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Multi-camera systems have the ability to overcome some of the fundamental lim-

itations of single camera based systems. Having multiple view points of a scene

goes a long way in limiting the influence of field of view, occlusion, blur and poor

resolution of an individual camera. This dissertation addresses robust and efficient

inference of object motion and scene in multi-camera and multi-sensor systems.

The first part of the dissertation discusses the role of constraints introduced by

projective imaging towards robust inference of multi-camera/sensor based object

motion. We discuss the role of the homography and epipolar constraints for

fusing object motion perceived by individual cameras. For planar scenes, the

homography constraints provide a natural mechanism for data association. For

scenes that are not planar, the epipolar constraint provides a weaker multi-view

relationship. We use the epipolar constraint for tracking in multi-camera and

multi-sensor networks. In particular, we show that the epipolar constraint reduces

the dimensionality of the state space of the problem by introducing a “shared”

state space for the joint tracking problem. This allows for robust tracking even

when one of the sensors fail due to poor SNR or occlusion.

The second part of the dissertation deals with challenges in the computa-

tional aspects of tracking algorithms that are common to such systems. Much of

the inference in the multi-camera and multi-sensor networks deal with complex

non-linear models corrupted with non-Gaussian noise. Particle filters provide ap-



proximate Bayesian inference in such settings. We analyze the computational

drawbacks of traditional particle filtering algorithms, and present a method for

implementing the particle filter using the Independent Metropolis Hastings sam-

pler, that is highly amenable to pipelined implementations and parallelization.

We analyze the implementations of the proposed algorithm, and in particular

concentrate on implementations that have minimum processing times.

The last part of the dissertation deals with the efficient sensing paradigm of

compressing sensing (CS) applied to signals in imaging, such as natural images

and reflectance fields. We propose a hybrid signal model on the assumption that

most real-world signals exhibit subspace compressibility as well as sparse represen-

tations. We show that several real-world visual signals such as images, reflectance

fields, videos etc., are better approximated by this hybrid of two models. We

derive optimal hybrid linear projections of the signal and show that theoreti-

cal guarantees and algorithms designed for CS can be easily extended to hybrid

subspace-compressive sensing. Such methods reduce the amount of information

sensed by a camera, and help in reducing the so called data deluge problem in

large multi-camera systems.
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Chapter 1

Introduction

Video cameras are fast becoming ubiquitous for a wide range of applications.

Some of the challenges in single camera applications have been studied for over

a decade and reliable algorithms for many tasks have been realized. However, in

many applications, a single view point provides too little information to reliably

solve the problem of interest. This could potentially be due to the limited field

of view of the camera, poor resolution with depth, defocus and motion blur, and

occlusion. Towards this end, having multiple cameras and additional sensors go

a long way in overcoming the fundamental limitations of single camera systems.

This dissertation addresses some of the challenges that are central to problems in

multi-camera systems.

Much of the work in image understanding has focused on interpreting prop-

erties of a scene from images. The distribution of intensities and their spatial

arrangement in an image contains information about the identity of objects, their

reflectance properties, and the structure of objects in the scene. However, this

information is buried in a form that makes it challenging to infer them from the

images. One of the fundamental reasons for this difficulty is the fact that the

mapping from the 3D scene to a 2D image in general is not invertible. It is in this

context that reasonably accurate yet simple geometric models of scene structure

(planar scene), scene illumination (point source), surface properties (Lambertian,

Phong etc.) and imaging structure (camera models) serve critical roles in the de-

sign of inference algorithms. The first part of the dissertation focuses on geometric

constraints that are specific to the multi-camera setting, and studies estimation

techniques governed by these constraints. This finds use in multi-view tracking

1



Chapter 1. Introduction

and metrology.

Much of the work in multi-camera systems has been restricted to systems with

very few cameras. As the number of cameras increase, data processing and acqui-

sition becomes an overwhelming problem. This leads to the so called data deluge

problem in systems with hundreds to thousands of cameras. The second part of

the dissertation is devoted to the development of methods that scale with number

of cameras. We discuss computationally efficient and parallel implementations of

a general purpose estimation tool called particle filter. We also study efficient

data acquisition schemes that sense minimally to alleviate the high data volumes

that needs to be sensed and stored.

1.1 Motivation

1.1.1 Geometric Modeling and Inference

Image acquisition invariably introduces noise. Common sources of noise in the

imaging system are due to shot noise, thermal noise etc. Inference in this noisy

environment is further complicated by the inherent errors in physical modeling.

Real surfaces are never truly Lambertian, cameras never truly perspective and illu-

mination in a scene never a point light source. Nevertheless, inference algorithms

make these assumptions in order to make the problem tractable.

To illustrate these sources of error, let us consider the following simple applica-

tion. Suppose we are interested in designing a robot that can localize and identify

the entrances to buildings (see Figure 1.1(a)). To start with, we first define a

’model’ of an entrance. For computational tractability, we assume the edges of

the entrance form a rectangle. Now, given an image containing the entrance, we

might choose to use an edge-detector or corner-detector to obtain features. Due

to image-noise, occlusions, and shadows, the features may not exactly correspond

to edge locations. With these noisy feature locations, we proceed to fit two sets of

parallel lines, where the lines from different sets are perpendicular to each other.

2



1.1 Motivation

Consider the edge figure in Figure 1.1(b). Finding the set of points corresponding

to the entrance and grouping them into a rectangle is a combinatorial optimiza-

tion problem. Suppose we do obtain a solution to this optimization problem by

some approximate method. The final error in fitting would be in part due to noisy

measurements, the difficulty in solving the constrained optimization problem, and

the error in the modeling itself since the entrance does not appear as a rectangle

due to perspective effects. The error would become even worse when the viewing

angle changes further away from frontal, or if there are shadows or occlusion.

(a) (b)

Figure 1.1: Fitting a rectangle to an entrance. Various sources of error are illustrated

here – Feature points are noisy, grouping of the points into a rectangle is a challenge,

and a rectangle is not an accurate model for the entrance.

As this example illustrates, computer vision algorithms involve the interplay

between different geometric constraints that arise from models of the scene. Infer-

ence involves assumptions about the imaging apparatus and appropriate statistical

estimation techniques that can contend with varying sources of error.

In multi-camera systems, there are two constraints which appear commonly.

The first is that of the epipolar constraint, which is a general constraint linking

position of objects across views. The epipolar constraint holds with no further

assumption except that the cameras imaging the scene are pin-hole cameras. A

planar scene provides a stronger constraint, namely, the homography constraint.

Much of inference in multi-camera systems stem from an understanding and ju-
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Chapter 1. Introduction

dicious use of these two constraints.

The first part of the dissertation deals with statistical estimation under the

homography and epipolar constraints.

1.1.2 Computational Challenges in Large Systems

The homography and epipolar constraints are non-linear constraints. Further,

the information (or state/parameter) that we seek to estimate is encoded non-

linearly in the images that we obtain. Much of the estimation procedure in such a

setting can be efficiently formulated as one of non-linear filtering of observations

corrupted by noise. In its generality, filtering is the problem of estimation of an

unknown quantity, usually referred to as the state, from a set of observations

corrupted by noise. This problem has applications in a broad spectrum of real-

life problems including GPS navigation, tracking etc. The specific nature of the

estimation/filtering problem depends greatly on the state we need to estimate,

the evolution of the state with time (if any) and the relation of this state to the

observations and the sources of noise. Generally, solutions for estimation can

be derived analytically under constrained and special scenarios. For example,

Kalman filtering [71] is an optimal analytic filter when the models are linear

and the corrupting noise processes are Gaussian. For non-linear systems driven

by non-Gaussian processes, the extended Kalman filter or the iterated extended

Kalman filter are used as approximations to the optimal filtering scheme. Another

popular tool for solving the inference problems for non-linear systems is particle

filtering [56,42].

Particle filtering has been applied to a wide variety of problems such as track-

ing, navigation, detection [64,107] and video-based object recognition [142]. This

generality of particle filters comes from a sample (or particle) based approximation

of the posterior density of the state vector. This allows the filter to handle both

the non-linearity of the system as well as the non-Gaussian nature of noise pro-

cesses. However, the resulting algorithm is computationally intensive and raises

4



1.1 Motivation

the need for efficient implementations of the algorithm, tuned specifically toward

hardware or multi-processor based implementations.

In the second part of the dissertation, we explore algorithmic and implemen-

tation schemes for particle filters for speeding up the basic computations, thereby

making particle filtering-based solutions amenable to real time constraints. We

identify the resampling part of the algorithm as being critical for pipelined and

parallel implementations and demonstrate a methodology where there are no bot-

tlenecks in pipelining. Further, this allows us to speedup the filter and reduce its

latency through pipelining and parallelization.

1.1.3 Efficient Sensing

Sensing deals with the sampling of a continuous domain signal into a set of discrete

samples while preserving critical properties of the signal. The Shannon-Nyquist

sampling theorem states that if a signal is band-limited, then it lies in a sub-

space given by the Fourier basis functions. If a signal lies in a subspace then

the signal can be accurately reconstructed by measuring the projections of the

signal onto the subspace. The subspace can either be data-independent like the

Fourier transform and Wavelet transforms or data dependent like the Principal

component analysis (PCA). This basic idea can also be used in data compression,

where one can compress the data by projecting the data to a subspace which con-

tains significant energy content of the signal. Since most signals exhibit certain

forms of redundancy it is possible to find a subspace such that most of the signal

energy is contained within this subspace. More recently, sparse representations

and estimation using sparse approximations have gained popularity motivated by

recent results from Compressive Sensing (CS) [7, 19, 39]. The basic idea is that if

a signal is sparse in some basis, then it may be efficiently recovered and recon-

structed using few linear measurements of the signal. Compressive sensing has

found applications in much the same domains as the subspace sampling. Visual

data such as images, videos, light-fields and reflectance fields which were measured
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Chapter 1. Introduction

and compressed using subspace sampling methods can potentially be measured

using compressive sensing. In principle, if a signal has no structure in addition

to being sparse, then it cannot be subspace limited. Similarly, if a signal has no

further redundancy than being subspace limited, then sparsity provides no addi-

tional information. This leads to the hypothesis that real visual signals are neither

truly sparse, nor just band-limited.

Towards this end, the third part of the dissertation deals with formulating

models for visual signals that allow for efficient acquisition. This coupled with

computational efficiency and geometric inference forms the three main contribu-

tions of this dissertation.

1.2 Contributions

This dissertation makes the following contributions:

1. Projective transformation of random variables [119, 115]: We study

projective transformations of Gaussian random variables and highlight the

influence of the Line at Infinity (of the projective transformation) to the

form and statistical properties of the transformed random variable. We use

this theory for multi-view tracking and metrology for planar scenes.

2. Tracking in Joint State Spaces [29]: We show how the epipolar con-

straint leads to systems that have overlapping state spaces. We derive

a particle filtering framework (including appropriate importance sampling

strategies) for such problems, and apply it to multi-sensor tracking problems.

3. Computationally Efficient Particle Filtering [118]: We present pipeline-

able and parallel architectures for implementing particle filters by using the

Independent Metropolis Hastings algorithm for resampling. The use of aux-

iliary variables makes the filter even more flexible in terms of the choice of
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importance sampling functions. Finally, we formulate a set of convex pro-

grams for obtaining the design specification of the fastest implementation

of the algorithm.

4. Signal Models for Efficient Sensing: We develop a new signal model

called the Hybrid-Subspace-Sparse (HSS) signals which we show approxi-

mate several real-world visual signals much better than competing signal

models such as subspace and sparse signals. We show that most of the

theoretical guarantees obtained for CS can be extended to the HSS signal

model but with tighter bounds in terms of the number of measurements

needed. We derive the optimal projections for the HSS signals and develop

a reconstruction algorithm that amounts to solving a constrained convex

optimization, for which fast and stable algorithms exist.

1.3 Organization

Chapter 2 introduces some of the concepts that is the core of this dissertation.

Chapters 3 and 4 study statistical estimation for planar scenes. In Chapter 5, we

discuss tracking in joint state spaces using acoustic and video sensors as the main

example. Computational aspects of particle filters are studied in Chapter 6. We

discuss signal models and efficient sensing strategies in Chapter 7. Finally, we

highlight future directions of research in Chapter 8.
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Chapter 2

Basics

In this chapter, we cover some of the concepts that are central to this dissertation.

The chapter is divided mainly into two parts. We first discuss imaging with a

pinhole camera and the geometric properties it induces in the context of multiple

cameras. The second part of the chapter discusses Bayesian inference in dynamical

systems using particle filtering.

2.1 Imaging with a Camera: Projective Geometry

In this section, we introduce the basics of projective geometry and discuss some of

the concepts that are extensively used for object detection and tracking. The pro-

jective nature of imaging introduces unique challenges in multi-camera systems. It

becomes important to understand the nature of such constraints and their impact

on these problems. We do note that this is not an exhaustive coverage of this

topic. An in-depth discussion of projective geometry can be found in [60] [86].

2.1.1 A Note on Notation and Homogeneous coordinates

In the rest of the dissertation, we use bold-font to denote vectors, and CAPS to

denote matrices. Further, we use x, y, z alphabets to denote quantities in world

coordinates, and u, v alphabets for image plane coordinates. In addition to this,

the concept of homogeneous coordinates is important. We use the tilde notation

to represent entities in homogeneous coordinates. Given a d−dimensional vector

u ∈ R
d, its homogeneous representation is given as a (d+ 1)−dimensional vector

ũ ∽ [u, 1]T , where the operator ∽ denotes equality up to scale. In other words,

8



2.1 Imaging with a Camera: Projective Geometry

ũ ∽ x̃ ⇒ ũ = λx̃, λ 6= 0. In simpler terms, when we deal with homogeneous

quantities we allow for a scale ambiguity in our representation. The representation

mainly allows for elegant representations of the basic imaging equations, that we

discuss next.

2.1.2 Central Projection

Central projection is the fundamental principle behind imaging with a pinhole

camera, and serves as a good approximation for lens-based imaging for the ap-

plications considered here. In the pinhole camera model, rays (or photons) from

the scene are projected onto a planar screen after passing through a pinhole. The

screen is typically called the image plane of the camera. Consider a camera with

its pinhole at the origin and the image plane aligned with the plane z = f . Un-

der this setup, a 3D point x = (x, y, z)T projects onto the image plane point

u = (u, v)T , such that

u = f
x

z
, v = f

y

z
. (2.1)

This can be elegantly written in homogeneous terms as,

ũ ∽




u

v

1


 =




fx/z

fy/z

1


 ∽




fx

fy

z


 =




f 0 0

0 f 0

0 0 1


x. (2.2)

A more general model of the pinhole camera allows for the pinhole to be at an

arbitrary position and the image plane oriented arbitrarily. However, we can use

a simple Euclidean coordinate transformation to map this as an instance of the

previous one. Finally, the camera might have non-square pixels with image plane

skew. This leads us to a general camera model whose basic imaging equation is
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Chapter 2. Basics

given as:

ũ ∽ K[R t]x̃ = P x̃ (2.3)

where P is the 3 × 4 matrix encoding both the internal parameters of the

camera K (its focal length, principal point etc.) and the external parameters

(its orientation R and position t in a world coordinate system). ũ and x̃ are the

homogeneous coordinate representations of the pixel in the image plane and the

point being imaged in the real world respectively. Although central projection is

inherently non-linear, it can be written as a linear transformation of the homo-

geneous coordinates. Finally, (2.2) can be obtained from (2.3) with R = I3 (the

identity matrix), t = 0 and K = diag(f,f,1).

It is noteworthy that the projection equation of (2.3) is not invertible in gen-

eral. Intuitively, the pinhole camera maps a 3D world onto a 2D plane, and hence,

the mapping is many-to-one and non-invertible. All points that lie on a line pass-

ing through the pinhole map onto the same image plane point. This can also be

independently verified by the scale ambiguity in (2.3). Given a point on the image

plane u, its pre-image is defined as the set of all scene points that map onto u

under central projection. It is easily seen, that the pre-image of a point is a line

in the real world. Without knowledge of the scene and/or additional constraints,

it is not possible to identify the scene point which projects onto u. This lack of

invertibility leads to some of the classical problems in computer vision, the most

fundamental being establishing correspondence across views.

2.1.3 Epipolar Geometry

Consider two images (or central projections) of a 3D world. Given a point uA on

the first image of a world point x, we know that its pre-image is a line passing

through the point uA and CA, the pinhole of the camera (see Figure 2.1). Hence,

given information about uA on the first image, all we can establish is that the
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2.1 Imaging with a Camera: Projective Geometry

Ground Plane

View A View B

Epipole eB

uB

Pre-image of uA

uA

Epipole eA

x

Line L(uA)

CA CB

Figure 2.1: Consider views A and B (camera centers CA and CB) of a scene with a

point x imaged as uA and uB on the two views. Without any additional assumptions,

given uA, we can only constrain uB to lie along the image of the pre-image of uA (a

line). However, if world were planar (and we knew the relevant calibration information)

then we can uniquely invert uA to obtain x, and re-project x to obtain uB

corresponding projection of the point x on the second image plane uB lies on the

projection of the pre-image of uA onto the second image plane. Since the pre-

image of uA is a line, the projection of this line onto view B gives the line L(uA),

the epipolar line associated with uA. Thus, the epipolar geometry constrains

corresponding points to lie on conjugate pairs of epipolar lines.

In the context of multi-view localization problems, the epipolar constraint can

be used to associate objects across multiple views [108]. Once we obtain reliable

correspondence across multiple views, we can triangulate to localize objects in

the real world. However, correspondences based on epipolar constraint alone

tends to be insufficient as the constraint does not map points uniquely across

views. In general, all points lying on the epipolar line are potential candidates for

correspondence.

2.1.4 Triangulation

In many detection and tracking applications, once we have correspondences be-

tween object locations across views, we are interested in localization of these ob-
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View D

View A
View B

uB

Pre-image of uA

Pre-image of uB

uA

x

CA CB

CD

uD

Figure 2.2: Consider views A, B and D of a scene with a point x imaged as uA, uB

and uD on the views. We can estimate the location of x by triangulating the image

plane points as shown in the figure. At each view, we draw the pre-image of the point,

which is the line joining the image plane point and the associated camera center. The

properties of projective imaging ensure that the world point x lies on this pre-image.

Hence, when we have multiple pre-images (one from each view) the intersection of these

lines gives the point x.

jects in scene coordinates. Let us assume that the same object has been detected

in two views (A and B) with camera center CA and CB at image place locations

uA and uB as shown in Figure 2.2. In this case, the basics of projective imaging

constrains the object to lie on the pre-image of the point uA (the line connecting

CA and uA). Similarly the object must also lie on the pre-image of uB in view

B. Therefore, estimating the true location of the object amounts to estimating

the point of intersection of these two lines. In a general scenario with several

cameras, each camera gives rise to a line and estimating the object’s location in-

volves computing the point of intersection of these lines. In the presence of noisy

measurements, these lines do not intersect at a single point and error measures

such as sum of squares are used to obtain a robust estimate of the location of

the object. This is called triangulation [61]. The drawback of the triangulation

approach is that it requires correspondence information across cameras which is

difficult to obtain.
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2.1.5 Using the Epipolar Constraint

Consider tracking a point from two projective views. The problem can be formed

as one of tracking the 3D location of the point. However, to do this the intrinsic as

well as the extrinsic camera parameters need to be known. Estimating this from

correspondence information results in a projective ambiguity in the estimated

parameters [60]. This invalidates many of the noise models used popularly for

location tracking.

An alternate way to tracking is in tracking the point in the image plane itself.

The epipolar constraint restricts the multi-view projection of a point to lie on

corresponding epipolar lines. Hence, we can formulate the tracking problem in a

3 dimensional space S = {λA, λB, α}. The α parameter chooses the epipolar lines

on which the point lies, and λA and λB determine the location on the epipolar line

at each camera with the epipolar marked as origin. Note that α is a parameter that

is common to both views, while λA and λB are completely independent of each

other. In a sense, the state space S can be partitioned into two subsets, SA =

{λA, α} and SB = {λB, α} each of which deal with location in different cameras,

and share a common parameter. When tracking extended object characteristics,

such as appearance and shape, these add on as independent parameters to the

state spaces SA and SB. A study of tracking in state spaces that share a common

parameters is extremely useful for using epipolar constraint. In chapter 5, we

explore this further and present examples using acoustic video sensors, with the

acoustic sensor playing the role of the second projective device.

2.1.6 Planar scenes and Homography

There is one special scenario when the imaging equation becomes invertible, and

that is when the world is planar. Most urban scenarios form a good fit as ma-

jority of the actions in the world occurs over the ground plane. This makes it

a valid assumption for many visual sensing applications. The invertibility can
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also be efficiently exploited by algorithms for various purposes. As an example,

consider the correspondence problem that we mentioned earlier. Under a planar

world assumption, the pre-image of a point becomes a point (in most cases), being

the intersection of the world plane and the pre-image line. This implies that by

projecting this world point back onto the second image plane, we can almost triv-

ially find correspondence between points on the two image planes. This property

induced by the world plane, that allows for finding correspondences across image

planes is referred to as the homography induced by the plane.

Consider two views of a planar scene labeled View A and View B. We can

define a local coordinate system at each view. The same scene point denoted as xA

and xB on the two coordinate systems is related by an Euclidean transformation,

xB = RxA + t. (2.4)

Here, R (a rotation matrix) and t (a 3D translation vector) define the coordinate

transformation from A to B. Lets us assume that the world plane has an equation

nTxA = d with d 6= 01. For points that lie on the plane, we can rewrite (2.4) as,

xB = RxA + tnT xA

d

=
(
R + 1

d
tnT

)
xA.

(2.5)

In each local camera coordinate system, we know that ũ ∽ K[R t]x̃ ( see (2.3))

with R = I3 and t = 0. Therefore, ũB ∽ KBxB and ũA ∽ KAxA, which gives us,

K−1
B ũB ∽

(
R + 1

d
tnT

)
K−1
A ũA

ũB ∽ HũA, where H = KB

(
R + 1

d
tnT

)
K−1
A .

(2.6)

This implies that a point in View A, uA maps to the point uB on View B

as defined by the relationship in (2.6). The 3 × 3 matrix H (in (2.6)) is called

1When d = 0, the plane passes through the pinhole at A, thereby making the imaging

non-invertible
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the homography matrix or just the homography. Also, note that H (like P ) is a

homogeneous matrix, and the transformation defined by it is unchanged when H

is scaled. Further, H is invertible when the world plane does not pass through

pinholes at either of the two views. This is easily verified as our derivation is

symmetric in its assumptions regarding the two views.

Finally, the premise of the induced homography critically depends on the fact

that the pre-image of a point on the image plane is a unique point on the world

plane. Suppose we use a local 2D coordinate system over the world plane, the

image plane to world plane transformation (from their respectively 2D coordinate

systems) can be shown to be a projective transformation, which like before can

be encoded as a 3× 3 homogeneous matrix, say Hπ. This transformation is useful

when we want to estimate metric quantities, or quantities in a Euclidean setting.

The most common example of this is when we need to localize the target in the

scene coordinates.

Computing the image plane to world plane transformation Hπ is a challenging

problem, that is typically done by exploiting properties of parallel and perpendic-

ular lines on the planes. Typically, this requires manual inputs such as identifying

straight lines segments that are parallel. While this not always possible, many ur-

ban scenes (such as parking lots, roads, buildings) contain such lines which makes

it easier to estimate the transformation Hπ, at least in a semi-supervised way.

Computing Hπ, as it turns out, is identical to a metric rectification of the image

plane. Many such techniques are illustrated in [60].

2.1.7 Projective Transformation

A 2D projective transformation P : P
2 7→ P

2 is an invertible mapping such that

three points x1,x2,x3 ∈ P
2 are collinear if and only if P (x1), P (x2) and P (x3) are

collinear [60]. It has been shown that the definition of projective transformation

as given above results in P (x) = P x̃ where P is a 3 × 3 invertible matrix. That

is, a projective transformation can be defined in terms of a linear invertible trans-
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formation on the homogeneous coordinate representation of points. As mentioned

earlier, the homography constraint induced by a plane is a classical example of a

2D projective transformations occurring in practice. Higher dimensional projec-

tive transformations can be written as invertible linear transformations as well,

the size of the matrix determined by the dimensionality of the space.

While projective transformations are linear in the homogeneous coordinates,

they inherently define a non-linear class of transformation given the scale ambigu-

ity that underlies the homogeneous coordinate representation. When the projec-

tive transformation is restricted to the real Euclidean space, the transformation

can be written as a ratio of affine transformations.

