure 6.1. Basically all the causal links in the 

conceptual framework were found to be significantly present, except for the links between 

perceived waiting time and anxiety and link from perceived waiting time to feeling of 

security. The direct influences of real-time information on all four psychological variables 

were also found. But these effects may be only for specific dimensions of real-time 

information or only exist under certain conditions. 
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Figure 6.1 Framework with links verified by empirical results 
 

6.4 Discussion 

As discussed in Chapter 3, real-time passenger information has many dimensions, 

such as the information types, place of information, cost of information, and information 

accuracy and reliability. This dissertation is focused on one type of advanced transit 

information, i.e. real-time bus arrival information. In terms of place of information, this study 

considers both pre-trip and at-stop information acquisition. Not only does the information 

acquisition or presence is considered to be important to transit users, but information 

accuracy perceived by users is incorporated in models to investigate its effect.  

The outcome variables are all psychological responses. It has been conceptually 

stated that the effects of real-time transit information are more of psychological natures 

(Dziekan and Vermeulen, 2006). Empirical investigations also seem to support this claim to a 

great extent. Many project evaluation studies found positive psychological effects of 
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providing real-time information, such as reduced perceived waiting time, increased feeling of 

security, and so on (see Chapter 3).  

Findings from our models have shown that real-time bus arrival information 

acquisition and accuracy both have direct, significant effects on four psychological outcome 

variables during a transit trip. The general trend is that pre-trip and at-stop real-time bus 

arrival information tends to generate positive effects, but these positive effects may easily be 

offset by poor accuracy of the prediction. For instance, findings from satisfaction models 

imply that presence of information will not directly increase passengers’ satisfaction level 

(indirect paths still exist), but once this kind of information is inaccurate, passengers are 

likely to lower their satisfaction with transit service. Also in other models, in terms of 

magnitude of effects, perceived earliness or lateness of buses against predictions has 

relatively greater effects than information acquisition does. This implies that even if presence 

of real-time arrival information could create somewhat positive influence on passenger’s 

psychology, the inaccurate prediction of bus arrival time can easily outweigh this kind of 

positive influence.  Therefore, transit agencies need to be cautious about the deployment of 

such real-time passenger information systems before they are sure about accuracy and 

reliability of predicted real-time arrival information they are going to provide. Poor 

prediction accuracy might easily ruin their effort in providing these systems after all. 

In this study, accuracy was defined as within +/-1 minute on-time, which is sort of 

arbitrary. The margin of errors considered acceptable for transit riders may vary among 

different groups and under different conditions. A hypothesis would be that the closer to bus 

arrival, the smaller error margin is acceptable to passengers. This question of grade of 

accuracy is an open question for further research. 
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In three sets of models for three outcome variables (perceived waiting time, feeling of 

security, waiting anxiety), respondents were segmented in terms of crucial criterions (i.e. 

aware vs. unaware, night vs. day, high frequency vs. low frequency). The model results 

presented above find that these psychological effects of real-time transit information do vary 

among user groups and in different scenarios. And these variations of effects give us 

important policy implications regarding how such real-time information could be effectively 

supplied to right transits under right situations. At-stop real-time information can be supplied 

through different media, such as kiosks, displays. Modeling results show that at-stop 

information is most effective in increasing passenger’s feeling of security in nighttime and 

decreasing their waiting anxiety for highly-frequent bus service.  Thus, in line of these 

findings, bus lines of high frequency and in service at night should have higher priority in 

deploying real-time transit information systems, in order to gain maxim psychological 

benefits from transit users. It is also possible to further explore the differentiation of effect 

size among specific (non-)user groups (e.g. age, frequency of transit use) and under specific 

scenarios (e.g. commute vs. non-commute).  

Because of the nature of on-board survey, the psychological conditions this chapter 

has examined are mainly regarding passengers’ waiting experience. Note that the satisfaction 

level here is actually not the global satisfaction with the service of particular trips. 

