
SHOE: A Knowledge Representation Language for InternetApplications�Je� He
in James HendlerSean LukeInstitute for Advanced Computer Studies, University of Maryland, College ParkAbstractIt is our contention that the World Wide Web poses challenges to knowledge representation sys-tems that fundamentally change the way we should design KR languages. In this paper, we describethe Simple HTML Ontology Extensions (SHOE), a KR language which allows web pages to be anno-tated with semantics. We present a formalism for the language and discuss the features which makeit well suited for the Web. We describe the syntax and semantics of this language, and discuss thedi�erences from traditional KR systems that make it more suited to modern web applications. We alsodescribe some generic tools for using the language and demonstrate its capabilities by describing twoprototype systems that use it. We also discuss some future tools currently being developed for the lan-guage. The language, tools, and details of the applications are all available on the World Wide Web athttp://www.cs.umd.edu/projects/plus/SHOE.1 IntroductionOne of the venerable sub-�elds of arti�cial intelligence is that of knowledge representation (KR). From thevery beginnings of AI, KR has been crucial to the pursuit, and the �eld has remained an active and importantresearch area spawning entire sub-disciplines of its own. Current KR meetings focus on the expressivity ofdescription logics, elegant algorithms for terminological reasoning, and the use of advanced logics to pushthe expressivity of KR languages ever further. One traditional part of KR, again dating back to the verybeginning, is the development of KR languages, the design of machine readable syntax with powerful formalsemantics underlying it. As the applications for which KR is used have grown in sophistication, so too havethe languages evolved ever more complex representational power. Early languages, such as KL-ONE [5] andKRL [4] have evolved into modern powerhouses like LOOM [20] , Classic [6], and CYC-L [19].Underlying this evolution has been a dominant thread { the belief that expressivity is a critical propertyfor a KR language. This assumption dates from the early days of KR, and has always been a major driver.The reason for this is clear. As Brachman and Schmolze stated in their seminal work on the KL-ONElanguage:KL-ONE is intended to represent general conceptual information and is typically used in theconstruction of the knowledge base of a single reasoning entity. A KL-ONE knowledge base canbe thought of as representing the beliefs of the system using it ... KL-ONE provides a languagefor expressing an explicit set of beliefs for a rational agent.they add a footnote sayingSuch a set of beliefs expressed in some representation language is what is typically meant by theterm knowledge base.This world view, in which the knowledge base represented the entire belief set of a complex reasoner, ledto a need for languages which could provide deep relational information and represent highly expressive�This work was supported by the Army Research Laboratory under contract number DAAL01-97-K0135.1



inferences. This need for greater expressivity became one of the key qualities sought in designing advancedknowledge representation systems.However, it is our contention that this fundamental philosophical underpinning of knowledge represen-tation is brought into question in dealing with the Internet, and particularly the World Wide Web. Weargue that the Internet fundamentally changes our view of what a knowledge base is, and in a correspondingmanner what a KR language should be designed for! The World Wide Web itself should be viewed as aknowledge base: a massive source of information for agents to gather and make intelligent queries upon.However, such a knowledge base is fundamentally di�erent from the sort of knowledge base described byBrachman and Schmolze, and provides a di�erent set of motivations for those trying to develop KR languagesthat can harness the information potential of this important new knowledge-base resource.Let's consider some of the key aspects of the Web when viewed as a knowledge base:� The Web is massive. Recent estimates place the number of indexable web pages at about 550million; hundreds of new pages are added every minute. If each page contained a single piece of agent-gatherable knowledge, the cumulative database would be large enough to bring virtually all existingknowledge representation systems to their knees. The reason is clear: most KR systems have semanticstoo rich to scale well. This is largely for a single reason: expressivity comes with the cost of increasedcomputational complexity. Many KR languages have NP-hard or even Turing-complete complexity.For the Web, this is an unfathomable option - to scale to the size of the ever growing Web, KR systemsmust be far more e�cient than they are today. This implies that KR languages for the web mustperform in a di�erent part of the expressivity/e�ciency trade-o� space.� The Web is an \open world." A web agent is not free to assume it has gathered all availableknowledge; in fact, in most cases an agent should assume it has gathered rather little available knowl-edge. Even AltaVista, currently the largest search engine, only has keyword indices for about 150million (of the over 500 million) web pages in an index of about 200 gigabytes. However, in order toachieve more e�cient reasoning, many KR systems make a closed-world assumption. That is, theyassume that anything which is not entailed in the knowledge base is not true. But, it is clear that thesize and evolving nature of the Web makes it unlikely that any knowledge base attempting to describeit could ever be complete.KR researchers on the web are very aware of this problem, and current research is trying to overcomeit. For example, in [10], localized closed world (LCW) statements are used to improve query e�ciency.LCW statements can be used to state that the given source has all of the information on a given topic.LCW statements are more appropriate for the Web than the closed-world assumption, but there is stilla question as to how a query system acquires the set of LCW statements that could be relevant. Whilethis sort of solution helps, it is still di�cult to use and quantify, hard to know when the assumptionshold, and it is still hard to maintain consistency given the dynamic nature of the changing web.� The Web is Dynamic. The web changes at an incredible clip, far faster than a user or even a\softbot" web agent can keep up with. While new pages are being added, the content of existingpages is changing. Some pages are fairly static, others change on a regular basis and others change inunpredictable intervals. Additionally, changes can vary in their signi�cance. Obviously, the additionof punctuation, correction of spelling errors or reordering of a paragraph does not a�ect the semanticcontent of a document, while other changes may completely change meaning, or even remove largeamounts of information (as when a web site is removed from the net). A KR system must assume thatits data can be, and often will be, out of date.The rapid pace of information change on the Internet poses an additional challenge to taxonomyand ontology designers. Without a reasonably unifying ontological framework, knowledge on the webbalkanizes, and web agents will struggle to learn and internally cross-map a myriad of incompatibleknowledge structures. But an imposed unifying framework risks being too in
exible to accommodatenew topics, new ideas, and new knowledge rapidly entering the Web. A KR system's ontologicalframework must be 
exible yet general to handle the Web's on-line economy of ideas.To summarize, viewing the Web as the knowledge base changes the way we must look at KR and KRlanguages. Web systems simply cannot assume that all of the information has been entered solely under a2



knowledge engineer's watchful eye, and is therefore correct and consistent. As authority on the Internet isdistributed, it cannot and does not make any such promise. This lack of central control leads to a numberof serious problems. Since there is often no editorial review or quality control of Web information, eachpage's reliability must be questioned. Since a web page that was useful one day can disappear the next,there is no guarantee on the availability of information. Since there are no integrity constraints on the Web,information from di�erent sources can be in disagreement, leading to inconsistency. Some inconsistenciesmay be due to error, others due to philosophical di�erences. In addition, there are quite a number of well-known\web hoaxes" where information was published on the Web with the intent to amuse or mislead {the computational agent typically cannot tell the di�erence! We can summarize much of this even moresuccinctly by appealing to the punchline of that famous web cartoon: on the Internet, no one knows you'rea dog.1.1 Bringing Ontology to the WebPut succinctly, knowledge representation concerns how a program models what it knows about the world.Years of experience have taught us that a good knowledge representation language is expressive, concise,unambiguous and independent of context. Systems built upon the language should be able to acquireinformation and perform useful inferences e�ciently. The knowledge representation language de�nes howthe information sources are described and the types of queries that are supported. The precision of therepresentation system limits the precision that is possible in querying it. The inference procedures of thesystem determine what kinds of queries can be answered.Many modern representation systems are designed around the useful concept of categorization whichallows reasoning about the generality of a concept and allows the careful speci�cation of relationships betweenthese concepts. In recent years, such \ontologies" of concepts have become the focus of much knowledgerepresentation work. In this work, an ontology is a particular theory about being or reality and de�neswhat can exist from a particular perspective.1 Thus, ontologies allow one to de�ne what is relevant to aparticular problem and what should be ignored. Our key contention is that ontologies can be used on theWeb to help structure the information { but only if we design the language to take into account many of theweb properties described previously. Before we get into the speci�cs of a knowledge representation languagedesigned for exactly that purpose, we take a moment to re
ect on a few of the many web problems that cryout for ontologies as their solutions:� Heterogeneity. Many protocols are used to transmit data on the Internet. These include the Hyper-text Transfer Protocol (HTTP), File Transport Protocol (FTP), Telnet, and Gopher. The transmitteddata may be in any of a multitude of �le formats, including HTML, images, audio, movies, virtualreality modeling �les, and others. All of these information sources are potentially useful to someone,but a comprehensive index is necessary to locate anything of value. However, automated indexing isdi�cult since retrieving semantic information from free-form text and obtaining even minimal infor-mation from video or audio sources is practically impossible with current technology. Ontologies canhelp web users specify, in a formal sense, what information is contained in these information sources,or to search for sources that contain particular types of information.� Lack of Structure The structure of HTML was designed for presentation instead of informationretrieval. This structure includes tags for titles, headings, lists and tables, but inconsistent use of thesetags makes it di�cult to reliably infer semantic meaning from them. As such, it is possible to seeif a given word is in a tag, but it is di�cult to determine whether a particular concept is the mainfocus of the page or what the author's viewpoint on a certain subject it is. The only way to locateconcepts in HTML is to parse the text in a way that properly interprets synonyms and context. On theother hand, the Extensible Markup Language (XML) [7] will allow authors to create semi-structureddocuments, but to make full use of XML tags, retrieval mechanisms will have to understand the tagstructure used by the document { i.e., they will need some form of ontology. Additionally, XML doesnot provide any structures for classi�cation or reasoning. However, extending XML-like languages to1As discussed in [24] opinions di�er on what is exactly contained in an ontology, however, most agree that it should at leastinclude a taxonomy and describe the valid properties and relations of objects.3