P (x) =
1

pT3 x̃


 pT1 x̃

pT2 x̃


 (2.7)

where pi are the rows of the matrix P . The restriction to Euclidean space is

important as it ensures pT3 x̃ 6= 0. Equation (2.7) is called the direct linear trans-

formation, and is identical to the projective transformation when both the domain

and range of the transformation exclude ideal points of the projective spaces defin-

ing the domain and co-domain.

Finally, the set of point {x | pT3 x̃ = 0} is called the Line at Infinity of the

transformation P . Physically, the Line at infinity corresponds to the vanishing

line or the horizon line defined by planar structures.

2.1.8 Cross Ratios

Consider three collinear points A, B and C in a reference frame Π, and a projective

transformation of them labeled A′, B′ and C ′ on the line Π′ (see Figure 2.3). Given

these three point correspondences (A ↔ A′, B ↔ B′, C ↔ C ′) there is a unique

1D projective transformation linking the two coordinate frames. One dimensional

projective transformations are defined entirely by three unique correspondences.
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A B C D

A

B′
C ′

D′
A

B′′
C ′′
D′′

Π

Π′

Π′′

Figure 2.3: The three lines Π, Π′ and Π′′ are under central projection, hence related

by a 1D homography. Given any three point correspondence, this homography can be

uniquely determined. The fourth point can no longer be independently chosen on the

lines.

Now given a fourth point D′ its location can be computed in the Euclidean frame

of reference by inverting the transformation to obtain D. It can be shown that

if points A and C are chosen to be origin and the point at infinity respectively,

and B a point at unit distance from A, then the value of D forms the cross ratio

of the set A′, B′, C ′ and D′ (or any other projective transformation of the set of

points).

Formally, the cross ratio of four collinear points A′, B′, C ′ and D′ is defined as

|D′A′|
|D′C ′|/

|B′A′|
|B′C ′| . (2.8)

Here, |XY | denotes the distance between points X and Y . It can be shown that

cross ratio of four collinear points is an invariant under any projective transfor-

mation of the points.

Cross ratios are extremely useful in various applications in computer vision,

given the projective nature of cameras. In particular, it has been extensively used

for measuring lengths of objects from images or the metrology [37] problem.
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2.1.9 A Note on Calibration

In order to effectively use the epipolar constraint or the homography constraint

for images obtained from arbitrary camera views, it is essential to calibrate the

various cameras. Calibration, is the process of quantitatively relating the internal

pixel based coordinate system inside each camera to a world co-ordinate system.

In the case of epipolar geometry, calibration involves estimating the parameters of

the camera projection matrix P for each camera. The camera projection matrix

P encodes the information about the internal camera parameters like sensor size,

focal length, lens distortions etc., and about the external parameters such as

location and orientation of the camera with respect to the world co-ordinates.

In the case of using the plane-based homography constraint, calibration involves

estimating the 3 × 3 homography matrix, H, which encodes the relation between

the image location and the corresponding location on the scene-plane. In either

case, calibration is an extremely well-studied problem and we refer the readers to

[60] [86] for an in-depth analysis of the methods and issues involved in calibration.

2.2 Inference in Dynamical Systems

Dynamical systems provide a structured representation for both the nature of the

temporal variations, and the relationship between observations and time varying

parameter. The elegance of dynamical systems come in the form of generic infer-

ence algorithms, that can be suitably chosen and tailored to the specifics of the

problem domain.

In particular, we formulate the problem of Bayesian inference for dynamical

systems. Let X ⊆ X and Y ⊆ Y denote the state space and the observation

space of the system respectively. Let xt ∈ X denote the state at time t, and

yt ∈ Y the noisy observation at time t. We model the state sequence {xt} as a

Markovian random process. Further we assume that the observations {yt} to be

conditionally independent given the state sequence. Under these assumptions, the
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system is completely characterized by the following:

• p(xt|xt−1): The state transition density, describing the evolution of the system

from time t − 1 to t. Alternatively, the same could be described with a state

transition model of the form xt = h(xt−1, nt), where nt is a noise process.

• p(yt|xt): Observation likelihood density, describing the conditional likelihood

of observation given state. As before, this relationship could be in the form of

an observation model yt = f(xt, ωt) where ωt is a noise process independent of

nt.

• p(x0): The prior state probability at t = 0.

Given statistical descriptions of the models and noisy observations, we are

interested in making inferences about the state of the system at current time.

Specifically, given the observations till time t, y1:t = {y1, . . . , yt}, we would like to

estimate the posterior density function πt = p(xt|y1:t). With the posterior, we aim

to make inferences I(ft) of the form,

I(ft) = Eπt [ft(xt)] =

∫
ft(xt)p(xt|y1:t)dxt (2.9)

where ft is some function of interest. An example of such an inference could be

the conditional mean, where ft(xt) = xt.

Under the Markovian assumption on the state space dynamics and the condi-

tional independence assumption on the observation model, the posterior proba-

bility π(xt) is recursively estimated using the Bayes Theorem

πt(xt) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
=

p(yt|xt)p(xt|y1:t−1)∫
p(yt|xt)p(xt|y1:t−1)dxt−1

. (2.10)

The computation of p(xt|y1:t−1) sets up the premise for recursion and is called
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the prediction step,

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1. (2.11)

Note that

p(xt|y1:t) =
p(yt|xt)

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

p(yt|y1:t−1)
(2.12)

has no unknowns since all terms are either specified or computable from the pos-

terior at the previous time step. The problem is that this computation (including

the integrations) need not have an analytical representation.

Analytical solutions exist when the state transition model and the observa-

tion model are both linear, and we are interested in tracking only the first two

moments (equivalently, the mean and the covariance matrix) of the posterior den-

sity function. In this setting, the optimal estimator is the Kalman filter [71]. For

non-Gaussian models, the Kalman filter is optimal among the class of linear filters.

In many applications, we are interested in higher order statistics, that capture

key properties of the posterior density, such as multi-modality and non-linear evo-

lution. There are two cases when the general inference problem can be efficiently

solved. When the state space X is a finite set, the dynamical system can be

compactly modeled as a finite state machine, and the inference problem can be

solved efficiently as well. The other scenario is when we allow for approximate

inference, leading to a class of Sequential Monte-Carlo techniques also known as

particle filters [84,43,56]. We discuss these next.

2.2.1 Finite State Machines: Hidden Markov Models

When the state space X is a finite set {1, . . . ,M}, we can compactly represent

the state transition model in terms of a M × M matrix. Suppose we define

Pr(xt = j|xt−1 = i) = ptij, such that 0 < ptij < 1. The matrix P (t) = [ptij] is the
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M ×M state transition matrix must satisfy

∑

j

ptij = 1 ⇐⇒ P (t)1 = 1 (2.13)

implying that the all one vector is one of its eigenvector with unit eigenvalue.

The posterior probability mass function2 πt ∈ R
M such that πTt 1 = 1 can be

recursively estimated. The vector denoting the probability mass of Pr(xt|y1:t−1)

is given as P (t)Tπt−1. Let Ly ∈ R
M be the vector characterizing the likelihoods,

such that its i-th component is Pr(yt|xt = i). Using simple algebra and Bayes’

theorem it is possible to show that the posterior πt is given as,

πt = τdiag(Ly)P (t)Tπt−1 (2.14)

where τ is a normalizing constant that ensures that πt is a valid mass function,

its components summing up to unity.

While estimating the posterior mass function is straight-forward in the case of

a finite state space, in many cases, it is time consuming to evaluate the posterior

mass completely. In such cases, we are interested in inferring only the state

sequence with the highest likelihood or the Maximum A Posteriori (MAP) state

sequence. The Viterbi algorithm [110, 49] allows the computation of the MAP

state sequence very efficiently. However, we restrict ourself to Bayesian inference

of the entire posterior density. We direct the interested reader to an excellent

review of hidden Markov models by Rabiner and Juang [109].

2.2.2 Particle Filters

Particle filters address Bayesian inference for general non-linear non-Gaussian dy-

namical systems. As mentioned earlier, inference for such systems are in general

analytically intractable. However, foregoing the requirement for an analytic solu-

2The posterior probability density in this setting becomes a PMF as the state space is discrete
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tion, particle filtering approximates the posterior πt with a discrete set of particles

or samples {x(i)
t }Ni=1 with associated weights {w(i)

t }Ni=1 suitably normalized so that
∑N

i=1w
(i)
t = 1. The approximation for the posterior density is given by

π̂t(xt) =
N∑

i=1

w
(i)
t δxt

(
x

(i)
t

)
(2.15)

where δxt(·) is the Dirac Delta function centered at xt. The set St = {x(i)
t , w

(i)
t }Ni=1

is the weighted particle set that represents the posterior density at time t, and

is estimated recursively from St−1. The initial particle set S0 is obtained from

sampling the prior density π0 = p(x0).

We first discuss the so called importance function g(xt|xt−1, yt), an easy-to-

sample function whose support encompasses that of πt. The estimation of I(ft),

as defined in (2.9) can be recast as follows,

I(ft) =
∫
ft(xt)

p(xt|y1:t)
g(xt|xt−1,yt)

g(xt|xt−1, yt)dxt

=
∫
ft(xt)w(xt)g(xt|xt−1, yt)dxt

(2.16)

where w(xt) is referred to as importance weight,

wt =
p(xt|y1:t)

g(xt|xt−1, yt)
. (2.17)

Particle filters sequentially generate St from St−1 using the following steps,

1. Importance Sampling: Sample x
(i)
t ∼ g(xt|x(i)

t−1yt), i = 1, . . . , N . This

step is also called the proposal step and g(·) is sometimes called the proposal

density.

2. Computing Importance Weights: Compute the unnormalized impor-
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tance weights w̃
(i)
t ,

w̃
(i)
t = w

(i)
t−1

p(yt|x(i)
t )

g(x
(i)
t |x(i)

t−1, yt)
, i = 1, . . . , N. (2.18)

3. Normalize Weights: Obtain the normalized weights w
(i)
t ,

w
(i)
t =

w̃
(i)
t∑N

j=1 w̃
(j)
t

, i = 1, . . . , N. (2.19)

4. Inference Estimation: An estimate of the inference I(ft) is given by

ÎN(ft) =
N∑

i=1

ft(x
(i)
t )w

(i)
t (2.20)

This sequence is performed for each time iteration to get the posterior at each

time step. A basic problem that the above algorithm suffers from is that, after

a few time steps, all importance weights except a few go to zero. These weights

will remain at zero for all future time instants (as a result of (2.18)), and do not

contribute to the estimation of ÎN(ft). Practically, this degeneracy is undesirable

and is a waste of computational resource. This is avoided with the introduction of

a resampling step. Resampling essentially replicates particles with higher weights

and eliminates those with low weights. This can be done in many ways. [85,43,56]

list many resampling algorithms. The most popular one, originally proposed in

[56], samples N particles from the set {x(i)
t } (samples generated after proposal)

according to the multi-nomial distribution with parameters w
(i)
t to get a new set of

N particles S̃t. The next iteration uses this new set S̃t for sequential estimation.

We discuss some additional sampling algorithms in Section 2.2.4.
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2.2.3 Choice of Importance Function

Crucial to the performance of the filter, is the choice of the importance function

g(xt|xt−1, yt). Ideally, the importance function should be close to the posterior. If

we choose g(xt|xt−1, yt) ∝ p(yt|xt)p(xt|xt−1), then we would obtain the importance

weights wt identically equal to 1/N and the variance of the weights would be

zero. For most applications, this density function is not easy to sample from.

This is largely due to the non-linearities in the state transition and observation

models. One popular choice is to use the state transition density p(xt|xt−1) as the

importance function. In this case, the importance weights are given by

wt ∝ wt−1p(yt|xt) (2.21)

Other choices include using cleverly constructed approximations to the poste-

rior density [41].

2.2.4 Resampling Algorithms

In the particle filtering algorithm, the resampling step was introduced to address

degeneracies resulting due to the importance weights getting skewed. Among

resampling algorithms, the SR technique is popularly used. The basic steps of

SR [85] are recounted below.

• For j = 1, . . . , N

1. Sample J ∼ {1, . . . , N}, such that Pr[J = i] = a(i), for some choice of

{a(i)}.

2. The new particle x̃
(j)
t = x

(J)
t and the associated weight is w̃

(j)
t = w

(J)
t /a

(J)
t .

• The resampled particle set is S̃t = {x̃(i)
t , w̃

(i)
t }Ni=1.

If a(i) = w
(i)
t the resampling scheme is the one used in [56]. Other choices are

discussed in [85].
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Particle filtering algorithms that use Sequential Importance Sampling (SIS)

and SR are collectively called SISR algorithms. Computationally, SR is a tricky

step, as it requires the knowledge of the normalized weights. Resampling based

on SR cannot start until all the particles are generated and the value of the cumu-

lative sum is known. This is the basic limitation that we overcome by proposing

alternative techniques. We address the computational aspects of particle filters in

detail in Chapter 6.
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Chapter 3

Projective Transformation of Random Variables

Many problems in computer vision involve estimation of real world metrics. For

an ideal pinhole camera, the scene to image plane transformation is a projec-

tive transformation. Inverting this transformation, in the presence of additional

constraints forms the core of many vision tasks. For example, in structure from

motion, constraints such as the rigid body motion of the scene/camera are em-

ployed to obtain the scene structure. In calibration problems, the assumption of

a dominant plane allows for the recovery of intrinsic and extrinsic camera param-

eters.

The geometric properties of the projective transformation have been well stud-

ied [60, 86]. In particular, the projective transforms of simple objects like points,

lines, planes and conics are well understood. Calibration, tracking, detection,

structure from motion and metrology represent few applications where the prop-

erties of projective transformations of simple objects are studied. However, the

geometric theory analyzing the properties of the projective transformation is usu-

ally under the assumption of noise-free measurements, or employs heuristics to

account for noise. A rigorous and formal characterization of statistical estimation

and projective transformations has not been adequately developed.

In this chapter, we study how properties of random variables change under

projective transformations. As an example, consider the problem of location esti-

mation on a plane using inputs from multiple cameras. To simplify the problem,

let us assume that the object under consideration is a point object (say the corner

of a square). At each camera, we use a feature point tracker to get an estimate of

where the corner lies. We are interested in estimating the location of this point in
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the world coordinate system. It is well known that planar scenes induce a homog-

raphy or a 2D invertible projective transformation between the image planes of

cameras and the ground plane. Given this homography, we can project the image

plane location to arrive at individual estimates of the ground plane location of

the tracked point. In an ideal noise-free scenario, the estimates arising from each

of the cameras would be identical. However, in the presence of noise - corrupting

the image plane observations leading to errors in calibration and inaccuracies in

modeling, the ground plane location estimates will no longer be identical. We

need a rigorous method to fuse these estimates. The same problem arises in a

host of other problems, mainly dealing with the estimation of real world metrics

like lengths and location from multi-view inputs (see Figure 3.1). Common to

these problems is that they involve a projective transformation of noisy image

plane measurements.

Before we devise a strategy for fusion, we need to study the properties of

the estimates produced by each camera. Clearly, the statistical properties of the

estimate from a given camera are influenced by the error in tracking of the object

on its image plane. However, a stronger influence is played by the homography

transformation between the image plane of the camera and the ground plane.

The reason for this is as follows. The homography transformations are different

for the different views, given that each camera is guaranteed to have different

external parameters with respect to the world coordinate system. Hence, each

image plane estimate is generated by a different homography. Therefore, even if

the properties of the noise on the image plane are identical across camera views,

the statistical properties of the transformed estimate are in general different. A

clever fusion scheme must necessarily account for the different statistical properties

of the individual estimates.

27



Chapter 3. Projective Transformation of Random Variables

View A View B

View C View D

Top View Π

HAΠ HBΠ

HCΠ

HDΠ

[P1] Location fusion on a plane

Line at Infinity

to Vertical Vanishing Point

Reference Object

Object for Mensuration

[P2] Height metrology

Figure 3.1: Graphical depiction of some problems that critically involve projective trans-

formations. (Left) [P1] Multi-view fusion of object locations on a plane can possibly

involve image plane location estimates projected through different transformations. Fu-

sion of these ground plane estimates needs knowledge of the statistics of the transformed

estimates. (Right) [P2] Metrology of object heights using cross-ratios involves a one-

dimensional projective transformation.
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3.1 Prior Work

3.1 Prior Work

The ideas presented in this chapter come under the paradigm of statistical es-

timation under geometric constraints. Kanatani [72] pioneered the research of

statistical estimation using the structure induced by geometry for various estima-

tion problems in 2D and 3D. [72] discusses the role of geometric constraints in

solving line, plane and conic fitting problems using covariance matrices for error

characterization. In [36], Criminisi uses similar error characterization (in terms

of covariance matrices) for metrology in multi-view settings. In [50], the choice of

representation for projective entities is considered in light of the earlier works by

Kanatani and others. Linearization approaches for propagating covariance matri-

ces through projective transforms is used in [98] for localization and mosaicing.

The use of covariance matrices for error characterization and the propagation of

these covariances using first order approximations (linearization) of the transfor-

mation are discussed in these papers. However, the effect of projective transforma-

tions on random variables (characterized in terms of probability density functions)

has not been studied. Interestingly, we also show that projectively transformed

random variables can have moments that are undefined/infinite, making error

characterization using covariances highly inaccurate.

Hartley [61] addresses the problem of two-view triangulation for the case of

Gaussian noise corrupting image plane measurements. Traditionally, the 3D lo-

cation of a point is obtained by minimizing a cost function over the world coor-

dinates. The authors argue that such a cost function might not be appropriate

if the scene reconstruction deviates from Euclidean by a projective transforma-

tion and suggest optimization over image plane coordinates where the probability

distributions are more meaningful.

A closely related topic is how projective invariants vary under noise. The most

commonly used projective invariant is the cross-ratio. The properties of the cross

ratio have been studied by Astrom [3] for uniform noise corrupting the image
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plane observations and by Maybank [92] for the case of Normal distribution.

[10], [93] describe methods to define measures and densities on the space of

homography matrices. This, however is different from the study of how random

variables transform under a projectivity. To the best our knowledge, such a study

has not been considered.

The derivation of the necessary analytical results for our applications relies

heavily upon prior work in the area of statistics on ratio distributions. The earliest

work (to the best of our knowledge) was by Geary [52] in which it is shown that if

the support of the denominator for negative values is small, a suitably transformed

version of the ratio can be assumed to be Normal. Marsaglia’s work [89] [90] on

this topic is also noteworthy for many reasons, foremost as it was the first to derive

the distribution of the Normal ratio. Further, Marsaglia also shows that the ratio

of correlated Normals can be easily obtained from ratio of independent Normals.

We borrow extensively the notations and derivations used in Marsaglia’s work.

More recent work on the same topic can be found in [103] [23] [24].

Many tracking algorithms have been proposed that use a planar scene assump-

tion to track objects in the real world. The single-camera multiple-human tracking

algorithm in [140] uses the ground plane motion constraint to estimate foot loca-

tion on the ground plane to decide depth ordering. The algorithm in [139] uses a

Kalman filter to track the location and velocity on the plane with the observation

noise model obtained by linearization of the homography between the image and

the ground plane. An alternate single camera tracker using the homography to

project head and feet positions to the ground plane is described in [47]. Multi-

camera tracking algorithms [48, 73, 75] also use homographies to project inputs

from background subtraction onto the ground plane. Typically, data association

and targets localization are achieved through consensus among projections from

the cameras.

As an example, in [75], the vertical axis from each segmented human is ex-

tracted in each view and the intersection of their projections on the ground plane
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is used to localize the person. The intersection points are then filtered using a

particle filter. In contrast, the algorithm proposed in [73] achieves consensus by

projecting foreground likelihood images from each view to a reference view. The

likelihood images achieve consensus for foreground objects that lie on the plane,

while those in parallax with respect to the plane do not register under projection.

Peaks in the joint likelihood image correspond to objects on the plane and are

thresholded and segmented using a graph-cut algorithm. The main focus of these

algorithms is on maintaining data association across views and robust tracking

across occlusion. All these algorithms treat inputs from different views identi-

cally, and the experimentation has been over views that are similar. The models

do not explicitly consider the effect of highly asymmetrical camera placement on

estimation accuracy.

In this chapter, we study how projective transforms affect distributions of

random variables and suggest methods to incorporate such models for various ap-

plications in multi-view estimation. We show that even a Normal random variable

transforms to a mixture density containing a Cauchy component. This results in

distributions that do not have well defined moments. However, when the region of

interest that is imaged is far away from the Line at infinity (of the transformation)

the transformed random variable can be assumed to have well defined moments.

This allows us to provide a theoretical basis for understanding the poor perfor-

mance of ground plane tracking algorithms near the horizon line. We also analyze

existing observation models in multi-view tracking literature, and propose suitable

modifications that allow for efficient fusion of multi-view information.

3.2 Problem Statement

Figure 3.2 shows an example of three cameras A,B and C looking at a plane

Π, with the image plane of B parallel to Π. In contrast, the image planes of A

and C are perpendicular to Π. Also shown on the image planes of the cameras
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A

B

Π

HAΠ

HBΠ

C

HCΠ

Figure 3.2: A schematic showing densities on the image planes of cameras and their

transformations to the ground plane.

are iso-error contours representing the image plane distribution at each camera.

The homographies between the cameras and the plane Π are HAΠ, HBΠ and HCΠ

respectively. In this configuration, HBΠ is not fully projective, defining only an

affine transformation, as opposed to HAΠ and HCΠ which induce strong projective

distortion. We would expect the density on B to retain its original form (similar

error iso-contours) when projected on the plane.

We first consider a static estimation problem. Suppose that we have a setup

with M cameras labeled 1, . . . ,M . Let ui, i = 1, . . . ,M be the location estimate

on the image plane of each camera. By applying the corresponding homography

between the i-th camera and the ground plane, we obtain xi = HiΠ(ui), the

estimate of location on the ground plane. Given xi, i = 1, . . . ,M the estimates

from M cameras simultaneously observing a target on the plane, we would like to

fuse them. Figure 3.2 suggests that the xi’s are not identically distributed, even

if ui are identically distributed. Using the sample mean x = (1/M)
∑M

i=1 xi might

not be optimal (say, in the minimum variance sense). A desirable estimator or

fusion scheme would use the distribution of the xi’s appropriately. This requires a

careful study of how random variables transform under projective transformations.

An identical problem arises when one uses dynamical systems to filter multi-

view inputs. Consider a dynamical system with a state space defined on the

location of a point on the ground plane Π. The image of the point on the various
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image planes is governed by the basic imaging equation,

yi(t) = HΠi(x(t)) + ni(t), i = 1, . . . ,M

= ui(t) + ni(t), where ui = HΠi(x)
(3.1)

We further assume that the noise processes {ni(t), i = 1, . . . ,M} are identically

distributed as Normal random processes. This model is the standard imaging

equation for a point object and has an intuitive appeal. However, the non-linearity

of the equation makes it challenging for both analytical and computational infer-

ence.

Suppose we apply the transformation HiΠ directly to (3.1), then we get the

following expression.

zi(t) = HiΠ(yi(t)) = HiΠ (ui(t) + ni(t)) (3.2)

Further insight into the expression for zi(t) in (3.2) requires the understanding

of how Normal random variables (such as (ui(t) + ni(t))) change under projective

transformations.

Existing ground plane tracking algorithms [75] [47] circumvent this by assum-

ing that zi forms a complete observation of the state, i.e,

zi(t) = HiΠ(yi(t)) = x(t) + ηi(t) (3.3)

where ηi(t) is a noise process.

Note that (from Figure 3.2) densities change their properties dramatically

when projectively transformed. This is reflected in the statistical properties of

the noise process ηi. However, analysis and computation of the parameters char-

acterizing this is not straightforward. Further, it is imperative to study if (3.3)

approximates (3.2) accurately, and the conditions when this is true.
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3.3 Projective Transformation of Random Variables

Consider the projective transformation1, H : U = P
n → X = P

n, i.e, H is given

is an (n+ 1) × (n+ 1) matrix defining the transformation H : u 7→ x = Hu. We

denote the i-th row of H as hi ∈ R
n+1 (H = [h0,h1, . . . ,hn]T ).

At this point, it is useful to point out that H is a homogeneous matrix, in

the sense that the transformation defined by it is unchanged if we scale it using a

non-zero scale. It is often useful to resolve this ambiguity of scale explicitly. We

assume that det(H) = 1. This performs a scale normalization that allows us to

define the transformation uniquely without having to consider scale ambiguities

and simplifies the rest of discussion considerably. Finally, we assume that H is

deterministic and is error-free.

