NEAR-OPTIMAL PARAMETERS FOR TIKHONOV AND OTHER
REGULARIZATION METHODS

DIANNE P. O'LEARY

Abstract. Choosing the regularization parameter for an ill-posed problem is an art based on
good heuristics and prior knowledge of the noise in the observations. In this work we propose choosing
the parameter, without a priori information, by approximately minimizing the distance between the
true solution to the discrete problem and the family of regularized solutions. We demonstrate the
usefulness of this approach for Tikhonov regularization and for an alternate family of solutions.
Further, we prove convergence of the regularization parameter to zero as the standard deviation of
the noise goes to zero. We also prove that the alternate family produces solutions closer to the true
solution than the Tikhonov family when the noise is small enough.

Key words. ill-posed problems, regularization, Tikhonov

AMS subject classifications. 65R30, 65F20

Running Title: Near-Optimal Regularization Parameters

1. Introduction. Linear, discrete ill-posed problems of the form

\[\min_x \| Ax - b \|_2, \quad \text{or equivalently,} \quad A^*Ax = A^*b \]

arise, for example, from the discretization of first-kind Fredholm integral equations
and occur in a variety of applications. We shall assume

1. The full-rank matrix \(A \) is \(m \times n \), with \(m \geq n \).
2. \(A \) is ill-conditioned with no significant gap in the singular value spectrum. (A
gap would make the problem somewhat easier). The problem is normalized
so that the largest singular value is \(1 \).
3. The right-hand side \(b \) consists of true data plus random noise: \(b = b_0 + e \) where
the components of \(e \) are independent with mean 0 and standard deviation \(s \).
4. The discretization error caused by making a finite dimensional approximation
to the continuous operator is much smaller than the noise.
5. The system satisfies the discrete Picard condition, which we will define in
Section 2 after introducing some notation.

The noise in the measurements, in combination with the ill-conditioning of \(A \),
means that the exact solution of (1.1) has little relationship to the noise-free solution
and is worthless. Instead, we use a regularization method to determine a solution
that approximates the noise-free solution. Regularization methods replace the original
operator by a better-conditioned but related one in order to diminish the effects of
noise in the data and produce a regularized solution to the original problem. In this
work we first consider Tikhonov regularization, in which the problem (1.1) is replaced by

\[\min_x (\| Ax - b \|_2^2 + \lambda \| Lx \|_2^2), \quad \text{or equivalently,} \quad (A^*A + \lambda L^*L)x = A^*b \]

* This work was completed at the Departement Informatik, ETH Zürich, Switzerland. This work
was also supported in part by the U.S. National Science Foundation under Grant CCR-9732022 and
by the National Institute of Standards and Technology.

†Dept. of Computer Science and Institute for Advanced Computer Studies, University of Maryland,
College Park, MD 20742 (oleary@cs.umd.edu).
where \(L \) is a regularization operator chosen to obtain a solution with desirable properties, such as a small norm \((L = I)\) or a small derivative \((L \text{ a discrete approximation to a derivative operator}) \), and \(\lambda > 0 \) is a scalar parameter.

The central question in Tikhonov regularization is how to choose the parameter \(\lambda \) in order to produce a solution \(x \) close to the true noise-free solution \(x_{\text{true}} \). Hoerl and Kennard [11] showed that on average a smaller error is produced using a nonzero \(\lambda \), and numerous heuristics have been proposed for choice of this parameter. Some of these (e.g., the discrepancy principle [13]) assume that the standard deviation of the noise is known. Others (e.g., generalized cross-validation [6] and the L-curve [8]) work with less knowledge of the noise properties. An interesting recent approach of Rust [16] uses visualization of residual and singular component plots to choose reasonable parameters. Pierce and Rust [14] minimize the lengths of confidence intervals using appropriate parameter choices, and Kilmer and O’Leary [12] discuss choice of parameters when iterative solution methods are used.

In this work, we propose another rule for parameter choice. We go back to first principles: among all solutions in a given family such as Tikhonov, we want the solution that is minimal distance from the the true solution. Others have determined a Tikhonov parameter by minimizing a bound on this distance; Raus [15], Gfrerer [5], and Engl [3] propose minimizing one such bound, while Hanke and Raus [7] propose an alternative. Rather than minimizing a bound, we compute in Section 2 a parameter that approximately minimizes the distance between the true solution to the discretized problem and accomplishes this goal without a priori knowledge of the standard deviation or distribution of the noise in the observations. We discuss convergence of this choice in Section 3. Section 4 contains a similar development for an alternative to Tikhonov regularization. Section 5 discusses some algorithmic issues, and in Section 6 we show the effectiveness of these methods on numerical examples.

