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This study examined the feasibility of grazing as a sustainable and low-impact means 

of controlling Phragmites.  In addition, this study examined whether grazing of 

Phragmites by large herbivores (goats) in a wetland affects soil and soil water 

nutrient pools, and thus how grazing might affect nutrient export from the wetland.  

An isolated, created wetland at USDA's Beltsville Agricultural Research Center 

(BARC) in Beltsville, MD was divided into four grazed and four ungrazed plots.  

Two rounds of grazing significantly reduced Phragmites height, stem count, and 

biomass and increased some measures of plant diversity.  Grazing significantly 

elevated soil water total nitrogen and total phosphorus levels and reduced soil water-

soluble phosphorus levels.  The nutrient pool analysis indicates that grazing reduced 

the fertility of the system.  The results of this study will inform the development of an 

alternative, sustainable approach to controlling Phragmites that integrates the local 

agricultural community while benefitting the local ecology. 



  

 

 

 

 

 
 
 
 
 
 
 
 
 
 

GRAZING AS A MANAGEMENT TOOL FOR CONTROLLING PHRAGMITES 

AUSTRALIS AND RESTORING NATIVE PLANT BIODIVERSITY IN 
WETLANDS   

 
 
 

By 
 
 

Jennifer Brundage 
 
 
 
 
 

Thesis submitted to the Faculty of the Graduate School of the  
University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 
Master of Science  

2010 
 
 
 
 
Advisory Committee: 
Dr. Andrew Baldwin 
Dr. Joshua McGrath 
Dr. David Tilley 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by 
Jennifer Brundage 

2010 
 
 
 
 
 
 
 
 
 



 

 ii 
 

Acknowledgements 

I would like to thank my thesis advisor, Dr. Andrew Baldwin, for all of his help and 

support.  Likewise, I thank my committee members Dr. David Tilley and Dr. Joshua 

McGrath for their advice and support.  I would also like to thank the team at USDA’s 

Beltsville Agricultural Research Center, especially Dr. Bill Hare, veterinarian, who 

negotiated and advised me on the animal care aspects of this project.  Others at 

USDA’s Resource Support Services cared for the goats on a daily basis, including 

George Bowman, Roxane MacDonald, and Keith Hummel.  This project would not 

have been possible without their dedication and cooperation.  I would also like to 

thank Gary Seibel for help with project design and Gene Hahn, Devin Welsh, Diane 

Peng, Scott Allen, Jenny Allen, Leah Beckett, Brandon Winfrey, Pete Sharpe, John 

Powell, and Austin Hamidi for help with field work and analysis.   



 

 iii 
 

Table of Contents 
 
 
Acknowledgements....................................................................................................... ii 
Table of Contents......................................................................................................... iii 
List of Tables ................................................................................................................ v 
List of Figures .............................................................................................................. vi 
Chapter 1: Introduction ................................................................................................. 1 

Objectives ............................................................................................................. 7 
Chapter 2: Methods....................................................................................................... 8 

Study Site Description .............................................................................................. 8 
Study Design........................................................................................................... 11 
Sampling Methods .................................................................................................. 13 

Vegetation Sampling........................................................................................... 13 
Aboveground Biomass........................................................................................ 14 
Groundwater Sampling ....................................................................................... 15 
Soil Sampling...................................................................................................... 17 
Soil Bulk Density................................................................................................ 19 
Phragmites tissue nutrient analysis..................................................................... 20 

Data Analysis .......................................................................................................... 20 
Vegetation ........................................................................................................... 20 
Water Quality...................................................................................................... 22 
Soil Nutrients ...................................................................................................... 22 
Nutrient Pool Analysis........................................................................................ 23 

Chapter 3: Results ....................................................................................................... 25 
Vegetation ............................................................................................................... 25 

Phragmites Stem Counts..................................................................................... 25 
Phragmites Stem Heights ................................................................................... 26 
Phragmites aboveground biomass ...................................................................... 27 
Plant Diversity Measures .................................................................................... 28 

Soil Water ............................................................................................................... 31 
Soil .......................................................................................................................... 34 
Nutrient Pool Analysis............................................................................................ 36 

Chapter 4: Discussion ................................................................................................. 40 
Vegetation ............................................................................................................... 40 

Effects of Grazing on Phragmites....................................................................... 40 
Effects of Grazing on Plant Diversity................................................................. 43 

Soil water ................................................................................................................ 48 
Nitrate, Ammonium, and Phosphate................................................................... 48 
Soil and Soil Water pH ....................................................................................... 50 
Total Nitrogen (TN) and Total Phosphorus (TP)................................................ 51 

Soil .......................................................................................................................... 55 
Soil Water-Soluble Phosphorus .......................................................................... 56 
Soil Mehlich 3 Levels and Phosphorus Saturation Ratios .................................. 57 

Nutrient Pool Analysis............................................................................................ 58 



 

 iv 
 

Recommendations for Phragmites Control in Wetlands......................................... 62 
Limitations of Grazing as a Management Tool to control Phragmites .............. 63 

Veterinary Study on Goat Health............................................................................ 65 
Chapter 5:  Conclusions .............................................................................................. 66 

Grazing as a Management Tool for Phragmites Control ........................................ 66 
Grazing as a Management Tool for Increasing Plant Diversity.............................. 66 
Effects of Grazing on Wetland Nutrient Levels ..................................................... 66 
Direction for Future Research................................................................................. 67 

Appendix 1: Plant Survey Report March, 2008.......................................................... 68 
Appendix 2: Methods of Soil Water Analysis ............................................................ 72 
Appendix 3: Sample SAS Code.................................................................................. 74 
Appendix 4: List of Plant Species Encountered ......................................................... 77 
Bibliography ............................................................................................................... 79 
 



 

 v 
 

List of Tables 
 
Table 1: Average Mehlich 3 concentrations and standard deviations of soil nutrients
..................................................................................................................................... 34 
Table 2: Calculated amounts (g/m2) / (kg/ha) of nitrogen and phosphorus stored in 
Phragmites biomass in grazed and ungrazed plots in August 2009 ± standard error of 
the mean ...................................................................................................................... 36 
Table 3: Measured g N/m2 in soil, soil water, and Phragmites aboveground biomass
..................................................................................................................................... 38 
Table 4: Measured g P/m2 in soil, soil water, and Phragmites aboveground biomass39 



 

 vi 
 

List of Figures 
 
Figure 1: Research site location.................................................................................. 10 
Figure 2: Layout of goat grazing plots ....................................................................... 11 
Figure 3: Vegetation sampling plot and lysimeter locations ...................................... 15 
Figure 4: a=photo of a heavily grazed plot; b= photo of a lightly grazed plot ........... 26 
Figure 5(a): Average number of Phragmites stems per 1 m2 over time; (b): Average 
height of five tallest Phragmites stems per 1 m2 over time ........................................ 26 
Figure 6: Dry weight of Phragmites per 1 m2 after two rounds of grazing ................ 28 
Figure 7: (a) Species richness and (b) Shannon-Weiner diversity index through time
..................................................................................................................................... 30 
Figure 8: Shannon-Weiner diversity indices in ungrazed, lightly grazed, and heavily 
grazed plots ................................................................................................................. 31 
Figure 9: pH of shallow groundwater over time......................................................... 32 
Figure 10: concentrations of ammonium (a), nitrate (b), and phosphate(c) in soil water 
over the course of the experiment............................................................................... 32 
Figure 11: levels of total nitrogen (a) and total phosphorus(b) in soil water over time
..................................................................................................................................... 33 
Figure 12: Mehlich 3 molar phosphorus saturation ratios from soil at a depth of 0-15 
cm (a) and 15-30 cm(b)............................................................................................... 35 
Figure 13: Nitrogen pool analysis for a) grazed and b) ungrazed plots in August 2009
..................................................................................................................................... 38 
Figure 14: Phosphorus pool analysis for (a) grazed and (b) ungrazed plots in August 
2009............................................................................................................................. 39 
Figure 15: Layout of lightly and heavily grazed plots................................................ 43 
 



 

 1 
 

Chapter 1: Introduction 
 
 

Phragmites australis [(Cav.) Trin. Ex. Steud] is an invasive, cosmopolitan reed 

forming monocultures in U.S. wetlands that rapidly replace native vegetation (Chambers et 

al., 1999; Meyerson et al., 2000; Warren et al., 2001).  Phragmites began invading Mid-

Atlantic wetlands of the U.S. approximately 100 to 150 years ago (Rice et al., 2000).  It is 

especially invasive in inland freshwater emergent wetlands, and in disturbed, urbanized, and 

constructed wetlands (Havens et al., 2003).  It is also invasive in coastal, brackish, and 

freshwater tidal wetlands (Meyerson et al., 2000).  It forms monotypic stands that exclude 

native vegetation (Meyerson et al., 2000; Warren et al., 2001) and expands linearly at rates of 

1-3% annually (Warren et al., 2001) which often equates to rates of several meters per year 

(Farnsworth and Meyerson, 1999).  While Phragmites is generally treated as an invasive 

species in the U.S., it appears from peat cores and fossil records to have been present for 

thousands of years in low abundance in mixed stands (Kraft, 1971; Orson, 1999).  The 

invasive Phragmites appears to be of a different genotype, more akin to the European strain 

than the native type (Saltonstall, 2002, 2003 a,b).  It can grow to 6 m tall (typically 2-4 m) 

(Meyerson et al., 2000) and reproduces primarily via rhizomes, though it also produces 

thousands of seeds of low viability annually (Harris and Marshall, 1960; Haslam, 1972; 

Greenwood and MacFarlane, 2006).  

 Its efficient growth under high nutrient conditions allows Phragmites to outcompete 

native vegetation for light, growing space, and other resources (Onimaru and Yabe, 1996; 

Burdick and Konisky, 2003).  Levine et al. (1998) hypothesized that light is limiting where 

nutrients are abundant, therefore Phragmites may succeed because of its superior competitive 



 

 2 
 

ability for light.  In addition to its tall growth during the growing season, its tall culms remain 

standing throughout the winter and it produces abundant litter that blocks light from reaching 

the ground (Meyerson et al., 2000; Burdick and Konisky, 2003).  In the U.S., Meyerson et al. 

(2000) reviewed the literature on Phragmites ecology.  They found that Phragmites-

dominated sites had lower species richness than non-invaded marshes, and that eradication of 

Phragmites led to increased species richness in all reviewed cases.   

Because of its perceived negative effects on diversity and the local ecology (Gusewell 

and Klotzli (1998), Phragmites is often treated by U.S. land managers with herbicide, 

burning, mowing, or, rarely, flooding with saltwater.  Herbicide treatment is often the most 

cost-effective of these methods to reduce Phragmites biomass and restore plant biodiversity 

(Farnsworth and Meyerson, 1999; Warren et al., 2001).  However herbicide can have 

negative impacts on non-target plants and other organisms.  Herbicide use to control 

Phragmites has also been shown to cause a net increase in porewater ammonium 

concentrations for up to two years following treatment, which suggests that herbicide use 

increases the risk of nitrogen export from the wetland (Findlay et al. 2003).   

Grazing is a potential alternative management tool for controlling Phragmites that has 

been little studied in the U.S.  Studies in Europe have shown that using livestock to graze 

Phragmites communities successfully increases plant species richness (Ausden et al 2005; 

Vulink et al., 2000) and decreases Phragmites density (Bassett, 1980; van Deursen and 

Drost, 1990; Ausden et al., 2005).  Vulink et al. (2000) wrote that Phragmites is particularly 

sensitive to grazing because it has apical meristems well within reach of grazing herbivores.   

Bassett (1980) and Burnside (2007) demonstrated that excluding grazers from previously-

grazed plots containing Phragmites caused a dramatic increase in Phragmites abundance.   
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Grazing has been widely used in Europe as a management tool for restoring 

biodiversity in wetlands over the last few decades (Van Deursen and Drost, 1990; Vulink et 

al., 2000).  Grazing is believed to increase plant diversity by increasing habitat heterogeneity 

(Rook et al., 2004) and by reducing shading by tall, competitive species (Onimaru and Yabe, 

1996).  Grazing is thought to re-set the successional clock in nutrient-rich systems to prevent 

succession to a “climax community” of tall, monotypic stands of reed and has been shown to 

restore habitat for birds (Milsom et al., 2000) and invertebrates (Davis and Bidwell, 2001).     

Grazed marshes can also provide free-range grazing habitat for the local agricultural 

community.  Animal products from free-range ruminants grazed in wetlands in Europe are 

often considered premium items for which consumers are willing to pay a high price (Gordon 

et al., 1990, Rook et al., 2004).  Charging farmers for use of the wetland as pasture can also 

raise funds for management of nature reserves (Gordon et al., 1990).   

In contrast, grazing is only rarely used as a management tool in the eastern U.S., and 

it is almost never used in wetlands.  Grazing is widely perceived in the U.S. as detrimental to 

biodiversity in both uplands and wetlands, since studies have shown that high-intensity 

grazing and grazing in riparian areas can reduce biodiversity (Popotnick and Giuliano, 2000; 

Jansen and Robertson, 2001).   

Tesauro and Ehrenfeld (2007) was the only study to my knowledge to examine the 

use of grazing as a management tool to control Phragmites in the U.S. They demonstrated 

that grazing can effectively reduce the abundance of Phragmites and several other invasive 

species and increase plant biodiversity in high-nutrient, abandoned pastures in New Jersey 

and New York.  Marty (2005) similarly demonstrated that grazing in vernal wetlands of 
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California increased diversity of both plants and aquatic invertebrates and reduced the 

abundance of exotic plants.  Phragmites was not present in Marty (2005)’s study, however.  

A key concern of wetland managers in the Chesapeake Bay region is minimizing 

nutrient inputs to the Bay. While a handful of studies have shown that grazing increases plant 

biodiversity in wetlands, none have examined the effect of grazing Phragmites on nutrient 

cycling in wetlands.  The impacts of livestock on flooded soils are not well understood 

(Bohlen and Gathumbi, 2007).  It would be imprudent to recommend grazing as an 

environmentally safe management tool for controlling Phragmites in wetlands without an 

understanding of how this might affect nutrient levels and potential nutrient export to surface 

or groundwater.   

Herbivores can have complex, non-linear effects on nutrient cycling (Pastor and 

Thompson Hobbs, 2006).  They can affect ecosystem nutrient cycles through foraging, 

trampling, urination, and deposition of feces (Thompson Hobbs, 2006).  Foraging directly 

removes nutrients.  Herbivore digestion degrades complex carbohydrates such as lignin and 

cellulose into simple sugars and nitrogen compounds.  Digestion breaks indigestible plant 

material into smaller particles with a lower C:N ratio than plant litter, which increases both 

the surface area available for microbial attack and the nutritional quality of the material for 

microbes  (Pastor et al., 2006).  Together, urination and deposition of feces help to accelerate 

decomposition and thus nutrient cycling.   