The relation between u and x is linear in their homogeneous form. When u

and x are finite points, this relationship can be recast as a non-linear equation

x =
1

hT
nu

[
hT

0 u, · · · ,hT
n−1u

]T
(3.4)

Given a random variable ZU whose probability density function (PDF) is

known, we are interested in the random variable ZX given by the relation,

ZX ∼ HZU,ZX =




Z0
x

...

Zn−1
x


 =

1

hT
nZU




hT
0 ZU

...

hT
n−1ZU


 (3.5)

To proceed further, we need to know the distribution of ZU. The exact nature

of the distribution depends heavily on the application and specifics of the origin of

ZU. As an example, ZU might represent the noisy location of a feature point on

the image plane, and ZX, the projection of this point on to a world plane with H

1U and X are used to identify the domain and the co-domain/range respectively. For an

intuitive understanding, it is useful to think of U as lines/planes on the image plane of a camera

and X as those on real world (euclidean space).
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representing the homography between the image-world planes. The distribution

associated with ZU could possibly be obtained from the underlying tracking algo-

rithm, say a Normal fit if a Kalman filter is employed or a non-parametric density

if a particle filter is used. However, analytic tractability is not guaranteed for ar-

bitrary choices for the distribution. The transformation defined by (3.5) involves

ratios of terms involving ZU. This non-linearity of the transformation makes ana-

lytic tractability and inference difficult for complicated image plane densities. For

this reason, we assume that the distribution of ZU is multi-variate Normal.

ZU ∼ N (mu, Su) ,mu = [m0, · · · ,mn−1]
T (3.6)

We also assume that the covariance matrix Su is a constant, and does not

change with the mean of the random variable ZU.

ZU is assumed to have a Normal distribution, implying that hi
TZU, i =

0, . . . , n are univariate Gaussian.

hi
TZU ∼ N(µi, σ

2
i ), i = 0, . . . , n

µi = hi
Tmu, σ

2
i = hi

T Ŝuhi

(3.7)

where Ŝu is the n + 1 × n + 1 matrix obtained by adding a row and a column of

zeros to Su. Further, the correlation ρij between hi
TZU and hj

TZU for i 6= j is

given as:

ρij = hi
T Ŝuhj/(σiσj) (3.8)

From (3.5) and (3.7), the scalar random variables Zi
x, i = 0, . . . , n − 1 arise

from ratios of Normal densities. A detailed characterization of ratio of Normal

densities can be found in [89,90]. A detailed derivation in the context of projective

transformations can also be found in [115]. We summarize the basic results below.

The distribution of Ratios of Normals is a complicated expression [89,115], in-

volving Cauchy components. The presence of the Cauchy component implies that
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the mean, variance and in general, higher moments for Zi
x are not defined [22].

Hence, theorems on weak/strong laws of large numbers are not applicable. Thus,

estimates such as the sample mean will not converge asymptotically. Typically,

inference in the presence of Cauchy distribution is done using the maximum like-

lihood estimate (MLE) [59], the median or mode. However, when the Cauchy

component is weak, we can ignore the presence of the Cauchy distribution and

approximate the density. However, this approximation makes sense when the de-

nominator random variable hTnZU has a mean that is far away from the origin.

We first study the geometric setting when this happens.

We begin with expressing Zi
x as the ratio:

Zi
x =

hT
i Z

U

hT
nZ

U

= σiZi+µi

σnZn+µn
, where Zi ∽ N(0, 1), Zn ∽ N(0, 1)

= σn

σi

Zi+µi/σi

Zn+µn/σn

(3.9)

Prior work on ratio distributions tell us that the above density is well behaved

(in terms of existence of moments) only when the denominator has negligible

support around the origin. Mathematically, this happens when the mean of the

denominator is far away from zero, or equivalently, |µn/σn| ≫ 0.

Geometrically, |µn| is directly proportional to the distance of the mean of the

image plane distribution ZU from the Line at Infinity of the plane on the image

plane. We discuss this detail next.

3.3.1 Connections to the Line at Infinity

Any projective transformation H = [h0, h1, . . . , hn]
T can be written as the product

of an affine transformation HA and a purely projective transformation HP [60],
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such that,

H = HAHP =




hT0
...

hTn−1

0 · · · 0 1







1 0 0 · · ·
0 1 0 · · ·
...

... · · · ...

hTn




(3.10)

This suggests the following properties for the matrix H: 1) All the projective

distortions of the transformation are encoded in its last row hn, and 2) The set

of all point which under transformation map to ideal points (or points at infinity)

satisfy the relationship hTnu = 0. This set of points forms a line (or an n − 1

dimensional hyperplane, in general) and is referred to as the Line at Infinity of

the ground plane. Hence µn = hTnmu is the signed distance of the point mu from

the Line at Infinity. This implies that when the imaged point has a mean that is far

away from the Line at Infinity, then the distribution of the transformed random

variable is well-behaved, in the sense that its moments exist.

More formally, the condition that

|µn|
σn

=
|hTnmu|
σn

≫ 1 (3.11)

ensures that the random variable Zn
x is well-conditioned in the sense that its

density can be closely approximated with a Gaussian density and its moments

said to exist in a pseudo-sense. To show this, we need to show that denominator

random variable is bounded away from zero, such that, that the probability of

the random variable taking values near zero is negligibly small. This result comes

directly from (3.11).

From Chebyshev’s inequality,

Pr

( |hTnZU − µn|
σn

> c

)
≤ 1

c2
, c > 0 (3.12)

37



Chapter 3. Projective Transformation of Random Variables

Assuming µn > 02, and using the symmetry of the Gaussian density around its

mean,

Pr(hTnZU < −cσn + µn) ≤
1

2c2
(3.13)

Letting c = µn/σn, we get

Pr(hTnZU < 0) ≤ σ2
n

µ2
n

(3.14)

Finally, the support of the denominator around the origin can be written as:

fhT
nZU

(0) ∝ exp(− µ2
n

2σ2
) (3.15)

Hence, given a random variable whose mean mu satisfies (3.11), the probability

that the denominator random variable takes negative values (positive values) when

µn > 0 ( µn < 0) becomes negligible. Further, the probability that the denomi-

nator takes values close to zero becomes exponentially small with the distance of

the mean from the Line at Infinity. Under such a setting, we can work under the

condition that the denominator random variable is actually bounded away from

zero. This allows for the existence of moments, and good approximations to the

ratio density itself. In particular, it has been shown that a Normal distribution

forms a good approximation to the ratio density [89,90] itself when the conditions

of (3.11) is satisfied.

The fact that Normal densities can be approximated by Normal densities un-

der the projective transformation (and assuming the requirements of (3.11) are

satisfied) implies that the transformation of the random variable under a projec-

tive transformation can be modeled point-wise as an affine transformation, the

parameters of which are dependent on the mean mu. The affinity does not extend

to a transformation over a region because of the nature of the dependence of the

2The discussion is very similar for µn < 0, the only difference being that we would then

consider the probability that hT
nZU takes positive values.
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parameters on the mean mu. However, given the smoothness of such maps, in

general a local affine approximation still remains valid over small neighborhoods,

as long as the region that is imaged is sufficiently far away from the projection of

the hyper-plane at Infinity. Such locally affine models have been used in existing

literature [81], [120] for geometric grouping.

We now have a geometric setting in which we are guaranteed the existence

of moments. These moments can be used for various minimum variance esti-

mation techniques (such as the Kalman filter for dynamical systems). However,

computation of these moments is not trivial given the non-linearity of the overall

transformation. In section 3.4, we look at approximation techniques to compute

these moments.

3.3.2 Role of theory in Observation Modeling

In section 3.2, we discussed two observations models and whether of not one forms

a good approximation of the other. Using the theory described earlier, we prove

that it is indeed the case.

For simplicity we use the scalar setting for this proof. The analysis extends

easily for the multi-variate case. Consider the two observation models defined by

the equations,

O1 : y = H−1(x) + n, n ∼ N(0, σ2) (3.16)

O2 : H(y) = x+ η (3.17)

where H is a projective transformation.

We are interested in listing the conditions when the observation model O1

reduces to O2. Starting from O1 we can apply the transformation H to get,

Õ1 : H(y) = H (H−1(x) + n)

= H(z), z ∼ N(H−1(x), σ2)
(3.18)
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Given that H is a 1D projective transform and z a Normal distribution, the

term H(z) has a Ratio of Normals expression. However, as demonstrated earlier,

if H−1(x), the mean of z satisfies the requirements of (3.11), then H(z) is well ap-

proximated by a Normal distribution. This seems to indicate that the distribution

of η in O2 should be Normal. However, to make that claim we need an additional

result relating the mean of H(z) to x. Note that we only know that H(z) can be

well approximated by a Normal distribution, say with mean µ and variance σ2
x.

H(z) ≈ µ+ σxz1, z1 ∼ N(0, 1) (3.19)

where µ and σx depend heavily on x, σ2 and the transformation H.

However, in general, µ is not equal to the mean projection of the image plane

mean H−1(x) under the projection H. This is because of biases introduced by

lack of symmetry of ratio distribution about its mode. However, when (3.11) is

satisfied with an increasingly high value, then these asymmetries are negligible

and, it can be shown easily µ is equal to the projection of the image plane mean

H−1(x) through the projectivity H.

µ = H(H−1(x)) = x (3.20)

Therefore, the observation model O1 reduces to O2 when the requirements of

(3.11) are satisfied. We summarize this in the following lemma.

Lemma 3.3.1 Consider the observation equation relating x ∈ X = P
n and y ∈

Y = P
n,

O1 : y = H−1(x) + n,n ∼ N(0,Σ0) (3.21)

with H being a projective transformation from Y to X . Suppose the line at

infinity of X under H−1 is imaged sufficiently far away from H−1(x), then the

model O1 can be approximated with a high accuracy with a simpler equation given
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3.4 Approximation methods for Moment Computation

as

O2 : H(y) = x + η (3.22)

where η is a multi-variate Normal random variable.

With this we have solved one of the two problems proposed in section 3.2. The

only remaining issue is that of computing the covariance of the random variable

η. As expected, the covariance matrix will depend not only on x but also on the

transformation H itself. In the next section, we look at approximation techniques

to compute these moments.

3.4 Approximation methods for Moment Computation

We look at approximations to the moment computation that can be made in the

setting when the Cauchy component is of negligible strength. Our goal is to derive

estimates for the mean and the covariance matrix of ZX. To begin with, we avoid

the numerical techniques described in [89] due to their high computational costs.

We look at first and second order approximation techniques to estimate these

moments.

3.4.1 Affine Transformation

In the case of the affine transformation, hn = (0, · · · , 1)T , so that hn
TZU is no

longer random, or alternatively µn = 1 and σn = 0. This implies b = ∞, and the

strength of the Cauchy component in the distributions of Zi
x is zero. Further, Zx

is affine in Zu, making its components jointly Gaussian in distribution. Further,

the distribution of ZX is isotropic over X in the sense that its covariance is

independent of its mean. One could approximate the projective transformation of

the imaging with an affine model. However, such an approximation tends to be

very coarse especially if the homography induces strong perspective projection.

An affine camera maps points at infinity to points at infinity. In camera views,
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Chapter 3. Projective Transformation of Random Variables

where the line at infinity is projected close to the FOV, this would be a poor

approximation.

3.4.2 Linear Approximation

We can approximate the transformation defined in (3.5) by linearizing it around

the point mu ∈ U or equivalently, mx ∈ X (with mx obtained by transforming

m0 using the transformation H). This leads to a transformation of ZX that is

affine in ZU.

ZX ≈ mx + JH(mu)(ZU − mu) (3.23)

where

JH(mu) =




1

hn
Tmu




h0
T

...

hn−1
T


− mxhn

T

hn
Tmu





 In

0Tn


 (3.24)

where In is rank n Identity matrix and 0n is a column of zeroes of length n.

We can now identify µ̂x = mx to be an estimate of the mean of ZX and

Σ̂X = JH(mu)SuJH(mu)T .

Corollary 3.4.1 As the mean mu ∈ U approaches the inverse map of the hyper-

plane at infinity, the (approximated) variance of the transformed random variable

ZX goes to infinity.

Proof: The term hn
Tmu ∝ lT∞mu appears in the denominator of the expres-

sion for JH(mu). �

Linearization is a popular tool for covariance propagation given its analytic

tractability. It has been used for matching, mosaicing [98], metrology [37] and

tracking [47].
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3.4 Approximation methods for Moment Computation

3.4.3 Unscented Transformation

An alternate and better approximation is to compute the means and covariances

of ZX using the unscented transformation [69]. The unscented transform is used

to propagate the means and covariances (in general, moments) through a deter-

ministic choice of points called sigma points and their associated weights.

The moments of the transformed random variable are computed as follows.

First, we generate the sigma points νi, i = 0, . . . , 2nu and the associated weights

wi, where nu is the dimensionality of ZU, which in our setting is nu = n. The

sigma points are generated using the following selection scheme [131].

ν0 = mu

νi = mu +
(√

(κ+ nu)Su

)
i

i = 1, . . . , nu

νnu+i = mu −
(√

(κ+ nu)S0

)
i

i = 1, . . . , nu

(3.25)

where κ is a constant scalar and
(√

(κ+ nu)S0

)
i

is the i-th row of the matrix

square root of (nu + κ)S0. The weights take values as follows:

wi =





κ/(κ+ nu) i = 0

1/(2(κ+ nu)) i 6= 0
(3.26)

Each sigma point is propagated using the transformation in (3.4).

χi =
1

hn
Tνi




h0
Tνi

...

hn−1
Tνi


 , i = 0, . . . , 2nu (3.27)

The estimates for the mean µx and covariance matrix Σx of ZX are given as,

µ̂x =
∑2nu+1

i=0 wiχi

Σ̂x =
∑2nu+1

i=0 wi(χi − µ̂0)(χi − µ̂0)
T

(3.28)
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The choice of the value of κ is important. A list of possible choices and the

properties induced by them is given in [131]. The estimates of the mean and

covariance matrix are accurate upto second order [131], more accurate than first

order linearization.

We now have three ways to estimate the mean and the covariance matrix of

ZX as a function of the mean of the ZU, mu and the transformation matrix H. Of

the three, the affine approximation (3.4.1) is probably the least accurate except

when the projection is truly affine. The unscented transformation (3.4.3) gives the

most accurate estimate of the covariance matrix. The linearizing approach gives

an analytical expression for the covariance matrix which is desirable for certain

applications. Finally, these moments exists only when the requirement of (3.11)

is satisfied. It is important to verify this before computing the approximations

using the methods presented in this section.

In the next chapter, we discuss applications of the fusion theory developed

here and discuss practical implications in the design of camera networks.

3.5 Extensions to Non-Gaussian Image plane distributions

In vision applications, especially tracking, it is common to encounter multi-modal

distributions. In this sense the assumption of Gaussian distribution on U is

limiting. There exist many representation schemes that capture multi-modal dis-

tributions. The popular ones include kernel based representation (such as Parzen

windows) and particle sets. We start off with the simplest extension from a

Gaussian, namely a mixture of Gaussian (MoG) assumptions for the image plane

densities.

Assuming ZU has a MoG distribution, it can be immediately seen that hi
TZU

has a univariate MoG distribution. So, the distributions of Zi
x (as defined in (3.5)

) is a Ratio of Mixtures of Gaussian.

44



3.5 Extensions to Non-Gaussian Image plane distributions

3.5.1 Ratios of MoG = Mixture of Ratio of Gaussians

We show that ratios of mixture of Gaussians leads to a mixture comprising of

ratio of Gaussians. Let ZU be a bivariate random variable whose distribution is

that of a mixture of Gaussians.

ZU ∽

M∑

k=1

mkN(mu
k, Sku) (3.29)

Alternatively, we can generate the distribution by a two-step process involving

a multi-nominal distribution F and a set of Gaussian random variables.

ZU ∽

M∑

k=1

I(F = k)Xk (3.30)

where Xk ∽ N(mu
k, Sku) are Gaussian distributed, and F is multi-nominal taking

values in the set {1, . . . ,M}, such that Pr(F = k) = mk. I(·) serves as an

indicator function.

Now, consider the transformation to obtain Zi
x.

Zi
x =

hi
TZU

hn
TZU

=

∑M
k=1 I(F = k)hi

TXk∑M
k=1 I(F = k)hn

TXk

(3.31)

Using the total probability theorem,

fZi
x
(z) =

M∑

j=1

fZi
x
(z|F = j)Pr(F = j) (3.32)

Zi
x|(F = j) =

hi
TXj

hn
TXj

(3.33)
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Hence, we can now write the expression for Zi
x as

Zi
x =

M∑

j=1

hi
TXj

hn
TXj

I(F = k) (3.34)

Noting that the ratio hi
TXj/hn

TXj has a Ratio of Gaussian distribution, the

distribution of Zi
x is a mixture of such ratios of Gaussians. The number of mixture

components do not change, and neither does the mixture weights. However, each

mixture component has a much more complicated distribution.

We can now extend the theory developed earlier to this case.

Lemma 3.5.1 Let ZU be distributed as a mixture of multi-variate Gaussian as

defined in (3.29), then ZX has a Mixture of Ratio of Gaussians distribution. Fur-

ther, as before, the moments of Zi
x are well-defined when all the mixture means

mi
u, i = 1, . . . ,M are sufficiently far away from the inverse projection of the hyper-

plane at Infinity of X .

Each component can now be approximated with a Gaussian provide its param-

eters satisfy the requirements of (3.11), implying that the overall density is well

approximated by a mixture of Gaussian assumption. Hence, to this effect under

the assumptions, a mixture of Gaussians gets projected to a mixture of Gaussians,

retaining the same number of mixture components and identical mixture weights.

However, though the form of the density remains the same, each mixture com-

ponent on U gets transformed by a different affine transformation to form the

mixture component for the density on X . Hence, the overall transformation of

the random variable is not affine as in the earlier case.
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Fusion under the Homography Constraint

4.1 Multi-View Tracking

The most common example of an invertible projective transformation occurs when

the scene is planar. In this scenario, the mapping between the image plane and

the world plane (assuming a local coordinate reference on each plane) is defined

by a two-dimensional projective transformation (also called a homography). In

this section, we use the theory developed in Section 3.3 for location estimation

and tracking using both single and multiple cameras.

Consider a single camera, whose image plane to ground plane is defined by

a 3 × 3 matrix H. Given a Gaussian (or mixture of Gaussian) distribution on

the image plane, we can use the approximations listed in 3.4.3 to get accurate

moments of the transformed random variable on the plane, provided the mean on

the image plane is far away from the horizon line of the ground plane. Further,

it is expected that the variance on the ground plane changes as the mean on the

image plane changes, specifically, it increases as the mean approaches the line at

infinity.

As an extension, when multiple cameras observe a planar scene the individual

image plane to world plane transformations are different. Now depending on the

camera locations, the same object on the world plane can possibly be imaged at

varying resolution on the individual image planes.

As an example, consider a point object being imaged onto multiple views. Due

to imaging and modeling/estimation inaccuracies, the locations of points on the

individual image planes are not accurately known. Even under the assumption
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Chapter 4. Fusion under the Homography Constraint

that the individual image plane error variances are identical, the variance on the

ground plane from the individual views can be very different. And finally, such

variations depend on the actual location of the imaged point. Figure 3.2 explains

this concept graphically. Suppose, we are interested in an algorithm to fuse the

individual estimates. It is immediately clear that estimates such as a sample mean

will not be efficient, as the individual estimates are not identically distributed.

Further, it is possible that one or more of the estimate might lie near the Line at

infinity and might have ill-defined moments (either in terms of high variance or

in the existence of the moments itself). For these reasons, the model is useful for

fusing multi-view estimates.

Finally, we can use Lemma 3.3.1 to transform noisy image plane observations

to the ground plane, and use the projected observations as complete observers of

the state (location) of the target. Further, when multiple cameras are observing

the same target, each camera provides an observation whose noise properties are

different. The moments of the corrupting noise for each view can be obtained by

applying the unscented transformation.

4.1.1 Multiple cameras

Given M cameras, and the homography matrices Hi, i = 1, . . . ,M between the

camera views and the ground plane, we provide an algorithm for fusing location

estimates. Let Zi
U be the random variable modeling the target location on the

image plane of the i-th camera. We first assume that the random variables {Zi
U}Mi=1

are statistically independent. This assumption is justified for imaging (sensor)

noise. However, there are instances such as occlusion, parallax when the noise is

due to an error in the modeling. In such cases, the noises/errors are correlated

across cameras. However, estimation of this correlation is complicated.

The distribution of Zi
U comes from the output of a tracking algorithm or

a detection algorithm. However, we are only interested in the mean mi
u and the

covariances Siu of the distribution. If the underlying tracker is indeed a Kalman or
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4.1 Multi-View Tracking

a particle filter, then we can readily obtain estimates of mean and the covariances

as an output. In cases, when this is not possible (such as the KLT ), we assume

the mean to be the observation tracker output itself and assume suitable values

for the covariance matrices.

We use the unscented transformation described in section 3.4.3, to get esti-

mates of mean µ̂ix and covariance matrix Σ̂i
x of Zi

X the random variable modeling

location on the plane as estimated from the i-th camera. A minimum variance

estimator for the location on the ground plane can now be formulated. Further,

Lemme 3.3.1 ensures that the estimates µ̂ix are unbiased (or E(µ̂ix) = µx the true

target location). The minimum variance estimate µ̂x = (µ̂x, µ̂y)
T is computed

as [127] [126],

µ̂x =
M∑

i=1

(Σ̂i
x)

−1Σmvµ̂
i
x,Σmv =

(
M∑

j=1

(Σ̂j
x)

−1

)−1

(4.1)

It can be shown that among the class of linear estimators, the one defined in

(4.1) is optimal in the sense of minimum variance. Finally, the covariance matrix

of the minimum variance estimate µ̂x can be computed from (4.1).

covar(µ̂x) = Σmv =

(
M∑

j=1

(
Σ̂j
x

)−1
)−1

(4.2)

4.1.2 Dynamical system for tracking

In most cases, we are interested in tracking the location with time (and not just

a static estimation). We formulate a discrete time dynamical system for location

tracking on the plane. The state space comprises of the location and velocity on

the ground plane. Let xt be the state space at time t, xt = [xt, yt, ẋt, ẏt]
T ∈ R

4.

49



Chapter 4. Fusion under the Homography Constraint

The state evolution equations are defined using a constant velocity model.

xt =




1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1




xt−1 + ωt (4.3)

where ωt is a noise process. The observation model uses the mean and covariance

models derived in section 3.3. The observation vector yt ∈ R
2M is just the stack of

location means estimated from each camera using the unscented transformation.

The observation model is given as,

yt =




µ̂1

...

µ̂M




t

=




1 0 0 0

0 1 0 0
...

1 0 0 0

0 1 0 0




xt + Λ(xt)Ωt (4.4)

where Ωt is a zero mean noise process with an identity covariance matrix. Λ(xt)

sets the covariance matrix of the overall noise, and is defined as,

Λ(xt) =




Σ1
x(xt) · · · 02x2

...
. . .

...

02x2 · · · Σ̂M
x (xt)




1
2

(4.5)

where 02x2 is a 2x2 matrix with zero for all entries, and Σi
x(xt) is the covariance

matrix of Zi
X when the true location of the target on the ground plane is xt.

The observation model in (4.4) is a multi-view extension of the complete ob-

server model proposed in section 3.2 and validated in 3.3. There are two important

things that this model captures.

• The noise properties of the observations from the different view are different,
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4.1 Multi-View Tracking

and the covariances depend not only on the view, but also on the true location

of the target xt. This dependence is encoded in Λ.

• The MLE of xt (i.e the value of xt that maximizes the probability p(yt|xt)) is

the minimum variance estimator described in the previous section.

Tracking of target(s) can now be performed using a Kalman or particle filter.

4.1.3 Results: Variance Maps for Static Estimation

Using homography matrices computed for each view in a camera network, we

can compute the covariance matrix over regions of interest on the plane, using

the unscented transformation at each camera. Figure 4.1 shows the results over

a four camera network. The variances are plotted for the corresponding point

in the top-down image representing the true target location. It is seen that the

variances increase as one approaches the line at infinity for the corresponding view.

The variance of the minimum variance estimator (4.2) can also be computed as a

function of the true location of the target on the plane. Such plots are potentially

of great use in camera placement problems, where given a set of cameras and

a region of interest on a plane, we are interested in the placement of additional

cameras that improve the performance of tracking of targets.

Figure 4.2 shows similar results for a three camera setup with a highly asym-

metrical camera setup. The camera corresponding to the right-most column was

used ONLY to provide ground truth for tracking experiments of section 4.1.4.

