
ABSTRACT

Title of dissertation: Combinatorial Problems in Online Advertising

Azarakhsh Malekian, Doctor of Philosophy, 2009

Dissertation directed by: Professor Samir Khuller
Department of Computer Science

Electronic commerce or eCommerce refers to the process of buying and selling of
goods and services over the Internet. In fact, the Internet has completely transformed
traditional media based advertising so much so that billions of dollars of advertising
revenue is now flowing to search companies such as Microsoft, Yahoo! and Google.
In addition, the new advertising landscape has opened up the advertising industry
to all players, big and small. However, this transformation has led to a host of new
problems faced by the search companies as they make decisions about how much to
charge for advertisements, whose ads to display to users, and how to maximize their
revenue. In this thesis we focus on an entire suite of problems motivated by the
central question of “Which advertisement to display to which user?”.

Targeted advertisement happens when a user enters a relevant search query. The
ads are usually displayed on the sides of the search result page. Internet advertising
also takes place by displaying ads on the side of webpages with relevant content. While
large advertisers (e.g. Coca Cola) pursue brand recognition by advertisement, small
advertisers are happy with instant revenue as a result of a user following their ad and
performing a desired action (e.g. making a purchase). Therefore, small advertisers
are often happy to get any ad slot related to their ad while large advertisers prefer
contracts that will guarantee that their ads will be delivered to enough number of
desired users. We first focus on two problems that come up in the context of small
advertisers.

The first problem we consider deals with the allocation of ads to slots considering
the fact that users enter search queries over a period of time, and as a result the slots
become available gradually. We use a greedy method for allocation and show that

the online ad allocation problem with a fixed distribution of queries over time can be
modeled as maximizing a continuous non-decreasing submodular sequence function
for which we can guarantee a solution with a factor of at least (1−1/e) of the optimal.

The second problem we consider is query rewriting problem in the context of
keyword advertisement. This problem can be posed as a family of graph covering
problems to maximize profit. We obtain constant-factor approximation algorithms
for these covering problems under two sets of constraints and a realistic notion of
ad benefit. We perform experiments on real data and show that our algorithms are
capable of outperforming a competitive baseline algorithm in terms of the benefit due
to rewrites.

We next consider two problems related to premium customers, who need guaran-
teed delivery of a large number of ads for the purpose of brand recognition and would
require signing a contract. In this context, we consider the allocation problem with
the objective of maximizing either revenue or fairness.

The problems considered in this thesis address just a few of the current challenges
in e-Commerce and Internet Advertising. There are many interesting new problems
arising in this field as the technology evolves and online-connectivity through inter-
active media and the internet become ubiquitous. We believe that this is one of the
areas that will continue to receive greater attention by researchers in the near future.

Combinatorial Problems in Online Advertising

by

Azarakhsh Malekian

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2009

Advisory Committee:
Professor Samir Khuller, Chair/Advisor
Professor Lawrence Ausubel
Professor David Mount
Professor Neil Spring
Professor Aravind Srinivasan

c© Copyright by
Azarakhsh Malekian

2009

Dedication

This thesis is dedicated to my parents Mahindokht and Abdolali. I would not

have been able to accomplish this without their endless love and earnest support. I

owe them for all of my achievements

ii

Acknowledgments

This thesis could not have been accomplished without the assistance of many

teachers, colleagues and friends.

I would first like to thank my advisor, Professor Samir Khuller for his guidance

and support throughout my graduate career and during the completion of this thesis.

Samir let me have the freedom to pursue my interests and work on problems that were

more appealing to me in algorithm design. At the same time, he helped me clarify

my ideas and patiently advised me on how to improve my skills. I am also extremely

grateful to the members of my committee, Professor Lawrence Ausubel, Professor

David Mount, Professor Neil Spring and Professor Aravind Srinivasan for taking the

time to be in my thesis committee and for giving me very useful comments. I am in

debt to all of them for their advices during the writing of my thesis and throughout

the years I was in graduate school.

I was lucky to be a part of a friendly department. I should thank all my friends,

staff and officemates for providing such a nice atmosphere. Special thanks to my

friend and collaborator Saeed with whom we worked on a lot of problems and learned

a lot. Also I should thank my colleagues Julian Mestre, Yoo Ah kim and Mohammad

Toossi for sharing their insightful ideas and Co-authoring papers with me. I should

also thank Professor Amol Deshpande for sharing his ideas and co-authoring a paper

iii

with me. I owe my gratitude to kind staff of computer science department, specially

Jennifer Story and Fatima Bangura for all their help and support.

During my years at UMD, I visited Yahoo! and Microsoft Research. These visits

opened up my mind into new fascinating problems and gave me the opportunity

to collaborate with many brilliant researchers. Special thanks to Ravi Kumar and

Mohammad Mahdian, Grant Want and Chi Chao Chang and Erik Vee from Yahoo!

and Adam Kalai, Christian Borgs and Jennifer Chayes from Microsoft Research. I

also should thank Professor Jason Hartline for all his useful advices.

Studying all these years in graduate school, far from home, would not have been

possible without the support and sympathy of all my friends. Many thanks to all my

dear friends specially my dear Baharak.

The work in this dissertation was done under the support of the NSF grant CCF-

0430650 which I am duly grateful.

Before coming to University of Maryland, I spent my undergrad at Sharif Univer-

sity of Technology. I would like to thank Professor Mohammad Ghodsi who intro-

duced me theoretical computer science and helped me build up my background.

Last but not the least, my dear parents and family receive my most heartful

gratitude for their endless love. I want to thank my sister Azadeh and my brother

Roozbeh for their support and love all these years.

iv

This thesis is dedicated to my parents Mahindokht and Abdolali whom I cannot

think of a proper way of thanking them compared to all their endless support and

love. I owe them for all of my achievements.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Problem Formulation . 8

1.1.1 Online Ad Allocation Problem 8
1.1.2 Query Rewriting Problem . 9
1.1.3 Online Ad allocation for Display advertisement 12
1.1.4 Fair Contract Allocation: . 13

1.2 Roadmap . 16

2 Background and Related Work 18
2.1 Submodular Functions . 18
2.2 Online Allocation Problem . 19
2.3 Query Rewriting . 20
2.4 Display Advertisement . 20
2.5 Fair Allocation . 21
2.6 Online Resource Allocation . 21

3 Non-guaranteed Delivery: Online Ad Allocation Problem 24
3.1 Sequence Submodularity . 25
3.2 Definitions . 26

3.2.1 Submodular Non-decreasing Sequence Functions 29
3.3 Greedy Heuristic (Discrete) . 29
3.4 Greedy Heuristic (Continuous) . 32
3.5 Online ad allocation problem . 36

4 Query Rewriting for Keyword-based Advertising 40
4.1 Why rewrite queries for keyword advertising? 40
4.2 Formulation . 41
4.3 Algorithms for cardinality version . 44

4.3.1 Warmup: Single query case 44
4.3.2 The general case . 46
4.3.3 Hardness results for Cardinality Version 48
4.3.4 Tight examples for cardinality version 49

vi

4.4 Algorithm for the weighted version 51
4.5 Experimental results . 52

4.5.1 Editorial relevance . 53
4.5.2 d-benefit . 54

4.5.2.1 Comparing Single-Query-Greedy and Baseline 54

5 Guaranteed Delivery Advertisement: Fair Allocation With a Compact Plan 59
5.1 Fair Allocation with a Compact Plan 59

5.1.1 Fair allocation with L1 penalty 60
5.1.2 Reconstruction for L1 . 62

5.1.2.1 Computing the plan 64
5.1.2.2 Reconstruction using the plan 67

5.1.3 Effect of supply scaling . 69
5.1.4 Convex penalty functions . 70
5.1.5 A greedy solution for L1 allocation with soft demand 73

5.1.5.1 Reconstructing the greedy solution 74

6 Guaranteed Delivery Advertisement: Online Ad Allocation 75
6.1 Online Setting . 75

6.1.1 Definitions and Settings . 76
6.1.2 Online Algorithm . 77

6.1.2.1 Lower Bounds . 78
6.1.2.2 The online Algorithm 79

6.1.3 Simulation . 84

7 Conclusion and Future Work 88
7.1 Future Work . 91

Bibliography 94

vii

List of Tables

4.3 d-benefit: Percentage gain of Algorithm Single-Query-Greedy over
Algorithm Baseline broken down by |W |. 56

4.1 Relevance comparison: Algorithm Baseline vs. Algorithm Single-
Query Greedy . 58

4.2 d-benefit: Percentage gain of Algorithm Single-Query-Greedy over
Algorithm Baseline. 58

6.1 Results for the first dataset . 85

6.2 Results for the second dataset . 85

6.3 Results for the third dataset . 85

6.4 Results for the fourth dataset . 86

6.5 Parameters of the datasets . 86

6.6 Performance of the Integer Program solution 87

viii

List of Figures

1.1 Traditional methods for advertising 2

1.2 Advertisement for the search query “flower” 4

1.3 Three layer graph containing queries, rewrites and ads 11

1.4 It is not feasible to give each contract its completely representative
allocation . 15

1.5 Organization . 17

4.1 three layer graph containing queries, rewrites and ads 42

4.2 Tight example for the general cardinality case 50

5.1 The network construction, with (capacity, cost) on the edges. 61

5.2 Tight example for Theorem 7. 70

5.3 The network construction, with (capacity, cost) on the edges for L2
2. . 71

6.1 ORA . 79

ix

Chapter 1
Introduction

Advertising is a key factor in marketing; since it benefits both sellers and buyers.
From the seller’s point of view, advertising is a means of introducing new products
to the world and describing their new features and also what makes them unique
compared to other products available in the market. At the same time, it can help
buyers decide which products match their needs the best, since they learn about more
options to choose from. For example, consider a company that has an opening for a
position. By advertising the position, the company gets more interested applicants
and can possibly find a better match for its position. Furthermore, advertising helps
applicants not to miss an opportunity simply by being unaware of all relevant open
positions. Advertising is usually done many forms of media. It can be in the form of
displaying advertisement as a wall painting, a TV commercial, a newspaper ad, etc.
(Figure 1.1).

In the past few years, advertising over the Internet has overtaken many of the
“traditional” media outlets because of the shift toward people’s usage of the Internet
for entertainment, communication, and as the main resource for information. In
addition, the new features of advertising over the Internet make it more and more
desirable for advertisers. First of all, Internet advertising lets the advertisers show
their ad to targeted users of a random sample of the population. One way of targeted
advertising instead, is by showing the ad only to a subset of users who are searching
for a specific keyword. For example a travel agency would rather to show their ad
to a person who is searching for something related to traveling such as plane tickets
and hotels. instead of a random user. Most search engine companies are showing ads
based on search terms we enter into the search engine. Another way is by targeting ads
based on factors such as gender, age, geographic location and other general factors.

Another advantage of Internet advertising is cost. Considering the cost against
the reach of interested audience, it is relatively cheaper than other media. The nature
of the medium allows consumers to research and purchase products and services at
their own convenience. At the same time, it is much easier and cheaper to collect
accurate statistical data on the effectiveness of the advertisement over the audience
and it can help advertisers to find the best way of advertising and best subgroup
of the audience to target. The advertisers can choose different methods for paying
for ads: pay per impression in which an advertiser will be charged when her ad is
shown to a user, pay per click in which an advertiser is charged only when a user

1

Billboard Advertising

Wall Painting

Figure 1.1: Traditional methods for advertising

2

clicks on her ad, or pay per action in which the advertiser is charged only when a
user performs a desired action (e.g., purchases the product). By choosing pay per
click or pay per action, advertisers can quickly measure the effectiveness by counting
the clicks or actions. However such measurements cannot be achieved through mass
media or billboard advertising, where an individual will at best be interested, and
then decide to obtain more information about the product at a later time.

The focus of this dissertation is online targeted advertising, and some of the
optimization problems that Internet advertising companies face. We consider prob-
lems with the main objective of profit maximization for these companies as well as
consumer satisfaction. What makes these problems unique from the combinatorial
perspective is the volume of trades that can happen simultaneously. Furthermore,
the speed of running the actions, the number of participants in each trade and the
anonymity of the participants are other reasons for making the problems distinctive.
Because of these special properties, the usual solutions might not be feasible or even
a good solution anymore.

From the perspective of the Internet advertising companies, such as Google or
Yahoo!, online advertising can be categorized to two main classes:

• Non-Guaranteed Delivery

• Guaranteed Delivery

Non-Guaranteed Delivery is the traditional way of online advertising over the
Internet. In this variant, advertisers ask to show their ad for a slot, for queries
searched by Internet users one by one (query is a set of keywords that a user is
interested in). The main property of this variant is that the allocation and payment
is computed online for each query separately (Figure 1.2).

Various auction formats might be used for doing the allocation and charging the
advertisers. Almost all of them have the following format: Advertisers submit bids
to the auction to win a slot on a search result page. The auction has the property
that larger bids will have a higher chance of getting top slots. Each advertiser is
charged based on the number of clicks by users on their ads and the position of the
slot they get. The bid value submitted by each advertiser defines their valuation for
a single click. Each advertiser can also submit their daily or monthly budget and
ask the search engine to include them in the upcoming auctions for their desired
keyword as long as they are within their budget limit. As the most popular method,
we describe the Generalized Second Price auction, currently used in Google AdWords
and Yahoo! Search Marketing. In this method, the search engine (e.g., Google)
runs a separate auction for each incoming query. This is an internal process and
advertisers submit their keyword, their bid and budget only once to the search engine.

3

Sponsored Links (Advertisements)query =flower

Slots for
query

Figure 1.2: Advertisement for the search query “flower”

4

The search engine assigns a weight to each (advertiser, keyword) pair based on the
expected relevance. The weight is independent of the advertiser’s submitted bid. In
the auction, advertisers are ranked based on the product of their weight and their
bid. Next, each advertiser is charged equal to the minimum bid that she could submit
and still win the same slot.

Another category of online advertising that is more popular for banner adver-
tisement is Guaranteed Delivery Advertisement. In the past, most banner ad-
vertisements were sold through negotiation between advertisers and publishers (web
sites) that could result in inefficient outcomes and higher costs. In recent years,
there has been some effort on automating this process, called Guaranteed Delivery.
Guaranteed Delivery was introduced and implemented in major search engines like
Yahoo! and Google for dealing with banner advertising. In guaranteed delivery, each
advertiser specifies a collection of host web pages (publishers) based on the relevance
to her product. They also specify the desired total number of impressions on these
pages, and a maximum price that they are willing to pay per impression. The system
(search engine) will then select a subset of these advertisers as winners and sign a
contract with them. The search engine maps each winner to a set of impressions on
pages from her desired collection. The distinguishing feature of guaranteed delivery
as opposed to non-guaranteed delivery mechanism is that, the system has to satisfy
a minimum required demand of the winning advertisers (or in another variant, the
system should pay extra penalty as monetary payment in case it can not satisfy all
the winning advertiser’s demand). Such guarantees are essential in markets in which
main purpose of advertising is to develop brand recognition. In addition, the alloca-
tion and payments are query independent and fixed for each contract. The winners
are chosen as the advertisers and queries enter the system.

In this dissertation, we consider two problems from each class. We start by Non-
Guaranteed Delivery. In this class we will consider the following problems:

• Online Ad Allocation Problem

• Query Rewriting Problem

There are different ways for matching advertisers and incoming queries. The main
objective in both problems is to maximize the revenue of the search engine and
increase the relevance of ads to queries. By increasing the relevance of the ads to
queries, in the short term, users will click on relevant ads and generate revenue for
the search engine. In the long term, users will recall that ads were relevant to them
and thus continue to click on them. In both long and short term, this creates revenue
for the publishers and generates leads for the advertisers.

Formally, the problem descriptions are as follows:

5

Online ad Allocation: The first problem that we study in Non-Guaranteed Deliv-
ery is Online Ad Allocation problem. Suppose that for each pair of advertiser
and keyword, we know the expected payment by the advertiser for showing her
ad for that keyword (this can be computed using historical data). Taking into
account the budget limit of each advertiser and also the number of available
impressions for each keyword, how should an Internet company assign adver-
tisements for keywords to maximize their profit? We consider this problem in
a combinatorial setting and give more details on this problem later.

Query Rewriting Problem: Next problem in this category is called the Query
Rewriting Problem. Although advertisers bid on keywords, a relevant ad for a
given query may not necessarily exist among the set of ads that have bid on
that query. Indeed, the set could be empty, even though a relevant ad may
exist. For instance, an ad for the keyword “wedding band” may be appropriate
for the query “engagement ring”. A common mechanism used to improve the
relevance in information retrieval is query rewriting. At a high level, query
rewriting outputs a list of queries (referred to as rewrites) that are related
to a given query. However traditional existing methods for query rewriting
in informational retrieval cannot be applied to keyword advertising because
of system limitations and user and advertiser requirements. We describe the
challenges and problem formulation later on in this chapter. The objective
of this problem is again revenue maximization and increasing the relevance of
queries to the selected ads.

In the context of Guaranteed Delivery we look at the following problems:

• Fair Contract Allocation

• Online Allocation of Display Advertisement

In the second problem, we consider the objective of search engine revenue maximiza-
tion, but this time in the Guaranteed Delivery setting. In the first problem, however,
the main focus is on advertiser satisfaction. As we argued earlier, in the long term,
this increases the profit.

Fair Contract Allocation: In the Guaranteed Delivery setting, advertisers and
users are mediated by a publisher (e.g., an online newspaper, a search engine,
etc.). The advertiser buys a contract for a certain number of impressions (user
visits to the publisher’s page) and declares interest in a subset of user types
called buckets (e.g., “girl, New York”). The goal of the publisher is to sat-
isfy the demands by placing an ad from the advertiser on the web page visited

6

by a user, if the user (i.e., the impression) belongs to the advertiser’s bucket.
Fair contract allocation is the problem of choosing the most balanced allocation
among all the feasible allocations (a feasible allocation meets all the advertiser
imposed constraints). If the publisher only needs to satisfy the contract’s re-
quirement, assigning a sufficient number of impressions to an advertiser as long
as they belong to the advertiser’s bucket is a feasible solution. Unfortunately,
such an assignment can be unfair and unrewarding to the advertiser. To illus-
trate this, consider a girl’s toy store whose poorly specified bucket reads “new
York, females.” If the publisher unintentionally serves up only impressions from
middle-aged women in New York for this advertiser, then the latter is left irate!
(One might blame the advertiser for not specifying the bucket precisely, as say,
“new york, females, young adults”, but in practice, it is never fully possible
for any advertiser to specify the desired buckets to the finest conceivable gran-
ularity.) There is a tacit assumption by the advertisers that the impressions
assigned are as “fair” as possible. In the Fair Contract Allocation problem we
are trying to solve this problem: Given a set of impressions (i.e., the supply) and
contracts (with demands and buckets), how do we find a feasible assignment of
impressions to contracts that is as fair as possible? Answering this question
involves formulating what fairness precisely means in this context. Given the
large number of advertisers (typically, in the hundreds of thousands) and the
astronomical number of impressions (typically, in the hundreds of millions) in
an online setting, we insist on a solution that is efficient, in both time and space,
and that yields insights into the structure of the allocation problem itself. In
particular, we desire an allocation algorithm that is practical and combinatorial
and whose allocation can be stored succinctly, ideally, using space linear in the
number of impressions and contracts as opposed to the naive quadratic storage
solution. Of course, this succinct representation should let us reconstruct the
allocation along every edge in a time-efficient manner.

Online Allocation of Display Advertisements: As we said before, in Guaranteed De-
livery advertisement, advertisers arrive online and each advertiser asks for a
certain number of impression for a fixed period of time. Furthermore, the num-
ber of available impressions per day is bounded and can be estimated based
on historical data. Assuming that after accepting an advertiser’s request, the
search engine is obliged to satisfy its whole demand, the problem that the search
engine needs to solve is to decide which advertisers to accept in order to max-
imize the profit. This has to be done in an online fashion as the advertisers
arrive. Later in this section we describe the problem in more details and also

7

discuss our results for this problem.

Until now, we gave an overview of the problems that will be considered in this dis-
sertation and the high level motivation for each problem. In the following section we
formulate each problem in more detail.

1.1 Problem Formulation

In this section, we present a more detailed formulation for each problem and at
the end of each part, a summary of our results for that problem.

1.1.1 Online Ad Allocation Problem

Assuming that for each query, the search engine can show d ads simultaneously,
the online ad allocation problem can be defined as follows:

Problem Definition Let M be the set of ads and N the set of distinct query types
(keywords), with |M | = m and |N | = n. Let pij be the expected payment
of the advertiser to the search engine for showing ad i for a query of type
j. The expected payment may be computed based on the relevance of the ad
to the keyword, the bid of the advertiser for that keyword and possibly other
parameters (we assume it is given to us). Each ad i has a budget Bi for a given
time period T . The goal is to assign incoming queries to ads as they arrive in a
way that maximizes the profit of the search engine in a given time period. Here
we make the assumption that the types of incoming queries are i.i.d random
variables drawn from a fixed but possibly unknown distribution {qj} where qj
is the probability of a query being of type j (

∑
j qj = 1). Also we assume that

the expected payments (pij) are small compared to budgets (Bi). Note that in a
sequence of r queries the expected number of queries of type j is rqj. We would
like to express this as a function of time so we define a virtual time, based on
the number of queries that have arrived so far. In terms of our virtual time the
expected number of queries arriving in a period of length ∆t of type j is ∆tqj.
Let T be the end of the time period in terms of the virtual time. So the problem
is to find an allocation that maximizes the revenue of the search engine in time
[0, T).

Challenges Consider the offline version of the problem in which we know the queries
in advance. The problem can be solved using LP rounding and get a solution
close to the optimal (with the approximation ratio very close to 1 assuming that

8

pij � Bi). Now consider the online version of the problem in which we know
the distribution qj. Again LP rounding can be used to get a solution with an
expected value very close to the optimal expected value. However, there are
two issues with the online version. The first one is that we cannot use LP if we
do not know the distributions and the second one is that due to the huge size
of the input, it is not possible to use LP rounding in practice for this problem.

Our Result We consider a greedy algorithm and we show that its expected profit is
at least 1− 1

e
of the optimal. One important advantage of the greedy algorithm

is that it does not depend on the distribution of the queries, and it is easy and
fast to compute in real time even with huge input data. As such it is being
used in practice. The suggested solution framework is more general and can
be used for solving other online maximization problems for which the objective
function satisfies the sequence submodularity property with prior distribution
assumption.

1.1.2 Query Rewriting Problem

In the Query Rewriting problem, the objective is to suggest a set of queries that
are related to a given query. The suggested list of queries should help us collect a
good set of ads for each keyword. At the same time, we should take into account the
constraints that are imposed by the system. We start this section by investigating
the challenges that we need to deal with when solving query rewriting for keyword
based advertising before giving the exact problem formulation.