2. Choosing the Tikhonov Regularization Parameter.

In order to analyse the problem, we convert to the coordinate system of the singular value decomposition of \(A \). For simplicity of exposition, we assume that the regularization operator \(L \) is the identity matrix. A similar development, using the generalized SVD, could be done for general \(L \) (see, for example, [10, Sec. 2.1.2]), but the resulting function is considerably more complicated to compute and minimize.

Suppose \(A = U \Sigma V^T \), where \(U \) and \(V \) have orthonormal columns and \(\Sigma \) is a matrix of zeroes except for diagonal entries \(\sigma_1 \geq \ldots \geq \sigma_n > 0 \). Exploiting the property that \(\|Uz\| = \|z\| \) and \(\|V^Tz\| = \|z\| \), the problem (1.2) takes the form

\[
\min_z \|\Sigma z - \beta\|^2 + \lambda \|z\|^2,
\]

where \(\beta_k \equiv w_k^T b \) and \(z = V^T x \). Setting the derivative equal to zero, we find that for a fixed value of \(\lambda \), we need to solve the equation

\[
(\Sigma^T \Sigma + \lambda I) z = \Sigma^T \beta
\]

Thus, the Tikhonov solution is

\[
x_{\text{tik}} = \sum_{i=1}^n \frac{\beta_i \sigma_i}{\sigma_i^2 + \lambda} v_i
\]

where \(v_i \) is the \(i \)th column of \(V \).
In contrast, the true solution to the discrete (noise-free) problem is

\[x_{true} = \sum_{i=1}^{n} \frac{\beta_i - \epsilon_i}{\sigma_i} v_i \]

where \(\epsilon_i \equiv v^* e \) represents the noise component.

The goal in regularization is to produce a solution as close as possible to the true solution, so let us (rather naively) try to minimize this distance:

\[\min_{\lambda} \|x_{true} - x_{true}\|^2 \equiv \min_{\lambda} f(\lambda) . \]

Using the singular value representation, we see that

\[f(\lambda) = \sum_{i=1}^{n} \left[\frac{\beta_i \sigma_i}{\sigma_i^2 + \lambda} - \frac{\beta_i - \epsilon_i}{\sigma_i} \right]^2 . \]

Setting the derivative equal to zero yields

\[0 = g(\lambda) \equiv \frac{1}{2} f'(\lambda) = -\sum_{i=1}^{n} \left[\frac{\beta_i \sigma_i}{\sigma_i^2 + \lambda} - \frac{\beta_i - \epsilon_i}{\sigma_i} \right] \left[\frac{\beta_i \sigma_i}{(\sigma_i^2 + \lambda)^2} \right] = \sum_{i=1}^{n} \frac{\beta_i^2 \lambda}{(\sigma_i^2 + \lambda)^3} - \sum_{i=1}^{n} \frac{\beta_i \epsilon_i}{(\sigma_i^2 + \lambda)^2} . \]

Now the first summation in this last expression is computable, but the second is not because the noise values \(\epsilon_i \) are unknown. But there are two interesting properties of the second summation:

- First, the terms for \(i \approx n \) tend to be the largest because the denominators are the smallest.
- Second, the system satisfies the discrete Picard condition, meaning that for large enough values of the discretization parameter \(n \), the sequence of true data values \(\{\beta_i - \epsilon_i\} \) goes to zero faster than the sequence of singular values \(\{\sigma_i\} \). Thus, for terms with \(i \) greater than or equal to some parameter \(k \), \(\epsilon_i \approx \beta_i \).