include these powerful KR features will allow far more structuring, and the inferential capabilities ofKR will allow for knowledge collected from distributed sources to be \fused" via inference rules orother AI mechanisms.� Contextual Dependency. All information is presented in some context. When people read doc-uments, they draw on their knowledge of the domain and general language to interpret individualstatements. Context is often required to disambiguate terms and to provide a background frameworkor understanding. Thus, for example an advanced internet search system would need to be able to usecontext to perform search e�ciently. Ontologies provide a mechanism by which context informationcan be speci�cally encoded, and a web-based KR language must allow this information to be speci�edon web pages or in other repositories that refer to web-based information.To provide these capabilities, we have designed a language named SHOE, for Simple HTML OntologyExtensions.2 SHOE is a KR language that allows ontologies to be designed and used directly on the WorldWide Web. In the remainder of this paper we de�ne the language, explaining the syntax, semantics, andhow they relate to the issues discussed in this introduction. We then discuss the issue of implementing acomplete system the uses SHOE, focusing on the query engine aspect of the system. Then we describe somegeneric tools (applets and class libraries) that we've developed for SHOE, making it more usable in the webenvironment. We describe some current applications of SHOE designed to show its applicability, and thendiscuss some lessons learned from these implementations, concluding with some directions for future workand a comparison to other work in the �eld. The \old-timer" reading this paper might note that this modelsthe structure of many of the early KR language papers. This is not coincidental { we believe that KR for theWeb opens new directions for our �eld, and that we are still in the early days of this exciting new research.2 The SHOE LanguageSHOE's basic structure consists of ontologies, entities which de�ne rules guiding what kinds of assertionsmay be made and what kinds of inferences may be drawn on ground assertions, and instances, entities whichmake assertions based on those rules. Because SHOE exists in a distributed environment with little centralcontrol, SHOE treats assertions as claims being made by speci�c instances instead of facts to gather andintern as generally-recognized truth.SHOE's syntax is a properly-compliant application extension of HTML; an almost identical XML syntaxis also available. However, while SHOE's chief application is the annotation of web documents, SHOE isdesigned for more general distributed knowledge and distributed agent issues.In this section, we begin with an overview of the SHOE language, a formal semantic de�nition of thelanguage, and a discussion of important features of the language. A more complete speci�cation of thelanguage syntax can be found at http://www.cs.umd.edu/projects/plus/SHOE/spec.html.2.1 SHOE OntologiesIn SHOE syntax, an ontology appears minimally between the tags <ONTOLOGY ID=id VERSION=version>and </ONTOLOGY>. Together, id and version make up the unique identi�er for a particular ontology.Recognizing that knowledge in a distributed environment can change rapidly, SHOE has 
exible facilitiesfor ontologies to be derived from one or more superontologies in a multiple-inheritance scheme, or for laterversions of ontologies to modify earlier versions; more on this can be found in Section 2.4.6. Figure 1 showsan example of a SHOE ontology.SHOE de�nes four basic types: strings, numbers, dates, and boolean values. An additional type, the URL,is under consideration. An ontology may also de�ne additional arbitrary data types on a domain-speci�cbasis. Further, an ontology can make category de�nitions (using the tag <DEF-CATEGORY>) which specify2There are several reasons we chose this name. In the spirit of early KR languages, we wanted an acronym that was also anatural language term. In a spirit of \putting our money where our mouth is," we wanted a word which could not be searchedfor on the web without some sort of ontological context { at the time this paper is being written, AltaVista �nds 588,508 pagescontaining the word \shoe." And in the spirit of putting some of the fun back into AI, we wanted to refer to the web agentswe de�ne using this language as really \kicking butt." Thus, this acronym was an obvious choice.4



<HTML><HEAD><TITLE>University Ontology</TITLE>Tell agents that we're using SHOE<META HTTP-EQUIV="SHOE" CONTENT="VERSION=1.0"></HEAD><BODY>Declare an ontology called \university-ontology".<ONTOLOGY ID="university-ontology" VERSION="1.0">Borrow some elements from an existing ontology, pre�xed with a \b."<USE-ONTOLOGY ID="base-ontology" VERSION="1.0" PREFIX="b"URL="http://www.cs.umd.edu/projects/plus/SHOE/base.html">De�ne some categories and subcategory relationships<DEF-CATEGORY NAME="Person" ISA="b.SHOEentity"><DEF-CATEGORY NAME="Organization" ISA="b.SHOEentity"><DEF-CATEGORY NAME="Worker" ISA="Person"><DEF-CATEGORY NAME="Advisor" ISA="Worker"><DEF-CATEGORY NAME="Student" ISA="Person"><DEF-CATEGORY NAME="GraduateStudent" ISA="Student Worker">De�ne some relations; these examples are binary, but relations can be n-ary<DEF-RELATION NAME="advises"><DEF-ARG POS=1 TYPE="Advisor"><DEF-ARG POS=2 TYPE="GraduateStudent"></DEF-RELATION><DEF-RELATION "age"><DEF-ARG POS=1 TYPE="Person"><DEF-ARG POS=2 TYPE="b.NUMBER"></DEF-RELATION><DEF-RELATION "suborganization"><DEF-ARG POS=1 TYPE="Organization"><DEF-ARG POS=2 TYPE="Organization"></DEF-RELATION><DEF-RELATION "works-for"><DEF-ARG POS=1 TYPE="Person"><DEF-ARG POS=2 TYPE="Organization"></DEF-RELATION>De�ne a transfers-through inference over working for organizations<DEF-INFERENCE><INF-IF><RELATION NAME="works-for"><ARG POS=1 VALUE="x" VAR><ARG POS=2 VALUE="y" VAR></RELATION><RELATION NAME="suborganization"><ARG POS=1 VALUE="y" VAR><ARG POS=1 VALUE="z" VAR></RELATION></INF-IF><INF-THEN><RELATION NAME="works-for"><ARG POS=1 VALUE="x" VAR><ARG POS=2 VALUE="z" VAR></RELATION></INF-THEN></DEF-INFERENCE></ONTOLOGY></BODY></HTML> Figure 1: An Ontology Example5



<HTML><HEAD><TITLE>John's Web Page</TITLE>Tell agents that we're using SHOE<META HTTP-EQUIV="SHOE" CONTENT="VERSION=1.0"></HEAD><BODY><P>This is my home page, and I've got some SHOE data on it about me and my advisor. Hi, Mom!</P>Create an Instance. There's only one instance on this web page, so we might as well use the webpage's URL as its key. If there were more than one instance, perhaps the instances might have keysof the form http://univ.edu/john#FOO<INSTANCE KEY="http://univ.edu/john">Use the semantics from the ontology \university-ontology", pre�xed with a \u."<USE-ONTOLOGY ID="university-ontology" VERSION="1.0" PREFIX="u" URL="http://univ.edu/ontology">Claim some categories for me and others.<CATEGORY NAME="u.GraduateStudent"><CATEGORY NAME="u.Advisor" FOR="http://univ.edu/mike">Claim some relationships about me and others. \me" is a keyword for the enclosing instance.<RELATION NAME="u.advises"><ARG POS=1 VALUE="http://univ.edu/mike"><ARG POS=2 VALUE=me> </RELATION><RELATION NAME="u.age"><ARG POS=1 VALUE=me><ARG POS=2 VALUE="32"> </RELATION></INSTANCE></BODY></HTML> Figure 2: An Instance Examplethe categories under which various instances could be classi�ed. For example, an ontology might de�ne thecategory GraduateStudent. Categories may be grouped as subcategories under one or more supercategories.GraduateStudent might be a subcategory of both Student and Worker, for example.An ontology can also make relational de�nitions (using structures found within the <DEF-RELATION> and</DEF-RELATION> tags) which specify the format of n-ary relational claims that may be made by instancesregarding instances and other data: for example, an ontology might de�ne the relationship advises betweenan instance of category GraduateStudent and an instance of category Advisor. Or perhaps a relationship agebetween an instance of category Person and a number (his age).Lastly, an ontology can de�ne inferential declarationswithin<DEF-INFERENCE> and</DEF-INFERENCE>tags. Inferential declarations specify additional inferences which agents may freely make on ground infor-mation. For example, an ontology might specify that working for organizations transfers through to super-organizations, that is, (8x2Worker) (8y2Organization) (8z2Organization) works-for(x,y) ^ suborganization(y,z))works-for(x,z).2.2 SHOE InstancesInstances �ll two functions in SHOE. First, instances are arbitrary objects, much like those found in anobject-oriented database system. Secondly, instances are the elements in SHOE responsible for makingclaims.3 Figure 2 shows an example of a SHOE instance.In SHOE syntax, an instance appears between the tags <INSTANCE KEY=key> and </INSTANCE>.Here, key is the instance's unique identi�er. For World Wide Web applications, SHOE proposes, but doesnot formally require, that an instance's unique identi�er be based on the URL of the page on which theinstance is found; this gives web agents some modicum of ability in determining if an instance really is what3In fact, ontologies are also permitted to make a few speci�c, highly limited categorization assertions for convenience inontology design. 6



it claims to be, by extracting its URL from its key, looking up the web page, and matching its SHOE contentsagainst the instance in question. For the convenience of web site maintenance, instances may specify delegateinstances who make claims on their behalf. Lastly, ontologies may de�ne simple constant instances for basicvalues like \Red" when de�ning a custom data type is overkill.Within an instance may be found ground category claims and relation claims made by that instance. Acategory claim is made within the <CATEGORY> tag, and says that the instance claims that some otherinstance x should be categorized under category y. For example, an instance http://univ.edu/johnmight claimthat http://univ.edu/mike is an Advisor.A relational claim is enclosed by the <RELATION NAME=foo> and </RELATION> tags, and says that theinstance claims that an n-ary relation foo exists between some n number of appropriately typed argumentsconsisting of data or instances. For example, the instance http://univ.edu/john might claim that there existsthe relation advises between http://univ.edu/john and his advisor http://univ.edu/mike. Or http://univ.edu/johnmight claim that the age of http://univ.edu/mike is 32.2.3 Formal De�nition of the LanguageSHOE's semantic knowledge consists of a set of claims, made by instances, about relationships betweenground atomic elements (numbers, strings, instances, etc.). Claims are either ground claims explicitly statedin instances or claims SHOE has inferred via the simple horn-clause rules de�ned in an ontology.2.3.1 Basic Data SetsSHOE's basic data sets of atomic units are divided into six disjoint sets: BasicTypeName, CategoryName,RelationName, Instance, Ontology, Claim, and Inference. The set Type = CategoryName [ BasicTypeName.Basic Types (members of the set BasicTypeName) have a one-to-one, onto relationship with a special set ofobjects of that given type. This special set is returned by the function domain(x), where x 2 BasicTypeName.Each special set has explicit order comparison operators =, >, �, �, < and 6= appropriate for objects of thattype. SHOE prede�nes four data types: String, whose domain is all character strings (comparison is donecharacter-by-character similar to C's strcmp); Number, whose domain is all 
oating-point numbers; Truth,whose domain is ftrue; falseg (false < true); and Date, whose domain is all date/timestamps. This type setmay be extended with new types, given proper domains returned by domain and an appropriate collectionof comparison operator de�nitions.The set Instance contains user-declared instances, objects which may both make claims of and appear inrelationships and categorizations. The set Ontology contains ontologies, which may make speci�c kinds ofclaims. The set Claimant = Instance [ Ontology The set Claim consists of claims which claimants may makeabout the relationships between various data objects. The set Inference consists of inferential rules made byontologies. One special ontology, the null ontology �, is assigned to certain inferential rules described laterwhich are not ordinarily assigned to any other ontology.2.3.2 Inferential TagsOne peculiarity of SHOE's semantics (its notion of claim propagation described below) requires that infer-ential rules in SHOE be able to refer to themselves as items in their rule bodies. This sets up a potentialin�nite recursion in the formal de�nition of inferential rules; we get around this by assigning to each rulea unique tag which identi�es the rule. This tag may be retrieved with the function tag(i), which returnsthe tag for a given inference i. When rules need to refer to themselves in their rule bodies, they instead usethese tags.2.3.3 Claim PropagationSHOE does not consider statements it discovers on the web as facts, but as claims made by a particularclaimant. When performing inferences on these claims, SHOE must propagate the claimants from theantecedents of the inference into the consequents of the inference (that is, if claimant A said a, and claimantB said b, and a SHOE inference exists which says a^b)c, SHOE must determine who \said" c).7



