
The InsTITuTe for sysTems research

Isr develops, applies and teaches advanced methodologies of design and 
analysis to solve complex, hierarchical, heterogeneous and dynamic prob-
lems of engineering technology and systems for industry and government.

Isr is a permanent institute of the university of maryland, within the  
a. James clark school of engineering. It is a graduated national science 

foundation engineering research center.

www.isr.umd.edu

Predicting the Impact of Placing Pre-event 
Pharmaceuticals for Anthrax

Michelle Houck
Jeffrey Herrmann 

Isr TechnIcal rePorT 2011-02



 1

Predicting the Impact of Placing Pre-event Pharmaceuticals for Anthrax 
 

Michelle L. Houck, Jeffrey W. Herrmann  
University of Maryland 

College Park, MD 20742 

Abstract 

Finding feasible strategies to distribute antibiotics quickly to the general public in 

response to an anthrax attack remains a difficult challenge.  Among the proposed strategies is the 

pre-event placement of pharmaceuticals in individual households for use only as directed by 

public health authorities.  These medications (known as “MedKits”) would allow many exposed 

persons to begin treatment quickly while reducing the number who visit on points of dispensing, 

the primary distribution strategy.  This paper describes a model that estimates the expected 

number of deaths in an anthrax attack by modeling the logistics of the response and the use of 

MedKits.  The results show that increasing the number of MedKits distributed can reduce the 

expected number of deaths.  When the population has more potential exposures, deploying 

MedKits is more effective.  The MedKits reduce the number of potential exposures who seek 

prophylaxis, which allows those truly exposed (but without MedKits) to receive medication 

sooner, which saves lives.  Beyond the scenarios considered here, the ability to predict this 

benefit in other scenarios will be valuable to public health officials who are considering this 

option.   

Introduction 

The deliberate release of aerosolized anthrax spores in a large city could expose many 

thousands of residents to this deadly disease.  Promptly distributing antibiotics to those exposed 

is a key step in preventing illness and deaths.  Avoiding delays in this distribution is critical. 
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Such a response will require enormous resources.  State and local health departments 

have developed plans for points of dispensing (PODs), the primary distribution channel.  These 

health departments realize, however, that they do not have the staff required to operate enough 

PODs to distribute medication to a large number of people sufficiently quickly.  Therefore, other 

strategies have been proposed and tested (CDC, 2007).  These include employing the U.S. Postal 

Service to deliver antibiotics directly to residences (cf. Executive Order 13527), pre-deploying 

pharmaceuticals to hospitals, pre-event dispensing of pharmaceuticals to first responders, and the 

pre-event placement of pharmaceuticals in individual households for use only as directed by 

public health authorities.  This paper focuses on using this last option along with PODs that 

distribute medication from local and federal stockpiles.  The pre-deployed medications are 

commonly known as “MedKits.” 

In a 2006 study in the St. Louis, Missouri, metropolitan area, over four thousand 

households were given a five-day supply of antibiotics.  When directed to return the medication 

months later, 97% of all study respondents did so; almost all (over 99%) of the MedKits were 

intact (CDC, 2007). 

Because it is a challenge, the logistics of responding to an anthrax attack has been studied 

from various perspectives.  Various models for predicting the performance of PODs have been 

developed.  The BERM model (AHRQ, 2005) predicts the staffing required at a POD.  Lee et al. 

(2009) describe RealOpt, a simulation and optimization tool for modeling PODs.  Aaby et al. 

(2006a, b) and Herrmann (2008) describe the Clinic Planning Model Generator, a spreadsheet 

implementation of queueing network approximations that can quickly estimate the capacity of a 

POD and the wait time at each station.   
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Hupert et al. (2009) created a mathematical model that estimates the number of 

hospitalizations that would result from an anthrax attack and used this model to examine how the 

number of hospitalizations increases if medication distribution is delayed.  They conclude that, in 

the case of a large-scale, covert aerosol anthrax release in a major city, delays in attack detection 

and response initiation would lead to “unsustainable levels of hospitalizations.” 

The use of MedKits has been advocated by Kaplan et al. (2003), who describe the 

benefits of reducing the time needed to distribute medication.  Concerns about safety and the 

inappropriate use of MedKits have slowed the development of this option (Troy, 2010).  We are 

unaware, however, of any efforts to model how pre-deploying MedKits would reduce the 

mortality resulting from an anthrax attack.  Predictions of this benefit should be valuable to 

public health officials who are considering this option.   

The study described in this paper extends the work of Zaric et al. (2008), who developed 

a compartmental model to predict the deaths from an anthrax attack and used the model and 

other measures to evaluate the costs and benefits of pre-event stockpiling, distribution strategies, 

and rapid attack detection.  Although the paper considered a broad set of questions, it focused on 

PODs and did not consider the impact of pre-deploying MedKits. 

Holty et al. (2006) reviewed all of the cases of inhalational anthrax that have been 

published since 1900.  The disease progression model used here is based upon that review. 