Nevertheless, waiting experience is no doubt a crucial fraction of the overall transit journey 

experience. It is worth mentioning that real-time transit information may also influence rider 

experience en-route and post-trip. An obvious example is that if a transit trip entails transfers, 

the real-time information of connecting transit service will be much useful. Psychological 
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responses to such information are worth exploration so as to generate a more complete 

picture regarding psychological impacts of real-time information during the entire journey. 

Customers need time to adjust to new services. The Shuttle-UM on-board survey was 

conducted immediately after the deployment of the ShuttleTrac system. Therefore, the trip-

specific psychological effects of ShuttleTrac detected from this survey are very short-term 

ones in nature and may change over time. It is well-known that customers are very adaptive 

yet demanding when it comes to service. After a while, when passengers grow accustomed to 

the system, it becomes a question whether they feel the same way. In general it would 

become more and more difficult to continually meet their expectations. The battle between 

public transport and other modes is always a difficult one. However, as Dziekan has said, it is 

better fought than not.    

Finally, psychological responses are intangible and difficult to be quantified. Thus it 

is seldom included in the benefit-cost analysis for such kind of projects. Report by Cham et 

al. (2006) proposed a return-on-investment evaluation framework for real-time bus arrival 

information system, in which only reduction in waiting time and in waiting time uncertainty 

are considered the quantifiable benefits. However, nobody can deny that the intangible 

psychological impacts of real-time transit information are critical considerations of 

deployment of such systems, and potentially generate tangible benefits in a longer run. 

6.5 Chapter Summary 

An on-board survey was conducted immediately after the extensive campaign of 

ShuttleTrac. The objective of this chapter is to empirically investigate whether real-time bus 

arrival information would change passengers’ psychological conditions during specific 

transit trips. Four outcome variables of different levels are selected to reflect most important 
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psychological response to real-time information, including perceived waiting time, feeling of 

security, waiting anxiety, and satisfaction with service at stop. They are regarded as 

dependent variables. Variables representing pre-trip and at-stop real-time information 

acquisition and passenger perceived information accuracy were incorporated as independent 

variables. A series of OLS (for perceived waiting time) and ordered logit models (for other 

three dependent variables) were estimated to capture a fraction of the complex interactions 

between real-time information and passengers’ trip-specific psychological responses. 

Nevertheless, several conclusions can be made with varying degrees of generalizability: 

�  Acquiring pre-trip real-time bus arrival information may reduce passenger’s 

perceived waiting time when they are already aware of the timetable, mainly due to 

better coordination of passenger arrivals with bus arrivals. This effect can be offset by 

lateness of bus arrivals against the predictions of real-time bus arrival times.  

�  In the nighttime, passengers are sensitive to the at-stop real-time information in terms 

of feeling of security. Acquiring such information may increase their feeling of 

security. But once the accuracy of prediction is a problem, this effect can also be 

easily suppressed. 

�  In the bus service of high frequency, passengers may alleviate their waiting anxiety 

by acquiring at-stop real-time bus arrival information. Again, in terms of magnitude, 

this positive effect is smaller than the negative effect caused by inaccurate 

information.  

�  Provision of real-time information does not make a difference in influencing 

passenger’s satisfaction with at-stop service. But mis-information caused by 

inaccurate prediction could significantly lower their satisfaction level. 
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�  The accuracy of real-time transit information plays a greater role in influencing 

passengers’ psychology than the mere provision of information does during a specific 

transit trip.   

�  Passenger psychological responses of lower levels generally contribute to the ultimate 

variable – satisfaction, which implies indirect links between real-time information 

and passenger satisfaction level. 
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Chapter 7: Conclusions 

 

7.1 Introduction 

This research sets out to provide insights that transportation academics and policy 

makers appreciate the potentials of real-time transit information systems as a means to induce 

changes in traveler choices and psychology in favor of public transportation. It does so by 

providing a framework conceptualizing the behavioral and psychological effects of real-time 

transit information and empirically examining these effects using revealed-preference data 

collected from a real-world case. This chapter is to conclude the research with a structure as 

follows: Section 2 summarizes the major empirical findings from two parts of analysis and 

discusses their implications to policy-making concerning deploying and managing these 

systems. Section 3 points out the major contributions and limitations of this research, 

followed by recommendations for future research in Section 4. 