Two of the cameras are placed such that they can estimate the location of the

target at high accuracy in only one direction. By simultaneously combining the

estimates from both cameras and using the covariance maps it is possible to get

estimates that have low variances in both directions (last row of Figure 4.2.) This

extreme case of camera deployment is used next to show the need for the explicit

modeling of camera and plane geometry.
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Figure 4.1: Variance estimates of the camera setup shown in the top row. (top row)

Camera views (second row) Top view of the plane generated from the corresponding

view from the first row (third row) Variance estimate of Zx and Zy for each camera

in log-scale over the ground plane. (last row) Variance (in log scale) of the minimum

variance location estimator along the two axes.

4.1.4 Results: Multi-camera Tracking

Three Camera Setup We now present an experiment for illustrating the need

of such models in multi-camera tracking, especially when the camera views are

highly asymmetrical. (see Figure 4.2). The region of interest is the chessboard

and a laser pointer is used to create a target. A color based segmentation is used

to detect the target created by the laser pointer. The camera corresponding to the

right column is used just for providing the ground truth.

We compare the performance of two tracking systems: one whose observation

model incorporates view-dependent error characterization (see section 4.1.2) and

another which treats all cameras identically and uses an isotropic model across

cameras. A Kalman filter is used to track both systems. The parameters charac-

terizing the state transition model were learnt independently using data from a

different camera. The tracking results are shown in Figure 4.3. For quantitative
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Figure 4.2: Three cameras imaging a chessboard, with two cameras placed very close

to the ground, along the two orthogonal axes of the chessboard. (top row) Views from

each camera. (second row) top views constructed from the homography estimated at

each camera. (third-fourth rows) Variance estimate of Zx and Zy respectively in log-

scale over the ground plane. Note that each camera can estimate location in only one

direction accurately. (last row) Variance of the minimum variance estimator (in log

scale) using only the cameras corresponding to the left and middle columns.
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Figure 4.3: Comparison of tracking with two systems, one that uses the models pro-

posed and the other that treats the two cameras identically. (left) plots of the filter

outputs (center) Comparison of the outputs with the ground truth using symmetric

KL-divergence. (right) Variance ellipses for location estimates from the two cameras

and the filter using the proposed model.

evaluation, we compute the symmetric KL-divergence between the output of the

two systems and the ground truth. Visually, the tracking results obtained by using

the proposed models are extremely close to the ground truth and very smooth.

The variance ellipses at various locations on the track demonstrate the efficacy of

the modeling. While each of the cameras has a large uncertainty along one axis,

the final estimate has low uncertainty along both axes.

Four Camera Setup: A multi-target tracking system was developed to test

the efficacy of the proposed models over the realistic camera placement of Figure

4.1. The bottom-most point from each background subtracted blob at each camera

is extracted and projected onto the world plane. Association of this data to

trackers is performed using the classical Joint Probability Data Association Filter

(JPDAF) [5] with data from each camera associated separately. Ground truth was

obtained using markers. As before, two observation models are compared: one

employing the proposed approach and the other that assumes isotropic modeling

across views. Finally, a particle filter is used to track, the choice motivated given

missing data points due to occlusion. Testing was performed over a video of

8000 frames with three targets introduced sequentially at frames 1000, 4300 and
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Figure 4.4: Tracking results for three targets over the 4 camera dataset. (best viewed in

color/at high Zoom) (left) Snapshots of tracking output at various timestamps. (right)

Evaluation of tracking using Symmetric KL divergence from ground truth. Two systems

are compared: one using the proposed observation model and the other using isotropic

models across cameras. Each plot corresponds to a different target. The trackers using

isotropic models swap identities around frame 6000. The corresponding KL-divergence

values go off scale.
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7200. Figure 4.4 shows tracking results for this experiment. The proposed model

consistently results in lower KL divergence to the ground truth.

Six Camera Setup In a similar experiment, we tested the algorithm on a 6

camera network. Nine targets were allowed to freely move around the region of

interest. Figure 4.5 summarizes the result from this experiment.

In [117], we demonstrate a system for visualization of multi-camera data using

the tracking algorithm developed here. As the front-end of the overall system,

the multi-camera tracker detects and estimates trajectories of moving humans.

Sequences of silhouettes extracted from each human are matched against models

of known activities. Information of the estimated trajectories and the recognized

activities at each time instant are then presented to a rendering engine that ani-

mates a set of virtual actors synthesizing the events of the scene. In this way, the

visualization system allows for seamless integration of all the information inferred

from the sensed data. Such an approach places the end-user in the scene, provid-

ing tools to observe the scene in an intuitive way, capturing geometric as well as

spatio-temporal contextual information. Such ideas can potentially be applied to

modeling and analysis of activities involving multiple humans exhibiting coordi-

nated group behaviors such as in football games and training drills for security

enforcement. Figure 4.6 shows snapshots of the visualization of the results in

Figure 4.5.

4.2 Metrology

The most common way to measure lengths involve the use of cross-ratios and the

vanishing lines of a plane along with the vertical vanishing point [37]. A graphical

illustration of this is shown in Figure 4.7. Using the invariance of the cross-ratio

between the points Vp, Ob, Ot and R′
t.

ho
hr

=
|OtOb|
|VpOt|

|VpR′
t|

|R′
tOb|

(4.6)
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4.2 Metrology

Figure 4.5: Tracking results on a six camera setup. (Top two rows) Snapshots from the

camera views. Each view is color coded (boundary), used in describing the variance

ellipses in the last row. (Third row) Top view of the sensed area with trajectories of

targets tracked. (Last row) Variance ellipses at different locations on the plane. The

color code associates the ellipse with the camera view from which the uncertainty is

generated. The black ellipse corresponds to the minimum variance that can be obtained

at the specific location.
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(a) (b)

(c) (d)

Figure 4.6: Visualization of the multi-target tracking results of Figure 4.5. The left

panel with each image shows snapshots from four of the six cameras. The proposed

system allows for arbitrary placement of the virtual camera.
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Ob

Ot
Rb

Rt
R′
t

Vp

Vanishing Line of the Plane

Figure 4.7: Using a reference object RbRt with known length hr to measure the length

of ObOt. Both objects are assumed to be oriented vertical to the plane. Knowledge of

the vanishing line and the vertical vanishing point Vp is required.

where hr is the true height of the reference object. The invariance of the cross-

ratio ties in neatly with a fundamental property of 1D projective transformations

or 1D homographies.

In the case of metrology, the length of the reference object and the vanishing

point allow for the definition of the Euclidean reference. Identifying the line

observed on the image plane as U = P
1 and choosing Ob as the origin, the points

R′
t and Vp take the following values.

Ob =


 0

1


 , R′

t =


 |ObR

′
t|

1


 , V p =


 s|ObVp|

1


 , s = ±1 (4.7)

The value of s in the definition of Vp in (4.7) is chosen as +1 if Vp lies on the same

side of Ob as Ot, and −1 otherwise.

In the Euclidean reference X = P
1 these points take the values (in homoge-
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neous coordinates),

Ox
b =


 0

1


 , R′x

t =


 hr

1


 , V x

p =


 1

0


 (4.8)

Using this correspondence information, we can compute the 1D homography

HM between U and X .

HM =


 hr(|ObR

′
t| − s|ObVp|) 0

|ObR
′
t| −s|ObR

′
t||ObVp|


 (4.9)

Now, we can transform Ot using the homography HM to obtain its length.

Ox
t =


 ho

1


 ∼ H


 |ObOt|

1




ho =
hr(|ObR

′
t|−s|ObVp|)|ObOt|

|ObR
′
t|(|ObOt|−s|ObVp|)

(4.10)

It can be easily verified that the expression for ho in (4.10) is identical to that in

(4.6).

Finally, it is noted that the homography defined in (4.9) varies as the point Ob

corresponding to the point on the plane is changed. Given a static camera, the

vanishing points are fixed. The reference object also forms a part of the calibration

information. Hence, given a location on the image plane U and the necessary

calibration information we can define the 1D homography HM(U) that defines

the projective transformation mapping points on the line U and Vp to points on

an Euclidean line where U maps to the origin, Vp to the point at infinity. The

proximity of the vertical vanishing point to the point U (distance measured on

the image plane) plays a pivotal role in accurate estimation of object heights.
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4.2.1 Metrology under noisy observations

We now link the theory developed in Section 3.3 for estimation of lengths using

cross ratios under noisy observations. We assume that all calibration information,

such as the vanishing line, the vertical vanishing point and the reference object

are available noise free.

Given a background subtracted blob of a human, we compute a line passing

through the vertical vanishing point that best fits the blob (in the sense of mini-

mum error). Using this line we locate Ob and Ot as the top and bottom points of

the blob (the notion of top versus bottom is assumed to be a part of calibration,

and is encoded in the sign of s in (4.7)). The noisy estimation of the background

subtracted image and the deviations of an actual human silhouette from a stick

model leads to errors in the location of Ob and Ot. Estimating the height of the

person from the noisy data is of interest.

Equation (4.10) links this estimation problem with that of location estimation

along a line under a 1D projective transformation. This ties the metrology problem

with the estimation methods described in earlier sections. Specifically, the location

of the vertical vanishing point (which is the inverse map of the point at infinity on

X ) becomes of immense importance for accurate estimation. It is expected that

views in which the vanishing point is close to Ot and Ob, such as a top-down view

of the plan, would lead to estimates of inferior accuracy as compared to those in

which the vanishing point is imaged at infinity, which happens if the principal ray

of the camera is perpendicular to the plane normal.

However, we also note that when Ob, the bottom point is corrupted by noise

it becomes necessary for estimating the correct location of the point along with

the height of the person. This corresponds to a coupling of location and height

estimation. In this context, it is preferable to simultaneously estimate the true

location of the object along with the height of the person.

As in the location estimation on the plane, the accuracy of the metrology also
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(a)

(b)

(c)

(d)

(e)

(f)

Plane

Target

Std. Deviation

Figure 4.8: Multi-camera Metrology. (a)-(d) Color coded camera views showing possible

location of a target (e) Standard deviation of height estimate from each camera view

assuming a 2-pixel standard deviation error on the image plane. The color of the

standard deviation bars represent the views in (a)-(d) (f) Legend. The point on the

plane is assumed to be error free and an error standard deviation of
√

5 pixels for the

top point.

depends on the location of the camera with respect to the object being imaged.

When we have multiple estimates arising from different views, the estimates are

bound to be of different distributions. As before the fusion scheme should account

for the differences and utilize them appropriately. Figure 4.8 illustrates that vari-

ances of height estimates coming from different views can be very different. As

before, such modeling is useful in designing efficient estimators. Note that these

estimates are made under no noise assumption on the bottom point Ob and a

standard deviation of
√

5 pixels on the top point Ot (on the image plane).
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Figure 4.9: Histograms of height estimates from a three camera setup over a minute

long video. Each frame of the synchronized video was used to obtain height estimates.

(Cols 1 - 3) estimates from the individual cameras, (col 4) estimates after a naive fusion

algorithm, (col 5) estimates from the proposed fusion method and (col 7) numerical

summary of results. The height of the person under surveillance was 172.5 cm (to the

nearest inch).
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Figure 4.10: Histograms of height estimates from a three camera setup over a minute

long video. Each frame of the synchronized video was used to obtain height estimates.

(Cols 1 - 3) estimates from the individual cameras, (col 4) estimates after a naive fusion

algorithm, (col 5) estimates from the proposed fusion method and (col 7) numerical

summary of results. The height of the person under surveillance was 170 cm (to the

nearest inch).

4.2.2 Metrology: Results

Figures 4.9 and 4.10 show results from a three camera sequence of about a minute

long. We are able to obtain the height estimate for each frame at each camera

using (4.6). Further, the estimates for each frame were fused using the proposed

algorithm. Histograms of such estimates are displayed in Figures 4.9 and 4.10. The

fusion algorithm shows improvement over both the individual camera estimates

and a naive fusion strategy that does not explicitly account for the projective

transformations. However, this improvement is only marginal, possibly due to the

correlated nature of noise across frames in a video.
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Chapter 5

Joint Acoustic Video Tracking

The epipolar constraint is the most general constraint governing imaging with two

projective cameras. As mentioned in Chapter 2, tracking with epipolar constraint

can be formalulated with state spaces involving common overlapping states. In

this chapter, we explore the use of such state spaces for tracking.

Recently, hybrid nodes that contain an acoustic array collocated with a camera

were proposed for vehicle tracking problems [31]. To intelligently fuse information

coming from both modalities, novel strategies for detection and data association

have to be developed to exploit the multi modal information. Moreover, the fused

tracking system should be able to sequentially update the joint state vector that

consists of multiple target motion parameters and relevant features (e.g., shape,

color and so on), which is usually only partially observable by each modality.

It is well known that acoustic and video measurements are complementary

modalities for object tracking. Individually, the acoustic sensors can detect tar-

gets [68, 134, 70], regardless of the bearing with low power consumption, and the

video sensors can provide reliable high-resolution localization estimates [60], re-

gardless of the target range, with high power consumption. Hence, by fusing the

acoustic and video modalities, we (i) achieve tracking robustness at low acoustic

signal-to-noise ratios (SNR) or during video occlusion, (ii) improve target count-

ing/confirmation, and (iii) design algorithms that permit a power vs. performance

trade-off for hybrid node management.

In the literature [132,30,51], one finds that fusion of acoustic and video modal-

ities has been applied to problems such as tracking of humans under surveillance

and smart videoconferencing. Typically, the sensors are a video camera and an
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acoustic array (not necessarily collocated). In [132], the acoustic time delay-of-

arrivals (TDOA’s), derived from the peaks of the generalized cross-correlation

function, are used along with active contours to achieve robust speaker tracking

with fast lock recovery. In [30], jump Markov models are used for tracking hu-

mans using audio-visual cues, based on foreground detection, image-differencing,

spatiospectral covariance matrices, and training data. The work by Gatica-Perez

et al. [51] demonstrates that particle filters, whose proposal function uses audio

cues, have better speaker tracking performance under visual occlusions.

Much of the work in acoustic video fusion for videoconferencing do not extend

to the outdoor vehicle tracking problem. In particular, the issue of audio-video

synchronization must be modeled to account for acoustic propagation delays. In

vehicle tracking problems, the average target ranges of 100-600m result in acoustic

propagation delays in the range of 0.3-2s. Acoustics and video asynchronization

causes biased localization estimates that can lead to filter divergence. This is

because the bias in the fused cost function increases the video’s susceptibility to

drift in the background. In addition, motion models should adaptively account

for any rapid target motion. Moreover, the visual appearance models should be

calculated online as opposed to using trained models for tracking. Although fixed

image templates (e.g., wire-frames in [65,132,51]) are very useful for face tracking,

they are not effective for tracking vehicles in outdoor environments. Adaptive

appearance models are necessary for achieving robustness [82,141,66].

To track vehicles using acoustic and video measurements, we propose a par-

ticle filtering solution that can handle multiple sensor modalities. We use a fully

joint tracker, which combines the video particle filter tracker [141] and a modified

implementation of the acoustic particle filter tracker [25] at the state space level.

We emphasize that combining the output of two particle filters is different from

formulating one fully joint filter [80] or one interacting filter [31] (e.g., one modal-

ity driving the other). The generic proposal strategy described in [27] is used

to carefully combine the optimal proposal strategies for the individual acoustic

65



Chapter 5. Joint Acoustic Video Tracking

and video state spaces such that the random support of the particle filter is con-

centrated where the final posterior of the joint state space lies. The resulting

posterior has a lower Kullback-Leibler distance to the true target posterior than

any output combination of the individual filters.

Both the visual and acoustic modalities are examples of projective devices

with the planar acoustic microphone array being a 1D sensor. Under this setting,

the direction of arrival of the acoustic array is the epipolar line associated with

the multi-view constraint. The joint filter state vector includes the target heading

direction φk(t), the logarithm of velocity over range Qk(t) = log (vk/rk(t)), observ-

able only by the acoustics; target shape deformation parameters {a1, a2, a3, a4}k,
the vertical 2D image plane translation parameter ηk(t), observable only by the

video; and the target DOA θk(t), observable by both modalities (being the equiv-

alent of the epipolar line). The subscript k refers to the kth target. We also

incorporate a time delay variable τk(t) into the filter state vector to account for

acoustic propagation delays needed to synchronize the acoustic and video mea-

surements. This variable is necessary to robustly combine the high resolution

video modality with the lower resolution acoustic modality and to prevent biases

in the state vector estimates.

The filter is initialized using a matching pursuit strategy to generate the parti-

cle distribution for each new target, one at a time [25,87]. A partitioning approach

is used to create the multiple target state vector, where each partition is assumed

to be independent. Moreover, the particle filter importance function indepen-

dently proposes particles for each target partition to increase the efficiency of the

algorithm at moderate increase in computational complexity.

5.1 Acoustic State Space

The acoustic state space, presented in this section, is a modified form of the one

used in [26]. we choose this particular acoustic state space because of its flexible
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5.1 Acoustic State Space

observation model that can handle (i) multiple target harmonics, (ii) acoustic

propagation losses, and (iii) time-varying frequency characteristics of the observed

target acoustic signals, without changing the filter equations. Figure 5.1 shows the

behavior of the acoustic state variables for a two-target example using simulated

data.
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Figure 5.1: (Top Left) Particle filter DOA tracking example with two targets. (Bottom

Left) True track vs. calculated track. Note that the particle filter track is estimated using

the filter outputs and the correct initial position. The particle filter jointly estimates

the target heading (Bottom Right) and the target velocity over range ratio (Top Right),

while estimating the target bearing. Note that the heading estimates typically tend to

be much noisier than the DOA estimates.
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5.1.1 State Equation

The acoustic state vector for target k has three elements xk(t) , [ θk(t) , Qk(t) , φk(t) ]T ,

where θk(t) is the kth target DOA, φk(t) is its heading direction, and Qk(t) is its

logarithm of the velocity-range ratio. The angular parameters θk(t) and φk(t) are

measured counterclockwise with respect to the x-axis.

The state update equation is derived from the geometry imposed by the locally

constant velocity model. The resulting state update equation is nonlinear [143,25]:

xk(t+ τ) = hτ (xk(t)) + uk(t), (5.1)

where uk(t) ∼ N (0,Σu) with Σu = diag{σ2
θ,k, σ

2
Q,k, σ

2
φ,k} and hτ (xk(t)) =




tan−1
{

sin θk(t)+τ expQk(t) sinφk(t)
cos θk(t)+τ expQk(t) cosφk(t)

}

Qk(t) − 1
2
log {1 + 2τ expQk(t) cos(θk(t) − φk(t))+

τ 2 exp(2Qk(t))}
φk(t)



. (5.2)

Reference [25] also discusses state update equations based on a constant acceler-

ation assumption.

5.1.2 Observation Equation

The observations yt,f = {yt−mτ,f (p)}M−1
m=0 consist of a batch of DOA estimates

from a beamformer, indexed by m. Hence, the acoustic data of window-length T

is segmented into M segments of length τ , equal to a single video frame duration

(typically τ = 1/30s). The target motion should satisfy the constant velocity

assumption during a window-length T . For ground targets, T = 1s is a reason-

able choice. Each of these segments is processed by a beamformer, based on the

temporal frequency structure of the observed target signals, to calculate possible

DOA estimates. This procedure can be repeated F times for each narrow-band
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frequency indexed by f (Fig. 5.2). Note that only the peak locations are kept in

the beamformer power pattern. Moreover, the peak values, indexed by p, need

not be ordered or associated with peaks from the previous time in the batch and

the number of peaks retained can be time-dependent.

The sliding batch of DOA’s, yt,f , is assumed to form a normally distributed

cloud around the true target DOA tracks. In addition, only one DOA is present

for each target at each frequency f or the target is missed: multiple DOA mea-

surements imply the presence of clutter or other targets. We also assume that

there is a constant detection probability for each target denoted by κf , which

might depend on the particular frequency f . If the targets are also simultane-

ously identified, an additional partition dependency, i.e., κfk , is added.

For a given target, if we assume that the data is only due to its partition and

clutter (hence, the DOA data corresponding to other targets are treated as clut-

ter), we can derive the observation likelihood for the state xt =
[
xT1 (t), xT2 (t), . . . , xTK(t)

]T
[26]

as:

p(yt|xt) =
∏K

k=1 p(yt|xk(t)) =
∏K

k=1

∏F
f=1

∏M−1
m=0



κf0,1

(
γ
2π

)Pm,f + κf1,1
(
γ
2π

)Pm,f−1∑Pm,f

p=1

ψt,m,f

 

p

∣∣∣xk

!

Pm,f




,

(5.3)

where the parameters κfn,K (
∑

n κ
f
n,K = 1) are the elements of a detection (or

confusion) matrix, p = 0, 1, . . . , Pm,f for each f and m, and γ ≫ 1 is a constant

that depends on the maximum number of beamformer peaks P , the smoothness

of the beamformer’s steered response, and the number of targets K. The function

ψ in (5.3) is derived from the assumption that the associated target DOA’s form

a Gaussian distribution around the true target DOA tracks:

ψt,m,f

(
pi

∣∣∣xi
)

=

1√
2πσ2

θ(m,f)
exp

{
−(hθ

mτ (xi(t))−yt+mτ,f (pi))
2

2σ2
θ(m,f)

}
,

(5.4)
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Figure 5.2: A 10-element uniform circular microphone array is used to record a target’s

acoustic signal, while it is moving on an oval track (refer to Fig. 5.14). The acoustic

array’s inter-microphone distance is 1.1m. Hence, the maximum beamforming frequency

without aliasing is approximately 150Hz. The acoustic sampling frequency is 44100Hz.

(a) The time-frequency plot of the received signal. We estimated the bearing track of

the vehicle using the MVDR beamformer [68], where the beamforming frequencies are

chosen to be the dashed line for (b), the solid line for (c), and the dotted line for (d). For

each acoustic bearing estimate, 1470 acoustic data samples are used, corresponding to

30 bearing estimates per second. The bearing tracks in (b-d) are indexed by f = 1, 2, 3

in the acoustic state space derivation and F = 3.
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where the superscript θ on the state update function h refers only to the DOA

component of the state update and σ2
θ(m, f) is supplied by the beamformer, using

the curvature of the DOA power pattern at the peak location.

5.2 Video State Space

In this section, we give the details of the video state space. This video state

space is also described in greater detail in [141]. We assume that the camera

is stationary and is mounted at the center of the acoustic microphone array, at

a known height above the ground. We also assume that the camera calibration

parameters are known, which allows us to convert a location on the image plane

to a DOA estimate while having the same reference axis as the acoustic state

space. Figure 5.3 demonstrates a video tracker based on state space described in

this section.

5.2.1 State Equation

The video state vector for target k has six elements: four affine deformation

parameters ak(t) = [ ak,1,t , . . . , ak,4,t ]T , a vertical 2-D translation parameter

ηk(t), and the target DOA θk(t): xk(t) ,
[
aTk (t) , ηk(t) , θk(t)

]T
. The affine de-

formation parameters linearly model the object rotation, shear and scaling (affine

minus translation), whereas the translation parameter and the DOA account for

the object translation, all on the image plane. The state update equation consists

of a predictive shift and a diffusion component:

xk(t) = hτ (xk(t− τ)) + uk(t) = x̂k(t− τ) + νk(t) + uk(t), (5.5)

where νk(t) is an adaptive velocity component, affecting only ηk(t) and θk(t) in

the state vector. It is calculated using a first-order linear prediction method on

two successive frames; x̂k(t− τ) is the maximum a posteriori estimate of the state
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(a) Frame 1 (b) Frame 8 (c) Frame 15

(d) Frame 22 (e) Frame 29 (f) Frame 36

(g) Frame 43 (h) Frame 50 (i) Frame 57

Figure 5.3: Intensity-based visual tracking of the white car using a particle filter. The

solid box shows the mean of the posterior, whereas the dashed box shows the location

of the mode of the posterior. The dot cloud depicts spatial particle distribution. In this

scenario, the white car is occluded for 1 second corresponding to 30 video frames. The

particle spread during occlusion increases because the robust statistics measure [141]

renders the likelihood function non-informative. The filter quickly locks back to the

target after occlusion.
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at time t− τ ; and uk(t) is an adaptive noise component, calculated by measuring

the difference between the updated appearance and the calculated appearance at

time t, as described in [141]. Note that the video state mode estimates x̂k(t− τ)

are stored in the memory, because they are later used for adaptively determining

a time delay variable for acoustic-video synchronization.