The purpose of the work described in this paper was to develop a model that could 

estimate the impact of deploying MedKits in a community and to use that model to consider 

some possible scenarios to get some insight into the effectiveness of the MedKit strategy.  To 

that end, we enhanced the compartmental model of Zaric et al. (2008).  (A complete description 

of the model is provided in the Appendix of this paper.) 
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This study did not explicitly consider the cost of MedKits, as that information is quite 

uncertain, or other issues related to this strategy.  The cost will depend greatly upon the number 

of MedKits that are predeployed.  Other issues are still being studied.  The key contribution of 

this study is to estimate the reduction in deaths if MedKits are predeployed.  This information 

can be used as part of the discussion of whether to pursue this strategy. 

The remainder of this paper describes the compartmental model that was used, presents 

the results for various scenarios (including those considered by Zaric et al., 2008), and discusses 

the work, its limitations, and possible extensions. 

Methods 

Model Overview 

For this study, we developed a compartmental model that includes both the progression 

of the disease and the logistics of treatment.  A compartmental model represents the flows of 

individuals between compartments.  Each compartment represents a number of homogeneous 

individuals (that is, they are identical with respect to their condition and treatment status).  The 

compartments are mutually exclusive and collectively exhaustive; at any point in time, each 

individual in the population is in exactly one compartment.  Compartmental models are useful 

when one can partition the population into distinct subsets.  The models can be analyzed using 

differential equations (which can be solved exactly in some situations) or difference equations 

(which we will use here).  Jacquez (1996) and Walter and Contreras (1999) provide good 

introductions to compartmental models with applications in biology, medicine, ecosystems, 

populations, and economics.   

The model used here (the “MedKits model”) extends the model of Zaric et al. (2008) (the 

“POD model”) by adding additional compartments for the population that has MedKits.  Like the 
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POD model, the MedKits model is a discrete-time model.  The time period is one hour.  Let 

( )iX t  be the number of individuals in compartment i at time t, with X(t) the column vector of 

these values.  The model calculates these values for a 100-day time horizon.  Let T = 2400 hours 

denote the last time period. At each point in time, we calculate the transition matrices ( )tφ  and 

( )tψ , where ( )ij tφ  is the number of individuals who move from compartment i to compartment j 

due to illness, recovery, or death, and ( )ij tψ  is the number of individuals who move from 

compartment i to compartment j due to awareness, prophylaxis, or treatment.  Let E be the 28-

by-1 column vector of ones.  Then, the transitions can be written as follows: 
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The following sections describe the features of the model, our assumptions, and the 

sources of data.  A complete and precise mathematical description of the model is provided in 

the Appendix of this paper.  Many of the parameters given below and used in the MedKits model 

are the same as those used in the POD model, but the model can be changed easily to consider 

scenarios with other parameters.  We will exploit this in the scenario analysis described later in 

this paper. 

Timeline 

The MedKits model can be used for many scenarios.  Those considered in this report are 

based on the following timeline.  The attack occurs at t = 0 hours.  The attack is detected at t = 
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48 hours.  Local supplies of both intravenous antibiotics (IVs) for treatment and antibiotics for 

dispensing will become available 5 hours later at t = 53 hours.  Intravenous antibiotics (IVs) for 

treatment, antibiotics for dispensing, and additional ventilators from the push pack will become 

available 16 or 28 hours after attack detection at t = 64 or 76 hours.  (This is due to a 12 or 24 

hour delay in receiving the push pack and another 4 hour delay in getting the material from the 

push pack ready.)  Intravenous antibiotics (IVs) for treatment and antibiotics for dispensing from 

vendor-managed inventory (VMI) will become available 36 hours after attack detection at t = 84 

hours.  At t = 96 hours (48 hours after attack detection), complete POD capacity will be 

available.   

Exposure 

The population consists of three large subpopulations: those who were exposed to the 

anthrax attack (and are at risk), those who were not exposed to the anthrax attack (or inhaled too 

few anthrax spores to become ill), and those who believe that they may have been exposed 

(because of their proximity to the attack or for other reasons).  The persons in this last group, 

called “potential exposures,” will undergo prophylaxis (by going to PODs and taking their 

MedKits) but cannot become ill.  Let P be the total size of the population, and let N be the 

number exposed.  Let β be the fraction of those who are not exposed but believe that they were. 

Like the POD model, the MedKits model does not divide the population by age because 

we assume that the progression of anthrax does not depend upon age. 

We assume that exposure to the attack is independent of MedKit possession.  Therefore, 

the proportion who possess MedKits is the same in all three subpopulations.  Because those who 

were not exposed cannot become ill and do not seek prophylaxis whether they have a MedKit or 

not, the model treats all of these persons in one compartment. 
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Those who are exposed are initially unaware of their exposure.  Some become aware 

during incubation, some when they are prodromal, and some when they are fulminant. 

Prophylaxis 

Those who have MedKits do not go to PODs, so those who were exposed and potential 

exposures can start prophylaxis as soon as they become aware.  However, some of those to 

whom MedKits were distributed may be unable to use them, so we assume that 5% of those 

given MedKits do not have them at the time of the attack.   