SHOE does this by propagating user-de�ned objects called claim groups. SHOE requires two user-de�nedfunctions which manipulate claim groups: claim(j; I) takes a label j for a claim C 2 Claim made by a set ofclaimants I 2 Claimant, and returns a claim group q. prop(Q; j;O) takes a set of claim groups Q generatedby subclaims to a given inference whose tag is j, plus a set of ontologies O � Ontology which de�ned theinference, and returns a new claim group q.SHOE does not de�ne these transfer functions nor the implementation of claim groups, and their use is anactive area of research. We feel that various SHOE agents may need di�erent amounts of claim information,depending on their domain. A sophisticated agent might use these functions to gather enough informationto trace inferred claims back through the entire tree of inferences and ground claims to determine exactlyhow an inferred claim was determined. However, this is an expensive process. An unsophisticated agentmight not care about who claimed what, and de�ne the functions appropriately. We think a reasonable,inexpensive default version of these functions is claim(h; I) to simply return I, and for prop(Q; j;O) toreturn O[ (SQ) This version would return a set of claimants jointly making a claim, without detailing howthey each came to be part of the joint claim.2.3.4 Category De�nitionsTuples of the form hc; o; fi : i2CategoryNamegi, are category de�nitions. The �rst element in a well-formedcategory de�nition, c 2 CategoryName, is the de�nition's category name. Category de�nitions have uniquecategory names: there is a one-to-one, onto relationship between each symbol c and a category de�nitionhc; o; fi : i2CategoryNamegi. We de�ne a function cat(c) which takes a symbol c 2 CategoryName and returnsits corresponding category de�nition tuple.The second element in a well-formed category de�nition is an ontology o 2 Ontology which made thisde�nition. o may not be �.The third element in a well-formed category de�nition is a (possibly empty) set of category names of whichc is a subcategory. A category is automatically its own subcategory. Hence we de�ne a predicate relationsubcat(c; b) which is true if and only if c is a subcategory of b. Formally, subcat(c; b), (9o)(9I)(cat(c) =hc; o; Ii)^(b2I _ b = c).Each subcategorization entry in a category de�nition automatically adds an inferential rule to the setInference which de�nes that subcategorization. For a given category de�nition hc; o; f:::; b; :::gi the inferentialrule (with some unique tag j) describing the subcategory relationship between c and b takes the form:(8d 2 Instance)(8q)cclaim(c; d; q)^ subcat(c; b)) cclaim(b; d;prop(fqg; j; o))The predicate cclaim(:::), which describes a categorization claim, is described below in Section 2.3.6. Theinference roughly says that for each categorization claim on a given instance for a given category, there isan implicit categorization claim made on the instance for every supercategory of that category.2.3.5 Relation De�nitionsTuples of the form hr; hx0; :::ii are relation de�nitions. The �rst element in a well-formed relation de�nition,r 2 RelationName, is the de�nition's relation name. Relation de�nitions have unique relation names: thereis a one-to-one, onto relationship between each symbol r and a relation de�nition hr; hx0; :::ii. We de�ne afunction rel(r) which takes a symbol r 2 Relation and returns its corresponding relation de�nition tuple.The second element in a well-formed relation de�nition is a nonempty tuple of arguments. Each argumentxn in this tuple must be a member of Type.2.3.6 Categorization ClaimsCategorization claims, made from a set of claimants I, state that the claimants claim that instance d belongsto the category c. A claim C with label j of the form cclaim(c; d; claim(j; I)) may be added to the set Claimonly if:1. c 2 Category2. d 2 Instance 8



3. I � Claimant.2.3.7 Relation ClaimsRelation claims, made from a set of claimants I, state that the claimants claim that a relation r existsbetween the ordered arguments hd0; :::i. A claim R with label j of the form rclaim(r; hd0; :::i; claim(j; I))may be added to the set Claim only if:1. r 2 Relation2. I � Claimant.3. The claim properly matches, type-for-type, the relation de�nition for r. That is, there exists ahr; hx0; :::ii = rel(r) such that for each h:::; dn; :::i and corresponding h:::; xn; :::i,(a) if xn 2 CategoryName, then dn 2 Instance(b) if xn 2 BasicTypeName, then dn 2 domain(xn)Relation claims occur under a special inferential rule, an explicit member of the set Inference. Let the tagof this rule be j. Then the rule is: (8n 2 f0; :::; jjhd0; :::ijj� 1g)(8a);rclaim(r; h:::; dn; :::i; q)^ rel(r) = hr; h:::; xn; :::ii ^ xn 2 CategoryName ) cclaim(xn; dn;prop(fqg; j; �))Simply put, this rule says for each relation claim, if an argument of that relation has been typed as acategory, then there is another implicit claim that the object occupying that position in the relation claimis an instance of the speci�ed category. Note that this is in contrast to arguments that are basic data types,where type checking is performed to validate the relation. Basic data types are treated di�erently becausethey are di�erent. They have syntax which can be checked in ways that category types cannot, which allowsus to impose stringent input-time type checking on basic data types. Because SHOE uses an open-worldpolicy, there is no way to know that a given object in a relation claim is not in a category appropriate forthat relation; since the categorization claim may as yet be undiscovered.2.3.8 Inferential DeclarationsTo the inferential rules described above, ontologies may add to the set Inference additional inferential ruleswith certain constraints, called inferential declarations. If these declarations are well-formed, SHOE willintern them as additional inferential rules to apply at query-time.A SHOE inferential declaration has an antecedent and a consequent,4 separated with a ) (\implies")operator (the consequent is on the right). At certain places in an inferential declaration, constants may bereplaced by claim variables, which are nothing more than the variables in the logical inference being made.All instances of a particular claim variable appearing in a well-formed inferential declaration are associatedwith a given member of the set Type; this member is returned by the function vtype(v), where v is the claimvariable in question. Further, such variables adhere to a join rule described later.The consequent of a well-formed SHOE inferential declaration is a single well-formed relation or categorysubclause, prepended with one universal quanti�er (8v) for each variable v appearing anywhere in the infer-ential declaration. The antecedent of a well-formed SHOE inferential declaration is a nonempty conjunctionof well-formed relation subclauses, category subclauses, and comparison subclauses. Let m be the totalnumber of relation and category subclauses in the antecedent. Further, let j be the tag of the inferentialdeclaration, and O � Ontology be the set of ontologies which make this inferential declaration.4In logic programming these are often referred to as the body and head, respectively.9



Relational subclauses. A relation subclause rclaim(r; hd0; :::i; q) is well-formed if:1. r 2 Relation2. If the relation subclause is in the antecedent, then q is written as qn, where n is the position of thesubclause in a left-to-right ordering of relation and category subclauses in the antecedents. If therelation subclause is in the consequent, then q takes the form prop(fq0:::qm�1g; j; O).3. The claim properly matches, type-for-type, the relation de�nition for r. That is, there exists ahr; hx0; :::ii = rel(r) such that for each h:::; dn; :::i and corresponding h:::; xn; :::i,(a) dn is either a constant or a claim variable.(b) if xn 2 CategoryName, then dn 2 Instance or, if dn is a variable, subcat(vtype(dn); xn)(c) if xn 2 BasicTypeName, then dn 2 domain(xn) or, if dn is a variable, vtype(dn) = xnCategory subclauses. A category subclause cclaim(c; d; q) is well-formed if:1. c 2 Category2. If the relation subclause is in the antecedent, then q is written as qn, where n is the position of thesubclause in a left-to-right ordering of relation and category subclauses in the antecedents. If therelation subclause is in the consequent, then q takes the form prop(fq0:::qm�1g; j; O).3. d is either a constant or a claim variable.4. d 2 Instance or, if d is a variable, subcat(vtype(d); c)Comparison subclauses. A comparison subclause d0 e d1 is well-formed if:1. d0 is a claim variable.2. d1 is is either a constant or a claim variable.3. if d1 is a claim variable, then vtype(d0) = vtype(d1).4. if d1 is a constant and vtype(d0) 2 BasicTypeName, then d1 2 domain(vtype(d0)).5. if d1 is a constant and vtype(d0) 2 CategoryName then d1 2 Instance.6. if vtype(d0) 2 BasicTypeName, then e is one of =, 6=, �, <, �, or >, else if vtype(d0) 2 CategoryName,then e is one of = or 6=.The variable join rule. Variables in well-formed inferential subclauses adhere to the following join rule.For all variables x and y in the antecedents of an inferential subclause, the predicate function join(x; y) isde�ned as:1. join(x; y) is true if x and y appear in the same relation subclause, or in the same comparison subclauseonly when vtype(x) = vtype(y) 2 CategoryName and e is set to =.2. For any variable z in the antecedents, join(x; y) ^ join(y; z)) join(x; z).Then an inferential declaration is well-formed if and only if:1. For all x and y variables (where x 6=y) in the antecedents of the declaration, join(x; y) is true.2. For each variable z appearing in the consequent, z also appears in the antecedent.Note that this rule has more severe constraints than the \safe" rule de�ned for Datalog. In Datalog,variables do not need to be fully joined as they are in SHOE; hence Datalog permits cartesian products overrelations directly in its horn clauses. However, SHOE can implement these features using multiple inferentialdeclarations. Thus there is no loss of semantic expressivity while accidental or careless cartesian productsin ontologies, which can be very expensive over large amounts of data, are avoided.10



