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The degree to which invasive species have altered the demography, ranges, and 

microhabitat occupation of native species is poorly known. Yet, the competition-

mediated decline of native populations, in concert with other factors such as habitat 

degradation, can place native species at risk of extirpation. Understanding whether 

competition between native and non-native species can take place under ordinary 

environmental conditions can allow us to extrapolate whether native species are likely to 

have experienced harm in the past and/or if they are likely to do so in the future. The 

native slug Philomycus carolinianus is likely to compete for resources with the 

aggressive non-native slug Arion subfuscus in central Maryland forests. In order to 

establish whether competition occurs between these two species, I tested for the 

following criteria: the existence of competitive displacement in the field, overlap in the 

use of limited resources (shelter and food), a decline in the fitness of P. carolinianus in 

the presence of A. subfuscus, and the action of competition mechanisms (interference and 

exploitation) between them.  Field surveys showed that displacement between A. 

subfuscus and P. carolinianus does not apparently occur within mixed natural 
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populations. Resource use of the two slugs overlapped, with part of the diet (i.e. fungus) 

and a large proportion of the microhabitats occupied (i.e. coarse woody debris) in 

common. A lab experiment established that low natural levels of food (fungus) can limit 

the fitness of each slug species, while shelter (coarse woody debris) was not limiting. 

When sharing a low-resource lab cage with either A. subfuscus or conspecifics, P. 

carolinianus experienced a similar decline in fitness, suggesting that exploitative 

resource competition was no greater between heterospecifics than between conspecifics. 

No evidence of heterospecific interference (competition independent of resource levels) 

was found. Given the limited support for the criteria of competition, A. subfuscus was not 

shown to be an immediate threat to the persistence of P. carolinianus.  
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CHAPTER 1 

The Abundance and Distribution of Co-Occurring Slug Species 

 

INTRODUCTION 

Non-native species are one of the major threats to the persistence of biodiversity today 

(Simberloff 1997). The harm posed by non-native species as predators and pathogens of 

native species and as ecosystem engineers is well recognized (Gurevitch and Padilla 

2004). Less well known, and considered of lesser importance, is the degree to which non-

native species compete with native species. Evidence of interspecific competition is 

difficult to establish (Schoener 1983; Simberloff 1997; Byers 2000) and requires a series 

of field surveys and experimental manipulations of the two species (Wiens 1989; Chapter 

3). Among these pieces of evidence, field observations that indicate population 

displacement of a native species at a habitat or microhabitat scale are crucial to 

demonstrating that the non-native competitor harms the native species in a natural setting 

(Cross and Benke 2002). 

Most systems in which native and non-native species compete are difficult to 

study, because the history of the invasion process and the current extent of sympatry 

among the species are rarely well known (Eastwood et al. 2007). Ideally, studies of 

competition between a native and a non-native species would track the progressing 

invasion front of the non-native species (Denno et al. 1995). The harm perpetrated by a 

non-native competitor can be measured as a population decline, shift in niche usage, or 

extirpation of the natives as the invasion front moves forward (Bøhn et al. 2008; Cheng et 

al. 2009). Systems in which the competitive interactions between native and non-native 



    2

species are well-known tend to be those with an invasion still in progress, such as the 

Argentine ant, the rusty crayfish, the New Zealand mudsnail, and the Asian tiger 

mosquito (Cope and Winterbourn 2004; Juliano and Lounibos 2005; Buczkowski and 

Bennett 2008a; Pintor et al. 2008). The relative ease of following an invasion front – a 

convenient natural experiment – may promote their study. However, catching competitive 

displacement in the act is rare (Reitz and Trumble 2002), and not all invasions that pass 

through result in the obvious habitat/microhabitat displacement of a native ecological 

analog. The original population sizes or distributions of native species are usually 

unknown (Parker et al. 1999), especially if the native species are not considered 

ecologically or economically important. Nor are the current ranges of most non-native 

species well known (Strayer 2009). Further, often, the non-native competitor is not 

noticed until many years after its introduction and population build-up (Byers and 

Goldwasser 2001).  

Even if a non-native species were introduced and established its range in the 

distant past, competitive interactions between non-native and native species that are 

combined experimentally or that co-occur on the same sites may still be measurable. In 

post-invasion studies of competition between non-native and native species, researchers 

typically begin by noting an apparent displacement of the native species on a micro- or 

macrohabitat scale in the field, and they test for harm to the native species or for a 

mechanism of displacement when the two species are combined experimentally in the lab 

or field (e.g., Petren and Case 1996; Cope and Winterbourn 2004; Eastwood et al. 2007; 

Van Riel et al. 2007; Krassoi et al. 2008; Shinen and Morgan 2009; Stokes et al. 2009; 

Strubbe and Matthysen 2009). An alternative approach is to perform detailed surveys of 
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field populations to determine whether a native species and an established non-native 

species compete. Careful field surveys may capture subtle or small-scale spatial 

displacement that may suggest territorialism, avoidance, or differential fitness between 

sympatric non-native and native species (e.g., Wauters et al. 2002; Harris et al. 2006). 

Field surveys or long-term field experiments are critical, because competitive interactions 

observed in the lab may be insignificant when allowed to play out in a natural setting 

(Cross and Benke 2002). 

This research aims to determine whether the native slug species Philomycus 

carolinianus (Bosc) and Megapallifera mutabilis (Hubricht) compete with the non-native 

Eurasian slug Arion subfuscus (Draparnaud) in central Maryland forests. A. subfuscus is a 

relatively aggressive slug (Rollo and Wellington 1979; Fernandez 1990) that often forms 

dense populations (up to 10 slugs/m2, pers. obs.) and occurs widely in North American 

forests (Chichester and Getz 1969; Getz 1974; J.B. Burch pers. comm.). The native 

philomycid slugs P. carolinianus and M. mutabilis co-occur with the non-native species 

A. subfuscus at many forested sites. Although widespread extirpations of the native 

philomycid slugs apparently have not happened, it is unknown whether they interact 

competitively with A. subfuscus in the field or if their populations have declined since the 

introduction of A. subfuscus (Chichester and Getz 1968). Due to the lack of historical 

records, the slug fauna of North America pose a challenge to investigating the effects of 

non-native competitors on native species. Binney first recorded the presence of A. 

subfuscus in New England in 1842 (Chichester and Getz 1969), but European slugs could 

have been introduced as early as the 18th century (Getz and Chichester 1971). Early 

malacologists (and even recent researchers) overlooked the slug fauna and placed a 
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greater focus on other molluscs such as snails (Getz and Chichester 1971; Hubricht 

1985). Regrettably, we do not know how quickly A. subfuscus has spread or how the 

native slug fauna may have responded. The eastern North American slug fauna is still 

changing and new introductions are occurring (Chichester and Getz 1968), including 

additional biotypes of A. subfuscus (Pinceel et al. 2005). However, field observations 

may be effectively used to understand competitive interactions of natural populations of 

gastropods. Surveying grids or nearest-neighbor distances in the field is a well-

established approach to studying behavior, demography, and movement within gastropod 

populations (South 1965; Hunter 1966; Jennings and Barkham 1975; Baur 1986; 

Kleewein 1999). Therefore, field surveys may be used as part of the evidence to 

determine whether A. subfuscus and the native philomycid slugs compete. 

In conjunction with laboratory experiments to test the fitness effects and 

mechanisms of competition between P. carolinianus and A. subfuscus, the spatial 

displacement of the native philomycid slugs P. carolinianus and M. mutabilis and the 

non-native A. subfuscus was assessed in the field through a series of surveys on a local 

scale (5 x 5 m cells) and on a microhabitat scale (< 50 cm2). The daily interactions among 

individuals are encompassed on these scales, and slug home ranges would generally fit 

easily within 5 x 5 m cells (Cook and Radford 1988; Pearce and Örstan 2006). A. 

subfuscus may affect native slug microhabitat use, arrangement of home territories, 

and/or fitness, resulting in small-scale changes in the distributions of philomycid 

populations. To encompass spatial and temporal variation in competition, I surveyed slug 

populations across two years in three forest habitats characterized by different flora. 
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Distribution patterns of P. carolinianus and M. mutabilis may suggest spatial 

displacement by, and hence competition with, A. subfuscus. In order to resolve the 

various alternative scenarios the following questions need to be addressed: Is the non-

native slug A. subfuscus more often spatially disassociated with the native slugs P. 

carolinianus and M. mutabilis than the two native slugs are with each other? On a small 

scale (< 50 cm2), do A. subfuscus and P. carolinianus occur farther away from each other 

than from conspecifics? Spatial patterns of overdispersed individuals within a species 

may suggest antagonistic behavior (Rollo and Wellington 1979). On a small scale, does 

A. subfuscus less often occur in groups with other slugs (including either or both 

heterospecifics and conspecifics) than the two philomycids?  

 

METHODS  

 

Study Site 

Slug abundances were tallied in mesic lowland beech-oak forests in the Central Tract of 

Patuxent Research Refuge (PRR), Laurel, Maryland, USA. I chose three sites having 

measurable numbers of all three slug species of interest. The three sites also differed in 

tree species composition, amount of underbrush, and level of light. Site A (N 

39º03’07.6”, W 076º49’12.0”) occurred on a slope in a mixed deciduous forest 

dominated by American beech (Fagus grandifolia), with smaller numbers of tulip poplar 

(Liriodendron tulipifera), black gum (Nyssa sylvatica), and white oak (Quercus alba). 

Some undergrowth occurred towards one end of the site. Site B (N 39º03’19.7”, W 

076º48’47.6”) was a beech-maple (Acer) forest with a diverse composition of 
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subdominant tree species, including tulip poplar, sweet gum (Liquidambar styraciflua), 

and pawpaw (Asimina triloba). The canopy was mostly open, much undergrowth 

occurred through most of the site, and the ground was prone to infrequent flooding. At 

site C (N 39º03’24.4”, W 076º49’23.9”), beech was dominant with white oak and red oak 

(Quercus rubra or Q. falcata) subdominant. This site was shady and encompassed many 

dead fallen conifer trunks and little undergrowth. The geographic coordinates were taken 

from the approximate center point of each site. Sites were within 0.5-1 km of each other, 

were undisturbed second-growth forest, and occurred entirely within 100 m of the forest 

edge. Sites were 200-1000 m from residential developments. 

Prior to performing systematic field surveys, I identified the slug species 

occurring at these sites through examination of their external and internal anatomy (see 

Pilsbry 1948, Webb 1950, Fairbanks 1990, Barker 1999). Voucher specimens of P. 

carolinianus (USNM 1125375, USNM 1125378) and M. mutabilis (USNM 1125376 

USNM 1125377) were deposited at the National Museum of Natural History, 

Smithsonian Institution, Washington, DC.  

 

Field Survey Methods 

Slug identity and abundance was surveyed at several sites and through time to allow for 

the possibility that displacement is only clearly manifest at some sites (e.g. if resource 

amounts vary among sites) or only during some times of the year (e.g. during periods of 

food or shelter shortage). I set up three grids in each of the three field sites (Fig. 1.1). 

Each grid was a 25 x 25 m square with an arrangement of 5 x 5 cells (i.e., a total of 25, 5 

x 5 m cells) (see Bohan et al. 2000). The three grids per site were aligned in a row and 
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shared some edges in common. Flags were planted at the corners of each cell and string 

demarcated the edges of each cell. I performed surveys of slugs occurring on the grids 

sometime between dusk and midnight (18:45-23:30) when slugs were active, between 

early June and late September. I undertook six surveys in 2007 (during June 11-19, July 

9-11, July 23-25, August 14-16, September 4-6, and September 23-25) and three surveys 

in 2008 (June 9-12, August 4-9, and September 27-29). At least one evening was required 

to survey each site. Sites were always surveyed in the order A, C, and B. I identified and 

counted the slugs visible on live and dead tree trunks within my reach (i.e. below 2.25 m 

in height), on and beneath dead wood on the forest floor, and on vegetation. A maximum 

of five minutes survey was allowed per cell. The main goal was to obtain accurate 

measures of relative slug abundances across sites, so the bias inherent in these methods 

should be acceptable as long as it remained consistent across sampling units. 

 

 

Fig. 1.1  A set of three grids on one field site. Each cell is 5 x 5 m, and each grid is a 

square consisting of a 5 x 5 arrangement of these cells.  The upper and lower grids touch 

the middle grid along two edges to allow grids to be combined for analysis. 
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After slug population surveys were performed, I determined that the habitat factor 

of coarse woody debris (CWD) needed to be accounted for prior to analyzing population 

associations. A spatial analysis using the program SADIE (Perry 1998) indicated that 

pairs of the slug species were frequently positively associated (Fig. 1.2; see Appendix A, 

Section III for details of methods and results). Personal observations and measurements 

of the forest floor immediately around slugs suggested that all species were aggregating 

in areas rich in CWD. Measurements of the 1.0 m2 microsites surrounding slugs (Chapter 

3) showed that slugs occupied microhabitats with an order of magnitude more coarse 

woody debris than randomly-chosen 1.0 m2 patches of forest (average: 15970 cm3 vs. 

1497 cm3). Microhabitat requirements, such as CWD volume, can contribute greatly to 

aggregation (South 1965; Kappes 2005). South (1965) suggested that the availability of 

shelter, as a site of oviposition and its importance in limiting mortality, are the main 

factors controlling slug distributions. To account for this factor, the total volume of CWD 

at least 4.5 cm in diameter and at a moderate to advanced level of decay (stage three to 

five in decay in Stokland and Kauserud 2004) was calculated for each cell. For each piece 

of CWD, at least two diameters and the length was recorded. The volume of each piece 

was calculated as v = (l π d2)/4, where v is volume, l is length, and d is average diameter. 
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Fig. 1.2  The number of surveys that demonstrated significant disassociation, significant 

association, or neither between each species pair as determined through the spatial 

analysis program SADIE (see Appendix A, Section III for details of methods and results). 

NonN are non-native slug species (including mostly A. subfuscus), Pc are P. 

carolinianus, and Mm are M. mutabilis. 

 

 Additionally, at PRR, I surveyed the distances between individual pairs of slugs 

separated by less than 50 cm. The distance of 50 cm is an arbitrary length chosen to 

encompass the scale of interaction of slugs. Distances were measured for 63 P. 

carolinianus – P. carolinianus pairs, 35 P. carolinianus – A. subfuscus pairs, and 149 A. 

subfuscus – A. subfuscus pairs between May to September 2008 and April to May 2009. 

Distances between M. mutabilis and other slug species were not analyzed because too 

few individual of M. mutabilis were found. For each species, the proportion of slugs 

found in “groups” with other slugs (< 50 cm apart from other slugs) was also calculated. I 

surveyed 198 slugs total to determine the proportions occurring in groups.  
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Statistical Analysis 

To determine whether pairs of slug species were (dis)associated on field grids, the 

relationship of each pair of co-occurring slugs was evaluated with CWD treated as a 

covariate. I analyzed population abundance datasets without spatial autocorrelation and 

datasets rescaled to eliminate the factor of spatial autocorrelation. I compared pairs of 

species abundance data for each survey session and site to determine if any pairs were 

spatially disassociated at any site or point in time.  

 A VARIOGRAM analysis in SAS was applied to each dataset combination of 

species, survey, and site to determine at what scales slug populations exhibited spatial 

autocorrelation (SAS Institute Inc. 2008). The distance interval between analyzed units is 

termed a spatial lag, which can be rescaled such that there are larger units that each 

include more points, or smaller units that each include fewer points (Fortin and Dale 

2005). Spatial lags may be rescaled to eliminate the factor of spatial autocorrelation. I set 

the initial lag size at one cell length and the maximum number of lags at 10 cell lengths to 

match approximately the original scale of the grids. If a dataset did not produce a 

significant value for Moran’s I, a coefficient of autocorrelation (Moran 1950), the dataset 

was considered spatially random at the original scale. If a dataset had a significant 

Moran’s I, lag size was increased to 2 and to 5 and the VARIOGRAM analysis was 

repeated. (A semivariogram produced through VARIOGRAM was also examined to 

suggest at what lag size spatial autocorrelation leveled off.) Datasets examined at lag 2 

(two cell lengths) were rescaled such that each unit was composed of a square of four 

cells. The fifth row and fifth column of each grid of cells were dropped because the cell 

count was an odd number. The resulting set of grids per site had 12 cells instead of the 
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original 75 cells. The lag 2 analysis was also attempted by splitting each 5 x 5 grid into 

four units of 2.5 cells per side and dividing up the counts of split cells among the new 

units. However, units of 2 x 2 cells and units of 2.5 x 2.5 cells produced the same 

outcome in the partial Mantel test, so only the former results are presented. Datasets of 

lag 5 (five cell lengths) were rescaled to include all 25 cells in a single grid of 5 x 5 cells 

as a new unit. However, because the resulting dataset was very small (three units), all of 

the lag 5 datasets across surveys and sites were combined for each species pair, making 

three lag 5 datasets. If a rescaled dataset did not have a significant Moran’s I at lag 2, this 

scale of dataset was used in analyses. If a rescaled dataset had a significant Moran’s I at 

lag 2 but not at lag 5, the dataset was analyzed at lag 5. If a dataset was autocorrelated at 

all scales, it was not used. See Appendix A, Section IV for a summary of the datasets that 

were rescaled, remained unchanged, or were unusable. 

The association of the spatial arrangement between a pair of species at each site 

and survey was analyzed through a partial Mantel test. The measure of association is the 

Mantel statistic Z,  

 
Z = ∑ Xij Yij  
        ij 

where i and j are points, Xij and Yij are the distances between each pair of points, and X 

and Y are distance matrices. (For my study, points i and j are grid cells, distances Xij and 

Y ij are differences in the count of slugs of one species between cells i and j, and matrices 

X and Y each contain all the “distances” among cells for a single slug species.) The value 

Z is the total of products of the corresponding values within the two matrices (Mantel 

1967; Rosenberg 2001). The factor of CWD density was treated as a covariate to each 
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pair of slug abundance datasets through a partial Mantel test. The matrices X and Y were 

regressed against a third distance matrix (here, the distance matrix of CWD), and the 

resulting residuals were applied to the Mantel test formula (Smouse et al. 1986). To test 

the significance of the Z statistic, 10000 permutations of the original datasets were 

performed, in which the values of one dataset were shuffled while the other was 

maintained, and the partial Mantel test were performed on the permuted datasets. The 

size of the observed Z statistic was compared with the Z statistic of the randomized 

datasets (Rosenberg 2001). Two datasets are significantly positively associated if fewer 

than 500 of the 10000 permutations produces a higher Z statistic (i.e. right-tailed P < 

0.05), and two datasets are significantly disassociated if fewer than 500 of the 10000 

permutations produces a lower Z statistic (i.e. left-tailed P < 0.05). A normalized Mantel 

coefficient (r), the correlation of corresponding values in X and Y, was determined for 

each Z statistic. The partial Mantel tests were analyzed through the software package 

PASSaGE (Rosenberg 2001). 

 A one-way ANOVA was used to compare the distances among slug species 

pairings, with species pair as the factor. A chi-square test was used to determine if slug 

species occurred in similar frequencies in groups versus as individuals. SAS software 

version 9.2 was used to perform the ANOVA and the chi-square test (SAS Institute Inc. 

2008). 

 

RESULTS 

The number of slugs of each species was counted per grid cell (e.g. Fig. 1.3). A. 

subfuscus was the most abundant species at each site (average of 0.22 slugs per cell) (Fig. 
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1.4). However, P. carolinianus was similarly abundant to A. subfuscus within site B 

(averages of 0.12 and 0.13 slugs per cell, respectively) and within site C (averages of 

0.23 and 0.28 slugs per cell, respectively). M. mutabilis was the least common slug at all 

sites (average of 0.05 per cell). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.3  An example of slug population and CWD distributions at Site A. The average 

slug count per cell across surveys is shown for (a) A. subfuscus, (b) M. mutabilis, and (c) 

P. carolinianus. (d) The natural log of CWD volume is shown. Cells are small 5 x 5 m 

boxes within each grid. Graphs were produced through SigmaPlot version 8.0 (Systat 

Software, Inc. 2002). 
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Fig. 1.4  Average abundance per cell of each slug species at each site. Slug numbers are 

averaged over all nine surveys. Error bars are +SE. 

 

Slug numbers observed declined precipitously between the first and third surveys 

in 2007 and did not recover the next year (Fig. 1.5; also see Appendix A, Section II), 

resulting in many datasets of slug abundances that were too small to use in analysis in 

both years. Of the original 81 datasets (representing all combinations of three species, 

three sites, and nine surveys), 33 were unusable. One or fewer slugs were found in 22 

datasets, five were spatially autocorrelated at all possible scales, and six had no other 

remaining dataset with which to be paired (given that all other datasets associated with 

that site and survey were unusable). 
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Fig. 1.5  Average abundance of all slug species through time. The average number of 

slugs per cell for each date is shown. 