Those who do not have MedKits will go to PODs, where the prophylaxis dispensing 

consists of an oral antibiotic, either ciprofloxacin or doxycycline.  Prophylaxis dispensing 

capacity is limited.  It depends upon the facilities and staff available.  In the scenarios considered 

in this paper, we assume that there is a fixed maximum prophylaxis dispensing capacity, which is 

140,000 persons per day, or 5,833.33 persons per hour.  The hourly prophylaxis dispensing 

capacity increases in a linear manner, starting at 0 at t = 48 hours and reaching its maximum at t 

= 96 hours.   

Prophylaxis dispensing is also limited by the availability of medication.  Although a 

complete regimen has 60 days of medication, we assume that only 14-day abbreviated regimens 

are dispensed until the VMI becomes available.  We assume that the local stockpile has 50,000 

doses (3,571 abbreviated regimens), the push pack provides 2,718,000 doses (194,143 

abbreviated regimens), and the VMI provides sufficient doses for everyone to receive a complete 

regimen and enough IV antibiotics for everyone who needs them. 

Those who adhere to their prophylaxis will not become ill, but some who begin 

prophylaxis during the incubation stage will not adhere and may become ill.  (We assume that 

those who are in the prodromal and fulminant stages will always adhere.)  We considered two 

different adherence rates: 65% and 90%.  During the 2001 anthrax attack in Washington, D.C., 
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only 64% of those who received prophylaxis adhered fully to prophylaxis (Shepard et al., 2002).  

Wein et al. (2003) assumed that 90% of those who receive prophylaxis will adhere.   

We do not consider the duration of the regimens in the MedKits.  If these regimens or 

those dispensed at the PODs are not complete regimens, then these persons will need to obtain 

the remainder.  We assume that the process of dispensing the remainder will be done on a less 

urgent basis and will not interfere with primary dispensing capacity. 

Treatment 

Persons who become ill need treatment, which consists of three antibiotics (rifampin, 

clindamycin, and either ciprofloxacin or doxycycline) administered intravenously in an intensive 

care unit (ICU).  All who begin treatment adhere to it.   

Treatment capacity is limited by the availability of IV antibiotics, ventilators, respiratory 

technicians, and ICU beds.  We assume that the local stockpile has 500 days of IV antibiotics, 

the push pack provides 21,492 days of IV antibiotics, and the VMI provides sufficient IV 

antibiotics for everyone who is being treated.  We assume that 100 ventilators are available when 

the attack occurs, and the push pack provides 100 more.  We assume that each respiratory 

technician can monitor 10 patients, 200 respiratory technicians are available when the attack 

occurs, and 2,000 ICU beds are available when the attack occurs.  There must be at least one 

day’s worth of IV antibiotics to begin treatment of one patient.   

In this scenario, the treatment bottleneck is the lack of IV antibiotics until the local 

stockpile becomes available.  Then the ventilators are the bottleneck, while there will be plenty 

of IV antibiotics for those being treated. 

Disease Progression 

The transition path is from the incubation stage to the prodromal stage, to the fulminant 

stage, and then to death.   
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An exposed person in the incubation stage is infected with anthrax but is asymptomatic.  

A person in the prodromal stage has nonheadache neurological symptoms (e.g., fever, muscle 

aches, fatigue) that are similar to flu.  A person in the fulminant stage is severely ill, has 

respiratory distress, and may die within days.  

We assume that only persons in the fulminant stage can die.  Because it considers a short 

period of time, this model does not consider any other causes of death.  Those in the prodromal 

and fulminant stages who start treatment may recover.   

The rates at which persons become ill, recover, or die vary based on their status.  The 

times to become ill, recover, or die are modeled as geometric distributions (thus, they are 

memoryless), and the probability of this event per time unit is the reciprocal of the mean time.  

The specific rates will be discussed later in the paper.   

Model Compartments 

Based on these preliminaries, we can now present the MedKits model, which has 28 

compartments to represent distinct groups within a population.  The primary distinctions between 

the compartments are the exposure of the individuals, the progression of the disease (including 

the definitive conditions of death or recovery), the treatment status, and the possession of 

MedKits.  The model includes the 21 compartments of the POD model and adds seven more: one 

for death, two for potential exposures who possess MedKits, three for exposed individuals who 

possess MedKits, and one for those who adhere to prophylaxis (and cannot become ill).  Table 1 

lists all 28 compartments. 
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Table 1.  The compartments in the MedKits model. 
Compartment Exposure, 

treatment status 
Progression of 
disease 

Treatment  
began 

MedKit 

1 Exposed, unaware 
of exposure 

Incubation n.a. No 

2 Exposed, unaware 
of exposure 

Prodromal n.a. No 

3 Exposed, unaware 
of exposure 

Fulminant n.a. No 

4 Aware of exposure Incubation n.a. No 
5 Aware of exposure Prodromal n.a. No 
6 Aware of exposure Fulminant n.a. No 
7 Not adhering to 

prophylaxis 
Incubation Prophylaxis begun in incubation stage Both 

8 In prophylaxis Prodromal Prophylaxis begun in incubation stage Both 
9 In prophylaxis Prodromal Prophylaxis begun in prodromal stage Both 