Grazing can increase, decrease, or have mixed effects on nutrient cycling rates in an 

ecosystem (Bardgett and Wardle, 2003; Pastor et al., 2006).  Grazers can affect nutrient pools 

and cycling rates through multiple pathways, including selection of forage species, uneven 

deposition of excreta, and effects on the quantity and quality of plant litter (Dubeux et al., 
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2007).  Plant responses to grazing also affect nutrient pools, such as for example by 

increasing energy allocation to either aboveground or belowground parts, or by changing 

their growth form.  Grazing has often been studied in grasslands (Dubeux et al., 2007), but 

anaerobic conditions in wetlands make their nutrient cycling and pools differ from those of 

upland soils in a number of ways (Mitsch and Gosselink, 2007).  There has been no study to 

my knowledge examining how grazing affects nutrient pools either in wetlands or in 

Phragmites-dominated systems. 

Phragmites has been shown to store significant quantities of nutrients in its biomass, 

and much of this biomass is refractory and slow to decompose (Meyerson et al. 2000).  80-

90% of the nitrogen and 50-75% of the phosphorus consumed by grazers is released as 

excreta (Davidson, 1964; Dahlin et al., 2005; Morse, 1992: Meschy, 2002).  Grazing could 

therefore make the large store of nutrients trapped in Phragmites biomass available in the 

more labile forms found in excreta.  Grazers also remove some of the nutrients they consume 

as biomass, theoretically reducing the fertility of their pasture.   

Trampling by herbivores can also significantly accelerate litter breakdown and 

nutrient release.  Zacheis et al., (2002) found in Alaskan salt marshes grazed by snow geese 

that trampling of the previous year’s litter accelerated incorporation of litter into soils, which 

in turn accelerated nitrogen mineralization.  Fecal additions had little effect relative to those 

of trampling. 

Most of the studies done on nutrient releases from grazing systems are conducted in 

upland grassland ecosystems, and there is little information on nutrient releases from grazing 

systems set up specifically for biodiversity restoration.   Milchunas and Lauenroth (1993) 

reviewed the literature on grazing in upland ecosystems and found no consistent effects on 



 

 6 
 

soil nutrient levels.  Some studies reported increases, and some reported decreases. One study 

on grazing to enhance plant diversity, Bakker and Heerdt (2005) found that extensive grazing 

(grazing at a low stocking density) decreased the occurrence of plants indicative of high soil 

nitrogen levels, suggesting that grazing lowered soil nitrogen levels.   

Furthermore, much of the literature on nutrient releases from grazing systems is 

restricted to nitrate leaching.  Two studies, Owens and Bonata 2004 and Anger et al., 2002, 

both found that extensive grazing in grassland could reduce nitrate concentrations in shallow 

groundwater.  Other studies have found that grazing increases nitrate leaching from upland 

pasture (Afzael and Adams, 1992; Hack-ten-Broeke and van der Putten 1997; Decau et al., 

2004).   

There is also a limited amount of information available on nutrient releases from 

grazing operations in wetlands.  One study on grazing in wet pasture, Sigua et al. (2006), 

found that wetlands that had been converted to pasture 63 years ago had lower total soil 

nitrogen and phosphorus and equivalent soil water-extractable phosphorus levels to reference 

wetlands.  In their study the effects of grazing were confounded with the effects of wetland 

drainage; nevertheless it can be concluded that 63 years of grazing did not increase nutrient 

levels in these pastures compared to their previous ungrazed state.  Sigua et al. (2010) 

similarly found that grazing in an upland pasture contributed negligible amounts of 

phosphorus to groundwater.   

Overall there is a paucity of data on the effects of grazing on nutrient pools in 

Phragmites-dominated in wetlands, and it is unclear how grazing might affect wetland soil 

and water quality. 
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Objectives 

 
The overall objectives of this study were to determine whether grazing can restore a 

diverse native wetland plant community, and whether this can be done without negatively 

impacting soil or water quality.   Specifically, my objectives were to: 

1) Determine whether goat grazing can effectively reduce Phragmites stem density 

and height, and whether it can increase native plant diversity, in terms of both species 

richness and Shannon-Weiner diversity indices 

2) Determine whether grazing elevates ambient soil water levels of nitrogen and 

phosphorus in a Phragmites-dominated wetland, 

3) Determine whether grazing elevates soil nitrogen and phosphorus levels, and 

4) Evaluate the effects of grazing on nutrient pools of different ecosystem 

compartments. 

The objectives listed above were addressed using a field grazing experiment as 

described in the next chapter.  Chapter 3 describes the results of the experiment.  Chapter 4 

analyzes the results, compares them to the current scientific literature, and provides 

recommendations and limitations for the use of grazing to control P. australis in wetlands. 

Finally, chapter 5 sets out the main conclusions of the study and suggests directions for 

future research on this topic.   
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Chapter 2: Methods 

This study examined the effects of goat grazing on plant diversity, soil water 

nutrients, and soil nutrients at a mitigation wetland at the Beltsville Agricultural Research 

Center in Beltsville, MD.  Three rounds of grazing were carried out between September 2008 

and September 2009.  Four grazed and four ungrazed plots were monitored for Phragmites 

stem height, count, and biomass, plant diversity, soil water nitrogen and phosphorus levels, 

and soil nitrogen and phosphorus levels.  The data was analyzed using Analysis of Variance 

(ANOVA) and repeated-measures ANOVA.   

Study Site Description 

This research was conducted at the Beltsville Agricultural Research Center (BARC) 

in Beltsville, MD.  A suitable Phragmites patch was identified in a wetland that was 

constructed approximately 15 years ago as mitigation for wetland destruction nearby 

(39.01.18.33 N, 76.52.36.27 W) (Figure 1).  The wetland is approximately 80 m long by 40 

m wide (Figure 2).  The wetland is underlain with 7.5-15 cm of bentonite clay (depth varies 

across the site), which isolates its groundwater hydrology from that of the surrounding area.   

The clay begins at an average depth of approximately 30 cm below the soil surface, but this 

varies by several inches across the site (personal observation).  The wetland has no stream 

channel inflows or outflows.  The hydrology of this wetland therefore does not reflect 

“natural” wetland hydrologic conditions, however it reflects conditions common to some 

constructed mitigation wetlands.   

During site visits in early 2008 the wetland was observed to contain 0.3-0.6 m of 

standing water.  The wetland dried out as early as May and stayed completely dry until 
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October, when it began ponding in some areas following precipitation events.  In 2009 a few 

inches of standing water were visible through July, then the wetland stayed dry through the 

rest of the study. 

Before the wetland was restored a soil survey was completed, and the soil type in the 

existing field on the site was mapped as a mixture of Elkton Fine Sandy Loam (ElB), 

Galestown Loamy Sand (GdB), and Sunnyside Fine Sandy Loam (StC2) (Wallace, Roberts 

& Todd, 1991).   During the course of my study no attempt was made to characterize the 

profile of this soil because it was assumed to be unnatural and highly disturbed.  Eight 

samples from the top 30 cm of soil were textured by the University of Maryland’s Pedology 

Laboratory in August 2009.  The soil texture ranged from sandy loam to loamy sand with a 

clay content ranging from 9-12%.   

The wetland was originally planted with Cephalanthus occidentalis (L.) (buttonbush), 

Taxodium distichum (L.) Rich. (bald cypress), and other trees, herbs, and shrubs (Wallace 

Roberts & Todd, 1991).  I undertook a vegetation survey of the wetland in late April of 2008.  

The wetland surrounding the Phragmites patch contained a diverse mix of wetland plants, 

including Juncus effusus (L.) (soft rush), Echinochloa sp. (P.) Beauv., (barnyard grass), 

Panicum virgatum (L.) (switch grass), and Typha latifolia (L.) (cattail).  See Appendix 1: 

Plant Survey Report March, 2008for the survey report and species lists.  The majority of 

the interior of the wetland was dominated by a dense monoculture of Phragmites, with 

scattered C. occidentalis (buttonbush) and T. distichum (bald cypress) emerging above the 

Phragmites canopy.  (All plant nomenclature is according to the USDA Plants database, 

http://plants.usda.gov, accessed 02/09/10.) 
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Figure 1: Research site location 

The study patch of Phragmites is highlighted in blue in the enlarged panel; the aerial photo is a google 

earth image, map is from BARC website. 
 

Beaver Dam Creek 

Research Rd 
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Study Design 

In August and September of 2008 eight 340m2 plots were delimited within the 

wetland.  Each pair of adjacent plots was treated as a block to factor out potential differences 

in soils, hydrology, and other environmental variables across the site.  Within each block, 

treatment (grazed or ungrazed) was assigned randomly.  Each plot was 8.5 m wide by 40 m 

long and included 21 m2 of upland area in both the front and the back to allow the grazing 

animals a refuge from wetland conditions.  Plots were spaced 1 m apart (Figure 2). 

 

 
 

Figure 2: Layout of goat grazing plots 

Dotted lines represent ungrazed plots; solid lines represent grazed plots.  The blue area represents the 

Phragmites monoculture. 

 
Grazed plots were enclosed by a 1.3-m high combination panel fence erected in 

September 2008.  A combination panel fence contains smaller openings at the bottom and 

openings that gradually get larger towards the top.  The fence was surrounded by a single 

strand of electric wire as a deterrent to unwanted human and animal visitors. In order to 

access the interior of the wetland for fence installation, in July 2008 and again in September 

a 2-m wide tractor mower was run through the wetland to demarcate each plot.  Fence 

construction was completed by personnel from USDA BARC’s Resource Support Services 

(RSS) team, with support from UMD personnel.  In the front upland section of each grazed 

80m 

8.5 m 

5 m upland 

DIRT ROAD 

40 m 

UPLAND 

80 m 

5 m upland 
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plot a 4x8 ft (0.8 x 1.84 m) plank of pressure-treated plywood was laid down, on top of 

which was placed a 1.52 x 2.29 m hutch (Big Foot Calf Nursery, PolyDome) as shelter for 

the animals.   

Two goats were placed in each grazed plot.  The goats were mixed-breed domestic 

caprine species.  This number of goats was used because, on the one hand, goats are social 

animals and it would be detrimental to their health and well-being to separate them into one 

goat per plot.  On the other hand, based on our project veterinarian’s advice more than two 

goats per plot would represent unsustainably high grazing pressure for my relatively small 

plots (Dr. Bill Hare, personal communication).  This equates to a stocking density of 58.82 

goats/hectare or 5.88 livestock units/hectare (Food and Agriculture Organization, 2005—one 

livestock unit is equivalent to one adult dairy cow).   

The animals were obtained from the resident BARC herd of 25 goats.  Goats were 

used because of their renowned readiness to eat and ability to digest tough, lignified plant 

matter (MacKenzie, 1993), because they require less land than cattle, and because they have 

been shown to effectively reduce Phragmites biomass (Tesauro, 2001).  Ilius et al. (1999) 

found that goats choose their forage based on whatever they can ingest the most of the fastest 

rather than on forage quality. The fact that Phragmites has high lignin content relative to 

other herbaceous wetland plants and grows in monocultures in high abundance suggested that 

goats would be likely to consume Phragmites.   

Three rounds of grazing were carried out.  The first grazing treatment began on 

September 17, 2008 and ran until October 9, 2008, lasting 23 days.  After this round of 

grazing the Phragmites did not re-sprout (presumably because it was beginning to senesce 

for the year), so no further grazing was carried out in 2008.  The second grazing treatment 
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ran for a total of 33 days from May 21 to June 23, 2009.  The third round of grazing ran for 

14 days from August 25 to September 8, 2009.   

During all grazing treatments the animals were removed when Phragmites was nearly 

completely grazed down in one plot, i.e. when at least one pair of animals had run out of 

food.  The same individual goats were used in both 2008 and 2009, however individuals were 

randomly re-assigned to plots for each round of grazing.  Both the second and third rounds of 

grazing began once the Phragmites had grown to about 1.5 meters in height.  This ensured 

that there would be a source of food for the animals for several weeks.  

A BARC animal care and use permit was approved for the preliminary work carried 

out in 2008 and was re-approved for 2009. The campus Institutional Animal Care and Use 

Committee (IACUC) informed me in writing that no animal care and use permit was required 

for this research since no UMD personnel were handling the animals.  All animal care and 

handling was done by BARC staff.   

Sampling Methods 

Vegetation Sampling 

 
Research Question 1: Does goat grazing reduce Phragmites cover? Does goat grazing 

increase plant species richness and/or Shannon-Weiner diversity? 

 

Hypothesis: Goat grazing will reduce Phragmites abundance and height and will increase 

plant species richness and Shannon-Weiner diversity. 
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Nested vegetation quadrats were established in each plot in a modified form of the 

method proposed by Peet et al. (1998).  In each plot a permanent 100-m2 (5x20 m) quadrat 

was established, and within this large quadrat four permanent 1-m2 quadrats were 

established.  The large quadrat was delimited by 10-ft (3.28 m) high PVC poles with string 

running lengthwise.  The smaller quadrats were located systematically at 4, 8, 12, and 16 

meters lengthwise and 2.5-m width-wise within the larger quadrat (Figure 3).  The number of 

Phragmites stems was counted and height of the five tallest stems was measured in each 1-

m2 quadrat. 

Baseline vegetation measurements were made in July 2008.  The impact of the first 

round of grazing on vegetation was measured in October 2008.  Vegetation was again 

sampled in May 2009, prior to the second round of grazing, and was assessed again in July, 

August, and September 2009.  In August only diversity in the 100-m2 plots was assessed and 

the 1-m2 plots were not surveyed.   

 

Aboveground Biomass 

 

On August 12, 2009 live stems of Phragmites were harvested from two 1-m2 quadrats 

in each plot.  The quadrats were systematically located adjacent to the first and third fixed 1-

m2 vegetation sampling quadrats in each plot.  After harvest the biomass was dried to a 

constant mass at 105oC and weighed to the nearest 0.01g. 
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Figure 3: Vegetation sampling plot and lysimeter locations 

(not to scale) 

 

Groundwater Sampling 

 
Research Question 2: Does goat grazing of Phragmites in wetlands affect shallow 

groundwater nutrient levels? 

 

Hypothesis: There will be no difference in soil water nutrient levels between grazed and 

ungrazed plots. 