 

 Even though CWD amount was treated as a covariate in the partial Mantel 

analysis of species pair abundances, no species had a significant disassociation with any 

other species at any site or during any survey (see Appendix A, Section V). Rather, 

positive associations (in which fewer than 500 out of 10000 simulations were equal to or 

more associated than the observed populations, determined by the Z-statistic, or right-

tailed P < 0.05) were shared between A. subfuscus and P. carolinianus populations in 

23% of the 13 surveys, between A. subfuscus and M. mutabilis populations in 12.5% of 

the eight surveys, and between P. carolinianus and M. mutabilis in 30% of the 10 surveys 

(Fig. 1.6a). Also, pairs of populations were significantly positively associated in 43% of 

the seven surveys at site A, in none of the five surveys at site B, and in 21% of the 

fourteen surveys at site C (Fig. 1.6b). Population pairs with negative correlation 

coefficients (r < 0; none significant) were scattered throughout the surveying seasons. 

However, fewer slugs per cell were found during the four surveys with the top 

percentages of negative correlations between populations than during the four surveys 

with the bottom percentage negative correlations (average slugs per cell: 0.218 in the 
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surveys with a higher percentage of negative correlations, 0.665 in the surveys with a 

lower percentage of negative correlations) (Fig. 1.7).  

 

   

Fig. 1.6  Counts of surveys that show randomness or association between pairs of species 

distributions, obtained through partial mantel tests with CWD amount held constant. (a) 

Species pairings include all possible combinations of As (A. subfuscus), Pc (P. 

carolinianus), and Mm (M. mutabilis). (b) Counts of randomness and association are 

divided by field site. 

 

 

(a) (b) 
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Fig. 1.7  Percentage of species population pairs whose spatial distributions were 

negatively correlated (r < 0) for each survey date. The average number of slugs per cell 

for each date is also shown. 

 

Distances between pairs of slugs in the field did not differ significantly regardless 

of the identity of the slug species (ANOVA: F2,193 = 0.26, P = 0.768) (Fig. 1.8). 

 

 

Fig. 1.8  Effect of species identity on the distances between pairs of slugs in the field. Pc 

is P. carolinianus and As is A. subfuscus. Error bar is +SE.  
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Among active slugs observed in the field, different proportions of each species 

occur in groups (less than 50 cm apart from other slugs of their species) (χ2 = 15.7, P = 

0.0004) (Fig. 1.9). This difference is due to M. mutabilis, which is significantly less likely 

to occur in groups than P. carolinianus and A. subfuscus. If only A. subfuscus and P. 

carolinianus are analyzed, both species occur in groups at approximately the same 

frequency (χ2 = 2.86, P = 0.0908).  

     

 

Fig. 1.9  Proportion of individuals of each species occurring in groups (< 50 cm from 

other slugs). 

 

DISCUSSION 

This series of surveys examined whether the native slug species M. mutabilis and P. 

carolinianus are dissociated in the field from a potential competitor, the non-native slug 

A. subfuscus. Populations were found to be aggregated, or more often, randomly 

distributed with respect to one another on a 5 x 5 m cell grid. On a smaller scale (< 50 

cm), the proximity of A. subfuscus and P. carolinianus to other slugs was similar and 
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unaffected by the species identity of nearby slugs. Thus, A. subfuscus does not appear to 

be displacing the two philomycids on either scale investigated. 

In this study, most surveys of slugs on a 5 x 5 m grid and all smaller-scale surveys 

determined that heterospecific species were randomly distributed with respect to one 

another. On a scale of 50 cm, A. subfuscus and P. carolinianus occurred at similar mean 

distances from heterospecific or conspecific individuals, and thus, did not appear to 

respond to each others’ species identity. When active, A. subfuscus and P. carolinianus 

both occurred near other slugs (within 50 cm2) at similar frequencies, and M. mutabilis 

occurred less often near other slugs. Thus, under the field conditions investigated, A. 

subfuscus does not show an inherent tendency to deter other slugs, i.e. to exhibit 

territoriality or other forms of interference, which would tend to create over-dispersion 

(Rollo and Wellington 1979). These results accord with studies of heterospecific 

distribution patterns in other gastropods (Bohan et al. 2000; Cross and Benke 2002). In 

contrast to the many examples of aggregation within gastropod species, studies have 

usually shown that a potential competitor does not affect spatial dispersion patterns 

between gastropod species. The slugs Deroceras reticulatum and Arion intermedius were 

usually randomly distributed in relation to one another in meadow sites (Bohan et al. 

2000). Two freshwater snails (Elimia cahawbensis and E. carinifera) exhibited random 

spatial distributions with respect to one another in the field (Cross and Benke 2002). 

Intraspecific competition within these snail species was greater than interspecific 

competition between these snails (Cross and Benke 2002), as was demonstrated for P. 

carolinianus and A. subfuscus (Chapters 3 and 4) and predicted by competition theory 
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(Gause 1934). The absence of a spatial relationship may be expected for species pairs 

exhibiting limited interspecific competition. 

Slug species were never disassociated with other species in the field on the scale 

of 5 x 5 m cells, and in fact, different species seem to be attracted to the same 

microhabitats. Despite my use of a partial Mantel test to correct for the factor of CWD 

volume, a predicted cause of aggregation among slug species, pairs of slug species were 

often positively associated at different times through the surveying season. Aggregation 

is very common within terrestrial gastropod populations and may be the norm for some 

species (South 1965; Hunter 1966; Baur 1986; Kleewein 1999; Glen and Moens 2002). 

Other studies that found spatial associations among slugs have suggested that habitat 

requirements are causing species distributions (Bohan et al. 2000). I corrected for the 

factor of CWD amount, but slug populations may be structured by additional 

microhabitat factors such as degree of food availability, soil moisture, and/or soil 

chemistry, in addition to some behavioral factors. For example, the slug Limax maximus 

seeks shelter closest to food (Rollo and Wellington 1979). A principal component 

analysis of factors relevant to land snail abundance found that soil pH, density of 

deciduous trees, and ground moisture were most important (Hylander et al. 2005). 

However, these microhabitat factors are not consistently important. Bohan et al. (2000) 

found that plants and soil moisture were unrelated to distributions of slugs in fields. 

Recently-hatched gastropods tend to be highly aggregated, because they emerge from egg 

masses (Hunter 1966; South 1992; Bohan et al. 2000b), which may themselves be 

clustered under refuges. Slugs become less clustered as they age (South 1965; Conner et 

al. 2008), although densities may persist around favorable ovipositing sites. Aggregations 
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within the habitat may result randomly from gastropods’ limited dispersal tendencies 

(Pearce and Örstan 2006). Behavior such as mating (Kleewein 1999) and a tendency to 

slow activity when contacting mucus (Williamson et al. 1976) may also cause slugs to 

aggregate. Any number of these environmental and behavioral factors may be responsible 

for persistent aggregation among field populations of A. subfuscus, P. carolinianus, and 

M. mutabilis.  

Interestingly, the frequency of population association varied among sites, with the 

highest number of associations at site A and the fewest at site B. An environmental factor 

such as resource availability is likely to cause slugs to behave differently at each site. 

Perhaps site B promotes a lower localized density of slugs because it provides the most 

live trees as habitat, while site A has the fewest (total diameter at breast height of live 

trees 40 cm and 27 cm per cell, respectively). Site B also has the most CWD and site A 

the least (155200 cm3 and 47313 cm3 CWD per cell, respectively). Although the partial 

Mantel test treated CWD as a covariate and removed its effects from analysis within each 

site, a greater availability of CWD may have enabled a denser growth of slug foods and a 

greater availability of favorable microhabitats across the whole of site B. The influence of 

other potential environmental factors on the frequency of aggregation is unknown. 

Negative correlations among populations tended to occur when few slugs were 

observed, i.e. during periods of drought (Appendix A, Section II). These negative 

associations among populations suggest that observed aggregations might have been 

breaking up during periods of low activity. In contrast, most studies of gastropod field 

populations have found that animals aggregate during unfavorable weather in shared 

refuges (South 1992), both during the height of drought in summer (Baur 1986) and 
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during winter (Rollo and Wellington 1979). The cause of this discrepancy between 

current and previous results is unknown. Different species may have been selecting 

different kinds of shelter, or unlike other gastropod systems, may have been avoiding one 

another during periods of drought. Across taxa, drought tends to be associated with the 

appearance of competition (Schoener 1983). Alternatively, the scale of the study (5 x 5 m 

cells) may have hidden smaller aggregations. Associations within a slug species tend to 

coalesce and break up across different spatial scales of analysis due to the actions of 

different spatially-influenced factors (South 1965; Bohan et al. 2000). 

This study does not support the theory that A. subfuscus is spatially displacing the 

two native philomycids from substrates. Despite shared resources and habitats, species 

often coexist without affecting each other’s population sizes and distributions. 

Understanding how coexistence happens can be difficult (Birch 1979), and possible 

explanations, including environmental factors that suppress populations far below 

carrying capacity, subtle differences in niche usage, and temporal displacement, are 

manifold. Predators, food quality, and climate can be major factors influencing 

population abundance and distribution (Baur and Baur 1990; Loreau 1992; Ferrenberg 

and Denno 2003), keeping populations below their carrying capacity and limiting 

competition (Birch 1979). Interspecific competition for resources between A. subfuscus 

and P. carolinianus is not strong (Chapter 3). The relative strengths and importance of 

other population-regulating factors among these species are unknown. Reproduction is 

temporally displaced between A. subfuscus and the two philomycid species. In central 

Maryland, A. subfuscus mostly lays its eggs between mid-September and mid-October, 

whereas both P. carolinianus and M. mutabilis lay their eggs in the late spring and 
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throughout the summer (pers. obs.). This temporal difference in life cycles suggests that 

there many be minimal competition among heterospecific juveniles or among 

heterospecific reproducing adults. Although I found substantial overlap in substrate 

choice by these three slug species (Chapter 2), I may have been unable to discern subtle 

qualitative differences within microhabitats, such as interior levels of moisture, preferred 

by different species. Other temporal variables, such as periods of drought, can affect 

competition level (Schoener 1983). In general, both native and non-native species are 

able to establish and persist in an area because of spatial and temporal heterogeneity that 

allows the propagation of a poorer competitor (Melbourne et al. 2007). 

Despite the absence of apparent displacement under the spatial scales and 

timeframes considered, competitive exclusion of the two native philomycids from 

habitats shared with A. subfuscus might conceivably happen over a long period of time 

(Mooney and Cleland 2001). The red squirrels (Sciurus vulgaris) and non-native gray 

squirrels (Sciurus carolinensis) of Europe exhibit such a pattern, in which habitat-wide 

displacement of the red squirrel is occurring without small-scale alterations in their 

territory size or distribution (Wauters et al. 2002). Gradual competitive displacement has 

been documented for some gastropod systems. Landsnail Cepaea hortensis replaced 

Cepaea nemoralis in some locations but only after a 20-year span (however, vegetation 

shifts may have been responsible, Cowie and Jones 1987). There were 50-year time lags 

between the introduction of a non-native freshwater snail (Batillaria attramentaria) and 

the extirpation of a native snail (Cerithidea californica), in both real life and in 

population simulations (Byers and Goldwasser 2001). Researchers did not identify that B. 

attramentaria was a threat to C. californica until many years after the introduction of B. 
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attramentaria, when the native population density finally declined after years of reduced 

fecundity; Byers and Goldwasser (2001) term this lag an "extinction debt.” Within the A. 

subfuscus-philomycid system, any displacement of the philomycid slugs would likely be 

very slow, in part because they are not exact ecological analogues or strong competitors 

(Chapters 2 and 3).  

Perhaps, a likelier outcome is that the complete displacement of M. mutabilis and 

P. carolinianus will never happen on a large scale. Even though many European slug 

species share similar niches with each other, these species typically coexist within the 

same habitats (Jennings and Barkham 1975). As this study determined, A. subfuscus 

apparently shared habitats and microhabitats with the two philomycid species without 

affecting their spatial distributions. Data on various taxa indicate that non-native 

competitors have very rarely caused native extinctions (Sax et al. 2002; Gurevitch and 

Padilla 2004). Usually, non-native species enter vacant niches within ecosystems 

(Mooney and Cleland 2001). Extinctions of native species are far more often attributed to 

predation and anthropogenic habitat destruction than competition (Gurevitch and Padilla 

2004). As a weak force, competition would operate over a long time scale, probably 

enabling the interruption of competition asymmetry and possibly the evolutionary 

adaptation of natives (Davis 2003). A disadvantaged species could be replenished by 

influxes of migrants or stochastic events that kill their competitors. 

Although A. subfuscus does not appear to threaten these two native philomycid 

species, A. subfuscus may be a substantially disruptive force in forest ecosystems and 

deserves more attention for this reason. A. subfuscus forms relatively dense populations 

in forests where only low-density populations of native slugs existed before (Chichester 
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and Getz 1968, 1969). Ecologists are concerned that earthworms introduced from Eurasia 

are altering geochemical cycling, soil microorganisms, and plant diversity in North 

American forests through their differential feeding habits and affect on decomposition 

processes (Bohlen et al. 2004; Hendrix et al. 2008; Nuzzo et al. 2009). Gastropods 

differentially feed on preferred species of leaf litter and fungus (Mason 1970a; Richter 

1979) and thus, like earthworms, can be a significant force in structuring decomposition. 

Mason (1970b) estimated that up to 16% of annual leaf litter could be removed from a 

European beech forest by slugs. Banana slug Ariolimax columbianus contributes 24.75 

kg/ha of feces in Pacific Northwest forests (Richter 1979). Thus, dense populations of A. 

subfuscus also have a potential to alter decomposition processes and their associated biota 

in North American forests. 
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CHAPTER 2 

Comparison of Food and Microhabitat Preferences among Slugs  

in Mid-Atlantic Forests 

 

INTRODUCTION 

The niche is a long-established concept in ecology that remains useful as a means to 

estimate where a species can occur in the environment and thus how it interacts with 

other species, particularly as the environment and the composition of the species in the 

community changes (Kearney and Porter 2009). The “competitive displacement 

principle” indicates that species that share the same niche cannot coexist over the long 

term (DeBach 1966), and the amount of niche overlap between two species is positively 

related to the strength of competition between them (Schoener 1983). A non-native 

species may enter a system in which another species belonging to the same trophic level 

and using similar resources already exists. In these cases, competition tends to be greater 

between the non-native and native species than between the native and any of the native 

competitors with which it coevolved (Schoener 1983). If competition is asymmetric and 

favors the non-native species, the native species may experience a population decline 

and/or a displacement from its habitat (Holway 1999; Krassoi et al. 2008; Shucksmith et 

al. 2009). A critical first step in determining whether native species are likely to be 

harmed by an introduced species is to investigate dimensions and degree of niche overlap 

among them in comparison to other native species (Gutierrez et al. 2007; Desbiez et al. 

2009). 
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I investigated the similarity in the food and microhabitat preferences of the non-

native slug species Arion subfuscus (Draparnaud) and the native slug species Philomycus 

carolinianus (Bosc) and Megapallifera mutabilis (Hubricht) in order to determine 

whether these species are likely to compete with one another for resources. P. 

carolinianus and M. mutabilis are philomycid slugs that are native to eastern North 

America (Hubricht 1985), while A. subfuscus is a Eurasian arionid slug that was first 

introduced to the region more than 150 years ago (Binney 1842, cited in Chichester and 

Getz 1969). All three species are common in central Maryland forests (Hubricht 1985; 

Chichester and Getz 1973; Getz 1974) where populations are often sympatric. 

Terrestrial slugs are likely to be strong competitors because they share many 

resources. Differences in niches among terrestrial gastropods are difficult to demonstrate 

(Cameron 1978). Major dietary overlap occurs among many slug species (Jennings and 

Barkham 1975), and adults of larger species may enter into interspecific competition 

because few refuges of suitable size tend to be available (Cook 1992). P. carolinianus, M. 

mutabilis, and A. subfuscus occur on coarse woody debris (CWD) and live trees (Pilsbry 

1948; Kappes 2008; Aydin Örstan, pers. comm.), and pairs of these species occasionally 

co-occur in close proximity (e.g. < 50 cm apart) (Chapter 1). A. subfuscus has been 

observed to consume diverse foods, including dead and senescent plants, algae, dead 

animals, feces of other animals, and especially fungus (Graham 1955; Chichester and 

Getz 1973; Jennings and Barkham 1975; Beyer and Saari 1978). P. carolinianus is 

known to consume mainly fungus (Pilsbry 1948; Chichester and Getz 1973; Branson 

1980), whereas M. mutabilis appears to feed mostly on algae (Aydin Örstan, pers. 
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comm.). Both A. subfuscus and P. carolinianus readily consume cultivated mushrooms 

used in lab experiments (pers. obs.). 

Through a series of observations of food preferences and microhabitat use by 

these three slug species, I answered the following questions: to what degree do the food 

preferences of the three species overlap? To what degree do their microhabitat 

preferences overlap? Is overlap greater between pairs of non-native and native species 

than between the two native species? I hypothesized that P. carolinianus and M. 

mutabilis would exhibit greater resource overlap with A. subfuscus than they would with 

each other. By investigating shared resource use among these species, I sought to bring 

evidence to bear on the broader question of whether P. carolinianus and A. subfuscus 

compete. 

 

METHODS 

 

Microhabitat Choice Surveys 

In 2006, one 20 x 20 m plot was established at each of four field sites as a pilot survey of 

slug abundances, microhabitats, and food types. Three sites (two in the central tract and 

one in the north tract) were located in Patuxent Research Refuge (PRR), Laurel, MD (N 

39° 04,' W 076° 46'), and one site was located in Greenbelt Township, MD (N 39° 00' 

40," W 076° 53' 27"). All sites were moist lowland deciduous forests. Prior to surveying 

slugs occurring at these sites, I identified slug species by examining their internal and 

external anatomy (see Pilsbry 1948, Webb 1950, Fairbanks 1990, Barker 1999). Between 

June 19 and July 12, 2006, I surveyed slugs during or soon after rain or at night, and I 
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visited each site one to three times. I identified and counted the slugs visible within my 

reach and underneath dead fallen wood, and I noted the substrate types (microhabitats) on 

which these slugs were crawling or sheltered.  I recognized six categories of 

microhabitat: standing dead tree, live tree, CWD, leaf litter, vegetation (including live 

leaves on trees, living forbs, and grasses), and other (such as soil or rock). 

During field surveys of slugs at PRR in 2007 and 2008 (see Chapter 1), the 

microhabitats occupied by individual slugs on a subset of predetermined grid cells were 

recorded. Surveys were conducted between dusk and midnight (18:45-23:30) from early 

June to late September in 2007 (6 surveys) and 2008 (3 surveys). In total, 501 individual 

microhabitat choices were observed for the slug species A. subfuscus, M. mutabilis, and 

P. carolinianus. 

I sought to compare microhabitat choice with microhabitat availability. For 56 

slugs observed during the first survey session in mid June, 2007, the microhabitat types 

on which they were found were recorded. For each grid cell, diameters of live trees at 

breast height were quantified, and volumes of CWD and dead trees were estimated using 

the formula for the volume of a cylinder, v = (l π d2)/4, where v is volume, l is length, and 

d is average diameter.  

 

Food Choice Surveys 

During the 2006 pilot field survey (see Microhabitat Choice Surveys, above), slugs were 

collected from the four field sites and brought to the lab. These slugs originated from 

habitats where all three species were present. In the lab, individual slugs or groups of 

slugs (belonging to the same species and occurring in the same microhabitat) were kept 
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without food in separate plastic deli containers for one to two days. I placed their voided 

feces in 70% ethanol. In total, I collected the feces of 64 A. subfuscus, 45 M. mutabilis, 

and 53 P. carolinianus. 

I fed single-food item diets to individuals of the slug Deroceras laeve (Müller) 

from lab colonies to obtain a reference collection of the food items that might appear in 

fecal samples. D. laeve were used because their feeding preferences are broad, and 

excreted material did not differ qualitatively among D. laeve and the other species (pers. 

obs.). Individuals were fed dead leaves (of trees, grasses, or forbs), live leaves (of trees, 

grasses, forbs, or lettuce), dried wild mushrooms, cultivated mushrooms, and earthworms 

to cover the likely scope of materials, fresh and dead, that would be in the feces of field 

collected slugs. I also studied undigested samples of the various food types under a 

compound microscope (Fig. 2.1). In fecal pellets, algae appeared as an amorphous mass 

of single green cells (Fig. 2.1b, 2.1c), often with bits of dead wood from which it was 

probably scraped. The chlorophyll colored the ethanol green. Plant tissue was 

characterized by texturally tough masses of relatively thick, ragged-ended fibers with 

long, evenly-spaced rows of cells (Fig. 2.1d, 2.1e). Wood appeared as very evenly-spaced 

three-dimensional tracheids (and little else), that resisted compression with forceps. Live 

plant material contained visible green chlorophyll. Leaves (alive or dead) tended to be 

flat and contained veins (Fig. 2.1f). Fungus varied greatly in form from amorphous 

aggregates of cells containing dark, scattered nuclei (Fig. 2.1h, 2.1k) to thin, hair-like 

loose or connected fibers (Fig. 2.1i, 2.1j) and star-shaped branching hyphae. Fungus was 

spongy to occasionally tough in texture. The hyphae were usually white (Fig. 2.1h) but 

also ranged in color from grey, orange, to occasionally black. Spores were infrequently 
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visible, and these were helpful in identifying material as fungus. Crystalline or glossy 

minerals probably derived from soil were distinct and easily recognizable. Pieces of 

chitinous insect exoskeleton were occasionally found (Fig. 2.1l), including whole mites 

(which may have been consumed unintentionally or had been feeding on the feces).   