2.4 Language FeaturesSHOE was designed speci�cally with the needs of distributed internet agents in mind. In this section wediscuss the features that make SHOE well-suited for this purpose.2.4.1 Compatibility with HTML/XML.Even though the Web is heterogeneous at the content level, there are still standards at the protocol leveland �le format level. Since HTML is the primary format for Web documents, SHOE was designed to �tseamlessly into HTML. We use a similar syntax that makes it easy for those who know HTML to learn SHOE.SHOE is an application of the Standard Generalized Markup Language(SGML) [15]: its HTML-compatiblesyntax is formally de�ned in an SGML document type declaration (DTD) that is derived from the formalHTML DTD.A slight variant of the SHOE syntax also exists for compatibility with XML [7], the emerging standardfor transmitting web documents. XML is in e�ect a simpli�ed form of SGML, and thus the XML syntaxfor SHOE is almost identical to the original syntax. When XML becomes commonplace, the XML variantof SHOE is likely to become the standard. Like SGML, XML is a language for de�ning and using markuplanguages. Thus it is possible to de�ne a tag set that relates to content rather than presentation, but there isno way to de�ne the meaning of this content in a machine-understandable way. Additionally, interoperabilitybetween domains must be hard-coded into applications. It is for these reasons that a language like SHOE isneeded.There are a number of advantages to using an XML syntax for SHOE. First, although more standardKR syntaxes, such as �rst-order logic or S-expressions, could be embedded between a pair of delimitingtags, these would be even more foreign to the average web user than SHOE's syntax, which at least has afamiliar format. Second, the XML syntax allows SHOE information to be analyzed and processed using theDocument Object Model (DOM), thus software that is not SHOE-aware may still use the information inmore limited but still powerful ways. For example, some web browsers are able to graphically display theDOM of a document as a tree, and future browsers will allow users to issue queries that will match structurescontained within the tree. The third reason for using an XML syntax is that SHOE documents can thenuse the emerging XML standard for stylesheets to render SHOE information for human consumption. Thisis perhaps the most important reason because it eliminates the redundancy of having a separate set of tagsfor the human-readable and machine-readable knowledge.2.4.2 Prevention of Contradictions.As there is no easy way to control what distributed agents may say, SHOE's design philosophy avoids thepossibility of contradictions between agent assertions. SHOE does this in four ways:1. SHOE only permits assertions, not retractions.2. SHOE does not permit negation.3. SHOE does not have single-valued relations, that is, relational sets which may have only one value (orsome �xed number of values).4. SHOE includes the claimant as part of a claimed assertion.SHOE does not prevent \contradictions" that are not logically inconsistent. If claimantA says father(Mark,Katherine) and claimant B says father(Katherine, Mark), the apparent contradiction is because one claimant ismisusing the father relation. However, this does not change the fact that A and B made those claims.Similar problems may also occur in an ontology where an inference rule derives a conclusion whose inter-pretation would be inconsistent with another ontology. Therefore, it is the ontology designer's responsibilityto make sure that the ontology is correct and that it is consistent with all ontologies that it extends. Itis expected that ontologies which result in erroneous conclusions will be avoided by users, and will thus beweeded out by natural selection. 11



2.4.3 Separation of Ontologies and Instances.Unlike other distributed knowledge systems, (notably the Resource Description Framework (RDF) [18]),SHOE intentionally separates ontologies and instances into separate syntactic objects. Our methodologicaljusti�cation is simple: agents should have the freedom to intern information from all instances, while placingrestrictions on which ontologies they intern. It's bad enough that entity A makes a false claim; it's far worsewhen entity A adds whole false inferences into an agent's internal ontology. By separating the rules guidingclaims from the claimants making the claims, SHOE gives agents some 
exibility in this regard.Additionally, ontologies are used to validate and interpret instances. The ontology de�nes the vocabularythat an instance may use, and could be compared to a schema in a relational database or a DTD in SGMLor XML. However, the ontology also includes information that serves as a machine-readable de�nition of theterms, and allows systems to reason about claims that use terms from the vocabulary.2.4.4 N-ary Relations.Unlike several distributed knowledge systems, SHOE permits n-ary relations. Although in theory binary rela-tion semantics su�ces, we feel that in practice it hobbles the ontology designer and claimants in unnecessaryways.2.4.5 Uniqueness of Identi�cation.A particular problem with natural language, especially on the Web, is that it is ambiguous. A systemprocessing information must cope with the problems of synonymy (when multiple words have the samemeaning) and polysemy (when a single word has multiple meanings). In SHOE, these problems are avoidedbecause both ontological elements and instances are uniquely identi�ed.Each ontology element has exactly one de�nition and an ontologymay not contain elements with the samename. Although di�erent ontologies may use the same name to de�ne a di�erent concept, ontological elementsare always referenced using special pre�xes which de�ne unique paths leading to their respective enclosingontologies. Instances and ontologies that reference other ontologies must include statements identifying whichontologies are used and each ontology is assigned a pre�x which is unique within that scope. All referencesto elements from that ontology must include this pre�x, thereby uniquely identifying which de�nition isdesired. Furthermore, an ontology can specify an alternate label for another ontological element, thuscreating a synonym that can still be resolved to the object in which the concept was originally de�ned.In the case of instances, each must be assigned a unique key; SHOE's protocol further allows agents onthe web to guarantee key uniqueness by including in the key the URL of the instance in question. However,many di�erent URLs could be used to refer to the same page, since the host can have multiple domainnames and operating systems may allow many di�erent paths to the same �le. To solve these problems acanonical form must be chosen for the URL; an example rule might be that the full path to the �le should bespeci�ed, without operating systems shortcuts such as '~ ' for a user's home directory. Even then, there arestill problems with multiple keys possibly referring to the same conceptual object. At any rate, this solutionensures that the system will only interpret two objects as being equivalent when they truly are equivalent.Ensuring that two object references are matched when they conceptually refer to the same object is an openproblem.2.4.6 Extensibility and Versioning.SHOE attempts to achieve information integration through the use of shared ontologies. When two ontologiesneed to refer to a common concept, they should both extend an ontology in which that concept is de�ned.Extension also allows an ontology to be customized by a particular community, so that it can includede�nitions and rules for specialized areas of knowledge.Of course, in a distributed environment ontologies may need to change rapidly. The challenge is inproviding 
exible ontology modi�cation while maintaining uni�cation across various ontologies and withoutinvalidating SHOE that references old ontology versions. To accomplish these objectives, each version of aSHOE ontology is a separate �le and is assigned a unique version number. In this way all versions of anontology are accessible at any point in time. Further, an ontology can specify that it is backwardly-compatible12



with earlier versions. This allows computer systems to use the new ontology to correctly interpret SHOEannotations that reference older versions.It should be noted that the versioning mechanism is dependent on the compliance of the ontology de-signers. There is nothing to prevent a designer from making changes to an existing ontology version. Thisis the price we pay for have having a system that is 
exible enough to cope with the needs of diverse usercommunities while being able to change rapidly. However, we presume that users will gravitate towardsontologies from sources that they can trust and ontologies that cannot be trusted will become obsolete.These methods allow the creation of high-level, abstract unifying ontologies extended by often-revisedcustom ontologies for specialized, new areas of knowledge. There is a trade-o� between trust of sources fardown in the tree (due to their 
eeting nature) and the ease of which such sources can be modi�ed on-the-
yto accommodate new important functions (due to their 
eeting nature). In a dynamic environment, anontology too stable will be too in
exible; but of course an ontology too 
exible will be too unstable. SHOEattempts to strike a balance using simple economies of distribution.Although, ideally integration in SHOE is a byproduct of ontology extension, a distributed environmentin which ontologies are rapidly changing is not always conducive to this. Even when ontology designers havethe best intentions, a very specialized concept may be simultaneously de�ned by two new ontologies. Tohandle such situations, periodic ontology integration must occur. Ontologies can be integrated using a newontology that maps the related concepts using inference rules, by revising the relevant ontologies to map toeach other, or by creating a new more general ontology which de�nes the common concepts, and revisingthe relevant ontologies to extend the new ontology. We discuss each of these solutions in more detail in [14].3 Implementation IssuesIn the previous section we described the semantics of SHOE. In this section we consider the design ofsystems that incorporate SHOE and discuss the features and components that are required of such systems.We want to emphasize that SHOE is a language and a philosophy; it does not require any particular methodof implementation.We begin by discussing implementation of query engines that support SHOE's semantics in an e�cientway. This is necessary for any system that wants to process signi�cant amounts of SHOE information. Wethen discuss design issues of building a complete SHOE system that supports the design and use of ontologies,markup of web pages with semantics, and use of this information by agents or query tools.3.1 E�cient SHOE Query EnginesIn order to deal with large amounts of SHOE information, the design or selection of the back-end SHOEengine is very important. While of course SHOE can be implemented relatively easily in semanticallysophisticated knowledge representation systems like LOOM or CYC-L, the language is intended to be feasiblyimplementable on top of fast, e�cient KR systems with correspondingly simpler semantics. To implementall of SHOE, a system must be able to handle at least the following features:� support for n-ary predicates� inference of category membership� constrained horn-clause inference without negation, procedural attachment, or cartesian products� built-in comparison predicates such as =, <, and >Depending on domain requirements, the back-end engine for a SHOE agent may also need to implementclaim maintenance and propagation to some degree or other; at one extreme, it is perfectly reasonable forengine to ignore claims entirely. SHOE is also intended to be modular in design: an agent might implementall of SHOE except the inferential rules, for example, depending on domain need.We understand that in the worst case implementing even the simple semantics described above can betricky. But SHOE's goal is to balance semantic expressivity with the computational complexity in practicegiven reasonable assumptions about the nature of a distributed domain like the World Wide Web. In the13



following section we discuss various design decisions in SHOE and how to exploit these to implement SHOEe�ciently. Afterward, we discuss implementing SHOE, or parts of SHOE, in three semantically e�cientsystems: Parka [11, 24], a high-performance KR system whose roots lie in semantic networks and object-based systems, Datalog [25], a popular forward-chaining logic system, and lastly an ordinary relationaldatabase management system.3.1.1 Approaches to E�cient SHOEThe two general areas of e�ciency concern in SHOE are its inheritance mechanism, and its general inferentialrules. E�cient inheritance has traditionally been problematic for more expressive semantic network systems,but this is usually because of default logics, prototypes, inferential distance ordering, and other inheritancefeatures which SHOE does not support. Even so, in Parka we have demonstrated highly e�cient algorithmsfor handling inheritance more semantically expressive than SHOE's. These algorithms scale exceptionallywell, handling millions of assertions with relative ease. [24]As in Datalog, the implementation of SHOE's general inferential rules can be done naively in polynomialtime and space in the worst case, which is pretty good. But further, SHOE takes advantage of an importantheuristic: the thesis that while the World Wide Web potentially contains a great deal of data, and a greatmany distributed SHOE ontologies may result in a large ruleset, nonetheless in general the cyclic dependenciesin these rules will be relatively highly localized to a given ontology's domain. In our experience the distributednature of SHOE ontologies tends to promote a modular ontology design, and the hierarchical nature of SHOEontologies tends to result in acyclic, feed-forward intra-ontology rule dependencies.Because SHOE has monotonic, limited inferential semantics without negation, it is straightforward totake advantage of this heuristic to determine at query-time exactly those rules relevant to the query in O(n)time, where n is the number of relevant rules. With a highly localized rulebase, this can result in dramaticsavings. The procedure is trivially done as follows: Let G be a set of subgoals to achieve, initially set to thesubgoals in the requested query. Let R be the set of rules necessary to achieve the query, initially set to ;.Remove a subgoal g from G; for each rule r not in R whose consequent achieves g, add r to R and add toG each subgoal in the antecedent of r. Repeat until G is exhausted.These same SHOE semantics also allow agents to determine whether or not the relevant rules describedabove are recursive, which helps an agent e�ciently pick between backward- and forward-chaining, or to pickmore e�cient forward-chaining algorithms. This can be done in O(n2) time worst-case, where n is againthe size of the set of relevant rules discussed before. This procedure is also simple: Let R be the set ofrules determined above. For each r 2 R, set sr 2 S to the set of rules in R which achieve a subgoal in theantecedent of r. With hashing this is O(n2) at worst. This then reduces to a problem of �nding a cycle in agraph with R as vertexes and S as edges, which is O(n).3.1.2 ParkaParka is a high-performance knowledge base system developed at the University of Maryland, which performscomplex queries over very large knowledge bases in less than a second. At present, Parka is the base KRsystem on which we have built our SHOE back-end. Like SHOE, Parka uses categories, instances, and n-arypredicates. Parka's basic inference mechanisms are transitive category membership and inheritance.Parka includes a built-in subcategory relation between categories (isa) and a categorization relationbetween a category and an instance (instanceof). Parka also includes a predicate for partial string matching,and a number of comparison predicates. One of Parka's strong suits is that it can work on top of SQLrelational database systems, taking advantage of their transaction guarantees while still performing very fastqueries.Parka can support many of SHOE's semantics directly; SHOE's subcategory inference maps to Parka'sisa relation, and SHOE's categorization of instances maps to Parka's instanceof relation.Parka has no direct support for claims: though it might represent claimant information with an extra ar-gument to each predicate. However, the structural links (i.e., the links along which inheritance is performed)are built-in binary predicates in Parka. Thus, this approach could not be used for isa or instanceof predicateswithout changing the internal workings of the knowledge base. To keep the storage of claim informationconsistent for relations and categories, we can instead make two assertions for each claim. The �rst assertionignores the claimant, and can be used normally in Parka. The second assertion uses a claims predicate to link14