The state equation is constructed so that it can effectively capture rapid target

motions. The adaptive velocity component accounts for the object’s shift within

the image frame, whereas the adaptive noise term captures its drift around its

motion. Hence, the adaptive velocity model simply encodes the object’s inertia

into the tracker and generates particles that are tightly centered around the object

of interest for improved efficiency (Fig. 5.4). If we do not account for the object’s

shift using the adaptive noise component, we need to increase the variance of

the drift component to capture the actual movement of the object. Hence, we

may start to lose our focus on the target as shown in Fig. 5.4(b) without the

adaptive velocity component. In this case, if the background is somewhat similar

to the target, it is automatically injected into the appearance models through the

EM algorithm. Hence, the background also becomes part of the tracked object,

thereby creating local minima to confuse the tracker in its later iterations.

The adaptive noise variance is based on residual motion errors generated by

the adaptive velocity component. It decreases when the quality of the prediction

from the adaptive velocity component is high, and increases when the prediction

is poor. Finally, when the tracker is visually occluded (occlusion is defined in the

next subsection), the target motion is characterized using a Brownian motion and

νk(t) = 0 is enforced. Hence, during an occlusion, the state dynamics changes to

the following form:

xk(t) = xk(t− τ) + uk(t). (5.6)

We avoid the use of the adaptive velocity model during occlusion because the

object motion may change significantly during an occlusion.
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(a) with the adaptive velocity model (b) without the adaptive velocity model

Figure 5.4: Comparison of the proposed particles when the adaptive velocity model is

used. Note that the particles are tightly clustered around the target when we use the

adaptive velocity model. In contrast, without velocity prediction, we need to use more

particles to represent the same posterior, because most particles have very low weights.

5.2.2 Observation Equation

The observation model is a mixture of following adaptive appearance models: a

wandering Wt, a stable St, and an optional fixed template model Ft. The wan-

dering model Wt captures transient appearance changes based on two successive

frames, whereas the stable model St encodes appearance properties that remain

relatively constant over a large number of frames (Fig. 5.5). The fixed template

Ft is useful for tracking recognized targets, however it is not considered any fur-

ther for this work. The adaptive observation model uses the pixel intensity values

for these appearance models for computational efficiency as suggested in [141].

Although the image intensity values are typically not robust to changes in illumi-

nation, the appearance model described here can adapt to changes in illumination.

However, it is still possible to lose track if there are sudden changes in illumina-

tion. We use a very simple model to circumvent this problem. We normalize the

mean and the variance of the appearance as seen by each particle. This makes

our tracker immune to uniform scaling of the intensities. If we know that the illu-
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mination changes are severe, we can adopt an alternative feature at the expense

of computation without chancing our filter mechanics, such as the spatial phase

data of the object [66] that is more robust to illumination changes.

The observation model is dynamically updated by an online expectation max-

imization (EM) algorithm that adaptively calculates the appearance parameters

{µi,t, σ2
i,t}, (i = w, s) of the appearance models At = {Wt,St}, and the model

mixture probabilities mi,t, (i = w, s) for each pixel [38, 111]. The details of the

EM algorithm for calculating the mixture probabilities and model parameters can

be found in [141, 66]. Omitting the details of the derivations, the observation

likelihood is given by the following expression:

p(yt|xt) =
K∏

k=1

d∏

j=1

{
∑

i=w,s

mi,tN(Tk(yt(j));µi,t(j), σ2
i,t(j))

}
, (5.7)

where Tk is the affine transformation that extracts the image patch of interest by

using the state vector xk(t); d is the number of pixels in the image patch; and

N(x;µ, σ2) is the density

N(u;µ, σ2) ∝ exp

{
−ρ
(
u− µ

σ

)}
, (5.8)

where u is normalized to have unit variance, and

ρ(u) =





1
2
u2, if |u| ≤ c;

c |u| − 1
2
c2, o/w.

(5.9)

The function ρ(·) is Huber’s criterion function, which is commonly used for outlier

rejection [63]. It provides a compromise between mean estimators that are sus-

ceptible to outliers and median estimators that are usually robust to outliers. The

constant c is used to determine the outlier pixels that cannot be explained by the

underlying models. Furthermore, methods from robust statistics allow us to for-
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Online Appearance Model with Fixed Template Size

S: Stable W: Wandering

Good match Poor match

High likelihood Particle Low likelihood Particle

Mapping from the box below
to the template is governed
by the affine deformation
parameters in the particle

Figure 5.5: The online appearance model is illustrated. The model has two components:

S (stable) and W (wandering). Note that each model uses a fixed size image template

that is updated by an online EM algorithm [141]. To determine a particle’s likelihood, an

image patch is first determined using the particle elements. Then, the patch is mapped

back to the template domain using the affine transformation parameters, where it is

compared with the updated appearance model.
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mally decide when the tracker is visually occluded, which implies that the particle

with the highest likelihood has more than 50% of its pixels, which are classified

as outliers by the appearance model. This criterion is discussed in greater detail

in [141].

Deciding on whether or not an object is occluded is an arduous task. However,

this task is alleviated when we also track the appearance. Our decision is based on

the outlier statistics and is reliable. We provide a Monte Carlo run of the occlusion

decision in the simulations section to show the reliability of our occlusion strategy.

We show that the variability of the occlusion detection is rather small once a

threshold is chosen. Further examples of this occlusion strategy can be found

in [141]. The influence of an error on this decision is discussed in our observation

model. If we are late in declaring an occlusion, the appearance of the occluding

object injects itself into the target appearance, thereby causing local minima in

the tracking algorithm. However, given the complexity of the problem, one should

not expect superlative performance for all the possible cases.

Another issue in handling occlusion is the change in the appearance of the

target during occlusion. This could happen due to changes in global illumination,

changes in the pose of the target, or dramatic changes in the projected target size

on the image plane. Recovery of visual tracking cannot be guaranteed, except

when these changes are not severe. In cases, where the track is recovered, we

update the appearance model using the appearance associated with the particle

with maximum likelihood. We say that track has been regained after occlusion,

when the tracker is not visually occluded (as defined before) for a fixed set of

frames (ten frames for the experiments).

5.3 Bayesian Framework for Tracking the Joint state space

In this section, a Bayesian framework is described for combining the acoustic (S1)

and video (S2) state spaces that share a common state parameter. The results
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below can be generalized to time-varying systems including nuisance parameters.

It is assumed that the state dimensions are constant even if the system is time-

varying. Define

Si : xi,t =


 χt

ψi,t


 ∼ qi(xi,t|xi,t−1)

yi,t ∼ fi(yi,t|xi,t),

(5.10)

where the observed data in each space is represented by {yi,t, i = 1, 2}, χt = θt

(overlapping state parameter), ψ1,t = [ Q(t) , φ(t) ]T , and ψ2,t =
[
aT (t) , η(t)

]T
.

The state transition density functions qi(·|−) are given by (5.1) and (5.5). The

observations are explained through the density functions fi(·|−), given by (5.3)

and (5.7). The observation sets yi are modeled as statistically independent given

the state through conditionally independent observation densities. This assump-

tion is justified in our problem: for example, a vehicle’s time-frequency signature

is independent of its colors or textures. In most cases, it may be necessary to

verify this assumption mathematically for the problem at hand [80, 83] by using

the specific observation models.

To track the joint state vector xt = [χt, ψ1,t, ψ2,t] with a particle filter, the

following target posterior should be determined:

p(xt|xt−1, y1,t, y2,t) ∝ p(y1,t, y2,t|xt)p(xt|xt−1)

= πt(y1,t, y2,t)πt−1(xt),
(5.11)

where πs(·) = p(·|xs). Note that the Markovian property is enforced in (5.11).

That is, given the previous state and the current data observations, the current

state distribution does not depend on the previous state track and the previous

observations.

Equation (5.11) allows the target posterior to be calculated up to a propor-

tionality constant, where the proportionality is independent of the current state
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xt. The first pdf on the right hand side of (5.11) is called the joint-data likeli-

hood and can be simplified, using the conditional independence assumption on

the observations:

πt(y1,t, y2,t) = f1(y1,t|x1,t)f2(y2,t|x2,t). (5.12)

The second pdf in (5.11), corresponding to a joint state update, requires more

attention. State spaces S1 and S2 may have different updates for the common

parameter set since they had different models.1 This poses a challenge in terms

of formulating the common state update for xt. Instead of assuming a given

analytical form for the joint state update as in [80], we combine the individual

state update marginal pdfs for the common state parameter as follows:

πt−1(χt) = cp1(χt)
o1p2(χt)

o2r(χt)
o3 , (5.13)

where c ≥ 1 is a constant, pi(χt) , p(χt|xi,t−1) is the marginal density, the

probabilities oi for i = 1, 2 (
∑

i oi = 1) define an ownership of the underlying

phenomenon by the state models, and r(χt) is a (uniform/reference) prior in the

natural space of the parameter χt [13] to account for unexplained observations by

the state models.

If we denote the Kullback-Leibler distance as D, then

D(α(χt)||πt−1(χt)) = − log c+
∑

i

oiD(α(χt)||pi(χt)) (5.14)

where α is the unknown true χt distribution. Hence,D(α||πt−1) ≤ maxi{D(α||pi)}.
πt−1(χt) always has a smaller KL distance to the true distribution than the max-

imum KL distance of pi(χt). This implies that (5.13) alleviates the worst case

divergence from the true distribution [2]. Hence, this proves that one of the track-

1There is no exact state update function for all targets. Individual state spaces may employ

different functions for robustness, which is the case in our problem.
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ers does assist the other in this framework.

The ownership probabilities, oi, can be determined using an error criteria. For

example, one way is to monitor how well each partition xi,t in xt explains the

information streams yi,t through their state-observation equation pair defined by

Si, (5.10). Then, the respective likelihood functions can be aggregated with an

exponential envelope to recursively solve for the oi’s (e.g., using an EM algorithm).

In this case, the target posterior will be dynamically shifting towards the better

self-consistent model while still taking into account the information coming from

the other, possibly incomplete, model, which might be temporarily unable to

explain the data stream.

If one believes that both models explain the underlying process equally well

regardless of their self-consistency, one can set o1 = o2 = 1/2 to have the marginal

distribution of χt resemble the product of the marginal distributions imposed by

both state spaces. The proposal strategy in the next section is derived with this

assumption on the ownership probabilities, because, interestingly, it is possible to

show that assuming equal ownership probabilities along with (5.13) leads to the

following conditional independence relation on the state spaces:

πt−1(x1,t)πt−1(x2,t) = q1(x1,t|x1,t−1)q2(x2,t|x2,t−1). (5.15)

Equation (5.15) finally results in the following update equation:

πt−1(xt) = πt−1(ψ1,t, ψ2,t|χt)πt−1(χt)

= πt−1(ψ1,t|χt)πt−1(ψ2,t|χt)πt−1(χt)

=
πt−1(x1,t)πt−1(x2,t)

πt−1(χt)

⇒ πt−1(xt) =
q1(x1,t|x1,t−1)q2(x2,t|x2,t)

πt−1(χt)
,

(5.16)
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where

πt−1(χt) ∝
[∫∫

q1(x1,t|x1,t−1)dψ1,tq2(x2,t|x2,t)dψ2,t

]1/2

. (5.17)

5.4 Proposal Strategy

A proposal function, denoted as g(xt|xt−1, yt), determines the random support for

the particle candidates to be weighted by the particle filter. Two very popular

choices are (i) the state update g ∝ qi(xt|xt−1) and (ii) the full posterior g ∝
fi(yt|xt)qi(xt|xt−1). The first one is attractive because it is analytically tractable.

The second one is better because it incorporates the latest data while proposing

particles, and it results in less variance in the importance weights of the particle

filter since, in effect, it directly samples the posterior [84,42]. Moreover, it can be

analytically approximated for faster particle generation by using local linearization

techniques (see [42]), where the full posterior is approximated by a Gaussian. The

analytical form of the proposal functions for acoustic and video state spaces,

obtained by local linearization of the posterior, is given by

g(xt|xt−1, yt) ∼ N (µg,Σg) , (5.18)

where the Gaussian density parameters are

Σg =
(
Σ−1
y + Σ−1

u

)−1
,

µg = Σg

(
Σ−1
y xmode + Σ−1

u hτ (x(t− τ))
)
,

(5.19)

and where xmode is the mode of the data likelihood, and Σ−1
y (k) is the Hessian

of data likelihood at xmode. The details of these proposal functions can be found

in [25, 141]. Hence, in either way of proposing particles, one can assume that an

analytical relation for gi, defining the support of the actual posterior for each state

space, can be obtained.

Figure 5.6 describes the proposal strategy used for the joint state space. Each
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χtχtχtS1 S2

ψ
(j)
1,t

χ
(j)
t

ψ
(j)
2,t

ψ1,t

ψ1,t

ψ2,t

ψ2,t

g1

g2

ĝ

ĝ

∫
dψ1,t

∫
dψ2,t

ĝ1

ĝ2

g1(χ
(j)
t , ψ1,t)

g2(χ
(j)
t , ψ2,t)

Support
for ψ1,t

Support
for ψ2,t

Figure 5.6: The supports, gi’s, for the posterior distribution in each state space, Si,
are shown on the axes χt vs. ψi,t. Particles for the joint state are generated by first

generating χt’s from the combined supports of the marginal distributions of χt. Then,

the ψi,t’s are sampled from the gi’s as constrained by the given χt realization.
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5.4 Proposal Strategy

state space has a proposal strategy described by the analytical functions {gi, i =

1, 2} defined over the whole state spaces. Then, the proposal functions of each

state gi are used to propose particles for the joint space by carefully combining

the supports of the individual posteriors. First, marginalize out the parameters

ψi,t:

ĝi(χt|xi,t−1, yi,t) =

∫
gi(xi,t|xi,t−1, yi,t)dψi,t. (5.20)

The functions, ĝi, describe the random support for the common state parameter

χt and can be combined in the same way as the joint state update (5.13). Hence,

the following function

ĝ(χt|xt−1, y1,t, y2,t) ∝ [ĝ1(χt|x1,t−1, y1,t)ĝ2(χt|x2,t−1, y2,t)]
1/2 (5.21)

can be used to generate the candidates χ
(j)
t for the overlapping state parameters.

Then using χ
(j)
t , one can generate ψ

(j)
i,t from gi(χ

(j)
t , ψi,t|xi,t−1, yi,t) and form x

(j)
t =

[χ
(j)
t , ψ

(j)
t , ϕ

(j)
t ].

In general, Monté-Carlo simulation methods can be used to simulate the

marginal integrals in this section [112]. Here, we show how to calculate the

marginal integrals of the state models. Simulation of the other integrals are quite

similar. Given χ
(j)
t , draw M samples using ψ

(m)
i,t ∼ gi(χ

(j)
t , ψi,t|xi,t−1, yi,t).

2 Then,

∫
q1(χ

(j)
t , ψi,t|x1,t−1)dψi,t ≈

1

M

M∑

m=1

q1(χ
(j)
t , ψ

(m)
i,t |x1,t−1)

g1(χ
(j)
t , ψ

(m)
i,t |x1,t−1, y1,t)

. (5.22)

The pseudo-code for the joint strategy is given in Table 5.1. Finally, the

importance weights for the particles generated by the joint strategy described in

2It is actually not necessary to draw the samples directly from gi(χ
(j)
t , ψi,t|−). An easier

distribution function approximating only qi can be used for simulating the marginalization

integral (5.22).
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Table 5.1: Pseudo Code for Joint Proposal Strategy

i. Given the state update qi and observation relations fi for the individual
state spaces {Si, i = 1, 2}, determine analytical relations for the proposal
functions gi’s. For the individual proposal functions gi, it is important to
approximate the true posterior as close as possible because these
approximations are used to define the random support for the final joint
posterior. For this purpose, Gaussian approximation of the posterior (5.18)
or linearization of the state equations can be used [42].

ii. Determine the support for the common state parameter χt using (5.21). The
expression for ĝ may have to be approximated or simulated to generate
candidates χ

(j)
t , j = 1, 2, . . . , N where N is the number of particles.

iii. Given χ
(j)
t ,

• calculate the marginal integrals by using (5.22) to determine gi,

• generate ψ
(j)
i,t ∼ gi(χ

(j)
t , ψi,t|xi,t−1, yi,t),

• form x
(j)
t = [χ

(j)
t , ψ

(j)
1,t , ψ

(j)
2,t ], and

• calculate the importance weights, w(j)’s, using (5.23).

this section can be calculated as follows:

w(j) ∝ p(x
(j)
t |xt−1, y1,t, y2,t)ĝ(χ

(j)
t |xt−1, y1,t, y2,t)

g1(χ
(j)
t , ψ

(j)
1,t |x1,t−1, y1,t)g2(χ

(j)
t , ψ

(j)
2,t |x2,t−1, y2,t)

. (5.23)

5.5 Time Delay Parameter

The joint acoustic video particle filter sequentially estimates its state vector at

video frame rate, as the acoustic data arrives. Hence, the joint filter state es-

timates are delayed with respect to the actual event that produces the state,

because the acoustic information propagates much slower than the video informa-
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5.5 Time Delay Parameter

tion. Although it is possible to formulate a filter so that estimates are computed

as the video data arrives, the resulting filter cannot use the delayed acoustic data.

Hence, it is not considered here. The adaptive time delay estimation also allows

position tracking on the ground plane. However, small errors in the time delay

estimates translate into rather large errors in target range estimates, resulting in

large errors in target position estimates. Hence, the main reason for estimating

time delay is to ensure the stability of the joint filter.

Beamformer

Vid. Mo. Detector Motion Mode Est.

Motion Mode Est.

Batch Memory

Batch Memory

Time Alignment

AD

VD

d(t),σ2
d

JT

JT

JT

θ1(t)

θ2(t)

{θ1}t

{θ2}t

{θ1}(t−T+τ):(t−τ)

{θ2}(t−T+τ):(t−τ)

Figure 5.7: At time t, τ seconds of acoustic data (AD) and a frame of video data (VD)

are processed to obtain possible target DOA’s {θi}t. This preprocessing is done by a

beamformer block and a video motion detector block, respectively. With the guidance

of the joint tracker (JT), these DOA’s are used to determine the DOA mode tracks,

θi(t) (Fig. 5.8), to estimate the time delay d(t). The estimated time delay parameters

are then used in the proposal function of the joint tracker.

To synchronize the audio-video information, we add an additional time delay

variable dk(t) for each target k to form an augmented joint filter state:

xk(t) ,
[
aTk (t) , ηk(t) , θk(t) , Qk(t) , φk(t) , dk(t)

]T
. (5.24)
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The time delay dk(t) is defined geometrically as:

dk(t) = ||ξ − χk (t− dk(t)) ||/c, (5.25)

where ξ = [sx, sy]
T is the hybrid node position in 2D, χt = [xk,target(t), yk,target(t)]

T

is the kth target position, and c is the speed of sound. Using the geometry of the

problem, it is possible to derive an update equation for dk(t):

dk(t+ τ) = dk(t) exp{ud,k(t)}√
1 + 2τ exp{Qk(t)} cos (θk(t) − φk(t)) + τ 2 exp{2Qk(t)},

(5.26)

where the Gaussian state noise ud,k(t) is injected as multiplicative.

We suppress the partition dependence on the variables from now on for brevity.

Figure 5.7 illustrates the mechanics of time delay estimation. To determine d(t),

we first determine the mode of the acoustic state vector within a batch period of

T seconds. Given the calculated acoustic data mode, which is also used in the

proposal stage of the particle filter, x1,mode(t), an analytical relation for acoustic

DOA track θ1(t) (Fig. 5.8) is determined, using the state update function (5.2).

This functional estimate θ1(t) of the acoustic DOA’s and acoustic data is used to

determine an average variance of the DOA’s σ̃2
1,θ around the functional, between

times t and t− T . Note that σ̃2
θ is estimated using the missing and spurious data

assumptions similar to the ones presented in Sect. 5.1.

Next, we search the stored mode estimates of the video state, which is used

in the video state update function (5.5), to determine M = T/τ (i.e., the number

of video frames per second) closest video DOA estimates. These DOA’s are used,

along with the constant velocity motion assumption, to determine a functional

estimate θ2(t) of the DOA track and an average DOA variance σ̃2
2,θ, based on the

video observations, as shown in Fig. 5.8. The observation likelihood for the time

86



5.6 Algorithm Details

delay variable d(t) is approximated by the following Gaussian:

p(d(t)|y1,t,y2,t) ≈ N
(
µd
(
1 + TeQmode

cos [(θ1(t− T ) + θ1(t))/2 − φmode] + T 2e2Qmode/4
) 1

2 , σ2
d

)
,

(5.27)

where the mean is the average distance between the functional inverses of θ1(t)

and θ2(t):

µd =

∣∣∣∣∣∣

∫ θ1(t−T )

θ1(t)

[
θ−1
1 (θ′) − θ−1

2 (θ′)
]
dθ′

θ1(t) − θ1(t− T )

∣∣∣∣∣∣
. (5.28)

The variance σ2
d is determined by dividing the average DOA variances by the

functional slope average:

σ2
d =

∣∣∣∣∣
θ1(t) − θ1(t− T )
∫ t
t−T

∂θ1(t′)
∂t′

dt′

∣∣∣∣∣ σ̃
2
1,θ +

∣∣∣∣∣
θ1(t) − θ1(t− T )
∫ t
t−T

∂θ2(t′)
∂t′

dt′

∣∣∣∣∣ σ̃
2
2,θ. (5.29)

In the joint filter, the particles for the time delay parameter are independently pro-

posed with a Gaussian approximation to the full time delay posterior, using (5.26)

and (5.27) [42].

5.6 Algorithm Details

The joint acoustic-video particle filter tracker code is given in Table 5.2. In the

following subsections, we discuss other practical aspects of the filter.

5.6.1 Initialization

The initialization algorithms for the video and acoustic trackers are employed to

initialize the joint filter. The joint filter initialization requires an interplay between

the modalities, because the state vector is only partially observable by either

modality. In most cases, the video initializer is cued by the acoustics, because

the video modality consumes significantly more power. Below, we describe the
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t− T tt− τt− T − τ Time

DOA

T

dk(t′)

τ

θ1(t)

θ2(t)

θ1(t)

θ1(t− T )

Figure 5.8: The time delay dk(t) between the acoustic and video DOA tracks, θ1(t) and

θ2(t), respectively.
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general case where each modality is turned on.

Briefly, the organic initialization algorithms work as follows. In video, motion

cues and background modeling are used to initialize target appearance models,

aTk (t), ηk(t), and θk(t) by placing a bounding box on targets and by coherent tem-

poral processing of the video frames [141]. In acoustics, the temporal consistency

of the observed DOA’s is used to initialize target partitions by using a modified

Metropolis-Hastings algorithm [28,25].

To initialize targets, a matching-pursuit idea is used [87, 25]. The most likely

target is initialized first and then its corresponding data is gated out [5]. Note

that the target motion parameters alleviate the data association issues between

the video and acoustic sensors, because both modalities are collocated. Hence,

the overlapping state parameter θ is used to fuse the video shape parameters and

acoustic motion parameters.

When a target is detected by the organic initialization algorithms, the time

delay variable is estimated using the scheme described in Sect. 5.5. The initializa-

tion scheme in [25] is used to determine the target motion parameters, where the

video DOA mode estimates are used as an independent observation dimension to

improve the accuracy. Finally, a target partition is deleted by the tracking algo-

rithm at the proposal stage if both acoustic and video modalities do not see any

data in the vicinity of the proposed target state.

5.6.2 Multi Target Posterior

The joint filter treats the multiple targets independently, using a partition ap-

proach. The proposal and particle weighting of each target partitions are inde-

pendent. This allows a parallel implementation of the filter where a new single

target tracking joint filter is employed for each new target. Hence, the complexity

of the filter increases linearly with the number of targets. Note that for each target

partition, it is crucial that data corresponding to the other target partitions are

treated as clutter. This approach is different from the joint probability density
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association (JPDA) approach that would be optimal for assigning probabilities to

each partition by adding mixtures that consist of data permutations and partition

combinations [5]. In JPDA, no data would be assigned to more than one target.

However, in our approach, the same DOA might be assigned to multiple targets.

Notably, it is shown in [25] that the independence assumption for the joint

state space is reasonable for the acoustic tracker. There is a slight performance

degradation in bearing estimation, when the targets cross; however, it is not

noticeable in most cases. Moreover, the JPDA approach is not required by the

video tracker. When the targets cross, if the targets are not occluding each other

as their DOA’s cross, the vertical 2-D translation parameter ηk(t) resolves the data

association issue between the partitions. The motion parameters also resolve the

data association, similar to the acoustic tracker, to alleviate the filter performance.

If there is occlusion, it is handled separately using robust statistics as described

below.

5.6.3 Handling Occlusion

In video, if the number of outlier pixels, defined in (5.9), is above some threshold,

occlusion is declared. In that case, the updates on the appearance model and the

adaptive velocity component in the state update (5.5) are stopped. The current

appearance model is kept and the state is diffused with increasing diffusion vari-

ance. The data likelihood for the occluded target is set to 1 for an uninformative

response under the influence of robust statistics. Similarly, the acoustic data like-

lihood is set to 1 when the number of DOA’s within the batch gate of a partition

is less than some threshold (e.g., M/2).