Lysimeters 

Nested 1x1 m 
vegetation quadrat 

5x20 m 
vegetation 
quadrat 

4 m 

2.5 m 

Plot boundary 
(8.5x40 m) 
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 Soil water was sampled at a depth of 30 cm below the soil surface with porous cup 

lysimeters, Model 1920 from SoilMoisture Equipment Corporation (Santa Barbara, CA).  

Where bentonite clay was shallower than 30 cm, soil water was sampled at the deepest 

possible point above the clay layer.  Two lysimeters were systematically located in each plot 

at 6.6 m and 13.3 m lengthwise across each 20 m long quadrat (Figure 3).  The lysimeters 

were installed in September of 2008.   Each lysimeter was surrounded by a 15-cm diameter 

PVC pipe with a screw top to protect it from damage by the goats.   The pipes were driven 

about 15 cm into the ground, and a deeper hole was dug into the soil in the center of each 

pipe for the lysimeter.  The hole was then backfilled with a slurry of the soil that had been 

extracted and tap water.  In the grazed plots the pipes were stabilized with stakes. 

 Vacuum pressure was applied to each lysimeter 1-5 days prior to sampling.  Prior to 

setting vacuum, pressure was applied to each lysimeter to force out previously accumulated 

soil water.  Samples collected were immediately placed in a cooler to minimize 

microbiologically-mediated transformations of nitrogen and phosphorus.  Samples were 

immediately transported to the University of Maryland Soil Fertility laboratory, where they 

were filtered to 0.45 microns and analyzed within 24 hours for pH and ammonium, nitrate, 

and ortho-phosphate using a QuikChem 8500 automated ion analyzer (2006 Latchat 

Instruments, Loveland, CO).  Total phosphorus and total nitrogen were also measured on 

unfiltered samples following persulfate digestion. Approved Environmental Protection 

Agency (EPA) procedures for the analysis of Water and Wastewater were used for each 

analysis (Appendix 2: Methods of Soil Water Analysis).  Briefly, ammonium was 

analyzed via the indophenol method, nitrate and total nitrogen via cadmium reduction, and 

ortho-phosphate and total phosphorus via the ascorbic acid method. 
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 Soil water pH was determined with room-temperature solutions by immersing pH 

probe into a sample and waiting for the reading to stabilize.  pH was read to the nearest 0.01 

pH unit.   

In 2008, soil water was sampled the day before treatments began, three weeks into the 

grazing treatments, and two weeks after grazing ended.   In July 2009 soil water was sampled 

three weeks after grazing ceased, and in September 2009 soil water was sampled one week 

after grazing ceased. 

 

Soil Sampling 

 

Research Question 3: Does goat grazing of Phragmites in wetlands impact soil nutrients? 

 

Hypothesis: There will be no significant difference in soil nutrients between grazed and 

ungrazed plots. 

 

 Soil was sampled at depths of 0-15 and 15-30 cm in each plot using an Oakfield soil 

sampler.  Separating measurements into two depths allowed evaluation of downward 

movement of nutrients through the soil.  15 subsamples were haphazardly collected from 

each plot and combined into one composite sample per plot for each depth as per the methods 

described in Pierzynski (2000).   

Baseline soil samples were collected in September 2008 within a week after the 

grazing treatments began.   In 2009 soil samples were collected three weeks after the second 

round of grazing ceased.  Soil samples were not collected after the third round of grazing due 
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to cost and time constraints.  Although goats were present during the baseline sampling, I am 

assuming that the timeframe was too short for the goats to have affected soil nutrient pools, 

so that these samples can be considered to reflect pre-treatment nutrient levels.   

 Soil samples were air-dried, ground, and analyzed for pH and water-extractable 

phosphorus as well as Mehlich 3 phosphorus, iron, aluminum, and calcium by the University 

of Maryland Soil Fertility laboratory.   Total nitrogen and percent carbon were also 

measured.   

For determination of soil pH, 10 g of air-dried soil was sieved to 2 mm and mixed 

with 10 mL of deionized water.  The mixture rested for 15 minutes, was stirred, and rested 

again for 15 minutes.  The pH probe was then gently swirled in the soil slurry until a stable 

pH reading was obtained.  Soil pH was read to the nearest 0.01 pH unit. 

Measuring water-extractable phosphorus theoretically simulates the amount of 

phosphorus dissolved during rainfall or re-wetting of the soil after the dry season.  It has also 

been shown to be well correlated to concentrations of dissolved reactive phosphorus in runoff 

(Pote et al., 1996; Maguire and Sims, 2002).  For determination of water-soluble phosphorus 

2 g of soil was air-dried, weighed, sieved to 2mm, and centrifuged.  Samples were then 

shaken for 1 hr and centrifuged again.  The supernatant was immediately filtered.  

Orthophosphate concentration from the filtered supernatant was measured within 24 hours 

using a QuikChem 8500 automated ion analyzer (2006 Latchat Instruments, Loveland, CO). 

Mehlich 3 phosphorus is a widely used method for quantifying plant-available 

phosphorus.  Thus, measuring Mehlich 3 phosphorus could allow easier comparison of our 

measured phosphorus levels to those measured in other studies.  In most non-basic soils in 

Maryland soil phosphorus is primarily found bound to iron and aluminum.  Dividing Mehlich 
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3 phosphorus by Mehlich 3 aluminum + iron can be used to calculate a soil saturation ratio, 

an estimate of the amount of a soil’s phosphorus binding sites that are saturated with 

phosphorus.  This ratio indicates the amount of phosphorus that is present in the soil relative 

to the capacity of the soil to bind phosphorus.  Mehlich 3 saturation ratio is also correlated to 

the likelihood of phosphorus leaching from a soil (Maguire and Sims, 2002).   

Soil Mehlich 3 phosphorus, iron, and aluminum were determined by adding 25 mL of 

Mehlich 3 extractant to 2.5 g of air-dried soil sieved to 2 mm.  Samples were then shaken for 

5 minutes, filtered, and analyzed using a QuikChem 8500 automated ion analyzer (2006 

Latchat Instruments, Loveland, CO)   

Total nitrogen and carbon were measured on soil samples that were ground and 

sieved to 2 mm.  A subsample was taken from each sample, ground by mortar and pestle to 

pass a 1 mm sieve, then dried for 1 hour at 105oC.  Nitrogen and carbon were subsequently 

determined using a Carbon/Hydrogen/Nitrogen Determinator (CHN-2000 Elemental 

Analyzer, Leco Corporation, St. Joseph, MI).  The CHN-2000 combusted the soil, quantified 

percent soil nitrogen via thermal conductivity, and quantified percent soil carbon by infrared 

detection.   

Soil Bulk Density  

 
Soil bulk density was measured in order to estimate the size of the soil nutrient pool, 

as well as to determine whether grazing might impact soil bulk density.  Samples were 

collected on March 9, 2010.  At the time of sampling there were several centimeters of 

standing water in the wetland.  Litter was brushed away from the soil surface, then a 173.5 

cm3 cylindrical aluminum corer was gently twisted into the soil until full.  Three subsamples 

were collected per plot.  The bulk density of the three sub-samples was averaged to obtain 
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average bulk density per plot.  Samples were weighed wet, dried at 105oC to a constant 

weight, then re-weighed to the nearest gram.   

Soil bulk density was calculated as 

Bulk density (g/cm
3
) = Mass of dry soil (g) / volume of sample (cm

3
) 

Phragmites tissue nutrient analysis 

 
A random subsample of the Phragmites biomass harvested from each plot (see 

Aboveground Biomass above) was ground to <0.02 mesh size and analyzed for tissue 

nitrogen and phosphorus concentrations by the Pennsylvania State Agricultural Analytical 

Laboratory.   The samples were digested with a hot block digestion (EPA Method 3050b, 

Appendix 2: Methods of Soil Water Analysis) and subsequently analyzed by 

inductively coupled plasma mass spectrometry.  For nitrogen analysis samples were 

combusted at 1,000oC and N2 gas was measured using an Elementar Vario MAX Macro 

Nitrogen Analyzer. 

Data Analysis 

Vegetation 

 
Analyses of Variance (ANOVA) were run on all baseline data to check for pre-

existing differences between grazed and ungrazed treatments.   

Repeated-measures ANOVA was run on vegetation data to determine the effect of 

grazing on measured vegetation variables over time (Marty, 2005).  For all of the vegetation 

data there was a significant interaction between time and treatment (grazed/ungrazed), 

meaning that the effect of the treatment differed significantly on different sampling dates.  
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Therefore a separate ANOVA was run for each sampling date for each vegetation variable, 

and repeated-measures analysis could not be used.   

ANOVA was used to determine whether there was a significant difference in average 

Phragmites stem heights and counts between grazed and ungrazed plots on each sampling 

date.   Data collected on species richness and cover from the 100 m2 quadrats were similarly 

analyzed using ANOVA.   These data were used to derive a Shannon-Weiner diversity index 

and evenness index for each plot, and ANOVA was run on the calculated indices.   

 

Shannon-Weiner index was calculated as: 

H’=- ∑[pi ln(pi)] 

 

H’=Shannon-Weiner diversity index 

Pi=the proportion of individuals found of the i
th

 species 

 

For the calculation of the Shannon-Weiner index and species evenness, cover of each 

individual and total cover were substituted for number of individuals of each species and 

total number of individuals, as per (Biring et al., 2003).  First, the cover classes assigned to 

each species were converted to the midpoint in % cover of each class, as per Peet et al. 

(1998).  Then cover of each species was divided by the total plant cover in each plot in order 

to relativize cover values to 1.  Next cover*ln(relativecover) was calculated for each species.  

The negative of the sum of these values for all the species in each plot was the Shannon-

Weiner index for that plot.   
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In order to derive Shannon-Weiner evenness values for each plot, the Shannon-

Weiner diversity index was divided by the natural log of the number of species in each plot: 

 

J = H’/ln(S) 

J=Shannon evenness index 

H’=Shannon-Weiner diversity index 

S=number of species in the plot 

 

ANOVA was also run to compare the change in number of species, Shannon-Weiner 

index, and evenness from July 2008 to July 2009 between grazed and ungrazed plots.   

All data sets were checked for assumptions of homogeneity of variances and 

normality and were log-transformed where normality was violated.  All analyses were 

performed using SAS 9.2 (SAS Institute, Cary, NC).    See Appendix 3: Sample SAS Code 

for a sample SAS code. 

Water Quality 

 
Repeated-measures ANOVA was used to test for differences in soil water nutrients 

between grazed and ungrazed plots over time.  Ammonium and phosphate data were log-

transformed and multiplied by 100 before statistical analysis to correct deviations from 

normality.   

Soil Nutrients 

 
ANOVA was also used to compare post-grazing soil nutrient levels and soil pH 

between grazed and ungrazed treatments.   For most soil data there was a significant 
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interaction of treatment*depth.  Therefore most soil data were analyzed separately at the two 

sampling depths (0-15 cm and 15-30 cm).   

A Mehlich 3 molar saturation ratio (M3SR) was calculated for each soil sample as: 

 

M3SR=molar Mehlich 3 P/(molar Mehlich 3 Al +molar Mehlich 3 Fe) 

(Mukherjee et al., 2009) 

 

ANOVA was used to compare Mehlich 3 molar saturation ratios between grazed and 

ungrazed plots.  

Nutrient Pool Analysis 

 
The average total amount of nutrients (nitrogen and phosphorus) stored in Phragmites 

biomass in grazed and ungrazed plots was calculated as:  

 

biomass (g/m
2
) * % tissue nutrient concentration = total g nutrient in Phragmites 

biomass/m
2
 

Biomass=average live standing biomass in grazed or ungrazed plots, as calculated 

from the biomass harvest in August 2009 

 

From these data a nutrient pool model was constructed for nitrogen and phosphorus in 

both grazed and ungrazed plots for August 12, 2009, the date of the Phragmites biomass 

harvest.  Goats were not present in the plots on this date, but the effects of the first round of 

grazing seven weeks previously were taken into account in constructing the model.   

In order to estimate goat consumption of Phragmites it was assumed that the amount 

of Phragmites available for the goats to eat during their first grazing period was equal to 

standing live biomass in the ungrazed plots measured in August 2009 minus standing 
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biomass in the grazed plots.  It was assumed that goats consumed 70% of this biomass, based 

on a visual estimate, and that they returned 30% directly to the litter pool by killing it but not 

consuming it.  It was assumed that the goats retained 15% of the nitrogen and 65% of the 

phosphorus they consumed as live weight gain (Davidson, 1985; Morse, 1992; Meschy, 

2002; Dahlin, 2005.  It was also assumed that the amount of non-Phragmites plants the goats 

consumed was negligible since these made up a fraction of the total biomass in each plot.   

The sizes of the nitrogen and phosphorus nutrient pools were calculated as: 

 

Soil nutrient (g/m
2
)
 
=

 
concentration (mg/L) x measured bulk density (g/cm3) x soil 

volume per plot (L) x 50% soil solids / plot area (m
2
) 

For phosphorus, measured Mehlich 3 concentration was used and for nitrogen 

measured total soil nitrogen concentration was used.  To calculate soil volume it was 

assumed that the bentonite clay sealed the plot at a depth of 30 cm.  It was also assumed that 

50% of the total soil volume was composed of soil solids and the remaining 50% was pore 

space (Rabenhorst, 2009).   

The size of the soil water nutrient pool was calculated as: 

Soil water nutrient (g/m
2
) = measured concentration (mg/L) x soil volume of plot (L) 

x 20% / area of plot (m
2
) / 1,000 

It was assumed that in August 2009 the soil was at saturated at field capacity and 

therefore 20% of the total soil volume was composed of water-filled pore space (i.e. 50% of 

the soil volume was solids, 20% was water, and 30% was air) (Rabenhorst, 2009).   
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Chapter 3: Results 

 

Vegetation 

Phragmites Stem Counts 

 
There was a significant interaction between treatment and time in the repeated-

measures ANOVA on Phragmites stem counts, therefore a separate ANOVA was run for 

each sampling date.  After the first round of grazing in 2008 there was no significant 

difference in Phragmites stem counts between grazed and ungrazed treatments.  This was due 

to uneven grazing intensity in the four grazed plots: the two middle plots were heavily 

grazed, while the two outer plots were lightly grazed.  This was clear from visual inspection 

of the plots (Figure 4).  Notice in Figure 4b, the lightly grazed plot, the stand of virtually 

untouched Phragmites remaining at the very back of the plot.  This stand was approximately 

5 m deep by 8.5 m wide.  In consequence of this uneven grazing intensity, ANOVA were run 

separately on the heavily grazed and lightly grazed blocks.  These still revealed no significant 

differences between grazed and ungrazed plots, although for the heavily grazed plots the p-

value was marginal (p=0.11). 