the source to the �rst assertion. When the source of information is important, it can be retrieved throughthe claims predicate. Although this results in twice as many assertions being made to the knowledge base, itpreserves inheritance while keeping queries straightforward.Since Parka has no general inferential capabilities, if SHOE inference rules are important to an agent,their implementation would need to be outside knowledge base system. An inference engine could be writtenthat interfaces with the Parka KB, although this would obviously be slower than in a system in whichinference was built in.3.1.3 DatalogDatalog is a forward-chaining deduction system for databases based on �rst-order predicate logic using hornclauses. Datalog has good computational complexity, however it is in general less e�cient than a custom-builtSHOE system, especially with regard to category inheritance.Datalog restricts its horn clauses to be safe, meaning that all of its variables are limited. Datalog de�nes\limited" as follows: variables are limited if they appear in a predicate, appear in an `=' comparison with aconstant, or appear in an `=' comparison with another limited variable. Datalog's horn clauses may dependon each other recursively. Datalog allows negation in a limited form called strati�ed negation, which we willnot discuss here.Datalog has a good match with SHOE's semantics: it allows n-ary predicates, horn-clause rules, andbuilt-in comparison predicates. SHOE's more restrictive variable join rule ensures that all SHOE inferencerules are safe. And since they have no negation, SHOE inferential rules map directly to recursive Dataloghorn clause rules. The remaining semantics of SHOE can be achieved using Datalog's rules. Categorymembership can be inferred using Horn clause rules and unary predicates. For example, the fact that aPerson is a Mammal may be expressed using the rule Person(x) ) Mammal(x).Datalog, as well as most other knowledge base systems, does not provide a mechanism for attachingsources to assertions or facilities for treating these assertions as claims. To represent such information, onemust create an extra layer of structure using the existing representation. To represent the source of theinformation, for example, we can add an extra argument to each predicate indicating the source. However,claim propagation can only be done in simplistic ways through modi�cations of SHOE rules as they areconverted through Datalog rules.3.1.4 Relational Database Management SystemsLastly we consider commercial relational database management systems (RDBMSs) because they have beendesigned to e�ciently answer queries over large databases. However, this e�ciency comes at a cost: there isno way to explicitly specify inference.Still, mapping of much of SHOE is possible in an RDBMS. Each n-ary SHOE relation can be representedby a database relation with n attributes. Categories can be represented by a binary relation isa. To accom-modate claimant information, an additional attribute can be added to each relation as in the two systemsabove.The only thing missing from RDBMSs is inference. However, for any set of safe, non-recursive Datalogrules with strati�ed negation, there exists an expression in relational algebra that computes a relation foreach predicate in the set of rules. Ullman describes this process in detail in [25]. As mentioned earlier, thesemantics of SHOE are safe and include no negation, but SHOE rules can be recursive. Therefore, somebut not all of the rules could be implemented using views. Some commercial RDBMSs include operatorsto compute the transitive closure of a relation (e.g., the CONNECT WITH option in the Oracle SELECToperator). More complex dependencies must either be ignored or implemented in a procedural host language.3.2 System Design IssuesThere are a number of choices that must be made in designing a SHOE system. These choices can be dividedinto the categories of ontology design, annotation, information gathering, and information processing.15



3.2.1 Ontology DesignOntology design can be a time consuming process. To save time and increase interoperability with otherdomains, an ontology designer should determine what set of existing ontologies can be extended for his use.To assist the designer, there should be a central repository of ontologies. A simple repository could be aset of web pages that categorize ontologies, while a more complex repository may associate a number ofcharacteristics with each ontology so that speci�c searches can be issued. A web-based system that uses thelater approach is described in [26].Another aspect of ontology creation is the availability of the ontology. Internet delays, especially overlong distances, can result in slow downloads of ontologies. To remedy this, commonly used ontologies canbe mirrored by many sites. To use the most accessible copy of an ontology, users should be able to specifypreferred locations for accessing particular ontologies. In this way, the URL �eld in the <USE-ONTOLOGY>tag is only meant as a recommendation.Some ontologies may be proprietary and thus placing them on the Web is undesirable. Such ontologiescould be maintained on an intranet, assuming that is where the annotated information is stored too. Ingeneral, if the SHOE instances that use an ontology are available to a user, the ontology should also beavailable, so that SHOE-enabled software can appropriately interpret the instances.3.2.2 AnnotationAnnotation is the process of adding SHOE semantic tags to web pages. This can be the biggest bottleneck inmaking SHOE available. How to go about this process depends on the domain and the resources available.If no SHOE tools are available, then annotations can be made using a simple text editor. However, thisrequires familiarity with the SHOE speci�cation and is prone to error. Therefore, we have provided theKnowledge Annotator, a graphical tool that allows users to add annotations by choosing items from listsand �lling in forms. The Knowledge Annotator is described in more detail in Section 3.3.2.If there are many many pages to annotate, it may be useful to �nd other methods to insert SHOE intothem. Large organizations that produce data on a regular basis often create web pages from the the contentof databases using scripts. In such situations, these scripts can be easily modi�ed to include SHOE tags.In other cases, there may be a regular format to the data, and a short program can be written to extractrelations and categories based on pattern matching techniques. Finally, NLP techniques have had successin narrow domains, and if an appropriate tool exists that works on the document collection, then it can beused to create statements that can be translated to SHOE. It should be mentioned that even if such an NLPtool is available, it is advantageous to annotate the documents with SHOE because this gives humans theopportunity to correct mistakes and allows query systems to use the information without having to reparsethe text.3.2.3 Information GatheringA system that uses SHOE information can be reactive or proactive in terms of gathering information. Areactive system will only scan a page that has been explicitly speci�ed by some user, perhaps via an HTMLform. A proactive system, on the other hand, seeks out new web pages in an attempt to locate usefulinformation. Certain constraints may be placed on such a system, such as to only visit certain hosts, onlycollect information regarding a particular ontology, or to answer a speci�c query. The �rst two cases areconsidered o�-line processing because information is stored locally and queries are issued against this localKB instead of the web at large; this is similar to the way major search engines work today. The other caseis considered on-line processing because query execution involves dynamically loading web pages in a veryspeci�c search. One advantage of the o�-line approach is that accessing a local KB is much faster thanloading web pages. A second advantage is that we do not need complex heuristics to achieve a competentgathering of the information. Instead, the system stores all information that it comes across for later user.However, since a web-crawler can only process information so quickly, there is a tradeo� between coverageof the Web and freshness of the data. If the system revisits pages frequently, then there is less time fordiscovering new pages. 16



3.2.4 Information ProcessingUltimately, the goal of a SHOE system is to process the data in some way. This information may be usedby an intelligent web agent in the course of performing its tasks or it may be used to help a user locateuseful documents. In the later case, the system may either respond to a direct query or the user may createa standing query that the system responds to periodically with information based on its gathering e�orts.As discussed in Section 3.1, this processing will need a component that stores the knowledge that hasbeen discovered and allows queries to be issued against that knowledge. This tool should have an API thatallows various user interfaces, both general and domain speci�c, to use the knowledge.3.3 Existing ToolsTo support the implementation of SHOE we have developed a number of general purpose tools. These toolsare coded in Java and thus allow the development of platform independent applications and applets that canbe deployed over the Web. Since Java is an object-oriented language, we will describe the design of thesetools using object-oriented terminology. Speci�cally, we will use the term class to refer to a collection ofdata and methods that operate on that data and object to refer to an instantiation of a class. Additionally,the term package is used to identify a collection of Java classes.3.3.1 The SHOE LibraryThe SHOE library is a Java package that can be used by other programs to parse �les containing SHOE, writeSHOE to �les, and perform simple manipulations on various elements of the language. The emphasis is onKB independence, although these classes can easily be used with a KB API to store the SHOE informationin a KB. The central class is one that represents a SHOE document and can be initialized using a �le orinternet resource. The document is stored in such a way that the structure and the format is preserved,while e�cient access to and updating of the SHOE tags within the document is still possible. A SHOEdocument object may contain many instance or ontology objects. Since SHOE is order independent but theinterpretation of some tags may depend on others in the same document, the document must be validatedin two steps. The �rst step ensures that it is syntactically correct and creates the appropriate structuresfor each document component. The second step ensures that the SHOE structures are internally consistentwith themselves and with the ontologies that they depend on.In addition to having classes for instances and ontologies, there are classes that correspond to each ofthe other SHOE tags. These classes all have a common ancestor and include methods for reading andinterpreting tags contained within them, modifying properties or components and validating that the objectis consistent with the rules of the language. Each class uses data structures and methods that are optimizedfor the most common accesses to it. For example, the ontology class includes a hash table for quick referenceto its elements by name. It also keeps track of the most abstract categories that it de�nes so these can beused as root nodes for trees that describe the taxonomic structure of the ontology.An ontology manager class is used to cache ontologies. This is important because ontology informationis used frequently and it is more e�cient to access this information from memory than to access it fromdisk, or even worse, the Web. However, there may be too many ontologies to store them all in memory, andtherefore a cache is appropriate. One of the most important features of this class is a method which resolvespre�xed names. In other words, it determines precisely which ontology element is being referred to. This isnon-trivial because pre�x chains can result in lookups in a series of ontologies and objects can be renamed incertain ontologies. When objects that contain such pre�xed names are validated, the names are resolved intoan identi�er that consists of the id and version of the ontology that originated the object and the name ofthe object within that ontology. This identi�er is stored within the object to prevent unnecessary repetitionof the pre�x resolution process.3.3.2 Knowledge AnnotatorThe Knowledge Annotator is a tool that makes it easy to add SHOE knowledge to web pages by makingselections and �lling in forms. As can be seen in Figure 3, the tool has an interface that displays instances,ontologies, and claims. Users can add, edit or remove any of these objects. When creating a new object,17