I examined the feces of wild-caught animals under a light microscope (Pallant 

1972; Jennings and Barkham 1975; Chatfield 1976; Speiser and Rowell-Rahier 1991; 

Hatziioannou et al. 1994; Hägele and Rahier 2001), separated distinguishable food types, 

and compressed the separated feces between two microscope slides in order to obtain a 

relative volume of each food type in the feces (Fig. 2.1a). I applied a standardized 

treatment to all the samples, letting the weight of the slide on top compress the material. 

The feces were resistant to changing in area with additional compression. The area 

covered by each food type was determined by placing the slide over a grid composed of 

1.0 x 1.0 mm squares (Cook and Radford 1988). Categories of food types were algae, 

fungus, plant tissue, wood, minerals from soil, insect exoskeleton, and unidentifiable 

“other” materials, the lattermost typically being less than 5% of food volume for all 

species. 

Fecal samples per species were too few to compare feeding preferences among 

sites. 
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Fig. 2.1 Identification of food types in the fecal material of A. subfuscus, P. carolinianus, 

and M. mutabilis. Each food type was compressed between two glass slides and 

quantified on (a) a microgrid, where grid scale equals 1 mm per box side, and 

quantification is represented by the black line drawn around the food mass. The main 

food types identified were (b,c) algae, (d,e,f,g) plant, and (h,i,j,k) fungus. Plant 

recognition was often aided by the presence of distinct structures such as (f) leaf veins 

and (g) pollen grains, and fungus was recognizable by the presence of (i,j) thin, hairlike 

mycelia. (l) Insect chitin was sometimes seen. (Outline of algal clump (c) is shown on 

algae feces (b), plant fibers (e) are shown on plant feces (d), and fungus clump (k) is 

shown on fungus feces (h).) 
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Statistical Analysis 

Pianka’s index of niche overlap O is a means to estimate the degree to which two species 

make use of the same “types” of a given resource (e.g. food or microhabitat) that includes 

many categories or types. O compares the relative proportions of resource types for a 

given resource used by a pair of species (Pianka 1973). I calculated O separately for each 

of two resources: microhabitat and food. Relative counts of microhabitat types were 

compared between species pairs, and relative volumes of food types found in the feces 

were compared between species pairs. 

   n                                  n            n 

Ojk =  ∑ (pij pik) /  √ (∑ pij
2 ∑ pik

2) 
                     i=1                   i=1      i=1

                                              

For species j and k, n is the number of resource types in a single given resource, and i is 

each type. Within a species, counts or volumes of each resource type are averaged across 

individuals, and a single proportion is estimated for each resource type out of all types 

used by that species. The symbol pij is the proportion of resource i out of all resources 

used by species j, and pik is the proportion of resource i out of all resources used by 

species k (Pianka 1973). The software program EcoSim was used to calculate O between 

each species pair and the mean O of all species pairs (Gotelli and Entsminger 2009). A 

simulation that randomized resource amounts across species but retained niche breadth 

(i.e., the number of resource types used per species) within species was run 10,000 times. 

The observed Pianka’s index value was compared against the range of simulated index 

values. If the observed O was less than 5% of the simulated values, then the overlap in 

resources between species was significantly less than expected by chance, whereas an O 
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greater than 95% of simulated values indicated that species overlap significantly more 

than by chance (Gotelli and Entsminger 2009). 

An overall niche overlap is estimated as the product of all indices of niche overlap 

calculated for a pair of species (Pianka 1973). I multiplied the two indices of food and 

microhabitat overlap to estimate the overall niche overlap between each pair of species. 

For each slug species, I compared substrate availability per grid cell with 

microhabitat choice. The two microhabitat categories of slugs were individuals found on 

live trees and individuals found on dead wood. (“Dead wood” comprises dead trees and 

CWD. These microhabitat types were combined into one category for analysis because 

they are qualitatively very similar.) A t-test was used to compare the dead wood volume 

per grid cell between the two microhabitat categories of slugs, and a separate t-test was 

used to compare the sum of diameters at breast height (DBH) of live trees per grid cell 

between the two microhabitat categories of slugs. Unequal variance, unpaired t-tests were 

used. Volume was used to approximate dead wood availability because slugs tend to 

occupy interior crevices (pers. obs.), and measurements of entire dead logs was possible. 

Sum of DBH was used to approximate live tree availability because it is a simple 

estimate of tree biomass commonly used in forestry. Slug use of leaf litter and vegetation 

in relation to their availability in the field was not analyzed, because neither philomycid 

slug used these substrates (Fig. 2.2). 
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RESULTS 

 

Microhabitat Overlap 

CWD was the most common microhabitat for A. subfuscus and P. carolinianus, given 

that 39.5 and 47.8%, respectively, of the individuals of each species were found on this 

microhabitat type. Live trees such as American beech (Fagus grandifolia) were the most 

common microhabitat for M. mutabilis, in that 78.7% of individuals were found on live 

trees (Fig. 2.2). A. subfuscus was also common on live trees (i.e., 32.6% of A. subfuscus 

individuals observed were on live trees) and it was the only slug observed on vegetation 

(8.4% of A. subfuscus individuals observed). 

A. subfuscus and P. carolinianus overlapped the greatest in microhabitat use (O = 

0.778), followed by A. subfuscus and M. mutabilis (O = 0.689). P. carolinianus and M. 

mutabilis experienced a much smaller overlap in microhabitat use than the other species 

pairs (O = 0.262). Across all species, the observed mean microhabitat overlap is not 

significantly greater than expected by chance (P = 0.8826). 

 

Fig. 2.2  Proportions of microhabitat types on which individuals of each species were 

found.  
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 Choice of microhabitat type was related to local substrate availability. A. 

subfuscus and P. carolinianus that had chosen dead wood as microhabitat also occupied 

cells with a significantly higher amount of dead wood than slugs that had chosen live 

trees as microhabitats (t-test, A. subfuscus: t = 1.750, df = 20.0, P = 0.0478; t-test, P. 

carolinianus: t = 1.979, df = 7.7, P = 0.0423) (Fig. 2.3a). Similarly, slugs found on live 

trees occupied cells with a higher total diameter at breast height of live trees than slugs 

found on dead wood (t-test, A. subfuscus: t = -3.190, df = 12.6, P = 0.0037; t-test, P. 

carolinianus: t = -3.826, df = 4.6, P = 0.0073) (Fig. 2.3b). However, neither dead wood 

nor live tree measurements differed significantly between M. mutabilis that had chosen to 

occupy dead wood or live trees (t-test, dead wood: t = 0.640, df = 8.4, P = 0.2697; t-test, 

live trees: t = -0.724, df = 7.4, P = 0.2458). 
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Fig. 2.3  (a) Volume of dead wood in cells occupied by slugs that had chosen dead wood 

or live trees as habitat. (b) Sum of diameter at breast height of live trees in cells occupied 

by slugs. (* indicates significantly different means within a species. Error bar is +SE.) 

 

Food Type Overlap 

One food type was consumed in high volumes (>69%) by each species (Fig. 2.4). A. 

subfuscus favored plants (69.0%), M. mutabilis favored algae (78.7%), and P. 

carolinianus favored fungus (81.1%). The second-most favored food was fungus for both 

A. subfuscus (13.8%) and M. mutabilis (13.3%). 

Foods consumed overlapped the least between A. subfuscus and M. mutabilis (O = 

0.119), with P. carolinianus and M. mutabilis (O = 0.217) and A. subfuscus and P. 

carolinianus (O = 0.248) sharing moderately more food types by volume. Slugs did not 



    40

show a significant difference in diet but rather exhibited random food use overlap among 

species pairs (P = 0.6548).  

 

 

Fig. 2.4  Average proportions of food types by volume consumed by each species of slug.  

 

 Overall niche overlap (microhabitat O * food O) was greatest between A. 

subfuscus and P. carolinianus (O = 0.193), followed by A. subfuscus and M. mutabilis 

overlap (O = 0.082) and P. carolinianus and M. mutabilis overlap (O = 0.057). 

 

DISCUSSION 

The overlap in substrate and food resources was consistently greater between A. 

subfuscus and P. carolinianus than between the two native species. Thus, the potential for 

competition is highest between A. subfuscus and P. carolinianus. However, their small 

overlap in food use may be enough to minimize competition (Pianka 1973), even if they 

share microhabitats. 

P. carolinianus and M. mutabilis exhibited little overlap in resource use. As 

cohabitants of northeastern forests, it is possible that niche displacement between the two 

native species has already occurred through resource partitioning (Connell 1980). In 



    41

contrast, A. subfuscus has been present in North America for fewer than 200 years, which 

may have been insufficient for co-habiting slug species to evolve unique microhabitat 

preferences to the degree that P. carolinianus and M. mutabilis have. Species that have 

evolved in allopatry might compete to a greater degree when brought together than 

species that evolved for a long period in sympatry (Goodyear 1992), because species that 

evolve in sympatry tend to develop mechanisms that allow them to coexist (e.g. niche 

displacement) (Hairston 1980) or else go extinct.  

In total, food overlap was modest and similar among all species pairs. Under 

ordinary conditions of resource availability, competition for food may be weak. Between 

early May and mid July, when feces were collected, proportions of food types chosen by 

any one species were unchanged. This was true for all slug species (see Appendix B), 

suggesting that a species’ food niche does not abruptly shift through the seasons. 

However, I did not collect feces during excessive drought or cold weather. Under such 

conditions, slugs may be confined to smaller areas of habitat, or fewer food types may be 

available (Mason 1970a; Butler 1976; Baur and Baur 1990), forcing them into greater 

competition (Wiens 1989; Davis 2003). In some gastropod systems, degree of diet 

overlap within species pairs can vary through the year (Hatziioannou et al. 1994). 

The diets of the two philomycid slugs resembled the species’ food preferences as 

described in the literature, while A. subfuscus’s diet contained a greater proportion of 

plant material than expected. Previous studies have noted that A. subfuscus favors fungus 

as food (Graham 1955; Chichester and Getz 1973; Jennings and Barkham 1975; Beyer 

and Saari 1978), whereas I observed that field-collected A. subfuscus are mainly 

herbivores (or detritivores, given that most plant material consumed appeared dead and 
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brown, rather than fresh and green). Observed P. carolinianus’s diet selections were in 

accord with previous studies (Chichester and Getz 1973; Branson 1980). Given that P. 

carolinianus occupying the same field sites were clearly finding and consuming fungus, 

and A. subfuscus from these populations readily consumed cultivated mushrooms in the 

lab, the observed natural diet of A. subfuscus is unexpectedly richer in plant material 

rather than fungus. Perhaps A. subfuscus’s preferred diet has shifted to incorporate more 

plant material in the presence of the fungivorous slugs, i.e. A. subfuscus may actually be 

displaced from fungus by P. carolinianus. However, diet-shifting may not always happen 

in the presence of a competitor. For example, the non-native mudsnail Batillaria 

attramentaria and the native mudsnail Cerithidea californica did not alter their diatom 

size feeding preferences in sympatry (Whitlatch and Obrebski 1980). 

The local availability of substrate affected A. subfuscus and P. carolinianus’s but 

not M. mutabilis’s choice of microhabitat. Dead wood amount was higher in cells in 

which A. subfuscus and P. carolinianus occupied dead wood rather than live trees, and 

more (or higher diameter) live trees occurred in cells in which these slugs were found on 

live trees instead of dead wood. The correlation of substrate choice with substrate amount 

suggests that these slugs respond somewhat passively to their environment. This result 

also suggests that P. carolinianus is flexible in microhabitat choice, which may help to 

lessen the occurrence of competition or any potential detrimental outcomes of 

competition with A. subfuscus for microhabitats. I am not aware of other studies of 

gastropods that compare substrate choice to its availability. Food choice is known to 

correlate with local food availability (Cook and Radford 1988; Speiser and Rowell-

Rahier 1991; Haegele and Rahier 2001), although Deroceras reticulatum was shown to 
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feed preferentially on a plant species when it was rare (Cottam 1985). In contrast to the 

other two slugs, M. mutabilis preferred live trees (especially beech) as substrates 

regardless of the amount of dead wood in their habitats. Thus, this species is relatively 

specialized, while the other two species exhibit flexibility in microhabitat choice. M. 

mutabilis was found to consume mostly algae, which grows upon the trunks of live trees 

such as American beech (Fagus grandifolia). Its use of live trees as microhabitats may 

influence its food preferences (and vice versa). 

Additional studies that I performed suggest that the natural availability of 

resources counteracts competition promoted by resource overlap among these slugs. 

Naturally low levels of fungus, typical of forest habitats occupied by these slugs, were 

shown to be a limiting resource to both A. subfuscus and P. carolinianus in the lab, while 

natural amounts of shelter were generally not limiting (no data are available for M. 

mutabilis; see Chapter 3). Thus, the resource (food) determined in the present study to 

overlap little among species was naturally limiting, while the resource (shelter) that 

overlaps for all three species was not a limiting resource.  

My simple estimates of niche overlap through measurements of food and shelter 

use should be presented with a caveat: approximation of niche dimensions requires much 

more information (Hutchinson 1957; Kearney and Porter 2009). I attempted a broad 

parsing of resources into food and shelter categories. Perhaps there are subcategories of 

resources that I did not distinguish but that these slugs recognize and actively select (e.g. 

Maraun et al. 2003). Other niche axes that were not investigated, such as soil moisture, 

vapor pressure deficit, temperature, or fungus food species (Rising and Armitage 1969; 

Thompson et al. 2006), might offset or contribute to interactions among these species. 
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Also, niche overlap does not take into account the value of resources that are sought in 

small quantities. Infrequently-used resources may be very important if uncommon and 

highly nutritious or limiting, such as dead animals (Speiser 2001). Additionally, slugs 

were hidden at unknown frequencies within logs or soil cracks, preventing me from 

tallying these microhabitat choices. These niche overlap estimates thus only roughly 

suggest the environmental dimensions likely to be the resource serving as the basis for 

competition among species. 

In conclusion, because the native slugs M. mutabilis and P. carolinianus are more 

unlike each other than the native-non-native species pair of P. carolinianus and A. 

subfuscus, it is likely that P. carolinianus and A. subfuscus are competing more strongly 

than P. carolinianus and M. mutabilis. However, I do not know whether the niche 

difference between these two slugs is “small enough” to produce appreciable 

competition, or conversely, “large enough” to enable permanent coexistence 

(MacDougall et al. 2009). Only through experimental manipulations of slug populations, 

such as by measuring the fitness of P. carolinianus and A. subfuscus combinations in the 

lab, will the extent of competition latent in the degree of niche overlap be manifest (see 

Chapter 3). 
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     CHAPTER 3 

Evaluating the Presence of Competition between a Native  

and a Non-native Slug Species in Captivity 

 

INTRODUCTION 

Many non-native species became established in the distant past, and no records exist of 

the original state of the ecosystems or native populations with which they came into 

contact (Eastwood et al. 2007). These non-native species contribute a substantial 

proportion of the species diversity, abundance, and biomass of many ecosystems 

(Windham 2001; Hall et al. 2003; Strayer et al. 2009). Most established invaders appear 

to have minimal impacts on their environment and seem to coexist with native 

competitors (Sax et al. 2002; Ricciardi and Cohen 2007). However, we usually do not 

know if and how the behavior, population size, demography, or the range of native 

species was historically altered, much less whether the populations of native species are 

now in decline. The non-native species whose interactions with native species are most 

thoroughly understood are still in the process of invading, have decimated populations of 

native species on a regional or global scale, or are economically or environmentally 

significant, such as the Argentine ant, rusty crayfish, New Zealand mudsnail, and Asian 

tiger mosquito (Cope and Winterbourn 2004, Juliano and Lounibos 2005, Buczkowski 

and Bennett 2008a, Pintor et al. 2008). These were systems studied under ideal research 

circumstances, i.e., an invasion front allowed researchers to measure native population 

size prior to and after the introduction of the non-native species (Bohn et al. 2008). 

However, systems that are not subject to a spectacular current invasion process should 
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not be ignored. If native and non-native species compete, native populations may be 

subject to continued, if gradual, displacement on a microhabitat or habitat scale (Byers 

and Goldwasser 2001). Continued population declines in addition to historical population 

losses place endemic species at a greater risk of extirpation (e.g. Pimm et al. 1988). 

Non-native Eurasian slugs have colonized and spread into temperate regions 

worldwide, including many relatively undisturbed habitats (Chichester and Getz 1969; 

Getz and Chichester 1971). Eurasian slugs began entering North America about 200 

years ago and are now established throughout the eastern seaboard (Binney 1842 cited in 

Chichester and Getz 1969; Getz 1974). The original population sizes and distributions of 

the native slug fauna in eastern North America prior to non-native slug colonization are 

completely unknown (Chichester and Getz 1968), as is typical for molluscs (Cope and 

Winterbourn 2004). Thus, there is no direct evidence of past impacts of non-native slug 

competitors on native slugs and few clues to future impacts. Indications of past 

population displacements would suggest that native populations remain at risk of 

extirpation, and evidence that part of the biomass once composed of native species has 

been co-opted by non-natives would suggest shifts in ecosystem processes (e.g. types of 

foods consumed by slugs).  

Despite these knowledge limitations, the experimental establishment of 

competition in the present day can suggest past and future interactions between native 

and non-native species. Wiens (1989) suggested a series of criteria that collectively 

should be determined to confirm the occurrence of competition between species: (1) 

apparent spatial or temporal competitive displacement from a habitat, microhabitat, or 

niche (Wiens 1989; Denno et al. 1995), (2) overlap in the use of a scarce resource (Birch 
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1957; Colwell and Futuyma 1971) (3) intraspecific competition, indicating a potential to 

compete with heterospecifics, (4) exploitation or interference competition mechanisms 

that reduce resource availability, and (5) harm to a species in response to resource loss 

(Wiens 1989). Although species may compete by means other than by contesting 

resources, such as through apparent competition (propagation of shared predators and 

diseases) (DeBach 1966; Reitz and Trumble 2002; Davis 2003), Wiens’s narrow focus 

provides exacting guidelines for studying cases of competition for limited resources. 

Slugs are appropriate candidate organisms for studies of resource competition, 

because their dispersal abilities are limited (Burch and Pearce 1989; South 1992), slugs 

aggregate in favorable microhabitats (Pearce and Örstan 2006), and the niches of species 

overlap appreciably (Jennings and Barkham 1975; Cameron 1978). Slugs share major 

dietary components (Jennings and Barkham 1975) such as macrofungus (Ingram 1949; 

Chatfield 1976; Speiser 2001), an ephemeral and scattered resource. Many authors 

speculate that shelter is a major source of competition among slug species (Rollo 1983a; 

Pearce 1997). This may particularly be true of coarse woody debris (CWD), a 

microhabitat that serves as a moisture reservoir, food source, and ovipositing site for 

many gastropod species (Rollo and Wellington 1979; Kappes 2005). Rollo and 

Wellington (1979) demonstrated the potential for strong competitive exclusion between 

the non-native slug Limax maximus and the Pacific northwest endemic Ariolimax 

columbianus. Through aggression, L. maximus caused lowered feeding rates, growth, 

fecundity, and eventually extinctions of Arion ater and A. columbianus populations in 

field cages that these slugs shared (Rollo 1983a, 1983b). Despite the potential of non-

native slugs to cause harm, extremely little is known about how non-native slugs interact 
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with native slugs in general and in particular with the eastern North American endemic 

philomycid slugs. 

I am investigating whether the Eurasian non-native slug Arion subfuscus 

(Draparnaud) competes with the native slug Philomycus carolinianus (Bosc). P. 

carolinianus is common throughout eastern North American forests (Grimm 1971; 

Chichester and Getz 1973; Hubricht 1985). A. subfuscus was probably introduced 

through trade to New England cities more than 150 years ago (Binney 1842, cited in 

Chichester and Getz 1969), and they have since become abundant (up to 10 slugs/m2, 

pers. obs.), and wide-spread in North American forests (Chichester and Getz 1969; Getz 

1974; J.B. Burch pers. comm.). A. subfuscus may harm the fitness of P. carolinianus 

because A. subfuscus is relatively aggressive while P. carolinianus is not (Webb 1950; 

Rollo and Wellington 1979; Fernandez 1990), and the two species occur in the same 

forests (Chichester and Getz 1969; Getz 1974), are similar in size (both up to 7 cm in 

length in central Maryland; pers. obs.) and share resources. A fecal study indicated that P. 

carolinianus mostly eats fungus and that A. subfuscus has a varied diet including a 

substantial amount of fungus (see Chapter 2). Both species favor CWD as microhabitats 

(see Chapter 2). 