5.7 Simulations

Our objective with the simulations is to demonstrate the robustness and capabil-

ities of the proposed tracker. We provide two examples. In the first example, a
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Table 5.2: Joint Acoustic Video Particle Filter Tracker Pseudo-Code

1. For each particle i (i = 1, 2, . . . , N) and each partition k (k = 1, 2, . . . , K)

• Sample the time delay d
(i)
k (t) ∼ gd(dk(t)|y1,t, y2,t, x

(i)
k (t− T )), where gd(·) is

the Gaussian approximation to (5.26) and (5.27).

• Using the procedure illustrated in Table 5.1, sample χ
(i)
k (t), ψ

(i)
k (t), and

ϕ
(i)
k (t) from x

(i)
k (t− T ) with the time synchronized acoustic and video data

y1,t and y2,t−d(i)(t).

2. Calculate the weights w∗(i)
t using (5.23). Determine visual and acoustic

occlusions by looking at the likelihood estimates of each particle:
p(y1,t|χ(i)(t), ψ(i)(t)) (acoustics) and p(y2,t|χ(i)(t), ϕ(i)(t)) (video). separately
as in [25].

3. Calculate the weights using (5.23) and normalize.

4. Perform the estimation [42]: E{f(xt)} =
∑N

i=1w
(i)
t f(x

(i)
t ).

5. Resample the particles: Only states that are observable participate in
resampling. For example, if the observations are visually occluded then the
states ϕ(t) are not resampled. Similarly, if the observations are acoustically
occluded, then the states ψ(t) are not resampled.

6. Update the appearance model with the appearance corresponding to the
particle with maximum likelihood, if this likelihood value exceeds the
threshold.
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vehicle is visually occluded and the acoustic mode enables track recovery. In the

second example, we provide joint tracking of two targets and provide time delay

estimation results.

5.7.1 Tracking through Occlusion

Figure 5.9 shows the tracking results for a car that is occluded by a tree. The role

of the DOA variable in the state space is crucial for this case. In the absence of

information from any one of the modalities, the DOA still remains observable and

is estimated from the modality that is not occluded. However, the rest of the states

corresponding to the failed modality remains unobservable, and the variance of

the particles along these dimensions continues to increase as the occlusion persists.

Hence, it is therefore sometimes necessary to use an increasing number of particles

to regain track until the failed modality is rectified.

The video modality regains the track immediately, as the target comes out of

occlusion. The spread of particles (the dot cloud in Fig. 5.9) gives an idea of the

observability of the vertical location parameter on the image plane. Further, the

dramatic reduction in this spread as the target comes out of occlusion, demon-

strates the previously unobservable visual components recovering the track. It is

also interesting to compare the spread of particles in Fig. 5.9 with the pure visual

tracking example in Fig. 5.3, where the spread of particle increases isotropically

on the image plane, due to complete occlusion. Hence, the joint tracking reduces

the uncertainty through the second modality. For this example, the simulation

parameters are given in Table 5.3. The acoustic bearing data is generated by

adding Gaussian noise to the bearing track that corresponds to the ground truth.

The acoustic bearing variance is 4 degrees between t = 1s to t = 5s, when the

vehicle engine is getting occluded by the tree. It is 2 degrees when the vehicle

engine is not occluded.

Figure 5.10 shows the results of a Monte-Carlo run, where the filter is rerun

with different acoustic noise realizations. The threshold for declaring an occlusion
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5.7 Simulations

is set as 40%. Figure 5.10(a) shows the joint bearing estimate results whereas

Fig. 5.10(b) and (c) show the acoustics-only and video-only tracking results, re-

spectively. In Fig. 5.10(a), there is a small positive bias in the bearing estimates

at the end due to the target’s pose change. As can be seen in Fig. 5.9(h) and (i),

the rear end of the vehicle is visible after the vehicle comes out of the occlusion.

The online appearance model locks on the front of the vehicle, whose appearance

was stored before the occlusion. Hence, the rear end of the vehicle is ignored,

causing the bias. We see in Fig. 5.10(c) that the video-only tracker cannot handle

this persistent occlusion without the help of the acoustics.

Note the time evolution of the estimate variances shown in Figs. 5.10(d) and (e)

for the joint tracker and the acoustics-only tracker. When the video modality is un-

able to contribute, the variance of the estimate approaches acoustics-only results.

When the video recovers, the estimate variance drops sharply. Figures 5.10(f)

and (g) show the distribution of the vertical displacement parameter. When the

occlusion is over at t = 6s, the video quickly resolves its ambiguity in the vertical

displacement (Fig. 5.10(g)), whereas the variance of the vertical displacement in

Fig. 5.10(f) increases linearly with time due to divergence. Figures 5.10(h) and

(i) demonstrate the occlusion probability of the target.

Table 5.3: Simulation Parameters
Number of particles, N 1000

ϕ(t) noise Σϕ diag [0.02, 0.002, 0.002, 0.2, 2]

θ noise σθ,k 1 ◦

Q noise σQ,k 0.05s−1

φ noise σφ,k 4 ◦

Video Measurement noise σθ 0.1,◦

App. Model Template Size 15×15 (in pixels)

Beamformer batch period, τ 1
30s

Frame Size 720 × 480

Figure 5.11 illustrates the particle filter tracking results through dust. The

video data, which was presented as a challenge for video tracking algorithms,
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(a) Frame 1 (b) Frame 30 (c) Frame 60

(d) Frame 90 (e) Frame 120 (f) Frame 150

(g) Frame 180 (h) Frame 195 (i) Frame 210

Figure 5.9: Joint tracking of a vehicle that is occluded by a tree. The particle cloud at

each frame represents the discrete support of the posterior distribution of the vehicle

position in the image plane. Note that the particle spread during the occlusion increases

along the vertical axis. This spread suddenly decreases, once occlusion is gone. The

target is occluded in frames 40 to 180.
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Figure 5.10: Results of 300 independent Monte-Carlo simulations of the experiment

illustrated in Fig. 5.9. (a) MATLAB’s boxplot of the estimated target DOA track

with the joint tracker. The visual occlusion is between t = 1s and t = 6s. (b) The

estimated DOA track using acoustics-only. (c) The estimated DOA track using video-

only. (d-e) The time evolution of the estimate variances is shown for the joint filter

and acoustics only, in their respective order. (f) Vertical displacement is unobservable

during the visual occlusion. Hence, the video-only estimate variance increases linearly

with time. (g) Note the variance of the estimates dramatically reduces once the target

becomes unoccluded, demonstrating the recovery speed of the tracker. (h) The occluded

percentage of pixels, corresponding to the MAP particle. (i) Probability of occlusion

for the Monte-Carlo runs. The track recovery after occlusion is robust as illustrated by

the Monte-Carlo runs.
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was collected at the Aberdeen Proving Grounds in 2002. Due to the persistent

occlusion, the video-only tracking algorithm cannot maintain target track after

the gradual rise of the dust. Using the ground truth, we simulated acoustic data

for the target motion. The joint acoustic video was employed to track the target.

While the tracker fails to lock back on the target, due to considerable pose change,

it is instructional to see that the joint tracking allows the horizontal displacement

on the image plane to be tracked correctly.

Finally, figure 5.13 shows additional results on a scenario where the target

stops and reverses when it is occluded.

5.7.2 Time Delay Estimation

We performed a simulation with the time delay variable on a synthetically con-

structed multi-target data set. The simulation parameters are given in Table 5.4.

The temporal tracks of two targets are shown in Fig. 5.14. The simulation param-

eters are given in Table 5.2. The results of the DOA and time delay estimation are

shown in Fig. 5.15. The filter handles multiple targets independently by treating

the data of the other target as clutter. Note the variance of the time delay esti-

mates decreases as the targets get closer to the hybrid sensors. It is important to

account for this time delay, because filter instability occurs due to the estimation

biases when filtered with the unsynchronized data.

Table 5.4: Simulation Parameters
Number of particles, N 1000

θ noise σθ,k 1 ◦

Q noise σQ,k 0.05s−1

φ noise σφ,k 4 ◦

Time delay d noise σd,k 0.2s

Acoustic Measurement noise σθ 1 ◦

Video Measurement noise σθ 0.1,◦

Beamformer batch period, τ 1
30s
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5.7 Simulations

(a) Frame 30 (b) Frame 110 (c) Frame 190

(d) Frame 270 (e) Frame 350 (f) Frame 430

(g) Frame 510 (h) Frame 590 (i) Frame 670

Figure 5.11: Joint tracking results of a vehicle as it is occluded by its own dust. The

solid box shows the posterior mean and the dashed box shows the posterior mode. The

target is completely occluded for more than 20 seconds. Note that there is a dramatic

change in target appearance due to the simultaneous change in target pose and scale.

While the visual components of the state space do not immediately regain track after

occlusion, the mean state estimates remain robust and on target, enabling the recovery

and data association.
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Figure 5.12: (a) The video sensor is turned on at time t = 72s because the target is now

in its field-of-view. The joint tracker estimates of the vehicle DOA track in Fig. 5.11

are compared with the ground truth. (b) Note the increase in the percentage of the

occluded pixels. The gradual increase in the occlusion percentage after the first few

seconds is attributed to the gradual rise of dust.
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(a) Frame 1 (b) Frame 30 (c) Frame 60

(d) Frame 90 (e) Frame 120 (f) Frame 150

(g) Frame 180 (h) Frame 210 (i) Frame 240

(j) Frame 270 (k) Frame 300 (l) Frame 330

Figure 5.13: Tracking a target through occlusion, with the target reversing when it is

occluded. The particle cloud is shown in yellow. The mean and map particle are in red

and broken-magenta respectively.
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Figure 5.14: Two targets follow an oval track (dotted line). The hybrid node is situated

at the origin.
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Figure 5.15: (a) Tracking of multiple targets with simulatenous estimation of time

delay. (b) Estimated time delays. Note the reduction in the variance of the time delay

estimates as the time delays get smaller.
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Chapter 6

Computationally Efficient Particle Filtering

Particle filtering has been applied to a wide variety of problems such as tracking,

navigation, detection [64,107] and video based object recognition. This generality

of particle filters comes from a sample (or particle) based approximation of the

posterior density of the state vector. This allows the filter to handle both the

non-linearity of the system as well as the non-Gaussian nature of noise processes.

However, the resulting algorithm is computationally intensive and as a results,

the need for efficient implementations of the algorithm, tuned specifically towards

hardware or multi-processor based implementations.

Many methods for algorithmic and hardware implementations of particle filter-

ing have been proposed in the literature. The authors of [16] identify resampling

algorithms as the main computational step in the algorithm that is completely

independent of the underlying application. They also propose new resampling al-

gorithms that reduce the complexity of hardware implementations. Architectures

for efficient distributed pipelined implementations using FPGAs have been pro-

posed in [17]. A detailed analysis of the basic problem, addressing many hardware

and software issues can also be found in [15,4].

The resampling algorithms presented in the above references are modifications

of the basic systematic resampling algorithm presented in [43], which by itself cre-

ates bottle-necks in a streamlined implementation. In [116], the authors propose

a methodology to overcome this limitation by rederiving the basic theory, with an

alternate resampling algorithm which is similar to the Monte Carlo Markov Chain

(MCMC) Tracker for interacting targets in video presented in [74]. There have

been a number of resampling schemes that have been proposed in the literature.
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Liu and Chen [84] list and compare a number of such schemes. Of sufficient inter-

est and relevance are the so called Local Monte Carlo Methods that are described

in [84]. Specifically, this chapter analyzes the computational challenges in the

implementations of particle filters, and provides a general design methodology for

particle filtering using pipelining and parallelization; these are constructs that are

commonly used in both hardware and multi-processor based systems.

Particle filtering involves three main modules: proposition, weight evaluation

and resampling modules. Standard implementations of particle filtering typically

use what is commonly known as systematic resampling (SR). Systematic resam-

pling poses a significant challenge for pipelined implementations as it can only

begin when all the weights are computed at the weight computation stage, and

the cumulative sum of the weights is available. This means that any pipelined im-

plementation would start the resampling only after all the weights are computed.

This increases the latency of the whole implementations.

We present algorithmic and implementation schemes for particle filters for

speeding up the basic computations, thereby making particle filtering-based solu-

tions amenable to real time constraints. We demonstrate a computational method-

ology where the need for the knowledge of cumulative sum of weights is removed.

This implies that, in contrast to traditional particle filtering implementation, the

proposed approach does not suffer any bottlenecks in pipelining. Further, this

allows us to speedup the filter and reduce its latency through pipelining and par-

allelization. We further demonstrate the performance of these implementations

using a cluster of PCs. This allows us to achieve speedups that are linear in the

number of cluster nodes.

The rest of the chapter is organized as follows. In section 6.1, we present the

MCMC sampling theory and use it to propose a computational methodology in

Section 6.2. Section 6.3 analyzes the implementations using the proposed method-

ology. Finally, in section 6.4, we demonstrate the performance of the proposed

implementations for the problem of tracking in videos using a cluster of PCs.
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6.1 Independent Metropolis Hastings Algorithm

6.1 Independent Metropolis Hastings Algorithm

In this section, we introduce Monte Carlo sampling techniques, discuss in detail the

Metropolis Hastings Algorithms and its derivative, the Independent Metropolis

Hastings Algorithms [113]. Further, we “redesign” the basic particle filtering

algorithm using these techniques for sampling.

Particle filtering is a special case of more general MCMC based density sam-

pling techniques, specifically suited for dynamical systems. The Metropolis Hast-

ings Algorithm (MHA) [32,62] is considered the most general MCMC based sam-

pling. Popular samplers such as the Metropolis Sampler [95] or the Gibbs Sam-

pler [53] are special cases of this algorithm.

The MHA and the particle filter both address the issue of generating samples

from a distribution whose functional form is known (upto a normalizing factor)

and is difficult to sample. In this section, we present a hybrid sampler that

uses the sampling methodologies adopted in MCMC samplers (specifically, the

MHA algorithm) for the problem of estimating posterior density functions. We

later show that such a scheme is computationally more favorable than systematic

resampling.

6.1.1 Metropolis Hastings Algorithm

We first present the general theory of MCMC sampling using the MHA algorithm

and then state the conditions under which the general theory fits into the par-

ticle filtering algorithm presented before. The MHA generates samples from the

desired density (say p(x), x ∈ X ) by generating samples from an easy to sample

proposal distribution, say q(x|y), x ∈ X , y ∈ X . MHA produces a sequence of

states {x(n), n ≥ 0}, which by construction is Markovian in nature, through the

following iterations.

1. Initialize the chain with an arbitrary value x(0) = x0. Here, x0 could be user
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specified.

2. Given x(n), n ≥ 0, generate x̂ ∽ g(·|x(n)), where g is the sampling or proposal

function.

3. Accept x̂ with probability α(x(n), x̂) as defined below

α(x(n), x̂) = min

{
p(x̂)

p(x(n))

g(x(n)|x̂)
g(x̂|x(n))

, 1

}
(6.1)

That is, for a uniform random variable u ∽ U [0, 1]

x(n+1) =





x̂ if u ≤ α(x(n), x̂)

x(n) otherwise
(6.2)

Under mild regularity conditions, it can be shown that the Markov Chain {x(n)}
as constructed by the MHA converges and has p(x) as its invariant distribution,

independent of the value x0 chosen to initialize the chain [113].

The MHA is used to generate a Monte Carlo Markov Chain whose invariant

distribution is the distribution p(x). However, there is an initial phase when the

chain is said to be in a transient state, due to the effects of the initial value x0

chosen. However, after sufficient samples, the effect of the starting value dimin-

ishes and can be ignored. The time during which the chain is in a transient state

is referred to as burn-in period. This is usually dependent on both the desired

function p(x), the proposal function q(x|y) and most importantly, on the initial

state x0. In most cases, an estimation of this burn-in period is very difficult. It

is usually easier to make a conservative guess of what it could be. There are

heuristics that estimate the number of burn-in samples (say Nb). Samples that

are in the burn-in period are discarded.
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6.1.2 Independent Metropolis Hastings Algorithm

The Independent Metropolis Hastings Algorithm (IMHA) is a special case of the

general MHA where the proposal function q(x|y) is set as q(x). This makes the

proposal function independent of the previously accepted sample in the chain.

This would mean that the acceptance probability (6.1) α(x(n), x̂) of a proposal

x̂ ∈ X with the chain at x(n) ∈ X ,

α(x(n), x̂) = min

{
p(x(n))

g(x(n))

g(x̂)

p(x̂)
, 1

}
(6.3)

The IMH algorithm has strong convergence properties. Under mild regularity

conditions, it has been shown to converge at a uniform rate independent of the

value x0 used to initialize the chain. A study of such convergence properties can

be found in [94,113].

Both IMHA and SISR are algorithms designed to generate samples according

to a probability density function, with the SISR suited specifically to the sequential

nature of dynamical systems. In this regard, the key difference between the IMHA

and the SISR algorithm lies in the fact that the SISR algorithm requires the

knowledge of cumulative sum of weights (the term
∑N

j=1 w̃
(j)
t in (2.19)). This

is important as the cumulative sum can only be computed when the weights

corresponding to the whole particle set is known. Hence, SR can only begin after

all particles are generated and their weights are computed. In contrast, the IMHA

poses no such bottlenecks. In the next section, we exploit this property to design

a filter that does not suffer from the bottle-necks introduced by SR.

6.2 Proposed Methodology

The bottlenecks introduced by the SR technique can be overcome by using IMHA

for resampling. However, there are some basic issues that need to be resolved

before we achieve this. To begin with, the generation of particles using importance
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sampling works differently for the two algorithms. Particle filtering allows for the

importance function to be defined locally for each particle. Mathematically, the

ith particle at time t is generated from an importance function, represented as

g(xt|x(i)
t−1yt), parametrized by x

(i)
t−1. This poses a problem in the application of

IMHA to estimate the posterior, because the concept of importance functions

associated with each particle does not extend to IMHA. In contrast, the MHA

algorithm requires the importance function to depend functionally only on the

last accepted sample in the chain, and in the case of the IMHA, the importance

function remains the same.

Given a set of unweighted samples {x(i)
t−1, i = 1, . . .} sampled from the posterior

density p(xt−1|y1:t−1) at time t− 1, we can approximate the posterior by

p(xt−1|y1:t−1) ≈
1

N

N∑

i=1

δxt−1(x
(i)
t−1) (6.4)

where δxt−1(·) is the Dirac Delta function on xt−1. Using (2.12) and (6.4), we can

approximate the posterior at time t,

p(xt|y1:t) ≈
p(yt|xt)

p(yt|y1:t−1)

1

N

N∑

i=1

p(xt|x(i)
t−1) (6.5)

Sampling from this density can be performed using MHA or IMHA. The issue

of choice of importance function now arises. The importance function typically

reflects and exploits the knowledge of application domain or could be a clever

approximation to the posterior. For this reason, we would like to reuse the im-

portance function corresponding to the underlying model.

Keeping this in mind, we propose a new importance function of the form,

g′(xt|yt) =
N∑

i=1

1

N
g(xt|xit−1yt) (6.6)

Note that g′(xt|y1:t) qualifies to be an importance function for use in IMHA, given
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its dependence on only one state variable. To sample from g′(xt|yt), we need to

first sample I ∽ U [1, 2, . . . , N ], and then sample from g(·|xIt−1yt). The sampling

of I can be done deterministically given the ease of sampling from uniform den-

sities over finite discrete spaces. Finally, although the new importance function

is functionally different from the one used in the SISR algorithm, the generated

particles will be identical.

The overall algorithm proceeds similar to IMHA. We first propose particles

using the new importance function g′(xt|y1:t). The acceptance probability now

takes the form

α(xt, x̂) = min

{
w′(x̂)

w′(xt)
, 1

}
(6.7)

w′(xt) = p(yt|xt)
∑N

i=1 p(xt|x
(i)
t−1)∑N

i=1 g(xt|x
(i)
t−1yt)

(6.8)

Further, if the choice of the importance function were the same as the state

transition model, i.e, g(xt|xt−1yt) = p(xt|xt−1), then the acceptance probability

becomes a ratio of likelihoods,

α(x
(n)
t , x̂) = min

{
p(yt|x̂)
p(yt|x(n)

t )
, 1

}
(6.9)

We can now avoid the systematic resampling of traditional particle filtering

algorithms. The intuition is that we will use IMHA to generate unweighted particle

set/stream from the desired posterior.

As before, we have an unweighted particle set St−1, that contains particles

approximating the posterior at time t − 1, πt−1(xt−1). We aim to estimate an

approximation to the posterior at time t. As before, the algorithm is initialized

with S0 containing samples from the prior p(x0). The main steps are stated below:

• Importance Sampling (step 1): GenerateN+Nb indices J(i), i = 1, . . . , N+

Nb uniformly from the set {1, 2, 3, . . . , N}, where Nb is an estimate of the burn
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in period and N is the number of particles required. between 1..N with uniform

density.

• Importance Sampling (step 2): From the particle set St−1 = {x(i)
t−1, i =

1, . . . , N} at time t− 1, propose N +Nb particles to form the set Ŝt = {x̂(i)
t , i =

1, . . . , N +Nb} using the rule:

x̂
(i)
t ∽ g(·|xJ(i)

t−1yt) (6.10)

• Compute Importance Weights: For each particle in Ŝt, evaluate the

importance weights w′(i)
t , for each i using (6.8).

• Inference: Estimate the expected value of functions of interest. Compute

Ît(ft) =

∑N+Nb

i=1 f(x
(i)
t )w′(i)

t∑N+Nb

i=1 w′(i)
t

(6.11)

Note that samples discarded during burn-in can still be used in the computation

of (6.11) as the unnormalized particle set {x(i)
t , w

′(i)
t , i = 1, . . . , N +Nb} is still

properly weighted (when normalized) [130].

• MCMC Sampler: Use the IMH sampler to parse through the set Ŝt, to

generate a new unweighted set of particles using the following steps.

1. Initialize the chain with x
(1)
t = x̂

(1)
t the first particle proposed.

2. for i = 2, . . . , N +Nb,

x
(i)
t =





x̂
(i)
t , with prob. α(x

(i−1)
t , x̂

(i)
t )

x
(i−1)
t , with prob. 1 − α(x

(i−1)
t , x̂

(i)
t )

(6.12)

where α(·, ·) is the acceptance probability as defined in (6.1).
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Discarding the first Nb samples for burn in, the remaining N samples form

St = {x(i)
t , i = Nb + 1, . . . , N}, the approximation of p(xt|y1:t).

We can now compare the algorithm given above with the classical SISR dis-

cussed in Section 2.2.2. Note that the SISR algorithm involves a weight normal-

ization step (equation (2.19)). However, the proposed algorithm works with ratios

of unnormalized weights and requires no such normalization. This allows for the

following advantages in the proposed methodology:

• The IMH sampler works with ratios of importance weights. This obviates the

need for knowledge of normalized importance weights, as we can work with un-

normalized weights. This allows the IMH sampler to start parsing through the

particles as they are generated, and not wait for the entire particle set to be

generated and the importance weights computed.

• In contrast, in SISR, the resampling can begin only when all particles are gen-

erated and the cumulative sum or normalized weights are known.

The ability to resample particles as they are generated allows for faster implemen-

tations. This is analyzed further in section 6.3.

6.2.1 Drawbacks of the proposed Framework

The proposed framework overcomes the drawbacks of the SISR algorithm by

adopting an MCMC sampling strategy as opposed to the traditional SR tech-

nique. However, the new framework does introduce extra computations that add

to increased overall complexity. We discuss these drawbacks, and an alternate

formulation that can circumvent this issue.

Consider the expression for weight computation, given in (6.8). The expression

involves computing the summations
∑N

i=1 p(xt|x
(i)
t−1) and

∑N
i=1 g(xt|x

(i)
t−1yt), which

require additional computation time. The computation of both terms does not
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present a severe bottleneck, as it can be easily pipelined. Further, when the

proposal density matches the state transition model, the terms cancel each other

out.

Nonetheless, it is possible to circumvent this problem using the auxiliary par-

ticle filtering paradigm [42,105].

6.2.2 Auxiliary Particle Filters

Auxiliary particle filtering refers to techniques that extend the state space of the

problem to include a particle index. Consider the new state space {xt, k}, where

k ∈ [1, . . . , N ] denotes the particle index. The posterior p(xtk|y1:t) is defined as

p(xtk|y1:t) ∝ p(yt|xt)p(xt|xkt−1) (6.13)

Marginalizing (6.13) over the state k gives the expression in (6.5) for p(xt|y1:t).