Challenges In general, we have the following constraints:

1. constraints on the number of rewrites per query — typically the number of
rewrites is constant across all queries, subject to system considerations such
as fitting the rewrite hash table into the main memory of the ad servers,
the maximum number of keys in the reverse index, indexing latency, etc.

2. constraints on the number of queries for which a query rewrite can be used
— if a rewrite is used too often, it can lead to the same ads being shown
to users, which is undesirable.

3. budget constraints of an ad — each advertiser has a limited budget and
an ad that cannot be shown due to a consumed budget cannot contribute
to the revenue.

Next we describe different variants of query rewriting formulation that we study
in this dissertation.

9

Problem Formulation We assume the existence of a query rewrite generator that
outputs a list of candidate rewrites for a given query along with a score indi-
cating the relevance of the rewrite with respect to the query. The framework
exposes the set of all ads that can be served from the candidate rewrites, al-
lowing for the definition of general ad benefit functions over any subset of these
ads. We assume that the average traffic rate for each query and average budget
of each ad for a fixed period of time is known.

At the heart of our formulation is a graph covering problem on a graph with
three sets of vertices: queries, rewrites, and ads (Figure 1.3). The goal is to
select rewrites from the second vertex set for each query in the first vertex set,
so that the benefit of the ads adjacent to the rewrites is maximized subject to
ad system and budget constraints. We will use a realistic notion of ad benefit
that captures display real-estate and user experience constraints. Most of the
variants of this problem are NP-hard in general (by a reduction from Max K-
coverage that is known to be NP-hard [38]) and so we focus on designing efficient
approximation algorithms.

We look at two variants of system and budget constraints. In the first variant
(called the cardinality version), the constraints specify upper bounds on both
the number of rewrites a query can have as well as the number of queries for
which a query rewrite can be used. These model the system constraints in an
ad network: too many rewrites for a given query will slow down the time needed
to serve an ad and using the same rewrite for too many queries will make the
ads less diverse.

In the second variant (called the weighted version), we model the constraints
of an ad’s budget. We assume that the traffic for a query for a fixed period of
time is known. The goal here is again to select a set of rewrites that have the
maximum benefit subject to the constraint that no query can have too many
rewrites. The key difference is that an ad can only contribute benefit for traffic
up to its budget.

Our Results For the cardinality version, we propose a greedy algorithm with an
approximation ratio of (e− 1)/(2e− 1) ≈ 0.387. This ratio is an improvement
over 1/3 that can be obtained using existing results on greedy algorithms for
matroid intersections; we believe this may be of independent interest. For the
weighted version, we propose another greedy algorithm with an approximation
ratio of 1− 1

e1−
1
e
. To analyze this variant we use the same method that we used

for online ad allocation problem.

10

query rewrite ad

w(q,a) :
wight function is defined between the first and the third layer

We want to select a
subset of these edges

The outdegree
is limited

In cardinality version
the indegree is limited

Figure 1.3: Three layer graph containing queries, rewrites and ads

11

We have also conducted experiments to measure the performance of some of our
algorithms. For the case of determining rewrites for a single query, we compare
the ad benefit of our greedy algorithm to the ad benefit of a baseline algorithm
that is a variant of the k-nearest neighbor algorithm. Our experimental results
show that while query rewrites suggested by the greedy algorithm achieve similar
relevance compared to the baseline, they significantly outperform the baseline
in terms of the ad benefit of the rewrites.

1.1.3 Online Ad allocation for Display advertisement

As discussed in the online ad allocation for Non-Guaranteed Delivery, a search
engine chooses a subset of contracts to maximize its revenue. However as in the rest
of the problems, there are some challenges that we need to deal with:

Challenges Advertisers ask for a certain number of impressions for a certain period
of time. The demand is unknown ahead of the time since they are arriving
online. Since we are in the Guaranteed Delivery Setting, the demand of an
advertiser should be completely satisfied or the advertiser will not pay anything
to the search engine. Furthermore, as in the other problems the number of
available impressions per day is limited for each keyword.

Problem Formulation The basic model is as follows: Advertisers arrive online and
request a contract. Upon arrival, advertiser k reveals all her information in-
cluding the number of impressions she is interested in per day and the start
and end of the time period that she wants her ads to be displayed. The pay-
ment is according to the total number of impressions that will be allocated to
an advertiser (if and only if her total demand will be satisfied). The publisher
then decides on the spot to accept or reject the contract. We also assume that
the total number of available impressions per day is fixed. Contracts can be
dropped without penalty (i.e., the publisher can accept a contract and drop it
later if a better one arrives). However in this case the publisher cannot charge
the advertiser anything if the contract is dropped. The goal is to maximize
social welfare (or revenue) under an adversarial arrival of advertisers.

Our Results Under these assumptions, we will show that for an arbitrary sequence
of advertisers, there is no online algorithm that can have a worst case ratio
smaller than n where n is the total number of available impressions per day.
We then present an online greedy algorithm with a worst case analysis and
we show that the obtained profit from our algorithm is only a constant factor

12

worse than the best possible online algorithm. Since the lower bound on the best
possible algorithm in the adversary setting is quite pessimistic, we simulated
the performance of our greedy algorithm on actual data from Yahoo!’s display
advertisement business. We found that our algorithm performs very well in
practice as the observed performance was quite close to the optimal as opposed
to the worst case lower bound.

1.1.4 Fair Contract Allocation:

When advertisers purchase a guaranteed contract, they often define a set of pub-
lishers as their possible future hosts and ask for a minimum total number of impres-
sions for these pages. Assuming that the search engine has already decided which set
of advertisers to accept, there are many different feasible allocations that satisfy all
the demands. The following is some of the challenges that we face:

Challenges One way of allocating impressions to contracts is to allocate the cheapest
impressions to the contracts and leave the rest, for being auctioned between
advertisers interested in non guaranteed delivery. However the problem with this
strategy is that guaranteed sales are premium products and as a result, assigning
the cheapest impressions is not a good strategy. The implicit assumption of the
advertisers is that they will receive a “fair” sample of their desired buckets. A
more desirable approach is to try to assign the most representative sample of
the desirable impression in each contract to the advertiser. By representative,
we mean the distribution of the type of the ads in the sample, should represent
the distribution of the ads in the original set. However, it may not be possible
to assign a fully representative sample to all the contracts because the total
number of available impressions for each keyword is limited. The situation is
even worse when the interesting keyword is very valuable. Another constraint
is that the number of advertisers and the number of impressions are quite large.
In an online setting, we need to find solution which is efficient in both time and
space.

Problem Formulation The problem can be formulated as follows: Given a set of
impressions (i.e., the supply) and a set of contracts with their desired num-
ber of impressions and the types of impressions they are interested in, find a
feasible assignment of impressions to contracts so that for each contract, its de-
mand is completely satisfied and at the same time, the allocation is as fair and
representative as possible? Answering this question involves formulating what
fairness, precisely means in this context. Given the large number of advertisers

13

(typically, in the hundreds of thousands) and the astronomical number of im-
pressions (typically, in the hundreds of millions) in an online setting, we desire
an allocation algorithm that is practical and whose allocation can be stored suc-
cinctly, ideally, using space linear in the number of impressions and contracts as
opposed to the naive quadratic storage. Of course, this succinct representation
should let us reconstruct the complete allocation along every pair of contracts
and impression buckets in a time-efficient manner. The price of each impression
is computed based on historical data.

Our Results We consider the general problem of fair allocation in a bipartite supply-
demand setting. Our formulation is combinatorial and captures the notion of
deviation from fairness by a natural and general form of a penalty function.
While this formulation admits a convex programming solution (assuming the
penalty function is convex), it is undesirable in practice because of performance
considerations and therefore we seek more efficient solutions. For the case of
L1 penalty functions we obtain a simple combinatorial algorithm for the fair
allocation problem. By L1 penalty function, we mean that we want to find a
feasible allocation of impressions to contracts while minimizing the absolute dis-
tance of this allocation from the most representative allocation for each contract
(Figure 1.4).

Our solution is based on solving a min-cost flow problem on a bipartite graph,
which can be done very efficiently. By using a powerful dual formulation stem-
ming from our combinatorial treatment of allocation and constraining the flow
to be unique in a certain way, we also show how to precompute and store a
linear amount of information such that the allocation along any edge in the
bipartite graph can be approximately answered in constant time, under mild
assumptions on the input instances. This space-efficient reconstruction method
might be of independent interest in contexts beyond fair allocation.

We also prove two additional properties of our formulation. First is robustness,
where we show how to upper bound the performance loss when the supply
estimates are only approximately known. Second is extensibility, where we
show an even simpler greedy approximation algorithm when some of the demand
constraints are relaxed.

Finally, we extend our combinatorial solution to any convex function. This
involves solving a convex cost flow, which once again is more efficient than
solving a general convex program.

14

2 2 2

Needs 2
impressions

rep: 1
L1:1

Needs 3
impression

rep:1.5
L1:1 2

rep: completely representative allocation
L1: The feasible solution selected by using L1 metric

rep:1
L1:1

rep:1.5
L1:2

Buckets of impressions

contracts

Figure 1.4: It is not feasible to give each contract its completely representative allo-
cation

15

1.2 Roadmap

This dissertation is organized as follows. In chapter 2, we present the related
work on all problems that will be discussed in this dissertation. In chapter 3, we
will present the analysis of greedy method for Online Ad Allocation problem and
also present a general method for analyzing greedy methods for online problems
with some specified properties [5]. Then, we will present different models and
solutions for each model for Query Rewriting problem in chapter 4 [40]. In
chapter 5, we turn the focus to Guaranteed Delivery advertisement and consider
the fair allocation problem and present an impact solution for the solution
that is closest (minimum L1 distance function) to the completely representative
allocation for each advertiser [4]. Finally, in chapter 6, we consider online ad
allocation problem again. However, this time we look at Guaranteed Delivery
[3]. We conclude with an overview of the future work in chapter 7. In Figure 1.5,
the main structure of this dissertation is presented.

16

Figure 1.5: Organization

17

Chapter 2
Background and Related Work

The solutions and analysis for both problems in the Non-guaranteed delivery cat-
egory are heavily based on the properties of a class of functions called submodular
functions. We start this chapter by introducing this property and survey existing
results on this topic. After that, we present related work for each problem.

2.1 Submodular Functions

Definition 1 (Non-decreasing submodularity). Let U be a finite set. A function
f : 2U → R is non-decreasing and submodular if

1. f(0) = 0,

2. f(X) ≤ f(Y) when X ⊆ Y ⊆ U .

3. f(X) + f(Y) ≥ f(X ∩ Y) + f(X ∪ Y), ∀X, Y ⊆ U ,

or equivalently,

3’. f(X ∪ {u})− f(X) ≥ f(Y ∪ {u})− f(Y), ∀X ⊆ Y ⊆ U .

Both maximization and minimization of submodular functions have been studied
in recent years due to its application to combinatorial auctions (e.g., the submodular
welfare problem [39, 37]), generalized assignment problems [24], etc. Minimizing a
submodular function given by a value oracle can be done in polynomial time. How-
ever, this is not true for maximizing submodular functions ([32],[31]). An algorithm
is called efficient if its running time is polynomial in the size of its input. Submodular
maximization problems are typically in the class of NP-hard problems. When dealing
with an NP-hard problem, in order to get an efficient algorithm, we need to relax
the optimality of the objective function. An algorithm A for a given maximization
problem (F, c) is called an α approximation if it is efficient and the objective value for
the solution that is obtained by A for any instance, is at least α times of the objective
of the optimal solution. The natural approximation algorithm that is suggested for
maximizing a non-decreasing submodular function is a greedy approach. The greedy
approach works as follows: Start with an empty set and iteratively build the solu-
tion. At each iteration, select the element with the highest incremental profit to the

18

current solution and add it to the current solution. Nemhauser et al ([45]) showed
that greedy approach gives a 1 − 1

e
approximation for maximizing non-decreasing

submodular functions with a cardinality constraint. Nemhauser and Wolsey, also
showed that in general a greedy approach gives a 1 − 1

e
-approximation for maxi-

mizing a non-decreasing submodular function over a uniform matroid. Nemhauser,
Wolsey, and Fisher [46] considered this problem over the independence system. They
showed that if the independence system is the intersection of M matroids, the greedy
algorithm gives an M + 1 approximation. Recently, Goundan and Schulz [29] gen-
eralized both these results and showed that if an α-approximate incremental oracle
is available, then the greedy solution is a 1 − 1

e1/α
approximation for maximizing a

non-decreasing submodular function over a uniform matroid and an αM + 1 approx-
imation for the intersection of M matroids. In some recent work, Feige, Mirrokni
and Vondrak designed different constant factor approximation for maximizing non-
negative submodular functions without any monotonicity assumptions (They present
a 1/3 approximation algorithm based on local search and a 2/5 approximation based
on randomized rounding.)[23]. furthermore, Vondrak [?], presented a general method
to derive inapproximability results for submodular functions.

In the rest of this chapter, we present the previous results on each of the problems
that will be studied in this thesis.

2.2 Online Allocation Problem

There is a considerable amount of literature on auctions for online advertising in
the economics and computer science community. In the online allocation problem, the
goal is to decide which ads to show for each incoming query so that the the obtained
profit from the advertisers is maximized. Several papers have studied this problem
([43], [18]). Mehta et al [43] presented a deterministic algorithm with a competitive
ratio of (1− 1

e
) in the worst case model. It can be shown that the competitive ratio

for the greedy algorithm is 1
2

in the worst case analysis. Later, Goel et al [27] showed
that the competitive ratio of the greedy approach in the random permutation model
as well as the i.i.d model is (1 − 1

e
) and in fact, the analysis is tight. Their proof is

partly based on the techniques used for the online bipartite matching problem[36].
The offline variant of ad allocation problem is NP-hard as well[6, 24]. The first

approximation algorithm for the problem was given by Garg, Kumar and Pandit[25]
who gave a 2

1+
√

5
= .618 factor approximation. Andelman and Mansour [6] improved

the factor to 1− 1
e

approximation. Azar et.al. [8] obtained a 2
3
-factor for the general

offline ad allocation problem. All these works are based on LP relaxation. Finally,
Goel and Chakrabarty ([15]) and Srinivasan ([49]) independently gave a 3

4
approxi-

19

mation for this problem and the methods were based on LP rounding. In addition,
Chakrabarty and Goel showed that it is NP hard to approximate the offline variant
to a factor better than 15

16
[15].

2.3 Query Rewriting

Query rewriting problems have been studied in the context of Informational Re-
trieval for a long time [35, 52, 53]. There is a vast amount of literature on clustering
and mining of search logs to generate query suggestions for improving web and paid
search results. Jones et al [35] rely on user query reformulation sessions to pre-
compute similar queries and phrases with affinity scores. For an incoming query,
these tables are consulted in order to generate candidate rewrites; ranking of the
rewrites is achieved using a machine-learned function. Recently, Zhang et al [52, 53]
have improved its performance using click logs and active learning techniques and
with additional features such as web search results page co-occurrence.

Other classes of work revolve around exploring the context and structure of query
and click logs to cluster related queries. For example, Beeferman and Berger [11]
apply agglomerative clustering techniques to bipartite click graphs using a simple set
overlap distance function. Antonellis et al [7] build upon Simrank [34], a measure of
structural-context similarity developed for personalized web graphs, to identify similar
queries. Another method commonly employed is latent semantic analysis based on
Singular Value Decomposition [17]. It constructs a large matrix of term-document
association data, forming a semantic space wherein terms and documents that are
closely associated are placed near one another. Singular value Decomposition (SVD),
allows the rearrangement of the space to reflect the major associative patterns. These
based methods are computationally expensive. The algorithms presented in this thesis
complement all these techniques by optimizing the selection of the rewrites by taking
the “ad benefit” into account.

2.4 Display Advertisement

The last two problems considered in this thesis are related to display advertise-
ment. We start by giving a summary of existing work in this area. Most of the
recent literature related to online advertising is focused on studying slot ad auctions
from the game theoretic perspective [20]. There has been some recent work on dis-
play advertisement and guaranteed delivery. Feige et al. [22], studied guaranteed
delivery for display advertisement with penalties. In this model, for each accepted
contract, either the whole demand requested in the contract should be satisfied or

20

the search engine will pay extra penalties for the unsatisfied portion of the demand.
They showed that there is no constant approximation for their problem and present
a bicriteria algorithm. Furthermore, they proved a structural approximation result
for the adaptive greedy algorithm. The problem of advanced booking with costly
cancelation have also been studied from a game-theoretic point of view[16, 9].

2.5 Fair Allocation

Vee, Vassilvitskii, and Shanmugasundaram in [50] and also McAfee and Papineni
[42] first studied the online allocation with forecast problem, where given an approxi-
mation of the online supply, the goal is to create an efficiently reconstructible plan for
performing some form of fair allocation. They focus on the efficiency and sampling
aspect of the problem and consider only the strictly convex version, which makes
it amenable to using fixed point criteria such as KKT conditions for non-linear op-
timization. Ghosh et al. [26] studied the problem of representative allocation for
display advertising when there are both spot markets and guaranteed contracts; they
propose a solution where guaranteed contracts are implemented by randomized bid-
ding in spot markets. Our solution is mainly based on network flow and its dual.
There is a large amount of literature on the network flow problem (e.g., [2]). The
closest work to our method is the push-relabel algorithm of Goldberg and Tarjan [28];
they introduced a method for computing the maximum flow problem without using
augmenting paths. The reconstruction of the min-cost flow instance is based on the
dual variables of the min-cost flow solution and has some similarities to push-relabel
algorithm. Primal-dual methods have been largely used as a tool to find approxi-
mation algorithms for various problems (e.g., [10, 1]). Recently, Devanur et al. [19]
and Jain and Vazirani [33] used primal-dual methods and KKT conditions for solving
market equilibria problems.

2.6 Online Resource Allocation

In the last problem studied in this thesis, we deal with the online allocation of ads
for display advertisement. The problem is closely related to Dynamic Storage Allo-
cation. An offline variant of this problem has been studied as well [13]. In Dynamic
Storage Allocation, the objective is to pack axis aligned rectangles in a horizontal
strip of minimum height by sliding the rectangles vertically but not horizontally. An-
other closely related problem is the Resource Allocation Problem. This problem is
very similar in nature to Dynamic Storage Allocation. The difference is that in this
problem instead of rectangles we have jobs and instead of the horizontal strip we have

21

some constant amount of resources that are available for a period of time. Each job
is supposed to be executed at a pre-specified period of time and each day it will con-
sume some constant amount of resource. The objective is to find a feasible schedule
of jobs so that the total revenue will be maximized. The problem that we need to
solve is the online variant of Resource Allocation. To the best of our knowledge, our
algorithm is the first online algorithm for this problem. Here we present the setting
from the work by Woeginger and some of its results[51]. In this work, the setting is
as follows:

• Only one impression per round is available.

• All of the supply is exhausted by one advertiser at any given time.

• Payment is received once the contract is fully completed.

• Contracts can be dropped without penalty.

The goal is to maximize social welfare (or revenue) under an adversarial arrival
of advertisers. This problem is called Online Interval Scheduling as well. It is known
that the general case of the problem does not have a competitive ratio.[51]. This
motivated the search for special cases that define real practical problems and at the
same time have a constant competitive ratio. Woeginger [51] defined three special
cases:

C-benevolent: In this class, the weight(or profit) of each interval only depends on its
length. Furthermore, the weight function is strictly monotonically increasing,
continuous and convex function.

D-benevolent: In this class, the weight function is a monotonically non-increasing
function.

unit interval: In this class, all the intervals have unit length.

Woeinger showed that for all the above classes greedy approach is a 4 approximation
algorithm and more interestingly he showed that the approximation ratio is tight for
C-benevolent functions and unit interval class. [51]. For D-benevolent functions, he
proved that the lower bound on the competitive ratio for any deterministic algorithm
is 3. Seiden [48], presented a randomized algorithm for both classes of C-benevolent
and D-benevolent functions with a competitive ratio of 3.73206. Miyazawa and Er-
lebach [44], considered unit intervals and gave a randomized 3-competitive algorithm
for the special case where the sequence of arriving intervals has monotonically non-
decreasing weight, as a function of the arrival times. They also designed a lower

22

bound of 5
4

for C-benevolent functions. Finally, Epstein and Levin [21], gave a lower
bound of 1.693 for any randomized algorithm for C-benevolent functions and a sub-
set of D-benevolent functions, and gave a lower bound of 1.5 for a larger subset of
D-benevolent functions. They also gave a randomized algorithm for this setting with
the approximation ratio of 3.22745.

23

Chapter 3
Non-guaranteed Delivery: Online Ad Allocation Problem

In this chapter and the next chapter, the focus is on Non-guaranteed Delivery
Advertisement. Non-guaranteed delivery is the traditional way of advertising in spon-
sored search. In this chapter we consider the following problem:

Online Ad Allocation Problem: Assuming that for each query, the search engine
can show d ads simultaneously, the online ad allocation problem can be defined
as follows: We have m ads and n distinct keywords (query types). Let M be
the set of ads and N the set of query types. Let pij be the expected payment
of the advertiser to the search engine for showing ad i for a query of type j.
The expected payment may be computed based on the click-through rate of
the ad (click through rate is obtained by dividing the number of users who
clicked on an ad on a web page by the number of times the ad was delivered
(impressions)), the relevance of the ad to the keyword, the bid of the advertiser
for that keyword and possibly other parameters. Each ad i has a budget Bi

for a given period T . The goal is to assign incoming queries to ads as they
arrive in a way that maximizes the profit of the search engine in a given time
period. Here we make the assumption that the types of incoming queries are
i.i.d random variables drawn from a fixed but possibly unknown distribution qj
where qj is the probability of a query being of type j (

∑
j qj = 1). We assume

that the expected payments (pij) are small compared to budgets (Bi). Note
that in a sequence of r queries the expected number of queries of type j is rqj.
We would like to express this as a function of time so we define a virtual time,
based on the number of queries that have arrived so far. In terms of our virtual
time the expected number of queries arriving in a period of length ∆t of type
j is ∆tqj. Throughout the rest of this chapter we will omit the word “virtual”
and always use “time” to refer to virtual time unless explicitly stated otherwise.
Let T be the end of the time period in terms of the virtual time. So the problem
is to find an allocation that maximizes the revenue of the search engine in time
[0, T).

As explained before we cannot use LP for two reasons:

• We do not know the distributions

• Due to the huge size of the input it is not possible to use LP rounding in practice
for this problem.