7.2 Major Findings and Policy Implications 

This research utilized revealed-preference data to empirically explore the causal 

relationships between use of real-time bus arrival information system and changes in 

traveler’s behavior and psychology under different response time frames. A Real-time 

Transit Passenger Information System for Shuttle-UM service, ShuttleTrac, was deployed in 

University of Maryland, College Park and was used as the case for this research. Three 

online surveys were administered for one pre- and two post-deployment periods, in order to 

ascertain the impact of ShuttleTrac use on traveler’s general behavioral and psychological 

responses. Also, an onboard survey was conducted after the deployment in order to find out 
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the trip-specific psychological responses to real-time information. Chapter 5 presents the 

empirical examination of relationship between real-time transit information and two 

behavioral variables as well as five psychological variables, using the panel datasets 

extracted from three online surveys. Chapter 6 presents the empirical examination of impact 

of real-time information on four riders’ trip-specific psychological variables. The detailed 

empirical findings can be found in the summary sections of two chapters. Here I would like 

to summarize the major findings of this research as follows: 

�  Use of real-time transit information will not immediately increase one’s transit trip-

making frequency or shift one’s dominant commuting mode from others to transit. 

With a few months of adjustment, travelers who used real-time transit information 

will tend to increase transit trip-making frequency. However, the real-time transit 

information is not sufficient to shift traveler’s habitual mode, even with a few months 

of adjustment. 

�  The perception of information accuracy plays a greater role in influencing traveler’s 

transit trip-making frequency, when some adjustment period is given. If somehow the 

travelers formed the impression that the prediction of real-time information is 

generally inaccurate, they will decrease their transit trip-making frequency. This 

negative effect is about 2.5 times higher than the positive longer-term effect of 

information use. 

�  Immediately after real-time information use, transit riders will increase their feeling 

of security about riding buses at day and at night, enhance their perception of transit 

on-time performance, and increase their overall satisfaction with transit services. 
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These immediate effects of real-time information use tend to last for at least a few 

months, except of perception of on-time performance.   

�  If travelers perceive that the real-time information is generally inaccurate, in no time 

they will fell less safe about riding bus at day, fell the service less on-time, and feel 

less satisfied with service. With a few months of adjustment, travelers who hold 

perception of poor information accuracy tend to fell the service less on-time, feel 

more anxious while waiting, and feel less satisfied with transit service. In general, the 

sizes of these negative effects are larger than those of positive effects of real-time 

transit information use. 

�  Acquiring pre-trip real-time bus arrival information may reduce riders’ perceived 

waiting time for particular trips, when they are aware of the scheduled arrival times. 

Acquiring at-stop real-time information may increase rider’s feeling of security for 

particular trips in the nighttime. And, for the bus service of high frequency, 

passengers may alleviate their trip-specific waiting anxiety by acquiring at-stop real-

time bus arrival information. If somehow the prediction of real-time bus arrival times 

is perceived inaccurate by passengers, these effects of real-time information 

acquisition will be suppressed by the negative effects caused by such “mis-

information”. Also, the perceived inaccuracy of real-time information will lower 

rider’s trip-specific satisfaction with transit service. 

 
Empirical findings of this research have also provided some of the implications to the 

policies regarding provision of such real-time transit passenger information systems to the 

traveling public. One clear message to the transit agencies as well as scholars is that real-time 

transit information is undoubtedly found to be effective in influencing traveler’s behavior and 
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psychology in ways that transit, as a mode of transportation, is being favored. Specifically, 

the positive longer-term effect on traveler’s transit trip-making frequency of real-time transit 

information is found. In view of that, the transit agencies, who are going to deploy real-time 

transit information systems, are entitled to anticipate the ridership and revenue increase as a 

result of the new real-time transit information systems after a few months of deployment. But 

they also should be conservative about the magnitude because the magnitude of increase in 

ridership remains unclear in our research. 