In May, 2009, between grazing applications, there was no significant difference in 

Phragmites stem count between grazed and ungrazed treatments (p=0.2819).   Regrowth of 

Phragmites was similar in both previously grazed and ungrazed plots.   

After the second round of grazing in May-June 2009, there were twice as many 

standing live P.australis stems in ungrazed than grazed plots (p=0.0181, Figure 5a) on July 

1.  This difference was maintained after the third round of grazing (p=0.0385).  Grazing was 
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more even during the second round between all four grazed plots, but the two middle plots 

were still visibly more heavily grazed than the outer two grazed plots. 

 
4a.      4b. 
Figure 4: a=photo of a heavily grazed plot; b= photo of a lightly grazed plot 

Both photos were taken on July 1, 2009, 10 days after the second round of grazing (first round of grazing 

in 2009) ended. 

 

 
Figure 5(a): Average number of Phragmites stems per 1 m

2
 over time; (b): Average height of five tallest 

Phragmites stems per 1 m
2
 over time 

Error bars represent standard error of the mean. 

**indicates a significant difference (p<0.05) between grazed and ungrazed plots on this sampling date 

 

Phragmites Stem Heights 

 
There was a significant interaction between treatment and time in the repeated-

measures ANOVA, therefore a separate ANOVA was run for each sampling date.  The 
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results for Phragmites stem height were similar to those for stem counts (Figure 5b).  After 

the first round of grazing in 2008 there was no significant difference in height of the five 

tallest Phragmites stems between grazed and ungrazed treatments.  This was likely due to the 

uneven grazing intensity in the four grazed plots (Figure 4).  In consequence, ANOVA’s 

were run separately on the heavily grazed and lightly grazed blocks.  There was a significant 

difference in Phragmites stem heights between heavily grazed plots (0.0277) and their 

ungrazed counterparts, but there was no significant difference between the lightly grazed 

plots and ungrazed plots (p=0.5888). 

In May, 2009, between the two grazing applications, there was no significant 

difference in average Phragmites stem height between grazed and ungrazed treatments 

(p=0.6018).   

After the second round of grazing, in 2009, Phragmites stems in ungrazed plots were 

two-and-a-half times taller than in grazed plots (p=0.0010).  This difference was maintained 

after the third round of grazing (F1,6 p=0.0004). 

Phragmites aboveground biomass 

 
Grazed plots had seven times less aboveground Phragmites biomass than ungrazed 

plots in August 2009, after one round of grazing in 2009 and one round in 2008 (p=0.0001, 

Figure 6). 
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Figure 6: Dry weight of Phragmites per 1 m

2
 after two rounds of grazing 

Error bars represent standard error of the mean. 

 
 

Plant Diversity Measures 

 
There was a significant interaction between treatment and time in the repeated-

measures ANOVA for each measure of diversity, therefore a separate ANOVA was run for 

each sampling date.  Species richness was 38% higher in grazed plots compared to ungrazed 

plots in August 2009 (p=0.0267), after two rounds of grazing and two months since the last 

round of grazing ended (Figure 7a).  In September 2009, one week after the third round of 

grazing ended, species richness was over twice as high in grazed as in ungrazed plots, 

although this difference was not significant (p=0.1299). 

The patterns in the diversity data were similar for species richness, Shannon-Weiner 

diversity index, and Shannon-Weiner evenness (Figure 7).  Shannon-Weiner diversity was 

twice as high in grazed as in ungrazed plots in August 2009, after the second round of 

grazing (Figure 7b), and this difference was significant at the 0.1 α level (p=0.0869).  
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Shannon-Weiner diversity in grazed plots was 58% higher than in ungrazed plots in 

September 2009, and this difference was again significant at the 0.1 α level (p=0.0887).   

Between July 2008 and July 2009 Shannon-Weiner evenness increased in grazed 

plots by 0.218 units and decreased in ungrazed plots by 0.016 units, and this difference was 

significant at the 0.05 α level (p=0.0407).   Shannon-Weiner diversity indices increased 

between July 2008 and July 2009 for both grazed and ungrazed plots.  However grazed plots 

gained over three times more Shannon-Weiner diversity than ungrazed plots, and this 

difference in rate of increase was significant at the 0.1 α level (p=0.0619, grazed=0.412, 

ungrazed=0.124).  Ungrazed plots gained an average of 2.75 species between July 2008 and 

July 2009 while grazed plots lost an average of 1 species, and this difference was also 

significant at the 0.1 α level (p=0.0576). 

Lightly grazed plots had diversity indices comparable to those of ungrazed plots.  The 

diversity indices of heavily grazed plots were much higher on average, although the 

experimental design did not allow for enough degrees of freedom to test the significance of 

this difference.  For example, in July 2009, after the second round of grazing, the Shannon-

Weiner diversity index of the ungrazed plots was 0.46, of lightly grazed plots was 0.42, and 

of heavily grazed plots was 1.42.  Shannon-Weiner diversity in the heavily grazed plots was 

70% higher than in the lightly grazed plots on this sampling date (Figure 8). 

A list of the plant species encountered in the study plots can be found in Appendix 4. 
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Figure 7: (a) Species richness and (b) Shannon-Weiner diversity index through time 

Error bars represent standard error of the mean. 

  * indicates a significant difference at the 0.1 α level between grazed and ungrazed plots on this sampling 

date 

** indicates a significant difference at the 0.05 α level between grazed and ungrazed plots on this 

sampling date 

 

 



 

 31 
 

 
Figure 8: Shannon-Weiner diversity indices in ungrazed, lightly grazed, and heavily grazed plots 

Error bars represent standard error of the mean. 

 

Soil Water 

 
Soil water pH was lower in grazed than ungrazed plots, and this difference was 

significant at the 0.1 α level (p=0.0646, Figure 9, 6.88 grazed vs. 7.03 ungrazed).  Figure 10 

shows that levels of labile soil water nutrients in grazed and ungrazed plots tracked each 

other closely throughout the study.  There were no significant differences in labile soil water 

nutrient levels between grazed and ungrazed plots.  Nitrate, ammonium, and phosphate levels 

differed significantly between sampling dates (p=0.0261, p=0.0022, p=0.0030, respectively).     

Grazing significantly affected total soil water nutrient levels (Figure 11).  Grazed 

plots had higher levels of total nitrogen (3.54 vs.2.78 mg/L, p=0.0483) and total phosphorus 

(0.166 vs. 0.094 mg/L, p=0.0795) in soil water than ungrazed plots.   
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Figure 9: pH of shallow groundwater over time 

Error bars represent standard error of the mean. 

 

 

 
Figure 10: concentrations of ammonium (a), nitrate (b), and phosphate(c) in soil water over the course of 

the experiment 

There were no significant differences between treatments in any soil water nutrient concentrations.  

Error bars represent standard error of the mean. 
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Figure 11: levels of total nitrogen (a) and total phosphorus(b) in soil water over time 

Error bars represent standard error of the mean. 
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Soil 

 
The Mehlich 3 phosphorus saturation ratio of grazed plots at a depth of 15-30 cm was 

3% higher than in ungrazed plots (p=0.0053, Figure 12). Across all soil samples the average 

Mehlich 3 molar phosphorus saturation ratio was significantly higher after grazing than the 

baseline level (p=0.0200). 

Ungrazed plots had a significantly higher average water-extractable phosphorus level 

of 1.63 (±0.082) compared to 1.24 (±0.155) in grazed plots (p=0.0455).  There was no 

significant difference in soil water-extractable phosphorus content between depths.    

Baseline total soil nitrogen levels were significantly higher than post-grazing soil 

nitrogen levels across treatments and depths (p=0.0025, 150±19 vs. 91±14 g/kg), but there 

were no significant differences between grazed and ungrazed plots. 

Soil total carbon levels were not significantly different between grazed and ungrazed 

plots and ranged between 1.7-2.7% in the top 15 cm of soil and 0.7-1% at a depth of 15-30 

cm.  The C:N ratio of the soil was approximately 16:1.   

There were no significant differences in soil pH between treatments or depths.  The 

average soil pH for all plots, sampling dates, and depths was 6.35 (±0.04).  

Table 1 shows the average concentrations of important elements in the soil with 

standard deviations. 

 
 Al        K         Ca        Fe        P         Molar P Molar Fe Molar Al 
Average 649.4164 34.8602 1065.6453 205.0293 147.9925 0.0048 0.0116 0.0241 
Standard 
Deviation 83.2615 4.5173 93.8839 22.2162 19.4918 0.0006 0.0015 0.0031 
Table 1: Average Mehlich 3 concentrations and standard deviations of soil nutrients 

Molar values are the measured amounts converted to molar amounts.  There were no significant 

differences in any of these nutrient concentrations between plots, so averages are presented pooling all 

plots.  
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 Soil bulk density was higher in grazed plots (0.97±0.066 g/cm3) than in ungrazed 

plots (0.83±0.087 g/cm3), but the difference was not significant (p=0.24). 

 

Figure 12: Mehlich 3 molar phosphorus saturation ratios from soil at a depth of 0-15 cm (a) and 15-30 

cm(b) 

Error bars represent standard error of the mean. 

** indicates a significant difference between grazed and ungrazed plots on that sampling date 



 

 36 
 

Nutrient Pool Analysis 

 
Phragmites in grazed plots had significantly (p=0.0013) higher tissue nitrogen 

concentrations than in ungrazed plots in August 2009, after two rounds of grazing 

(2.39%±0.09 N and 1.13%±0.10 N, respectively).  Phragmites shoots in grazed plots also 

had significantly (p=0.0004) higher tissue phosphorus concentrations than ungrazed plots 

(0.21%±0.010 P and 0.11%±0.008 P, respectively).  However, because they had higher 

biomass, the ungrazed plots contained more than three times the amount of nitrogen 

(p=0.0001) and almost four times the amount of phosphorus (p=0.0004) as grazed plots 

(Table 2). 

 
 Ungrazed Grazed 

N 11.11±0.85 / 112.8±8.56 3.33±0.71 / 33.28±7.09 

P 1.08±0.07 / 11.03±0.69 0.28±0.07 / 2.85±0.60 

Table 2: Calculated amounts (g/m
2
) / (kg/ha) of nitrogen and phosphorus stored in Phragmites biomass in 

grazed and ungrazed plots in August 2009 ± standard error of the mean 

 
 Figure 13 shows a nutrient pool analysis for nitrogen and Figure 14 shows a nutrient 

pool analysis for phosphorus for this experiment for August 12, 2009, the date when 

Phragmites biomass was harvested and samples were collected for Phragmites tissue nutrient 

analysis.   

The nitrogen pool analysis (Figure 13) shows that approximately three times as much 

nitrogen was cycled through Phragmites and goat grazing as was stored in the soil.  Grazed 

plots had less nitrogen stored in the soil and more in the soil water compartment than 

ungrazed plots.  Grazing therefore shifted nitrogen out of the Phragmites and soil pools and 

into the soil water, excreta, and goat biomass pools.  Storage in goat biomass, denitrification, 

and volatilization, all provided opportunities for nitrogen loss from the system.  The size of 



 

 37 
 

the excreta pool is overestimated, because some, if not most, of the nitrogen from excreta 

would have been released into the measured soil and soil water compartments or transformed 

via volatilization and/or denitrification during the time between excretion and August.  Table 

3 shows that the nitrogen fertility of the system was reduced by approximately 63% after two 

rounds of grazing. 

The phosphorus pool analysis (Figure 14) shows that less than a third of the 

phosphorus in the system was cycled through the Phragmites and grazing pathway; the rest 

was stored in the soil.  Grazing moved phosphorus from the Phragmites live standing 

biomass pool to the Mehlich 3 and soil water pools.   The estimate of phosphorus stored in 

the excreta pool is an overestimate, since some of this phosphorus is likely to have been 

transferred to the measured soil and soil water pools.  There was a potential for permanent 

removal of phosphorus from the system in the form of goat biomass. Table 4 shows that 

grazing reduced the phosphorus fertility of the system by 8%.  Using the estimates in Figure 

14 to extrapolate the return of phosphorus as excreta over both grazing periods in 2009, I 

estimate that 0.264 total grams of phosphorus were excreted per m2 during 2009.   
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Figure 13: Nitrogen pool analysis for a) grazed and b) ungrazed plots in August 2009 

Goats were not present in the plots in August 2009, but they have been included in the diagram to show 

the effect of their past presence during May-June 2009.  Assumptions: 1) goat consumption was 70% of 

the difference in Phragmites standing stock in August between grazed and ungrazed plots (i.e. total 

growth – growth since the end of the last round of grazing), and 30% was returned as litter. 2) Goats 

excreted 85% of the nitrogen they consumed and retained 15% as live weight gain (Davidson, 1985; 

Dahlin, 2005). 

 

 

 Ungrazed Grazed 

Soil 1.26 1.18 
Soil Water 0.13 0.20 
Phragmites aboveground 
biomass 

11.28 3.33 

Sum Total 12.67 g N/m
2 

4.71 g N/m
2 

Table 3: Measured g N/m
2
 in soil, soil water, and Phragmites aboveground biomass 

Phragmites aboveground biomass: 
11.28 g N/m2 

Soil 1.26 g N/m2 
 

Soil Water 
 0.13 g N/m2 

Denitrification 

(b) 

Phragmites litter 

Phragmites belowground biomass 

N uptake by 
Phragmites 

Phragmites killed by goats 
but not eaten: 2.39 g N/m2 
 

(a) 

Excreta N:  
4.73 g N/m2 
 

Retained as  
goat biomass:  
0.84 g N/m2 
 

Phragmites litter 

Phragmites aboveground biomass: 
3.33 g N / m2 

Soil 1.18 g N/m2 
 

Soil Water 
0.20 g N/m2 N released to soil 

and soil water 
 

Denitrification 
Volatilization 

Consumed:  
5.57 g N/m2/33 
days 

Phragmites belowground biomass 

N uptake by 
Phragmites 
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Figure 14: Phosphorus pool analysis for (a) grazed and (b) ungrazed plots in August 2009  

Goats were not present in the plots in August 2009, but they have been included in the diagram to show 

the effect of their past presence during May-June 2009.  Assumptions: 1) goat consumption was 70% of 

the difference in Phragmites standing stock between grazed and ungrazed plots (i.e. total growth – growth 

since the end of the last round of grazing), and 30% was returned as litter. 2) Goats excreted 35% of the 

phosphorus they consumed and retained 65% as live weight gain (Morse, 1992; Meschy, 2002). 