10 In prophylaxis Fulminant Prophylaxis begun in incubation stage Both 
11 In prophylaxis Fulminant Prophylaxis begun in prodromal stage Both 
12 In prophylaxis Fulminant Prophylaxis begun in fulminant stage Both 
13 In treatment Prodromal Treatment begun in prodromal stage Both 
14 In treatment Fulminant Prophylaxis or treatment begun in 

prodromal stage 
Both 

15 In treatment Fulminant Prophylaxis begun in incubation stage, 
treatment begun in fulminant stage 

Both 

16 In treatment Fulminant No prophylaxis or prophylaxis begun 
in fulminant stage 

Both 

17 Exposed Recovered n.a. Both 
18 Not exposed n.a. n.a. Both 
19 Potential exposure, 

not seeking 
prophylaxis 

n.a. n.a. No 

20 Potential exposure, 
seeking prophylaxis 

n.a. n.a. No 

21 Potential exposure, 
in prophylaxis 

n.a. n.a. No 

22 Exposed Dead n.a. Both 
23 Potential exposure, 

not seeking 
prophylaxis 

n.a. n.a. Yes 

24 Potential exposure, 
in prophylaxis 

n.a. n.a. Yes 

25 Exposed, unaware 
of exposure 

Incubation n.a. Yes 

26 Exposed, unaware 
of exposure 

Prodromal n.a. Yes 

27 Exposed, unaware 
of exposure 

Fulminant n.a. Yes 

28 Adhering to 
prophylaxis 

Prophylaxed Prophylaxis begun in incubation stage Both 

 



 11

 

1 2 3

4 5 6

7 8 109 1211

13 14

17

1615

22

18 19

20

21

23

24

25 26 27

28

 
Figure 1.  Schematic of the flows between compartments in the MedKits model. 

Model Flows 

In general, during each time period, a certain fraction of the individuals in a compartment 

will move to another compartment.  This flow is governed by the values of parameters describing 

the disease progression (the rates at which individuals become ill, recover, or die) and the 

prophylaxis and treatment capacity.  For a given flow, the fraction may be time-invariant (like a 

death rate) or may change over time as available treatment capacity ebbs and flows. 

The model includes two types of flows.  The first type of flow corresponds to changes in 

the disease in those who were exposed.  The transition path is from the incubation stage to the 

prodromal stage, to the fulminant stage, and then to death.  Those who are treated may recover.  

The second type of flow corresponds to changes in awareness and treatment.  Exposed persons 

and potential exposures are first unaware of their exposure or the need for prophylaxis.  When 

they become aware, then they seek prophylaxis (essentially, they are in a queue for prophylaxis).  
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Exposed persons who become sick then seek treatment and receive treatment.  Figure 1 is a 

schematic that shows the possible flows in the MedKits model. 

Because many of the compartments have multiple outflows (corresponding to different 

transitions), it is important to define the relative priority of the transitions.  In the MedKits 

model, the highest priority transitions are those that correspond to the progression of the disease, 

recovery, and death. 

The second priority transitions are those that correspond to awareness, prophylaxis, and 

treatment.  The number who can be given prophylaxis is limited by the prophylaxis dispensing 

capacity, which is spread proportionally across all of the compartments with persons waiting for 

prophylaxis.  Likewise, the number who can be treated is limited by treatment capacity, which is 

spread proportionally across all of the compartments with persons waiting for treatment. 

Table 2 gives these probabilities, which are based on the expected times in Holty et al. 

(2006) and Zaric et al. (2008).  For example, when the expected time to become fulminant is 

122.4 hours, the probability (each hour) of becoming prodromal is 1/122.4. 

The fraction ( ) ( )( ) ( 1) ( ) / 1 ( )p t F t F t F t= + − − , where F(t) is the cumulative distribution 

function of the incubation time, which is lognormally distributed with a mean of 10.95 days, and 

2.1392 and 0.713 are the mean and standard deviation of the variable’s natural logarithm 

(Brookmeyer et al., 2001).  This distribution for the incubation time has been used by, among 

others, Wein et al. (2003) and Zaric et al. (2008). 

The rate at which those who are prodromal become fulminant depends upon how long 

they have been ill.  The parameters 0.0026γ =  and 0.0181η =  are given by Zaric et al. (2008).  

The fractions 2 ( )tθ , 5 ( )tθ , and 26 ( )tθ  are the fraction of persons in compartments 2, 5, and 26 

who have developed symptoms in the last 72 hours.  Then, for j = 2, 5, and 26, 
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 ( ) ( )
72

1,
1

( ) min 1,j j j j
v

t t v X tθ φ −
=

⎧ ⎫= −⎨ ⎬
⎩ ⎭
∑  

Those who become ill can become aware at any time: for those who are in the prodromal 

stage, the probability, each hour, of becoming aware equals 1/72; for those who are in the 

fulminant stage, the probability equals 1/48.  After the attack is detected (at t = 48 hours), for 

those who are in the incubation stage and for potential exposures, the probability, each hour, of 

becoming aware equals 1/72.  This awareness process is a special case of the Bass diffusion 

process. 