24

In this chapter, we consider a greedy algorithm and we show that its expected per-
formance is at least 1 − 1

e
of the optimal. One important advantage of the greedy

algorithm is that it does not depend on the distribution of the queries, and it is easy
and fast to compute in real time even with huge input data. As such it is being used
in practice. The suggested solution framework is more general and can be used for
solving online maximization problems for which the objective function satisfies the
generalized submodularity, we call it sequence submodularity property, with prior
distribution assumption. This property will be described in detail in the rest of this
chapter and will be used as a tool for analyzing the problem in the next chapter as
well. Note that the revenue that is generated as a result of displaying an ad for a query
depends on wether the ad has enough budget left and therefore depends on the pre-
vious allocations. So the total revenue as a function of queries/allocations, depends
on the order of queries/allocation and its domain is a sequence of queries/allocations.
We show that this function is a sequence-submodular function.

3.1 Sequence Submodularity

In this section, we show how to extend the notion of submodularity to functions
defined over sequences and analyze the greedy algorithm for maximizing such func-
tions subject to a maximum length constraint on the solution sequence. We call this
property, sequence submodularity. A large class of combinatorial problems can be
modeled in this framework specially those that involve time. We will see two of its
applications in this thesis.

Sequence submodularity can be defined as follows: Let S be a finite set and u(H)
be a real valued function defined over discrete or continuous sequences 1 of elements of
S. We extend the notion of submodularity defined by Nemhauser [46] for set functions
to the more general class of sequence function (a set function is a special case of a
sequence function in which the order and frequency of elements does not matter).
We consider the problem of finding H that maximizes u(H) subject to |H| ≤ T for
a given T ∈ R+ in which |H| denotes the length of sequence H. What we will show
in this section is that if u is non-decreasing, submodular and differentiable (only for
continuous sequences), a greedy algorithm can find H that achieves 1 − 1

e
of the

optimal maximum when we have access to an incremental oracle or 1 − 1
eα

when we
have access to an approximation incremental oracle with the approximation factor of
α ∈ [0, 1]. As a general application of this framework, whenever we have a finite set of
actions from which we can choose an action and run it for some arbitrary duration it

1A continuous sequence of length T ∈ R+ is a mapping from [0, T) to S

25

can be modeled as a continuous sequence and the utility over time can be interpreted
as a sequence function.

However in previous works, the submodularity property is defined only on func-
tions over sets. Nevertheless, there are problems in which the goal is to choose a
sequence of actions to maximize some utility function defined over that sequence. In
some of these problems, the order of actions matters. Also, sometimes, the actions
are continuous and each action is used for a specified duration. Such problems can-
not be modeled using a submodular set function. The objective of this section is
to characterize the conditions that are necessary for sequence functions so that we
can obtain the same conclusions about the behavior of a greedy approach over this
class of functions. A series of operations with the property that each operation is
performed for some specified duration can be seen as a continuous sequence. What
we will show is that if a sequence function has the three properties of being “non-
decreasing”, “sequence submodular” and “differentiable”, a greedy approach always
achieves a solution that is at least (1− 1

e
) of the optimal solution for the maximization

problem subject to a constraint on the maximum length of the solution sequence. We
will see in the following sections that the online ad allocation problem with a fixed
distribution of keywords over time can be modeled as maximizing a continuous non-
decreasing submodular sequence function for which we can guarantee that the greedy
approach achieves at least (1− 1

e
) of the optimal

3.2 Definitions

We start by defining a set of notions that we will use in the rest of this chapter.

Discrete Sequence: Let S be a finite set. Any A = (s1, · · · , sk) where k ∈ N∪ {0}
and si ∈ S, is called a discrete sequence of elements of S (k = 0 is the empty
sequence). We also denote the set of all finite discrete sequences of S by HD(S)
which is formally defined as:

HD(S) = {A = (s1, · · · , sk)|k ∈ N ∪ {0}, si ∈ S} (3.2.1)

Notice that a discrete sequence actually defines a discrete function from {1, · · · , k}
to S and any such discrete function can be represented using a discrete sequence.
We denote the value of the function defined by discrete sequence A at point x
by A(x).

Continuous Sequence: Let S be a finite set. Any A = ((s1,∆t1), · · · , (sk,∆tk))
where k ∈ N ∪ {0} and si ∈ S and ∆ti ∈ R+, is called a finite continuous

26

sequence of elements of S. We also denote the set of all finite continuous
sequences of S by HC(S) which is formally defined as:

HC(S) = {A = ((s1,∆t1), · · · , (sk,∆tk))|
k ∈ N ∪ {0}, ai ∈ S,∆ti ∈ R+}

Notice that a continuous sequence actually defines a function from [0,
∑k

i=1 ∆ti)

to S in which any x ∈ [
∑i−1

j=1 ∆tj,
∑i

j=1 ∆tj) is mapped to si. Also notice that
any function from [0, T) to S in which the output changes a finite number of
times when the input changes continuously from 0 to T can also be represented
using a finite continuous sequence. We denote the value of the function defined
by continuous sequence A at point x by A(x).

Sequence Function: Let S be a finite set. Any function u : HD(S) → R is called
a sequence function (discrete). Also, any function u : HC(S) → R is called a
sequence function (continuous).

Length of a Sequence: We denote the length of a sequence A by |A| which we
define next. For any discrete sequence A = (s1, · · · , sk) we define |A| = k.
For any continuous sequence A = ((s1,∆t1), · · · , (sk,∆tk)) we define |A| =∑k

i=1 ∆ti.

Equivalence of Sequences: We say two sequences A and B are equivalent and
denote that by A ≡ B if they represent the same sequence that is if and only
if they have the same length and their corresponding functions have the same
value at every point in their domain. The formal definition is given next.

If A and B are two discrete sequences, then A ≡ B if and only if |A| = |B| and
for ∀i ∈ {1, · · · , |A|} : A(i) = B(i).

If A and B are two continuous sequences, then A ≡ B if and only if |A| = |B|
and ∀x ∈ [0, |A|) : A(x) = B(x).

Concatenation of Sequences: We denote the concatenation of two sequences A
and B by A⊥B.

Refinement of a Sequence: We denote the portion of a discrete sequence A in
[x, y] by A[x,y] and also the portion of a continuous sequence A in [x, y) by A[x,y)

which we formally define as the following.

27

For a discrete sequence A = (s1, · · · , sk), if the intersection of [1, k] and [x, y]
is empty we define A[x,y] to be the empty sequence. Otherwise suppose [f, l] is
the intersection of the two, then we define A[x,y] = (sf , · · · , sl).
For a continuous sequence A = ((s1,∆t1), · · · , (sk,∆tk)), if the intersection of
[0, |A|) and [x, y) is empty we define A[x,y) to be the empty sequence. Otherwise
suppose [f, l) is their intersection then we define:

A[x,y) = ((sp,∆tp − δ), (sp+1,∆tp+1), · · ·
· · · , (sq−1,∆tq−1), (sq,∆tq − δ′)) (3.2.2)

where q, l ∈ N and δ, δ′ ∈ R+ ∪ {0} are chosen such that:

p−1∑
i=1

∆ti ≤ f <

p∑
i=1

∆ti (3.2.3)

q−1∑
i=1

∆ti < l ≤
q∑
i=1

∆ti (3.2.4)

δ = f −
p−1∑
i=1

∆ti (3.2.5)

δ′ =

q∑
i=1

∆ti − l (3.2.6)

Domination of Sequences: We say sequence A is dominated by sequence B and
we show that by A ≺ B if we can cut out parts of B to get A. Next we give a
formal definition.

If A and B are discrete sequences then A ≺ B if and only if A is a subsequence
of B.

If A and B are continuous sequences then A ≺ B if and only if there exist
m ∈ N, 0 ≤ x1 < x2 < · · · < x2m ≤ |B| such that:

A ≡ B[x1,x2)⊥ · · ·⊥B[x2m−1,x2m) (3.2.7)

Marginal Value of a Sequence Function: For a sequence function u : H(S)→ R

we define u(B|A) = u(A⊥B)− u(A) where A,B ∈ H(S).

28

In this chapter, ∅, will denote the empty sequence. We will also use H(S) instead
of HC(S) and HD(S) when a proposition applies to both discrete sequences as well
as continuous sequences.

3.2.1 Submodular Non-decreasing Sequence Functions

In this part, we define the class of submodular non-decreasing sequence functions.
In the next sections we provide a greedy heuristic for maximizing such functions
subject to a given maximum length for the solution sequence.

Let S be a finite set and u : H(S) → R be a sequence function. We define the
following conditions:

Condition 1 (Non-Decreasing). A sequence function u is non-decreasing if:

∀A,B ∈ H(S) : A ≺ B ⇒ u(A) ≤ u(B) (3.2.8)

u(∅) = 0 (3.2.9)

Condition 2 (Sequence-Submodularity). A sequence function u is sequence-submodular
if:

∀A,B,C ∈ H(S) : A ≺ B ⇒ u(C|A) ≥ u(C|B) (3.2.10)

Condition 3 (Differentiability). This condition only applies to continuous sequence
functions. Note that we use the term “continuous sequence function” to signify that
the argument to the function is a continuous sequence and not the function itself,
however the differentiability condition that we define next is a property of the function.
A continuous sequence function u : HC(S)→ R satisfies the differentiability condition
if for any A ∈ HC(S), u(A[0,t)) is continuous and differentiable with a continuous
derivative with respect to t for t ∈ [0,∞) except that at a finite number of points it
may have different left and right derivatives and thus a non-continuous derivative.

3.3 Greedy Heuristic (Discrete)

Here we provide a greedy heuristic for maximizing non-decreasing submodular
sequence functions (discrete). Let S be a finite set and u : HD(S) → R be a non-
decreasing submodular sequence function. Consider the problem of finding a sequence
H ∈ HD(S) that maximizes u subject to |H| ≤ T for a given T ∈ N. Also suppose
that O ∈ HD(S) where O = (r1, · · · , rT) is the optimal solution to this problem.

29

Lemma 3.3.1. For any A,B ∈ HD(S) there exist s ∈ S such that u(s|A) ≥
1
|B|u(B|A)

Proof. Suppose B = (s1, · · · , sk), using the definition of u we have:

u(B|A) = u(H i−1⊥O)− u(H i−1) (3.3.1)

= u(H i−1⊥O[1,T])− u(H i−1) (3.3.2)

=
T∑
j=1

u(H i−1⊥O[1,j])−
T−1∑
j=0

u(H i−1⊥O[1,j]) (3.3.3)

=
T∑
j=1

(u(H i−1⊥O[1,j])− u(H i−1⊥O[1,j−1])) (3.3.4)

=
T∑
j=1

u(O[j,j]|H i−1⊥O[1,j−1]) (3.3.5)

=
k∑
j=1

u(sj|A⊥B[1,j−1]) (3.3.6)

The sum on the right hand side of (3.3.6) consist of k terms, so there should be
at least one term which is above or equal to the average of the terms. That means
there should be an index 1 ≤ j′ ≤ k such that (3.3.7) holds.

u(sj′|A⊥B[1,j′−1]) ≥
1

k
u(B|A) (3.3.7)

u(sj′ |A) ≥ 1

|B|
u(B|A) (3.3.8)

Combining (3.3.7) with Condition 2 because A ≺ A⊥B[1,j′−1] we get (3.3.8) which
completes the proof.

We use the Lemma 3.3.1 to prove the following theorem:

Theorem 1. For sequence H ∈ HD(S) where H = (s1, · · · , sT) and α ∈ [0, 1] if:

∀i ∈ {1, · · · , T},∀s ∈ S : u(si|H[1,i−1]) ≥ α u(s|H[1,i−1]) (3.3.9)

then:
u(H)

u(O)
≥ 1− 1

eα
(3.3.10)

30

Proof. According to Lemma 3.3.1 we argue that for any H = (s1, · · · , sT) and α for
which (3.3.9) holds, (3.3.11) must also hold.

u(si|H[1,i−1]) ≥
α

T
u(O|H[1,i−1]) (3.3.11)

u(si|H[1,i−1]) ≥
α

T
(u(O⊥H[1,i−1])− u(H[1,i−1])) (3.3.12)

u(si|H[1,i−1]) ≥
α

T
(u(O)− u(H[1,i−1])) (3.3.13)

u(H[1,i])− u(H[1,i−1]) ≥
α

T
(u(O)− u(H[1,i−1])) (3.3.14)

u(H[1,i]) ≥
α

T
u(O) + (1− α

T
)u(H[1,i−1]) (3.3.15)

In order to derive (3.3.13) from (3.3.12) we have used Condition 1 to infer that
u(O⊥H[1,i−1]) ≥ u(O).

u(H[1,T]) ≥
(

1− (1− α

T
)T
)
u(O) (3.3.16)

u(H) ≥
(

1−
(

(1− α

T
)
T
α

)α)
u(O) (3.3.17)

u(H) ≥
(

1− 1

eα

)
u(O) (3.3.18)

Notice that (3.3.15) defines a recurrence relation which can be solved to get
(3.3.18) which completes the proof.

The condition of Theorem 1 is simply saying that H = (s1, · · · , sT) should be cho-
sen by choosing each si locally such that p(si|H[1,i−1]) is at least α times its optimal
local maximum. Setting α = 1 means we can compute the locally optimal si condi-
tioned on s1, · · · , si−1. Based on the previous intuition we present greedy algorithm
1 to find H.

The greedy algorithm 1 starts with an empty sequence H0 and then builds the
complete sequence by finding at iteration i the si that gives the highest increase in
the value of u when appended to the end of the current sequence or more formally
the si that maximizes u(si|H i−1) (or equivalently maximizes u(H i−1⊥si)). Also note
that in Algorithm 1, at the step where we find si that maximizes u(si|H i−1) . We
may not be able to find the locally optimal si and instead we may only be able to
find si for which u(si|H i−1) is at least α times its locally optimal maximum.

31

H0 ← ∅ ;
for i = 1 to T do

find si that maximizes u(si|H i−1) ;
H i ← H i−1⊥si ;

end
H ← HT ;

Algorithm 1: Greedy for discrete case

Theorem 2. For any non-decreasing submodular function u and any given T ∈ N,
greedy algorithm 1 can be used to find a sequence that produces a value of u which is
at least 1− 1

eα
times of the optimal. In particular if we can locally find the optimal at

each iteration the resulting sequence gives a value of u which is at least 1 − 1
e

of the
global optimal.

Proof. The proof of Theorem 2 trivially follows from theorems 1 and 1.

3.4 Greedy Heuristic (Continuous)

In this section we provide an equivalent of the greedy heuristic of section 3.3 for
the continuous version. Let S be a finite set and u : HC(S) → R be a differentiable
non-decreasing submodular sequence function. Consider the problem of finding a
continuous sequence H ∈ HC(S) that maximizes u subject to |H| ≤ T for a given
T ∈ R+. Also suppose that O ∈ HC(S) where O = ((r1,∆w1), · · · , (rk,∆w′k)) is the
optimal solution.

We define u̇s(δ|A) where s ∈ S, δ ∈ R+ and A ∈ H as the following:

u̇s(δ|A) =
d

dδ
u((s, δ)|A) (3.4.1)

=
d

dδ
(u(A⊥(s, δ))− u(A)) (3.4.2)

=
d

dδ
u(A⊥(s, δ)) (3.4.3)

We also define u̇s(δ|A) at δ = 0 as the following:

u̇s(0|A) = lim
δ→0+

u̇s(δ|A) (3.4.4)

Note that (3.4.1) is always defined because we are assuming that u satisfies the
Condition 3 and (3.4.3) can be written as d

dδ
u((A⊥(s,∞))[0,|A|+δ)). Also note that

32

according to Condition 3 u̇s is a continuous function over R+ except at a finite number
of points.

Corollary 1. For any A ∈ HC like A = ((s1,∆t1), · · · , (sk,∆tk)) let Ai = ((s1,∆t1), · · · , (si,∆ti))
then all of the following hold:

u((s, δ)|A) =

∫ δ

0

u̇s(x|A)dx (3.4.5)

u((s, δ2)|A⊥(s, δ1)) =

∫ δ2

δ1

u̇s(x|A)dx (3.4.6)

u(A) =
k∑
i=1

∫ ∆ti

0

u̇si(x|Ai−1)dx (3.4.7)

Proof. (3.4.5) and (3.4.6) trivially follow from (3.4.1) and (3.4.7) follows from the
definition of marginal values.

Lemma 3.4.1. For any A,B ∈ HC such that A ≺ B and any s ∈ S, we have
u̇s(δ|A) ≥ u̇s(δ|B) for any δ ∈ R+ ∪ {0} except at a finite number of points.

Proof. The proof is by contradiction. Suppose there are A,B ∈ HC such that A ≺ B
and s ∈ S and δ ∈ R+ for which u̇s(δ|A) < u̇s(δ|B). If either u̇s(δ|A) or u̇s(δ|B) is
non-continuous at δ then this is one of the finite number of points that are exceptions
in Lemma 3.4.1. Otherwise since they are both continuous at δ there should be a small
neighborhood around δ in which u̇s(δ|B) is greater than u̇s(δ|A). More formally:

∃ε ∈ R+,∀x ∈ [δ − ε, δ + ε] : u̇s(x|A) < u̇s(x|B) (3.4.8)

Now we show that (3.4.8) can never happen:

u((s, ε)|A⊥(s, δ − ε)) =

∫ δ

δ−ε
u̇s(x|A) (3.4.9)

u((s, ε)|A⊥(s, δ − ε)) <
∫ δ

δ−ε
u̇s(x|B) (3.4.10)

u((s, ε)|A⊥(s, δ − ε)) < u((s, ε)|B⊥(s, δ − ε)) (3.4.11)

Notice that A⊥(s, δ− ε) ≺ B⊥(s, δ− ε) and therefore (3.4.11) contradicts Condi-
tion 2 which says u is a submodular sequence function. It shows that our assumption
of u̇s(δ|A) < u̇s(δ|B) leads to contradiction which completes the proof.

33

Corollary 2. For any A ∈ HC(S), and any δ ∈ [0,∞), u̇s(δ|A) is a monotonically
non-increasing function in δ. That is δ1 < δ2 ⇒ u̇s(δ1|A) ≥ u̇s(δ2|A).

Proof. The proof is similar to the proof of Lemma 3.4.1.

The following lemma in the equivalent of Lemma 3.3.1 for the continuous case.

Lemma 3.4.2. For any A,B ∈ HC(S) there exist s ∈ S such that u̇s(0|A) ≥
1
|B|u(B|A)

Proof. Suppose B = ((s1,∆t1), · · · , (sk,∆tk)) and let Bi = ((s1,∆t1), · · · , (si,∆ti)).
Using the definition of u and (1) we have:

u(B|A) =
k∑
i=1

∫ ∆ti

0

u̇si(x|A⊥Bi−1)dx (3.4.12)

We argue that there should be some 1 ≤ i ≤ k for which there exist some δ ∈
[0,∆ti) such that u̇si(δ|A⊥Bi−1) ≥ 1

|B|u(B|A) otherwise that means the term inside

the integral on the right hand side of (3.4.12) is always less than 1
|B|u(B|A) which

means the sum of the integrals would be less that u(B|A) which contradicts the
(3.4.12). Suppose for i′ and δ′ (3.4.13) holds.

u̇si′ (δ
′|A⊥Bi′−1) ≥ 1

|B|
u(B|A) (3.4.13)

u̇si′ (δ
′|A) ≥ 1

|B|
u(B|A) (3.4.14)

u̇si′ (0|A) ≥ 1

|B|
u(B|A) (3.4.15)

We can infer (3.4.14) from (3.4.13) by using Lemma 3.4.1. Applying Corollary 2
to that we get (3.4.15) which completes the proof.

Next we present our main result for this section.

Theorem 3. For any sequence H ∈ HC(S) where H = ((s1,∆t1), · · · , (sk,∆tk)) and
|H| = T and α ∈ [0, 1], if:

∀t ∈ [0, T),∀s ∈ S :
d

dt
u(H[0,t)) ≥ α u̇s(0|H[0,t)) (3.4.16)

then:
u(H)

u(O)
≥ 1− 1

eα
(3.4.17)

34

Proof. Using Lemma 3.4.2 we have (3.4.18). Combining that with (3.4.16) we get
(3.4.19). Using the definition of marginal values and using Condition 2 we get (3.4.21)
which is a differential equation.

∀t ∈ [0, T) ∃s ∈ S : u̇s(0|H[0,t)) ≥
1

|O|
u(O|H[0,t)) (3.4.18)

∀t ∈ [0, T) :
d

dt
u(H[0,t)) ≥

α

T
u(O|H[0,t)) (3.4.19)

∀t ∈ [0, T) :
d

dt
u(H[0,t)) ≥

α

T
(u(O⊥H[0,t))− u(H[0,t))) (3.4.20)

∀t ∈ [0, T) :
d

dt
u(H[0,t)) ≥

α

T
(u(O)− u(H[0,t))) (3.4.21)

We can rephrase the (3.4.21) as (3.4.22) and solve it to get (3.4.26).

u(H[0,t)) +
T

α

d

dt
u(H[0,t)) ≥ u(O) (3.4.22)

d

dt

(
T

α
e
α
T
tu(H[0,t))

)
≥ T

α
e
α
T
tu(O) (3.4.23)∫ x

0

d

dt

(
T

α
e
α
T
tu(H[0,t))

)
dt ≥

∫ x

0

e
α
T
tu(O)dt (3.4.24)

T

α
e
α
T
xu(H[0,x)) ≥

T

α
(e

α
T
x − 1)u(O) (3.4.25)

u(H[0,x)) ≥ (1− 1

e
α
T
x
)u(O) (3.4.26)

u(H) ≥ (1− 1

eα
)u(O) (3.4.27)

Setting x = T in (3.4.26) we get (3.4.27) which completes the proof.

The condition of Theorem 3 is simply saying that H should be chosen such that at
each point t ∈ [0, T), the derivative of u is at least α times its optimal local maximum.
Setting α = 1 means at each t ∈ [0, T) we can find the best s ∈ S conditioned on
H[0,t). Based on the previous intuition we present a generic greedy algorithm 2 to
find H. This algorithm in general may not terminate, however if it terminates, for
the resulting H, u(H) will be at least (1 − 1

eα
) times the optimal. In general there

can be other ways for finding such an H for each specific problem as we will show
one such example later in this paper.

35

t← 0 ;
i← 1 ;
H0 ← ∅ ;
while t < T do

find (si,∆ti) such that
∀s ∈ S ∀δ ∈ [0,∆ti) : u̇si(0|H i−1⊥(si, δ)) ≥ α u̇s(0|H i−1⊥(si, δ)) ;
H i ← H i−1⊥(si,∆ti) ;
t← t+ ∆ti ;
i← i+ 1 ;

end
H ← H i−1 ;

Algorithm 2: Greedy for continuous case

In algorithm 2 in the main loop we need an Incremental Oracle that is specific
to each problem. As we mentioned before, there might be other ways for finding a
sequence H that satisfies the condition of Theorem 3 and as long as it satisfies that
condition we have the 1− 1

eα
guarantee.