Figure 3: The Knowledge Annotatorusers are prompted for the necessary information. In the case of claims, a user can choose the source ontologyfrom a list, and then choose categories or relations from a corresponding list. The available relations willautomatically �lter based upon whether the instances entered can �ll the argument positions. A variety ofmethods can be used to view the knowledge in the document. These include a view of the source HTML, alogical notation view, and a view that organizes claims by subject and describes them using simple English.In addition to prompting the user for inputs, the tool performs error checking to ensure correctness5 andconverts the inputs into legal SHOE syntax. For these reasons, only a rudimentary understanding of SHOEis necessary to markup web pages.3.3.3 Expos�eExpos�e is a web-crawler that searches for web pages with SHOE mark-up and interns the knowledge. Itcan be used to gather information for an o�-line search system. Expos�e can be con�gured to visit onlycertain web sites or directories within those web-sites. This allows the search to be constrained to sourcesof information that are known to be of high quality and can be used to keep the agent from accumulatingmore information than the knowledge base can handle. Expos�e also follows web robot etiquette: it will notrequest any page that has been disallowed by a server's robot.txt �le and waits 30 seconds between pagerequests, so as not to overload a server.A web-crawler essentially performs a graph traversal where the nodes are web pages and the arcs are thehypertext links between them. When Expos�e discovers a new URL, it assigns it a cost and uses this cost todetermine where it will be placed in a queue of URLs to be visited. In this way, the cost function determinesthe order of the traversal. We assume that SHOE pages will tend to be localized and interconnected. Forthis reason, we currently use a cost function which increases with distance from the start node, where pathsthrough non-SHOE pages are more expensive than those through SHOE pages and paths that stay withinthe same directory on the same server are cheaper than those that do not.5Here correctness is in respect to SHOE's syntax and semantics. The Knowledge Annotator cannot verify if the user's inputsproperly describe the page. 18



When Expos�e loads a web page, it parses it using the SHOE library, identi�es all of the hypertext links,category instances, and relation arguments within the page, and evaluates each new URL as above. Finally,the agent stores SHOE category and relation claims in a speci�ed knowledge base; a small set of interfacefunctions must be written to provide an API for the KB.In SHOE's formal semantics, we stated that if an instance appears in an argument of a relation whichis not of the base type, then we automatically infer that the instance is of the required type, rather thanperform type checking. This can result in the addition of a large number of rules to the KB. To avoid this,we treat such situations as if the the source has made an implicit category claim: we assert a claim that theinstance is of the required category.4 How SHOE Can Be Used: Two ApplicationsWe have prototyped two applications to demonstrate the usefulness and capabilities of SHOE. The �rst wasan internal application to initially validate the concept and the second was developed for an outside partyto solve a real-world problem. The design of these applications followed four basic steps:� create the ontologies� annotate web pages with SHOE tags� determine how SHOE information is to be discovered and processed� design the user interfaces4.1 A Computer Science Department ApplicationOur �rst application was developed as a proof of concept of the language. We chose the domain of computerscience departments because it is simple and familiar to researchers interested in internet technology. Wewanted to evaluate the ease of adding SHOE to web pages, the types of queries that could be constructed,and the performance of SHOE queries in a small-size environment. Our basic architecture consists of usingthe Knowledge Annotator to add SHOE tags to web page, using Expos�e to discover knowledge, and using agraphical Java applet to query the knowledge base that stores the knowledge.4.1.1 The ApproachWe began by creating a simple computer science department ontology that extends the base SHOE ontology.Some of the categories we de�ned were Student, Faculty, Course, Department, Publication and Research. Wealso de�ned relations such as publicationAuthor, emailAddress, advisor, and member. The �nal ontology had 43categories and 25 relations. We created the ontology �le6 by hand, and included a standard HTML sectionto present a human readable description as well as a section with the SHOE syntax. In this way, the �leserves the purpose of educating users in addition to providing machine understandable semantics.The next step was to annotate a set of web pages. Annotation is the process of adding SHOE semanticmarkup to a web page. Every member of the Parallel Understanding Systems (PLUS) Group marked uptheir own web pages. Although most members used the Knowledge Annotator, a few added the tags usingtheir favorite text editors.In order to get a better understanding of the system's performance, we needed a larger dataset than justthe pages of the PLUS group. Fortunately, the World Wide Knowledge Base (WebKB) project at CarnegieMellon University has a dataset in the same domain7. This set consists of 8282 real web pages found atcomputer science department websites and includes seven manually generated classi�cations for the webpages. These classi�cations include four categories (Course, Faculty, Student, and Research) and three binaryrelations (suborganization, teacherOf, and member). We used this information to create category and relationdeclarations in SHOE format. Since many of the web pages did not fall into any of the categories used, thisonly allowed us to acquire 1929 new claims. Since, for obvious reasons, we were unable to add this SHOE6This ontology is located at http://www.cs.umd.edu/projects/plus/SHOE/onts/cs.html7This dataset can be obtained from http://www.cs.cmu.edu/~ webkb/19



Figure 4: A Java-PIQ Querydata to the web pages of the departments described, we created summary pages on our server to contain theresulting SHOE instances.To get even more SHOE information about computer science departments, we looked for web pages withsemi-regular structure. Most departments had lists of faculty, users, courses and research groups which �tthis criteria. We then extracted SHOE tags from this data by specifying patterns in the HTML source thatmarked the beginning and ends of instances that participated in relations or could be categorized accordingto our ontology. The resulting tags were added to the summary pages mentioned above.We decided to use Expos�e to acquire the SHOE knowledge from the web pages. To store the resultsof Expos�e's search, we chose Parka, since we were familiar with it and could readily modify it if needed.As mentioned in Section 3.1.2, Parka possesses most of the features required for a system to implementthe full SHOE semantics; it only lacks the ability to do arbitrary inference. Since we were not interestedin performing complex inferences on the data at the time, this was of no consequence. Not including theintensional delay between page requests, it took the robot 332 seconds to scan the directories and load theSHOE data into the Parka KB.Once we had the data loaded in SHOE, we needed to be able to query the Parka KB to make use ofit. The Java Parka Interface for Queries (PIQ) was developed for just this purpose. This interface givesusers a new way to browse the web by allowing them to submit complex queries and open documents byclicking on the URLs in the results. Figure 4 displays the results of a query to �nd the names, authors, andclassi�cations of every paper published on SHOE. A user inputs a query by drawing frames and the relationsbetween them. This speci�es a conjunctive query in which the frames are either constants or variables andthe relations can be a string matching function, a numerical comparison or a relation de�ned in an ontology.The PIQ is an applet, and as such is executed on the machine of each user who opens it. This clientapplication communicates with a central Parka knowledge base through a Parka server that is located on thewebsite that makes the PIQ available. When a user starts a PIQ applet on their machine, this applet sendsa message to the Parka server. The server responds by creating a new process and establishing a socket forcommunication with the applet. Then the server processes the query and sends the answers back to the20



applet, where they are displayed as a table of the possible variable bindings. If the user double-clicks on abinding that is a URL, then the corresponding web page will be opened in a new window of the user's webbrowser.4.1.2 DiscussionAs this example demonstrates, there are many possible means of acquiring SHOE information. In ourprototype, we used human directed annotation, translation from an alternate format, and pattern extraction.This allowed us to develop a signi�cant number of SHOE assertions in days. By combining the ability toannotate one's own pages with the ability to make claims about the content of other web pages, we allowthe e�orts of information providers and professional indexers to be combined.The most di�cult task for the individual annotating is identifying what concepts to annotate. Based onour experiences with this application, we make the following suggestions. First, if the document represents ordescribes a real world object then an instance whose key is the document's URL should be created. Second,hyperlinks are often signs that there is some relation between the object in the document and anotherobject represented by the hyperlinked URL. If a hyperlinked document does not have SHOE annotations,it may also be useful to make claims about its object. Third, one can create an instance for every propernoun, although in large documents this may be excessive. If these concepts have a web presence, then thecorresponding URLs should be used as keys, otherwise a unique key can be created by appending a \#" anda unique string to the end of the annotated document's URL.Although our KB is very small when compared to the scale of the entire Web, the initial results arepromising. For example, a Java-PIQ query of the form member(http://www.cs.umd.edu, x) ^ instance(Faculty,x) took only 256 milliseconds to answer, and the majority of this time was spent communicating with theserver across the internet. Future work will involve a thorough performance evaluation using much largerknowledge bases and arbitrary inference.The possible bene�ts of a system such as this one are numerous. A prospective student could use itto inquire about universities that o�ered a particular class or performed research in certain areas. Or aresearcher could design an agent to search for articles on a particular subject, whose authors are membersof a particular set of institutions, and were published during some desired time interval. One of the biggestadvantages of SHOE is that the data contained in multiple sources can be combined to answered a singlequery.4.2 The \Mad Cow Disease" ApplicationThe \Mad Cow Disease" epidemic in Great Britain and the apparent link to Creutzfeldt-Jakob disease (CJD)in humans generated an international interest in these diseases. Bovine Spongiform Encephalopathy (BSE),the technical name for \Mad Cow" Disease, and CJD are both Transmissible Spongiform Encephalopathies(TSEs), brain diseases that cause sponge-like abnormalities in brain cells. Concern about the risks of BSEsto humans continues to spawn a number website on the topic.The Joint Institute for Food Safety and Applied Nutrition (JIFSAN), a partnership between the Foodand Drug Administration (FDA) and the University of Maryland, is working to expand the knowledge andresources available to support risk analysis in the food safety area. One of their goals is to develop a websitethat will serve as a clearinghouse of information about food safety risks. This website must serve a diversegroup of users, including researchers, policy makers, risk assessors, and the general public, and thus mustbe able to respond to queries where terminology, complexity and speci�city may vary greatly. This is notpossible with keyword based indices, but can be achieved using SHOE. This section discusses our experienceswith using SHOE to support the TSE Risk Website, the �rst step in building a food safety clearinghouse.4.2.1 The ApproachThe initial TSE ontology was 
eshed out in a series of meetings that included members of the FDA andthe Maryland Veterinarian School. The ontology focused on the three main concerns for TSE Risks: sourcematerial, processing, and end-product use. Currently, the ontology has 73 categories and 88 relations.8 In8Those interested in the details of the ontology can view it at http://www.cs.umd.edu/projects/plus/SHOE/onts/tseont.html21