The positive psychological outcomes were found both for specific trips and for 

cumulative experience. Even the most conservative people have to admit that, even if the 

real-time transit information provision cannot alter traveler behaviors and generate some 

tangible, economically assessable benefits (e.g. time savings, increase in ridership), agencies 

can foresee positive psychological effects of real-time information and consequent intangible 

social benefits (e.g. addressing safety concerns, ease of general anxiety, better image of 

public transport and public agency). In addition, these positive psychological effects, many 

of which appear immediately after the deployment, will positively and constantly update the 

historical perceptions on travel choices involving transit and then potentially change 

travelers’ travel choices in a longer run in ways that transit is in favor. As a matter of fact, the 

longer-term effect on trip-making frequency may very well be due to such process of 

updating perceptions on transit. Thus, when agencies are considering deployment of similar 

systems, they shall not neglect the psychological aspects of traveler’s responses to such 

systems. 

How to make the most use of real-time transit information in generating positive 

psychological outcomes for specific trips? Our findings for trip-specific psychological 
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responses provide some insights into it, i.e., bus lines of high frequency and/or in service at 

night should have higher priority in deploying at-stop real-time information devices, in order 

to gain maxim psychological benefits, such as more safety feeling and less waiting anxiety. 

Before the agencies are ready to embrace the real-time transit information systems, 

they need to bear one point in mind: if you ever want to do it, please do it right. Here the 

accuracy of the real-time information is the key to the success of such systems in influencing 

travelers in expected ways. Our findings show very a consistent pattern: the negative effects 

of perceived inaccuracy of information are generally about 1.5-3 times higher than the 

positive effects of real-time information use (if any). The definition of “inaccuracy” differs 

here in two parts of research: for general responses, “inaccuracy” means that predication is 

accurate only 50% times or less (how to tell each time the prediction is accurate or not is up 

to respondents); for trip-specific situations, the accuracy is defined as within +/-1 minute on-

time against predictions in travelers’ mind. The objective accuracy of prediction can be 

measured by comparing the deviations of bus arrivals from predicted arrival times. The 

information accuracy perceived by travelers is no doubt highly dependent on the objective 

accuracy. In order to achieve high accuracy, two key components of real-time transit 

information systems, models/algorithms and historical/current input data, are demanded to be 

lift to a very high level in terms of quality. And monitoring of operation of such systems and 

updating of models and data should be conducted on a regular basis so as to ensure the 

consistency of high quality of real-time information. 

7.3 Main Contributions and Limitations of this Research 

The main contributions of this research lie in two aspects. 
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�  An integrative, comprehensive and systematic conceptual framework of traveler 

responses to real-time transit information was developed, taking into account both 

behavioral and psychological responses under trip-specific and cumulative situations. 

This conceptual framework is built upon previous theories and research, and provides 

a solid basis for future studies that will further explore such topic, empirically or 

theoretically. 

�  This research utilized revealed-preference empirical data collected in a real-world 

case of real-time transit information system, a quasi-experimental research design, 

and sophisticated modeling techniques. Thus useful insights were obtained into the 

understanding of the real causal relationships between real-time information and 

traveler behavioral and psychological responses.  

 

It should be noted that this research has its limitations too, some of which are not 

small. I would like to discuss some of the major limitations. 

�  A big pity of this research is that trip-specific traveler behaviors under real-time 

information cannot be empirically examined simply due to the limitations of the case 

and data collection. It occurs to me that even if the case is a perfect one (i.e. with all 

kinds of features, such as common lines, various stops, various user groups), 

traditional data collection methods (i.e. travel trip-diary/activity log, or onboard 

survey) cannot capture those behaviors we identified in the conceptual framework. 

For instance, those travelers who quit the trip or turn to other modes because of real-

time information are simply not able to be interviewed with an onboard survey. 

Therefore, even if the Shuttle-UM case were better and/or a good deal of riders used 
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ShuttleTrac, little could be done to comprehensively study the trip-specific behavioral 

responses with the data collection method I proposed and conducted. More innovative 

data collection methodology shall be adopted. 