3.5 Online ad allocation problem

In this section, we define the greedy algorithm for Online Ad Allocation problem
and show that greedy approach achieves 1 − 1

e
approximation for this problem. We

define a “configuration” as a mapping of query types to ads such that each query type
is mapped to at most d ads. Let S be the set of all possible configurations. We can now
represent any allocation of ads to queries over time [0, T) by a continuous sequence
H = ((s1,∆t1), · · · , (sk,∆tk)) where si ∈ S, ∆ti ∈ R+, k ∈ N and |H| = T which
means “Use each configuration sp (in order) for a duration of ∆tp for p ∈ {1, · · · , k}”.
We call H an “Allocation Strategy”.

Let u(H) be the expected utility of the search engine for using an allocation
strategy H. Note that for any given sequence of queries we can say based on H exactly
which ads are displayed for each incoming query and so we can directly compute the
utility of the search engine. Next we show that u is a Submodular Non-decreasing
Sequence Function and so using a greedy algorithm yields an allocation that is at
least 1− 1

e
of the optimal. First we explain how the greedy algorithm works.

At any point in time, the greedy method chooses the best configuration as follows:
For each query type j map it to the d ads with highest pij among those that have
not exhausted their budgets yet and denote them by Qj(s). Let r(s) be the expected

36

revenue rate of such a configuration s. We can write r(s) as follows:

r(s) =
∑
j∈N

qj
∑

i∈Qj(s)

pij (3.5.1)

Note that the revenue of the search engine for using configuration s for a short
period of length ∆t assuming that none of the ads exhaust their budget during that
time is given by r(s)∆t.

The greedy algorithm works as follows: Choose the best configuration (the one
with maximum r(s)) as explained above by assigning query type j to the d ads
with highest pij among those that have not exhausted their budgets yet. Keep that
configuration until at least one of the ads runs out of budget. Then recompute the
best configuration and switch to it. It is easy to see that the derivative of u(H[0,t))
with respect to t is r(s) where s = H(t) is the configuration that is active at time t
in H. That is because d

dt
u(H[0,t)) = u̇s(H[0,t)) is exactly the rate at which the search

engine is accumulating profit at time t which is r(s) and for all other s′ ∈ S we
have r(s′) ≤ r(s) at time t. That also means that our greedy algorithm satisfies the
requirement of the incremental oracle in 2 as the current configuration always has a
higher revenue rate than all the other configurations. Also note that we may need to
change the configuration only when an ad runs out of budget which means the total
number of configuration changes is no more than m. The only thing that remains
to be shown is that the utility function u is a Submodular Non-decreasing Sequence
Functions which we prove next.

Lemma 3.5.1. The utility function of online ad allocation problem satisfies Condi-
tion 1. In particular, consider the allocation strategies A,B ∈ H and assume that
A ≺ B. The remaining budget of each ad at the end of using B is less than or equal
to its remaining budget in A.

Proof. Consider the allocation strategies A,B ∈ H and assume that A ≺ B. We
argue that the profit extracted from each ad in B is at least as much as the profit
extracted from each ad in sequence A.

We partition the ads into two categories:

• Ads that have no budget left after running sequence B.

• Ads that still have budget after running sequence B.

In the former case, sequence B extracted the maximum possible budget from the ad.
So for this set of ads, our claim holds.

37

For the ads that belong to the second category, we know that they still have
budget available. Consider an ad i that belongs to this category. We will show that
the profit extracted by B from this ad is at least as much as the profit extracted by
A.

Consider the configuration s ∈ S that is active in B for a total time of ∆t. For all
queries of type j that arrive during that time and any ad i that is allocated to them
by configuration s, we know that the profit extracted from budget of ad i by those
queries is ∆tqj because ad i never ran out of budget. Since A ≺ B, configuration s is
either not present in A or was used in A for less total time than B and so the total
profit extracted from ad i in A is no more than the profit extracted from ad i in B.

Since for both categories the expected profit extracted by B from each ad is higher
than or equal to the profit extracted by A from that ad, we can conclude that the
non-decreasing property holds.

Next, we show that Condition 2 holds as well.

Lemma 3.5.2. Online ad allocation problem satisfies Condition 2.

Proof. Consider the allocation strategies A,B,C ∈ H and assume that A ≺ B. First
of all, based on Lemma 3.5.1, we know that the remaining budget of each ad after A
is less than or equal to its remaining budget after B. It is also easy to see that the
contribution of each ad to u(C|B) or u(C|A) is equal to the difference in its budget
before and after using the C. Now, consider using the allocation strategy A first
followed by C. Again we partition the ads into two categories:

• Ads that have exhausted all of their budget after running A⊥C.

• Ads that still have budget after running A⊥C.

The contribution of the ads in the first category to u(C|B) is no more than their
contribution to u(C|A) because they had equal or more remaining budget after using
A than after using B and they have contributed all of their remaining budget to
u(C|A).

Now consider the ads that belong to the second category. By the same reasoning
as we did for the proof of Lemma 3.5.1 we conclude that C has extracted profit from
those ads at full rate since they did not run out of budget. So their contribution to
u(C|A) and u(C|B) is equal.

Finally, we can show that Condition 3 is also met. Notice that the derivative of
the utility function is a step function that changes its value only when either in the

38

sequence there is change of configuration or when some ad runs out of budget. The
utility function is therefore differentiable and its derivative is continuous except on
the endpoints of each piece. The total number of pieces is bounded by the number of
ads which is finite. Therefore we conclude that the utility function is differentiable
and its derivative is continuous except at a finite number of points.

Using the above properties, we conclude that the approximation ratio of greedy
algorithm that will select the best configuration at each point of time is (1− 1

e
) and

it completes the proof. As a result we have:

Theorem 1. Greedy approach obtains (1− 1
e
) approximation for online ad allocation

problem assuming that the queries are coming from a fixed but unknown distribution.

39

Chapter 4
Query Rewriting for Keyword-based Advertising

As described before, the main objective in search advertising, is to show relevant
ads for a given query. However, even though advertisers/ads bid on keywords, a
relevant ad for a given query may not necessarily exist among the set of ads that
have bid for that query, or the set might be even empty. The objective is to find
the set of ads that are not in the set but are relevant and appropriate to be shown
for the keyword. For instance, an ad bidding on the keyword “wedding band” may
be appropriate for the query “engagement ring” even if that ad hasn’t bid on the
keyword “engagement ring”. A common mechanism to improve the relevance of
keyword advertising is query rewriting. Query rewriting outputs a list of queries
q1, q2, . . . , qn (referred to as rewrites) whose ads are also relevant to a given query
q. Most work on this topic, however, has primarily focused on generating relevant
rewrites with respect to the original query. In query rewriting for keyword advertising,
there are some extra constraints that we should consider while trying to optimize our
objective function. The constraints can be summarized as follows:

1. Constraints on the number of rewrites per query due to system considerations.

2. Constraints on the number of queries for which a query rewrite can be used due
to undesirability of frequency for users (we also call this frequency capping).

3. Budget constraints of an advertiser.

4.1 Why rewrite queries for keyword advertising?

If our main objective is to serve the most relevant set of ads for a query, it is
conceivable to estimate the relevance of every ad with respect to all known keywords
a priori (e.g., offline, say, with a relevance ranking model) and build a keyword-ad
index mapping keywords to their most relevant ads. Given this, why is query rewriting
related at all to keyword advertisement? We offer three motivating points.

• The advertiser bidding landscape for a keyword is very dynamic and fast chang-
ing. Advertisers manually or automatically distribute their budget throughout
the day by turning on and off their ads. Yahoo!, for example, offers a maximum
of 15 min delay before ads effectively go on- or off-line, respectively. With such

40

tight system requirements, it is more practical to add (or remove) a list from
only one keyword (the one they are bidding on) rather than hundreds or even
thousands (as it could potentially be the case if the indexing is based on a priori
computation of keyword-ad relevance).

• Search ad networks need cost-effective experimentation capabilities. Experi-
menting with various query rewrite algorithms using live A/B testing is far
easier and cheaper than having to set up a few clusters of ad indices.

• Search advertising networks evolve from simple entities offering hundreds or
thousands of search keywords to be purchased by advertisers to massive agencies
and networks offering millions of keywords as well as “packages” or “bags” of
keywords. Not surprisingly, proprietary ad serving systems go from in-memory
hash tables and MySQL databases to possibly full-fledged search engines with
time. Along the way, due to legacy reasons, query rewriting based on keyword
clustering, keyword graph mining, etc, are viable techniques to improving ad
relevance and coverage.

Organization. The rest of the chapter is organized as follows. In Section section 4.2,
we state our combinatorial formulation. Section section 4.3 contains the results for
the cardinality version and Section section 4.4 contains the results for the weighted
version. section 4.5 contains the experimental results.

4.2 Formulation

In this section we formalize the problem framework and provide the necessary
notation and technical background. Consider the three-layer graph G with vertex set
(Q,W,A) and edge sets EQ ⊆ Q ×W and EA ⊆ W × A. Here, Q represents all the
queries, W represents all possible rewrites for the queries Q, and A represents the set
of potential ads. The edge (q, w) ∈ EQ means that w is a possible rewrite for q and
the edge (w, a) ∈ EA means that ad a can be shown for rewrite w (Figure 4.1). The
general goal is to suggest a subset A′ of ads that maximizes certain “benefit,” subject
to certain “constraints.” As we discussed before, this goal will be achieved instead by
suggesting query rewrites for each query, i.e., a subset E ′Q ⊆ EQ of edges such that
each query has at least one rewrite, that will lead to the most beneficial subset A′ of
ads.

We define the following notations:

41

query rewrite ad

w(q,a) :
wight function is defined between the first and the third layer

We want to select a
subset of these edges

The outdegree
is limited

In cardinality version
the indegree is limited

Figure 4.1: three layer graph containing queries, rewrites and ads

42

Γ(Q′): For a subset Q′ ⊆ Q of queries, we use Γ(Q′) ⊆ W to denote all the rewrites
that arise from some query in Q′.

Γ(W′): For W ′ ⊆ W , we use Γ(W ′) ⊆ A to denote all the ads that can be covered
by some rewrite in W ′.

βq(a): For each q ∈ Q and a ∈ A βq(a) ≥ 0 captures the benefit of showing ad a for
query q.

βq,d(A′): is the benefit provided by the d most beneficial ads in A′ (called max d-
benefit) defined as follows:

βq,d(A
′) = max

As⊆A′,|As|=d
βq(As),

Bq,d(A′): is the set of top d ads in A′ that are contributing in βq,d(A
′) function.

βq,d(W′): is the benefit obtained from the set of top d ads belonging to Γ(W ′) ac-
cording to the benefit function βq(·), where W ′ ⊆ Γ({q}).

Bq,d(W′): is the set of ads that are contributing in βq,d(W
′).

βd(E′Q): is
∑

q|(q,·)∈E′Q
βq,d({w | (q, w) ∈ E ′Q}).

Note that max d-benefit captures realistic constraints that limit the number of
ads shown, including screen real-estate, user experience, etc. Given this framework,
We now describe the two flavors of benefit and constraints that will be used in our
study. A constraint that is common to both versions is the following:

given K > 0, there are no more than K rewrites for each query, i.e., for each q ∈ Q,
we have |{w | (q, w) ∈ E ′Q}| ≤ K.

Next, we describe the specific constraint of each variant as well as the desired
objective function.

Cardinality version. In the cardinality version of the problem, we are given
d > 0, and a function D : W → R≥0. Our constraint is then:

there are no more than D(w) queries for which w is a rewrite, i.e., for all w ∈ W ,
we have |{q | (q, w) ∈ E ′Q}| ≤ D(w).

We now focus on the objective of this variant.

43

The objective then is to find E ′Q, subject to constraints given above, such that
the d-benefit of βd(E

′
Q) is maximized.

Weighted version. In the weighted version of the problem, the setup we
assume is the following. Let d > 0 be given. Given a set of query rewrites, i.e.,
a subset of edges in EQ, an ad allocator will optimally allocate d ads that are
covered by the rewrite set to each query. The goal is to suggest the rewrites in
a way that the total benefit that an ad allocator can obtain will be maximized.
Let the benefit gained from showing an ad a for t units of traffic for a query q
be t · βq(a).

Formally, we are given two functions T : Q → R+ and L : A → R+. The
constraint is then:

each ad a can be shown for at most L(a) units of traffic, i.e., assuming that queries
q1, . . . , q` are shown ad a for T1, . . . , T` units of traffic,

∑`
i=1 Ti ≤ L(a).

4.3 Algorithms for cardinality version

In this section we obtain approximation algorithms for the cardinality version.
First, we consider the case when there is a single query and obtain a simple greedy
algorithm. Next, we focus on the general case of multiple queries where we have to
optimize simultaneously over all queries.

4.3.1 Warmup: Single query case

Note that since there is a single query, constraint (b) is vacuous, the query rewrites
can be simply represented as W ′ ⊆ W and constraint (a) becomes a single constraint
|W ′| ≤ K. Also, βd(E

′
Q) = βq,d(Γ(W ′)). For the remainder of the section, we will use

these conventions.
The approximation algorithm we describe is a greedy algorithm. At each step of

the greedy algorithm, the query rewrite that gives the maximum incremental d-benefit
will be selected. Let Q = {q}.

We show that Algorithm Single-Query-Greedy gives a (1−1/e)-approximation
to the cardinality version for the single query case. We do this by showing that the ob-
jective function has the non-decreasing submodularity property. The approximation
guarantee then follows by appealing to the result of Nemhauser et al. in [45].

Theorem 1. The max d-benefit function is non-decreasing and submodular.

44

W ′ ← ∅;
while |W ′| ≤ K do

Find w ∈ W \W ′ that maximizes βq,d(Γ(W ′ ∪ {w})) ;
W ′ ← W ′ ∪ {w} ;

end
Return W ′ ;

Algorithm 3: Single-Query-Greedy

Proof. The non-decreasing property is immediate. We use the characterization (3’)
in Definition 1 to show submodularity. In our case, we have f(W ′) = βq,d(Γ(W ′)) for
W ′ ⊆ W . We need to show that for a given w ∈ W and W1,W2 ⊂ W with W1 ⊆ W2:

f(W1 ∪ {w})− f(W1) ≥ f(W2 ∪ {w})− f(W2).

First, we observe that if a ∈ Γ(w) \ Γ(W2) and a ∈ Bq,d(W2 ∪ {w}), then a ∈
Bq,d(W1∪{w}). Let X be the set of ads covered by w that are added to Bq,d(W2∪{w}),
i.e.,

X = {a ∈ Bq,d(W2 ∪ {w}) \Bq,d(W2) : a ∈ Γ(w)}.

Let Y ⊆ Bq,d(W2) be the set of ads such that |Y | = |X| with the lowest sum∑
a∈Y βq(a), i.e., the least |X| beneficial ads in Bq,d(W2). Similarly, let Z ⊆ Bq,d(W1)

be the set of ads such that |Z| = |X| and with the lowest sum
∑

a∈Z βq(a), i.e., the
least |X| beneficial ads in Bq,d(W1). We have

f(W2 ∪ {w})− f(W2) =
∑
a∈X

βq(a)−
∑
a∈Y

βq(a).

From the above mentioned fact, X ⊆ Bq,d(W1 ∪ {w}). Therefore,

f(W1 ∪ {w})− f(W1) ≥
∑
a∈X

βq(a)−
∑
a∈Z

βq(a).

Since W1 ⊆ W2, we have
∑

a∈Z βq(a) ≤
∑

a∈Y βq(a). This shows that the increase
in benefit caused by adding w to W1 is at least that of adding w to W2, establishing
(3’).

Also it can be shown that (1−1/e) is a tight bound for Algorithm Single-Query-
Greedy4.3.4. It is easy to see that Algorithm Single-Query-Greedy runs in time
O((
∑

w∈W |Γ(W)|) ·K(log d)).

45

4.3.2 The general case

We now consider the cardinality version with constraints (a) and (b). To simplify
notation, given a solution E ′Q, let Rq be the set of rewrites for query q as given by
E ′Q, i.e., Rq = {w | (q, w) ∈ E ′Q}. Thus, βd(E

′
Q) =

∑
q∈Q βq,d(Rq).

Eg ← ∅ ;
while ∃e ∈ EQ that is unmarked do

Find an unmarked candidate edge e = (q∗, w) ∈ EQ that maximizes the
incremental d-benefit

∑
q∈Q\{q∗} βq,d(Rq) + βq∗,d(Rq∗ ∪ {w}) ;

// if (q∗, w) does not violate the constraints:

if |Rq∗| < K and |{q : (q, w) ∈ Eg}| < D(w) then
add (q∗, w) to Eg ;

end
Mark (q∗, w) ;

end
return Eg ;

Algorithm 4: General-Greedy

The approximation algorithm is once again a greedy one. We can formulate our
problem as maximizing a submodular function over the intersection of two matroids.
It is known that the greedy algorithm provides a tight 1/(M + 1) approximation for
maximizing a submodular function over the intersection of M matroids [47]. For
our problem, this implies that the greedy algorithm provides a 1/3 approximation.
However, using the structure of our objective function, which is a sum of submodular
functions, we improve the approximation ratio to (e−1)/(2e−1) using a careful charg-
ing argument; this improvement to the 1/3 approximation might be of independent
interest.

Theorem 2. Algorithm General-Greedy provides an (e − 1)/(2e − 1) ≈ 0.387
approximation for the cardinality version.

Proof. Denote by Eg = {e1, . . . , em} ⊆ EQ the set of edges chosen by Algorithm
General-Greedy and by Eo = {e′1, . . . , e′n} the set of edges in the optimal solution.

We first add all the edges in Eo \Eg to Eg. We will charge the increase in benefit
coming from these new edges to the edges in Eg. Note that in Algorithm General-
Greedy, each edge in EQ is considered exactly once to be added to Eg. We now
describe the charging scheme.

Consider the iteration in which an edge e′i = (q, w) ∈ Eo \ Eg is selected as a
candidate by the greedy algorithm, i.e., it is the edge that maximizes the incremental

46

d-benefit. Since e′i was not added to the greedy solution, this means that either we
have already selected K rewrites for q (|Rq| = K) or w has been chosen as a rewrite
D(w) times (|{q : (q, w) ∈ Eg}| = D(w)).

Partition the set of edges in Eo\Eg into two groups, SQ and SW . Here, SQ consists
of those edges that were not added to the greedy solution because the endpoint in Q
was tight (|Rq| = K), and SW consists of those edges that were not added because
the endpoint in W was tight. If an edge was tight for both sides, it is only in SW .

First consider an edge (q, w) ∈ SW . When (q, w) was chosen as a candidate
in Algorithm General-Greedy but was not added to Eg, w had already been
suggested as a rewrite for D(w) other queries. Since the selection of the edges is
greedy, each of the previous D(w) edges adjacent to w added more incremental d-
benefit at the time they were added to Eg. Since the d-benefit function is submodular,
the incremental benefit from adding (q, w) to Eg is less than the incremental benefit
from adding the previous D(w) edges adjacent to w at the time they were added.
Since the number of edges in SW adjacent to w is at most D(w), we can make a one-
to-one charging between the incremental benefit coming from SW and the incremental
benefit from the edges adjacent to w chosen by Algorithm General-Greedy.

Next consider the edges in SQ. We charge the incremental benefit for all the edges
in SQ adjacent to a vertex q at the same time. Consider a fixed vertex q. Let the
edges in Eg incident to q be EK = {e1, . . . , eK} (where e1, . . . , eK was the order that
the edges were added) and the edges in SQ adjacent to q be EK′ = {e′1, . . . , e′K′}, with
K ′ ≤ K. We will show that the benefit obtained from EK is at least 1 − 1/e of the
benefit obtained from EK′ . The key observation is that when each edge (q, w) ∈ EK′
was a candidate to be added to Eg, the edge was only tight on the Q side, i.e.,
there were already K edges adjacent to q in Eg. Again, this implies that each of the
edges in EK added more incremental benefit than EK′ . Let the total benefit obtained
from EK′ be OPTq and the incremental benefit from e1, . . . , eK be s1, . . . , sK . Since
e1, . . . , eK were chosen greedily we can conclude that:

s1 ≥
OPTq

K

s2 ≥
OPTq − s1

K
...

sK ≥ OPTq −
∑K−1

i=1 si
K

The total benefit obtained by EK can be represented as:
∑K

i=1 si. It is easy to see

47

that
K∑
i=1

si ≥

(
1−

(
1− 1

K

)K)
OPTq ≥

(
1− 1

e

)
OPTq.

Since the benefit of the edges in SW can be charged bijectively to edges in Eg, and
the benefit of the edges in SQ is no more than e/(e− 1) of the benefit of the edges in
Eg, we can conclude that βd(Eg) ≥ (e− 1)/(2e− 1)OPT.

4.3.3 Hardness results for Cardinality Version

In this section, we show the hardness results for both variants of single query case
as well as the general version.

Lemma 4.3.1. Single query rewriting with cardinality constraint is NP-hard.(If d is
an input parameter)

Proof. To show the NP-hardness we reduce the maximum coverage to this problem.
Consider an instance of maximum coverage where we want to select K of the subsets
S1, . . . , sn ⊆ S and also we want to maximize the total number of coverage elements
with those subsets. Now we reduce this instance to the following query rewriting
problem. For the specified given query q,put one possible rewrite node wi corre-
sponding to each si. Also for each element ei ∈ S put add ai ∈ A and connect each
Wi to aj iff ej ∈ Si. Now if we set d large enough (for example any value d > |S|.) the
best solution for the maximum coverage can be obtained by solving the corresponding
single query rewriting instance with cardinality constraint.

It can also be shown that the general case of the cardinality variant is NP-hard
as well.

Lemma 4.3.2. General query rewriting with cardinality constraint is NP-hard.

Proof. We again reduce the maximum coverage problem to this problem. Consider
the similar notations for the maximum coverage instance. Now use exactly the same
mapping as the one used in the previous lemma and set the value of L = 1. (
That means each rewrite is allowed to be suggested for at most query.) However
since in this instance we only have one query this constraint does not add any more
restrictions. So again to solve the maximum coverage it is enough to solve the general
query rewriting with cardinality constraint. (More easily we can say that we can
reduce the single query case to the general case easily.)

48

4.3.4 Tight examples for cardinality version

In this section we will represent the examples that show the given analysis for the
greedy algorithms, for both single query rewrite and general case are tight. First we
focus on the single query case.