Those who are ill and aware of their exposure (those in compartments 5 to 12) need to be 

treated.  Those in compartments 5 and 6 are also in the queue for prophylaxis.  Each hour, the 

capacity used to begin treating those who are waiting for treatment is determined as follows:  

{ }
16 6 12

13 5 8
( ) min max 0,min ( ), ( ),10 ( ), ( ) ( ) , ( ) ( )j j j

j j j
CT t IV t V t T t B t X t Y t Y t

= = =

⎧ ⎫⎧ ⎫⎪ ⎪= ⋅ − +⎨ ⎨ ⎬ ⎬
⎪ ⎪⎩ ⎭⎩ ⎭

∑ ∑ ∑  

At time t, IV(t) is the number of days of IVs remaining, V(t) is the number of ventilators 

available, T(t) is the number of technicians available, and B(t) is the number of ICU beds 

available.  Note that resources allocated to those already in treatment cannot be used to begin 

treating those waiting. 

The persons in compartments 5, 6, and 8 to 12 all have equal priority for treatment.  

Define the fraction ( )tπ  as follows: 

6 12

5 8

( ) ( ) ( ) ( )k k
k k

t CT t Y t Y tπ
= =

⎛ ⎞= +⎜ ⎟
⎝ ⎠
∑ ∑ . 

Thus, the number in each of these compartments who begin treatment is ( ) ( )jt Y tπ . 
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Because some of the individuals in compartments 5 and 6 will receive treatment (and 

don’t need prophylaxis), ( )qL t , the total number waiting for prophylaxis, can be calculated as 

follows: 

 ( )( )4 20 5 6( ) ( ) ( ) 1 ( ) ( ) ( )qL t Y t Y t t Y t Y tπ= + + − + . 

The total number who receive prophylaxis at time t can be determined as follows: 

 { }( ) min ( ) / ( ), ( ), ( )qCP t I t d t D t L t= . 

At time t, I(t) is the number of days of antibiotics remaining, d(t) is the number of days of 

antibiotics in the regimens being dispensed at that time, and D(t) is the dispensing capacity 

(persons per hour).  For 48t ≤ , D(t) = 0.  For 48 96t≤ ≤ , max
48( )

48
tD t D−

= .  For 96t > , 

max( )D t D= .   

The persons in compartments 4, 5, 6, and 20 all have equal priority for prophylaxis.  For 

each of the compartments, the number who receive prophylaxis is 4( ) ( ) / ( )qCP t Y t L t , 

5( )(1 ( )) ( ) / ( )qCP t t Y t L tπ− , 6( )(1 ( )) ( ) / ( )qCP t t Y t L tπ− , and 20( ) ( ) / ( )qCP t Y t L t . 
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Table 2.  Fraction of each compartment that becomes ill, recovers, or dies each hour. 

Compartment Become 
prodromal 

Become fulminant Die Recover 

1 p(t)    
2  

2 2( ) (1 ( ))t tθ γ θ η+ −    

3   1/26.4  
4 p(t)    
5  

5 5( ) (1 ( ))t tθ γ θ η+ −    

6   1/26.4  
7 p(t)    
8  1/122.4  1/21.7 
9  1/122.4  1/21.7 
10   1/26.4  
11   1/26.4  
12   1/38.4  
13  1/122.4  1/21.7 
14   1/24 1/720 
15   1/24 1/720 
16   1/38.4 1/720 
25 p(t)    
26  

26 26( ) (1 ( ))t tθ γ θ η+ −   

27   1/26.4  
 

Inventory 

The model also keeps track of the inventory of antibiotics available for prophylaxis and 

the IVs available for treatment.  Each hour, the inventory of antibiotics (days of medication) is 

reduced by the number of days of medication dispensed (the product of the number who receive 

prophylaxis and the number of days in the dispensed regimen at that time).  In addition, the 

inventory of IVs (days of IVs) is reduced by the number of those being treated (compartments 13 

to 16) divided by 24. 

The inventory for antibiotics and IVs increases when the local inventory becomes 

available (at t = 53 hours), when the push pack inventory is available and ready, and when the 

VMI becomes available (at t = 84 hours).  The number of ventilators also increases when the 

push pack inventory is available and ready. 
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Results 

To illustrate the use of the model to predict the impact of MedKits, we considered a range 

of scenarios like those in Zaric et al. (2008) and varied the number of pre-deployed MedKits.  

The population was 5 million people.  We ran the model on several scenarios on this population 

varying the number of people exposed, the fraction of unexposed people who believe they were 

exposed (and thus use medication that could be reserved for exposed people), the time until the 

push pack becomes available, and the prophylaxis adherence rate.  We considered attack 

scenarios with 50,000 exposed, 500,000 exposed and 1,250,000 exposed.  Rates of 0.01, 0.1, and 

0.5 were used for the fraction of the unexposed population seeking prophylaxis.  Values of 12 

hours and 24 hours were used for push pack availability.  We used prophylaxis adherence rates 

of 65% and 90%.  We also varied the number of MedKits distributed prior to an attack scenario.  

We considered increments of 500,000 MedKits from 0 to 5,000,000.  Distributing zero MedKits 

corresponds to the scenario in Zaric et al. (2008), and distributing 5,000,000 MedKits 

corresponds to the entire population receiving MedKits. 