Figure 5: The TSE Path Analyzeraddition to speci�c TSE concepts such as Disease and Risk, general terms such as People,Organizations, Processes,Events, and Locations were de�ned. Twelve of the relations have three or more arguments, con�rming ourintuitions of the usefulness of n-ary relations. One reason for the need of n-ary relations is that scienti�c datatends to have many parameters. For example, the infectivityTitre relation measures the degree of infectivityin a tissue given a disease, source animal, and tissue type.Following the creation of the initial ontology, we annotated web pages. There are two types of pagesthat this system uses. Since the Web currently has little information on animal material processing, wecreated a set of pages describing many important source materials, processes and products. The second setof pages are existing TSE pages that provide general descriptions of the disease, make recommendations orregulations, and present experimental results. Early annotations were di�cult because the original ontologydid not have all of the concepts that were needed.When the initial set of pages was completed, we ran Expos�e and used Parka as our knowledge base system.The resulting KB could be queried using the PIQ, as discussed earlier, but JIFSAN also wanted a specialpurpose tool to help users visualize and understand the processing of animal materials. To accommodatethis, we built the TSE Path Analyzer, a graphical tool which allows the user to pick a source, process and/orend product from lists that are derived from the taxonomies of the ontology. The system then displays allpossible pathways that match the query; an example is shown in Figure 5. Since these displays are createddynamically based on the semantic information in the SHOE web pages, they are kept current automatically,even when the SHOE information on some remote site is changed.We are still testing the system and gradually accumulating the mass of annotated web pages that isnecessary to make it really useful. When it is publicly released, the system's operation will be almost thesame as described above. A summary of the process is below:1. Knowledge providers who wish to make material available to the TSE Risk Website use the KnowledgeAnnotator to mark-up their pages with SHOE. The instances within these pages are described usingelements from the TSE Ontology. 22



2. The knowledge providers then place the pages on the Web and notify JIFSAN.3. JIFSAN reviews the site and if it meets their standards, adds it to the list of sites that Expos�e, theSHOE web-crawler, is allowed to visit.4. Expos�e crawls along the selected sites, searching for more SHOE annotated pages with relevant TSEinformation. It will also look for updates to pages.5. SHOE knowledge discovered by Expos�e is loaded into a Parka knowledge base.6. Java applets on the TSE Risk Website access the knowledge base to respond to users' queries or updatedisplays. These applets include the TSE Path Analyzer and the PIQ.It is important to note that we will force new websites with TSE information to register with JIFSAN.This makes Expos�e's search more productive and allows JIFSAN to maintain a level of quality over the datathey present from their website. However, this does not restrict the ability of approved sites to get currentinformation indexed. Once a site is registered, it is considered trusted and Expos�e will revisit it periodically.4.2.2 DiscussionThe approach taken in developing this application was similar to that used for the computer science depart-ment application. However, there were two factors that made this more di�cult. First, the domain hadill-de�ned boundaries forcing us to resort to an iterative process of ontology design and page annotation.Second, the annotators and the query users were not familiar with AI techniques and terminology.In an attempt to describe an ontology to the best detail possible, it is easy to lose sight of the originalintent of the ontology. In the course of developing the TSE ontology, we developed the following guidelinesto help us determine the scope of the ontology:� What kind of pages will be annotated?� What sorts of queries can the pages be used to answer?� Who will be the users of the pages?� What kinds of objects are of interest to these users?� What are the interesting relationships between these objects?The annotation process was more di�cult for this application, partly because the annotators were eitherAI researchers or domain experts, but not both. However, we believe the main di�culty was due to thedi�erence in the data. In the computer science application, instances of each major concept (e.g., department,course, professor, publication) has its own home page. The content of TSE pages on the other hand mostlyrefers to shared entities such as BSE or the North American continent, and thus choosing a single URL as akey is di�cult. In such cases, we created constants in the ontology to represent the shared objects, althoughwe are investigating better alternatives.Users also have di�culty in determining the level of detail that is required when annotating a particularpage. The more detailed the information, the more likely the page is to be returned to a precise query thatmatches its contents. However, adding detailed annotations is a time consuming process and certain detailsare likely to never be of use to anyone. The following guidelines can be helpful in making these decisions:� The utility of a page can be considered from a search perspective. If some of the information consumersare available, they can be asked to make a list of the most important questions that the page can beused to answer. The information provider can translate these questions into SHOE queries and makesure that the categories and relations in those queries are correctly speci�ed in the page.� A summary of the document should contain the important concepts of the document. If a summary isavailable, it helps the knowledge provider to clearly understand the value of the document.23



� If the document author is available, he or she can be asked to identify the key or novel statementsmade by the document. Comparison of the nouns and verbs in these statements to the ontology canbe used to discover useful claims.We learned that web users are often willing to sacri�ce power for simplicity. When we demoed SHOE ata TSE conference, we found that most users were much more impressed with the Path Analyzer than withthe Java PIQ, even though the former only allows a much more limited set of possible queries. However,users liked it because it required little instruction and displayed the results in a customized way that madeit easy to explore the problems of interest to them.We also learned that a SHOE knowledge base must be able to perform certain complex operations as asingle unit. For example, an important feature of the TSE Path Analyzer is that it displays a hierarchicallists of sources, processes, and products where each list is built from the categorization hierarchy. Althoughtheoretically these lists can be built recursively by asking for the immediate children of a category, in client-server situations the communication overhead and transmissions delays for each request can be prohibitive.Much better performance is achieved with a special server request that returns the complete set of parent-child pairs that form a hierarchy. Although this required the same amount of processing by the knowledgebase, it resulted in a signi�cant speedup of the client application.5 Related WorkAttempts to bring semantic markup to the Web are not new. In fact, a limited form of semantic markup ispresent in early versions of HTML. HTML 2.0 [3] includes several weak mechanisms for semantic markup (theREL, REV and CLASS subtags and the META tag). HTML 3.0 [22] advances these mechanisms somewhat.Unfortunately, the semantic markup elements of HTML have so far been used primarily for document meta-information (such as declared keywords) or for hypertext-oriented relationships (like \abstract" or \tableof contents"). Furthermore, relationships can only be established along hypertext links (using <LINK> or<A>).To address the limitations of HTML, Dobson and Burrill [9] have attempted to reconcile it with theEntity-Relationship (ER) database model. This is done by adding to HTML a simple set of tags that de�ne\entities" within documents, labeling sections of the body text as \attributes" of these entities, and de�ningrelationships from an entity to outside entities. However, no inferencing mechanism is provided.Many research projects aim to make the Web more productive by adding database functionality. Someprojects focus on creating query languages for the Web [1, 17]. However these approaches are limited toqueries concerning the HTML structure of the document and the hypertext links. They also rely on indexservers such as AltaVista or Lycos to search for words or phrases, and thus su�er from the limitations ofkeyword search. Another approach involves mediators (or wrappers), custom software that serves as aninterface between middleware and a data source [27, 21, 23]. When applied to the Web, wrappers allowusers to query a page's contents as if it was a database. However, the heterogeneity of the Web requires thata multitude of custom wrappers must be developed, and it is possible that important relationships cannotbe extracted from the text based solely on the structure of the document. Semi-automatic generation ofwrappers [2] is a promising approach to overcoming the �rst problem, but is limited to data that has arecognizable structure. Other researchers [8] are looking at using machine learning techniques to categorizeweb pages and extract relationships from the text.The concepts of creating ontologies by extending pre-existing ontologies has been used in numerous KRsystems. One of the most notable of these is the Ontolingua Server [12] which is a tool to assist in thedesign and sharing of ontologies. The idea of partitioning KBs using ontologies is very similar to Cyc's [19]microtheories.The projects most similar to SHOE focus on creating languages to help machines process and understandWeb documents. The Ontobroker [13] project has developed a language which is embedded in HTMLas well. The syntax of this language is more compact but is not as easy to understand as SHOE. Also,Ontobroker does not have a mechanism for pages to use multiple ontologies and those who are not membersof the community have no way of discovering the ontology information. The Web Analysis and VisualizationEnvironment (WAVE) project [16] has designed the Ontology Markup Language (OML) and the ConceptualKnowledge Markup Language (CKML), both of which are based on early versions of SHOE.24



5.1 The Resource Description FrameworkThe Resource Description Framework (RDF) [18] is a recommendation endorsed by the World Wide WebConsortium (W3C). Since RDF is similar in concept to SHOE but has the backing of the major Internetstandards body, we feel it is necessary to provide a detailed comparison of SHOE and RDF. First, RDF isnot a language, but a data model of metadata instances. Additionally, this data model is nothing more thana semantic network without inheritance; it consists of nodes connected by named links. To include RDF in�les, its designers have chosen an XML syntax although they emphasize this is only one of many possiblerepresentations of the RDF model. This syntax is used to describe the properties and relations of resourcesin much the same way as relations are used in SHOE. A property called rdfs:type is used to express the typeof a resource; this is equivalent to the <CATEGORY> tag in SHOE. The most signi�cant di�erence betweenthe RDF syntax and SHOE instances is that being based on a semantic network, RDF is inherently binary.However, a version of the syntax makes this fact almost transparent to users.Following SHOE, RDF has recognized the need for controlled, sharable, extensible vocabularies if inter-operability is to be achieved on the Web. To this end, the RDF working group has developed the RDFSchema Speci�cation. We can compare RDF schemas to SHOE ontologies. RDF de�nes a property calledrdfs:subClassOf which is equivalent in semantics to SHOE's <DEF-CATEGORY>, with the exception that ifthere are multiple parent categories, each must be speci�ed by repeating the property. One feature pos-sessed by RDF that does not appear in SHOE is the property rdfs:subPropertyOf which allow properties tobe specialized in a way similar to classes. However, the same semantics can be expressed in SHOE usinginference rules. RDF allows constraints to be placed on the domain and range of a property; this is equiva-lent to specifying the type of arguments in SHOE <DEF-RELATION> statements. RDF does not possess anymechanisms for de�ning general inferences.In RDF, schemas are extended by simply referring to objects from that schema as resources in a newschema. Since schemas are given unique URIs (Uniform Resource Identi�ers), this guarantees that exactlyone object is being referenced. This achieves the same purpose as <USE-ONTOLOGY> in SHOE, but in amuch less compact way. A signi�cant oversight in RDF is the lack of an ability for a schema to renameproperties and classes to a local vocabulary. Although the rdfs:subClassOf or rdfs:subPropertyOf properties canbe used to state that the new name is a specialization of the old one, there is no way to state an equivalence.This can be problematic if two separate schemas \rename" a property; since both schemas have simplysubclassed the original property, the information that these two properties are equivalent is lost. We feelthat these features will be necessary because achieving consensus for schema names will be impossible on aworld-wide scale.However, the main weakness of RDF is its limited ability to cope with a rapidly changing and distributedWeb. Since there are no inference rules, there is no way to map between di�erent representations of the sameconcepts. Although RDF does provide a method for revising schemas, this method is insu�cient. Essentiallyeach new version of a schema is given its own URI and thus can be thought of as a distinct schema in and ofitself. This is similar to the SHOE concept of creating a new �le for each version of an ontology. However,in RDF, a schema revision is really a schema that extends the original version; its only link to the originalschema is by using the rdfs:subClassOf and rdfs:subPropertyOf properties to point to the original de�nitions ofeach class and property. As such, a true equivalence is not established between the items. Additionally,schemas and resources that refer to the schema that was updated must change every individual referenceto a schema object to use the new URI. Finally, since schemas do not have an o�cial version associatedwith them, there is no way to track the revisions of a schema unless the schema maintainer uses a consistentnaming scheme for the URIs. In SHOE, the id as well as the version number of an ontology are explicit.Like SHOE, RDF realizes that di�erent schemas may use the same strings to represent di�erent conceptualmeanings. SHOE solves this with <USE-ONTOLOGY> tags that identify ontologies and specify pre�xes,and then requires that the appropriate pre�xes are appended to all element references. RDF uses XMLnamespaces to assign a separate namespace to each schema. There are two disadvantages to this approach.First since namespaces can be applied to any XML DTD, there is no way to know if a particular set of tagsis RDF or just intermeshed tags from a di�erent DTD. Second, each RDF section must explicitly specifythe namespace for every schema that is referenced in that section, even for schemas that were extendedby a schema whose namespace has already been speci�ed. SHOE, on the other hand, allows access to anyelements from ontologies extended by the one in use via the pre�x chaining mechanism.25