 
 
 Ungrazed Grazed 

Soil 2.60 3.11 
Soil Water 0.004 0.017 
Phragmites aboveground 
biomass 

1.10 0.29 

Sum Total 3.70 g P/m
2 

3.42 g N/m
2 

Table 4: Measured g P/m
2
 in soil, soil water, and Phragmites aboveground biomass 

Excreta:  0.20 g P/m
2
 

Slow P release 
from excreta to 
soil 
 

Phragmites aboveground biomass: 
0.29 g P/m

2
 

Soil Mehlich 3 P: 
 3.11g/m

2
 

 

Soil Water 
0.017 g P/m

2
 

Goat consumption: 
 0.57g P/m

2
/33 days 

 Retention in 
biomass:  
0.37 g P/ m

2
 

 
Return to litter 0.24 g/m

2
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Phragmites litter 

Phragmites belowground biomass 

P uptake by 
Phragmites 

Phragmites litter 

Phragmites belowground biomass 
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1.10 g P/m2 

Soil Mehlich 3 P: 
2.60 g P/m2 
 
 

Soil Water 
0.004 g P/m2 
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P uptake by 
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Chapter 4: Discussion 

 

Vegetation 

Effects of Grazing on Phragmites 

 
The results support my hypothesis that goats can effectively control Phragmites.  The 

goats consumed Phragmites and reduced its biomass, although their consumption rates varied 

between plots.  Initially grazing was more intense in some of the plots than others, but 

grazing became more even with each subsequent grazing event.  

Neophobia (a fear of new things or of the unknown) and personality differences 

between the animals probably played a role in the observed uneven grazing intensity 

(Michelena et al., 2008).  My study represented a major shift in diet, setting, and herd size for 

the animals, and some of them apparently took to the change better than others.  Studies have 

shown that sheep are reluctant to eat novel foods, especially when they are pastured in a new 

location (Chapple and Lynch, 1986; Burritt and Provenza, 1997).  In my study the 

combination of the novel situation and novel food probably reduced the animals’ food intake, 

at least for the first few days.  Presumably the animals in the middle two grazed plots 

watched each other consume Phragmites and quickly overcame their aversion to the novel 

food source.  The animals in the further two plots, however, may have taken longer to 

overcome their aversion since they had less social support.  Boissy and Le Neindre, (1990) 

showed that the social support provided by the presence of peers has positive consequences 

for individual ruminants exposed to a novel situation.   
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Another possible reason for uneven grazing intensity could be the spacing of the plots 

causing more stress for the more isolated goats. The heavily grazed plots were adjacent to 

each other, while the lightly grazed plots were spaced further away (Figure 15).  The tall 

Phragmites in ungrazed plots separated the animals in plots 2 and 8 visually from goats in 

other plots.  Goats are gregarious, and it is likely that the individuals in the edge plots felt 

anxiety at being reduced from part of a herd of many (their group size before this 

experiment) to a pair.  The anxiety caused by this social isolation could have reduced their 

appetite.  Mills and Faure (1989) similarly found that domestic hens that were prevented 

from feeding as a group reduced time spent feeding and increased frustration behavior.  

Kanitz et al. (2009) found that separation of piglets from their herd caused behavioral and 

physiological signs of stress.   

The goats in the outer plots may have also perceived themselves to be running a 

higher risk of predation, and this could have increased their anxiety levels and thus decreased 

foraging.  Berger (1991) found that when running a predation risk wild bighorn sheep in 

smaller groups grazed less efficiently than individuals in larger groups.  There has been 

evidence of coyote activity at the BARC facility over the last few years (W. Hare, personal 

communication) and the goats may have also sensed coyote presence.   I personally observed 

that during the first round of grazing the goats in plot 2, one of the edge plots, ran to the back 

of the plot and hid whenever I or any vehicles came by.  Their increased anxiety and 

vigilance behavior probably reduced the amount of time they spent foraging.   

In contrast, the animals in the middle plots may have felt as if they were effectively a 

herd of four since they were separated by only three feet of fencing through which they 

coulod clearly see each other.  In addition to reducing their fear of predation, studies have 
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shown that this would have increased their feeding rate relative to the more isolated goats.  

Shrader et al. (2007) found that goats feed faster in the presence of competitors and that 

domestic goats glean information from watching other goats feed that directly affects their 

foraging behavior.  Chapple and Lynch (1986) similarly showed that sheep can learn to eat 

novel foods within 15-30 minutes from sheep that have prior experience with the food.  The 

animals in the middle plots may have watched each other forage on Phragmites and more 

quickly determined it was a suitable food source. They may have subsequently been driven 

by competitive interactions to maximize their intake rate.   

It is likely that all of the above factors contributed to producing the uneven grazing 

intensity observed across my study plots during the first round of grazing.  Overall this 

suggests that the most efficient control of Phragmites using ruminants will be achieved when 

using herds of at least four animals and when having introduced the animals to eating 

Phragmites before moving them to a new pasture containing Phragmites.   

Grazing rates across plots were more even in subsequent rounds of grazing, 

presumably because the goats had overcome their neophobia.  My results are in accordance 

with Olson et al (1996)’s recommendation that animals used for biocontrol should have prior 

experience grazing the weed to be controlled.  Popay and Field (1996) also found that when 

using lambs to control leafy spurge (Euphorbia esula) and mountain mahogany 

(Cercocarpus montanus) lambs with previous experience of eating the plants were more 

likely to be effective control agents.  This suggests that more consistent success in 

controlling Phragmites with goats could be achieved by using animals conditioned to 

consume the plant, either through having grazed on invaded pasture previously, or by having 

been introduced to the plant as forage in a familiar environment.   
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The timing of grazing may also be an important factor in maximizing Phragmites 

control and minimizing environmental damage.  Based on a study of the seasonal changes in 

rhizome energy reserves, Karuntanatne et al. (2004) suggested that June was the optimal time 

to harvest Phragmites aboveground biomass if the aim is to weaken the stand.  Their results 

suggested that harvest only in July or August would maintain a healthy stand of Phragmites 

in subsequent years.  Future studies on grazing of Phragmites should focus on determining 

the optimum timing, frequency, and intensity of grazing to maximize Phragmites control and 

plant diversity.    

 

 
Figure 15: Layout of lightly and heavily grazed plots 

 

Effects of Grazing on Plant Diversity 

 
My study showed that increases in plant diversity are detectable after only one year 

and two rounds of intensive grazing of a Phragmites-dominated wetland.   Grazed plots had 

significantly higher plant species richness and Shannon-Weiner diversity than ungrazed plots 
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after the second round of grazing.  Species evenness remained higher in grazed plots after the 

third round of grazing.  The trends (Figure 7) in diversity data also suggested that after the 

second round of grazing diversity was increasing in grazed plots but remaining stagnant in 

ungrazed plots.    

Many studies, including Van Wieren et al. (1998), Vulink et al. (2000), Ausden et al. 

(2005), Tesauro and Ehrenfeld (2007), and others have found that grazing of Phragmites 

leads to increased plant diversity.  These and other studies of changes in plant communities 

following restoration typically examine time scales of at least five to ten years, if not longer.  

For example, Vilem et al. (2007) used grazing as a tool for restoring plant diversity in upland 

grassland and found that it took four years for the plant community to show a detectable 

response.  Vulink et al. (2000) found that grazing of Phragmites replaced it with a short grass 

community within four years.  My study is the first to my knowledge to document significant 

increases in plant diversity after only one year of grazing Phragmites.   Marty (2005) 

documented that grazed vernal pools had significantly higher cover of native plants and 

lower cover of exotic grasses than ungrazed plots in the first year of grazing, however 

Phragmites was not a factor in his study.  Future studies should continue over longer 

timescales to better understand the response of wetland plant communities to grazing.   

 My results suggest that it takes at least two rounds of grazing on Phragmites 

monocultures for diversity effects to begin to appear.  I believe that if my study were to 

continue for another year, grazing intensity would become more even across all grazed plots.  

This is supported by the decrease in variability of vegetation measurements I observed in 

subsequent rounds of grazing.  This should lead to unambiguous increases in plant diversity 

in grazed plots compared to ungrazed plots over time.   
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My data suggest that there was an increase in diversity from grazing, but that the 

effect was difficult to detect due to large variation in response between plots.  Uneven 

grazing intensity caused large residual error in diversity data in grazed plots, as is suggested 

by the large error bars for grazed plots in Figure 7 as compared to the error in ungrazed plots.  

Figure 8 also shows that diversity in lightly grazed plots was very similar to diversity in 

ungrazed plots.  This variability made it difficult to detect a significant difference between 

grazed and ungrazed plots.   

The detection of significant differences in plant diversity between grazed and 

ungrazed plots was also hampered by the fact that block 1 was an anomaly:  the ungrazed 

plot in block 1 consistently had higher plant diversity than the grazed plot, even in the 

baseline survey.  Graphically block 1 showed a reversed trend compared to the other blocks.  

This could be attributable to edge effects and that fact that it was one of the lightly grazed 

plots.  However removing block 1 from the analysis did not lead to any significant 

differences, probably due to the resulting loss of statistical power.   

It is notable that two months after the second round of grazing ended grazed plots had 

significantly higher species richness than ungrazed plots.  However a week after both the 

second and third rounds of grazing there were no significant differences in species richness 

or Shannon-Weiner diversity between grazed and ungrazed plots.  This suggests that it takes 

between a week and two months after a Phragmites monoculture has been grazed for plant 

diversity to increase.  The goats apparently ate every plant in the plots, including plants other 

than Phragmites.  Therefore intensive grazing had the immediate effect of decimating the 

plant community.  It apparently took time for plants other than Phragmites to be able to grow 

and take advantage of the newly available resources.    
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Plants can colonize a site via seed or clonally, and it appeared that both mechanisms 

were factors in the increased plant diversity observed in my study.  Many of the newly 

colonizing plants were seedlings, such as Acer rubrum (red maple) and Quercus rubra (red 

oak), as well as several seedlings that were too small to be identifiable (Appendix 4).  Some 

of the newly colonizing plants may have already been present in the seed bank, but it took 

time for their seeds to germinate and grow.  Although habitat became available once 

Phragmites was cleared, these seeds required suitable germination conditions, e.g. adequate 

moisture and temperature, and these conditions can vary temporally and spatially.  Seeds 

from other plants may not have been present in the seed bank and would have had to disperse 

to the site via wind or animal vectors.  It is possible that the goats brought seeds of some 

plants to the site.  Other plants colonized clonally, by growing into adjacent areas.    Clonal 

plants that expanded into my grazed plots included Polygonum perfoliatum (mile-a-minute 

weed), Toxicodendron radicans (poison ivy), Vitis sp., (grape), Lonicera japonica (Japanese 

honeysuckle), and Lonicera tatarica (bush honeysuckle).    

I believe that if grazing were used as a management tool for successive years, once 

the Phragmites regrowth has been substantially reduced (probably after two or three years), 

grazing pressure (number of animals/unit area) should be reduced.  European studies have 

generally shown that extensive or low-intensity grazing maximizes biodiversity benefits 

while restricting clonal invasives (Van Wieren et al. 1998; De Cauwer and Reheul 2009), as 

opposed to intensive grazing, which has been shown to be detrimental to biodiversity (Jansen 

and Robertson, 2001).  Marty (2005) showed that a stocking density of one animal unit (cow-

calf pair) per 2.4 ha improved plant and aquatic invertebrate diversity compared to ungrazed 
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wetlands.  Future studies on grazing Phragmites should attempt to determine an appropriate 

stocking density to maximize plant biodiversity.   

My study did not determine the mechanism by which grazing of Phragmites increases 

plant diversity.  Bakker (1985) observed that grazing in salt marshes improved plant diversity 

and attributed this effect to litter removal and exposure of bare soil by grazers.  This is one 

possible mechanism by which grazing could have increased plant diversity in my study.  

Another possible mechanism is the removal of tall Phragmites culms that prevented sunlight 

from reaching the soil, potentially inhibiting seed germination.  Van Wieren et al. (1998) and 

Levine (1998) both suggested that light is the limiting resource where nutrients are abundant, 

as was the case in my study.  Besides its tall, dense growth during the spring and summer, 

Phragmites leaves many standing dead culms throughout the winter that block sunlight from 

reaching the ground in early spring.   This has been suggested as a possible mechanism by 

which Phragmites outcompetes other plants (Onimaru and Yabe, 1996; Gusewell and 

Klotzli, 1998).  After the first round of grazing in my study grazed plots had fewer standing 

dead culms throughout the winter and also less litter.  This may have altered the competitive 

balance against Phragmites in favor of native plants.  

Phragmites belowground parts have been shown to secrete an allelopathic chemical 

that causes acute rhizotoxicity in other plants (Rudrappa et al., 2007).  By reducing 

Phragmites aboveground biomass, grazing may also reduce the amount of energy Phragmites 

roots allocate to production of allelopathic compounds and thus reduce its competitive 

advantage over other plants. 
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Soil water 

Nitrate, Ammonium, and Phosphate 

 
The results of this study support my hypothesis that grazing would not significantly 

increase levels of soluble soil water nutrients, and thus risk of pollution.  Levels of nitrate, 

ammonium, and phosphate in grazed and ungrazed plots tracked each other closely 

throughout the study, but there were no discernible patterns (Figure 10).  Nitrate levels were 

far below the EPA drinking water standard of 10 mg/L (US EPA, 2009).  Soil water 

phosphate levels in both grazed and ungrazed plots were above the EPA standard of 0.1 mg/L 

for rivers and streams, however.   

In contrast, Findlay et al. (2003) found that treating Phragmites with herbicide 

increased porewater ammonium concentrations for at least two years following treatment.  

Bart and Hartman (2000) similarly found that clipping Phragmites led to a 3- to 4-fold 

increase in porewater ammonium concentrations.  In my study grazing did not increase 

porewater ammonium (or nitrate) concentrations, presumably because the nitrogen was 

consumed by the goats rather than released from the dying plants in situ.  Any mineralized 

nitrogen could also have been removed via denitrification or volatilization.  My results may 

therefore suggest that grazing Phragmites causes less risk of nitrogen export from a wetland 

than herbicide application or mowing.   

The significant effect of time on nitrate, ammonium, and phosphate content of soil 

water suggests that, despite my high stocking rate, any elevation in labile soil water nutrients 

attributable to the presence of herbivores was negligible compared with the seasonal 

fluctuations driven by changes in vegetation, temperature, and soil moisture (Jamieson et al., 

1999; Hook and Burke, 2000).  Bouman et al. (2008) similarly found significant seasonal 



 

 49 
 

effects in nitrate concentration of soil water.  This also suggests that the best way to examine 

effects of grazers on labile soil nutrients would be to remove the effect of seasonality by 

comparing samples taken at the same time of year.  There are substantial differences in 

measurements, however, even when comparing the baseline levels in September 2008 to the 

measured levels after the third round of grazing in September 2009.  PO4-P levels were much 

higher in 2009 than 2008 in both grazed and ungrazed plots, nitrate levels were lower, and 

ammonium levels were comparable between both years.  Both inter-annual and seasonal 

variations therefore appear to overwhelm the effects of grazing on soil water labile nutrient 

levels.   