Some expected trends were evident in our results.  When all other factors were held 

constant and the adherence rate increased from 65% to 90%, the number of deaths decreased, 

and the average reduction in mortality rate was 2.6%.  When the push pack availability decreased 

from 24 to 12 hours, the number of deaths decreased only slightly, as the average reduction in 

mortality rate was less than 0.5%.   

In every case, the number of deaths decreased as more MedKits were distributed.  In 

some cases this decrease was substantial while in other cases it was minimal.  A key factor that 

affected the size of the decrease was the rate of those not exposed who believed they were (the 

number of potential exposures).  When number of potential exposures was large, then medication 
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was not immediately available for those who truly needed it, which delayed their prophylaxis.  In 

these scenarios, distributing more MedKits saved many lives.  For example, in the scenario 

where 1,250,000 people were exposed and another 1,875,000 were potential exposures, with an 

adherence rate of 65% and push pack availability at 24 hours, the number of deaths decreased 

from 621,907 (if no MedKits had been distributed) to 140,368 (if Medkits had been distributed to 

the entire population).  When the number of potential exposures was small, the antibiotics were 

going to those who needed it with minimal delays, and distributing more MedKits had minimal 

impact on the number of deaths.  Figure 2 shows how the mortality rate decreases when more 

MedKits are distributed before an attack.  The results in this figure for scenarios in which the 

prophylaxis adherence rate is 90% and the delay until additional medication becomes available is 

24 hours.  Note that mortality rates are highest when the number of potential exposures is large, 

but distributing more MedKits mitigates this phenomenon. 
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Figure 2.  The mortality rate decreases when more MedKits are distributed before an attack.  The 

results shown are for scenarios in which the prophylaxis adherence rate is 90% and the delay 
until additional medication becomes available is 24 hours.  N is the number exposed. b is the 

fraction of non-exposed persons who will seek prophylaxis (potential exposures). 
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In addition, distributing MedKits can overcome problems with limited POD dispensing 

capacity.  When POD capacity is limited, those exposed are unable to get prophylaxis in time, 

and the mortality rate increases.  By reducing the number of person who seek prophylaxis at 

PODs, distributing MedKits reduces the wait time and saves lives.  We considered a scenario in 

which 1,000,000 persons were exposed and 2,000,000 persons were potential exposures.  When 

the maximum POD dispensing capacity was 5,000 persons per hour, the mortality rate was 

53.3% when no MedKits were deployed and dropped to 11.0% when MedKits were distributed 

to everyone.  When the maximum POD dispensing capacity was 2,500 persons per hour, the 

mortality rate was 72.5% when no MedKits were deployed but fell to 11.0% when MedKits were 

distributed to everyone.  When 1,250,000 MedKits were deployed, the mortality rate fell to 

53.2%.  Thus, in this scenario, distributing 1,250,000 MedKits is equivalent to doubling the POD 

dispensing capacity. 

Regardless of the number of MedKits distributed, it appears that some number of deaths 

is unavoidable.  Even in the scenario with the smallest attack (50,000 persons exposed), the 

smallest number of potential exposures (1% of those not exposed, which is 49,500 in this case), a 

90% adherence rate, and a 12 hour push pack availability, the estimated number of deaths was 

4,102 (a mortality rate of 8.2%) even when MedKits were distributed to the entire population.  

The unavoidable deaths result from the delays in detecting the attack and starting prophylaxis 

(during which time some exposed persons become very ill), the loss of MedKits among those 

who received them, and the imperfect adherence rate. 

Summary and Conclusions 

The MedKits model can estimate the number of deaths that result from an anthrax attack 

when a community pre-deploys MedKits and uses PODs to dispense prophylaxis to those 
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without MedKits.  The medication dispensed at the PODs is obtained from local and federal 

stockpiles and becomes available at different times after the attack is detected. 

The results show that, as more MedKits are pre-deployed, the mortality rate decreases 

and fewer deaths occur.  The reduction in mortality rate is greater when the number of potential 

exposures is large.  Essentially, distributing MedKits counteracts the problems caused by the 

large number of potential exposures delaying the prophylaxis of those who were truly exposed.  

In addition, distributing MedKits can overcome problems with limited POD dispensing capacity. 

The numerical results discussed here are for some particular scenarios.  The MedKits 

model is capable of modeling many different scenarios by changing the parameters used in the 

model. 

Because the MedKits model is based on the POD model, it has many of the same 

limitations.  Both models make certain assumptions about the progression of anthrax, most 

particularly the assumption that the progression is not affected by age.  Neither considers the 

impact of the disease on prophylaxis and treatment capacity. 

Both models assume that becoming aware of the attack is a simple diffusion process.  In 

real communities, however, the spread of information may be quite different, which could affect 

the rate at which exposed persons and potential exposures seek and begin prophylaxis.  

Both models are deterministic compartmental models that estimate the expected outcome 

but give no insight into the distribution of possible outcomes for a given scenario.  We are 

currently working to characterize this distribution.   