6 Future WorkWe have learned many lessons from the design, development and use of our two applications. This workleaves us with many interesting research directions.6.1 Conduct a Systematic EvaluationThe work described in this paper has shown that SHOE can be made to work for small applications usingParka for reasoning and data storage. However, the language still needs to be demonstrated in a large scaleinternet environment and a comparison should be made of alternate knowledge base systems. We also planto conduct a systematic evaluation that considers a number of factors, including performance and usability.An important part of performance is how well the system retrieves information. The standard metricsfrom the �eld of information retrieval are precision and recall. Precision is measured as the percentage ofretrieved documents that are relevant. Recall is a measured as the percentage of available relevant documentsthat were retrieved. Unfortunately, with a system like SHOE, these metrics are highly dependent on thequality of the annotation by web site authors. Most web-sites will not have incorrect annotations and thereis no ambiguity in the annotations, so SHOE should be able to have 100% precision. If the entire site hasbeen indexed by SHOE, and every page is annotated to the level required, then it is also possible to have100% recall. Any SHOE evaluation must consider these factors to develop an unbiased metric. In addition,usability is too often overlooked, but is essential for success on the Web. Most users do not have the time ordesire to learn complicated tools. To determine usability, we must ask questions such as: How easy is it toannotate pages? How long does it take to annotate a page? How user-friendly are the tools? Is the processintuitive?To support our performance evaluations, we are currently extending the number of annotated pagesused by both of the applications described in this paper. We are adding more detailed annotations to the8282 computer science department pages used by the WebKB project and plan to add information frommore universities as well. We are also working with JIFSAN to get a large mass of pages annotated for theTSE application. These e�orts will result in datasets that are large enough to conduct truly meaningfulevaluations.6.2 Improve Usability of ToolsThe knowledge acquisition bottleneck has caused many knowledge based approaches to fail. SHOE hopesto overcome this problem by getting the largest possible number of individuals involved in the knowledgeacquisition process by way of annotation. For such an approach to work, we must make the process simpleand straightforward for the layperson. We are actively working with our users to determine what interfacesare the most intuitive. Certainly, the ultimate annotation process would be fully automatic, but due tolimitations of NLP in general domains, this goal is unrealistic at the time. However, lightweight NLPtechniques and semi-automatic annotation may prove useful. To integrate such methods into SHOE withoutbuilding special purpose tools for each domain, we could specify in our ontologies patterns that indicaterelationships or text that serves as evidence that a particular concept is present.It is well known that ontology development is a di�cult task. To keep up with the changing nature ofthe Web, it is important that good ontologies can be designed quickly. To this end, we intend to create a setof tools and methods to help in the design process. First, we plan to create an ontology design tool which isthe ontology equivalent of the Knowledge Annotator. Second, we will design a library of SHOE ontologies,so that ontology authors can use SHOE's extension mechanism to reuse existing components and focus onthe fundamental issues of their ontologies. To initialize our library, we can make use of publicly availableontologies such as those found on the Ontolingua Server [12]. We will write translation tools to and fromthe most common ontology formats. Third, we will try to identify how, if at all Web ontology design shoulddi�er from traditional ontology design. We believe that SHOE ontologies will be used mostly to categorizeinformation and �nd simple relationships. As such, extremely detailed ontologies may not be necessary.26



6.3 Experiment with Inference TechniquesOne of the main challenges of an internet-based reasoning system is to scale well enough to handle thevolume of data. Due to the similarity between SHOE's semantics and that of datalog, recent results in thestudy of the later can be used to implement e�cient SHOE inference engines. However, the Web's size isstill overwhelming. Fortunately, we may be able to relax some requirements for inference. Since it is unlikelythat any reasoning system will have access to all information available on the Web, its knowledge base willby necessity be incomplete, and thus even a complete reasoning procedure will be \incomplete" in terms ofthe facts that can be derived from the entire Web. As such, using an incomplete inference algorithm maynot be so bad; one that limits the depth of inference, the time of inference, or the total number of inferencescould be useful in keeping the execution time to reasonable levels. Furthermore, it is likely that the mostimportant facts will be those that someone has taken the time to explicitly annotate, and a means to rankresults depending on the number of required inferences may help to determine the signi�cance of an answer.An IDA backward-chaining search or a forward-chaining search could return results in the desired order. Wewill experiment with various inference strategies to determine those that are most applicable to this problemarea.6.4 Explore Language IssuesOur demonstration applications made us aware of issues that are related to the design of the language. Awell known problem in knowledge representation systems is that an instance from one perspective can oftenbe considered a category from another. For this reason, page authors have to carefully consider whether theobject they are talking about is really an individual entity that will not be subdivided at later date or if itis a class that was just omitted from the ontology. Although it is possible to create a new ontology versionwith the new class at any time, all references to the original instance will have to be changed. Since thisis likely to occur frequently, we are considering adding a language feature that can state that a category isequivalent to an instance.The TSE application also proved that arithmetic functions would be a very useful feature in the language.JIFSAN wants the TSE Risk Website to be a tool to assist risk assessors, and has asked for the capability toperform automatic risk calculations in SHOE. A sample query might be \What is the risk of a product giventhe risk of its source materials, the processing of these materials and how each process a�ects the risk?" Toperform this type of inference, we would need to add arithmetic functions to the language. However, if anarithmetic function is used recursively in a rule, inference procedures may never terminate. We are lookinginto the restricted use of functions in inference rules that have a terminating characteristic and yet are stilluseful to wide variety of problems.In the course of building our applications, there were many situations where we would have liked to havean inheritance feature. For example, in the TSE application, most types of rendering have certain propertiesin common. In the current version of SHOE, there is no way to specify properties at the category level,and thus subcategories and instances have nothing to inherit. However, inference rules can be written thatstate Category(x;A) ) property(x; y) where y is the value of property that is inheritable from class A. Itis important to note that this is di�erent from the traditional frame-based or semantic network concept ofinheritance, because there is no mechanism for values inherited from more speci�c classes to override thevalues from more general classes. However, our looser form of inheritance has the advantage that it makesthe system monotonic. We will look to see if the bene�ts of adding true inheritance to SHOE are worthgiving up the property of monotonicity.6.5 Build a Variety of ApplicationsIn Section 3, we discuss a number of types of systems that could be built using SHOE. So far, we have onlybuilt systems that follow one of these approaches: they use a web-crawler that stores all relevant knowledgein a knowledge base. This \knowledge indexing" approach works best for applications with a focused, butstill widely distributed, domain. However, SHOE can be used to support general applications to locateinformation on the entire Web as well. We believe that the other types of systems we discussed provide richareas for research, especially the on-line search agent. Such agents must choose a good point from which to27



begin the search for an answer to the query and then must use their knowledge to help them traverse theWeb and locate the requested information e�ciently.7 ConclusionIn this paper, we have argued that knowledge representation is important to the World Wide Web, butthat an internet knowledge representation system must not rely on many of the common assumptions inour �eld. We have described SHOE, a knowledge representation language that makes assumptions that aremore suitable to the Internet. In Section 1, we listed a number of characteristics that must be addressedby a web-based KR system; we will now summarize how SHOE addresses these features. First, the systemmust be scalable: SHOE's �rst step in this direction is limiting expressivity although there is much researchto be done on improving query e�ciency. Second, the Web is an \open-world": as a result, SHOE doesnot allow conclusions to be drawn from lack of information. Third, the Web is dynamic: SHOE addressesthe need for rapid change with simple yet powerful extension and versioning mechanisms. With ontologiesSHOE addresses heterogeneity, provides structure for information, and provides a context for reasoning aboutdi�erent domains. Finally, SHOE copes with the distributed ownership of data by treating all discoveredinformation as claims instead of facts.To demonstrate SHOE's features, we have described applications that show the use of SHOE. We'vedeveloped a freely available ontology for computer science pages, and we've also worked with biologicalepidemiologists to design an ontology for a key food safety area. These applications show that SHOEcan exist on the web, and that tools using SHOE can be built and used. Future work includes a criticalevaluation of SHOE (based on a large collection of computer science pages that are available on the web),and the development of tools that make the language more user friendly.SHOE gives HTML authors an easy but powerful way to encode useful knowledge in Web documents andit o�ers intelligent agents a much more sophisticated mechanism for knowledge discovery. Such a semanticlanguage could provide context and relation information for more powerful search engines. In addition, SHOEcould greatly expand the speed and usefulness of intelligent agents by removing the single most signi�cantbarrier to their e�ectiveness: a need to comprehend text and graphical presentation as people do.A key goal of this project is to encourage knowledge representation researchers to consider new di-rections for our �eld based on the new needs of the information technology revolution. To this end, wehave made SHOE, the �rst language of this kind, freely available on the web, and have made the Javalibraries and our prototype tools available as well. Interested readers are urged to explore our web pages athttp://www.cs.umd.edu/projects/plus/SHOE for the full details of the language and the applications.References[1] G. Arocena, A. Mendelzon and G. Mihaila, Applications of a Web Query Language, in: Proceedings ofACM PODS Conference Tuscon, AZ (1997).[2] N. Ashish and C. Knoblock, Semi-automatic Wrapper Generation for Internet Information Sources, in:Proceedings of the Second IFCIS Conference on Cooperative Information Systems (CoopIS) Charleston,SC (1997).[3] T. Berners-Lee, and D. Connolly, Hypertext Markup Language - 2.0, IETF HTML Working Group, at:http://www.cs.tu-berlin.de/~ jutta/ht/draft-ietf-html-spec-01.html (1995).[4] D. Bobrow and T. Winograd, An overview of KRL, a knowledge representation language, CognitiveScience 1(1) (1977).[5] R. Brachman and J. Schmolze, An overview of the KL-ONE knowledge representation system, CognitiveScience, 9(2) (1985).[6] R. Brachman, D. McGuinness, P.F. Patel-Schneider, L. Resnick,and A. Borgida, Living with Classic:When and how to use a KL-ONE-like language, in: J. Sowa, ed., Explorations in the representation ofknowledge (Morgan-Kaufmann, CA, 1991). 28
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