The suggested tight example for single query has the same structure as the tight
example for maximum coverage.

Theorem 3. The approximation factor 1 − 1/e given for Algorithm single-query-
greedy is tight.

Proof. suggested greedy algorithm For some given query q call the set of its possible
rewrites w1, . . . , w2k. Now suppose that w1, . . . , wk each covers ads of total weight 1/k
and the ads they are covering are pairwise disjoint ads. We describe the coverage of
wk+1, . . . , w2k as follows: 1) They cover pairwise disjoint set of ads. 2) wk+1 will cover
1/kth of the ads that are covered by each wj j ≤ k plus an extra ad of weight ε. So
the total covered weight by wk+1 is k.1/k2 + ε = 1/k+ ε. 3) wi will cover 1/kth of the
ads that are covered by each wj, j ≤ k but not covered by wp, p < i plus some extra
ad of weight ε.(e.g wk+2 will cover (k − 1)/k2 in total, so on). See Figure 4.2. The
optimal solution will suggest w1, . . . , wk and the total covered weight is 1. However
greedy solution will first suggest wk+1 and the wk+2, . . . , w2k. So the total covered
weight by the greedy is 1 − (1 − 1/k)k + ε = 1 − 1/e + ε. By making ε arbitrarily
small, we can conclude that the analysis is tight.

We can show that the given analysis for general case is tight as well.

Theorem 4. The approximation factor (e−1)/(2e−1) is tight for Algorithm General-
Greedy.

Proof. Consider the following example: SupposeQ = {q0, q1, . . . , qk}, W = {w1, . . . , w2k}.
Also assume that ∀i ≥ 1 (q0, wi) ∈ W and (qi, wi) ∈ W . Assume that D(wi) = 1. and
we are allowed to suggest k rewrites for each query. Now, suppose that wk+1, . . . , w2k

are covering 1/k portion of the available ads each and their coverage is pairwise dis-
joint. For i ≤ k we define the coverage of wi as follows: wi will cover 1/k of the
remaining ads that are covered by each wj j > k that are not covered by previous wp
p < i plus some ε We assume that ads have the same weight for all the queries except
the ε ads.(We assume that they have weight zero for all the queries except q0) That
means that w1 will cover 1/k2 of the ads that are covered by each wj, j > k and in
total it would cover 1/k+ε of the ads. Optimal solution here is to select wk+1, . . . , w2k

as the suggested rewrites for q0 and for all 1 ≤ i ≤ k choose wi as the suggested rewrite
for qi. Hence, the benefit of the optimal solution is 1 + 1 − (1 − 1/k)k = 2 − 1/e.

49

Aw1

Wk+1

w2k

wk

W

q 1/k

1/k2

Figure 4.2: Tight example for the general cardinality case

50

However the greedy will select w1, . . . , wk as the rewrite for q0 first and since the de-
gree constraint for rewrites is at most 1 no other rewrite can be suggested anymore.
So the total benefit by the greedy solution is 1− (1− 1/k)k ≈ 1− 1/e. Now ratio of
the greedy to the optimal is e−1

2e−1
which shows that the analysis is tight.

4.4 Algorithm for the weighted version

We are given a set M of ads and a set N of query types (keywords). Furthermore,
for each ad i and query j define pij, Bi and qj as in section 3.5. We are also given
a set R of rewrites. Each rewrite r ∈ R is associated with a small subset of the ads
which we denote by Wr. The goal is to associate each query type with at most k
rewrites so that later the ad-allocator only considers the ads that are associated with
the rewrites of each query type in order to find the best ads to show for incoming
queries of that type. Suppose that Yj is the set of rewrites associated with query j.
Formally, the ad-allocator will then only consider ad i such that i ∈

⋃
r∈Yj Wr to find

the best d ads to show for queries of type j. The problem is how to find the sets Yj
so as to maximize the maximum profit that can be extracted by the ad allocator.

Next we give a greedy algorithm that gives a 1− 1
e

1− 1
e ≈ 0.47 approximation which

improves the previous 0.25 approximation given by Malekian et al. in [40].

We define a “partial allocation” as a tuple of the form (j, Yj, ~B
j) where ~Bj =

(B1j, · · · , Bmj) is a vector of budgets in which Bij is the maximum budget that we
allow the ad allocator to extract from ad i for displaying the ad i for query type j. Yj
is the set of rewrites for query type j. Note that any solution of the query rewriting
problem and the corresponding allocation problem can be written as a sequence of
the following form:

H = (j1, Yj1 , ~B
j1), · · · , (jn, Yjn , ~Bjn) (4.4.1)

We now define a utility function u(H) on the sequences of the above form as
follows:

Definition 1 (u(H)). Initialize u to 0 and set each of the Bi to the total budget of
ad i. For each of the partial allocation tuples in order do the following. Suppose the
current tuple is (j, Yj, ~B

j). Set the current budget limit of each ad i to the minimum
of Bi and Bij. Suppose that pij = 0 for all ads that are not associated with any of
rewrites in Yj. Ignore all the queries of type other than j. Use the greedy algorithm of
section 3.5 to solve the assignment problem for only the queries of type j considering
the current budget limits. Notice that the greedy algorithm is optimal when we have

51

only one query type. After computing the allocation, update each Bi to reflect how
much of its budget has been used by j and then proceed to the next tuple in the sequence.
Let ~B(H) denote the vector of remaining budgets at the end of this process (we will

use this notation later). Suppose OPT = (1, Y1, ~B
1), · · · , (n, Yn, ~Bn) is the sequence

in which Yj’s are the optimal rewrites and ~Bj is the vector of budgets used by ad j in
the corresponding optimal allocation. Clearly u(OPT) is equal to the total utility of
the search engine for the optimal solution.

Lemma 4.4.1. u(H) as defined in Definition 1 is a non-decreasing submodular se-
quence function.

Proof Sketch: We only give the sketch of the proof as it is very similar to the proof
of Lemma 3.5.1 and Lemma 3.5.2. Again we separate the ads to two groups. Those
who have exhausted their budget at the end of computing u using the Definition 1
and those who still have budget left. We can then verify that for any two sequence of
partial allocations A and B such that A ≺ B, all of the ads that are in the first group
after computing the u(B) using Definition 1 have made their maximum contribution
to u(B) and so cannot contribute more to u(A). For all the other ads we can show
that their contributions to u(A) and u(B) are equal. The submodularity property
follows in the same way as for Lemma 3.5.2.

In order to be able to use the greedy algorithm 1, given in section 3.4, to approxi-
mate OPT we need an oracle that can find the best partial allocation (j, Yj, ~B

j) to be
appended to the current sequence. The marginal utility of adding a partial allocation
(j, Yj, ~B

j) is a non-decreasing submodular function in terms of Yj with the constrain
that |Yj| = k. Therefore for each j we can get a 1− 1

e
approximation by using a greedy

algorithm. Start from an empty Yj and add the rewrite that increases the marginal
utility the most until k rewrites have been added. We then select among all possible
query types j the one for which (j, Yj, ~B

j) has the highest marginal utility and append
that to the current sequence of partial allocation. Since we are approximating the
best (j, Yj, ~B

j) within a factor of 1− 1
e
, based on Theorem 2 the approximation ratio

of the overall algorithm is 1 − 1

e1−
1
e
≈ 0.47. The complete algorithm is described in

Algorithm 5.

4.5 Experimental results

We evaluated the performance of Algorithm Single-Query-Greedy through
two experiments. In the first, we compared the relevance of the rewrites selected

52

by Algorithm Single-Query-Greedy with the rewrites selected by a baseline al-
gorithm (Algorithm Baseline). The relevance of these rewrites was determined by
a set of human editors. In the second experiment, we compared the d-benefit of
Algorithm Single-Query-Greedy to the d-benefit of the Algorithm Baseline.

Algorithm Baseline selects rewrites using the same graph ({q},W,A) that is used
by Algorithm Single-Query-Greedy. To select the rewrites for a given query q,
Algorithm Baseline computes a similarity measure between all pairs (q, w), where
w ∈ W . The similarity measure Baseline uses is Pearson Correlation, which has
been used in many other settings as a similarity measure (e.g. [12, 30, 7]). Pearson
Correlation is defined on two random variables X, Y with means µX , µY and standard
deviations σX , σY as:

p(X, Y) =
E((X − µX)(Y − µy))

σXσY
.

To compute the Pearson Correlation r(q1, q2) between two queries, we identify a query
q with a random variable Xq defined as follows — with probability 1/|A|, Xq = β(a) if
(q, a) ∈ E, and 0 otherwise. Algorithm Baseline selects k rewrites with the highest
Pearson Correlation with q. The idea is that queries with high similarity to q are
relevant.

Our results show that while the rewrites selected by Algorithm Single-Query-
Greedy are similar in relevance to the rewrites found by Algorithm Baseline,
Algorithm Single-Query-Greedy significantly outperforms Algorithm Baseline
when comparing the d-benefit of the selected rewrites. We describe our results in
detail in the next two sections.

4.5.1 Editorial relevance

In this experiment we selected rewrites for 1,170 queries. The 1,170 queries were
chosen randomly from a search log. We compared the relevance of the top five rewrites
selected by Algorithm Single-Query-Greedy and the top five rewrites of Algo-
rithm Baseline. We ran Algorithm Single-Query-Greedy with the constraint
that |W ′| ≤ 5 while attempting to maximize 10-benefit, i.e., the benefit of the top 10
ads.

The relevance of the rewrites was judged on a four point scale identical to the
scale used in [35, 7]:

• Precise match (1): A near-certain match. The rewrite precisely matches the
user’s intent.

53

• Approximate match (2): A probable, but inexact match with user intent.

• Marginal match (3): A distant, but plausible match to a related topic.

• Clear mismatch (4): A clear mismatch.

The results of the experiment are summarized in Table 4.1.
Algorithm Baseline does place a larger fraction of the rewrites it selects into

the Precise match category; otherwise, the relevance of the two rewriting systems is
equivalent.

4.5.2 d-benefit

In this experiment we compared the d-benefit of the rewrites selected by Algo-
rithm Single-Query-Greedy to the rewrites selected by Algorithm Baseline. We
computed rewrites for a set of 89, 000 queries chosen randomly from a search log.

One choice of the benefit β(a) of an ad for a given query q is the estimated click-
through rate for the (q, a) pair. We used this notion of benefit in this experiment
and describe briefly how it was computed. Recall the graph ({q},W,A). For each
edge (w, a) ∈ EA, we have a historical estimate of the click-through (CTR) rate for
the query-ad pair. We would like β(a) to be proportional to the CTR for the pair
(q, a), but the CTR of the pair (w, a) will not necessarily be a good estimate. This
is because some queries in W will be more relevant to q than others. This motivates
our definition of β(a) in these experiments:

β(a) =

∑
w∈Γ(a) r(q, w) · CTR(w, a)∑

w∈Γ(a) r(q, w)

where r(q, w) is the Pearson correlation defined above. In short, β(a) is the similarity-
weighted average of its CTRs.

4.5.2.1 Comparing Single-Query-Greedy and Baseline

We compared the d-benefit of Algorithm Single-Query-Greedy and Algorithm
Baseline for different values of K (the constraint on the number of rewrites allowed
for each query) and d (which specifies the number of ads that contribute to the
benefit). To compare the performance of Baseline and Single-Query-Greedy
for a specific setting of K and d, we ran Algorithm Single-Query-Greedy with K
and d to select a set WG of K rewrites, and computed βd(Γ(WG)), i.e., the benefit of

54

the top d ads adjacent to WG. Recall that Algorithm Baseline is not parameterized
on either K or d. For Baseline, we chose the set WB of the top K rewrites ranked
by Baseline and computed βd(Γ(WB)).

The results of this experiment for different values of K and d are displayed in
Table 4.2. In each cell, we give the percentage gain of Single-Query-Greedy
over Baseline, i.e., 100 × (Single-Query-Greedy − Baseline)/Baseline. For
small K, the gain of Single-Query-Greedy over Baseline is significant. As K
increases, the gain lessens. This is because the number of potential rewrites for many
queries is less than K (i.e., |W | ≤ K). For these queries, there is no difference between
the rewrites suggested by Single-Query-Greedy or Baseline. This observation
is verified by Table 4.3. In this table, we break down the percentage gain in Table
4.2 by |W |. The large percentage gains come when |W | is large relative to K, the
number of rewrites we select. This occurs when the set of rewrites to choose from is
quite large. Many of the rewrites are likely to be relevant and choosing the ones with
the most beneficial ads gives large gains.

We also noticed that for K > d, Single-Query-Greedy computes the optimal
solution. Indeed, for K > d, the optimal solution is easy to characterize — it is just
the queries that are adjacent to the d ads with the greatest benefit. This means that
the percentage gain of Single-Query-Greedy over Baseline for K > d is just an
indicator of how well Baseline performs compared to the optimal solution.

range of |W |
K, d [1, 2] [3, 8] [9, 32] [33,∞]
1, 2 16.5% 130.0% 290.1% 486.1%
1, 4 17.3% 135.9% 299.1% 462.4%
1, 6 17.9% 140.5% 310.1% 460.1%
1, 8 18.3% 143.6% 320.1% 464.1%

1, 10 18.6% 146.0% 328.8% 469.9%
2, 2 0.0% 72.7% 212.0% 400.2%
2, 4 0.0% 81.5% 225.0% 390.8%
2, 6 0.0% 87.1% 237.1% 390.0%
2, 8 0.0% 91.1% 248.4% 394.5%

2, 10 0.0% 94.0% 258.6% 400.5%
4, 2 0.0% 17.2% 116.0% 262.3%
4, 4 0.0% 20.2% 130.4% 287.1%
4, 6 0.0% 22.9% 140.7% 294.1%
4, 8 0.0% 24.9% 149.1% 297.9%

4, 10 0.0% 26.5% 156.8% 302.4%

55

range of |W |
8, 2 0.0% 0.0% 49.2% 170.5%
8, 4 0.0% 0.0% 52.1% 178.9%
8, 6 0.0% 0.0% 55.4% 187.3%
8, 8 0.0% 0.0% 58.9% 196.5%

8, 10 0.0% 0.0% 62.3% 203.2%
16, 2 0.0% 0.0% 10.5% 101.8%
16, 4 0.0% 0.0% 10.9% 104.5%
16, 6 0.0% 0.0% 11.3% 106.5%
16, 8 0.0% 0.0% 11.8% 109.1%

16, 10 0.0% 0.0% 12.2% 112.0%
32, 2 0.0% 0.0% 0.0% 48.0%
32, 4 0.0% 0.0% 0.0% 48.3%
32, 6 0.0% 0.0% 0.0% 48.2%
32, 8 0.0% 0.0% 0.0% 48.5%

32, 10 0.0% 0.0% 0.0% 49.0%
64, 2 0.0% 0.0% 0.0% 13.2%
64, 4 0.0% 0.0% 0.0% 13.2%
64, 6 0.0% 0.0% 0.0% 13.5%
64, 8 0.0% 0.0% 0.0% 13.7%

64, 10 0.0% 0.0% 0.0% 14.0%
128, 2 0.0% 0.0% 0.0% 3.2%
128, 4 0.0% 0.0% 0.0% 3.3%
128, 6 0.0% 0.0% 0.0% 3.5%
128, 8 0.0% 0.0% 0.0% 3.6%

128, 10 0.0% 0.0% 0.0% 3.7%
Table 4.3: d-benefit: Percentage gain of Algorithm
Single-Query-Greedy over Algorithm Baseline bro-
ken down by |W |.

56

H ← ∅ ;
for i ∈M do

Bi ← budget of ad i ;
end
~B ← (B1, · · · , Bm) ;
while N 6= ∅ do

∆′ ← 0 ;
// find the best partial allocation to append

for j ∈ N do
Yj ← ∅ ;
// find the best k rewrites greedily

for w = 1, · · · , k do
δ′ ← 0 ;
for r ∈ R\Yj do

δ ← u((j, Yj ∪ {r}, ~B)|H) ;
if δ′ < δ then

δ′ ← δ ;
r′ ← r ;

end

end
Yj ← Yj ∪ {r′} ;

end
// compute the marginal utility of adding (j, Yj)

∆′ ← u((j, Yj, ~B)|H) ;
if ∆′ < ∆ then

∆′ ← ∆ ;
j′ ← j ;

end

end

Define ~Bj′ to be exactly equal to how much of the budgets are used by
(j, Yj ∪ {r}, ~B) when appended to H ;

H ← H⊥(j′, Yj′ , ~B
j′) ;

N ← N\{j′} ;
~B ← ~B − ~Bj′ ;

end

Algorithm 5: for Query Rewriting

57

Baseline Single-Query-Greedy
1 24% 21%

1-2 72% 72%
1-3 91% 91%

Table 4.1: Relevance comparison: Algorithm Baseline vs. Algorithm Single-
Query Greedy

d
2 4 6 8 10

K = 1 197.2% 201.9% 208.6% 214.9% 220.5%
K = 2 147.3% 156.7% 164.3% 171.4% 177.6%
K = 4 83.5% 96.4% 104.2% 109.9% 115.1%
K = 8 45.4% 49.9% 54.2% 58.5% 62.1%
K = 16 22.3% 24.1% 25.5% 27.0% 28.4%
K = 32 10.2% 10.9% 11.3% 11.8% 12.2%
K = 64 3.4% 3.6% 3.8% 4.0% 4.2%
K = 128 0.9% 1.0% 1.1% 1.1% 1.2%

Table 4.2: d-benefit: Percentage gain of Algorithm Single-Query-Greedy over
Algorithm Baseline.

58

Chapter 5
Guaranteed Delivery Advertisement: Fair Allocation With a Compact
Plan

Display advertising is a kind of advertising that typically contains text, pho-
tographs or other images and similar items.

As opposed to textual ads on search pages, in traditional way of display adver-
tisement, impressions are sold via a contract between the advertiser and the desired
publisher for the advertiser. Advertiser specifies the amount that he will pay per
impression and the publisher guarantees to show a certain number of impressions for
a certain period of time.

Recently there were some attempts on automating this process by introducing a
third party that synchronizes between advertisers and publishers. In this scenario ad-
vertisers can specify the type of hits (for example women’s shoe) they prefer without
exactly specifying the publisher and then ask for the required number of impressions
they want to obtain from the third party. Based on the number of available impres-
sions via the publishers in contact with the third party, some of the advertisers will
be accepted and a contract with them will be signed and the rest of the advertisers
will be denied. In this context, we consider two problems. The problem considered
in this chapter is related to the case where the third party has already decided which
advertisers to accept. The question is how to do the allocation of impressions to
advertisers so that it is close to a representative allocation and also it is feasible to
do in real time (considering the enormous size of advertisement). We describe repre-
sentativeness by an example: Suppose a person wants to buy 2 pounds of nuts and
he asks for a mixture of almonds and peanuts. Although 2 pounds of peanuts is also
a 2 pound mixture, he would be probably happier if he receives 1 pound of peanuts
and 1 pound of almonds or in other words, this mixture is more representative. The
detailed problem and solution are described in the rest of this chapter.

5.1 Fair Allocation with a Compact Plan

Suppose we are given a set I of different kind of impressions, a set U of users, and
a set J of contracts. Each impression i ∈ I has a supply si > 0 and is labeled with
exactly one user u ∈ U . Each contract j ∈ J has (1) a weight wj > 0 per impression
that captures its importance, (2) a desired set Γj ⊆ I of impressions, and a demand
dj > 0, denoting the number of impressions that need to be allocated to this contract

59

j. For an impression i, let Γi ⊂ J denote the set of contracts who interested in
impression i.

As stated earlier, the goal is to find the most fair allocation of impressions to
contracts. Let yji be the number of impressions i that are assigned to contract j
in a given allocation and let δji = dj · si∑

i′∈Γj
si′

be quantity that captures the ideal

fair allocation. The goal is to minimize
∑

j w
j
∑

i∈Γj ∆(yji , δ
j
i), where ∆(·, ·) is the

penalty function that penalizes deviation from fairness, subject to supply and demand
constraints. Different norm/distance functions can be used for ∆(·, ·); In the rest of
this chapter, we mainly use ∆ = L1. L1 distance function is simply computed by
summing the distances of the allocation from the ideal fair allocation over all pair of
(contact,impression)’s.

For the remainder of this section, a superscript j will always denote a contract
and a subscript i will always denote an impression.

5.1.1 Fair allocation with L1 penalty

In this section we consider the fair allocation problem with the L1 penalty function.
This problem can be formulated as a linear programming problem. Our main result
is that we can solve this LP by solving a min-cost flow formulation, i.e., there is a
combinatorial solution to the fair allocation problem with L1 penalty. We also show
that we can reconstruct the min-cost flow solution using O(|I|+ |J |) space for storing
the preprocessed information and the flow can be recomputed in O(1) using this
information. We postpone the description of the preprocessing and reconstruction for
min-cost flow to Section 5.1.2.

To understand the fair allocation problem with L1 penalty function, we consider
linear programming (LP) formulation of the problem, described below.

min
∑
j

wj
∑
i

∣∣yji − δji ∣∣ , (5.1.1)

subject to

∀j,
∑
i

yji = dj (demand)

∀i,
∑
j

yji ≤ si (supply)

Next, we describe the combinatorial ways to approach this problem. To simplify the
description, from now on, for a given allocationA, we define unfair(A) =

∑
j w

j
∑

i

∣∣Aji − δji ∣∣.
60

Our approach to combinatorially solve (5.1.1) is based on min-cost flow. First,
we show that (5.1.1) can be modeled exactly as a min-cost flow problem. Later in
Section 5.1.2, we show that in fact by preprocessing the network flow solution, we
can find a compact plan that only stores O(|J |+ |I|) values and can reconstruct the
asymptotically optimal solution in O(1) time. Also later in Section 5.1.5, we obtain an
approximate solution, along with efficient reconstruction, for the L1 penalty function
case, when the demand constraints are “soft.”

The flow network, with capacity and cost on each edge, is constructed as a four
layer graph G (Figure 5.1). The first and the last layer are the source s and sink t

Figure 5.1: The network construction, with (capacity, cost) on the edges.

respectively. The second layer represents the set J of contracts, and the third layer
stands for the set I of impressions. Source s has an edge to each contract j ∈ J in the
second layer, with capacity dj and zero cost. Contract j ∈ J in the second layer is
connected to impression i ∈ I in the third layer iff i ∈ Γj. In this case, there are two
edges between j and i. The first edge has capacity δji and cost zero and the second
edge has capacity si − δji and cost 2wj. Finally each impression i ∈ I in the third
layer is connected to the sink t by an edge with capacity si and cost zero.

Theorem 1. The min-cost s-t flow on G is the solution to (5.1.1).