P. carolinianus and A. subfuscus may be subject to weather-related or age-

specific competition. However, these factors are commonly overlooked in studies of 

competition between native and non-native species. Seasonal changes or extreme weather 

conditions might force competition, or conversely, might ameliorate it (Holway et al. 

2003; Alcaraz et al. 2008; Rwomushana et al. 2009). For example, dry weather increases 

gastropods’ reliance on shelter (Hunter 1978; Rollo and Wellington 1981), which causes 
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gastropods to aggregate in refuges (South 1992) and presumably to interact more often 

with one another. The negative effects of competition may vary among life stages, in part 

because size differences among individuals affect the strength of competition (Schoener 

1983). Particularly in studies of gastropod competition, the factor of age has been 

acknowledged, and young individuals are commonly used as experimental subjects 

because of age-related differences in the consequences of competition (e.g. Baur and 

Baur 1990; Foster and Stiven 1996; Pearce 1997; Conner et al. 2008). For example, 

competition often affects juvenile gastropod fitness more than adult fitness in gastropods 

(Tattersfield 1981; Cook 1989; Conner et al. 2008), and juvenile survival can be key to 

population regulation (Wolda and Kreulen 1973; Hunter 1978). In central Maryland, P. 

carolinianus juveniles hatch in the summer when A. subfuscus are adults (pers. obs.). The 

young P. carolinianus may be competing with heterospecific adults for food prior to egg-

laying during a period when A. subfuscus are known to be especially aggressive (Rollo 

and Wellington 1979). In my study of competition between these two slug species, I 

tested whether different moisture levels affected competition level and whether 

interspecific competition existed within each of two life stages (adult and juvenile) of P. 

carolinianus.  

With respect to Wiens’s (1989) criteria for competition, I determined whether the 

native slug P. carolinianus and the non-native slug A. subfuscus compete by conducting a 

series of field population surveys and laboratory experimental manipulations. I conducted 

experiments to test whether resources used by these species are limiting (Wien’s criterion 

2) and whether P. carolinianus is harmed in the presence of A. subfuscus (criterion 5). I 

posed the following questions: Are natural levels of shelter or food sufficiently low to 
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limit slug fitness? Is P. carolinianus fitness different when they are grouped with A. 

subfuscus than when they are grouped with conspecifics? Does competition level vary 

among different environmental regimes (dry vs. moist conditions)? Do juvenile P. 

carolinianus experience competition with A. subfuscus?  

 

METHODS 

 

Experiment 1: Limiting Resources 

The purpose of this work was to determine whether natural levels of resource availability 

can be sufficiently low to reduce the fitness of slugs. In order to determine the amount of 

resources to be used in the lab experiments, the range in unit area covered by shelter 

(CWD) and food (fungus) naturally occurring in 1.0 m2 microsites inhabited by a slug of 

any species was estimated. For a separate study (see Chapter 1), slug abundances were 

assessed in mesic lowland beech-oak forests at Patuxent Research Refuge, Laurel, 

Maryland. Population surveys took place on grids of 75, 5 x 5 m cells at each of three 

field sites. In a random subset of 90 of these cells, the locations of individual slugs were 

marked once with flags during the hours of 19:45 to 23:30, June 19th to 26th, 2007. One 1 

x 1 m microsite was located at the center of each of 44 cells where slugs had not been 

found, while in 46 cells where slugs were found and flagged, a microsite was centered on 

each flag, and several habitat measurements (explained below) on each microsite were 

then averaged for each cell (Fig. 3.1). The volume of wood pieces or trees > 5 cm in 

diameter (including CWD and fine woody debris as defined by Travaglini et al. 2006) 

within each microsite was estimated from their length and diameter measurements. In 
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order to estimate macrofungus mass per microsite, one transect was drawn on the longest 

dimension of each piece of wood and two transects were drawn on each tree trunk (to 1 m 

in height). The wood surface area covered by fungus was estimated as the transect 

lengths that intersect with fungus. Fungus mass per unit area of wood surface was 

estimated by weighing the mass of dry fungus scraped from each of five pieces of bark 

covered with a continuous patch of fungus. These samples produced an average fungal 

mass of 0.056 g per cm2 of bark. Although slugs consume fungal mycelia inside dead 

wood as well as fungus growing on the surface of the wood, slugs appear to favor the 

external fruiting bodies, which they emerge to feed upon in favorable weather (pers. 

obs.).  

 

 

Fig. 3.1  Field microsites in which natural resource levels (CWD and fungus) were 

measured. A 1.0 m2 microsite was placed at the center of the top cell, in which no slugs 

had been observed. In the bottom cell where three slugs had been observed, microsites 

were centered on the location of each slug, and the natural resource amounts were 

averaged across the three microsites. 
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A lab experiment evaluated separately for each species whether different amounts 

of shelter and food affected individual fitness. Adult P. carolinianus and A. subfuscus 

were collected from Patuxent Research Refuge (PRR) during June and July of 2007. Slug 

species were identified based on their internal and external anatomy (see Pilsbry 1948, 

Webb 1950, Barker 1999). Adults were distinguished from hatchling or juvenile slugs by 

their size. (Reproductive maturity appeared to correlate strongly with the size of P. 

carolinianus but was inconsistently correlated with the size of A. subfuscus (pers. obs.).) 

Leaf litter and topsoil were also collected and incorporated into each experimental 

habitat, i.e., a plastic tub mesocosm (12.5 cm wide, 32.5 cm long, and 17.5 cm tall; 7100 

cm3 volume and about 400 cm2 bottom area). Slugs from each species were divided 

approximately into a group of larger individuals and a group of smaller individuals, and 

one slug from each group was randomly paired together. Each pair of slugs was placed in 

a replicate mesocosm. For each slug, size and placement of spots (for P. carolinianus) or 

sharpness of stripes (for A. subfuscus) and mantle coloration were recorded in order to 

help to distinguish the two slugs per mesocosm throughout the experiment. (Spot and 

stripe patterns did not change through time (pers. obs.).) Slug density within mesocosms 

was similar to high-density levels observed in the field, i.e. up to 10 slugs in a 0.25m2 

patch. 

The experiment was designed as a 3 x 3 factorial with three levels each of shelter 

and food. Shelter volumes were calculated to replicate in the 400 cm2 mesocosm bottom 

the volume of shelter per unit ground area found in the field (Table 3.1). The volume of 

shelter chosen to represent low shelter availability was 60 cm3 (a substandard shelter 

amount, or the average volume per 400 cm2 ground area for microsites unoccupied by 
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slugs). For medium shelter availability, I used 600 cm3 (the average volume for occupied 

microsites), and for high shelter availability I used 1500 cm3 (a greater than average 

shelter amount, and one fourth of the greatest volume occurring in occupied microsites). 

Hardwood branches (CWD) between 5 and 10 cm in diameter and at a moderate level of 

decay (stage three of five stages of decay; see Stokland and Kauserud 2004) were 

selected for shelter. The branches were sawed into one to three pieces to fit the 

mesocosms. Any superficial growth of algae or fungus was scraped off. Because fungus 

was sparsely distributed in the field and the minimum or average fungal mass per unit 

ground area would likely starve slugs confined to the mesocosms, I chose fungus levels 

close to the natural maximum. The increments of fungal mass to be used as food were 

0.20 g for low shelter (ten times the average mass per 400 cm2 ground area in microsites 

occupied by slugs) 3.0 g for high shelter (the maximum in microsites occupied by slugs), 

and 1.5 g for medium shelter (the midpoint between low and high).  Half of the mass of 

fungus provided as food consisted of dried wild fungus, and the other half was 

commercially-available white mushrooms (Agaricus bisporus). There were five replicates 

per treatment. The experimental habitats were lined with soil 2 cm deep and leaf litter 5 

cm deep. Mesocosms were sealed with lids into which 12 holes 0.5 cm in diameter were 

drilled to promote air flow, and lids were taped down to prevent slugs from escaping 

through cracks. 
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Table 3.1 Average and maximum levels of CWD and fungus found in 1.0 m2 field 

microsites that were unoccupied or occupied by slugs. CWD is measured in units cm3 per 

cm2 of forest floor, and fungus is measured in cm of epiphytic fungus covering each cm 

of linear transect on the surface of CWD.  

 Microsite status Unoccupied Occupied 

    

CWD levels Average 0.15 1.60 

 Maximum 2.75 15.93 

    

Fungus levels Average 0.002 0.023 

 Maximum 0.043 0.365 

 

Slug mass, fecundity, and survival were recorded every ten days (+/-4 days) as 

indicators of slug fitness between July 26th and November 4th, 2007. Although the 

reproductive fitness of an individual is ideally measured as the fecundity of its own 

offspring (Fisher 1958), alternative measures of fitness that strongly contribute to long-

term reproductive success are usually sought. Besides fecundity and mortality, I used 

mass as a metric of fitness because it is well-documented to correlate with clutch size, 

clutch frequency, and lifetime fecundity in gastropods (Wolda and Kreulen 1973; Carter 

and Ashdown 1984; Goodfriend 1986; Bengtsson and Baur 1993). Egg masses were 

collected from mesocosms every ten days while the soil and leaf litter were being 

changed. I assumed that eggs had been laid by the slug that had lost the greater weight 

since the previous measuring session. Both slug species laid eggs in clusters. P. 

carolinianus eggs were about 4 mm in diameter, translucent white, and with an average 

count of 23 per clutch, while A. subfuscus eggs were about 2.5 mm in diameter, opaque 
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white with a yellowish tinge, and with an average count of 35 per clutch. A. subfuscus did 

not lay enough eggs to perform statistical analyses. During each measurement session, 

the branches and mesocosm sides were washed to limit the growth of pathogens, and 

food and leaves were replaced. Individual slugs that died (or that could not be found) 

after two weeks were replaced with adult slugs of similar size also collected from PRR in 

order to maintain slug density per mesocosm. Slugs could not be found when dead 

individuals decayed too quickly for their remains to be discovered or because they 

escaped from their mesocosms. If a slug died or disappeared before week four, the fitness 

measurements of its replacement slug were used in statistical analysis (e.g. Petren and 

Case 1996), because the replacement was subject to the treatment for a longer period of 

time than the original slug. (The number of replacement slugs whose measurements were 

used was similar across treatments and did not exceed 20% per treatment.) If a slug died 

at or after week four, its own fitness measurements were used. 

 

Experiment 2: Mixed Species 

A 2 x 2 x 2 factorial design was used to evaluate whether the factors of A. subfuscus 

(presence or absence), shelter amount (low or high), and food abundance (low or high) 

affect the fitness of P. carolinianus. Unless otherwise stated, methods were identical to 

Experiment 1. The A. subfuscus absence mesocosms contained four P. carolinianus 

adults, and the A. subfuscus presence mesocosms contained two P. carolinianus and two 

A. subfuscus adults. Unlike experiment 1, medium levels of food and shelter were not 

used in order to simplify the experimental design. Low and high shelter were the same 

amounts used in Experiment 1. Double the mass of food in Experiment 1 was used 
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because twice the number of slugs was present. Low food treatments consisted of 0.54 g 

fungus and high food treatments were 4.0 g fungus. An unbalanced design was employed 

to maximize the number of mixed-species replicates, the main focus of the experiment, in 

virtue of a limited supply of P. carolinianus specimens. There were five replicates per 

conspecific treatment and nine replicates per mixed species treatment. A digital 

photograph was taken of each slug’s mantle in order to allow individuals to be identified 

during each fitness measuring session. A slug’s mantle patterns could almost always be 

distinguished from those of its mesocosm-mates. If not, slugs were assumed to be the 

individual whose weight the previous week they most closely matched. 

Fitness measurements were taken every seven days (+/-1 day) between July 10th 

and September 9th, 2008 for a total of eight measurements. Mass, fecundity, and 

mortality were recorded, and distances between pairs of slugs were measured. To 

attribute a set of eggs to individual slugs in a mesocosm, I considered the mass change of 

each slug since the previous week. Eggs were divided into equal portions among slugs 

that lost more than 0.10 g in a week (about 5-10% body mass), and slugs that lost at least 

twice the weight of other slugs were assigned twice the number of eggs. Distances (in 

cm) between each pair of slugs were measured before the mesocosm contents were 

thoroughly disturbed. (Wide distances between slugs or displacement from habitat may 

indicate antagonism (Rollo and Wellington 1979; Poling and Hayslette 2006; Shucksmith 

et al. 2009).) Otherwise, mesocosm maintenance and weekly fitness measurements 

followed the methods of Experiment 1. Dead or missing slugs were replaced as per 

Experiment 1, and the number of the original four slugs that had died was counted per 

mesocosm.  
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Experiment 3: Shelter and Moisture 

This experiment investigated the influences of differences in ambient moisture levels and 

shelter amount on slug fitness. Because the soil in the experimental mesocosms was kept 

wet throughout Experiment 1, the shelter logs may not have had a chance to exert their 

natural role in slug survival. Shelter amount did not affect slug fitness in either prior 

experiment (see Results of Experiments 1 and 2). 

A 2 x 2 x 3 factorial experiment was designed to test the combined effects of 

moisture level (dry with a nylon fine mesh top on the mesocosm or wet with a plastic lid), 

shelter amount (low or high), and presence of heterospecifics (either four P. carolinianus, 

two P. carolinianus and two A. subfuscus, or four A. subfuscus) on slug fitness. After a 

one-week trial run of wet mesocosms, mesh topped mesocosms were about 60% relative 

humidity while lidded mesocosms were about 90% relative humidity. There were four 

replicates per treatment. A. subfuscus and P. carolinianus fitnesses were analyzed 

separately. Unless otherwise stated, methods were identical to the other two experiments. 

Low and high shelter were the same amounts used in Experiment 1. All treatments 

received the same amount of fungus food, 4.0 g, which represents the high food level 

used in Experiment 2. Slug mass, fecundity, and mortality were measured every seven 

days (+/-1 day) between May 7th and July 23rd, 2009 for a total of eight measuring 

sessions. Distances between each pair of slugs was measured per session and averaged 

for each mesocosm.  
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Experiment 4: Juveniles 

The presence of A. subfuscus did not have a significant effect on most P. carolinianus 

fitness variables (see Results of either Experiments 2 or 3). Juvenile gastropods often 

respond more strongly than adults to competition (Pearce 1997; Conner et al. 2008). 

Thus, I applied a similar design as in Experiment 2 to P. carolinianus juveniles.  

A 2 x 2 x 4 factorial experiment was designed to test the effects of food amount 

(low or high), shelter amount (low or high), and cohabitants (either four P. carolinianus 

juveniles, eight P. carolinianus juveniles, four P. carolinianus juveniles plus one adult, 

or four P. carolinianus juveniles plus one adult A. subfuscus) on the fitness of juvenile P. 

carolinianus. There were five replicates per treatment. Juveniles were raised in the lab 

from eggs laid by captive adults during the late spring and summer of 2009. Juveniles 

were randomly assorted such that siblings would be distributed across treatments. Each 

juvenile entering the experiment was at least one week old and had an average initial 

mass of 0.03 g. Each replicate was housed in a 240 mL cylindrical plastic deli container 

(11 cm diameter) and sealed with a nylon mesh top. The low food amount was 0.54 g (the 

same as Experiment 2), and the high food amount was 2.0 g (the same as the Experiment 

1). Shelter amounts were calculated to represent the same volume of wood to unit ground 

area of the deli containers as the mesocosms used in all previous experiments. Low 

shelter was 5 cm3 and High shelter was 130 cm.3 Because individual juveniles cannot be 

visually distinguished, all juveniles per replicate were weighed en masse every eight days 

(+/-3 days) between June 29th and October 28th, 2009. The average mass per juvenile slug 

was estimated for each replicate.   
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Statistical Analysis 

SAS software version 9.2 was used to evaluate the results of each experiment through a 

factorial, mixed-model ANCOVA (SAS Institute Inc 2008). Denominator degrees of 

freedom were determined by the Satterthwaite procedure (Satterthwaite 1946). The initial 

mass of each slug (or of all target slugs per container, in experiment 4) was a covariate in 

all experiments. For experiments 1-3, mesocosm was a replicate in which each slug was 

treated as a subsample. For experiment 4, container was a replicate represented by a 

single average value per fitness variable. Independent variables were shelter and food in 

Experiment 1; shelter, food, and heterospecific presence in Experiment 2; shelter, 

moisture, and heterospecific presence in Experiment 3; and shelter, food, and cohabitant 

identity in Experiment 4.  

Response variables were assessed separately for each species. Response variables 

for P. carolinianus adults were average mass change per day, final mass, final mass plus 

mass lost due to egg laying, and total number of eggs laid. To estimate the average mass 

change per day per slug, the change in a slug’s weight for each measurement session was 

divided by the number of days between measurement sessions to obtain an estimate of its 

mass change for each day between sessions, and the slug’s daily mass changes were 

averaged across the entire period of the experiment. Lost body mass due to egg laying 

was estimated at 0.012 g per egg laid (pers. obs.). Lost egg mass was added to the final 

mass to calculate the response variable final mass plus egg laying mass lost. Slug mass 

was always measured as wet mass, rather than dry mass, because slugs were kept alive to 

be measured at regular intervals and to be used in additional experiments. However, in 

experiments 1, 2, and 4, slugs’ masses were unlikely to be influenced by moisture, 
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because the lidded and sealed mesocosms maintained an environment with 90% relative 

humidity (see above). Count of slugs dead per mesocosm was analyzed in Experiments 2 

and 3 with each whole mesocosm treated as a replicate. Egg hatching rate was analyzed 

as a fitness variable, but in no case did the proportion of eggs hatched respond to 

treatment and so is not reported here. (For example, in experiment 2, the proportion of 

eggs hatched out of total eggs laid ranged from 0.905 +/-0.066 SE in the high food, high 

shelter treatment to 0.752 +/-0.069 SE in the high shelter, low food treatment (P = 

0.1183).) Response variables for A. subfuscus adults were average mass change per day 

and final mass (Experiments 1 and 3). A. subfuscus did not lay enough eggs to evaluate 

statistically. Response variables for P. carolinianus juveniles were average mass change 

per week and final mass, averaged for each mesocosm (Experiment 4). The distances 

between P. carolinianus and A. subfuscus slug pairs were response variables in mixed 

species mesocosms (Experiments 2 and 3). Each mesocosm was a replicate with a single 

value of Pc-Pc distances, Pc-As distances, and As-As distances averaged across all weeks 

(where Pc is P. carolinianus and As is A. subfuscus). The midpoint of Pc-Pc distances 

and As-As distances for each replicate served as its covariate; this midpoint represented 

an “expected” value for Pc-As distances if their combined interactions were simply 

intermediate between Pc-Pc distances and As-As distances. 

Competition intensity may be affected by the availability of resources (Duyck et 

al. 2004; Poling and Hayslette 2006), and thus, competition may only be apparent under 

circumstances of low resources. For Experiment 2, planned comparison tests were used to 

compare P. carolinianus fitness between single-species and mixed species mesocosms 

within low resource treatments (low shelter and low food) and within high resource 
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treatments (high shelter and high food). These treatment comparisons were the 

differences of least squares means (t-tests) as obtained through ANCOVA. Because these 

tests were planned a priori, they did not require alpha adjustment for multiple 

comparisons. For experiment 4, least squares means were adjusted through a Tukey test 

so that I could compare means a posteriori. 

Data were sufficiently normal so that transformation was not needed. Because a 

few juveniles gained weight at an exceptionally high rate in Experiment 4 and caused a 

strong skew in the response variables, I eliminated 4 outliers of the variable average mass 

change and 3 outliers of the variable final mass (i.e. 20% of the sample size of 5 was 

eliminated for a few treatments). 

 

RESULTS 

 

Experiment 1: Limiting Resources 

Food amount significantly affected every fitness variable measured for both species (Fig. 

3.2): the average mass change per day (P < 0.0001), final mass (P = 0.0001), final mass 

plus egg laying mass lost (P = 0.0001), and total number of eggs laid (P = 0.0001), of P. 

carolinianus, and the average mass change per day (P = 0.0008) and final mass (P = 

0.0001) of A. subfuscus. Weight loss was consistently least in the high food treatment and 

highest in the low food treatment. (Note that degrowth is a common phenomenon in 

mature slugs that increases with egg-laying (Rollo and Shibata 1991).) For other details 

of the analyses (e.g., F-statistics and df values) see Appendix C. No measure of fitness 

responded to shelter, in contrast to food amount. Interactions were not significant. 
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Fig. 3.2  Fitness of P. carolinianus and A. subfuscus slugs under various levels of food 

and shelter. Error bar indicates +SE. (* indicates significant P-value. See F-statistics and 

df values in Appendix C.)  