While not discussed here, the MedKits model can estimate the number of persons 

hospitalized and the total number of patient-days. 
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The MedKits model assumes that those who possess MedKits have the same chance to be 

exposed or to be potential exposures as those who do not have MedKits.  Moreover, the model 

assumes that the progression of anthrax in exposed persons who take the antibiotics in the 

MedKits is the same as in exposed persons who receive prophylaxis from a POD.  The 

compartments and flows in the model could be modified to represent scenarios in which these 

assumptions and others are replaced by other conditions. 

The MedKits model could be modified to evaluate the response to attacks with other 

noncommunicable agents such as tularemia, botulism, ricin, or yellow fever.  It could be 

extended to consider other countermeasures strategies or to consider the dispensing of additional 

medication to those who receive incomplete initial regimens.  Finally it could be extended to 

consider communicable diseases such as smallpox, but this would require considering the spread 

of the disease from those exposed to those who are not exposed. 

The compartmental model developed here can estimate the expected number of deaths in 

an anthrax attack by modeling the logistics of the response and the use of MedKits.  The results 

show that pre-deploying MedKits can reduce the expected number of deaths.  Predictions of this 

benefit will be valuable to public health officials who are considering this option by helping 

them better prepare for bioterrorism attacks.   
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Appendix 

This appendix presents a complete and precise description of the MedKits model, 

including the parameter values used in the scenarios considered in this paper.   

Parameters  

Population size P = 5,000,000 persons. 
Number exposed N = 50,000 persons (some scenarios used N = 500,000 and N = 1,250,000). 
Fraction of unexposed who are potential exposures β = 0.01 (or 0.10 or 0.50). 
 
Time when attack is detected 48DT =  hours (after attack).  
Time lag until PODs reach full capacity 48PODt =  hours. 
Time lag until push pack arrives Pt  = 12 (or 24) hours. 
Time lag until local inventories become available 5Lt =  hours.  
Time lag until VMI becomes available 36Vt =  hours.  
Time lag until push pack becomes available 4PRt =  hours.  
 
Number of MedKits distributed M = 0, 500,000, …, P. 
Fraction of MedKits distributed that can be used when attack occurs 0.95Mp = . 
Inventory of antibiotics available locally for PODs 50,000LI =  days. 
Inventory of IV antibiotics available locally 500LIV =  days. 
Inventory of antibiotics in push pack for PODs 2,718,000PI =  days. 
Inventory of IV antibiotics in push pack 21,492PIV =  days. 
Number of ventilators in push pack 100PV =  days. 
 
Total POD dispensing capacity 1

max 35833D =  persons per hour. 
Number of days of antibiotics dispensed per regimen until VMI arrives 14Rd = . 
Number of days of antibiotics dispensed per regimen after VMI arrives 60Vd = . 
Prophylaxis adherence rate α = 65% (or 90%). 
 
Initialization of compartments and resources 

Number in each compartment at time 0: 

( ) ( )1 0 M
NX P p M
P

= −  

( ) ( )( )18 0 1X P Nβ= − −  

( ) ( )19 0 1M
NX P p M
P

β ⎛ ⎞= − −⎜ ⎟
⎝ ⎠
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( )23 0 1M
NX p M
P

β ⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

( )25 0 M
NX p M
P

=  

( )0 0jX =  for 2,3, ,17,20,21,22,24,26,27,28j = …  
 
POD capacity at time 0: ( )0 0D = . 

Inventory of prophylaxis antibiotics at time 0: ( )0 0I =  days. 

Inventory of IV antibiotics at time 0: ( )0 0IV =  days. 

Number of ventilators available at time 0: ( )0 100V = . 

Number of respiratory technicians at time 0: ( )0 200T = . 

Number of ICU beds at time 0: ( )0 2000B = . 
 
Simulation step 

This step is performed for t = 0, 1, …, 2399. 
 
Initialization of transitions 
The non-zero transitions are described below.  

( ) 0ij tφ =  for i = 1, …, 28 and j = 1, …, 28. 

( ) 0ij tψ =  for i = 1, …, 28 and j = 1, …, 28. 
 
Transitions from incubation to prodromal 

( ) ( )( ) ( 1) ( ) / 1 ( )p t F t F t F t= + − − , where F(t) is the cumulative distribution function of the 
incubation time, which is lognormally distributed with a mean of 10.95 days, and 2.1392 and 
0.713 are the mean and standard deviation of the variable’s natural logarithm (Brookmeyer et al., 
2001). 

( ) ( ) ( ), 1i i it p t X tφ + =  for i = 1, 4, 7, and 25. 
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Transitions from prodromal to fulminant 

( ) ( )
72

1,
1

( ) min 1,j j j j
v

t t v X tθ φ −
=

⎧ ⎫= −⎨ ⎬
⎩ ⎭
∑  for j = 2, 5, and 26 

( ) ( )( ) ( )
( ) ( )( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )( ) ( )

23 2 2 2

56 5 5 5

8,10 8

9,11 9

13,14 13

26,27 26 26 26

0.0026 0.0181 1

0.0026 0.0181 1

/122.4

/122.4

/122.4

0.0026 0.0181 1

t X t

t X t

t X t

t X t

t X t

t X t

φ θ θ

φ θ θ

φ

φ

φ

φ θ θ

= × + × −

= × + × −

=

=

=

= × + × −

 