On the other hand, it is possible that grazing did increase soil and soil water nutrient 

levels but that there is a lag time between nutrient application and nutrient release by the 

wetland, as some authors have shown (Owens et al., 2008; Meals et al., 2010).  However 

these authors measured response of nearby streams and groundwater seeps rather than 

nutrient levels directly in soil water.  Afzal and Adams (1992) found that soil nitrate 

concentrations under cattle dung and simulated cattle urine patches increased substantially 

within days of application and peaked within a month, then very gradually fell off over a 

period of weeks.    Based on the rapid response of soil water nitrate levels to urine addition 

and the gradual decline these authors observed, I believe that my measurements captured 

treatment effects.   

There was high variability in soil water nutrient levels within treatments.  In some 

cases there was a ten-fold difference in readings from the two lysimeters in one plot.    

Spatial variability in soil chemical and physical characteristics and readings from suction cup 

lysimeters have often been reported to be high and underestimated by researchers (Grossman 
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and Udluft, 1991; Lord and Shepherd, 1993).  Grazing has also been reported to increase 

spatial variability of soil nutrient levels (Afzal and Adams, 1992; Lord and Shepherd, 1993; 

Augustine and Frank, 2001).  These factors suggest that more than two lysimeters should 

have been installed in each of my study plots.  Bouman et al. (2008) used a density of 

lysimeters four times higher than mine to measure soil water nutrients under extensively 

grazed pasture.  Lord and Shepherd (1993) suggested that in arable rotations 20-25 replicates 

were required to detect differences of 25%, 5-7 replicates to detect differences of 50%, and 

more under grazed fields.  Based on the variability in my results and the work of these 

authors, I would recommend that future studies use at least eight lysimeters per 100m2 to 

estimate mean soil water nutrient levels.  Future studies should also use higher replication of 

grazed/ungrazed treatments to gain more statistical power.  Despite high variability, I believe 

that my results show that grazing will not increase ambient soil water labile nutrient levels in 

the short-term.   

The state of the wetland (flooded vs. non-flooded) also probably had a significant 

effect on measured soil water nutrient levels.  For example, ammonium levels were elevated 

in July 2009 compared with September and October 2008.  This was probably because the 

soil was flooded at the time of sampling in July 2009 but not in the fall of 2008, and under 

flooded conditions most of the nitrogen in soil water will exist in the form of ammonium.  

Nitrate levels were lower in July 2009 than in the fall of 2008, which agrees with this 

hypothesis.   

Soil and Soil Water pH 

 
The decrease in soil water pH observed in grazed plots relative to ungrazed plots is 

difficult to explain.  This difference was more pronounced after the first round of grazing and 
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became less pronounced through 2009.  The difference between grazed and ungrazed plots 

was 0.15 pH units.  There was also no significant difference in soil pH at either depth 

between grazed and ungrazed plots.  So, although this difference is statistically significant, it 

may not be biologically meaningful.   

One possible explanation for this effect may be that grazers trampled the detritus, 

opening up the canopy, increasing aeration and decomposition, and thus increasing the 

formation of organic acids relative to ungrazed plots.  Zacheis et al. (2002) similarly found 

that grazing by graylag geese in an Alaskan salt marsh decreased soil pH slightly but 

significantly, but they did not attempt to explain the effect.   

The veterinarian on this project, Dr. Hare, also suggested that the sugar-rich 

Phragmites may make the goats’ urine more acidic (Bill Hare, unpublished data).  Milchunas 

and Lauenroth (1993) found that the literature on grazing documented no consistent trend in 

soil pH.  Some of the studies they reviewed documented a slight decrease or increase in soil 

pH with grazing similar to mine, but none attempted to explain this result.     

Total Nitrogen (TN) and Total Phosphorus (TP) 

 
I hypothesized that grazing would not affect total soil water nutrient levels, but my 

results do not support this hypothesis.  Grazing increased levels of total soil water nitrogen 

by 21% and phosphorus by 43% relative to ungrazed plots.  Since ammonium, nitrate, and 

phosphate levels were not similarly elevated, and assuming that nitrite levels were negligible, 

the observed increase in total nutrient levels must have been caused by elevated dissolved 

organic nitrogen and phosphorus in soil water.   

Relatively few studies on grazing have measured levels of total dissolved nutrients or 

dissolved organic nutrients in soil water.  One study, Foote & Hornung (2005), found that 
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cattle grazing in prairie pothole wetlands did not increase total nitrogen or phosphorus levels 

in surface waters.  Campbell et al. (2009) found, however, that grazing in riparian areas 

increased total nutrient levels in adjacent water bodies.  Campbell et al. (2009) hypothesized 

that both excretion and physical disturbance caused the increase they observed.  

There are several potential mechanisms by which grazing could have increased 

dissolved organic nutrient levels in my grazed study plots.  It is possible that the observed 

increase in total nutrient levels in soil water was made up of direct inputs of organic nitrogen 

and phosphorus from goat excreta.  Although these nutrients were deposited on the soil 

surface, they could have rapidly moved down into the soil water via macropore flow 

(Grossman and Udluft, 1991; Pakrou & Dillon, 1995; McGechan, 2003).   

Trampling of the vegetation may also have increased organic nutrient levels in grazed 

plots relative to ungrazed plots.   The physical abrasion of litter from trampling could have 

made more surface area available for microbial attack. This could have accelerated 

decomposition and the release of organic acids as well as increasing litter incorporation into 

the soil.   As discussed in the nutrient pool analysis below, the goats in my study also killed 

some Phragmites without eating it, increasing returns to the litter pool in the middle of the 

growing season.  The added organic nutrients in soil water could therefore have been derived 

from decomposing plant matter.  Zacheis et al. (2002) similarly found that trampling by 

geese in an Alaskan salt marsh stimulated nitrogen mineralization and attributed this effect to 

greater litter incorporation into the soil.   

In my study grazing also maintained a higher percentage of nitrogen and phosphorus 

in Phragmites tissue, and this could have made Phragmites litter in grazed plots more easily 

decomposable (Sirotnak and Huntley, 2000).   
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Trampling, higher plant tissue nutrient levels, and input of dung could all have 

contributed to accelerating decomposition and could therefore have stimulated microbial 

activity in grazed plots.   The increased organic nutrient concentrations in soil water could 

therefore have been at least partially derived from microbial biomass.  Ruess and 

McNaughton (1987) similarly found that grazing in Serengeti grassland stimulated the 

microbial community.   

Dissolved organic nitrogen has recently come to be regarded as an overlooked 

pathway of nitrogen loss from agricultural soils and a pollution source to receiving waters 

(Oleman et al., 2007; van Kessel et al., 2009).   Colloidal transport of phosphorus through 

soils via macropore flow has also recently been documented, and manure is believed to be an 

important source of colloids for phosphorus transport (Nash and Halliwell, 2000; McGechan 

and Lewis, 2002).  The elevated total nutrient levels in my study therefore raise concerns that 

there is a potential for grazing in wetlands to cause nutrient pollution via export of dissolved 

organic nutrients.   

Wetlands, however, are efficient at removal of total nitrogen and phosphorus from 

wastewater (Kadlec, 2003; Tanner et al., 2004; Kadlec, 2009).   As long as the retention time 

of water in a grazed wetland is long enough to process these nutrients, I believe it is unlikely 

that increased levels of TN and TP in the soil water would translate to increased export of TN 

and TP from the wetland.  The excess organic nitrogen in the soil water could eventually be 

stored in the soil, taken up by plants, or removed via volatilization or denitrification.   The 

excess phosphorus could be stored in the soil as well, although the soil in my study wetland 

may already be nearing phosphorus saturation, as discussed in the “Soil” section below.   
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Nevertheless, I would recommend that future use of goats to control Phragmites 

minimize the risk of nutrient pollution by reducing the stocking density.  The stocking 

density I used was 20% higher than even intensive grazing systems in grassland (e.g. 

Dormaar and Willms, 1998; de Klein and Ledgard, 2001), and was much higher than the 

extensive grazing systems used in Europe to control Phragmites and other clonal dominants 

(Bakker, 1985; Gusewell et al., 2007; de Cauwer and Reheul, 2009).  Any Phragmites 

control effort would need to balance a desire for quick Phragmites eradication, requiring a 

higher stocking density, with the need to minimize the risk of nutrient pollution, which would 

require a stocking density as low as possible.  Studies of extensive grazing systems in 

grasslands have consistently shown that extensive grazing does not increase nutrient 

pollution and can in fact be used as a tool to decrease nitrate leaching (Anger et al., 2002; 

Owens and Bonata, 2004; Bouman et al., 2008).   Future studies on grazing to control 

Phragmites should determine the optimum stocking density for minimizing pollution risk 

while maximizing Phragmites control and increases in plant diversity.   

Restricting grazing late in the growing season could also help to minimize the risk of 

pollution.  When grazing early in the growing season nutrients are released at a time when 

plants need them and can rapidly assimilate them.  However when grazing late in the 

growing season nutrients are released at a time when plants are no longer taking them up as 

quickly, therefore they are likely to remain in the soil or soil water, available for export 

(Stout et al, 1997). 

Other studies (e.g. Afzal and Adams, 1992) have found that most of the nitrogen 

excreted from grazers is mineralized within a few days.  In my study the excreted nitrogen 

was apparently not rapidly mineralized, but remained as organic nitrogen for at least six 
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weeks.  This could have occurred because the waterlogged soil conditions in my study could 

have prevented urea mineralization, thus elevating organic nitrogen levels instead of mineral 

nitrogen levels.  The soil in my study became waterlogged briefly towards the end of the first 

grazing period, in the fall of 2008, and was waterlogged during most of the first grazing 

period in May-June 2009.  The soil was relatively dry, however, during the last grazing 

period, yet no increases in mineral nitrogen levels were measured.  It is also possible that 

waterlogged soil conditions could have caused denitrification of some or most of the nitrogen 

that was mineralized, and that under dry conditions some nitrogen could have volatilized.   

It is also possible that during my study some nutrients were translocated from the 

wetland to the adjacent upland area.  It is unlikely that the upland area on which the goat 

hutches were placed was underlain with the bentonite clay that lined the wetland.  There was 

a high concentration of animal excreta visible around these resting areas.  Nutrients may have 

been translocated from the wetland to the upland area and then leached from the soil.  The 

ground in the upland area was very hard, however, having probably been modified when the 

adjacent dirt road was constructed.  Therefore it is possible that much of the water flow on 

the area would have been surface runoff rather than percolation through the soil, and since 

the area sloped towards the wetland, these nutrients could have been returned to the wetland.   

Soil 

 
This study found that grazing increased soil molar phosphorus saturation ratio 

(MPSR) slightly at depth and decreased soil water-soluble phosphorus levels.  Total soil 

nitrogen and carbon levels were not affected by grazing.  These findings agree with those of 

Augustine and Frank (2001), who found that grazing of grassland by wild ungulates in 
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Yellowstone National Park did not increase total soil nitrogen, mineral extractable nitrogen, 

total soil carbon, or nitrogen mineralization potential of the soil.  

Soil Water-Soluble Phosphorus 

 
Soil water-soluble phosphorus levels were 24% lower in grazed plots than in 

ungrazed plots.  This suggests that in grazed plots more water-extractable phosphorus was 

being removed from the soil, presumably by either plants or microbes.  Grazing could have 

accelerated Phragmites phosphorus uptake, since grazed Phragmites grew new shoots that 

had twice the tissue phosphorus levels of Phragmites in ungrazed plots.  Grazing could also 

have stimulated the microbial community (Harrison and Bardget, 2008) and thus increased 

the amount of soil phosphorus from the water-soluble pool incorporated into microbial 

biomass. 

It is also possible that, assuming grazing reduced the overall amount of decaying 

plant litter in plots, grazing reduced water-soluble phosphorus release from decaying plants.  

Decaying plants have been found to release significant amounts of water-soluble phosphorus 

(Nash and Halliwell, 2000).  It is reasonable to suppose that the goats consumed much of the 

aboveground biomass that would have eventually become litter, senesced and decayed, 

releasing phosphorus.   

Trampling the soil also presumably increased mixing and contact of aluminum and 

iron soil minerals with water-soluble phosphorus, and thus may have increased phosphorus 

bound in the top layer of soil.  This would have reduced water-soluble phosphorus and 

increased Mehlich 3 phosphorus in shallow soil. 
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Soil Mehlich 3 Levels and Phosphorus Saturation Ratios 

 
Baseline soil Mehlich 3 phosphorus levels were well above the levels at which Sims 

et al. (2002) recommends environmental action should be taken for agricultural soils and 

Mehlich 3 phosphorus saturation ratios were well above those predicted by Mukherjee et al. 

(2009) to cause phosphorus release from wetland soils to water.  The high baseline nutrient 

levels are probably attributable to the fact that the area was used for agriculture for decades 

before wetland creation/restoration.  The soil was undoubtedly heavily fertilized while it was 

under cultivation.  Wetlands with high baseline phosphorus fertility could pose a greater risk 

of phosphorus export from the wetland, but they also present a greater opportunity for 

phosphorus removal from the system.   

In my study the soil molar phosphorus saturation ratio (MPSR) was significantly 

higher in grazed than ungrazed plots at a depth of 15-30 cm after the second round of 

grazing.  The difference between grazed and ungrazed plots was 3%, which is so small as to 

be of questionable importance.  Mean MPSR in grazed plots also increased at the 0-15 cm 

depth relative to ungrazed plots, but its measure was so variable that no significant difference 

could be detected.   

Activities at the surface of a soil, such as grazing, very rarely affect Mehlich 3 

phosphorus saturation ratio at depth.  It is therefore difficult to explain the increase I 

observed as a treatment effect.  It may have been caused by hydrologic factors, such as 

phosphorus release from minerals in the bentonite clay. 

The soil MPSR increased by about a third for both grazed and ungrazed plots between 

September 2008 and July 2009.  This is probably attributable to the fact that the soil was 

saturated during soil sampling in 2009 but not in 2008.  The Mehlich 3 test releases most 
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iron- and aluminum-bound phosphorus, therefore dissolution of these bonds via reduction 

probably did not contribute much to the observed increase.  Flooding releases phosphorus 

through cell lysis and other mechanisms (Wright et al., 2001).  