So, although we cannot compute the function \(g(\lambda) \), we can compute an approximation to it:

\[\hat{g}(\lambda) \equiv \sum_{i=1}^{n} \frac{\beta_i^2 \lambda}{(\sigma_i^2 + \lambda)^3} - \sum_{i=k}^{n} \frac{\beta_i^2}{(\sigma_i^2 + \lambda)^2} - \mathcal{E} \left(\sum_{i=1}^{k-1} \frac{\beta_i \epsilon_i}{(\sigma_i^2 + \lambda)^2} \right) \]

for a suitable index \(k \), depending on the standard deviation \(s \). Finding the zero of this function yields an approximation to the optimal value of \(\lambda \). The last term denotes the expected value of the quantity. Under assumption 3 of Section 1, \(\beta_i \) is some true value plus noise \(\epsilon_i \), so \(\mathcal{E}(\beta_i \epsilon_i) = \mathcal{E}(\epsilon_i^2) = s^2 \), and

\[\hat{g}(\lambda) = \sum_{i=1}^{n} \frac{\beta_i^2 \lambda}{(\sigma_i^2 + \lambda)^3} - \sum_{i=k}^{n} \frac{\beta_i^2}{(\sigma_i^2 + \lambda)^2} - s^2 \sum_{i=1}^{k-1} \frac{1}{(\sigma_i^2 + \lambda)^2} . \]

We call the zero of this function \(\lambda_{hat} \) and the corresponding solution vector \(x_{hat} \).
3. Convergence for the Tikhonov Parameter Choice. We have the following bound for the relative distance between the optimal solution and the computed one:

Theorem 3.1. Let λ_{opt} be the optimal parameter for the Tikhonov family (i.e., the (generally uncomputable) one that produces the solution closest to x_{true}). Then for any value of λ,

$$\frac{\|x_{\text{tik}}(\lambda_{\text{opt}}) - x_{\text{tik}}(\lambda)\|}{\|x_{\text{tik}}(\lambda_{\text{opt}})\|} \leq \frac{|\lambda_{\text{opt}} - \lambda|}{\sigma_n^2 + \lambda}.$$

Proof. The result follows from the computation

$$\|x_{\text{tik}}(\lambda_{\text{opt}}) - x_{\text{tik}}(\lambda)\| = \sum_{i=1}^{n} \left(\frac{\beta_i\sigma_i}{\sigma_i^2 + \lambda_{\text{opt}}} - \frac{\beta_i\sigma_i}{\sigma_i^2 + \lambda} \right)^2 \leq \frac{|\lambda_{\text{opt}} - \lambda|^2}{(\sigma_n^2 + \lambda)^2} \sum_{i=1}^{n} \left(\frac{\beta_i\sigma_i}{\sigma_i^2 + \lambda_{\text{opt}}} \right)^2 \leq \frac{|\lambda_{\text{opt}} - \lambda|^2}{(\sigma_n^2 + \lambda)^2} \|x_{\text{tik}}(\lambda_{\text{opt}})\|^2.$$

Our algorithm for choosing the regularization parameter also behaves well as the size of the observation noise is decreased:

Theorem 3.2. In the limit as the standard deviation s of the noise converges to zero, the solution $x_{\hat{n}}$ produced by our algorithm converges to the correct discrete solution x_{true}.

Proof. As the standard deviation of the noise goes to zero, the value k increases to $n + 1$, and the solution to $\hat{g}(\lambda) = 0$ becomes $\lambda = 0$, as desired. Thus, as the noise goes to zero, our solution converges to the noise free solution.

4. An Alternate Family of Solutions. We have studied how the regularization parameter might be chosen for one family of solutions, the Tikhonov solutions, which take the form

$$x_{\text{tik}} = \sum_{i=1}^{n} \frac{\beta_i\sigma_i}{\sigma_i^2 + \lambda} v_i.$$

A similar algorithm can be found for other solution families, and in this section we consider the family

$$x_{\text{alt}} = \sum_{i=1}^{n} \frac{\beta_i\sigma_i}{\sigma_i^2 + \lambda} v_i.$$

This family was proposed by Franklin [4] for Hermitian positive definite A and is also associated with Lavrentiev [10, p.107], Ekstrom and Rhoads [2] discussed the use of the algorithm for convolution problems symmetrized by reordering, and this method was also considered by Cullum [1].
In his Regularization Tool Package for Matlab [9], Hansen includes a function dsvd that can be used to apply the method to general problems. In this more general context, there is more than one interpretation. The solution x_{alt} satisfies the regularized equation

$$(A + \lambda UV^*)x = b.$$

But it may be more intuitive to interpret the family as a set of filter factors [10, Section 4.2]

$$\frac{\sigma_i}{\sigma_i + \lambda}$$

multiplying the corresponding terms in the least squares solution

$$\sum_{i=1}^{n} \frac{\beta_i}{\sigma_i} v_i.$$

To choose the parameter λ, we mimic the procedure in Section 2: we naively try to minimize the distance between our solution and the true one:

$$\min_{\lambda} \|x_{\text{alt}} - x_{\text{true}}\|^2 \equiv \min_{\lambda} f(\lambda).$$