  

Experiment 2: Mixed Species 

A. subfuscus presence did not affect the fitness of P. carolinianus except for its final mass 

plus egg laying mass lost; final mass plus egg laying mass lost was greater in mixed-

species treatments (1.190 +/-0.034 g) than in single-species treatments (1.083 +/-0.038 g) 
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(ANCOVA: F1,42.2 = 4.32, P = 0.0439). The main effects generally support the results of 

Experiment 1 (Fig. 3.3). That is, food amount exerted a significant effect on all fitness 

measures of P. carolinianus, while Pc-As distances were unaffected by any factor. Food 

amount affected the average mass change per day (P < 0.0001), final mass (P < 0.0001), 

final mass plus egg laying mass lost (P < 0.0001), and total number of eggs laid (P = 

0.0003) of P. carolinianus. The only fitness response to shelter amount was the number 

of eggs that P. carolinianus laid. More eggs were laid in high shelter conditions (19.9 +/-

1.5 eggs) than in low shelter conditions (14.1 +/-1.5 eggs) (ANCOVA: F1,33.7 = 7.52, P = 

0.0097). An interaction of food and shelter amount resulted in the greatest percentage of 

slug deaths in the low shelter, low food treatments (39.4% +/-7.8%) and the fewest deaths 

in the low shelter, high food treatments (7.8% +/-7.8%) (ANCOVA: F1,48 = 4.10, P = 

0.0484).  
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Fig. 3.3  Fitness of P. carolinianus under the factors of food, shelter, and heterospecific 

presence. Pc is P. carolinianus and As is A. subfuscus. Error bar indicates +SE. (* 

indicates significant P-value. See F-statistics and df values in Appendix C.) 
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In neither low resource nor high resource treatments was P. carolinianus fitness 

(except for eggs laid overall) significantly affected by A. subfuscus presence (Fig. 3.4). 

Under high resource conditions, more eggs were laid in mixed-species treatments (29.2 

+/-3.1 eggs) than in single-species treatments (20.3 +/-2.8 eggs) (t-test: t = -2.13, df = 

33.7, P = 0.0409).  

 
 
 
 
 
 

 

 

 

 

 

 

 

Fig. 3.4  Fitness of P. carolinianus slugs in the absence or presence of A. subfuscus. 

Planned comparisons are (a) average mass change per day, (b) final mass, (c) final mass 

plus egg laying mass lost, (d) total eggs laid, and (e) percent P. carolinianus dead per 

mesocosm. High and low resource mesocosms were analyzed separately but are depicted 

together, grouped by response variable. Low resources are low shelter and low food, and 

high resources are high shelter and high food. Error bar indicates +SE. (* indicates 

significant P-value.)  
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Experiment 3: Shelter and Moisture 

Shelter and moisture levels each only affected a few fitness variables for P. carolinianus 

(Fig. 3.5). The species identity of mesocosm mates did not have a significant effect on the 

fitness of either species, and there was no interaction of species identity with moisture 

level. The average mass loss per day for P. carolinianus was smaller in high moisture 

treatments (-0.0086 +/-0.0015 g) than in low moisture treatments (-0.0146 +/-0.0015 g) 

(ANCOVA: F1,31.9 = 7.68, P = 0.0092). Shelter amount was associated with an increase in 

the final mass plus egg laying mass lost (1.42 +/- 0.05 vs. 1.25 +/-0.05 g) (ANCOVA: 

F1,27.9 = 5.04, P = 0.0328) as a combined result of more although not significantly 

different number of eggs laid (17.0 +/-2.6 eggs vs. 11.4 +/-2.7 eggs) and greater but not 

significantly different final mass (1.22 +/-0.05 g vs. 1.12 +/-0.05 g) in higher shelter 

mesocosms. Shelter and moisture amounts interacted to affect the number of P. 

carolinianus dead per mesocosm. More died in the high shelter, high moisture treatment 

(4.8 +/-0.7 dead) than in each of the other treatment combinations (with an average of 1.2 

dead) (ANCOVA: F1,24 = 4.62, P = 0.0419). In contrast to Experiment 1, A. subfuscus 

had a lower final mass (0.6640 +/-0.0410 g vs. 0.8780 +/-0.0410 g) and greater average 

mass loss per day (-0.0111 +/-0.0009 g vs. -0.0063 +/-0.0009 g) in low shelter conditions 

than in high shelter conditions (ANCOVA: F1,26.3 = 13.61, P = 0.0010; F1,26.8 = 13.80, P = 

0.0009). This would suggest that A. subfuscus fitness was affected by shelter amount 

during this experiment but not during Experiment 1. Moisture level had no bearing on A. 

subfuscus fitness. Distances between P. carolinianus and A. subfuscus were affected by 

an interaction of shelter and moisture, such that slugs were much closer to one another in 
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low shelter, low moisture conditions (2.5 +/-0.9 cm) than in the other treatments (mean: 

8.9 cm) (ANCOVA: F1,11 = 5.69, P = 0.0361). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5  Effects of shelter, moisture, and heterospecific presence or absence on the 

fitness of P. carolinianus and A. subfuscus. “Heterospecific presence” for either species 

means that two A. subfuscus and two P. carolinianus were present per mesocosm, while 

“heterospecific absence” means that four conspecifics were present. Error bar indicates 

+SE. (* indicates significant P-value in the absence of interactions between factors. See 

F-statistics and df values in Appendix C.)  
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Experiment 4: Juveniles 

Juvenile final mass and average mass change per day were affected by the identity of 

their cohabitants (i.e., other juveniles, adult P. carolinianus, or adult A. subfuscus) (Fig. 

3.6).  Juvenile mass increased more in the presence of other juveniles than with either a 

conspecific adult or a heterospecific adult (average mass change per day: 0.0019 +/-

0.0002 g with juveniles vs. 0.0009 +/-0.0003 g with adults; ANCOVA: F3,58 = 4.35, P = 

0.0078) (final mass: 0.1195 +/- 0.0111 g with juveniles vs. 0.0695 +/-0.0088 g with 

adults; ANCOVA: F3,59 = 6.57, P = 0.0007). Final mass was greater in high food 

treatments (0.112 +/-0.008 g) than in low food treatments (0.078 +/-0.007 g) (ANCOVA: 

F1,59 = 9.84, P = 0.0027), while differences in average mass change per day were not 

significant (0.00167 +/-0.0002 g in high food vs. 0.00117 +/-0.0002 g in low food) 

(ANCOVA: F1,58 = 2.90, P = 0.0939). Shelter amount had no influence on juvenile 

fitness. 
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Fig. 3.6  Fitness per P. carolinianus juvenile among different cohabitant treatments, shelter 

levels, and food levels. Averages represented by the same letter are not significantly different. 

Error bar indicates +SE. (* indicates significant P-value, and different letter indicates a 

significant difference between treatments. See F-statistics and df values in Appendix C.) 

 

DISCUSSION 

This study tested and ultimately rejected the hypothesis that the native slug P. 

carolinianus and the non-native slug A. subfuscus compete. I investigated whether natural 

levels of resources were limiting to both A. subfuscus and P. carolinianus, whether the 

fitness of P. carolinianus adults or juveniles decline when they share a habitat with A. 

subfuscus, and whether moisture level influences whether shelter is a limiting resource. 

Food was found to be a limiting resource for all experimental subjects, and shelter can be 

a limiting resource for A. subfuscus and for ovipositing individuals of P. carolinianus. 
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However, interspecific competition between the species was never greater than 

intraspecific competition within P. carolinianus. 

Food was a limiting resource at naturally low levels, affecting most fitness 

variables for both species and for both adult and juvenile P. carolinianus (Experiments 1, 

2, and 4). Field levels of food have been shown to be limiting for other gastropods. 

Stream algae density exists below the level that allows maximal population growth in 

several freshwater gastropods (Eisenberg 1970; Cross and Benke 2002), and natural 

levels of food on the forest floor limit growth in some landsnails (Pearce 1997). Shelter 

was not generally a limiting resource for either slug species (Expt. 1) or for juvenile P. 

carolinianus (Expt. 4). Although shelter is suspected to be a limiting resource for slugs 

(Rollo and Wellington 1979), many slug species, including philomycids, commonly 

aggregate in multispecies groups in shelters and appear to be tolerant of each others’ 

presence (Webb 1950; Cook 1981). P. carolinianus were found to distribute themselves 

randomly under provided shelter, regardless of the number of conspecifics already 

present (Tim Pearce and Cagin Unal, unpub. results). In low shelter treatments, P. 

carolinianus laid fewer eggs (Expt. 2) and had a lower final mass plus egg laying mass 

lost (Expt. 3). Thus, shelter amount can be a limiting resource for ovipositing by P. 

carolinianus. Slugs lay almost all of their eggs under shelter (Rollo and Wellington 

1979), and competition for favorable egg-laying sites can result in lower fecundity per 

snail in high-density gastropod populations (Carter and Ashdown 1984). Also, A. 

subfuscus lost more mass in low shelter treatments in one case (Expt. 3), suggesting that 

shelter can occasionally be important to A. subfuscus fitness. A. subfuscus may have 



    73

experienced greater desiccation or expended more energy in the pursuit of shelter in low-

shelter conditions. 

The presence of A. subfuscus did not affect the fitness of P. carolinianus except 

for egg-laying. In a similar study, Philomycus cf flexuolaris’s use of shelter was 

unaffected by the presence of Limax maximus in a lab setting (Tim Pearce and Paul Robb, 

unpub. results). For gastropods, the frequency at which interspecific competition exceeds 

intraspecific competition strength (Cameron and Carter 1979; Brown 1982; Tilling 1985; 

Riley et al. 2008) is counterbalanced by systems in which intraspecific competition is 

greater than or equal to interspecific competition strength (Fenchel and Kofoed 1976; 

Tattersfield 1981; Baur 1990; Cross and Benke 2002; Cope and Winterbourn 2004). 

From the perspective of P. carolinianus, the system of P. carolininaus and A. subfuscus 

fall into the latter category. Surprisingly, the fecundity of individual P. carolinianus 

increased in heterospecific, high-shelter mesocosms (Expts. 2 and 3). P. carolinianus 

must be experiencing greater intraspecific than interspecific competition for egg-laying 

sites. Few A. subfuscus were laying eggs at the time of the experiment, which, in high 

shelter mesocosms, may have maximized the availability of suitable ovipositing spaces 

for their cohabiting P. carolinianus. If the seasonal timing of reproduction in the field 

were consistent with these lab results, shelter as an ovipositing site may not be a 

contested resource between these species. 

Distances between heterospecific pairs of slugs were unaffected by treatment, 

suggesting that any inherent antagonism was unaffected by resource level. In fact, P. 

carolinianus and A. subfuscus pairs were closer together in low moisture, low shelter 

treatments than in other treatments (Expt. 3). They appeared to be tracking the same 
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moist soil under the single piece of shelter, conserving moisture by huddling together, or 

both. Slugs adeptly manage water loss by moving into moist shelter (Luchtel and Deyrup-

Olsen 2001), which was a single piece of CWD in the present experiment. Under 

excessively dry conditions, slugs such as Limax pseudoflavus also huddle together to 

limit water loss (Cook 1981).  

Unexpectedly, shelter amount interacts with food or moisture factor levels in 

affecting mortality, resulting in alternately positive and negative significant associations 

of P. carolinianus mortality with shelter level. The highest number of P. carolinianus 

died in low shelter, low food treatments and the fewest died in low shelter, high food 

treatments (Expt. 2). Significantly more P. carolinianus (but not A. subfuscus) died in 

high shelter, high moisture treatments in Expt. 3 than in other treatments. Also, under 

high moisture conditions, P. carolinianus lost more mass per day (Expt. 3). Perhaps high 

shelter amounts under moist conditions may have promoted pathogen growth, overriding 

any positive affects of shelter except under low shelter, low food conditions (Expt. 2).  

Juvenile P. carolinianus mass gain was greater in the presence of other juveniles 

than in the presence of a conspecific adult or A. subfuscus adult (Expt. 4). This result is in 

accord with other studies of young gastropods (Cook 1989; Baur and Baur 1990; Conner 

et al. 2008). For example, juvenile Mesodon thyroidus and Neohelix albolabris snails did 

not grow as much in the presence of conspecific adults in the lab (Pearce 1997). Juveniles 

can experience greater exploitative competition for resources from adults than from other 

juveniles (Pearce 1997), perhaps due to simple biomass differences.  In this experiment, 

there was about a tenfold difference in the mass of four juveniles (0.13 +/-0.01 g) to an 

adult P. carolinianus (1.55 +/-0.09 g) or an adult A. subfuscus (1.49 +/-0.09 g). The 
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mucus of adults or other interactions with adults may also inhibit the growth and activity 

of young animals (Conner et al. 2008; Foster and Stiven 1996) or may cause juveniles to 

“purposefully” suppress their own growth to maximize their resource-use efficiency in a 

high density population (Tattersfield 1981). (Although, interestingly, three of the four 

“outlier” replicates, in which the mass of one juvenile was very high, were treatments 

with eight rather than four juveniles, hinting that juvenile density may spur growth in a 

few individuals.) The species identity of the adult did not affect juvenile P. carolinianus 

fitness, suggesting that competition strength does not differ between A. subfuscus and P. 

carolinianus. Conner et al. (2008) found that the survival rate of juvenile Pomacea 

paludosa was greater with a conspecific adult than with a Pomacea canaliculata adult. 

However, in my system, the strength of competition between juvenile P. carolinianus and 

adult A. subfuscus and P. carolinianus (as measured by the negative effect on juvenile 

fitness) simply parallels the competition strength between adult P. carolinianus and their 

heterospecifics or conspecifics. 

This study did not and cannot address all potential sources of competition, such as 

apparent competition through disease and predation (DeBach 1966; Davis 2003). P. 

carolinianus died often in the high humidity, crowded conditions of high shelter, high 

moisture mesocosms, while A. subfuscus mortality was unaffected by treatment (Expt. 3). 

Although mesocosms are artificially confining and do not replicate natural weather 

conditions, this suggests that A. subfuscus may experience a fitness advantage during 

periods of excessive precipitation and resulting pathogen growth in the field. Although 

very little is known about relative efficacy of native slug predators, apparent competition 

through predators is also possible. For example, salamanders readily consume hatchling 
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A. subfuscus (John Maerz, unpub. results). If these salamanders are predators of P. 

carolinianus as well, growth of the salamander population in response to A. subfuscus 

abundance could result in a local decline of P. carolinianus.  

Pairs of non-native and native species that appear to be likely competitors are 

often not, regardless of shared resource use and the ubiquity of the non-native competitor. 

Although the diets of the mourning dove and the non-native Eurasian collared dove are 

very similar, the mourning dove was found to be competitively dominant to, and so not 

apparently endangered, by the collared dove (Poling and Hayslette 2006). No evidence 

for spatial displacement was found between black rats and native Galapagos rice rats in a 

remaining patch of habitat, despite evidence of past rice rat extirpations and a current diet 

overlap with black rats (Harris et al. 2006). On a numerically-equivalent basis, 

interspecific competition between the two slugs was never greater than intraspecific 

competition within P. carolinianus. Pairs of competing species that exhibit population-

wide detriment or habitat displacement to one species tend to experience asymmetrical 

competition in one-on-one interactions (e.g. Krassoi et al. 2008; Riley et al. 2008).  

Researchers are increasingly discovering that the invasiveness and ubiquity of a 

non-native species does not correlate with its impact on ecosystems (Ricciardi and Cohen 

2007), and the interactions of A. subfuscus and P. carolinianus fit this pattern. The 

densities of P. carolinianus and A. subfuscus in these experimental mesocosms are 

similar to their densities on coarse woody debris in the field, so they are likely to 

experience similarly weak competition in the field. Perhaps, a temporary-to-permanent 

stable coexistence between non-native and native competitors is very common in nature, 

even if the non-native species spreads widely, becomes highly abundant, and appears to 
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interact regularly with natives. Indeed, one of the fundamental patterns in ecology is the 

highly skewed nature of species relative abundance distributions: when counting species 

sharing a resource base, a few species are numerically dominant, representing a great 

fraction of the individuals encountered, while most species in the assemblage are scarce 

(Fisher et al. 1943; Preston 1948; McGill et al. 2007). 

Other studies corroborate that competition between A. subfuscus and P. 

carolinianus is not likely to be great. Resources are shared to a greater extent between A. 

subfuscus and P. carolinianus than between either species and the native philomycid slug 

Megapallifera mutabilis (Chapter 2), and exploitation competition between A. subfuscus 

and P. carolinianus exists (Chapter 4). However, populations are often associated and 

never dissociated in the field (Chapter 1), suggesting that spatial displacement does not 

occur. Intra-specific interference seems to affect P. carolinianus fitness more than inter-

specific interference, and mucus of either species does not function as a competition 

mechanism for P. carolinianus (Chapter 4). In conclusion, individuals of A. subfuscus 

may present no greater threat to the fitness of P. carolinianus than members of their own 

species. 
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CHAPTER 4 

Mechanisms of Competition between a Non-native Eurasian Slug Species Arion 

subfuscus (Draparnaud) and the Native Slug Species Philomycus carolinianus (Bosc) 

 

INTRODUCTION 

The degree to which non-native species have altered the demography, ranges, and 

microhabitat occupation of native species is poorly known (Parker et al. 1999), especially 

when populations of non-native and native species co-occur. Yet, the competition-

mediated decline of native populations, in concert with other factors such as habitat 

degradation, can place native species at risk of extirpation (Van Riel et al. 2007; Kandori 

et al. 2009). Critically, understanding whether competition between native and non-native 

species can take place under ordinary environmental conditions can allow us to 

extrapolate whether native species are likely to have experienced harm in the past and/or 

if they are likely to do so in the future. 

 Determining whether two species compete requires evaluating a series of criteria 

(Wiens 1989; see Chapter 3). A non-native competitor can lower the growth or fecundity 

of individuals of a second species, cause shifts in its microhabitat or habitat use, and/or 

alter the size, growth, and demography of the native species’ populations (Parker et al. 

1999). Except for a few sets of experiments that exhaustively investigated species of 

major ecological or economic importance, such as Argentine ants, the rusty crayfish, the 

New Zealand mudsnail, and Asian tiger mosquitoes (Cope and Winterbourn 2004; 

Juliano and Lounibos 2005; Buczkowski and Bennett 2008a; Pintor et al. 2008), studies 

of competition between non-native and native species typically only evaluate a subset of 
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these demographic and fitness effects and therefore potentially misinterpret the overall 

impact of competition. For example, studies often test in isolation whether the non-native 

species harms the fitness of individuals or the growth of subpopulations of the native 

species (Shinen and Morgan 2009), or whether a likely competition mechanism such as 

territoriality or contest competition is disproportionately exhibited by the non-native 

species against the native species. Although highly suggestive, the operation of a 

competition mechanism between two species does not by itself indicate that the “losing” 

species is experiencing a fitness decline. Also, population declines in the field cannot be 

attributed to competition unless they are accompanied by other evidence (Gurevitch and 

Padilla 2004). From a practical perspective, if the competition mechanism is known, 

recognition of a fitness decline of a native species in the presence of the non-native 

species can contribute more to predicting competition outcomes (Schmitt 1996) or 

designing conservation efforts. I investigated whether the native North American slug 

Philomycus carolinianus (Bosc) competes with the non-native Eurasian slug Arion 

subfuscus (Draparnaud) as reflected in a series of criteria that are reported in Chapter 3.  

 A. subfuscus was probably introduced to port cities in New England more than 

150 years ago (Binney 1842, cited in Chichester and Getz 1969). A. subfuscus and P. 

carolinianus have had ample opportunity to interact in natural habitats in eastern North 

America. They are widespread and common in mesic forests (Chichester and Getz 1969 

Getz 1974), and they frequently co-occur on fallen dead logs. Both species attain a 

maximum length of 7.0 cm in central Maryland (pers. obs). A. subfuscus is a relatively 

aggressive slug that is known to bite conspecifics and heterospecifics (Rollo and 

Wellington 1979; Fernandez 1990). Previous studies tested whether the two species 
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overlap in resource use (Chapter 2), whether individuals and subpopulations are 

disassociated with one another in the field (Chapter 1), whether resources exist at limiting 

levels (capable of inducing resource competition) in the field (chapter 3), and whether the 

fitness of P. carolinianus declines in the presence of A. subfuscus under natural resource 

levels reproduced in the laboratory (Chapter 3). 

For the present study, I determined whether A. subfuscus interacts with P. 

carolinianus through the competition mechanisms of exploitation or interference.  