Proof. To prove the theorem, we need to show the following. (1) A maximum s-t flow
in G is a feasible solution to 5.1.1, provided (5.1.1) has a feasible solution. (2) Any

61

feasible solution to (5.1.1) is a feasible s-t flow in G. (3) Minimizing the cost of the
maximum s-t flow in G is equivalent to minimizing the objective in (5.1.1).

First, we show that assuming that (5.1.1) has a feasible solution, a maximum s-t
flow in G is a feasible solution to (5.1.1). Note that the capacity constraints on the
edges from the third layer to t will guarantee the supply constraint. Also we know
that the maximum flow in our network cannot exceed the total demand. Thus all
constraints are satisfied. Since we look for the maximum flow, if there is any feasible
solution to the LP that can satisfy all the demands and the supply constraint, then
that solution would be selected as the maximum flow as well. This means if (5.1.1)
has a feasible solution, then any feasible maximum flow in our network is a feasible
solution to (5.1.1). Second, it is easy to see that any feasible solution to (5.1.1) is also
a feasible s-t flow in G. And last, we argue that the cost of the optimal solution to
(5.1.1) is the same as the minimum cost of the maximum flow in G. In other words,
we need to show that the costs of the flow are computed correctly in G. Note that
the total contribution to the cost of the pairs of impressions and contracts that are
over-assigned, i.e., yji > δji , is half of the total cost. So it is enough to compute twice
this cost. Now consider an impression i and a contract j. If yji > δji , then we can
route at most δji flow through the edge with cost 0 and route yji −δ

j
i through the edge

with cost 2wj, which is equal to 2wj(yji − δ
j
i), which is exactly twice the cost of this

pair.

So we showed that our min-cost flow solution has exactly the same value as (5.1.1).
Next, we show that in fact, we can preprocess the min-cost flow solution so that by
keeping track of only O(|J |+ |I|) values, we can reconstruct the complete flow.

5.1.2 Reconstruction for L1

Even though the above formulation obtains an optimal solution, as we mentioned
earlier, it is not feasible to store the entire allocation information. Storing the rep-
resentation of the solution is expensive since it uses O(|I| · |J |) space. Ideally, we
wish to store just O(|I| + |J |) information (i.e., amortized O(1) per node) that will
let us reconstruct the flow along every edge. For practical reasons, we require the
reconstruction to be time-efficient.

We consider the L1 formulation and show approximate reconstruction via dual
variables for the nodes. First, we write the LP corresponding to the min-cost flow.
As we showed before, this LP is equivalent to (5.1.1).

min
∑
j

∑
i∈Bj

2wjxji (5.1.2)

62

subject to

∀j,
∑
i

(xji + xji) = dj

∀i, j ∈ E, xji ≤ δji

∀i,
∑
j∈Ci

(xji + xji) ≤ si

Here, xji denotes the flow along the top edge and xji denotes the flow along the
bottom edge from j to i in Figure 5.1. The dual for the above LP looks as follows.

max
∑

Y jdj −
∑

Zisi −
∑

Ajiδ
j
i (5.1.3)

subject to

∀i, j, Y j − Zi − Aji ≤ 0

∀i, j, Y j − Zi ≤ 2wj

Here, x denotes the allocation, where xji is the number of allocated impressions from
impression set i to contract j. Since we want to maximize the dual function and the
coefficient of Aji in the objective function is always negative, we would like to assign
the value of Aji as small as possible. Considering the existing constraint in the dual
that means that Aji = max(0, Zi−Y j). So we don’t need to keep track of Aji variables
in the dual. Next, we show how to reconstruct xji variables by only keeping Y j and Zi
variables and then we show that in fact it is enough just to keep track of Y j variables.

Since we are considering an optimal solution and because of the complementary
slackness, we have three cases for each edge between i and j. First we consider the
bottom edges.

1. Y j − Zi < 0: in this case, we have xji = 0.

2. Y j − Zi > 0: in this case, we conclude that xji is fully saturated.

3. Y j − Zi = 0: in this case, we have Y j = Zi. This is the only case that we can
not compute the xji directly from the dual variables. Instead, we make another
network consisting only of these edges. The only constraint is the edge capacity
constraint. Demand and supplies are updated based on the last two steps.

63

We have the same scenario for the top edges as well. In the third case, the dual
variables do not give us any information on the value of the primal. We call the edges
belonging to the third class slack edges. Next, we argue that any feasible assignment
of flow to slack edges would be a solution. To see this, first notice that the cost of any
slack edge (i, j) is exactly to Y j−Zi. Further, any path from i to j consisting of only
slack edges has the same cost. Furthermore, any cycle consisting of slack edges has a
cost of 0. Therefore, any feasible maximum flow on the slack edges would constitute
a solution. However, this means we have to be able to reconstruct a maximum flow
on the slack edges. Thus, in the worst case, reconstructing an arbitrary maximum
flow using the dual is no easier than finding a maximum flow from scratch!

The way around this problem is to place additional constraints on the maximum
flow to make it unique in a way the we can reconstruct it efficiently.

One way to impose extra constraints is by assigning secondary convex costs to
slack edges and then finding a minimum convex cost flow on them. We can then
store the Lagrangian multipliers of the convex program and use them to reconstruct
the flow; this solution was proposed by Vassilvitskii, Vee, and Shanmugasundaram
[50]. We can always do that because the Karush–Kuhn–Tucker (KKT) conditions of
the convex program involve both the primal and dual variables and therefore they
can always be used to reconstruct the primal. Note that complementary slackness
conditions only contain dual variables and do not give any information if an edge is
only partially full in the optimal primal.

We provide a completely different solution that does not involve placing secondary
costs on slack edges and does not require solving a convex program. We show how
to compute a plan for approximate reconstruction (Section 5.1.2.1) and how to use
this plan to do the actual reconstruction (Section 5.1.2.2). In Section 5.1.3 we discuss
the generic effect of supply and/or demand scaling, which is of interest when supply
forecasts, for instance, are not available precisely.

5.1.2.1 Computing the plan

As described earlier, by computing the dual variables of the min-cost flow, we can
decide which edges are completely saturated and which ones are completely empty.
For the rest of the edges (partially full, a.k.a. slack) the problem was reduced to
computing a maximum flow in the new subgraph. Here, we present a way to find a
specific maximum flow solution that is easy to reconstruct. We start by developing
some notation and definitions.

64

For a given node v ∈ V and a given flow function flow : E → R+ on the edges, let

In(v) =
∑

u:(u,v)∈E

flow(u, v)

Out(v) =
∑

u:(v,u)∈E

flow(v, u),

excess(v) = In(v)−Out(v)

Definition 2 (ε-feasible flow). For a given flow function flow(x, y) : E → R+, we
call it ε-feasible iff for any node j in the contract layer, 0 ≤ excess(j) ≤ ε · Out(j)
or equivalently Out(j) ≤ In(j) ≤ (1 + ε) Out(j).

We now define a height function that is crucial to building the plan. The height
function height : V → R+ simply assigns heights to the nodes. For a given height(·),
the flow in each edge e = (i, j) is defined as flow(i, j) = min(1,max(height(i) −
height(j), 0)) · ci,j, where ci,j is the capacity of (i, j) in our network flow instance.

For a given height : V → R+, Ê(v) = δ if by changing height(v) to height(v) + δ,
we have excess(v) = 0. (Note that the value of height(·) for the rest of the nodes is
unchanged.)

Next we show that there exists a height function height(v) for which the corre-
sponding flow is ε-feasible and it is greater or equal to maximum feasible flow on the
slack edges. Note that for a given height function height(v), computing the corre-
sponding flow is trivial just from its definition. The method we use for computing
the height function is as follows.

Algorithm 3 (Height).

1. Initialize: Initialize height(s) = 2|J |+ 2 for source s and height(v) = 0 for all
other nodes v.

2. Relabel: For the given function height, find the node v with largest Ê(v). Set
height(v) = height(v) + Ê(v). Update the excess flow values and Ê for the rest
of the nodes.

3. Loop: Repeat step 2 until Ê(v) ≤ ε = ε
2|I|(1+ε)

for all v ∈ V .

We show that the corresponding flow for height(x) after termination of the algo-
rithm is ε-feasible and also it is at least as large as the maximum feasible flow. We
also show that the algorithm converges in time O((|I|+ |J |) |I||J |

ε
). First we show some

properties of the algorithm.

65

Lemma 5.1.1. After the termination of the algorithm, the set of edges between s
and contract nodes are all fully saturated or in other words for any contract node j,
height(j) ≤ height(s)− 1.

Proof. First we partition the nodes into two sets X and Y based on whether they are
reachable from s on the residual flow graph. We first claim that Y 6= ∅ and t ∈ Y .
This follows since there can be no simple path from s to t in the residual graph. Any
simple path from s to t is of length at most 2|J | + 1 and since height(s) = 2|J | + 2,
it should be the case that for some edge (u, v) on the path, height(u) > height(v) + 1
and therefore flow(u, v) = c(u, v), which means (u, v) is not in the residual graph.
Thus, s and t are disconnected.

Since X and Y are non-empty and disjoint, (X, Y) is a cut. Notice that the size
of this cut is less than or equal to the cut which consists of edges between s and
the contract nodes, because we may have some excess flow on nodes in X. We can
conclude that if the cut (X, Y) is not the same as the cut between s and the contract
nodes then the demands of the contracts were not satisfiable to begin with which
contradicts out assumption. Therefore, X = {s} and Y = X̄, so for any contract
node j, height(j) ≤ height(s)− 1.

Lemma 5.1.2. For all v ∈ V , excess(v) is always non-negative during running the
algorithm.

Proof. First, we can see that at the initialization step, excess(v) ≥ 0. We show that
after running each step, the property still holds. Suppose the algorithm selected v at
a round and relabeled it so after the relabel step excess(v) = 0. For all nodes that
has an outgoing edge to v, their outgoing flow is only decreased so their excess will
increase. And for all nodes with incoming edges from v, their incoming flows only
increase so their excess will increase as well. For the rest of the nodes the excess will
not change.

Theorem 4. The flow computed by Algorithm 3 is ε-feasible.

Proof. Consider the time when the algorithm has terminated. We know that for each
v ∈ V , if we increase its heights by Ê(v) < ε then excess(v) becomes 0. Consider
a node j from the contract layer at the end of the algorithm. Since we know that
all the contracts are satisfiable, the set of edges from s to the contract nodes is the
minimum cut and height(j) ≤ height(s) − 2. Therefore, flow(s, j) = c(s, j) and
raising j by ε will not change its incoming flow. Suppose Outmax(j) is the total
capacity of edges going out of j. We know that after termination of the algorithm,
Ê(j) ≤ ε. So, excess(j) ≤ εOutmax(j). Since excess(j) = In(j) − Out(j), we can

66

conclude that In(j)−Out(j) ≤ εOutmax(j). Also note that there can be at most 2|I|
edges going out of j, each one with a capacity of less than the incoming capacity of j
which was c(s, j) which means Outmax(j) ≤ 2|I|c(s, j) and therefore In(j)−Out(j) ≤
ε2|I|c(s, j). On the other hand since In(j) = flow(s, j) = c(s, j), we can conclude that
In(j)−Out(j) ≤ ε2|I| In(j). By rearranging the terms and replacing ε by ε

2|I|(1+ε)
we

get In(j) ≤ εOut(j), which completes the proof.

Now we now bound the running time of the algorithm that computes the plan.

Lemma 5.1.3. The algorithm terminates after O((|I|+ |J |)|I| · |J |/ε) iterations.

Proof. First of all, at each iteration, we increase the height(v) for some node v by at
lease ε. Notice that no node will ever go higher than the source s so each node can be
relabeled at most (2|J |+ 2)/ε times so the total number of iterations (for all nodes)
in the worst case is O((|I|+ |J |)|J |/ε) which is O((|I|+ |J |)|I| · |J |/ε).

5.1.2.2 Reconstruction using the plan

We now describe how to reconstruct the flow using just height(v). For now we
assume that after the termination of the algorithm there is no excess flow on any
node (i.e., ∀v : excess(v) = 0). Obviously, because of the way we constructed the
height function, the flow of every edge (u, v) is flow(u, v) = min(1,max(height(u) −
height(v), 0)) · cu,v. This would work perfectly well if there was no excess flow on any
node. However because of the excess flows, the solution may not be feasible. To fix
that we first tweak the demands before computing the height function as we explain
next. First we define the notion of ε-good input.

Definition 5 (ε-good input). We say an input instance to our problem is ε-good if
there is a feasible assignment of impressions to contracts when we scale up all the
demands by a factor of 1 + ε.

Theorem 6. Assuming that we are given any input instance which is (2ε+ ε2)-good.
Consider the following modification of our method.

1. Scale up all the demands by a factor of (1 + ε)2, compute the height function
height(·) as explained in Algorithm 3, and then set the demands back to their
original values.

2. At reconstruction time, for each contract j and impression i reconstruct the flow
on (j, i) using the height function height(j) as before but then scale it down by
a factor of (1 + ε).

67

Then, the reconstructed solution is feasible which means it strictly satisfies the supply
constraints and the demand constraints. Further, it may assign extra impressions to
contracts up to (1 + ε) times their demand.

Proof. First, notice that since the input is (2ε + ε2)-good, we can still satisfy all the
demands which means the set of all demand edges is still a minimum cut. Suppose that
we have used Algorithm 3 to compute the height functions. After the termination of
the algorithm, because the solution is ε-feasible, for any contract j we have Out(j) ≥
In(j)/(1 + ε). But notice that we scaled up all the demands by (1 + ε)2 at the
beginning out height computation algorithm, so In(j) = (1 + ε)2dj where dj is the
original demand of the contract j. Therefore, Out(j) ≥ (1 + ε)dj and clearly if we
scale down the flow that we reconstruct for edges going out of j by (1 + ε), still the
outgoing flow of j is at least as much as dj which means the demand constraints
are satisfied. Using a similar argument for the supply side we can show that for any
supply node i the incoming flow of i cannot exceed its supply si.

In summary, the reconstruction method works as follows. The preprocessing stage
consists of three main steps.

• Construct the min-cost flow and its dual solution. Represent the dual variable
of contract nodes by Yj and the dual variables of impression nodes by Zi.

• Remove the edges that are forced to be completely full or completely empty by
complementary slackness and update the flow graph accordingly (i.e., update
the supplies and demands).

• Scale all the demands by (1 + ε)2 and the run Algorithm 3 to compute the
heights.

The reconstruction stage operates by examining each edge (i, j) and

• if Yj − Zi < cost(i, j), then flow(j, i) = 0;

• if Yj − Zi > cost(i, j), then flow(j, i) = capacity(i, j);

• if Yj − Zi = cost(i, j), compute the flow using the height function and scale it
down by 1 + ε.

cost(i, j) and capacity(i, j) are coming from the min cost flow network (Figure 5.1)

68

5.1.3 Effect of supply scaling

Notice in applying Theorem 6, we scale up the demands before running the height
algorithm but we use the same supply. There might be also other reasons for scaling
up the demands. For example, suppose the we do not know the exact supply of the
supply nodes (i.e., the si values), but we may have an estimate of each supply node

which we call s′i. For example suppose we know that with probability δ ≈ 1, si ≥ s′i
1+ε

.
Under, such a circumstance we may want to scale down all the supply estimate s′i by
some factor 1 + α (or equivalently scale up all the demand constraints, compute the
flow and then scale the flow down by the same factor) to make sure that with high
probability we can always meet the supply constraints.

Scaling the demands (or supplies) may affect the value of our objective function.
The next result gives an upper bound on the change of the objective function when
we scale the demands by an arbitrary factor.

Theorem 7. For a given input instance which is α-good, and with the optimal ob-
jective function value Opt, if we scale the demands by 1 + α, then the new optimal
value of the objective function Opt′ is at most |J |2α ·maxj∈J d

j away from Opt and
that is tight.

Proof. Consider the flow corresponding to the optimal allocation of the original input
(before scaling up the demands). Now, for each contract j one by one, we scale the
capacity of the edge (s, j) by 1 + α. Since the input instance is α-good, we should
be able to augment the flow by αdj which is the amount of increase in the capacity
of (s, j). By applying the augmentation we may change the flow of each of the other
contract nodes by at most αdj which means the value of the objective function may
increase at most by αdj. Since there are |J | augmentations and each augmentation
may affect the flow of all the other contract nodes in the worst case, the total change
in the objective function value is upper bounded by |J |2αmaxj∈J d

j.
We prove the tightness by constructing an example shown in Figure 5.2. Suppose

we have n contracts c1, . . . , cn and n + 1 types of impressions b1, . . . , bn+1. Each ci
is interested in buckets bi and bi+1. Also suppose the original demands of all ci are
2 and the supply of b1 is 1 and supplies of b2, . . . , bn+1 are 2. Now in the optimal
solution each contract ci will receive 1 unit of supply from bi and 1 unit from bi+1.
Now, suppose we scale up the demand of each contract by 1 +α. Notice that for any
1 ≤ t < n, the total demand of the first t contracts minus the total supply of the
first t impression sets is exactly equal to 1 which is equal to the amount of supply
that ck receives from bk+1. After scaling the demand, that total is increased by 2α.
It is easy to see that the total change in the objective function value in this case is
roughly

∑n
i=1 2iα = 2n(n+1)

2
α which completes the argument.

69

1

2

2

2

2

2

2

2

2

2

demand supply

Figure 5.2: Tight example for Theorem 7.

5.1.4 Convex penalty functions

In this section we describe the combinatorial solution for a general convex penalty
function. Our solution is based on finding a convex cost flow. For simplicity of
exposition, we describe the method for the L2

2 function; the solution, however, works
for any convex distance function.

For L2
2 penalty function, the quadratic programming formulation of the problem

is as follows.
min

∑
j

wj
∑
i

(yji − δ
j
i)

2, (5.1.4)

70

Figure 5.3: The network construction, with (capacity, cost) on the edges for L2
2.

subject to

∀j,
∑
i

yji = dj (demand)

∀i,
∑
j

yji ≤ si (supply)

∀i, zi ≤ si −
∑
j∈Ci

yji

We show how to solve (5.1.4) using a convex cost flow. The flow network, with
capacity and cost on each edge, is constructed in the following manner. We create
a node for each contract and a node for each impression set. Now compute the
completely fair allocation for each contract. In this tentative allocation, some of the
buckets could be overfull and some of them could have excess supply. The goal is to
reallocate the contracts to buckets in the least expensive way (according to the L2

2

penalty) such that none of the buckets is overfull. We represent the excess of bucket
i by ei = si−

∑
j∈Ci δ

j
i . If ei ≤ 0, then we consider the bucket node as a supply node

and set its supply equal to −ei. If ei ≥ 0, then we set the impression set node as a
demand node and set its demand equal to ei. Also we connect each supply impression
node to each contract that is interested in that impression, setting the capacity of

71

the edge between the impression and the contract to δji and the cost of the edge to
be f(x) = 2x2W j, where x is the flow on that edge. See Figure 5.3 for an example.

From our construction, it is easy to see the following.

Lemma 5.1.4. The solution to network described above is equivalent to the solution
to (5.1.4).

The proof is very similar to the proof described for Theorem 1.
In [50], Vee et al showed that the solution to the L2

2 can be reconstructed using
the Lagrange multipliers of the QP. They showed that, assuming that the lagrange
multiplier for supply constraint is pi and the lagrange multiplier for demand constraint
is αj, the best allocation that minimizes L2

2 norm and is a feasible solution satisfies
the following:

yji = max(0, gji (α
j − pi)), where gji (x) = dj · si∑

i∈Γj
|si|(1−

x
dj

).

That means if we would be able to compute the Lagrange multipliers and store
the values, we can reconstruct the real allocation. They also showed that the solution
to L2

2 is unique. Which means that the returned solution by the convex cost function
also fits in their argument. Earlier in this section, we showed how to compute yji
values. Here, we give a solution sketch on how we can compute lagrange multipliers
combinatorially as well. For simplicity, we denote φ = dj · si∑

i∈Γj
|si| and σ = si∑

i∈Γj
|si| .

Rewriting the above equation, we have yji = φ − σ · (αj − pi). This means that if
we compute yji , we can compute αj − pi. So first for all pairs (j, i) with yji > 0,
compute dji = αj − pi. We now construct a graph with one node for each Lagrange
multiplier (in total |I| + |J | nodes) and place an edge between two of them if there
is a corresponding yji > 0 for them; let the length of the edge be dji . First of all it
is easy to see that in each connected component, if we know the lagrange multiplier
for one of the vertices (for example pi), the lagrange multiplier for the rest of the
vertices in the same component can be computed as well. So for each connected
component, assign some variable p to one of the nodes and compute the distance of
all the nodes from that node. This way, the value of the lagrange multipliers in each
component can be represented by p+ d for which d is already computed and the only
variable term is p. So the only remaining question is how to choose p values in each
component. Looking back at the Lagrangian for the QP, and replacing yji ’s and αj

and pi by their computed values, the objective will be written as a linear function in
terms of the selected representing values (p values) for each component. It is enough
now to compute the best value for each of them assuming that we want to minimize
the Lagrangian objective function.

72

5.1.5 A greedy solution for L1 allocation with soft demand

Finally, we present a simple greedy approach for a slightly generalized version of
the L1 penalty function. In this version, we assume that the demand constraint is soft,
meaning, it is possible to satisfy a contract partially. (The search engine, however,
should pay extra amount per unsatisfied demand, similar to the model used in [22];
we will capture this by a parameter β.) We also show how to preprocess and then
reconstruct the greedy solution using O(|I| + |J |) space for storing the preprocessed
information and O(maxi∈I |Γi|) time to recompute the allocation.

We assume each contract has its own weight wj = W j

dj
and to implement the soft

demand constraint, we assume an amount of β · wj is paid for each impression that
cannot be allocated to the contract j, where the factor β ≥ 1. We now present a
greedy algorithm and prove that the total cost of its solution is at most (1 + β)/2
that of the optimal solution. The greedy algorithm proceeds as follows.

Algorithm 8 (Greedy allocation).

1. Start from the contract j with the largest wj.

2. Give the most fair allocation possible to contract j.

3. Repeat until all contracts are considered.

We now show that this algorithm obtains an approximation to the optimum.

Lemma 5.1.5. The greedy allocation is a (1 +β)/2-approximation for the L1 penalty
function for the soft demand case with factor β.