Using the singular value representation, we see that

$$f(\lambda) = \sum_{i=1}^{n} \left[\frac{\beta_i}{\sigma_i + \lambda} - \frac{\beta_i - \epsilon_i}{\sigma_i} \right]^2.$$

Setting the derivative equal to zero yields

$$0 = g(\lambda) \equiv \frac{1}{2} f'(\lambda) = -\sum_{i=1}^{n} \left[\frac{\beta_i}{\sigma_i + \lambda} - \frac{\beta_i - \epsilon_i}{\sigma_i} \right] \left[\frac{\beta_i}{(\sigma_i + \lambda)^2} \right]$$

$$= \sum_{i=1}^{n} \frac{\beta_i^2}{\sigma_i(\sigma_i + \lambda)^3} - \sum_{i=1}^{n} \frac{\beta_i \epsilon_i}{\sigma_i(\sigma_i + \lambda)^2}.$$

Again, the first summation in this last expression is computable. The second is not, because the observation noise values ϵ_i are unknown, but the terms for $i \approx n$ dominate, and for these $\epsilon_i \approx \beta_i$, so our approximate function becomes

$$\hat{g}(\lambda) \equiv \sum_{i=1}^{n} \frac{\beta_i^2}{\sigma_i(\sigma_i + \lambda)^3} - \sum_{i=k}^{n} \frac{\beta_i^2}{\sigma_i(\sigma_i + \lambda)^2} - \mathcal{E} \left(\sum_{i=1}^{k-1} \frac{\beta_i \epsilon_i}{\sigma_i(\sigma_i + \lambda)^2} \right)$$

for a suitable index k that depends on the standard deviation of the noise. Finding the zero of the function

$$(4.1) \quad \hat{g}(\lambda) \equiv \sum_{i=1}^{n} \frac{\beta_i^2}{\sigma_i(\sigma_i + \lambda)^3} - \sum_{i=k}^{n} \frac{\beta_i^2}{\sigma_i(\sigma_i + \lambda)^2} - \mathcal{E} \left(\sum_{i=1}^{k-1} \frac{\beta_i \epsilon_i}{\sigma_i(\sigma_i + \lambda)^2} \right)$$

yields an approximation to the optimal value of λ.

5
We have a bound for the relative distance between the optimal solution and the computed one similar to the Tikhonov case:

Theorem 4.1. Let λ_{alt} be the optimal parameter for the alternate family (i.e., the one that produces the solution closest to x_{true}). Then for any value of λ,

$$\frac{\|x_{alt}(\lambda_{alt}) - x_{alt}(\lambda)\|}{\|x_{alt}(\lambda_{alt})\|} \leq \frac{\lambda_{alt} - \lambda}{\sigma^2 + \lambda}.$$

Proof. The result follows from a computation similar to that in the proof of Theorem 3.1. □

Again, we can show that the solution converges to the true solution as the observation noise goes to zero.

Theorem 4.2. In the limit as the standard deviation s of the noise converges to zero, the solution x_{hat} produced by our algorithm converges to x_{true}.

Proof. As above. □

Further, we have a comparison result for the two solution families x_{alt} and x_{tik}:

Theorem 4.3. For a particular matrix A and vector b, let λ_{alt} be the optimal parameter for the solution family of Section 4, and λ_{tik} be the optimal parameter for the Tikhonov family of Section 2. Then when the noise is small enough, the optimal solution $x_{alt}(\lambda_{alt})$ is closer to x_{true} than $x_{tik}(\lambda_{tik})$ is.