Interference is competition perpetrated through aggression, allelochemistry, and other 

direct interactions between individuals, while exploitation is an indirect form of 

competition in which resources are used up before they can be accessed by competitors 

(Schoener 1983). These mechanisms are well known to influence gastropod body size, 

growth rate, fecundity, mortality, and activity level (Tilling 1985; Baur 1988; Baur and 

Baur 1990). Gastropods compete for shelter through the mechanisms of mucus 

interference and aggression (Rollo and Wellington 1979; Dan and Bailey 1982; Tilling 

1985; Pearce 1997), whereas competition for food can occur through exploitation 

competition (resource pre-emption) and/or mucus interference and aggression (Cameron 

and Carter 1979; Rollo 1983b; Cook 1989; Pearce 1997). Gastropod mucus can inhibit 

the growth and activity of heterospecifics and conspecifics (Williamson et al. 1976; Baur 

1988; Conner et al. 2008).  However, heterospecific mucus does not always deter slugs 

(Jordaens et al. 2003), and the negative effects tend to be greatest within species and to 

diminish with increasing taxonomic distance between two species (Cameron and Carter 

1979; Dan and Bailey 1982). A likelier mechanism of interspecies competition is 

aggression. A good example is the slug Limax maximus, which often bites, pursues, 
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attacks, and kills other slugs.  L. maximus kills heterospecifics, whereas conspecific 

encounters are rarely fatal (Rollo and Wellington 1979). Even coexistence with a mildly 

aggressive species can ultimately limit fecundity and survival (Rollo 1983a). In contrast 

to interference, exploitation competition has not received much study in gastropods. With 

the exception of a few studies (Pearce 1997; Riley et al. 2008), exploitation is not 

explicitly tested for (but is often the assumed mechanism (Cook 1989)) in gastropod 

studies. Fecundity and growth rate of snails can be greatly enhanced by adding food to a 

natural system, suggesting that exploitation competition for food is occurring (Eisenberg 

1970; Pearce 1997). Shelter might be a source of exploitation competition for ovipositing 

gastropods when favorable egg-laying spots are exhausted in dense populations (Carter 

and Ashdown 1984).  

Through a series of lab experiments, I addressed the following questions: does P. 

carolinianus engage in exploitation or interference competition for food or shelter with A. 

subfuscus? Does the mucus of A. subfuscus act as a competition mechanism with P. 

carolinianus? I hypothesized that (1) P. carolinianus and A. subfuscus engage in 

exploitation, i.e., when in a heterospecific treatment, P. carolinianus has greater fitness 

under high than low resources. (2) Interference competition between P. carolinianus and 

A. subfuscus is greater than interference competition within P. carolinianus, i.e., if 

resources are high (inexhaustible) P. carolinianus has a higher fitness when paired with 

conspecifics than when paired with A. subfuscus. (3) P. carolinianus is deterred by A. 

subfuscus mucus relative to P. carolinianus mucus on food and on shelter. 
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METHODS  

 

Experiment 1: Exploitation Versus Interference 

The potential for exploitation and interference to act as the mechanisms of competition 

was evaluated through a series of laboratory comparisons. A 2 x 2 x 2 factorial design 

was established to evaluate the influence of shelter amount (low or high), food abundance 

(low or high), and A. subfuscus (present or absent) on the fitness of P. carolinianus 

(Table 4.1a). Four slugs, including either four P. carolinianus (representing the absence 

of A. subfuscus) or two P. carolinianus and two A. subfuscus (representing the presence 

of A. subfuscus) were placed in each replicate mesocosm. There were five replicates per 

conspecific treatment and nine replicates per mixed species treatment. Shelter and food 

abundances approximated levels of resources occurring naturally in the field. Fitness 

response variables, including eggs laid per slug, slug mass, and slug mortality, were 

recorded every seven days (+/-1 day) for eight sampling periods between July 10th and 

September 9th, 2008 (a total of eight values per response variable). A detailed description 

of additional methods can be found in Chapter 3, Experiment 2. 

When two competing species co-exist, we must account for multiple concurrent 

interactions: exploitation and interference competition, both within and between species.  

Planned (a priori) comparisons among treatments were used to separate these interactions 

as much as possible in order to evaluate whether exploitation or interference competition 

was occurring between species. 
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Experiment 1.A: Exploitation Competition 

Exploitation competition can be manifest when resource levels are below optimum 

(Duyck et al. 2004). Exploitation competition between P. carolinianus and A. subfuscus 

may be shown if, when in a heterospecific treatment, P. carolinianus has greater fitness 

under high than low resources. A previous study suggested that antagonistic behaviors (as 

indicated by distances between heterospecific pairs of slugs) was unaffected by resource 

level (see Chapter 3). So, interference via aggression can be ignored when testing for 

exploitation competition between resource levels. However, the influence of resource 

level on mucus interference (if present) was unknown. The effect of exploitation 

competition on P. carolinianus in mixed-species groups was measured by comparing P. 

carolinianus fitness between high and low resource tubs containing A. subfuscus (Table 

4.1b). The analysis was performed separately for food and for shelter.  

 

Experiment 1.B: Interference Competition 

Exploitation competition can be eliminated from a system by making resource levels 

superabundant. Interference competition by A. subfuscus on P. carolinianus would be 

indicated if resource levels were high and effectively inexhaustible, but P. carolinianus 

still had greater fitness under A. subfuscus absence treatments than under A. subfuscus 

presence treatments. I tested whether interspecific interference (between P. carolinianus 

and A. subfuscus) affected P. carolinianus fitness differently than intraspecific 

interference (among P. carolinianus) by comparing P. carolinianus fitness between 

conspecific and heterospecific tubs with high levels of resource (Table 4.1b). I analyzed 
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the high food tubs and high shelter tubs separately. This test for interference does not 

distinguish between aggression and mucus interference as competition mechanisms. 

 

Experiment 1: Statistical Analysis 

SAS software version 9.2 (SAS Institute Inc. 2008) was used to evaluate the planned 

comparisons through the least squares means (t-tests) procedure obtained during a 

factorial, mixed-model ANCOVA. The covariate was the initial mass of each slug, the 

replicate was the mesocosm, and each slug was treated as a subsample in each mesocosm. 

The fitness (response) variables for each slug were average mass change per day, final 

mass, eggs laid overall, and final mass plus egg laying mass lost, and the percent slugs 

dead per mesocosm were calculated as an overall fitness variable for each mesocosm (see 

Chapter 3). Denominator degrees of freedom were determined by the Satterthwaite 

procedure (Satterthwaite 1946). Independent variables were shelter, food, and 

heterospecific presence. Planned comparison tests were used to compare P. carolinianus 

fitness between high and low resource levels within mixed-species tubs (exploitation 

competition) and to compare their fitness between single-species and mixed species tubs 

within high resource treatments (interference competition). Food and shelter were 

evaluated separately as factors. These tests were planned a priori and did not require 

alpha adjustment for multiple comparisons.  
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Table 4.1  Description of treatments used in the experiments testing for exploitation and 

interference, including (a) A. subfuscus, food, and shelter as the three factors with two 

levels each. A. subfuscus present treatments contained two A. subfuscus and two P. 

carolinianus each, while A. subfuscus absent treatments contained only four P. 

carolinianus. (b) Paired comparisons of subsets of treatments were used to test both the 

hypotheses of exploitation and interference, with food and shelter effects evaluated 

separately. 

(a) Factors Factor levels Abbreviations 

A. subfuscus absent 4Pc 

 present 2As2Pc 

Food low LF 

 high HF 

Shelter low LS 

 high HS 

   
(b) Hypothesis tested Paired comparisons of treatments 

 Between food levels Between shelter levels 

Exploitation 2As2Pc_LF vs. 2As2Pc_HF 2As2Pc_LS vs. 2As2Pc_HS 

Interference 4Pc_HF vs. 2As2Pc_HF 4Pc_HS vs. 2As2Pc_HS 

 

 

Experiment 2: Interference via Mucus 

I tested the effect of mucus – whether present, or whether belonging to A. subfuscus or P. 

carolinianus - on P. carolinianus preferences for food and shelter.  
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Experiment 2.A: Interference via Mucus-on-Food 

Each of twenty P. carolinianus was placed in a separate large mesocosm (12.5 cm wide, 

32.5 cm long, and 17.5 cm tall) and given a choice of three food pieces: food without 

mucus, with a conspecific’s mucus, and with A. subfuscus’s mucus (e.g., Pearce 1997). 

Sixty wedges of commercially-grown white mushrooms (Agaricus bisporus) weighing 

0.50g (+/- 0.005g) were used. The wedges were laid flat in one layer, and one of three 

mucus treatments was applied: no mucus, A. subfuscus mucus, and P. carolinianus 

mucus. In order to coat the mushroom wedges with mucus, twelve A. subfuscus were 

provided 20 mushroom pieces lacking mucus and allowed to move and feed freely for 

about 30 minutes, although I occasionally relocated individuals to pieces that lacked 

mucus. Eight P. carolinianus crawled upon 20 mushroom pieces for the P. carolinianus 

mucus treatment. After 30 minutes, mucus was fairly evenly distributed across all mucus-

treated mushrooms.  Food pieces were each set on a labeled plastic container lid that was 

about 3 cm in diameter. 

 After the mucus application, I tested which of the three mucus types individuals 

of P. carolinianus accepted based on the relative amounts of each mushroom treatment 

consumed. Each of 20 plastic (32.5 x 12.5 x 17.5 cm) tubs was lined with a strip of moist 

paper towel. Twenty sectioned branches that were 5-6 cm in diameter, 3-4 cm long, and 

in stage three of decay (Stokland and Kauserud 2004) were soaked in water for one hour. 

A branch section was placed in the center of each mesocosm as shelter for the slug. One 

of each of the 3 food types was placed 2 cm from the shelter (Fig. 4.1a). (The food lids 

were arranged so that they would be as close to equidistant from each other as possible 

while still fitting in the oblong mesocosm.) The food dishes were rotated such that 
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treatments were in each location in the mesocosm for the same number of replicates (Fig. 

4.1b). Twenty P. carolinianus slugs had been deprived of food for 24 hours. Each slug 

was set on the top of the shelter, consistently facing the same direction in each 

mesocosm. Lids were placed on the tubs. To estimate natural water loss from mushroom, 

six wedges of mushroom identical to those used in the experiment were placed in a 

mesocosm without slugs as a control and weighed at the end of the experiment. 

  

 

                         

Fig. 4.1  Arrangement of the contents of a mucus-on-food mesocosm. (a) For each 

mesocosm, mushroom pieces (triangles) with P. carolinianus mucus (Pc), A. subfuscus 

mucus (As), and no mucus (Nm) were arranged around a central shelter on which a single 

P. carolinianus was first placed. (b) The location of the treated mushrooms was shifted 

clockwise around the mesocosm for each successive replicate mesocosm. 

 

The experiment began at 22:45 on November 13th, 2007, and ended 36 hours 

later. At that time, many mushrooms appeared to be at least half-consumed.  All 

mushrooms were weighed, placed in a drying oven for 24 hours, and weighed again. Wet 

   Pc   Nm 
 
 
   As 

Replicate 1. 
 
 
 
Replicate 2. 
 
 
 
Replicate 3. 
 
      etc. 
 

(a) (b) 
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masses of mushrooms were multiplied times a correction factor of 1.40 to account for 

water loss due to drying. (The correction factor was calculated from the control 

mushrooms as the initial mass divided by the final mass.) The results for two slugs that 

died during the experiment were excluded from the analysis. 

A one-way ANOVA tested whether slugs consumed different amounts of 

mushroom depending on the type of mucus applied to its surface. Mucus type was the 

independent variable, final mass of the mushroom was the response variable, and the 

mass of the slug was the covariate. Wet mass and dry mass of the mushroom food were 

analyzed separately. An initial model treated the identity of the individual slug as a block; 

this factor was non-significant and so was removed from the model.  

  

Experiment 2.B: Interference via Mucus-on-Shelter  

An experiment of parallel design to the mucus-on-food experiment tested whether P. 

carolinianus preferentially responded to the species-specific identity of mucus on shelter. 

Seventy-two sectioned branch pieces 5-7.5 cm diameter by 1.5-3 cm in length (in stage 

three of decay) were scrubbed to remove any traces of mucus and soaked in water for one 

hour. Wood pieces were treated with mucus for 30 minutes as per the Mucus-on-Food 

experiment, resulting in shelter with P. carolinianus mucus, A. subfuscus mucus, or no 

mucus.  Trios of shelter pieces from the same log were maintained within each of 24 

mesocosm replicates (Fig. 4.2). A dish of 0.50 g of mushroom was placed in the center of 

each mesocosm on a single layer of paper towel, and shelters were set in a triangle, 2 cm 

from the central food dish. P. carolinianus were set facing a single direction between two 

shelters. As before, shelters were arranged randomly (Fig. 4.1b), and the treatment of 
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each shelter was marked on the mesocosm lid.  At 3, 6, 9, 12, 18, and 24 hours following 

the start of the experiment, I recorded the shelter with which each slug was in contact.  

 

 

 

 

 

Fig. 4.2  Arrangement of the contents of a mucus-on-shelter mesocosm.  Shelter with P. 

carolinianus mucus (Pc), shelter with A. subfuscus mucus (As), and shelter with no 

mucus (Nm) surrounded a central food dish beside which a single P. carolinianus was 

placed. (Order of mucus treatments varied among mesocosms.) 

 

A Chi-square test was performed to determine whether equal numbers of slugs 

chose each shelter treatment as their first shelter. The shelter type occupied by each slug 

was not independent across observations, because slugs tended to remain for multiple 

observation sessions on the same shelter. Thus, a metric m was devised to take into 

account multiple sessions: 

mi = (niPc - niAs) / ni 

where ni is the total number of sessions for which each slug i occupied shelter (including 

the no mucus shelter), and niPc and niAs are the number of those sessions for which P 

carolinianus- and A. subfuscus-mucus shelters respectively were occupied by slug i. A 

one-tailed t-test of m was performed to determine whether the mean differed from 0, 

    Pc    
   Nm 

   
   As 
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meaning equal time spent between P. carolinianus- and A. subfuscus-mucus treatments. 

The observations of one slug that died were excluded from the analysis.  

 

RESULTS 

 

Experiment 1.A: Exploitation Competition 

Exploitation competition is manifested as greater fitness in high-resource treatments than 

in low-resource treatments. This hypothesis was supported for food and, with respect to 

eggs laid overall, for shelter as resources. All fitness metrics except for percent slugs 

dead were significantly higher for treatments with high food than low food (Fig. 4.3). In 

high food conditions, slugs lost less mass per day (P < 0.0001), had a higher final mass 

(P = 0.0001) and final mass plus egg mass lost (P < 0.0001), and laid more eggs (P = 

0.0008). The number of eggs laid per slug was greater in high shelter conditions than low 

shelter conditions (eggs laid overall: t = 3.50, df = 55.9, P < 0.001; 22.8 +/-2.0 eggs vs. 

12.9 +/-2.0 eggs, respectively), although other fitness measures were unaffected by 

shelter amount. Note that slugs lost weight during the course of the experiment (average: 

-0.019 g per day). Degrowth is a common phenomenon in mature slugs that increases 

with egg-laying (Rollo and Shibata 1991).  
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Fig. 4.3  Exploitation competition, tested through paired comparisons of the fitness of P. 

carolinianus slugs under high vs. low food and high vs. low shelter conditions. Mixed-

species tubs were used, with two A. subfuscus and two P. carolinianus per mesocosm. % 

slugs dead only represents P. carolinianus. Error bar is +SE. (* indicates significant P-

value. See t-statistics and df values in Appendix D, Section I.)  
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Experiment 1.B: Interference Competition 

Under high resource conditions, exploitation competition is not as likely to be manifest, 

leaving the effect of interference competition on fitness. This experiment tested the 

hypothesis that interference competition between A. subfuscus and P. carolinianus is 

greater than interference competition within P. carolinianus. The hypothesis was rejected 

for both high food and high shelter conditions. P. carolinianus did not perform 

significantly differently under high food conditions (Fig. 4.4). Under high shelter 

conditions, P. carolinianus paired with A. subfuscus laid more eggs than slugs in 

conspecific treatments (overall mass change plus egg mass lost: t = -2.10, df = 42.2, P = 

0.0420; eggs laid overall: t = -2.33, df = 33.7, P = 0.0260). Other fitness measurements 

under high shelter were similar between conspecific and heterospecific treatments. 
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Fig. 4.4  Fitness of P. carolinianus slugs in A. subfuscus absence (four P. carolinianus) 

vs. A. subfuscus presence (two A. subfuscus and two P. carolinianus) treatments, under 

high food or high shelter conditions. % slugs dead only represents P. carolinianus. Error 

bar is +SE. (* indicates significant P-value. See t-statistics and df values in Appendix D, 

Section I.)  
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Experiment 2: Mucus-on-Food and Mucus-on-Shelter Competition 

P. carolinianus did not feed preferentially in response to the species identity of mucus or 

to the presence or absence of mucus (1-way ANOVA: F2,50 = 0.56, P = 0.5772 for dry 

mass mushrooms; 1-way ANOVA: F2,50 = 0.20, P = 0.8198 for wet mass mushrooms) 

(Fig. 4.5a and 4.5b).  Their first choice of shelter was unaffected by mucus (Chi-square: 

χ2 = 2.174, P = 0.3372) (Fig. 4.5c), and they did not prefer to spend more time in contact 

with shelter with P. carolinianus-mucus than A. subfuscus-mucus (one-tailed t-test: t = 

0.0436, df = 22, P = 0.483) (Fig. 4.5d). However, P. carolinianus was observed 

disproportionately frequently on log pieces lacking any mucus than on logs with mucus 

produced by either species. (i.e., of 135 slugs seen on shelter across observation sessions 

54 slugs were on no-mucus logs, which is greater than the expected count of 45 (one third 

of 135). 
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Fig. 4.5  Mucus-on-food and mucus-on-shelter experimental results. (a) Dry mass of 

mushrooms remaining after P. carolinianus feeding. The purple line indicates the 

controls’ average dry mass. (b) Wet mass of mushrooms remaining plus water weight lost 

by treatment. Bar is +SE. (c) First choice of shelter by treatment. (d) Index “m” of 

contacts per shelter type, where m < 0 indicates P. carolinianus individuals that spent 

more sessions on A. subfuscus-mucus shelters and m > 0 indicates slugs that spent more 

sessions on P. carolinianus-mucus shelters. (No results were significant.) 

 

DISCUSSION 

In accord with other experiments, which did not provide strong support for competition, 

this study showed that competition mechanisms play a limited role in interactions 

between the native slug P. carolinianus and the non-native slug A. subfuscus. 

Exploitation competition occurred between the species, with P. carolinianus fitness 
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harmed by competition with A. subfuscus. Interference competition was minimal, 

although competition within P. carolinianus was greater than competition between the 

species for egg-laying sites.  

Resource exploitation, or direct resource use, lowers fitness when resource levels 

are low (Duyck et al. 2004). Tests for exploitation compared P. carolinianus fitness 

between high and low resource conditions in a mixed species treatment. Exploitation 

competition was shown to occur for both food and shelter. P carolinianus exhibited 

generally higher fitness under high food conditions and laid more eggs in high shelter 

treatments. Several gastropod systems have been shown to exhibit exploitation 

competition for resources. Exploitation occurred for food and moisture in juvenile 

Mesodon thyroidus, which experienced lower growth rates when adults were present but 

not with augmented food and water (Pearce 1997). The marine snails Tegula aureotincta 

and Tegula eiseni competed for food, with increasing snail density resulting in a decline 

of algae (Schmitt 1996), and the freshwater snails Elimia cahawbensis and E. carinifera 

competed for stream algae, which was shown to be a limiting resource at natural levels 

(Cross and Benke 2002).  

Interference competition can lower fitness independently of resource levels. I 

assessed the occurrence of interference competition by determining whether, given high 

(inexhaustible) resources, P. carolinianus had lower fitness when combined with another 

species than with conspecifics (e.g., Pearce 1997). For most fitness measures, there was 

no difference whether individuals were in the presence of an equal number of 

conspecifics or heterospecifics, indicating that interspecific and intraspecific competition 

were of similar strength. However, more eggs were laid per P. carolinianus in the 
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heterospecific treatment than in the conspecific treatment (also see Chapter 3). When 

ovipositing, P. carolinianus may experience less interspecific competition with A. 

subfuscus than intraspecific competition for shelter with conspecifics that are also laying 

eggs.  

Secure, moist shelter is essential for the survival of both eggs and juveniles 

(Hunter 1978; Kappes 2005) and is likely to play a major role in competition among 

slugs (Rollo and Wellington 1979). For example, Cepaea nemoralis laid fewer egg 

clutches at higher densities, perhaps because there were not enough "favorable" spots in 

the soil for the snails to lay their eggs (Carter and Ashdown 1984). However, the present 

study may be the first that has demonstrated greater egg-laying with increased shelter 

amount in gastropods, i.e., exploitation competition for egg-laying sites. Several 

mechanisms could enable competition for ovipositing sites among gastropods. Perhaps, 

egg-laying sites are limited in low shelter conditions because mothers avoid putting their 

eggs near other clusters of eggs. Egg cannibalism by hatchlings is a common strategy in 

gastropods, and it may increase in denser populations (Baur 1988). Adult mucus density 

or egg allelochemicals might also inhibit laying, although I am not aware of studies that 

have specifically tested for these mechanisms. 