Let us further assume that we sample the joint space using a proposal g(xtk|xt−1yt),

i.e, (x
(i)
t , k

(i)) ∼ g(·|xt−1yt). The unnormalized weights can be constructed as

w
(i)
t =

p(yt|x(i)
t )p(x

(i)
t |xk(i)

t−1)

g(x
(i)
t , k

(i))|x(i)
t−1yt)

(6.14)

As before, we can resample using an MCMC chain, and the expression for ac-

ceptance probability remains the ratio of unnormalized weights as given in (6.1).

At the inference step, we first marginalize across the particle index state k. How-

ever, it is easy to see that the marginalization is identical to discarding the particle

index information at each particle, given the nature of the particle-based represen-

tation of the underlying density. In a nutshell, the use of auxiliary variable allows

us to completely avoid the summation of (6.8) and the associated computational

cost.

Finally, there exist many choices for the proposal density in the extended state

space. A discussion on this can be found in [105].
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6.3 Implementation based on Proposed Methodology

In this section, we present approaches for implementing the theory presented in

section 6.1. We assume that the basic computational blocks for importance sam-

pling, computation of importance weight and parsing of particles as per the IMH

algorithm are available. We use these blocks to propose three implementations: a

sequential implementation and two parallel implementations.

6.3.1 Sequential Implementation

Weight Calc St

Estimation Block
Expected Inference

Proposal IMH ChainSt−1

Figure 6.1: Sequential Implementation

Figure 6.1 illustrates a straight-forward implementation of the proposed algo-

rithm. It consists of the following blocks.

Proposal Block: The proposal block takes St−1, the particles from the previous

time step and proposes new particles x
(i)
t (one particle at a time) by sampling the

proposal function. For the IMHA-based algorithm, this amounts to generating a

uniform number J(i) ∼ U [1, 2, . . . , N ] to randomly pick one particle from St−1, say

{xJ(i)
t−1}. The particle x

(i)
t is obtained from sampling g(xt|xJ(i)

t−1yt). We assume that

this blocks proposes particle one at a time. When we use the auxiliary variable

framework, this involves sampling both the state x
(i)
t and the associated particle

index state k(i) from a proposal function g(xtk|xt−1yt).

Weight Calculator: This block is an implementation of (6.8) (or (6.14) when

we use auxiliary variables).

IMH Chain: This block is an implementation of (6.7) in which the accep-

tance probability α is calculated for the new particle and the previously accepted

particle. Further, an uniform random-number u ∼ U [0, 1] is generated and if it
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is smaller than α then the new particle is retained in St, else the last accepted

particle in the chain is replicated once more.

Inference Estimation Block: This block estimates the inference function (equa-

tion 2.9). The computation can be performed in parallel with the IMH chain, and

has no effect on the overall computation.

The characteristics of this basic implementation are as follows.

• Sequential Processing of Particles: Each block in the implementation pro-

cesses one particle at a time. So, to process Q particles each block needs to

run Q times. Note that, if we need to generate N particles to represent the

posterior density, then we will have to iterate N + Nb times where Nb is the

burn-in period. The last N particles in the IMH chain is the sample set St.

• Pipelining: By pipelining the blocks, processing in each block can be made to

overlap in time, leading to an overall increase in the throughput of the system.

• Computation Time: We now estimate the time required to process Q =

N + Nb particles under this implementation. Let us suppose that the target

application is such that the proposal block can generate one particle every Tp

time units. The weight computation block generates the weight of a particle in

Tw time units, and the IMH chain process particles once in every Td time units.

Further, we assume that the overall time required to process is not constrained

by the inference block (and therefore ignored in this analysis). Under this

setting, we can compute the total time required to process Q particles.

The implementation in Figure 6.1 will take Tp+Tw +Td time units to produce

the first particle x
(1
t ). Thereafter, it will be able to produce one particle every

max(Td, Tp, Tw) time units. The total latency for generating Nb + N particles

would be (Nb + N − 1) max(Td, Tp, Tw) + Tp + Tw + Td time units. This basic

sequential implementation can be made faster by replicating the proposal, weight
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computation and the IMH chain blocks. In order to exploit the parallelism in

processing of particles, we present a refinement of the sequential implementation.

6.3.2 Parallel Implementation: Single Chain

Weight Calc

Weight Calc

Weight Calc

Weight Calc

Inference

St
St−1

B
U

F
F

E
R

B
U

F
F

E
R

Proposal

Proposal

IMHA Chain
Proposal

Figure 6.2: Parallel Implementation with a single IMH Chain.

Figure 6.2 illustrates the parallel implementation of the proposed algorithm.

We still retain a single IMH Chain, though the proposal and the weight compu-

tation blocks are replicated. Having multiple IMH chains introduces additional

issues involving burn-in in each chain. For this reason, we first restrict ourselves

to single chain implementations. We relax this restriction later in Section 6.3.3.

Let the number of proposal blocks be Rp and the number of weight computation

blocks be Rw. We would like to compute the total time required to process Q

particles as a function of Rp and Rw (and the latency of the blocks Tp, Tw and

Td). Further, we would like to choose specific values of Rp and Rw to achieve the

smallest total processing time.

The total computational time is determined by bottlenecks in processing cre-

ated due to differing rates of processing of particles at each stage. The rate at

which the proposal blocks process particles is Rp/Tp, the weight computation

blocks at Rw/Tw and the IMHA blocks at 1/Td. The total computational time is

predominantly dependent on which of the three rates is the smallest.

6.3.2.1 Case A: Rp/Tp ≤ Rw/Tw ≤ 1/Td.

In this scenario, the proposal blocks have the smallest rate of processing, fol-

lowed by the weight computation blocks. Suppose we need to process Q particles,
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then the proposal blocks by themselves will need (Q/Rp)Tp time units to process

all particles. The weight computation and IMHA processing happen in parallel.

Given the quicker processing rate at both weight computation and IMHA, by the

time the last set of Rp particles is processed at the proposal blocks, all earlier

particles have already been processed through the weight computation blocks.

The amount of time required to process the last set of Rp particles at the weight

computation blocks and the IMHA block is RpTw/Rw + RwTd. Allowing Rp and

Rw to take values over the real line (and not just positive integers) the total time

for processing τA is,

τA(Rp, Rw) =
Q

Rp

Tp +
Rp

Rw

Tw +RwTd (6.15)

We are now interested in computing the values of Rp and Rw that minimize

τA, keeping in mind that such solutions must satisfy the assumptions of Case A.

To begin with, we note that both Rp and Rw take positive values. This allows a

natural change of coordinate frames of the form,

R̃p = log(Rp)

R̃w = log(Rw)
(6.16)

In terms of R̃p and R̃w, the expression for τA can be written as,

τA(R̃p, R̃w) = QT
−R̃p

P + Twe
R̃p−R̃w + Tde

R̃w (6.17)

The constraints for the minimization come from the assumptions made on the

ordering of the rates in Case A.

R̃p − R̃w − log
(
Tp

Tw

)
≤ 0

R̃w − log
(
Tw

Td

)
≤ 0

(6.18)

Finally, Rp and Rw are naturally bounded by the value of Q. This leads a convex
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optimization problem with inequality constraints stated as,

minR̃p,R̃w
τA(R̃p, R̃w) = QTpe

−R̃p + Twe
R̃p−R̃w + Tde

R̃w (6.19)

R̃p − R̃w − log
(
Tp

Tw

)
≤ 0 R̃p − logQ ≤ 0

R̃w − log
(
Tw

Td

)
≤ 0 R̃w − logQ ≤ 0

(6.20)

We now note that the expression for τA is convex in both R̃p and R̃w. Further,

the inequality constraint is also convex in R̃p and R̃w. One can use a host of

techniques [18] designed specifically for convex optimization.

6.3.2.2 Case B: Rw/Tw ≤ Rp/Tp, Rw/Tw ≤ 1/Td.

Using a line of reasoning identical to Case A, we can derive an expression for the

amount of time τB needed to process Q particles, as a function of Rp and Rw.

τB(Rp, Rw) =
Rw

Rp

Tp +
Q

Rw

Tw +RwTd (6.21)

We note that a value of Rp greater than Rw is impractical leading to a constraint

on Rp of the form Rp ≤ Rw. As before, we can recast the set of equations in terms

of R̃p and R̃w (as defined in (6.16)) to get the cost and constraint equations.

minR̃p,R̃w
τB(R̃p, R̃w) = Tpe

R̃w−R̃p +QTwe
−R̃w + Tde

R̃w (6.22)

R̃w − R̃p − log
(
Tw

Tp

)
≤ 0 R̃w − logQ ≤ 0

R̃w − log
(
Tw

Td

)
≤ 0 R̃p − R̃w ≤ 0

(6.23)

Both the cost function and the inequality constraints are convex in R̃p and R̃w.
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6.3.2.3 Case C: Rp/Tp ≤ 1/Td ≤ Rw/Tw.

In Case C, the main bottleneck is in the proposal block, followed by the IMH

chain. Accordingly, the total time τC for processing of Q particles is

τC(Rp, Rw) =
Q

Rp

Tp + Tw +RpTd (6.24)

Using the transformation of variables in (6.16), we can write down expressions for

both the cost τC and the constraints.

minR̃p,R̃w
τC(R̃p, R̃w) = QTpe

−R̃p + Twe
R̃p−R̃w + Tde

R̃w (6.25)

R̃p − R̃w − log
(
Tp

Tw

)
≤ 0 R̃p − logQ ≤ 0

R̃w − log
(
Tw

Td

)
≤ 0 R̃w − logQ ≤ 0

(6.26)

As before, both the cost and the inequality constraints are convex over R̃p and

R̃w.

6.3.2.4 Case D: 1/Td = min(Rp/Tp, Rw/Tw, 1/Td).

The final scenario is when the main bottleneck is at the IMH chain. The expression

for total time τD is given as,

τD(Rp, Rw) = Tp + Tw +QTd (6.27)

τD is not dependent on the choice of Rp and Rw. So the whole feasibility set forms

the solution set when we optimize for minimum processing time. For completeness,

we again formulate it as a convex program with the following cost and constraints.

minR̃p,R̃w
τD(R̃p, R̃w) = Tp + Tw +QTd (6.28)
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Case Rate Ordering Cost Constraint

A Rp/Tp ≤ Rw/Tw ≤ 1/Td QTpe−R̃p + TweR̃p−R̃w + TdeR̃w
R̃p − R̃w − log

“

Tp
Tw

”

≤ 0 R̃p − log Q ≤ 0

R̃w − log
“

Tw
Td

”

≤ 0 R̃w − log Q ≤ 0

B Rw/Tw = min(Rp/Tp, Rw/Tw, 1/Td) TpeR̃w−R̃p + QTwe−R̃w + TdeR̃w
R̃w − R̃p − log

„

Tw
Tp

«

≤ 0 R̃p − log Q ≤ 0

R̃w − log
“

Tw
Td

”

≤ 0 R̃w − R̃p ≤ 0

C Rp/Tp ≤ 1/Td ≤ Rw/Tw QTpe−R̃p + Tw + TdeR̃p
R̃p − log

“

Tp
Td

”

≤ 0 R̃p − log Q ≤ 0

−R̃w + log
“

Tw
Td

”

≤ 0 R̃w − log Q ≤ 0

D 1/Td = min(Rp/Tp, Rw/Tw, 1/Td) Tp + Tw + QTd

−R̃p + log
“

Tp
Td

”

≤ 0 R̃p − log Q ≤ 0

−R̃w + log
“

Tw
Td

”

≤ 0 R̃w − log Q ≤ 0

Table 6.1: Expressions for total time taken to process Q particles for bottlenecks at

various stages in the pipeline.

−R̃p + log
(
Tp

Td

)
≤ 0 R̃p − logQ ≤ 0

−R̃w + log
(
Tw

Td

)
≤ 0 R̃w − logQ ≤ 0

(6.29)

As stated above, in Case D all points in the feasible set form the solution set.

Depending on the exact location of the bottle neck, it is possible to have

upto 6 different scenarios. However, some of these scenarios collapse to identical

expressions for the total cost leading to the four cases A through D discussed

above. The expressions for the cost and the associated constraints are summarized

in Table 6.1. We note that each case results in a convex cost function and convex

inequality constraints. This allows us to design an algorithm for determining the

global minima for total computation time for processing Q particles given values

of Tp, Tw and Td.

1. Given values of Td and Tw, formulate FOUR convex programs associated

with the four cases illustrated in Table 6.1.

2. Solve each convex program to obtain minimum times τi,min, i ∈ {A,B,C,D}
and associated values of R̃p and R̃w.

3. Choose the configuration that gives the least total processing time.
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The above algorithm allows us to obtain design specifications with minimum

processing time given values of Tp, Tw, Td and Q. Note that the basic computation

tools used are optimization techniques for convex programs. Convex optimization

is a well studied problem, and there are techniques that solve convex programs

very efficiently and reliably [18]. Further, convex programs have very desirable

properties with respect to local minima. All local minima are also global minima,

and further the set of all local (global) minima form a convex set themselves. Fi-

nally, we note that analytic solutions to the convex program are highly dependent

on the individual values of Q, Tp , Tw and Td.

It is possible that the four convex program may not have unique solutions.

Ambiguity in choice of Rp and Rw over the solution set can be resolved, if we

have additional considerations such as resource or energy constraints. It is noted

that the set of all solutions to a convex program is also convex [18]. This property

could be effectively used to design alternate cost functions to resolve the ambiguity

in the choice of Rp and Rw.

6.3.3 Parallel Implementation: Multiple Chains

Figure 6.3 shows a parallel implementation of the proposed algorithm with multi-

ple IMH chains. The implementation basically replicates the structure proposed

in Figure 6.2 multiple times. This implementation gives speedup proportional to

the number of IMH Chains.

Let P be the number of IMH chains. Under this implementation, to generate

a set St with N particles, each chain would need to generate only N/P particles,

excluding that required for burn in, leading to a total of Nb + N/P particles at

each IMH chain. Hence, the time required for obtaining an N -particle set is equal

to the time required to process Nb +N/P particles in the implementation as per

Figure 6.2. With this, we can easily compute the total time required to generate

St for different scenarios using the same analysis as before, and restricting the

total number of particles per IMH chain to Nb +N/P .
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Figure 6.3: A Parallel Implementation with Multiple IMH Chains.

6.4 Experimental Verification

The design methodologies proposed were verified for two applications: a synthetic

example originally discussed in [56] and for the problem of visual tracking . The

testbed was the UMIACS Red/Blue cluster. The Red cluster consists of 16 PII

(400 MHz) PCs running Redhat 7.3, with each PC having a RAM of 1GB. The

Blue cluster consists of 12 PIII (550Mhz). We used MPICH [57] [58], an imple-

mentation of the Message Passing Interface (MPI) for communication between

threads.

We chose to implement over a multi-processor cluster framework as the un-

derlying theory applies both to hardware based design as well as to clusters. In

general, MPI has large overheads; however, such overheads are common and iden-

tical to both SISR as well as the MCMC based schemes. The conclusions from

our experimental observations still remain the same.

Further, as mentioned earlier, computation of the burn-in period is a hard

problem by itself. However, in sequential estimation, the proposal density is in
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Figure 6.4: Frames 1,4,8,12,16,20 of the tested set. The output of the tracker is inlaid

on top

general a good guess of the posterior. In such cases, the adverse effects of burn-in

period are reduced. For the experiments below, we set Nb = 0.

6.4.1 Visual Tracking

We implemented the particle filter based online tracking algorithm presented in

[141] using the Red Cluster. We discuss the finer details of the filter and its

implementation below.

6.4.1.1 Model Details

We first summarize the tracking algorithm, detailing its computational aspects.

A typical tracking example in shown in Figure 6.4. The models defining the

dynamical system is described below.

• State Space: The state xt is a 6-dimensional vector (X = R
6) defining affine

deformations of a rectangular template.
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• State Transition Model: A simple random walk model with Gaussian noise

is used to model the state transition.

xt = xt−1 + nt, nt ∼ N(0,Σn) (6.30)

• Observation Model: The frame of the video at time t forms the observa-

tion. The likelihood model p(yt|xt) involves comparing the appearance model

At suitably deformed by the state xt with the observation yt. The appearance

model employs a mixtures of Gaussians with three mixtures to model the ap-

pearance. Each value of xt defines a patch (parallelogram shaped) on the image

yt. Let zt = T (yt;xt) be the patch defined by xt over yt. Then,

p(yt|xt) = p(yt|xtAt) = p(zt|At) (6.31)

• Proposal Density: The algorithm uses the proposal density to be the same

as the state transition model.

6.4.1.2 Implementation Details

An estimate of Tp, Tw and Td was first obtained by running each block over a

single PC many times over and averaging the individual runs.

• Tp = 8µs, Tw = 1.1ms, Td = 1µs

With this, we can see that the main computational bottleneck for this par-

ticular application is the evaluation of weights. The weight computation has an

unusually large latency, primarily because it involves retrieval from the memory.

Given a particle, to compute the weight we need to first obtain the template

z
(i)
t = T (yt;x

(i)
t ). This involves retrieval of elements from the memory (containing

the current frame). Further, the evaluation p(z
(i)
t |At) involves evaluation of the

mixture of Gaussian, which is far more complicated than the simple proposal and
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the IMHA blocks. For this reason, we fixed Rp = Rd = 1 and analyzed the per-

formance of the architecture for various values of Rw. The implementation of the

proposed methodology over the cluster was as follows. Each block (as shown in

figure 6.3) was assigned a cluster node for itself, i.e, a total of Rp+Rw+Rd cluster

nodes were employed, with Rp of them performing particle proposal, Rw of them

computing weights and Rd, the IMH chains. Communication between these PCs

was performed using MPICH libraries. Holding the values of Rp and Rw at unity

(Rp = 1 = Rd), the tracker was tested for varying number of weight computation

blocks.

For comparison purposes, we also implemented traditional SISR with the same

specifications as the proposed methodology. The main difference was that the node

that performed resampling would now wait till all particles are delivered from the

weight computation blocks before starting the SR algorithm.

6.4.1.3 Results

The algorithm was used to process 20 frames of a video sequence, tracking a car.

Figure 6.4 shows typical tracking results. The filter was run with 840 and 1680

particles, with the number of cluster nodes for weight computation Rw varying

from 1 to 6. Rw = 1 corresponds to the sequential implementation, and Rw > 1

corresponds to the parallel implementation with a single chain. Under the same

setup, we tried an implementation of SISR, replacing the IMH Chain with a

systematic resampler. The main difference between the algorithms is that the

systematic resampler could begin only when all particles were processed and the

normalized weights are known.

Figure 6.5(a) shows the actual time taken (in seconds) to process 20 frames

of video, with 840/1680 particles for the proposed algorithm and SISR. Note the

1/x-like decay exhibited by the time taken by the proposed algorithm. Figure

6.5(b) shows the speedup of each algorithm when we add more and more comput-

ing nodes. The 1/x-like behavior now translates to a linear increase in speedup
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Figure 6.5: (Left) Actual time (in seconds) taken to process 20 frames, with a filter

of 840 particles, with varying number of Rw. (Right) Speedup obtained by replication

of the weight computation node. Note the linear speedup obtained with the proposed

algorithm.

with the number of processing nodes. The two plots demonstrate the pipelin-

ability of the proposed algorithm. It can be seen that the speedup tapers-off as

number of cluster nodes increases. This is attributed to increasing communica-

tion delays between the nodes. There are no standard models for communication

delays when using MPICH. As we use more and more processors, inter-processor

communication becomes the dominant source of delay, and further parallelization

does not help.

6.4.2 Synthetic Example

We applied the design methodology and implementation strategies proposed here

for a synthetic example. The problem specifications were first introduced in [56].

The system has a scalar state space, i.e, X = R. The state transition model is

defined by

xt = xt−1 +
25xt−1

1 + x2
t−1

+ 8 cos (2(t− 1)) + wt, wt ∼ N(0, 10) (6.32)
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The observation model is given by the equation

yt =
1

20
x2
t + vt, vt ∼ N(0, 1) (6.33)

We could then estimate the times Tp : Tw : Td to be in the proportion 19.2 :

1 : 7. For filtering with Q = 840 particles, we can now formulate and solve

the four convex programs. The convex programs were solved using the Matlab’s

optimization toolbox. The constraints that are active (the constraints that are

satisfied with equality at a feasible point are called active) at the minima were

noted to give a qualitative interpretation to the result.

Case A: Minimum is achieved with the following two active constraints.

Rp

Tp
=
Rw

Tw
=

1

Td
(6.34)

Note that this is the rate balancing condition. The corresponding minimum time

is

τA,min = QTd + Tp + Tw (6.35)

Case B: Again the minimum is achieved at the boundary with the same active

constraints.

Rw = Rp

Rw

Tw
= 1

Td

(6.36)

This gives us a minimum time of

τB,min = Tp +QTd + Tw (6.37)

Case C: Note that the cost function is independent of Rw. The minimum is

achieved at the following active constraint.

Rp

Tp
=

1

Td
(6.38)
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giving a minimum time

τC,min = QTd + Tw + Tp (6.39)

Case D: The cost function is constant over the feasible set. Hence, the mini-

mum time is

τD,min = Tp + Tw +QTd (6.40)

It turns out that all four convex program give the same minimum time, and

this also corresponds to the solution given when the rates are balanced as in (6.34).

This is interesting as balanced rates have an intuitive appeal.

We implemented three filters and tested them on the Red and Blue clusters.

The first two filters were those using SISR and IMH for resampling, with the pro-

posal density, being same as the state transition model. The third filter was based

on auxiliary particles, with a complicated proposal density defined as follows:

g(xt, k|xt−1yt) ∝ g(xt|x(k)
t−1yt)g(k)

g(k) = c,

g(·|xkt−1yt) ∼ N(±
√

20|yt| + x̂
(k)
t|t−1, 1),

where x̂
(k)
t|t−1,= x

(k)
t−1 +

25x
(k)
t−1

1+(x
k)
t−1)2

+ 8 cos (2(t− 1))

(6.41)

This particular proposal density samples the auxiliary state randomly, and

mixes the observation with the predicted state to concentrate more particles near

the posterior modes.

Figure 6.6 shows the actual time for computation and the achieved speedup

with parallelization for the three filters, tested on both clusters. We tested the

algorithm for varying Rp as the bottle-neck is initially in the proposal stage.

However for Rp > Tp/Td ≈ 3 the bottleneck shifts to the IMH sampler and further

increase in the value of Rp does not produce any significant gains in the overall

processing time. This is reflected in the saturation of the plots associated with

the proposed algorithm (IMH) in Figure 6.6. In contrast, in SISR the resampling

begins only when all the particles are generated. The overall time for processing
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Figure 6.6: Timing and speedup over the synthetic example.Saturation occurs after

Rp = 3 because of the shift of the bottle neck from the Proposal block to the IMH

sampler.

does not scale as well. Finally, auxiliary particle filtering scales linearly with the

number of processing nodes, and offers the best speedup.

The proposed resampling method and the associated implementation schemes

, allows for a pipeline that is free of bottle-necks. Further, implementations using

the proposed methodologies show a speedups that increases linearly with the num-

ber of processing nodes utilized. This allows for us to parallelize the algorithm to

achieve the desired runtime rate. In contrast, implementations based on SISR do

not scale that easily with the number of the processing nodes used. systematic

resampling step.
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Compressive Acquisition of Visual Signals

Sampling is the process of converting a continuous domain signal into a set of

discrete samples in such a manner that it allows the approximate or exact re-

construction of the continuous domain signal from the discrete samples. The

Shannon-Nyquist sampling theorem states that if a signal is band-limited, then

it lies in a subspace given by discrete set of Fourier basis functions. If a signal

lies in a subspace then the signal can be accurately reconstructed by measuring

the projections of the signal onto the subspace. The subspace can either be data-

independent like Fourier transform, Wavelet transform etc., or data dependent

like the principal component analysis (PCA).

More recently, sparse representations and estimation using sparse approxima-

tions have gained popularity motivated by recent results from Compressive Sensing

(CS). The basic idea is that if a signal is sparse in some basis, then it may be

efficiently recovered and reconstructed using few linear measurements of the sig-

nal. Compressive sensing has found applications in much the same domains as the

subspace sampling. Visual data such as images, videos, light-fields and reflectance

fields which were all earlier measured and compressed using subspace sampling

can potentially be measured using compressive sensing. We know that in principle

if a signal has no further redundancy than sparsity, then it cannot be subspace

limited. Similarly, if a signal has no further redundancy than being subspace lim-

ited, then sparsity provides no additional information. This leads us to believe

that real visual signals are neither truly sparse, nor just subspace compressible.