 
Transitions to recovery 

( ) ( ),17 / 21.7j jt X tφ =  for j = 8, 9, and 13 

( ) ( ),17 / 720j jt X tφ =  for j = 14, 15, and 16 
 
Deaths 

( ) ( ),22 / 26.4j jt X tφ =  for j = 3, 6, 10, 11, and 27 

( ) ( ),22 / 38.4j jt X tφ =  for j = 12 and 16 

( ) ( ),22 / 24j jt X tφ =  for j = 14 and 15 
 
Determine intermediate states 

28 28

1 1

( ) ( ) ( ) ( )j j ij ji
i i

Y t X t t tφ φ
= =

= + −∑ ∑  for j = 1, …, 28 

 
Transitions to awareness 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

25 2

36 3

26,9 26

27,12 27

0.33 / 24

0.5 / 24

0.33 / 24

0.5 / 24

t Y t

t Y t

t Y t

t Y t

ψ

ψ

ψ

ψ

= ⎫
⎪

= ⎪
⎬

= ⎪
⎪= ⎭

 for all 0t ≥  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )( ) ( )
( ) ( ) ( )

14 1

19,20 19

23,24 23

25,7 25

25,28 25

0.33 / 24

0.33 / 24

0.33 / 24

1 0.33 / 24

0.33 / 24

t Y t

t Y t

t Y t

t Y t

t Y t

ψ

ψ

ψ

ψ α

ψ α

⎫=
⎪

= ⎪
⎪= ⎬
⎪= − ⎪
⎪= ⎭

 if Dt T≥  
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Transitions to prophylaxis and treatment  

{ }
16 6 12

13 5 8
( ) min max 0,min ( ), ( ),10 ( ), ( ) ( ) , ( ) ( )j j j

j j j

CT t IV t V t T t B t X t Y t Y t
= = =

⎧ ⎫⎧ ⎫⎪ ⎪= ⋅ − +⎨ ⎨ ⎬ ⎬
⎪ ⎪⎩ ⎭⎩ ⎭

∑ ∑ ∑  

6 12

5 8

( ) ( ) ( ) ( )k k
k k

t CT t Y t Y tπ
= =

⎛ ⎞= +⎜ ⎟
⎝ ⎠
∑ ∑  

( )( )4 20 5 6( ) ( ) ( ) 1 ( ) ( ) ( )qL t Y t Y t t Y t Y tπ= + + − +  
 
If Dt T≤ , D(t) = 0.   

If D D PODT t T t≤ ≤ + , max( ) D

POD

t TD t D
t
−

= .   

If D PODt T t> + , max( )D t D= .   
 
If D Vt T t≤ + , ( ) Rd t d= ; else ( ) Vd t d= . 
 

{ }( ) min ( ) / ( ), ( ), ( )

( ) ( ) / ( )
q

q

CP t I t d t D t L t

t CP t L tρ

=

=
 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )

4,7 4 5,9 5

6,12 64,28 4

20,21 20

1 1

1

t t Y t t t t Y t

t t t Y tt t Y t

t t Y t

ψ α ρ ψ ρ π

ψ ρ πψ αρ

ψ ρ

= − = −

= −=

=

 

 
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

5,13 5 10,15 10

6,16 6 11,14 11

8,13 8 12,16 12

9,13 9

t t Y t t t Y t
t t Y t t t Y t

t t Y t t t Y t

t t Y t

ψ π ψ π
ψ π ψ π

ψ π ψ π

ψ π

= =

= =

= =

=

 

 



 26

Update compartments 
28 28

1 1
( 1) ( ) ( ) ( )j j ij ji

i i

X t Y t t tψ ψ
= =

+ = + −∑ ∑  

 
Update inventory and resources 
( ) ( )
( ) ( )

1

1

B t B t

T t T t

+ = ⎫⎪
⎬

+ = ⎪⎭
 for all t. 

 
( ) ( )

( )
16

13

( 1) ( )

1( 1) ( )
24

( 1) ( )

L

j L
j

I t I t CP t d t I

IV t IV t X t IV

V t V t
=

+ = − + ⎫
⎪
⎪+ = − + ⎬
⎪
⎪+ = ⎭

∑  if D Lt T t= +  

 
( ) ( )

( )
16

13

( 1) ( )

1( 1) ( )
24

( 1) ( )

P

j P
j

P

I t I t CP t d t I

IV t IV t X t IV

V t V t V
=

+ = − + ⎫
⎪
⎪+ = − + ⎬
⎪
⎪+ = + ⎭

∑  if D P PRt T t t= + +  

 
( ) ( )

( )
16

13

( 1) ( )

1( 1) ( ) 3000
24

( 1) ( )

V

j
j

I t I t CP t d t d P

IV t IV t X t P

V t V t
=

+ = − + ⎫
⎪
⎪+ = − + ⎬
⎪
⎪+ = ⎭

∑  if D Vt T t= +  

 
( ) ( )

( )
16

13

( 1) ( )

1( 1) ( )
24

( 1) ( )

j
j

I t I t CP t d t

IV t IV t X t

V t V t
=

+ = − ⎫
⎪
⎪+ = − ⎬
⎪
⎪+ = ⎭

∑  otherwise  

 