Despite the likely importance of competition for oviposition sites within P. 

carolinianus populations, the native slug is unlikely to compete for this resource with A. 

subfuscus. In central Maryland, P. carolinianus lays eggs in the late spring through the 

summer, whereas A. subfuscus lays most eggs between mid-September to mid-October 

(pers. obs.). This temporal disjunction in egg-laying makes it unlikely that interspecific 

competition for oviposition sites happens in this region. However, conflicts over 
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ovipositing sites may occur between P. carolinianus and A. subfuscus in colder regions 

with shorter summers. For example, A. subfuscus lay eggs in July to early September 

rather than the fall in Nova Scotia (Pelluet and Watts 1951), which is the northern end of 

the range of many philomycids (Grimm 1996). 

A. subfuscus mucus did not deter P. carolinianus from fungus and shelter (see 

Appendix D, Section II). Thus, A. subfuscus did not exhibit any mucus-based interference 

competition with P. carolinianus. However, it would be worth investigating whether any 

mucus on shelter will deter P. carolinianus relative to shelters with no mucus; a more 

powerful test in which only two shelter options are provided (mucus and no mucus) may 

show that mucus in general can attract or deter P. carolinianus from selecting a shelter. 

The slug Deroceras laeve prefers surfaces with the mucus of either conspecifics or 

heterospecifics to surfaces with no mucus (Jordaens et al. 2006). The fitness of some 

gastropods is affected negatively by mucus (Williamson et al. 1976; Baur 1988; Jordaens 

et al. 2003; Conner et al 2008). A wider taxonomic distance between two species can 

limit the negative effects of mucus (Dan and Bailey 1982), perhaps because niche overlap 

is greatest within a species (Wiens 1989) and so gastropods have reason to avoid their 

own species. However, in this study, no evidence was found that intraspecific 

competition through mucus occurs for P. carolinianus as it occurs in Helix aspersa 

(Cameron and Carter 1979) and other species (Kawata and Ishigami 1992; Bull et al. 

1992; Schmitt 1996). It would be interesting to compare the strength of competition 

within and between species of gastropods with their use of mucus as an interference 

mechanism, to suggest in which gastropod systems (e.g. freshwater or terrestrial, at 

naturally low density or high density) mucus has evolved to be an interference 
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mechanism. For example, P. carolinianus occur at relatively low densities (Chichester 

and Getz 1969), a trait which may correlate with low competition and limited use of 

mucus as an interference mechanism across gastropod taxa. 

Non-native species whose competition mechanisms are clearly more effective 

than those of their native competitors can cause local extinctions of the natives (Holway 

1999; Cole et al. 2005). The non-native Argentine ant (Linepithema humile), which alters 

the composition of, and causes local extinctions in, the native ant fauna, exhibits more 

effective exploitation (higher rate of discovery and faster recruitment to food sources 

(Holway 1999; Buczkowski and Bennett 2008b)) and interference competition 

mechanisms (greater success in contests over food sources (Carpintero and Reyes-Lopez 

2008), faster recruitment of ants to engage in colony battles (Buczkowski and Bennett 

2008a), and lower mortality (Buczkowski and Bennett 2008b)) than native ants. The 

house gecko (Hemidactylus frenatus) is more effective at exploiting food (lowering the 

local insect density (Petren and Case 1996)) and displacing other geckos from refugia 

through aggression (Cole et al. 2005) than native gecko species, resulting in the 

extirpations of other geckos from islands to which it was introduced (Cole et al. 2005). 

Exploitation competition for food did occur between P. carolinianus and A. subfuscus. 

However, in contrast to these pairs of native and non-native species, P. carolinianus and 

A. subfuscus consistently showed limited evidence of interspecific competition (Chapter 

3), and P. carolinianus were more affected by intraspecific competition than interspecific 

competition for ovipositing sites. Mechanisms of competition, which are key factors in 

the displacement of a native competitor when they asymmetrically favor the non-native 
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species (Holway 1999), do not provide an advantage to A. subfuscus and, by themselves, 

do not suggest that A. subfuscus is likely to displace P. carolinianus. 

 Multiple lines of evidence, including both mechanisms of competition and 

consequences of competition (i.e., reduced fitness or spatial displacement), are essential 

to demonstrate the presence or absence of competition (Wiens 1989). Previous studies 

have shown that P. carolinianus does not experience displacement due to A. subfuscus in 

the field (Chapter 1), overlap in niche dimensions between the two species is limited 

(Chapter 2), and P. carolinianus fitness increases when placed with A. subfuscus relative 

to conspecifics (Chapter 3). In addition to these lines of evidence, the present study 

supports that competition between A. subfuscus and P. carolinianus is not strong. The 

persistence of P. carolinianus in sympatry with populations of A. subfuscus does not 

appear to be under immediate threat (see Chapter 1). When the future of a native species 

is of major concern, its interactions with a likely non-native competitor should receive a 

thorough evaluation. Such efforts are needed to determine whether competition is indeed 

occurring, whether alternate factors are at play in the decline of a native (e.g., habitat 

destruction occurring concomitantly with the range spread of an non-native species), and 

which aspects of the interaction might be targeted in conservation efforts to limit 

competition, such as providing additional shelters if exploitation competition for refuges 

is occurring. 
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APPENDIX A 

 

Section A.I.: 

Daytime field surveys methodology 

 

Daytime field surveys using shelter traps were attempted as a complementary method to 

visual night surveys. The fact that this method was ineffectual in temperate forest settings 

may be of interest to other researchers intending to survey forest populations of slugs.  

I had sought to perform surveys in the field by laying out artificial shelters that 

could be checked for slugs during the day (South 1965, 1989; Schrim and Byers 1980). 

For each cell of the field grids, three pieces of cardboard (about 75 x 30 cm) were 

wrapped with twine around the trunks of the largest live trees and fallen logs. Four 

particleboard tiles (30 cm x 30 cm) were placed on the ground. Slugs did not use the 

artificial shelters during dry weather, rendering the shelters generally ineffectual for 

daytime surveys. Soil beneath the tiles did not remain moist, which would have 

encouraged slugs to remain beneath. I suspect that this methodological failing may be a 

result of the environment: artificial slug shelters have been used predominantly in 

agricultural settings (South 1964; Byers et al. 1989). The forests of central Maryland may 

be too dry, or they may provide more attractive natural shelters to slugs. Researchers 

considering using shelter traps in a forest setting might encourage slug usage by 

distributing the traps during wet weather or by artificially moistening the traps, neither of 

which I attempted. 
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Section A.II.:  

Response of slug numbers to rainfall 

The effect of rainfall on slug activity and abundance is presented as an important 

consideration in surveying slugs and may be of interest to future researchers. 

 

INTRODUCTION 

Attempts to model activity levels and population dynamics of gastropods have revealed 

that environmental moisture levels tend to correlate with observed slug numbers (Cook 

2001). Moisture availability affects the survival of slugs, in particular juveniles (Hunter 

1978; South 1989; Choi et al. 2004), and rainfall induces egg laying in gastropods 

(Wolda 1973; Rollo and Shibata 1991). In addition to affecting slug population 

persistence, rainfall is a major factor constraining slug activity. Most slugs forage and 

mate at night or else during or after rain (Judge 1972), when the vapor pressure deficit is 

low (Crawford-Sidebotham 1972).  

During my field surveys of slug populations at Patuxent Research Refuge (PRR), 

Laurel, Maryland in the late spring through early fall of 2007 and 2008 (Chapter 1), 

numbers of observed slugs varied greatly across the nine field surveys and over the two 

years (Figs. 3 and 4, Chapter 1). I suspect that the decline of A. subfuscus, M. mutabilis, 

and P. carolinianus during 2007 was a response to the onset of drought that summer. 

Thus, I performed a simple analysis on my observations to answer the question, did the 

abundance of slugs observed during field surveys at PRR correspond to recent levels of 

rainfall?  
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METHODS 

Populations of the slug species A. subfuscus, M. mutabilis, and P. carolinianus were 

surveyed between the late spring through early fall of 2007 and 2008 at Patuxent National 

Wildlife Refuge, Laurel, Maryland. For further details, see Chapter 1. Nine surveys took 

place. For each survey, the average number of slugs for each species per 5 x 5 m cell was 

calculated across a total of 225 cells on all field grids. Using local daily rainfall records 

(Laurel 3W weather station: http://www.ncdc.noaa.gov/oa/mpp/freedata.html), I 

calculated the total amount of rainfall of the previous one and two weeks prior to each 

day of a survey.  Because surveys spanned at least three days, these rainfall totals were 

averaged to obtain a single value of “one week prior” and of “two weeks prior” for each 

survey. 

I performed a regression analysis of average slug numbers per cell against the 

total rainfall, with “one week prior” and “two weeks prior” analyzed separately. I 

employed the regression program GENMOD in SAS with a Poisson distribution model, 

because the slug count data were non-normal (SAS Institute Inc 2008). 

 

RESULTS 

P. carolinianus and M. mutabilis counts were not associated with rainfall in the previous 

one week (P. carolinianus, Poisson regression: Z = 1.65, P = 0.0990; M. mutabilis, 

Poisson regression: Z = 0.33, P = 0.7384) (Fig. A.1a). However, both P. carolinianus 

and M. mutabilis numbers were associated with the previous two weeks of rainfall (P. 

carolinianus, Poisson regression: Z = 2.18, P = 0.0292; M. mutabilis, Poisson regression: 

Z = 2.40, P = 0.0166) (Fig. A.1b).  
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There was no association of A. subfuscus counts with either the previous one 

week of rainfall (Poisson regression: Z = -0.60, P = 0.5501) or the previous two weeks of 

rainfall (Poisson regression: Z = 0.90, P = 0.3698).  

 

 

 

Fig. A.1  Natural log of total counts per slug species for each survey, versus the total 

rainfall over (a) the previous one week and (b) the previous two weeks. For each slug, 

each point represents one of nine survey sessions. 

 



    105

DISCUSSION 

The previous two weeks of rainfall were positively correlated with numbers of M. 

mutabilis and P. carolinianus, whereas A. subfuscus numbers did not correlate with either 

span of rainfall. Rainfall may have induced activity in M. mutabilis and P. carolinianus. 

Jaremovic and Rollo (1979) found that most individuals of Cepaea nemoralis did not 

become active on a given day unless there was rain, and among environmental factors, 

rain was most strongly correlated with C. nemoralis activity. M. mutabilis and P. 

carolinianus numbers may also reflect the response of population size to rainfall, if 

individuals died during long-term droughts. Models used by Choi et al. (2004) suggest 

that rainfall contributes the most to juvenile recruitment (egg survival) and adult 

mortality in the slug Deroceras reticulatum. However, relative to two limacid slug 

species, P. carolinianus experiences slower dehydration and greater tolerance of water 

loss, suggesting that this species resists mortality from drought (Thompson et al. 2006). 

(No similar comparative data exist for A. subfuscus or M. mutabilis.) 

M. mutabilis and P. carolinianus activity may have responded in part to the 

degree of substrate saturation resulting from long-term rainfall. Activity exposes more of 

the mantle to the air (Cook 1981), and gastropod locomotion requires mucus to be 

released (Machin 1978; Denny 1981). Having a wet substrate, such as water-saturated 

logs after a long or heavy period of rainfall, limits the expense of mobility and helps to 

prevent slugs from drying out when active (Barnes and Weil 1944, 1945). For example, 

Jaremovic and Rollo (1979) found that C. nemoralis on the ground became active more 

often than snails on bushes, which were relatively dry and exposed. 
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In comparison to the two philomycid species, A. subfuscus numbers correlated 

poorly (although positively) with recent rainfall levels, which may be a trait that makes 

them successful invaders. A. subfuscus may not respond as readily to rainfall and 

substrate moisture as the two philomycid species. One possible reason for their relative 

detachment from weather conditions is that A. subfuscus may be able to attain acceptable 

bodily moisture content through behavioral adaptations. Given a choice, slugs tend to 

take shelter within moist cracks in coarse woody debris, leaf litter, soil, and rocks 

(Luchtel and Deyrup-Olsen 2001). Perhaps A. subfuscus is more adept than the 

philomycid species at maintaining body moisture by moving back and forth between 

moist and less moist microhabitats (Lyth 1983; Cook 2001). Alternatively, A. subfuscus 

response to moisture may be attenuated by a sensitivity to other environmental factors, 

such as wind and temperature (Dainton 1954a, 1954b; Crawford-Sidebotham 1972), such 

that they don’t readily emerge even if rainfall amounts have been high.  

Even after rain in the late summer of 2007, slug numbers did not increase during 

the rest of 2007 or 2008. The water deficit may have been great enough that the 

environment was still too dry for slug activity, or else a significant portion of slugs may 

have died directly from the drought. It is unknown whether activity levels or mortality 

was responsible for the change in slug numbers observed.  However, at least part of the 

response was probably mortality: numbers never returned to the levels observed during 

the first survey. 
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Section A.III.: 

Methods and results of spatial analysis through SADIE 

 

In my first attempt to determine spatial disassociation between native and non-native 

slugs (Chapter 1), I identified patterns of slug population spatial distribution within each 

field grid by using the Spatial Analysis by Distribution IndicEs (SADIE) program (Perry 

1998). The methods and datasets produced during this analysis are presented here as a 

demonstration of an alternative method of spatial analysis to a partial Mantel test. These 

initial results also showed that slug populations were often spatially associated. In 

response, I attempted to eliminate the factor of coarse woody debris (CWD) that may 

have caused aggregations of slugs in order to study underlying patterns of interaction 

between slug populations (Chapter 1).  

Through SADIE, pairs of species abundance datasets were compared individually 

for each survey and field site to determine if any pairs are spatially disassociated, at any 

site or point in time. I used counts of M. mutabilis, P. carolinianus, and all non-native 

species per cell; I originally chose to add together all non-native species (which are 

mostly A. subfuscus) because my goal had been to compare native slug abundance against 

all non-native slugs in general. (Given the current degree of specificity of my research, 

which restricts all lab experiments to A. subfuscus and P. carolinianus, and given the 

relatively low abundance of other slug species within forest sites, I used A. subfuscus 

numbers rather than total non-native numbers to analyze patterns of field association in 

subsequent spatial analysis.)  
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SADIE is a non-parametric method to determine the degree of spatial association 

between two count datasets. For a given dataset, SADIE calculates the minimum distance 

that individuals in a grid must move to reach regularity, i.e. the same number of 

individuals in each grid cell (Perry 1995, 1998). For each cell on a grid, SADIE 

calculates its cluster index, z, as the average inflow/outflow distance of individuals from 

that cell to reach overall regularity on the grid (Perry et al. 1999). The association χk 

between two sets of co-occurring populations on one grid cell, k, is measured as: 

 

χk = N (zk1- q1)(zk2- q2) / [Σk(zk1- q1)
2
Σk(zk2-q2)

2]1/2 

 

where zk1 is the cluster index of population 1 at cell k, zk2 is the cluster index of 

population 2 at cell k, q1is the mean z of population 1, q2 is the mean z of population 2, 

and N is the number of cells. The total spatial association for a grid, Χ = Σkχk/N, of χk, is 

the average of all cells’ individual standardized χk values. Significance of X is calculated 

by comparing the observed value of X against a distribution of random permutations of 

the zk value among cells of the grid (Winder et al. 2001). 

For most surveys, pairs of populations were neither associated nor disassociated 

but were randomly distributed with respect to one another (22 of 46 surveys total) (Table 

A.1). A positive association between species pairs was exhibited in a slightly smaller 

number of surveys (19 of 46 surveys). Species pairs were disassociated in only five 

surveys, three of which were between non-native slugs and M. mutabilis. Otherwise, 

similar proportions of each species pairing were randomly distributed or associated.  
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Given that more than half of slug populations were randomly associated, I can 

conclude that most slug populations did not have a distributional influence on each other. 

The high number of positive associations suggests that slugs are using the same 

resources, such as coarse woody debris or food (Chapter 2; Bohan et al. 2000). I 

attempted to eliminate the likeliest habitat factor responsible for slug population 

aggregations in order to retest for spatial (dis)associations between slug species pairs. My 

observations suggested that slugs were aggregated on CWD. In response, partial Mantel 

tests were conducted in the program, PASSaGE (Rosenberg 2001) to eliminate the factor 

of CWD by treating it as a covariate while reanalyzing associations between populations 

(Chapter 1). 

 Note that SADIE and PASSaGE results should not be compared directly. The 

PASSaGE analysis takes into account CWD as a factor, several datasets were eliminated 

because autocorrelation could not be removed, and other adjustments were made to the 

underlying datasets. 
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Table A.1  Overall association X of slug species pairs at each site. Light gray boxes 

indicate a significant positive association (P < 0.025) and dark gray boxes indicate a 

significant negative association (P > 0.975) under a two-tailed distribution. NN are non-

native slugs, Pc are P. carolinianus, and Mm are M. mutabilis. Blank cells represent 

surveys for which population sizes were too small to conduct statistical analyses. 

 Site A     Site B     Site C     

Species 

Pairs 

NN + Pc NN + 

Mm 

Pc + 

Mm 

NN + Pc NN + 

Mm 

Pc + 

Mm 

NN + 

Pc 

NN + 

Mm 

Pc + 

Mm 

 Survey 1 Survey 1 Survey 1 

X 0.4947 0.4582 0.3831 0.3168 0.4954 0.413 0.1954 0.2694 0.1275 

P <0.0001 <0.0001 0.0014 0.004 <0.0001 0.0005 0.0513 0.0134 0.1385 

 Survey 2 Survey 2 Survey 2 

X 0.4658 -0.2878 -0.4015 0.0335 -0.5671 0.246 0.1836 -0.0916 0.1598 

P 0.0001 0.989 0.9997 0.3898 >.9999 0.0165 0.0703 0.7416 0.1644 

 Survey 3-6 Survey 3-6 Survey 3-6  

X 0.2855   0.2633 0.1863 0.6528 0.1092 0.0886 0.7165 

P 0.0379   0.0133 0.0608 <0.0001 0.211 0.2508 <0.0001 

 Survey 7 Survey 7 Survey 7 

X 0.2372 0.1672 0.1004 0.3729 0.1395 0.2852 -0.081   

P 0.0813 0.0792 0.1932 0.0015 0.1582 0.02 0.7469   

 Survey 8 Survey 8 Survey 8 

X 0.1600 0.3217 0.0351 0.3118 0.3956 0.0776 -0.4006 -0.2999 0.1065 

P 0.0971 0.0079 0.3792 0.0107 0.0002 0.2699 0.9993 0.9903 0.1934 

 Survey 9 Survey 9 Survey 9 

X -0.1773   0.2085 -0.26 0.2555 0.3123   

P 0.9338   0.0381 0.9745 0.0167 0.0067   
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Section A.IV.: 

Field survey datasets used in spatial analysis through PASSaGE 

 

Table A.2 This table details the original field survey datasets and whether they were kept 

in their original form, rescaled, or dropped from analysis. For explanations of these 

dataset types, see Chapter 1 or Appendix B, Section V. 

O = original dataset used 

2 = rescaled to lag 2 

5 = rescaled to lag 5 

X = dataset unusable.  
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Survey 
number 

Site A. subfuscus M. mutabilis P. carolinianus 

1 A X 2 2 
1 B X X X 
1 C X 2 2 
2 A O O O 
2 B 5 5 5 
2 C O O O 
3 A 5 X 5 
3 B X X X 
3 C O O O 
4 A X X X 
4 B O O O 
4 C X X X 
5 A O X O 
5 B 2 X 2 
5 C O O O 
6 A X X X 
6 B X X X 
6 C X X X 
7 A O X O 
7 B 5 5 5 
7 C 2 X 2 
8 A O O O 
8 B 5 5 5 
8 C O O O 
9 A X X X 
9 B 2 X 2 
9 C X X X 
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Section A.V.: 

Spatial associations of species pairs obtained through PASSaGE 

 

Table A.3 Statistical details are shown of the partial Mantel tests of the association 

between species pairs’ abundances, with coarse woody debris treated as a covariate. Most 

datasets were analyzed at their original scale (75 cells; lag =1 cells), while others 

exhibiting spatial autocorrelation were rescaled to a coarser grain of 12 cells (lag = 2 

cells), or rescaled to an even coarser grain of three cells (lag = 5 cells) and combined 

across sites and surveys. A left-tailed P < 0.05 and r < 0 indicates a significant negative 

association, while a right-tailed P < 0.05 and r > 0 indicates a significant positive 

association between the abundance datasets. (* shows a significant P.)  