Proof. Choose a fixed value of λ for the Tikhonov solution and the alternate solution, and consider the ith term in the summations in the expression

$$\|x_{tik}(\lambda) - x_{true}\|^2 - \|x_{alt}(\lambda) - x_{true}\|^2.$$

This term is

$$\left(\frac{\beta \sigma_i}{\sigma_i^2 + \lambda} - \frac{\beta - \epsilon_i}{\sigma_i} \right)^2 - \left(\frac{\beta}{\sigma_i^2 + \lambda} - \frac{\beta - \epsilon_i}{\sigma_i} \right)^2$$

$$= \frac{(\sigma_i - 1)\lambda}{\sigma_i(\sigma_i^2 + \lambda)(\sigma_i + \lambda)} \left(-\frac{\beta^2 2\lambda + \sigma_i + \sigma_i^2}{(\sigma_i^2 + \lambda)(\sigma_i + \lambda)} + 2\epsilon_i \beta \right).$$

The first factor is negative for $\sigma_i < 1$, and the second is negative for ϵ_i small enough. Thus the product is positive, and the sum of the products is, too, indicating that the alternate solution is closer to the true solution for each fixed value of λ. Therefore,

$$\|x_{alt}(\lambda_{alt}) - x_{true}\| \leq \|x_{alt}(\lambda_{tik}) - x_{true}\| < \|x_{tik}(\lambda_{tik}) - x_{true}\|,$$

where the first inequality follows from the optimality of λ_{alt} for its solution family, and the second follows from the derivation above. □

5. Algorithmic Notes. The standard deviation of the noise is not assumed to be known so we estimate it using the last max$(m - n, 10)$ components of the right-hand side. The index k can be chosen as the smallest index $n - 9, n - 14, \ldots$ for which a T-test with 0.05 significance level said that the mean of the sequence β_k, \ldots, β_n was zero (but chosen to be n if $|b_n| > 3.5\sigma$). If the mean of the noise-free sequence is likely to be near zero, then this test would not be appropriate, but many alternatives are available. One would be to use the Mann-Whitney Test, a non-parametric test to determine whether two independent groups of sampled data are taken from the same underlying distribution, without making assumptions on the distribution.
Table 6.1

Relative Errors in Experiments on Diagonal Matrix of Size 200

<table>
<thead>
<tr>
<th>standard dev. of noise</th>
<th>optimal Tikhonov</th>
<th>computed optimal Tikhonov</th>
<th>optimal alternate Tikhonov</th>
<th>computed alternate Tikhonov</th>
<th>GCV Hankе-Raus Tikhонов</th>
<th>Hanе-Raus Tikhонов</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0e-03</td>
<td>6.26e-01</td>
<td>7.04e-01</td>
<td>6.59e-01</td>
<td>1.11e+00</td>
<td>8.98e-01</td>
<td>8.20e-01</td>
</tr>
<tr>
<td>1.0e-04</td>
<td>4.34e-01</td>
<td>4.70e-01</td>
<td>4.63e-01</td>
<td>5.10e-01</td>
<td>8.34e-01</td>
<td>6.86e-01</td>
</tr>
<tr>
<td>1.0e-05</td>
<td>1.72e-01</td>
<td>2.06e-01</td>
<td>1.76e-01</td>
<td>1.92e-01</td>
<td>7.71e-01</td>
<td>5.04e-01</td>
</tr>
<tr>
<td>1.0e-06</td>
<td>1.23e-02</td>
<td>2.70e-02</td>
<td>1.24e-02</td>
<td>2.10e-02</td>
<td>6.67e-01</td>
<td>4.40e-01</td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0e-03</td>
<td>6.17e-01</td>
<td>6.43e-01</td>
<td>6.62e-01</td>
<td>6.71e-01</td>
<td>8.99e-01</td>
<td>8.21e-01</td>
</tr>
<tr>
<td>1.0e-04</td>
<td>4.35e-01</td>
<td>4.56e-01</td>
<td>4.64e-01</td>
<td>4.78e-01</td>
<td>8.36e-01</td>
<td>6.90e-01</td>
</tr>
<tr>
<td>1.0e-05</td>
<td>1.71e-01</td>
<td>2.05e-01</td>
<td>1.75e-01</td>
<td>1.92e-01</td>
<td>7.74e-01</td>
<td>5.02e-01</td>
</tr>
<tr>
<td>1.0e-06</td>
<td>2.23e-02</td>
<td>4.50e-02</td>
<td>2.24e-02</td>
<td>3.50e-02</td>
<td>7.28e-01</td>
<td>4.59e-01</td>
</tr>
<tr>
<td>Maximum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0e-03</td>
<td>6.46e-01</td>
<td>4.95e+00</td>
<td>6.88e-01</td>
<td>7.34e+00</td>
<td>9.27e-01</td>
<td>8.49e-01</td>
</tr>
<tr>
<td>1.0e-04</td>
<td>4.81e-01</td>
<td>9.16e-01</td>
<td>5.16e-01</td>
<td>9.93e-01</td>
<td>8.60e-01</td>
<td>7.49e-01</td>
</tr>
<tr>
<td>1.0e-05</td>
<td>2.36e-01</td>
<td>2.55e-01</td>
<td>2.40e-01</td>
<td>2.52e-01</td>
<td>8.00e-01</td>
<td>5.99e-01</td>
</tr>
<tr>
<td>1.0e-06</td>
<td>3.28e-02</td>
<td>1.58e-01</td>
<td>3.28e-02</td>
<td>1.39e-01</td>
<td>7.51e-01</td>
<td>4.71e-01</td>
</tr>
</tbody>
</table>