Nutrient Pool Analysis 

 
 Although my results for soil water above suggest that heavy grazing of a Phragmites-

dominated wetland can increase nutrient availability, the nutrient pool analysis suggests that 

grazing can reduce the fertility of a Phragmites-dominated wetland.  Nitrogen can be 

removed via grazer biomass, denitrification, and volatilization, and my results suggested that 

62% of the nitrogen in the system was removed after two rounds of grazing.  Phosphorus can 

be removed in the form of grazer biomass, and my results suggest that grazing reduced the 

phosphorus fertility of the wetland by 8%.  Reducing fertility could be a key to long-term 

Phragmites control, since Phragmites is adapted to high-nutrient environments.  By 

permanently reducing nutrient availability, grazing could eventually make the habitat 

unsuitable for Phragmites re-colonization.   

Figure 13 shows that nitrogen excreted from the goats can be removed from the 

system via denitrification or volatilization.  Grazing makes a large amount of nitrogen rapidly 

available in the soil and soil water, and this typically overwhelms plant demand for nitrogen 

(Stout et al., 1997).  This provides an opportunity for denitrification or volatilization losses 

(Stout et al., 1997; Rotz et al., 2005).   This is also the point in the cycle at which there is a 

potential for nitrate to leach or be exported from the system in surface water.   

The rates of denitrification and volatilization will vary depending on climatic 

conditions and were not measured in this study.   Wetter pastures should experience higher 
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denitrification rates and lower volatilization losses, and the opposite should be true at drier 

times of year.  Frazier et al. (1994) reported that 28% of the nitrogen applied by grazing 

animals in a wet pasture was lost to denitrification.  Zhou et al. (2009) reported that 30-40% 

of nitrogen applied to a rice paddy as both fertilizer and liquid cattle waste was lost via 

denitrification and 2.5-4% was lost via ammonia volatilization.  Treading by the goats may 

also enhance denitrification rates.  Menneer et al. (2005) found that treading by cattle 

increased denitrification rates by up to 22 times the baseline rate for a period of 28 days 

following the event.   

In addition to denitrification and volatilization losses, nitrogen can be lost from the 

Phragmites pasture through goat uptake.  Approximately 15% of the nitrogen goats consume 

will be removed in the form of goat biomass (Davidson, 1985; Dahlin, 2005), assuming the 

animal does not die and decompose on site. 

 Grazing can similarly remove phosphorus from the ecosystem in the form of biomass.  

Goats retain 65-75% of the phosphorus they ingest as live weight gain (Morse, 1992; 

Meschy, 2002).  Thus only a small proportion of the phosphorus goats ingest will be returned 

to the system.  Almost all of the phosphorus excreted by a ruminant is returned in the form of 

feces, and this is relatively slowly decomposed.  The slow decomposition rate means that 

phosphorus can be released at a rate at which plants can use it, as opposed to nitrogen in 

urine, which is typically released so rapidly that it overwhelms plant demand.   

 Reducing the phosphorus fertility of the soil could be a long process, however, since 

the nutrient pool analysis shows that grazing reduced phosphorus fertility by only 8%.  

Slightly less than 1/3 of the Mehlich 3 phosphorus in the system was being cycled through 
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Phragmites and goat grazing.  It could take many years to draw out the soil store of 

phosphorus and remove it in the form of animal biomass.   

 Although as discussed above heavy grazing may increase the risk of nutrient export 

from a wetland, heavy grazing may nevertheless promote reductions in soil fertility.  Li et al. 

(2008) found that historic light and moderate sheep grazing on the Mongolian steppe did not 

affect soil total nitrogen or phosphorus levels, but heavy grazing decreased soil total nitrogen 

by 11.4% and total phosphorus by 7.6%.   

Richardson (1999) suggested that over a range of wetlands, including both mineral 

and peat soils, phosphorus additions of more than 1 g/m2/year will generally be too high for 

the wetland to absorb and will lead to phosphorus export from the wetland.  I estimated that 

the goats in my study returned approximately 0.26 g/m2 phosphorus to the wetland in the 

form of excreta in 2009, well below the 1 g/m2/yr threshold.   This suggests that grazing is 

unlikely to cause phosphorus export from the wetland.  Rather, the wetland should be able to 

assimilate this phosphorus.   

 Grazing increased the concentrations of N and P in Phragmites biomass.  This 

probably made the Phragmites litter in grazed plots more easily decomposable and thus sped 

up nutrient cycling.  Many other studies have similarly found that grazing increased plant 

tissue nutrient concentrations (e.g. Hik and Jefferies, 1990; Fox et al., 1998; Sirotnak and 

Huntley, 2000).  As discussed above, this could have accelerated decomposition in grazed 

plots.     

Grazing also affected the timing of Phragmites additions to the litter pool in a way 

that probably accelerated decomposition.  Since the goats consumed only an estimated 70% 

of the Phragmites in their plots, grazing released approximately 30% of the live standing 
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stock of Phragmites to the litter pool in the middle of the growing season, when soil 

temperatures and trampling would have facilitated decomposition.  In contrast, in the 

ungrazed plots Phragmites senesced in the fall, and it quickly became too cold for soil 

organisms to decompose the fresh litter.  

It is possible that there were nutrient inputs to the wetland system from nutrient pools 

in the litter layer and belowground biomass of Phragmites.  The size and fluxes to and from 

these pools were not measured or estimated in my study.  It is likely that grazing moves 

nutrients out of these two compartments and into the goat-excreta-soil water pathway.   I 

expected grazing to deplete Phragmites’ rhizome store of energy and nutrients, and the 

nutrient pool analysis suggests that this may have occurred. The rhizome must have had to 

release energy and nutrients to replace its grazed aboveground parts.  Alternately, some 

belowground parts of the Phragmites clone could have senesced and released their nutrients 

directly to the soil and soil water.   

Nutrients could also have been released from the litter layer more quickly in the 

grazed plots than in the ungrazed plots.  The previous year’s litter could have been more 

quickly decomposed in the grazed plots by trampling and stimulation of the microbial 

community, as discussed earlier (Zacheis et al., 2002).  The litter layer can contain a large 

proportion of nitrogen in an ecosystem system.  For example, Robertson et al. (1993) found 

that the litter layer in a grassland contained 30-50% of the nitrogen in the system.   

It is unlikely that the goats imported nutrients to the site, since they were not given 

any supplemental feed while they were in the Phragmites enclosures.  It is also possible that 

soil bacteria fixed some nitrogen, but this was not measured, and there is no reason to 

suppose nitrogen fixation would have been favored in this system.  There were few to no 
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nitrogen-fixing plants present and no cyanobacteria visible.  Since there are no surface water 

inflows or outflows to the wetland and there is little to no groundwater connection, it is 

unlikely that nutrients entered through hydrologic pathways.  Atmospheric deposition could 

have also contributed nitrogen to the system (Rotz et al., 2005), but this was not measured, 

and it would have been equal across grazed and ungrazed plots. 

Overall the nutrient pool analysis suggests that heavy grazing shifts nutrients between 

ecosystem compartments, ultimately making them more available to biota and decreasing the 

fertility of the system.  Grazing has the potential to reduce the fertility of a Phragmites-

dominated wetland through removal of nutrients as goat biomass and loss of nitrogen through 

denitrification and volatilization.  Future studies should measure nutrient pools and fluxes 

from the litter layer and belowground biomass in order to assess the magnitude of these 

fluxes. 

Recommendations for Phragmites Control in Wetlands 

 
This study showed that grazing by goats can effectively control Phragmites.  My 

recommendations for maximizing control efficiency are: 

1) Use herds of at least four animals 

2) Use goats with previous experience eating Phragmites, or with experience of the 

location, or both, if possible.  If this is not possible, the goats should be 

introduced to eating Phragmites before they are moved onto the Phragmites 

patch, and/or animals without prior experience eating Phragmites should be 

pastured on the patch with animals that are experienced so they can quickly learn 

from each other.   
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3) Repeated grazing will be required over at least two growing seasons before 

reductions in Phragmites biomass and increases in plant diversity are 

measureable.  It is likely that grazing will need to continue for an extended period 

of time in order to continue to suppress Phragmites.  Although Vulink et al. 

(2000) found that it took only four years of grazing to replace a Phragmites 

community, Bassett (1980) and Burnside (2007) have shown that in areas where 

historic grazing ceases Phragmites re-invades.  A wetland with high nutrient 

levels will remain favorable habitat for Phragmites.  Grazing over many years 

may reduce nutrient levels enough to make the habitat no longer favorable for 

Phragmites, but actions in the wetland’s watershed could also have a major 

impact on nutrient levels.   

4) Grazing in June and July will probably weaken the clone most efficiently 

(Karunaratne et al., 2004) and maximize nutrient uptake by biota in order to 

minimize nutrient export from the wetland.  Grazing in the fall increases the risk 

of nutrient export from the system because plants do not have enough time to 

assimilate the nutrients (Stout et al., 1997). 

5) Extensive grazing (grazing at a low stocking density) should be employed after a 

year or two of intensive grazing.  Extensive grazing has been shown to maximize 

biodiversity benefits while effectively controlling invasive clonal species. 

Limitations of Grazing as a Management Tool to control Phragmites 

 
It is likely that grazing could only control rather than completely eradicate 

Phragmites, and that cessation of grazing will cause Phragmites to re-invade (Bassett, 1980; 

Burnside, 2007).  I would expect this to be especially true in areas such as our study site 
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where grazed areas are adjacent to ungrazed Phragmites-dominated areas.  In such cases 

Phragmites will almost certainly maintain rhizomes running underneath the grazed area and 

continue to send up new shoots there each year, and the habitat will probably remain 

favorable for many years before nutrient levels could be depleted.   

In my study grazing caused no immediate environmental damage.  However, I believe 

that in certain situations grazing could cause unacceptable environmental damage and should 

not be used as a management tool.  For example, on peat soils grazing animals could cause 

poaching of the soil, destroying the soil structure.    Poaching occurs when livestock, 

typically at high density, trample wet soils.  This reduces soil porosity and damages plant 

meristems.  The result is a muddy slurry rather than a healthy ecosystem.  I believe that 

grazing would probably also be damaging in low marsh, where the plants are already 

subjected to severe environmental stress via frequent or permanent inundation.  Van Wieren 

et al. (1998), showed that grazing promoted diversity in high salt marshes but not in low or 

middle salt marshes, where the ratio of species affected negatively to affected positively by 

grazing was about 1:1.   

I would also not recommend grazing in riparian wetlands, where nutrients could be 

released into the water column by grazers and directly transported to surface waters without a 

chance to be processed by the wetland.  Finally, I would caution against grazing in recharge 

wetlands where nutrients released by grazers could be leached to the water table.  I suggest 

that further study is required to determine the impact of grazing on recharge wetlands.   

Before allowing grazers into a wetland I would recommend a survey to ensure that it 

does not contain rare or threatened plants or other organisms that may be negatively impacted 

by grazing.   
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Grazing by large herbivores is probably not a natural disturbance in Mid-Atlantic 

wetlands of North America (Middleton et al., 2006).  Therefore although it can control 

Phragmites, grazing may not be able to return the plant community to its pre-Phragmites 

invasion state. Changes in physio-chemical wetland characteristics that made the wetland 

susceptible to Phragmites invasion in the first place, such as increased nutrient levels, remain 

altered.  Grazing may reduce nutrient levels in the wetland over time, or it may not affect 

them due to the overwhelming runoff of nutrients into the wetland from the watershed.  But I 

believe that carefully managed grazing would create an ecosystem with higher biodiversity 

and value for wildlife than a Phragmites monoculture.  Grazing may therefore be an 

unnatural disturbance to achieve a biodiversity objective rather than a tool to restore the 

system to a previous state.   

Veterinary Study on Goat Health 

 
In conjunction with our study on the effects of grazing on wetland health, BARC 

personnel and Dr. Reginald Harrell collaborated on a study of the effects of grazing in 

wetlands on goat health.  Samples of urine, blood, and stool were regularly taken during the 

study.  According to the veterinarian, Dr. Hare, there were no detrimental health effects on 

the goats of grazing on Phragmites.   All animals gained weight during the study period. The 

goats had low levels of magnesium after the 2009 grazing treatment, but these were not low 

enough to produce any negative health effects.   
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Chapter 5:  Conclusions 

Grazing as a Management Tool for Phragmites Control 

 
Grazing can successfully control Phragmites within two growing seasons, but grazing 

effectiveness can vary by an order of magnitude depending on the size of the herd and the 

animals’ familiarity with the food and location.   

Grazing as a Management Tool for Increasing Plant Diversity 

 
Heavy grazing, which completely eliminates Phragmites in each round of grazing, 

can increase plant diversity.   Phragmites should be completely grazed for this strategy to be 

successful, and it takes at least two rounds of grazing or two growing seasons of grazing for 

significant effects to be detectable.   

Effects of Grazing on Wetland Nutrient Levels 

 
In the short-term grazing is not detrimental to soil or soil water nutrient levels, 

although it can increase total nutrient levels in the soil water.  Further study is required to 

determine whether these increases would translate into nutrient export from the wetland as 

well as to determine an appropriate stocking density to minimize increases in total nutrient 

levels.  Longer-term study is needed to determine whether grazing can be recommended in 

the Chesapeake Bay watershed as an effective means of controlling Phragmites and reducing 

nutrient levels.  
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Direction for Future Research 

 
Future research should: 

1) Determine the correct stocking density to maximize Phragmites control and native 

plant diversity while minimizing environmental damage; 

2) Investigate the long-term effects of a Phragmites diet on ruminant health; 

3) Test the use of other animals and cattle in particular, which European studies have 

shown are the most effective grazers for control of Phragmites; 

4) Be of longer duration; many other studies of grazing for restoration purposes track 

ecosystem recovery over periods of years, e.g. Lindborg and Eriksson (2004) and 

Krahulec et al. (2001) 6 yrs, Andresen et al. (1990)—9 years; an adequate timescale 

will be one at the end of which the pattern of change in plant diversity and nutrient 

levels is clear, or these measures are no longer changing with time; 

5) Study the effects of grazing on different types of wetlands  (e.g. recharge, riparian, 

discharge, peat-based); 

6) Monitor nutrient levels long-term; there could be a delayed response of nutrient levels 

to grazing; 

7) Investigate the effects of grazing on animal communities, such as invertebrates and 

birds; 

8) Investigate  mechanisms by which grazing increases plant diversity, such as reduction 

in litter, increased light penetration, and altered soil nutrient availability or spatial 

patterns;
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 Appendix 1: Plant Survey Report March, 2008 

 

MEMO 
 

To: Bill Hare  

From: Jennifer Brundage, University of Maryland 

Subject: Threatened and Endangered Plant Survey USDA Beltsville Agricultural Research 
Center 

Date: April 29, 2008 

 

A proposal has been made by researchers at the University of Maryland to fence and graze a 
patch of Phragmites australis (Cav. Trin. ex Steud.) growing at the USDA Beltsville 
Agricultural Research Center.  Following concerns raised by the local ecology committee, a 
survey was conducted to determine whether there are any plant species of concern growing in 
the proposed project area.  Notes were also made on animal species observed, though no 
specific animal surveys were undertaken.   
 