Survey 
number 

Site Number of cells Species pair correlation r left-tailed P right-tailed P 

2 A 75 As and Pc 0.1735 0.91111 0.08899 

5 A 75 As and Pc 0.0214 0.88871 0.11139 

7 A 75 As and Pc 1.0000 1.00000 *0.00010 

8 A 75 As and Pc 0.0869 0.76592 0.23418 

4 B 75 As and Pc -0.0540 0.14459 0.85551 

5 B 12 As and Pc -0.1807 0.09249 0.90761 

9 B 12 As and Pc 0.2772 0.90041 0.09969 

2 C 75 As and Pc 0.2580 0.98340 *0.01670 

3 C 75 As and Pc 0.3827 0.96500 *0.03510 

5 C 75 As and Pc 0.1084 0.87861 0.12149 

7 C 12 As and Pc -0.1131 0.38336 0.61674 

8 C 75 As and Pc -0.0534 0.20588 0.79422 

 all 12 As and Pc 0.5321 0.99490 *0.00520 

       

2 A 75 As and Mm -0.0452 0.55024 0.44986 

8 A 75 As and Mm 0.3450 0.98580 *0.01430 

4 B 75 As and Mm -0.0349 0.37186 0.62824 
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2 C 75 As and Mm -0.0628 0.25097 0.74913 

3 C 75 As and Mm -0.0278 0.37506 0.62504 

5 C 75 As and Mm 0.0948 0.88671 0.11339 

8 C 75 As and Mm 0.0362 0.90431 0.09579 

 all 9 As and Mm -0.1089 0.23708 0.76302 

       

1 A 12 Mm and Pc 0.2361 0.85691 0.14319 

2 A 75 Mm and Pc -0.0354 0.63924 0.36086 

8 A 75 Mm and Pc 0.4920 0.98240 *0.01770 

4 B 75 Mm and Pc -0.0301 0.63404 0.36606 

1 C 12 Mm and Pc 0.2431 0.84972 0.15038 

2 C 75 Mm and Pc -0.0179 0.64224 0.35786 

3 C 75 Mm and Pc 0.4718 0.98880 *0.01130 

5 C 75 Mm and Pc 0.5095 0.99570 *0.00440 

8 C 75 Mm and Pc 0.0996 0.88531 0.11479 

 all 12 Mm and Pc -0.0175 0.60484 0.39526 
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APPENDIX B 

Diets of A. subfuscus, M. mutabilis, and P. carolinianus through the year 

 

In this section, the diet of slugs is compared between two periods of the year to test 

whether season was likely to have altered slug feeding habits and therefore diet overlap 

between slug species pairs. This is a supplementary test to provide some basis for the 

assumptions in Chapter 2 that diet is fairly consistent through time and therefore that the 

calculated overlap statistics are meaningful. 

Gastropod diets often vary during the course of a year. Changes in food quality, 

food availability, and gastropod nutritional requirements cause seasonal variation in 

foods consumed (Speiser and Rowell-Rahier 1991). Jennings and Barkham (1975) 

observed seasonal changes in the proportions of fungus and animal matter consumed by 

some slug species, possibly in response to availability of food (Beyer and Saari 1978). 

Herbivorous gastropods often shift between live and senescent plant material, or among 

plant species, depending on the allelochemical content of their food plants (Chatfield 

1976; Richter 1976; Hatziioannou et al. 1994; Hägele and Rahier 2001). Unfavorable 

weather may force slugs to remain close to the ground when feeding and to forgo their 

preferred foods (Jennings and Barkham 1975). However, Hägele and Rahier (2001) noted 

that Arianta arbustorum consumed a consistent proportion of senescent plants across 

their field season. For my dataset, I sought to answer the question, do proportions of food 

consumed by the slugs A. subfuscus, M. mutabilis, and P. carolinianus vary between the 

late spring and early summer? A shift would indicate that feeding niche dimensions for 

these slugs vary during the course of the year. 
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In order to determine whether the time of year affects the diets of slugs, I 

conducted a regression analysis to compare relative volumes of each food type between 

fecal surveys taken during the two periods of time. See Chapter 2 for methods in 

quantifying fecal material types on a grid. A regression analysis in SAS treated each food 

type (algae, fungus, plant, wood, minerals, soil, exoskeleton, and “others”) as one data 

point, with the average fecal volume per slug at period 1 (May 4th – June 5th) on the x-

axis and the volume at time 2 (June 12th – July 12th) on the y-axis. The volumes were 

non-normally distributed, and so they were log-transformed. A separate regression was 

performed for each species. 

Amounts were proportionately similar among food types between the two time 

periods. A. subfuscus and M. mutabilis each showed a significant association between 

food type proportions (A. subfuscus, regression: F = 9.01, P = 0.0239, R2 = 0.6003; M. 

mutabilis, regression: F = 6.35, P = 0.0452, R2 = 0.5143) (Fig. B.1). Food types 

consumed by P. carolinianus were not quite significantly proportionate between time 

periods (regression: F = 3.77, P = 0.1002; R2 = 0.3859). P. carolinianus feces mostly 

consisted of fungus, of which amounts were similar (174 vs. 193 boxes per grid) between 

the time periods 1 and 2, while the amount of “other” foods (19 vs. 0 boxes) and algae 

(10 vs. 1) were greater in time period 1 than 2.  

 



    117

 

Fig. B.1  Amounts of each food type in feces collected during time period 1 (May 4th-

June 5th) vs. time period 2 (June 12th – July 12th) for each slug species, to determine if 

foods consumed change through time. Food amounts are log-transformed volume units 

on a microgrid (see Chapter 2). Each point represents one of eight food types, i.e. algae, 

fungus, plant, wood, minerals, soil, exoskeleton, and other. 

 

Thus, dietary proportions did not differ greatly for these slug species between the 

two time periods, even though they encompass a growing period during which plant and 

fungus availability may differ. Only P. carolinianus showed a marginally non-significant 

association of food amounts between time periods. (Given that the main diet component, 

fungus, remained in similar proportions in the feces and thus probably was not lacking in 

availability, P. carolinianus may have consumed more algae and “other” foods earlier in 

the year in order to obtain micronutrients (Speiser and Rowell-Rahier 1991).) These 

results contrast with evidence of seasonal variation in feeding behavior in other 

gastropods (Jennings and Barkham 1975; Beyer and Saari 1978; Speiser and Rowell-

Rahier 1991), but they are in accord with data indicating that there is a seasonal 

consistency in senescent plant consumption by Arianta arbustorum (Hägele and Rahier 
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2001). Slugs might consume significantly different foods at other times of year not 

investigated, e.g. in the fall, if food availability and quality changes drastically. However, 

many gastropods exhibit enduring preferences among food species (Cates and Orians 

1975, Molgaard 1986, Speiser 2001). Perhaps the feeding preferences of A. subfuscus, M. 

mutabilis, and P. carolinianus drive them to consistency. 
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APPENDIX C 

Tables of ANCOVA statistics for each experiment manipulating species presence 

and resource level 

 

Experiment 1: Limiting Resources 

 

Table C.1  ANCOVA analysis of fitness of P. carolinianus and A. subfuscus slugs under 

various levels of food and shelter. Treatments were single-species. Interactions were not 

significant and so are not shown. Num df is numerator degrees of freedom, and Den df is 

denominator degrees of freedom. (* indicates significant P-value.) 

Fitness measures Independent 
factor 

Num df Den df F P 

P. carolinianus      

Average mass change per day Food 2 80 27.22 *<0.0001 

 Shelter 2 80   0.59   0.5572 

Final mass Food 2 80 70.71 *0.0001 

 Shelter 2 80   0.54   0.5850 

Final mass plus egg laying mass 
lost 

Food 2 80 101.76 *0.0001 

 Shelter 2 80   0.75   0.4739 

Total eggs laid Food 2 80 18.78 *0.0001 

 Shelter 2 80   1.36   0.2634 

A. subfuscus      

Average mass change per day Food 2 35.6  8.82 *0.0008 

 Shelter 2 35.4  0.21   0.8100 

Final mass Food 2 80 13.26 *0.0001 

 Shelter 2 80   2.54   0.0854 
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Experiment 2: Mixed Species 

 

Table C.2  ANCOVA analysis of the main effects (food, shelter, and mixed species) of 

Experiment 2 on P. carolinianus fitness. (* indicates significant P-value. The only 

significant interaction is shown. In this case, a main effects factor with a P < 0.05 was not 

marked as significant.) 

Fitness measures Independent 
factor 

Num df Den df F P 

Average mass change per day Food 1 41.4 31.78 *<0.0001 

 Shelter 1 41.4   0.19     0.6678 

 Mixed Species 1 41.3   0.72    0.4006 

Final mass Food 1 44.8 30.25 *<0.0001 

 Shelter 1 44.8   0.00     0.9492 

 Mixed Species 1   44.7   2.26    0.1400 

Final mass plus egg laying mass 
lost 

Food 1   42.3 52.01 *<0.0001 

 Shelter 1   42.3   1.66    0.2049 

 Mixed Species 1   42.2  4.32  *0.0439 

Total eggs laid Food 1   33.8 16.43  *0.0003 

 Shelter 1   33.7   7.52  *0.0097 

 Mixed Species 1   33.7   1.76   0.1938 

Count of slugs dead Food 1 48   4.10   0.0484 

 Shelter 1 48   0.92   0.3422 

 Mixed Species 1 48   0.36   0.5487 

 Shelter x Food 1 48   4.10  *0.0484 

Distances between Pc and As Food 1 31   1.20   0.2825 

 Shelter 1 31   2.11   0.1567 
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Experiment 3: Shelter and Moisture 

 

Table C.3  ANCOVA analysis of the main effects (shelter, moisture, and mixed species) 

of the shelter moisture experiment on P. carolinianus and A. subfuscus fitness. (* 

indicates significant P-value. No interactions were significant except for the two shown. 

In these cases of interaction, main effects factors for which P < 0.05 were not marked as 

significant.) 

Fitness measures Independent 
factor 

Num df Den df F P 

P. carolinianus      

Average mass change per day Shelter 1   31.9   0.02   0.8804 

 Moisture 1   31.9   7.68 *0.0092 

 Mixed Species 1   31.2   0.05   0.8271 

Final mass  Shelter 1   27.2   2.42   0.1314 

 Moisture 1   27.2   1.83   0.1874 

 Mixed Species 1   26.5   0.16   0.6949 

Final mass plus egg laying mass 
lost 

Shelter 1   27.9   5.04 *0.0328 

 Moisture 1   27.8   0.41   0.5273 

 Mixed Species 1   27.2   0.21   0.6491 

Total eggs laid Shelter 1   24.6   2.28   0.1440 

 Moisture 1   24.6   0.87   0.3613 

 Mixed Species 1   24.2   1.74   0.1982 

Count of slugs dead Shelter 1 24   3.88   0.0604 

 Moisture 1 24 12.83   0.0015 

 Mixed Species 1 24   0.80   0.3793 
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 Shelter x Moisture 1 24   4.62 *0.0419 

A. subfuscus      

Average mass change per day Shelter 1   26.8 13.80 *0.0009 

 Moisture 1   26.8   1.38   0.2504 

 Mixed Species 1   26.8   1.61   0.2157 

Final mass Shelter 1   26.3 13.61 *0.0010 

 Moisture 1   26.3   0.77   0.3891 

 Mixed Species 1   26.3   2.96   0.0972 

Count of slugs dead Shelter 1 24   1.86   0.1852 

 Moisture 1 24   0.34   0.5643 

 Mixed Species 1 24   0.04   0.8471 

Distances between Pc and As Shelter 1 11 29.11   0.0002 

 Moisture 1 11 33.41   0.0001 

 Shelter x Moisture 1 11   5.69 *0.0361 
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Experiment 4: Juveniles 

 

Table C.4  ANCOVA analysis of the fitness of P. carolinianus juveniles occurring with 

different cohabitants, food levels, and shelter levels. (No interactions were significant. * 

indicates significant P-value.)  

Fitness measures Num df Den df F P 

Average mass change per day     

Food 1 58 2.90  0.0939 

Shelter 1 58 0.03  0.8589 

Cohabitants 3 58 4.35 *0.0078 

Final mass     

Food 1 59 9.84 *0.0027 

Shelter 1 59 0.00  0.9562 

Cohabitants 3 59 6.57 *0.0007 
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APPENDIX D 

 

Section D.I.: 

Tables of t-statistics for exploitation and interference planned comparisons  

 

Table D.1  Exploitation competition, tested through paired comparisons of the fitness of 

P. carolinianus slugs under high vs. low food and high vs. low shelter conditions.  

Mixed-species mesocosms containing two P. carolinianus and two A. subfuscus each 

were used. (* indicates significant P-value.) 

Fitness measures Food: high vs. low Shelter: high vs. low 

 df t P df t P 

Average mass change per day 69.3 4.32 *<0.0001 69.3 0.53 0.6001 

Final mass  68.7 4.06 *0.0001 68.7 -0.11 0.9136 

Final mass plus egg laying mass lost 62.9 5.66 *<0.0001 62.9 1.64 0.1056 

Total eggs laid  55.9 3.53 *0.0008 55.9 3.50 *0.0009 

% Slugs dead 48 -1.78 0.0808 48 0.00 1.0000 
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Table D.2  Interference competition, measured as fitness of P. carolinianus slugs in A. 

subfuscus absence vs. A. subfuscus presence treatments, under high food or high shelter 

conditions. (* indicates significant P-value.) 

Fitness measures A. subfuscus presence vs. 
absence (high food) 

A. subfuscus presence vs. 
absence (high shelter) 

 df t P df t P 

Average mass change per day 41.3 -0.79 0.4335 41.3 -0.80 0.4255 

Final mass  44.7 -1.02 0.3140 44.7 -1.00 0.3206 

Final mass plus egg laying mass lost 42.2 -1.67 0.1022 42.2 -2.10 *0.0420 

Total eggs laid  33.7 -1.43 0.1613 33.7 -2.33 *0.0260 

% Slugs dead 48 -0.35 0.7266 48 -1.11 0.2745 
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Section D.II.: 

Response of slugs to the species identity of and food consumed by a mucus-producer 

This experiment was a side project to determine whether P. carolinianus response (or 

non-response) to mucus depended on the species producing the mucus or the food it 

consumes. Although P. carolinianus remained consistently unaffected by mucus quality, 

these methods may be of interest to researchers investigating these phenomena in 

gastropod species that do respond to mucus.  

 

INTRODUCTION 

Gastropods depend on mucus to navigate through their environment and to communicate 

with other gastropods. Their locomotion is energetically expensive and causes major 

water loss (Machin 1978; Denny 1980). Perhaps to minimize the costs of locomotion, 

gastropods respond readily to environmental cues including mucus trails left by other 

gastropods (Chelazzi et al. 1988; Cook 1992). Slugs can save energy by following other 

slugs (Rollo and Wellington 1981) rather than by discovering and forging a new trail. 

Mucus also has roles in defense, competition, mating, homing, and other behaviors. 

Deroceras laeve avoid places smeared with the mucus of stressed conspecifics (Jordaens 

et al. 2003). Mucus serves as a competition mechanism that interferes with growth and 

activity within and among many gastropod species (Cameron and Carter 1979; Carter and 

Ashdown 1984; Pearce 1997). Many slug species exhibit a phase of courtship in which a 

slug follows a prospective partner’s mucus trail (Reise 2007). Gastropods follow slime 

trails and orient toward chemical “beacons” deposited in shelters while they are homing 
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towards shelters (Peake 1978; Cook 1979). Large slugs tend to have daytime shelters that 

they recognize chemically and which groups of slugs share (Cook 1992).  

Given that individuals most closely share the niche requirements of their own 

species (DeBach 1966; Reitz & Trumble 2002; Duyck et al. 2004), slugs would benefit 

from recognizing and most strongly responding to the mucus of conspecifics in order to 

follow them to food sources and to appropriate shelter. Presumably, those species that 

engage in trail following during courtship (Reise 2007) or that differentially respond to 

the mucus of conspecifics or heterospecifics during competitive interactions (Cameron & 

Carter 1979; Lee and Silliman 2006) recognize the species identity of the mucus-

producer. However, the effect of food consumption on the chemical qualities of slug 

mucus is unknown. Perhaps, chemical traces of foods exuded in mucus would be an 

indicator of favorable microhabitats, i.e., shelter near preferred foods, regardless of the 

species identity of the mucus producer. However, previous studies did not evaluate 

whether the stimulus is an endogenous chemical produced specifically by each slug 

species or a chemical trace of attractive food consumed and exuded in the mucus.   

Slugs may respond to the species producing the mucus, the food consumed by the 

mucus producer, or both. To determine whether P. carolinianus’s response to mucus 

depends on the food of the mucus-producer, I fed both A. subfuscus and P. carolinianus 

different foods and measured the amount of time P. carolinianus lingered in the presence 

of their mucus. 
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METHODS 

In October, 2009, four A. subfuscus and four P. carolinianus adults were selected.  Each 

slug was placed in its own 240 ml deli container with commercial white mushroom (two 

P. carolinianus and two A. subfuscus), dried wild fungus (two P. carolinianus), or lettuce 

(two A. subfuscus). Slugs were allowed to feed for at least 48 hours.  

A circle of 5.0 cm diameter was drawn on the center of small Petri dishes about 9 

cm in diameter. The food treatment slugs were allowed to crawl on the central circle of 

the dishes for 30 minutes, and afterwards, the deposited mucus was spread over the entire 

circle with a small spatula. The five treatments to which individual dishes were subjected 

were no mucus, mucus of A. subfuscus with lettuce food, mucus of A. subfuscus with 

fresh mushroom, mucus of P. carolinianus with dried mushroom, and mucus of P. 

carolinianus with fresh mushroom. Partly-grown P. carolinianus juveniles that had been 

raised from eggs were the subjects to be exposed to the mucus. All had fed on a diet of 

store-bought white mushrooms for at least 48 hours before the experiment began. A total 

of 32 mucus-exposure trials per treatment took place over two separate days.  Each 

juvenile subject was placed in the center of a circle, and 600 seconds were allowed to 

pass. I recorded for each slug when its tentacles protruded from the circle (“head out”) 

and when the tail tip left the circle (“tail out”).  Subjects underwent several trials with 

dish treatment assigned randomly.  Each dish was reused four times, which did not affect 

the outcome of the experiment. (The results were the same if the first or all trials were 

considered.) 

A similar experiment was attempted for A. subfuscus, but subjects became 

immobile after a few sessions and no more trials could take place. A. subfuscus responded 
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to repeated contact with forceps by compressing their bodies to the substrate, a defensive 

posture (Rollo and Wellington 1979), while P. carolinianus seemed to react less to the 

same contact. 

Two one-way ANOVAs were performed in SAS (SAS Institute Inc. 2008). For 

both ANOVAs, mucus treatment was the independent variable, and the time until “head 

out” or “tail out” was the dependent variable. Slugs that did not move within 600 seconds 

were excluded from the analysis. 

 

RESULTS 

The average time for “heads out” did not differ among treatments (1-way ANOVA: F4,71 

= 0.136, P = 0.968) (Fig. D.1). Also, the average time for “tails out” did not vary among 

treatments (1-way ANOVA: F4,68 = 1.184, P = 0.3265).  
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Fig. D.1 The average time for each juvenile P. carolinianus slug’s tentacles and tail tip to 

leave a mucus-treated circle. Treatments were no mucus (Nm), A. subfuscus with lettuce 

food (AsL), A. subfuscus with fresh mushroom (AsM), P. carolinianus with dried 

mushroom (PcD), and P. carolinianus with fresh mushroom (PcM). Bars indicate average 

time +SE. 

 

DISCUSSION 

P. carolinianus did not differ significantly in their responses to the identity of the mucus-

producer or the foods consumed by the mucus-producer. However, the time for “heads 

out” and “tails out” was highly variable among individual slugs, which may have masked 

slight trends in mucus preferences.  

 Perhaps P. carolinianus does not respond to mucus of any type, treatments were 

not composed of equivalent offerings, or smearing the mucus may have altered the 

qualities of the mucus. Mucus contains chemicals that can act as social cues, enabling 

other gastropods to find partners for mating, to find home shelters, to avoid predators, 

and to engage in territoriality or growth suppression (Cameron and Carter 1979; Carter 



    131

and Ashdown 1984; Pearce 1997; Lee and Silliman 2006; Reise 2007). Unlike slugs such 

as Lehmannia valentiana and several Limax species (Cook 1981; South 1992), P. 

carolinianus is not known to seek out huddles of other slugs (Thompson et al. 2006), 

although they do aggregate in moist crannies in dead wood. P. carolinianus does not 

appear to notice the presence of other slugs, but rather, randomly selects pieces of shelter 

wood regardless of the number of conspecifics occupying it (Tim Pearce and Cagin Unal, 

unpub. results). Mucus was not shown to be an interference mechanism within P. 

carolinianus or between P. carolinianus and A. subfuscus (Chapter 4). No one has 

investigated mucus as a homing mechanism or as a part of the courtship process in 

philomycid slugs. The social aspects of mucus may not be as important to P. carolinianus 

as to other species. A similar experiment should be attempted for another species, e.g. 

Limax maximus or D. reticulatum, for which several social functions of mucus have been 

discovered, to test whether the species of the mucus-producer, its food consumed, or both 

determine slug response to mucus. 
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