A root of either function (2.2) or (4.1) can be found using standard algorithms (e.g., \texttt{fzero} in Matlab). Since \(\hat{g}(0) < 0\) for both functions, we can find a lower bound on the root by searching \(s, s/10, s/100, \ldots\) for a negative function value. The simple strategy of searching \(100s, 1000s, \ldots\) has proved effective in finding a value for which \(\hat{g}\) is positive, thus providing the root finder with an initial interval containing the root.

6. Performance of the Algorithms. The ideas of the previous sections were tested using two sets of test problems. In the first, the \(200 \times 200\) matrix was diagonal, with entries ranging between 1 and \(10^{-5}\), evenly spaced on a log scale. The true solution was assumed to be the vector with elements evenly spaced between 1 and 0,9, and 100 sets of random noise were generated for the right-hand side. We generated solutions using the Tikhonov and the alternate method and calculated the distance between these computed solutions and the exact noise-free solution, tabulating the relative \(x\)-error \(\|x - x_{true}\|/\|x_{true}\|\). Then we calculated the optimal Tikhonov and alternate solutions, the ones corresponding to the parameter values that minimize the distance to the noise-free solution. These optimal solutions, of course, cannot be computed in practical situations since the noise-free solution is unknown, but the results tell us how far we are from optimal. We also compared our results with two other methods. We computed the the Tikhonov parameter by minimizing the generalized cross-validation (GCV) function using Matlab’s \texttt{fmin} with tolerance \(1.0e-07\). In some sense this is an unfair comparison, since GCV aims to minimize the residual norm, not the \(x\)-error. We also compare with the results of the Tikhonov algorithm of Hanke and Raus [7], which chooses the parameter by minimizing

\[
f(\lambda) = \sqrt{1 + 1/\lambda} \sqrt{r_1^T(\lambda) r_0(\lambda)},
\]

where

\[
x_0 = (A^*A + \lambda I)^{-1} A^* b,
\]

\[
\lambda^* = \arg\min_{\lambda \geq 0} f(\lambda).
\]
The relative errors in the solutions computed for the diagonal matrix problem with standard deviation of the observation noise equal to 1.0e-03. The results are summarized in Table 6.1. Several trends are apparent. First, the average relative x-errors in the solutions computed by our algorithm are within a factor of 2 of the average relative x-errors for the optimal parameter values. Second, for large noise in the observations, the Tikhonov solution is on average closer to the true solution, but for small noise the alternate algorithm does somewhat better than Tikhonov. Third, the Tikhonov solutions computed by our algorithm are on average better than the generalized cross validation Tikhonov solutions and the Hanke-Raus solutions over the full range of noise values, and for small noise, the alternate solutions are better, too.

The trends in the medians are similar to those of the averages, but the maximum relative errors show that only in the small number of cases in which the standard deviation of the error fails to be computed accurately, are the GCV and Hanke-Raus solutions much better than our solutions.

Histograms of the relative errors are presented in Figures 6.1 and 6.2.

The second experiment used the inverse helioseismatic data of Per Christian Hansen (helio.mat, taken from the Regularization Tool Package homepage [9]). The problem is an integral equation of the first kind with matrix modeling internal rotation of the sun as a function of radius. The matrix A of size 212×100 and the true solution x were obtained from there, and random observation noise was added as before. The right-hand side values had a mean close to zero, so a rather prim-

\[
r_0(\lambda) = b - Ax_0, \\
x_1 = (A^*A + \lambda I)^{-1}A^*r_0 + x_0, \\
r_1(\lambda) = b - Ax_1.
\]
An iterative scheme was used to determine k; it was determined so that the values b_j for $j > k$ were not larger than 3.5 times the estimated standard deviation. The results (Table 6.2) show that the median relative x-errors are at most 1.1 times as large as the optimal and at most 0.8 times the GCV values or the Hanke-Raus values. The trends are similar to the diagonal matrix problem; when the value of k is estimated well, the new algorithms perform much better than GCV and Hanke-Raus. But since the k estimation problem is more difficult with this right-hand side, the mean and maximum values of the relative errors are not as well behaved.