The survey was conducted on Thursday, April 24, 2008, between 9:30 and 11:30 am.   The 
weather was sunny, with temperatures around 70oF.  The survey was conducted by graduate 
students Jennifer Brundage and Peter Sharpe of the University of Maryland with assistance 
from Rose Johnson, undergraduate laboratory assistant in UMD’s Wetland Ecology Lab.  
Specimens of species that could not be identified in the field were transported to the lab and 
identified using stereo zoom dissecting microscope and taxonomic references by Jennifer 
Brundage and Dr. Andrew Baldwin.   
 
An aerial photo of the survey site is shown in Figure 1 below, and Figures 2 and 3 show 
photos of the site.  Plants observed in all areas that could potentially be fenced and subjected 
to grazing pressure were noted.  This included inside the Phragmites patch as well as the 
grassy north and south margins.  The east and west margins of the patch are probably too wet 
to permit grazing, however species within about 5 feet of the Phragmites on theses margins 
were recorded. 
  
Plants noted in the survey are listed in tables 1 and 2 below.  No species of concern were 
observed.  Observed fauna within the Phragmites  patch were red-winged blackbirds 
(Agelaius phoeniceus) and green frogs (Rana clamitans melanota).  Most of the plant species 
observed were growing in the margins around the Phragmites patch.  Very few plants 
(besides Phragmites) were growing inside the patch, apart from a few bald cypress 
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(Taxodium distichum) which had apparently been planted prior to Phragmites invasion, a few 
maple saplings, and some poison ivy.   
 
It is of note that water levels in and around the Phragmites patch were several inches lower 
on this visit than on two previous visits during the winter.  It is possible that water levels will 
continue to drop throughout the summer, making the area increasingly suitable for small 
ruminants. 
 
Overall no species of concern were observed, and it is not anticipated that fencing and 
grazing of this Phragmites patch would have any negative impacts on the local ecology.   
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Plant List 

 
Table 1: Herbs, Shrubs and Vines 

Species and Naming 

Authority 

Common Name Condition Rare/ 

Threatened 

Apocynum sp. (L.) Dogbane v. No 
Asclepias sp. (L.) Milkweed v. No 
Aster puniceus (L.) Purple-stemmed aster v. No 
Carex vulpinoidea (Michx.) Fox sedge v. fl. No 
Cirsium arvense (L. Scop.) Canada thistle v. No 
Coronilla varia (L. Lassen) Crown vetch v. fl. No 
Festuca sp.(L.) n/a v. fl. No 
Galium sp. (L.) Bedstraw v. No 
Juncus effusus (L.) Soft rush v. No 
Lamium purpureum (L.) Red dead-nettle v. fl. No 
Lolium perenne (L.) Ryegrass v. fl. No 
Lonicera japonica (Thunb.) Japanese honeysuckle v. No 
Lonicera tartarica (L.) Tartarian 

honeysuckle 
v. No 

Lychnis alba (Mill.) White campion v. fl. No 
Oxalis sp. (L.) Wood sorrell v. No 
Parthenocissus quinquefolia 

(L. Planch.) 
Virginia creeper v. No 

Phragmites australis (Cav. 
Trin. ex Steud.) 

Phragmites v. No 

Plantago sp. (L.) Plantain v. No 
Potentilla norvegica (L.) Rough cinquefoil v. fl. No 
Ranunculus recurvatus (Poir.) Hooked crowfoot v. fl. No 
Rhus radicans (L.) Poison ivy v. No 
Rosa multiflora (Thunb.) Multiflora rose v. No 
Rumex crispus (L.) Curly dock v. No 
Sedum sp (Michx.) Wild live-forever v. fl. No 
Stellaria sp. Chickweed v. No 
Taraxacum officionale (F.H. 
Wigg.) 

Dandelion v. fl. No 

Typha latifolia (L.) Broad-leaved cattail v. No 
Veronica persica (Poir.) Persian speedwell v. fl. No 
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Table 2: Trees 

Species Common Name Rare/Threatened 

Acer negundo (L.) Boxelder  No 
Acer rubrum (L.) Red maple No 
Acer saccharinum (L.) Silver maple No 
Celtis occidentalis ( Hackberry No 
Cephalanthus occidentalis 

(L.) 
Buttonbush No 

Fraxinus pennsylvanica 

(Marsh.) 
Green ash No 

Liquidambar styraciflua 

(L.) 
Sycamore No 

Morus rubra (L.) Red mulberry No 
Prunus sp.(L.) Various No 
Quercus alba (L.) White oak No 
Taxodium distichum (L.) 
Rich. 

Bald cypress No 

v. = vegetative 
fl. = flowering 
v. fl. = vegetative and flowering 
 

 

Contact Information 

 

The University of Maryland 
1423 Animal Sciences Building 
College Park, MD 20742-2315 
Jennifer Brundage Cell: 703-582-8931 
 
Dr. Andrew Baldwin Office: 301-405-7855 
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Appendix 2: Methods of Soil Water Analysis 

Analyte Lachat  

standard  

procedure 

EPA  

Equivalent  

Method 

Summary of Method 

Ammonia 10-107-06-2 350.1 “The sample is buffered at a pH of 9.5 with a 
borate buffer in order to decrease hydrolysis 
of cyanates and organic nitrogen 
compounds, and is distilled into a solution of 
boric acid. Alkaline phenol and hypochlorite 
react with ammonia 
to form indophenol blue that is proportional 
to the ammonia concentration. The blue 
color formed is intensified with sodium 
nitroprusside and measured 
colorimetrically.”* 

Nitrate 10-107-04-1 353.2 “Nitrate is quantitatively reduced to nitrite 
by passage of the sample through a 
copperized cadmium column. The nitrite 
(reduced nitrate plus original nitrite) is then 
determined by diazotizing with 
sulfanilamide followed by coupling with N-
(1-naphthyl)ethylenediamine 
dihydrochloride.”** 

Total  
nitrogen 

10-107-04-1 353.2 Persulfate digestion, then as for nitrate above 

Ortho- 
phosphate 

10-115-01-1 365.1 “ammonium molybdate and antimony 
potassium tartrate react in an acid medium 
with dilute solutions of phosphorus to form 
an antimony-phospho-molybdate complex. 
This complex is reduced to an intensely 
blue-colored complex by ascorbic acid. The 
color is proportional to the phosphorus 
concentration.”*** 

Total  
phosphorus 

10-115-01-4 I 365.3 Persulfate digestion, then same as for ortho-
phosphate above 

Plant tissue 
digestion 

n/a 3050b A representative 1-2 gram (wet weight) or 1 
gram (dry weight) sample is digested with 
repeated additions of nitric acid (HNO3) and 
hydrogen peroxide (H2O2). The resultant 
digestate is reduced in volume while 
heating and then diluted to a final volume of 
100 mL. 
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*O’Dell, J.W., 1993.  Method 350.1: The determination of ammonia nitrogen by semi-
automated colorimetry.  Available at 
http://www.epa.gov/waterscience/methods/method/files/350_1.pdf  
Accessed 02/11/10 
 

**Wendt, Karin, 2000. QuikChem
® 

Method 10-107-04-1-A: DETERMINATION OF 
NITRATE/NITRITE IN SURFACE AND WASTEWATERS BY FLOW INJECTION 
ANALYSIS (LOW FLOW METHOD).  Available at 
http://swroc.cfans.umn.edu/soilandwater/lab/sop/nitrate_water.pdf  
Accessed 02/11/10 
 
*** Extract from manual:  
U. S. Environmental Protection Agency. 1983.  

Phosphorus, All Forms. Method 365.1 (Colorimetric, Automated, Ascorbic Acid). 
pp.365-1.1 -- 365-1.7. In Methods for Chemical Analysis of Water and Wastes, EPA-
600/ 4-79-020. U.S.E.P.A., Cincinnati, Ohio, USA.  
Available at:  http://www.uga.edu/sisbl/epa-po4.html Accessed 02/11/10 
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Appendix 3: Sample SAS Code 
 
title 'Jennifer Brundage'; 
title2 'Goat veg data repeated measures ANOVA grazed v ungrazed August 10, 2009'; 
DM 'log; clear; out; clear;'; 
options ls=75 ps=60 pageno=1; 
data veg; 
input plot block count height trt$ date; 
datalines; 
1 1 41.5 3.28 U 20081015 
2 1 35.5 3.32 G 20081015 
3 2 32.5 3.355 U 20081015 
4 2 10.25 1.16 G 20081015 
5 3 5 0.925 G 20081015 
6 3 20.25 3.32 U 20081015 
7 4 26 3.715 U 20081015 
8 4 24.75 3.43 G 20081015 
1 1 45 3.41 U 20090701 
2 1 35.5 2.29 G 20090701 
3 2 48.25 3.5 U 20090701 
4 2 16 0.91 G 20090701 
5 3 13 0.765 G 20090701 
6 3 36 3.7 U 20090701 
7 4 33.5 3.87 U 20090701 
8 4 9.5 1.6933 G 20090701 
1 1 20.75 0.795 U 20090501 
2 1 53.25 0.99 G 20090501 
3 2 42.75 1.14 U 20090501 
4 2 48.5 1.28 G 20090501 
5 3 44.25 1.28 G 20090501 
6 3 37.25 1.37 U 20090501 
7 4 28.25 1.465 U 20090501 
8 4 24 1.39 G 20090501 
 
data october08; 
input plot block count height trt$ date; 
datalines; 
1 1 41.5 3.28 U 20081015 
2 1 35.5 3.32 G 20081015 
3 2 32.5 3.355 U 20081015 
4 2 10.25 1.16 G 20081015 
5 3 5 0.925 G 20081015 
6 3 20.25 3.32 U 20081015 
7 4 26 3.715 U 20081015 
8 4 24.75 3.43 G 20081015 
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proc sort data=veg; 
by plot date; 
run; 
 
proc print data=veg; 
run; 
 
proc mixed data=veg; 
class plot block trt date; 
model height=trt|date /ddfm=kr outp=resids; 
random block; 
repeated date / subject=plot(block trt) type=CS; 
lsmeans trt date trt*date/ adjust=tukey; 
run; 
 
proc plot data=resids vpercent=50; 
plot resid*pred/vref=0; 
plot pred*trt; 
plot resid*trt; 
run; 
 
Proc univariate data=resids plot normal; 
var resid; 
run; 
 
proc mixed data=veg; 
class plot block trt date; 
model count=trt|date /ddfm=kr outp=resids; 
random block; 
repeated date / subject=plot(block trt) type=CS; 
lsmeans trt date trt*date/ adjust=tukey; 
run; 
quit; 
/*Tested different covariance structures for each repeated measures ANOVA and chose the 
one with the best fit statistics balanced against having not too many covariance parameter 
estimates, which decreases power*/ 
 
proc plot data=resids vpercent=50; 
plot resid*pred/vref=0; 
plot pred*trt; 
plot resid*trt; 
run; 
 
Proc univariate data=resids plot normal; 
var resid; 
run; 
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/*significant interaction between trt*time for both counts and heights, so used a straight 
ANOVA grazed v. ungrazed at 
sampling date*/ 
 
proc mixed data=october08; 
class block trt; 
model count=trt /ddfm=kr outp=resids; 
random block; 
lsmeans trt; 
run; 
 
proc plot data=resids vpercent=50; 
plot resid*pred/vref=0; 
plot pred*trt; 
plot resid*trt; 
run; 
 
Proc univariate data=resids plot normal; 
var resid; 
run; 
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Appendix 4: List of Plant Species Encountered 
 

 
Scientific Name Common Name 

Acer rubrum red maple 

Alisma plantago-aquatica common water-plantain 

Alisma subcordada 
American water 
plantain 

Ascelipias incarnata swamp milkweed 

Aster sp.  

Aster vimineus small white aster 

Baptisia tinctoria wild indigo 

Bidens sp. beggarticks 

Bohemeria cylindrica false nettle 

Carex sp. sedge sp. 

Cephalanthus occidentalis buttonbush 

Cirsium sp. thislte 

Cyperaceae sp.  

Cyperus odoratus fragrant flatsedge 

Eleocharis sp. spikerush 

Epilobium coloratum purpleleaf willowherb 

Epilobium glandulosum fringed willowherb 

Eupatorium sp. boneset 

Fragaria indica indian strawberry 

Fraxinus pennsylvanica green ash 

Galium trifidum three-petal bedstraw 

Gallium sp. bedstraw 

Glechoma sp. ground ivy 

Juncus effusus soft rush 

Lamium purpureum red deadnettle 

Leersia oryzoides rice cut-grass 

Liquidambar styraciflua sweetgum 

Lonicera japonica Japanese honeysuckle 

Lonicera tatarica bush honeysuckle 

Ludwigia palustris marsh seedbox 

Mikania scandens climbing hempvine 

Mimulus ringens monkeyflower 

Morus sp. mulberry 

Murdannia keisek wartremoving herb 

Nastertium microphyllum onerow yellowcress 

Parthenocissus quinquefolia Virginia creeper 

Penthorom sp. stonecrop 

Phragmites australis common reed 

Phytolacca americana American pokeweed 

Pilea pumila clearweed 

Polygonum hydropiperoides swamp smartweed 

Polygonum perfoliatum mile-a-minute weed 

Polygonum punctatum dotted smartweed 
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Polygonum persicaria lady's thumb 

Quercus sp. oak 

Ranunculus sceleratus cursed buttercup 

Ranunculus sp. buttercup 

Rorippa islandica marsh yellow cress 

Rosa multiflora multiflora rose 

Rumex sp. dock 

Sambucus canadensis 
American black 
elderberry 

Solanum chacoense chaco potato 

Sonchus sp. sow thistle 

Tax officionalis dandelion 

Taxodium distichum bald cypress 

Toxicodendron radicans poison ivy 

Typha latifolia broad-leaved cattail 

Verbena hastata blue vervain 
Viburnum dentatum a.k.a. 
recognitum southern arrowwood 

Viburnum sp. Viburnum 

Vitis sp. grape 

Waldsteinia fragarioides barren strawberry 
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