�  An inevitable challenge to this research is the generalizability of the empirical 

findings to the typical urban public transportation environments. Some special 

characteristics of Shuttle-UM shall be taken into account if we want to discuss how 

generalizble of the results in this research: 1) Shuttle-UM is free to riders; and 2) 

Riders of Shuttle-UM tend to be young, well-educated and pro-high-tech, compared 

to riders of other urban transit systems. Conceivably, these characteristics tend to 

make riders of Shuttle-UM more inclined to use real-time transit information and 

adjust their behavior accordingly. For instance, zero fare gives travelers more 

flexibility of shifting from other modes to Shuttle-UM without thinking about extra 

expenditures. For these reasons, I believe that the size of found effect of Shuttle-UM 

trip-making frequency is likely to be an overestimation in the context of a urban 

transit system. In terms of psychological effects, the magnitude of effects we found is 

also likely to be an overestimation, because passengers of normal transit tend feel that 

they have paid the fare and take additional real-time information service for granted. 

In sum, when putting our findings in the context of a typical urban public 

transportation system, these empirically-detected effects of real-time transit 

information might still be there, but one should not be too optimistic about the size of 

effects. 

�  Some other methodological limitations also exist. First, because of a lack of software, 

multinomial logit models with fixed-effects or random-effects estimators could not be 
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used on the panel commuter dataset. Therefore, it is the wave3 cross-sectional 

commuter dataset that was employed to find out the possible link between real-time 

transit information and commuting mode choice. The instrument variables used in 

Stage-one model are not quite good ones as the predictive power of such model was 

mediocre. It would be enhanced if more powerful explanatory variables were 

incorporated, such as the attitudes toward transportation service. Second, as we 

discussed, the random-effects ordered probit models does not account for the self-

selection problem explicitly.   

7.4 Recommendations for Future Work 

Some possible extensions of this research are suggested here for future work. Such 

extensions may include: 

�  Yet more empirical research on this kind of new strategy for public transportation 

improvement is desperately needed to really ascertain the effects at individual and 

aggregate levels. Preferably, a full-fledged, state-of-art Real-time Transit Passenger 

Information System newly deployed for a typical urban public transportation system 

with a large amount of passengers and variations in services shall be picked as the 

research case. Carefully designed and administered surveys before and after the 

deployment can provide a complete bundle of empirical evidences regarding the 

existence and effects of real-time transit information as conceptualized in our 

framework here. These kind of empirical evidences are of greatest significance to 

fully understand the real and realistic effects of RTPISs on individuals and networks 

as well as providing sufficient, definitive support to policy making concerning such 

systems.  
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�  To fully capture the trip-specific travel behavior under real-time information, as I 

discussed above, innovative revealed-preference data collection methodology beyond 

conventional simplistic dairy/activity survey and onboard survey shall be designed 

and adopted. One possible approach is to intensively record trip-makers’ travel 

behavior and decision-making process. For instance, travelers who quite the trip or 

change to other modes due to real-time information could be interviewed at the end of 

day with questions concerning their intended choices, actual choices, and information 

acquisition as well as decision-making process. 

�  The interrelated questions concerning traveler behavior under real-time transit 

information popped up in the beginning of this dissertation are all worth serious 

research and it is preferable that research could take them into account as a whole. 

For example, the use of real-time information and traveler choices under the 

information can be explicitly examined as two stages of decision-making process. 

�  Recently rapid technological developments in ICTs have provided a vision of 

technological revolution in ATIS towards to what can be called by some people the 

next-generation ATIS (Adler and Blue, 1998; Kenyon and Lyons, 2003; Chorus et al., 

2006a). Such ATIS is expected to be able at any time to provide a traveler with all the 

travel information, solicited and unsolicited, that is relevant given her time and place 

in the multimodal transport network and her personal characteristics. Complexity of 

understanding the effects of such next-generation ATIS rises exponentially as so 

many dimensions and considerations are to be taken into account. Yet transportation 

academics and professionals shall not be afraid to confront this challenge placed 
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before us and strive to undertake better study on such promising application in order 

to provide better transportation to the traveling public. 
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Appendices 
Appendix 1: Campus Transport Survey Round 3 Questionnaire 
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Appendix 2: On-board Survey Form
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