Proof. The proof is based on charging. We start by defining some notation. As usual,
for a given allocation A, let Aji be the number of allocated impressions from bucket i
to contract j. In an allocation A, we call a contract j on bucket i as under-represented
if Aji < δji ; let underji (A) = max(0, δji −A

j
i). Similarly, we call j over-represented on i

if Aji > δji and let overji (A) = max(0, Aji − δ
j
i). Let Opt denote the optimal allocation

and Greedy denote the greedy allocation.
Now we make the following claim: in any allocation A, we have unfair(A) ≤

2
∑

i∈I,j∈J underji (A). The claim holds because for any contract j,
∑

i∈I overji (A) ≤∑
i∈I underji (A), where the inequality changes to equality when dj is completely sat-

isfied in A. In addition, unfair(A) =
∑

i∈I,j∈J(underji (A) + overji (A)).
This means that it is enough to consider the under-represented contracts and lose

only a factor of two in Opt. Also, since the allocation is greedy, the amount of

73

under-fairness on each impression in greedy is lower than any other allocation. I.e.,∑
i∈I,j∈J underji (Greedy) ≤

∑
i∈I,j∈J underji (A) for any allocation A including Opt.

Now, let us consider the total cost of under-fairness on bucket i in the greedy so-
lution, underi(Greedy) =

∑
j∈Γi

underji (Greedy). Even if we do not accommodate
these impressions in any other bucket and pay the β factor instead of allocating them,
the total amount would be at most β · underi(Greedy). Now the total value of the
objective function for the greedy solution is at most (β + 1)

∑
i∈I underi(Greedy).

From the earlier argument, we know that
∑

i∈I underi(Greedy) ≤ Opt/2. These
imply that the greedy solution is a (β + 1)/2 approximation for the L1 penalty with
soft demand.

5.1.5.1 Reconstructing the greedy solution

Next, we show how we can reconstruct the greedy solution by storing only O(|J |)
preprocessed information. The running time for reconstructing the allocation based
on stored information is O(maxi∈I |Γi|). In the preprocessing phase, we compute
the greedy allocation as described in Algorithm 8. The stored information for each
contract j is

∑
i∈Γj overji (Greedy). The reconstruction is as follows:

Algorithm 9 (Greedy reconstruction). When a new impression from bucket i arrives,

1. For all contracts j, set overj =
∑

i∈Γj overji (Greedy).

2. Consider the set of all contracts j ∈ Γi that are still under-represented. If this
set is not empty, assign the new impression to the contract in this set with
largest wj.

3. Otherwise, consider all contracts j ∈ Γi that their overj is still positive. Assign
the new impression to the contract with the largest wj in this set. Update
overj = overj − 1.

As described earlier, in this method we need to keep track of only one vari-
able for each contract. Also at each impression arrival, in the worst case we have
O(maxi∈I |Γi|) processing time. With similar argument given in Lemma 5.1.5, we can
show that the computed solution here is also 1+β

2
approximation for the fair allocation

with soft demands.

74

Chapter 6
Guaranteed Delivery Advertisement: Online Ad Allocation

The second problem related to guaranteed delivery advertisement that we consider
in this chapter, focuses on to the question of which advertisers to sign a contract with
to maximize the total obtained revenue.

It turns out that maximizing revenue in this problem is NP-hard. A special
simplified instance of our problem, called “Resource Allocation”, can be approximated
to within a constant factor (1/2−ε) efficiently (see [14]). Resource Allocation problem
can be defined as follows: Suppose we want to schedule a set of jobs so that the total
profit of scheduled jobs is maximized. Jobs are arriving at different days and will be
active for some specified duration. However the total number of available resources
everyday is bounded. The constraint is that each job needs a specified number of
resources everyday. we have R resources available everyday. The objective is to find
a feasible schedule so that the obtained profit from the scheduled jobs is maximized.

The setting that is used for resource allocation is equivalent to restricting our
problem to the following problem: advertisers are only interested in satisfying their
branding constraints, meaning that they want their ad to be shown for a specific
period of time and requiring a fixed amount of impressions per day. In this setting,
if we are interested in maximizing social welfare (or revenue), our problem becomes
identical to the resource allocation problem. However, the above results on resource
allocation hold only for the offline setting (see [14]). Nevertheless, in a practical
setting, the advertisers arrive online. In this chapter, we consider the online variant
of this problem.

6.1 Online Setting

In Guaranteed Delivery advertisement as in the Non Guaranteed Delivery, adver-
tisers arrive online, contracts are negotiated at different times, and the decision to
accept or reject a proposed contract is done online. In this section, we try to address
the problem of what set of advertisers to accept in the online setting for Guaranteed
Delivery.

The structure of the rest of this chapter is as follows: In Subsection 6.1.1 we
show that if contracts can be dropped with no penalty and no prior is known on the
distribution of the arriving contracts (i.e. in an adversary setting), then even the
case of allocating one impression per round cannot be approximated to within any

75

constant ratio. In a more restricted setting where impressions are valued similarly by
all advertisers, using results from [51] it can be shown that an approximation ratio of
4 is optimal.

Motivated by the setting and results by Woeginger [51], in Subsection 6.1.2 we
consider a setting where n resources are available and contracts arrive online. We
propose a greedy algorithm such that, for a class of valuations of the contracts similar
to that studied by Woeginger [51], achieves a competitive ratio of at most 4n, thus
generalizing the result by Woeginger[51] (where n = 1 and the competitive ratio
obtained was 4). We also present a matching lower bound for the competitive ratio
of n, thus showing that our algorithm is almost tight.

In subsection 6.1.3 we simulate the performance of our algorithm against real data.
Surprisingly, we find that our algorithm performs within only a few percentage points
of the optimal omniscient offline algorithm.

6.1.1 Definitions and Settings

Here we present the setting used by Woeginger [51] and some of its results. Assume
we are interested in the following problem. Advertisers arrive online and request a
contract. Upon arrival, advertiser k reveals all its information (tk, τk, qk, bk) and
requests a contract in which:

• tk: Stands for the start day of the period that the advertiser is interested in.

• τk: Stands for the duration of the period.

• qk: Stands for the number of impression that the advertiser wants to receive
during his desired period.

We assume that advertiser Ak arrives at time tk. The publisher then decides on
the spot to accept or reject the contract.

In the setting considered in [51] it was assumed that

• n = 1 (only one impression per round is available)

• qk = 1 (all of the supply is exhausted by one advertiser at any given time)

• payment is received once the contract is fully completed.

• contracts can be dropped without penalty (i.e. the publisher can accept a
contract and drop it later if a better one arrives)

76

The goal is to maximize social welfare (or revenue) under adversarial arrival of
advertisers. It is clear that no online algorithm can have a bounded approximation
ratio without further assumptions, thus there is an extra assumption that links the
duration of the contract τ to its value b (which look a lot like convexity).

Under such assumptions the authors give a 4 approximation algorithm. It is
interesting to note that the approximation ratio is tight, and that the algorithm is
very simple (greedy algorithm on contract value).

6.1.2 Online Algorithm

In [51] the assumption is that nt = 1, 1 ≤ t ≤ T . However it is not a valid
assumption for our problem. The basic model is the same: Advertisers arrive on-
line and request a contract. Upon arrival, advertiser k reveals all its information
(tk, τk, qk, bk, Vk) and requests a contract. We assume that advertiser Ak arrives at
time tk. The publisher then decides on the spot to accept or reject the contract.

However the constraints in our problem, should be relaxed as follows:

• We assume n ≥ 1 we can have more than one resource per day but it is the
same for all days.

• qk ≤ n and it is possible to have more than one active advertiser per round
however their total demand should not exceed n.

• Payment is received once the contract is fully completed.

• Contracts can be dropped without penalty (i.e, the publisher can accept a con-
tract and drop it later if a better one arrives)

The goal is to maximize social welfare (or revenue) under an adversarial arrival of
advertisers. We call this problem with the properties defined above Online Resource
Allocation Problem. By an argument similar to that given in [51], it is clear that no
online algorithm can have a bounded approximation ratio without further assump-
tions. In our argument, we use the following assumption which is very similar to the
given constraint in [51] but defined over q.τ . Assuming that bk = f(τk.qk) or in other
words, the total profit from scheduling contract k, is a function f of the total size of
the contract. the requirement is that function f is a C-benevolent function. We say
f is C-benevolent if we have:

1 f(0) = 0 and f(p) > 0 for all p > 0.

2 for 0 < ε ≤ p1 ≤ p2 ⇒ f(p1) + f(p2) ≤ f(p1 − ε) + f(p2 + ε).

77

Under these assumptions, we will show that for arbitrary sequence of advertisers
with C-benevolent profit functions, there is no online algorithm that can have a worst
case ratio smaller than n. We then present an online greedy algorithm with a worst
case analysis for C-benevolent profit functions, and we show that our algorithm is
only a constant factor away from the best possible online algorithm.

6.1.2.1 Lower Bounds

In this section, we prove that there is no online algorithm with worst case ratio
smaller than n for any C-benevolent profit function.

Theorem 1. There is no deterministic online algorithm for Online Resource Alloca-
tion problem with a worst case ratio smaller than n.

Proof. Before describing the strategy of the adversary, we define the two types of
demands (contracts) that will be used by the sequence of advertisers submitted by
the adversary. For the rest of this section, we use contracts and advertisers inter-
changeably.

Wide: An advertiser Ai is called Wide if τi = n and also qi = n meaning that they
want n impressions per day for a duration of n days.

Long: An advertiser Ai is called Long if τi = n2 and qi = 1 meaning that they want
1 impressions per day for a duration of n2.

Next, we describe the strategy of the adversary against any given online algorithm
and also give an analysis to prove the lower bound of n. The strategy of the adversary
against any given Heuristic H is as follows:

• Start the sequence of contracts by sending a Wide contract at each day.

• If H selects a Wide contract, then the adversary starts sending one Long con-
tracts per day during the active period of the Wide selected contract as long
as it stays selected by H.

• If H selects a Long contract, the adversary starts sending Wide contracts, during
the active period of the Long contract currently chosen by H as long as it stays
active. Wide Contracts are submitted as soon as the previous Wide Contract
sent by the adversary is finished.

• The adversary will stop sending any more contracts if he either sends n Wide
contracts or n Long contracts or the worst case ratio is already n.

78

1. If the new coming contract does not have conflict with any currently scheduled
contracts, schedule it.

2. Otherwise, finda the set of contracts with the minimum total profit that if we
drop from the schedule then the new coming contract can be scheduled. If the
profit of the new contract is more than twice the total profit of these contracts
schedule it.

3. In the rest of cases, drop the new contract.

aThis involves running an algorithm for a knapsack like problem on the accepted set of contracts.

Figure 6.1: ORA

If H keeps the first Wide contract, then at day n the worst case ratio is already
n. Now suppose H switches to the Long contract. Again if H keeps this contract,
it will lose at day n2 so H should switch to a Wide contract at some point. We can
see that at the end of each round, H still only keeps one contract and also after each
switch, the adversary will send at least one contract. It is clear that if H holds on
to one contract and stops switching it will lose a factor of n by the finishing time
of that contract. Now look at the solution after 2n switches. Using the given facts
above and the pigeon hole principle, we can conclude that we have n contracts of
the same category. Also we know that Wide contracts don’t have conflicts with each
other at all and also any set of size less than or equal to n of Long contracts can be
scheduled together without any conflict. That means that at this point, the optimal
offline solution will exceed n3 however the solution picked by H is n2 which gives us
the desired worst case ratio for any H.

6.1.2.2 The online Algorithm

In this section, we present the algorithm:
Next, we show that in the worst case, the ratio of Online Resource Allocation

Algorithm is 8n.

Lemma 6.1.1. The Algorithm ORA has the worst case ratio of at most 8n + 2 on
C-benevolent Profit functions.

Proof. To make the analysis more clear, we first categorize all the contracts to three
groups simply based by how they are dealt with by algorithm ORA.

79

Final: are the contracts that are selected, and retained until the end by Algorithm
ORA.

Dropped: are the contracts that are (initially) selected by the algorithm but dropped
later on in favor of other contracts.

Ignored: are the ones that are not selected by Algorithm ORA at all.

We first show that the total profit of Dropped contracts is at most equal to the
total profit of Final contracts. We also show that the total profit of the Ignored
contracts belonging to the optimal solution is at most 4n times of the sum of Dropped
and Final contracts.

Lemma 6.1.2. The total profit of the Dropped contracts is at most equal to the total
profit of the Final contracts.

Proof. Consider all the Dropped and Final contracts. Create one node corresponding
to each of these contracts. If a contract is dropped because of another contract,
put a directed edge between them. It can be seen that the outdegree of each node
corresponding to a Dropped contract is 1 and it is 0 for all the Final contracts. The
structure of this graph is a directed forest rooted at Final contracts. We show that
the total profit of all the internal nodes in each tree is at most equal to the profit of
its root. The proof is by induction. Assume that for all trees of height less than h the
total profit of the all the internal nodes in the subtree are less than the profit of the
root. Now consider a tree of height h. We know by the way we put the edges that
the profit of the root is at least twice the total profit of all the roots of the subtrees.
But by induction, we also know that the total profit of the vertices of the subtrees
are greater or equal to the profit of the nodes in the subtrees so that means that
the profit of root of tree is greater or equal to the profit of all the nodes in the tree.
Each Dropped contract belongs to exactly one tree since it should have exactly one
outgoing edge which completes the proof.

Next, we show that the total profit of Ignored contracts belonging to the optimal
solution is at most 4n times of the total profit of Final and Dropped contracts.

Lemma 6.1.3. The total profit of Ignored contracts in OPT are at most 4n times
the total profit of Final and Dropped contracts assuming the profit of each contract
is computed by a C-benevolent function of the size of the contract.

Proof. Again, we use a charging method. We define the allocation for a contract and
a heuristic as follows:

80

Alloc(Ai, H): Assuming that we named the items available at each day by I =
i1, . . . , in, we define Alloc(Ai, H) as the exact set of items assigned to Ai by
H at each day. Without loss of generality we assume that we have one copy
available from it each day.

Without loss of generality in the rest of the proof we make the following assumptions:

• We assume that for a given algorithm H and a contract Ai, the allocations can
be set in a way that as long as Ai is not dropped Alloc(Ai, H) does not change
for the duration of each contract.

• The assigned items to each contract are staying the same during its active
period. However the assigned resource might or might not be consecutive.

Consider an Ignored contract Ai that belongs to the optimal solution. We define
the set Conf(Ai) as follows:

Conf(Ai): Consider Alloc(Ai, OPT). Also consider all Aj contracts that are either
Final or Dropped and also tj ≤ ti and Alloc(Aj, ORA)

⋂
Alloc(Ai, OPT) 6= ∅.

Call it PConf(Ai). Now define Conf(Ai) ⊆ PConf(Ai) as follows:

• Initialize Conf(Ai) = PConf(Ai).

• Sort Aj ∈ Conf(Ai) in the increasing order of bj.

• If the bi <
∑

Aj∈Conf(Ai)
bj and |Conf(Ai)| > 1, remove the contract with

minimum bj from Conf(Ai).

• Repeat until either |Conf(Ai)| = 1
or bi ≥

∑
Aj∈Conf(Ai)

bj.

Defining the Conf(Ai) as above, we can guarantee that if |Conf(Ai) > 1| then∑
Aj∈Conf(Ai)

bj ≤ bi ≤ 2.
∑

Aj∈Conf(Ai)
bj. Next, we replace Ai with |Conf(Ai)|

virtual copies Avi,j corresponding to each Aj ∈ Conf(Ai) and set virtual profit bvi,j =≤
2.bj so that

∑
Aj∈Conf(Ai)

bvi,j = bi. So Avi,j = (ti, τi, qi, b
v
i,j, 0).It is easy to show that it

is always possible to do this. Now we can show the following lemma:

Lemma 6.1.4. Defining the price per unit of a contract(virtual contract) Ai by
ppu(Ai) = bi

τi.qi
, then ppu(Avi,j ≤ 2.ppu(Aj) for all Aj ∈ Conf(Ai).

Proof. If |Conf(Ai)| = 1 and bi ≤ bj where Aj ∈ Conf(Ai), then since profit function
is C-benevolent, we can conclude that ppu(Avi,j) = ppu(Ai) ≤ ppu(Aj). In the rest of
the cases we can argue as follows:

81

Since the profit function is monotonically non decreasing, with the way we defined
Conf(Ai) we can conclude that τi.qi ≥ τj.qj ∀Aj ∈ Conf(Ai). Now considering Avi,j
we know that bvi,j ≤ 2.bj. So we have:

ppu(Avi,j) =
bvi,j
τi.qi

(6.1.1)

≤ 2.bj
τi.qi

(6.1.2)

≤ 2.bj
τj.qj

(6.1.3)

= 2.ppu(Aj) (6.1.4)

(6.1.5)

Next, we partition Conf(Ai) into two subsets:

Tail(Ai): Tail(Ai) ⊆ Conf(Ai) is the set of all Aj ∈ Conf(Ai) that has overlap with
Alloc(Ai, OPT) at their finishing time in Alloc(Aj, ORA).

Mid(Ai): Mid(Ai) ⊆ Conf(Ai) contains all the rest of contracts in Conf(Ai).

Now the method we are using for charging is as follows:

• For each Aj ∈ Conf(Ai) do the following:

–

If Aj ∈ Tail(Ai) then charge Aj twice the profit of Avi,j (6.1.6)

–

Otherwise, for each day t that Aj and Ai have overlap
in Alloc(Ai, OPT) and Alloc(Aj, ORA), charge one of the
common items in Aj, 2n times the ppu(Avi,j).

(6.1.7)

We show that the profit of each Avi,j is charged completely at least once to some
Aj ∈ Conf(Ai). Also, we will show that each Aj is not charged more than 4.n times
considering all the Ignored contracts in the optimal solution.

We first show that:

82

Lemma 6.1.5. ∀Aj ∈ Conf(Ai), By the charging method described above, the total
profit of Avi,j is charged to Aj.

Proof. With the way we defined Avi,j, we know that bvi,j ≤ 2.bj. Now if Aj ∈ Tail(Ai),
we charge its profit twice which will directly cover bvi,j. Now consider the situation
where Aj ∈Mid(Ai). Since Aj ∈Mid(Ai) we know that ti ≥ tj and ti + τi ≤ tj + τj.
We conclude that if Alloc(Ai, OPT) and Alloc(Aj, ORA) are overlapping in at least
one day, they should have an overlap on every day t where ti ≤ t ≤ ti + τi. That
means in 6.1.7, we charge the profit of one unit of Aj 2n times for t satisfying ti ≤ t ≤
ti + τi.Also we know that bvi,j = ppu(Avi,j).τi.qi ≤ 2.ppu(Aj).τi.n. So we can conclude
that the total profit of Avi,j is completely covered in our charging scheme.

Next, we show that:

Lemma 6.1.6. Each contract that belongs to Final or Dropped set, is charged at
most 4n times.

Proof. Consider a contract Aj that belongs to Final or dropped. It can be shown that
the total number of ignored contracts in the optimal solution that contain Aj in their
Tail(Ai) are at most n. The reason is that Aj can occupy at most n resources on its
finishing day and since we are considering a feasible fixed allocation of the optimal
solution, each of these resource can belong to at most one contract in the optimal
solution and in total at most n contracts in OPT have overlap with Aj at its finishing
time. Also, each resource of Aj will be charged once and for an amount equal to 2n
times the price per unit of that resource because the charged resource should belong
to the overlap of Aj and Ai and Ai belongs to the optimal solution and we consider a
fixed feasible allocation of OPT, so no other Ak where k 6= i, can have overlap with
Aj at the same resource. Therefore in 6.1.7, each unit will be charged at most 2n
times. Putting all these together, we can conclude that each Aj in either Final or
Dropped is charged at most 4n times.

The final goal is to compare the profit of Final contracts with the total profit of
optimal. Partition the total profit of OPT to OPTf + OPTd + OPTi based on the
category that they belong to in ORA. Also call the profit of Final contracts Pf and
profit of dropped contracts, Pd. We know that OPTf ≤ Pf , OPTd ≤ Pd ≤ Pf and
finally Pi ≤ 4n.(Pf + Pd) ≤ 8n.Pf . So OPTf + OPTd + OPTi ≤ (8n + 2)Pf which
completes the proof.

83

6.1.3 Simulation

In this subsection we test the performance of our algorithm on real data derived
from the Yahoo! display advertisement business. To do so, we selected four different
types of impressions and considered all contracts that could be satisfied using those
type of impressions. The types of impressions represent different sets of properties
(e.g. mail, Finance, etc.) and positions (e.g. top, bottom, side). We then partitioned
the business period into rounds. This partition determined the value of T for each
dataset. Data is derived from proprietary but real contract data from 2007.

The simulation methodology is the following. We first assumed that all advertisers
were interested only in being delivered the minimum number of impressions. Next,
we parameterized the simulation by n, the number of impressions available per round,
and ran the simulation for 5 distinct values of n. In order to calculate the optimal
revenue, we attempted to solve the following integer program:

maxx

K∑
k=1

bkxk subject to (6.1.8)

K∑
k=1

qkat,kxk ≤ n, for all 1 ≤ t ≤ T (6.1.9)

x ∈ {0, 1}K (6.1.10)

where at,k = 1 if advertiser k is interested in impressions during round t, and
at,k = 0 otherwise. The variable xk = 1 indicates that a contract will be sold to
advertised Ak. Note that the number of variables is equal to K, and that the number
of constraints is given by T , the number of periods.

Since the number of contracts may be large, it is important to note that the ability
to solve the previous integer program depends both on the number of constraints (as
given by Inequalities 6.1.9) active at optimality, and on the total number of contracts
selected at an optimal allocation. We capture both effects by varying the number
of impressions available per round. If n is large enough, all advertisers can book a
contract. As n decreases, the number of rounds where a potential contention exists
increases, and the solution becomes “lumpier”.

In the course of solving the integer program, we also obtained the solution to the
LP relaxation, where the Inequalities 6.1.10 are replaced with

0 ≤ xk ≤ 1, for all 1 ≤ k ≤ K (6.1.11)

Since for some of the datasets the integer program produced a worse solution
than that of our algorithm, we report the results of our algorithm as compared to the

84

solution obtained by the LP relaxation. We note that we used default settings for the
IP solver, which might account for its inability to handle some of the datasets. The
results of our simulations are summarized in Table1 6.1-6.4.

Table 6.1: Results for the first dataset
n Number Booked Performance loss

n1 2450 0
n2 1709 3.71
n3 803 14.2
n4 88 10.5
n5 33 8.36

Table 6.2: Results for the second dataset
n Number Booked Performance loss

n1 1581 0
n2 1070 10.4
n3 551 12.6
n4 169 14.4
n5 111 37.9

Table 6.3: Results for the third dataset
n Number Booked Performance loss

n1 9169 0
n2 9124 0.05
n3 8323 0.52
n4 6615 0.84
n5 1285 4.99

The parameters for each dataset are summarized in Table 6.5.
The performance loss is given in percentage points with respect to the LP solution.