Still, the histograms of the relative errors presented in Figures 6.3 and 6.4 show that the new algorithms can be expected to produce much better results than GCV or Hanke-Raus when the errors are small enough that k is easily estimated.

7. Conclusions. We have proposed a method for choosing a regularization parameter that approximately minimizes the Euclidean distance between the computed solution and the noise free solution, and we have demonstrated by numerical experiments that it produces solutions quite close to optimal.

We have also proven that an alternative family of solutions, studied by Franklin and others, is closer to the true discrete solution than the Tikhonov family when the noise level is small.

We have demonstrated the use of these methods of parameter choice when the singular value decomposition of the matrix A can be explicitly computed, but the methods could also be used on large problems, in conjunction with iterative methods, in a way analogous to the parameter choice methods in [12].

8. Acknowledgements. I am grateful for the hospitality provided by Professor Walter Gander and the Departement Informatik, ETH Zürich, Switzerland, which
Fig. 6.3. The Relative Errors in the Solutions Computed for the Helioseismatic Matrix Problem with Standard Deviation of the Observation Noise Equal to 1.0×10^{-4}.

Fig. 6.4. The Relative Errors in the Solutions Computed for the Helioseismatic Matrix Problem with Standard Deviation of the Observation Noise Equal to 1.0×10^{-6}.
Table 6.1
Relative Errors in Experiments on Helioseismatic Matrix of Size 212 × 100

<table>
<thead>
<tr>
<th>Standard Dev. of Noise</th>
<th>Optimal Tikhonov</th>
<th>Optimal Alternate</th>
<th>Computed Tikhonov</th>
<th>Computed Alternate</th>
<th>GCV</th>
<th>Hanke-Raus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Values:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0e-04</td>
<td>4.58e-01</td>
<td>4.91e-01</td>
<td>5.08e+02</td>
<td>6.60e-01</td>
<td>5.88e-01</td>
<td></td>
</tr>
<tr>
<td>1.0e-06</td>
<td>3.54e-01</td>
<td>3.71e-01</td>
<td>3.35e+00</td>
<td>5.71e-01</td>
<td>5.71e-01</td>
<td></td>
</tr>
<tr>
<td>Median Values:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0e-04</td>
<td>4.58e-01</td>
<td>4.93e-01</td>
<td>4.97e-01</td>
<td>6.61e-01</td>
<td>5.88e-01</td>
<td></td>
</tr>
<tr>
<td>1.0e-06</td>
<td>3.54e-01</td>
<td>3.73e-01</td>
<td>3.75e-01</td>
<td>5.71e-01</td>
<td>5.71e-01</td>
<td></td>
</tr>
<tr>
<td>Max Values:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0e-04</td>
<td>4.95e-01</td>
<td>4.55e+04</td>
<td>5.18e-01</td>
<td>4.01e+04</td>
<td>6.68e-01</td>
<td>5.88e-01</td>
</tr>
<tr>
<td>1.0e-06</td>
<td>3.76e-01</td>
<td>3.10e+02</td>
<td>3.95e-01</td>
<td>2.96e+02</td>
<td>5.74e-01</td>
<td>5.74e-01</td>
</tr>
</tbody>
</table>

enabled this work to be completed.

The manuscript benefited greatly from helpful comments by Misha E. Kilmer,
Per Christian Hansen, and Bert W. Rust.

REFERENCES

[1] J. Cullum, Ill-posed deconvolutions: Regularization and singular value decompositions, in
pp. 29–35.
[5] H. Gfrerer, An a posteriori parameter choice for ordinary and iterated Tikhonov regularization
of ill-posed problems leading to optimal convergence rates, Math. Comp., 49 (1987),
a good ridge parameter, Technometrics, 21 (1979), pp. 215–223.
[7] M. Hanke and T. Rauss, A general heuristic for choosing the regularization parameter in
1998.
ill-posed problems, Tech. Report CS-TR-3937, Computer Science Department, University
of Maryland, October 1998.
[7].