Note that our algorithm performs orders of magnitude better than the guaranteed
performance (note that even in the case on n = 1, the performance guarantee would
be of 25%, or a performance loss of 75%!). This indicates that the instances typically

85

Table 6.4: Results for the fourth dataset
n Number Booked Performance loss

n1 8826 0
n2 6355 20.0
n3 4603 23.6
n4 850 8.09
n5 436 6.72

Table 6.5: Parameters of the datasets
Parameters Dataset1 Dataset2 Dataset3 Dataset4

n1 5M 5M 1B 500M
n2 1M 1M 500M 100M
n3 500k 500k 100M 50M
n4 100k 100k 50M 10M
n5 50k 50k 10M 5M

contracts 2450 1581 9169 8826
T 12 90 90 90

encountered in real setting are far from those necessary to make our algorithm perform
poorly.

In Table 6.6 we compare the performance of the IP solution to that of the LP
solution. Note that for datasets two to four, the performance of the integer pro-
gramming solution was sometimes below that of our solution, and in some instances
was not even available. We used the open source branch and cut code Cbc from the
COIN-OR repository [41], with default parameter settings, but with the attempted
addition of the probing, Gomory, knapsack, redsplit and clique cuts. In general, the
number of cuts obtained was small. The branch and bound algorithm was run until
either the 10th integer solution was obtained, or twenty minutes have elapsed.

86

Table 6.6: Performance of the Integer Program solution

n Dataset1 Dataset2 Dataset3 Dataset4

n1 0 0 0 0
n2 0.04 5.01 0.02 N/A
n3 0.10 8.53 17.7 N/A
n4 1.77 36.7 8.27 91.1
n5 2.80 32.1 9.54 N/A

87

Chapter 7
Conclusion and Future Work

Online advertising is an emerging field in computer science and it is also the main
revenue resource for large search engine companies. In this thesis, we focused on
online advertising and described different ways of online advertising. We considered
some problems related to this way of advertising and suggested some solutions. We
conclude this thesis by describing the summary of our results and some of the future
directions to pursue research in this area. We looked at four main problems related
to online advertising and presented the solution to each problem. In these problems,
we considered constraints that are forced by the real system requirements such as
space(memory) constraint, speed and simplicity, and the same time we tried to max-
imize objective functions defined for each problem. In Non Guaranteed Delivery we
looked at two problems.

• Online Ad Allocation Problem

• Query Rewriting Problem

We start by generalizing the notion of Submodularity over set functions to a more
broad class of functions (i.e., Sequence Functions) and showed that the result of
Nemhauser et al [46] still holds for Sequence Submodular functions. As we saw in
this thesis, this result is useful in analyzing the performance of a greedy approach for
online problems. We used this property as a tool to analyze Online Ad Allocation
problem as well as the weighted version of Query Rewriting problem. We showed
that if the queries are coming from a fixed but unknown distribution during time, the
greedy approach obtains at least (1− 1

e
) of the profit in expectation. This is a good

news since greedy algorithms are simple and fast and this result shows that their
profit is also good. The second problem that we considered was the query rewriting
problem. Query rewriting was used in Yahoo! as a tool to help retrieving relevant ads.
However, the original design was only based on the relevance of the original query
to the rewrites (similar to the ones for information retrieval) and new requirements
for advertisement was not included. We considered this problem from the advertising
point of view, defined a new set of constraints and objectives and then developed
a solution based on this new model. Also, for the first time, we modeled a global
variant of the problem by considering all queries together and defined the appropriate
constraints and requirements for the global variant. We considered two models:

88

Cardinality Version: In this variant, the constraints specify upper bounds on both
the number of rewrites a query can have as well as the number of queries for
which a query rewrite can be used. These model the system constraints in
an ad network: too many rewrites for a given query will slow down the time
needed to serve an ad and using the same rewrite for too many queries will make
the ads less diverse. For this model, we proposed a greedy algorithm with an
approximation ratio of (e− 1)/(2e− 1) ≈ 0.387. This ratio is an improvement
over 1/3 that can be obtained using existing results on greedy algorithms for
matroid intersections; we believe this may be of independent interest.

Weighted Version: In the second variant (called the weighted version), we modeled
the constraints of an ad’s budget. We assumed that the traffic for a query for a
fixed period of time is known. The goal here was again to select a set of rewrites
that have the maximum benefit subject to the constraint that no query can
have too many rewrites. The key difference was that an ad can only contribute
benefit for traffic up to its budget. For this version, we proposed another greedy
algorithm with an approximation ratio of 1− 1

e1−
1
e
. In the analysis, we used the

sequence submodularity property.

Research on Guaranteed Delivery Advertisement is getting more popular. In this cate-
gory as we mentioned before, advertisers are more interested in branding. As a result,
they need their ad to be shown to a good set of users that are related to advertisers
desired set of keywords. As a result, they want that the search engine guarantees to
allocate their required number of impressions to them for their requested time period.
Two main questions in this area are: (a) to decide which set of advertisers to accept
and sign a contract with. (b) after accepting a set of advertisers as contractors, which
allocation is the most favorable one for contractors. We looked at the following two
problems:

Online Ad Allocation for Display Advertisement The model we considered is
as follows: Advertisers arrive online and request a contract. Upon arrival,
advertiser k reveals all her information including the number of impressions
she is interested per day and the start and the end of the time period that
she wants her ads to be displayed. We assumed that the payment is according
to the total number of impressions that will be allocated to an advertiser (if
and only if her total demand will be satisfied). The publisher then decides
on the spot to accept or reject the contract. We also assume that the total
number of available impressions per day is fixed. Contracts can be dropped
without penalty (i.e., the publisher can accept a contract and drop it later if a

89

better one arrives). However in this case publisher cannot charge the advertiser
anything if the contract is dropped. The goal is to maximize social welfare (or
revenue) under adversarial arrival of advertisers. Under these assumptions, we
showed that for an arbitrary sequence of advertisers, there is no online algorithm
that can have a worst case ratio smaller than n where n is the total number of
available impressions per day. We then presented an online greedy algorithm
with a worst case analysis and we showed that the obtained profit from our
algorithm is only a constant factor worse than the best possible online algorithm.
Since the lower bound on the best possible algorithm in the adversary setting
is quite pessimistic, we simulated the performance of our greedy algorithm on
actual data from Yahoo!’s display advertisement business. We found that our
algorithm performs very well in practice as the observed performance was quite
close to the optimal, as opposed to the worst case lower bound.

Fair Contract Allocation Given a set of impressions (i.e., the supply) and the
number of available impressions and contracts with their desired number of im-
pressions, how to find a feasible assignment of impressions to contracts that is
as fair as possible? Answering this question involves formulating what fairness
precisely means in this context. And, given the large number of advertisers
(typically, in the hundreds of thousands) and the astronomical number of im-
pressions (typically, in the hundreds of millions) in an online setting, we desire
an allocation algorithm that is practical and combinatorial and whose allocation
can be stored succinctly, ideally, using space linear in the number of impres-
sions and contracts as opposed to the naive quadratic storage. Of course, this
succinct representation should let us reconstruct the allocation along every pair
of contract and impression bucket in a time-efficient manner. The price of each
impression is computed based on the historical data. We considered the general
problem of fair allocation in a bipartite supply-demand setting. Our formu-
lation is combinatorial and captures the notion of deviation from fairness by
a natural and general form of a penalty function. For the case of L1 penalty
functions we obtained a simple combinatorial algorithm for the fair allocation
problem. By L1 penalty function, we mean that we want to find a feasible al-
location of impressions to contracts while minimizing the absolute distance of
this allocation from the most representative allocation for each contract. Our
solution was based on solving a min-cost flow problem on a bipartite graph,
which has been done very efficiently. We also showed how to precompute and
store a linear amount of information such that the allocation along any edge
in the bipartite graph can be approximately answered in constant time, under

90

mild assumptions on the input instances. This space-efficient reconstruction
method might be of independent interest in contexts beyond fair allocation.

We also proved two additional properties of our formulation. First is robustness,
where we show how to upper bound the performance loss when the supply esti-
mates are only approximately known. Second is extensibility, where we showed
an even simpler greedy approximation algorithm when some of the demand
constraints are relaxed.

Finally, we extended our combinatorial solution to any convex function.

7.1 Future Work

In the context of online algorithms, one approach is to design algorithms with
a good worst case performance. Another approach is to design an algorithm with
good expected performance. As we saw, in the context of online ad allocation in
Non-Guaranteed Delivery, by adding the assumption that the queries are coming
from an unknown distribution, we can get a better approximation factor. Computer
scientists have traditionally adopted the former approach since it does not depend
on the probability distribution of the input and worst case analysis is generally much
simpler than analysis of the expected performance. Nevertheless, many algorithms
with theoretically not so good worst case performance do much better in practice
since they have a better performance in expectation.

The offline version of many online algorithms like online resource allocation [14],
use linear programming to find an intermediate fractional solution. A similar LP
approach usually cannot be used for the online version since solving the LP requires
all the information to be known in advance. Still it might be possible to find certain
forms of LP’s for which an approximation to the optimal solution can be constructed
gradually. Consider for example the following class of linear programs:

Definition 1 (Online Packing LP:). Consider the linear program of the following
form:

maximize: c.x (7.1.1)

Ax ≤ b (7.1.2)

xi ∈ [0, 1] (7.1.3)

such that the matrix A and the vectors b and c are non-negative. We say each variable
xi, has the status of being active or inactive. If inactive then xi = 0 otherwise xi
could take any value in [0, 1]. We learn the status (i.e., active/inactive) of variable

91

xi at time ti and as soon as we find out its status we are required to choose its value
(if inactive it should be set to 0). Once initialized, the value of a variable cannot be
changed at a later time. As for distribution information, we know that each variable
xi will be active with probability pi independent of other variables. The goal is to
design an online algorithm that would maximize the expected value of the objective
function.

The online resource allocation problem [14] can be easily modeled as an online
packing LP. If we could efficiently compute the expected value of the objective func-
tion for the optimal offline solver then we could use the following online algorithm.
At each time ti that the status of variable xi is revealed, if xi is active then compute
the expected value of the objective for the rest of the LP once for xi = 0 and once for
xi = 1 and the choose then one with the highest total expected value. Therefore, it
is interesting to see if there is an efficient way to compute the expected value of the
objective function. It is worth mentioning that we can efficiently compute an upper
bound on the expected value of the objective by adding the constraints xi ≤ pi and
solve the offline linear program. It might also be possible to compute an approxi-
mation to the optimal online algorithm if we could compute a constant factor lower
bound for the expected value of the objective function and then use that instead of
the exact expected value in the online algorithm. This problem will cover a lot of
other problems assuming that the inputs are coming from a distribution (e.g., Online
Ad Allocation in Guaranteed Delivery).

Another open problem is related to the online ad allocation problem in Non-
Guaranteed Delivery from the game theoretic perspective. In the current setting we
assumed that we know the payments of each ad for each keyword. However in reality,
advertisers are bidding on each keyword and the payment is computed based on the
bids of the participants in the auction. Assuming that bidders are strategic it is not
the case that they will bid their true valuation for each keyword. The interesting
question arises when we consider the budget constraint as well. The new problem can
be summarized as follows:

• Assuming that the advertisers are strategic and rational and assuming that they
have a budget constraint that is publicly known, design a mechanism that will
maximize the revenue of the search engine.

We can consider Fair Allocation Problem from game theoretic aspect as well. The
question can be defined as follows:

• Suppose again that advertisers are rational and strategic. Design a pricing
strategy so that assuming that we use the allocation described in chapter 5,
truth telling about the demand is dominant strategy for advertisers.

92

To conclude, I believe that the problems in this thesis address a few of the current
challenges in e-Commerce and Internet Advertising. There are many interesting new
problems arising in this field and the area is rapidly growing. I believe that this is
one of the areas that will receive higher attention for research in the near future due
to its potential for generating revenue at large scales for IT companies.

93

Bibliography

[1] A. Agrawal, P. N. Klein, and R. Ravi. When trees collide: An approximation
algorithm for the generalized Steiner problem on networks. In Proc. 23rd Annual
ACM Symposium on Theory of Computing, pages 134–144, 1991.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algo-
rithms and Applications. Prentice Hall, 1993.

[3] S. Alaei, E. Arcaute, S. Khuller, W. Ma, A. Malekian, and J. Tomlin. Online
allocation of display advertisements subject to advanced sales contracts. In KDD
Workshop on Data Mining and Audience Intelligence for Advertising, pages 69–
77, 2009.

[4] S. Alaei, R. Kumar, A. Malekian, and E. Vee. Fair allocation with succint
representation, 2009.

[5] S. Alaei and A. Malekian. Maximizing sequence-submodular functions and its
application to online advertising, 2008.

[6] N. Andelman and Y. Mansour. Auctions with budget constraints. In 9th Scan-
dinavian Workshop on Algorithm Theory (SWAT), pages 26–38, 2004.

[7] I. Antonellis, H. G. Molina, and C.-C. Chang. Simrank++: Query rewriting
through link analysis of the click graph. In Stanford Computer Science Depart-
ment Technical Report, 2007.

[8] Y. Azar, B. Birnbaum, A. R. Karlin, C. Mathieu, and C. T. Nguyen. Improved
approximation algorithms for budgeted allocations. In ICALP ’08: Proceedings
of the 35th international colloquium on Automata, Languages and Programming,
Part I, pages 186–197, 2008.

[9] M. Babaioff, J. Hartline, and R. Kleinberg. Selling banner ads: Online algorithms
with buyback. In Proc. 4th Workshop on Ad Auctions, 2008.

[10] R. Bar-Yehuda and S. Even. A linear-time approximation algorithm for the
weighted vertex cover problem. J. Algorithms, 2(2):198–203, 1981.

[11] D. Beeferman and A. Berger. Agglomerative clustering of a search engine query
log. In Proc. 6th KDD, pages 407–416, 2000.

94

[12] J. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algo-
rithms for collaborative filtering. In In Proc. 14th UAI, pages 43–52, 1998.

[13] A. L. Buchsbaum, H. J. Karloff, C. Kenyon, N. Reingold, and M. Thorup. Opt
versus load in dynamic storage allocation. SIAM J. Comput., 33(3):632–646,
2004.

[14] G. Calinescu, A. Chakrabarti, H. J. Karloff, and Y. Rabani. Improved approxi-
mation algorithms for resource allocation. In Proceedings of the 9th International
Integer Programming and Combinatorial Optimization Conference, IPCO 2002,
pages 401–414, 2002.

[15] D. Chakrabarty and G. Goel. On the approximability of budgeted allocations and
improved lower bounds for submodular welfare maximization and gap. In FOCS
’08: Proceedings of the 2008 49th Annual IEEE Symposium on Foundations of
Computer Science, pages 687–696, Washington, DC, USA, 2008.

[16] F. Constantin, J. Feldman, S. Muthukrishnan, and M. Pl. An online mechanism
for ad slot reservations with cancellations. In SODA, 2009.

[17] S. C. Deerwester, S. T. Dumais, T. K. Lancaster, G. W. Furnas, and R. Harsh-
man. Indexing by latent semantic analysis. In JASIS, pages 391–407, 1990.

[18] N. R. Devanur and T. P. Hayes. The adwords problem: online keyword matching
with budgeted bidders under random permutations. In EC ’09: Proceedings of
the tenth ACM conference on Electronic commerce, pages 71–78, New York, NY,
USA, 2009. ACM.

[19] N. R. Devanur, C. H. Papadimitriou, A. Saberi, and V. V. Vazirani. Market
equilibrium via a primal-dual algorithm for a convex program. J. ACM, 55(5),
2008.

[20] B. Edelman, M. Ostrovsky, and M. Schwarz. Internet advertising and the general-
ized second price auction: Selling billions of dollars worth of keywords. American
Economic Review, 97(1):242–259, 2007.

[21] L. Epstein and A. Levin. Improved randomized results for that interval selection
problem. In ESA, pages 381–392, 2008.

[22] U. Feige, N. Immorlica, V. S. Mirrokni, and H. Nazerzadeh. A combinatorial
allocation mechanism with penalties for banner advertising. In WWW, pages
169–178, 2008.

95

[23] U. Feige, V. S. Mirrokni, and J. Vondrak. Maximizing non-monotone submodular
functions. In FOCS ’07: Proceedings of the 48th Annual IEEE Symposium on
Foundations of Computer Science, pages 461–471, Washington, DC, USA, 2007.
IEEE Computer Society.

[24] L. Fleischer, M. X. Goemans, V. S. Mirrokni, and M. Sviridenko. Tight ap-
proximation algorithms for maximum general assignment problems. In SODA
’06: Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete
algorithm, pages 611–620, New York, NY, USA, 2006. ACM.

[25] R. Garg, V. Pandit, and V. Kumar. Approximation algorithms for budget-
constrained auctions, 2001.

[26] A. Ghosh, P. McAfee, K. Papineni, and S. Vassilvitskii. Bidding for representa-
tive allocations for display advertising, 2009.

[27] G. Goel and A. Mehta. Online budgeted matching in random input models with
applications to adwords. In SODA ’08: Proceedings of the nineteenth annual
ACM-SIAM symposium on Discrete algorithms, pages 982–991, Philadelphia,
PA, USA, 2008. Society for Industrial and Applied Mathematics.

[28] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem.
J. ACM, 35(4):921–940, 1988.

[29] P. Goundan and A. Schulz. Revisiting the greedy approach to submodular set
function maximization. In Manuscript, 2007.

[30] J. Herlocker, J. Konstan, A. Borchers, and J. Riedl. An algorithmic framework
for performing collaborative filtering. In Proc. 22nd SIGIR, pages 230–237, 1999.

[31] S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial, strongly polynomial-
time algorithm for minimizing submodular functions. Journal of the ACM,
48:761–777, 2001.

[32] S. IWATA, L. FLEISCHER, I. Lisa, and S. FUJISHIGE. A combinatorial
strongly polynomial algorithm for minimizing submodular functions. Journal
of the ACM, 48:761–777, 2000.

[33] K. Jain and V. V. Vazirani. Eisenberg-Gale markets: Algorithms and structural
properties. In Proc. 39th Annual ACM Symposium on Theory of Computing,
pages 364–373, 2007.

96

[34] G. Jeh and J. Widom. Simrank: A measure of structural-context similarity. In
Proc. 8th KDD, pages 538–543, 2002.

[35] R. Jones, B. Rey, O. Madani, and W. Greiner. Generating query substitutions.
In Proc. 15th WWW, pages 387–396, 2006.

[36] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-
line bipartite matching. In STOC ’90: Proceedings of the twenty-second annual
ACM symposium on Theory of computing, pages 352–358, New York, NY, USA,
1990. ACM.

[37] S. Khot, R. J. Lipton, E. Markakis, and A. Mehta. Inapproximability results
for combinatorial auctions with submodular utility functions. In WINE, pages
92–101, 2005.

[38] S. Khuller, A. Moss, and J. S. Naor. The budgeted maximum coverage problem.
Inf. Process. Lett., 70(1):39–45, 1999.

[39] B. Lehmann, D. Lehmann, and N. Nisan. Combinatorial auctions with decreasing
marginal utilities. Games and Economic Behavior, 55(2):270–296, May 2006.

[40] A. Malekian, C.-C. Chang, R. Kumar, and G. Wang. Optimizing query rewrites
for keyword-based advertising. In EC ’08: Proceedings of the 9th ACM conference
on Electronic commerce, pages 10–19, New York, NY, USA, 2008. ACM.

[41] COIN-OR Foundation: http://www.coin or.org.

[42] P. McAfee and K. Papineni. Maximally representative allocation for guaranteed
delivery advertising campaigns, 2008. Manuscript.

[43] A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani. Adwords and generalized
online matching. J. ACM, 54(5):22, 2007.

[44] H. Miyazawa and T. Erlebach. An improved randomized on-line algorithm for a
weighted interval selection problem. J. Scheduling, 7(4):293–311, 2004.

[45] G. L. Nemhauser and L. A. Wolsey. Best algorithms for approximating the
maximum of a submodular set function. Mathematics of Operations Research,
3(3):177–188, 1978.

[46] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations
for maximizing submodular set functions. volume 14, pages 265–294, Berlin,
Heidelberg, 1978. Springer.

97

[47] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations
for maximizing submodular set functions. In Math. Prog., pages 265–294, 1978.

[48] S. S. Seiden. Randomized online interval scheduling. Oper. Res. Lett., 22(4-
5):171–177, 1998.

[49] A. Srinivasan. Budgeted allocations in the full-information setting. In APPROX-
RANDOM, pages 247–253, 2008.

[50] E. Vee, S. Vassilvitskii, and J. Shanmugasundaram. Online allocation with a
compact plan, 2009. yahoo research reoport, YL-2009-05.

[51] G. J. Woeinger. On-line scheduling of jobs with fixed start and end times.
Theoretical Computer Science, 130(1):5–16, 1994.

[52] W. Zhang and R. Jones. Comparing click logs and editorial labels for training
query rewriting. In Workshop on Query Log Analysis, 16th WWW, 2007.

[53] W. V. Zhang, X. H. Fei, B. Rey, and R. Jones. Query rewriting using active
learning for sponsored search. In Proc. 30th SIGIR, pages 853–854, 2007.

98

	List of Tables
	List of Figures
	Introduction
	Problem Formulation
	Online Ad Allocation Problem
	Query Rewriting Problem
	Online Ad allocation for Display advertisement
	Fair Contract Allocation:

	Roadmap

	Background and Related Work
	Submodular Functions
	Online Allocation Problem
	Query Rewriting
	Display Advertisement
	Fair Allocation
	Online Resource Allocation

	Non-guaranteed Delivery: Online Ad Allocation Problem
	Sequence Submodularity
	Definitions
	Submodular Non-decreasing Sequence Functions

	Greedy Heuristic (Discrete)
	Greedy Heuristic (Continuous)
	Online ad allocation problem

	Query Rewriting for Keyword-based Advertising
	Why rewrite queries for keyword advertising?
	Formulation
	Algorithms for cardinality version
	Warmup: Single query case
	The general case
	Hardness results for Cardinality Version
	Tight examples for cardinality version

	Algorithm for the weighted version
	Experimental results
	Editorial relevance
	d-benefit

	Guaranteed Delivery Advertisement: Fair Allocation With a Compact Plan
	Fair Allocation with a Compact Plan
	Fair allocation with L1 penalty
	Reconstruction for L1
	Effect of supply scaling
	Convex penalty functions
	A greedy solution for L1 allocation with soft demand

	Guaranteed Delivery Advertisement: Online Ad Allocation
	Online Setting
	Definitions and Settings
	Online Algorithm
	Simulation

	Conclusion and Future Work
	Future Work

	Bibliography