In fact, we argue that these signals are hybrid subspace-sparse signals.

Consider the three images and their wavelet decomposition shown in Figure
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Chapter 7. Compressive Acquisition of Visual Signals

Figure 7.1: Three images and their wavelet transforms. The approximation coefficients

of the wavelet decomposition are much more likely to be non-zero than the detail co-

efficients which are sparse. (Bottom) The histogram of the wavelet coefficients (in log

scale) for the approximation (subspace) and the detail (sparse) coefficients. Notice that

while the detail coefficients have a very high likelihood of being zero and are therefore

sparse, the approximation coefficients are almost always non-zero. This indicates that

images are hybrid subspace sparse signals.

7.1. As can be seen the wavelet domain coefficients of images have the following

property (a) The lower frequency approximation coefficients of the wavelet de-

composition are almost always non-zero (b) The detail coefficients of the wavelet

transform are sparse. This indicates that to optimally encode, compress or mea-

sure such signals one needs to take into account a signal model that accounts
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for both these properties simultaneously. Similar properties are true for several

classes of visual signals including reflectance fields (Refer Figure 7.2). This sug-

gests that a wide variety of visual signals including images, reflectance fields all

have the property that they contain significant energy in a fixed subspace and the

components orthogonal to that subspace are sparse. Here, we develop a Hybrid

Subspace Sparse signal model which models signals as being a sum of two terms

one which lives in a fixed low dimensional subspace and another which is sparse

in the null-space. We derive optimal projections for measuring such signals and

propose a reconstruction algorithm that is based on solving a convex optimization

problem.

Compressive sensing revolves around the notion of sparse representations of

signals. Compressive sensing [7, 19, 39] has been successfully applied to various

acquisition problems in vision and graphics. Noteworthy among these are the

single pixel camera (SPC) [44] for image acquisition, the compressive acquisition

of reflectance fields [102, 122], and the L1 regularized occlusion insensitive face

recognition system [136].

Our goal is on exploiting structure inherent to a wide range of images/imaging

data. Baraniuk et al. [8] propose the paradigm of model-based compressive sensing

where prior structure of sparsity if exploited to get better signal recovery prop-

erties. In a sense, the hybrid subspace signal model fits under the paradigm of

model-based compressive sensing. Eldar and Mishali [45] propose a sparse mixture

of subspace representation for signals.

We present Reflectance Field (RF) acquisition as an empirical case-study for

our signal model. Imaging objects and scenes under varying illumination condi-

tions is an important problem in several imaging, computer vision and graphics

tasks. Firstly, obtaining the images of an object with varying illumination allows

for the study of reflectance properties of materials which is an important ingredi-

ent in solving problems such as illumination invariant recognition [9]. Empirical

studies relating to the reflectance field of face images have led to significant ad-
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vances in illumination-invariant face recognition [79] [11] [54] and a similar under-

standing of the reflectance properties of everyday objects might lead to extending

such results for arbitrary objects. Acquiring these images are the basis of several

relighting algorithms that are based on image-based rendering. Several recent al-

gorithms for fast photo-realistic relighting and rendering of dynamic scenes have

been based on a model of BRDF or the reflectance fields [12] [78] of these scenes

and such methods are gaining in popularity. One of the primary disadvantage

with current methods for acquiring reflectance fields is the fact that the number

of images required for reconstruction increases quadratically with the sampling on

the angular dimension ( number of images required is equal to the number of indi-

vidual lighting directions which increases quadratically with the required angular

sampling ). Here, we show that modeling reflectance fields as Hybrid Subspace

Sparse signals results in a technique for reflectance field acquisition, where the

number of required images increases linearly with the sparsity of the reflectance

field which is far smaller than the number of lighting directions.

7.1 Sensing Signals: Subspace and Sparse

In this section, we describe two important signal sensing strategies: subspace

sampling and compressive sensing.

7.1.1 Subspace Sampling

Subspace sampling is an efficient acquisition method for sensing signals that are

well represented by a linear basis. Consider a signal x ∈ R
N and a linear basis B =

[Bp B⊥
p ]. Further, the subspace defined by the span of Bp ∈ R

N×M1 approximates

the signal to a high degree, in the sense, that ‖BT
p x‖/‖x‖ = 1 − δ, where δ is

small. Under such a scenario, just sensing the projections of the signal x over the

subspace defined by Bp is sufficient to obtain a high approximation of the signal.

That is, we can sense sp ∈ R
M1 , such that sp = Bpx + noise. The measured
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7.1 Sensing Signals: Subspace and Sparse

coefficients can be used to reconstruct x̂1 = Bpxp.

7.1.2 Compresive Sampling

Consider a signal x ∈ R
N , which is sparse in a basis B, that is, s ∈ R

N defined

as x = Bs is sparse. We call a vector K-sparse if it has utmost K non-zero

components, or equivalently, if ‖s‖0 ≤ K, where ‖ · ‖0 is the L0 norm or the

number of non-zero components.

We are interested in the problem of sensing the signal x from linear measure-

ments. Ideally, with no additional knowledge about x, we would require N linear

measurements of x, which would then form an invertible linear system. The theory

of compressed sensing shows that it is possible to reconstruct x from M measure-

ments even when M << N by exploiting the sparsity of s = BTx. Consider a

measurement vector y ∈ R
M obtained using a M × N measurement matrix Φ,

such that

y = Φx + e = ΦBs + e (7.1)

where e is the measurement noise. For M < N , estimating x from the linear

measurements is an ill-conditioned problem. However, when there exists a basis

B such that s as defined above is K sparse, then compressive sensing allows for

recovery of s (or alternatively, x) from M = O(K log(N/K)) measurements. In

particular, when B is a fixed basis, it can be shown that using a randomly gener-

ated measurement matrix Φ allows for the recovery of x with a high probability.

Typical choices for such measurement matrix are the Bernoulli matrices and the

Gaussian matrix [19]. Such randomly generated matrices satisfy the Restricted

Isometry Property [6,20], which ensures that all sub-matrices formed by choosing

(a certain number of) columns of Φ are orthogonal (and hence, invertible) with a

high probability.
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7.1.3 Signal Recovery

Estimating K sparse vectors that satisfy the measurement equation of (7.1) can

be formulated as the following L0 optimization problem:

(P0) : min ‖s‖0 s.t. ‖y − ΦBx‖2 ≤ ǫ (7.2)

where the L0 norm, ‖·‖0 counts the number of non-zero elements. This is typically

a NP-hard problem. However, the equivalence between L0 and L1 norm for under-

determined linear systems [40] allows us to reformulate the problem as one of L1

norm minimization.

(P1) : min ‖s‖1 s.t. ‖y − ΦBs‖ ≤ ǫ (7.3)

with ǫ being a bound for the measurement noise e in (7.1). It can be shown that the

solution to the (P1) is with a high probability the K sparse solution that we seek.

There exist a wide range of algorithms that solve P1 to various approximations

or reformulations [21] [67] [39]. Most of them note that the problem (P1) is a

convex problem, and in particular, can be recast as a Second Order Cone Program

(SOCP) for which there exist efficient numerical techniques. There also exist

greedy techniques for solving the same problem such as matching pursuit [88],

orthogonal matching pursuit [100] and CoSaMP [96].

7.2 Hybrid Subspace Compressive Sensing

Invariably, real world signals are neither completely subspace compressible nor

are they truly sparse. Towards this end, we propose a hybrid signal model, that

encompasses both Subspace sampling as well as compressive sampling.

We model the signal x = Bpsp + Bcsc, where sp ∈ R
N1 , sc ∈ R

N2 , such that

N1+N2 = N . Further, sc is assumed to be sparse. We are now interested in solving
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the inverse problem of find x from under-determined set of linear measurements.

y = Ax = ABpsp + ABcsc = Apsp + Acsc + n (7.4)

where n is additive measurement noise. Under the constraint that sp is sparse,

we now pose the problems of the (optimal) choice of measurement matrix A and

the inversion algorithm to recover x.

7.2.1 A Two-Step Sensing Algorithm

Before we describe the algorithm for recovering x from measurements y, it is inter-

esting to consider a two step sensing and recovery process. The first step consists

of measuring the projection of the signal over the subspace Bp, and recovering the

part of the signal x that is spanned by the subspace.

yp = BT
p x + np (7.5)

We can now recover the part of signal x spanned by the subspace Bp,

x̂p = Bpyp (7.6)

The second step works under the premise that xc = x − xp is sparse, and hence

poses the recovery of xc under the traditional compressive sensing framework.

Let yc = Φx + nc, with Φ a random measurement matrix (or more generally,

incoherent with Bc). The sparse part of the signal can now be recovered by

solving the following problem:

min
sc

‖xc‖1 s.t ‖yc − ΦBcsc − Φx̂p‖2 ≤ ǫ (7.7)

While seemingly intuitive, the two step process is only correct when the basis

Bp and Φ are orthogonal complements of each other. When this condition is not
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satisfied, the measurements yc = Φx multiplex sc as well as sp. Solving for sc

separately as defined in (7.7) ignores potential encoding of sp in yc. In essence, the

problem definition in (7.7) treats xp as a static variable, inspite of its dependence

on the variable.

A second problem of the above solution is that is lacks the Universality prop-

erty of compressive sensing algorithms. Universality suggests that we do not need

to know the sparsifying basis at the time of sensing1. The two-step approach

outlined above depends strongly on subspace projection which violates the uni-

versality principle. A practical implication of this is that the algorithm will not be

able to work with available compressive sensing data (such as those for images)

that have been captured only with random measurements or under a different

choice for the subspace Bp.

However, inspite of this limitation the two step sensing approach reveals certain

properties of the Hybrid Sensing paradigm. To begin with, if the signal were to

truly obey the model, then the sparsity of s = [sTp s
T
c ]T is N1+K and would require

O((N1 + K) log(N/(N1 + K))) measurements (for solving the L1 problem). In

contrast, the two step procedure suggests that the total number of measurements

required for the Hybrid Signal model is N1 + O(K log(N2/K). In essence, the

gain of assuming the Hybrid signal model is that the location of N1 components

of the sparse vector is known a priori, and injecting the knowledge into both

the sensing and reconstruction algorithm allows us to recover the signal with

lesser measurements (or alternatively, get better SNR for the same number of

measurements). This savings in measurements is extremely significant for high

dimensional problems such as compressive imaging. For example, when sensing

a 1 megapixel image, if K = 5000 and N1 = 2000, then this reduces the number

of measurements required from about 27000 compressive measurements to 15000

HSS measurements in order to obtain the same accuracy during reconstruction.

1Hence, the use of random measurements which are incoherent with any fixed basis.
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7.2.2 Problem Formulation

The shortcomings of the two-step recovery algorithm discussed above can be fixed

if we optimize for the subspace coefficients and the sparse coefficients simultane-

ously. With this we can formulate the problem:

(P3) min
s

‖sp‖2 + ‖sc‖1s.t.‖y − Apsp − Acsc‖ ≤ ǫ (7.8)

The cost function is made up of the sum of ‖sp‖2 and ‖sc‖1, the former leading to

MMSE solution and the latter a sparse solution. In the absence of the ‖sc‖1 term,

the solution of (7.8) would be the projection of data onto the span of Bp. Alter-

nately, removing ‖sp‖2 from the cost function leads to the standard L1 recovery

problem in compressive sensing.

It can also be shown that the solution to (P3) ensures no overlap between the

sparse part of the solution xc = Bcsc and the subspace defined by the columns of

Bp.

7.2.3 Recovery Algorithm

Problem (P3) is a convex problem, and can be solved using any general purpose

solver. However, there have been a significant work in designing faster and efficient

methods towards solving the basic CS problem formulations (including (P0), (P1)

and their variants). Reusing these algorithms to solve (P3) is immensely benefi-

cial.

Note the similarity between the definition of (P2) and (P3) in the basic formu-

lation of the optimization problem as a convex cost, with quadratic constraints.

However, (P2) can be recast as a problem with Linear costs and quadratic con-

straints, making it a SOCP. Similarly, (P3) also maps onto a SOCP by using the

epigraph re-formulation [18].

Bayesian recovery algorithms work with various sparsity priors on s, under

Gaussian measurement noise. In particular, BCS [67] uses the RVM [129], frame-
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work to solve for the posterior p(s|y). The problem definition of (P3) can be

easily mapped onto the RVM framework simply by re-deriving the basic theory of

RVM with Gaussian priors on sp and Gaussian with Gamma hyper-priors on sc.

Alternatively, in practice, setting the hyper-prior parameters corresponding to sc

to zero (in practice, very small) would coerce the EM algorithm to allow arbitrary

values for sp.

However, for the experiments performed, we use the iterative recovery ap-

proach called CoSaMP [96]. CoSaMP works on selecting and refining a sparsity

support set for the signal s. CoSaMP also allows for efficient implementations

and has strong convergence guarantees [96]. Further, the CoSaMP algorithm is

easily modified to solve (P3), by forcing the support set to include sp, and in

essence performing support selection over sc. We discuss these reformulations and

detailed solution outline of the modified CoSaMP algorithm in Table 7.1.

7.2.4 Choice of Measurement Vectors

The two step solution suggests that for a given sparsity level K on sc, a total of

N1 + 2K or N1 + O(K log(N2/K) measurements are required (depending on the

inversion algorithm used). In this regard, an obvious choice of measurement ma-

trix is using subspace sampling along with compressive measurements, i.e, setting

A = [BT
p ΦT ]T , such that Ap = IN1 and Ac = ΦBc.

However, an interesting question to be posed is when the measurement ma-

trix A is a completely random matrix. Analyzing the restricted isometry property

under the hybrid subspace signal model is of future research interest. In our exper-

iments, we show examples of reconstructions using only random measurements.

7.3 Reflectance Field Acquisition

Bidirectional Reflectance Distribution Function (BRDF) is a 4-dimensional func-

tion that describes how an opaque surface point reflects incoming light [97]. The
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7.3 Reflectance Field Acquisition

s= CoSaMP Modified( Φ, y, K, M1 )

Input:
Φ : (M ×N) sensing matrix
y : (M × 1) measurement vector
K : Sparsity level of compressive part of signal
M1 : No. of Subspace measurements

Output:
s : Output vector.

Notation:
A† : Pseudo-inverse of matrix A
A|T : Columns of matrix A corresponding to index set T
s|T : The components of vector s indexed by T
supp(u; 1 : M,K) : Support of K non-subspace elements

of u that have maximum strength, along with
the subspace component support denoted as 1 : M .

T = {1, . . . ,M1}
s0
|T = (Φ|T )†y

s0
|T c = 0

k = 0
while stopping criterion not satisfied

v = y − Φsk

u = ΦTv

Ω = T ∪ supp(u; 1 : M1, 2K)

r = (Φ|Ω)†y
T = supp(r; 1 : M1, K)

k = k + 1
sk|T = (Φ|T )†y

sk|T c = 0

end
s = sk

Table 7.1: The modified CoSaMP algorithm for Subspace Sparse signals
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incoming lighting direction θ is a two-dimensional quantity (azimuth and eleva-

tion) while the outgoing lighting direction is another two-dimensional quantity

making the BRDF 4-dimensional function B(θ;φ). The slice of the BRDF cor-

responding to the viewing direction being fixed ( as would be the case when the

scene is being observed by a fixed camera ), while the incident illumination changes

freely, is called the reflectance field and is a two-dimensional function R(θ). Here

we show that these reflectance fields R(θ) strongly follow the HSS signal model

and therefore can be accurately measured using very few projections as predicted

by the HSS sensing theory we discussed earlier.

7.3.1 Models for Reflectance Fields

The reflectance properties of a material surface is useful for accurately rendering

the surface in graphics and relighting applications. Nevertheless the inherent high

dimensionality of the reflectance data, together with its high frequency nature (

especially at specular surfaces ) imply that one has to sample the reflectance fields

at very high resolutions in order to obtain accurate and realistic relit images. One

way to tackle this data deluge is to discover appropriate basis for representing

BRDF’s. Spherical Harmonics [135], wavelets [77] and zernike polynomials [76]

have all been used as appropriate basis in order to compress the huge amount of

data generated by high resolution BRDF’s. Another approach to tackle the data

deluge is to come up with specific nonlinear models of reflectance functions. The

parameters of the model then describe the reflectance functions and only these

parameters have to be stored and retrieved. The physically inspired analytical

reflection models such as the Phong model [104], Blinn model [14], Oren-Nayar [99]

model and the Cook and Torrence model [35] capture the analytical properties

of these reflectance fields to varying degrees of fidelity. The problem with such

analytical models is that while they allow for exceptional compression in data

storage they do not afford any compression in the data capture process.
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7.3 Reflectance Field Acquisition

7.3.2 Hybrid Subspace Sparsity of Reflectance Fields

Figure 7.2: (Top) 64×64 reflectance fields of a strongly Lambert (face), strongly specular

and a natural surface (Lambert+specular). (Bottom) Two level wavelet transforms of

the RF’s show that these signals are well approximated as Hybrid Subspace Sparse

signals.

Reflectance fields turn out to be ideal candidates for the Hybrid Subspace

Sparse signal model. Real world materials are typically either strongly Lambert,

strongly specular or somewhere between the two. Let us consider the statisti-

cal properties of the reflectance fields of naturally available materials when these

RF’s are projected to a canonical basis such as the wavelet or the discrete cosine

transform (DCT) basis. Shown in figure 7.2 are shown the 64×64 RFs of a single

pixel from the MERL Face dataset and the a single pixel from the specular MERL

BRDF dataset. Shown below are the wavelet transform domain coefficients. It

can clearly be seen while the transform domain coefficients of the specular pixel

are truly sparse, the transform domain characteristics of the face pixel is strongly
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Figure 7.3: Comparison of the energy compaction (or approximation error) Vs num-

ber of measurements required for 64 × 64 reflectance fields for the MERL Face BRDF

dataset. The Haar wavelet basis was used for all three sampling schemes. Notice that

the HSS signal model captures significantly higher signal energy for the same number

of measurements.

subspace sparse, i.e., it contains (a) significant energy in the low frequency coef-

ficients (b) the high frequency terms in the transform domain are sparse. Thus,

we see that real-world reflectance fields follow the HSS signal model. Figure 7.3

shows the energy compaction of the reflectance fields for the MERL Face dataset

characterizing the BRDF for various regions of faces. Nevertheless, notice that

under the Haar wavelet basis provides efficient energy compaction enabling cap-

ture of RF’s by either subspace sampling [101] or compressive sampling [102,122]

or Hybrid subspace sparse sampling proposed here. Further notice that the HSS

signal model better approximates reflectance fields than either the subspace or

the sparse signal model and this would lead to significant reduction in the number

of measurement required.

7.3.3 Compression Ratios and Angular Frequency

The use of HSS or the CS signal model for reflectance field acquisition becomes

more and more relevant as the angular sampling along each direction of the incom-

ing light increases. Let Nm be number of samples that we want along each angular
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Figure 7.4: Average sparsity levels of reflectance fields in the MERL specular object

database [91] (left) and MERL Face BRDF dataset (right) for various sampling frequen-

cies along the angular directions of incoming light. (top) The ratio K/N reflects the

inherent compressibility of the signals. It is seen that this ratio decreases linearly (in

log-space) as the angular sampling increasing, implying significant reduction in capture

time as the resolution of capture time increases. The various plots show compression

ratios at different energy compaction levels. (bottom) The values for sparsity level K

for various angular resolutions increases linearly.

dimension of the incoming light direction. Hence, the total dimensionality of the

problem N = Nm∗Nm. As Nm increases, we capture higher frequency components

of the light fields leading to capture of small nuances in the lighting orientations.

However, as a consequence, N increases (quadratically in Nm), thereby leading

to larger capture time for a specific capture SNR. This often becomes a limiting

factor in the acquisition of high-resolution reflectance map of a scene.

However, the number of sparse components does not increase quadratically

when the angular resolution changes. To verify this, we computed sparsity statis-

tic over thousands of reflectance fields from the MERL Reflective surface databases

and the MERL face BRDF database. Figure 7.4 show that for a given energy com-

paction level, the number of sparse components increase linearly. The achievable

compression ratio, which is proportional to N/K = N2
m/K, hence, increases lin-

early with Nm. This is also reflected in the linear decrease (in log scale) in the

sparsity ratio plots. This implies that the capture process for a given output SNR
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increases linearly with increasing angular resolution, as opposed to quadratic to

Hadamard based multiplexing [121]. The sparsity structure of highly specular sur-

faces is very different from the sparsity structure of strongly Lambertian scenes

(like face). While strongly Lambertian scenes such as faces have significant en-

ergy in low frequency components, if traditional compressive sensing based random

measurements of the signal are obtained, these measurements are not sufficient

to reconstruct the fine shading details that are necessary to capture the RF’s of

such surfaces. For strongly specular scenes, projection onto any fixed basis (i.e.,

traditional subspace sensing) is highly inadequate since such surfaces have very

high frequency components in their RF’s. The HSS signal model can adequately

model both scenes and lead to accurate reconstruction of RF’s for almost any real

surface.

7.3.4 HSCS Acquisition of RF

In order to evaluate the HSCS acquisition of reflectance fields, we first need to

measure linear projections of the reflectance fields that account for both subspace

and random measurements required for compressive sampling. If the reflectance

field of a single pixel is represented by x, then the measurement can be modeled

as,

y = Ax; (7.9)

where A is made up of two components A1 and A2. A1 accounts for the subspace

components and consists of the lower frequency discrete cosine transform basis

coefficients since we know that all RF’s have significant energy in these compo-

nents. A2 accounts for random binary (0,1) measurements required for sparse

signal reconstruction. In order to experimentally evaluate the presented design

we implement a setup very similar to the setup described in [121]. A projector

projects random binary patterns on to wall. The reflection from the wall acts

as the secondary light source illuminating the scene. Images are captured using
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Figure 7.5: Illustration showing the experimental setup. A projector projects random

binary patterns on to wall. The reflection from the wall acts as the secondary light

source illuminating the scene. Images are captured using a Nikon D40 camera with

50mm f1.8 lens.

a Nikon D40 camera with 50mm f1.8 lens. The setup is illustrated in Figure

7.5. Once the measurements are obtained we follow the reconstruction algorithm

presented in 7.2, in order to reconstruct the RF’s.

7.4 Experiments

7.4.1 Evaluation SNR vs compression rate

In Section 7.3.2, we showed that reflectance fields of common objects are in-

deed extremely sparse and compressible in various basis. In particular, the Haar

wavelet basis led to significant energy compaction of these reflectance fields. Note,

that even though almost all reflectance fields have all their energy in very few of

the Haar wavelet components, the exact components that contain this energy are
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Figure 7.6: Reconstruction error of subspace sampling, compressive sampling and the

proposed Hybrid subspace sparse sampling scheme over two publicly available reflectance

field datasets. (Left col.) MERL Face dataset (Right col) MERL specular objects

dataset. Notice that even though the two databases have very different RF character-

istics ( face - smooth, specular object - peaky ) the proposed HSCS method performs

better than traditional methods on both databases.
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different for different surfaces (and their orientation with respect to the lighting

direction). Therefore, just measuring the projections of these reflectance fields

onto a fixed Haar basis and inversion would not lead to significant compression.

Instead, in order to exploit the sparsity of the RF’s in Haar wavelet basis, we per-

form an experiment using 100 reflectance fields from the MERL BRDF dataset.

Each reflectance field is a 64 × 64 matrix therefore containing a total of 4096 un-

knowns. We measure the M independent projections of these RF’s under random

binary lighting. The number of such measurements M is varied. The noise level

in the observation is also systematically varied. We then assume that the RF is

sparse in the Haar wavelet basis and perform inversion using Bayesian Compres-

sive Sensing. Shown in Figure 7.6 are the signal to noise ratios of the recovered

reflectance fields for various compression factors ( compression factor = N/M ).

Notice that one can obtain a compression factor of about 16-32, with significant

signal to noise ratio. Also, notice that the signal to noise ratio of the recovered

RF is greater than the input observation SNR for compression factors that are

less than 8. This shows that in the presence of moderate noise and low compres-

sion ratios, the compressive inversion algorithm additionally performs smoothing

thereby improving the SNR.

7.4.2 Real Experiments on capture of reflectance fields

We used the experimental setup described in Section 7.3.4 in order to capture

the reflectance fields of several objects. Figures 7.7 and 7.8 show reconstruction

results over a 16× 16 and a 32× 32 problem respectively. The Robot dataset was

acquired using 0 − 1 Bernoulli random measurements2. Reconstruction was done

with 128 measurements, using the Haar basis with the lower M1 = 64 coefficients

for Bp. The Nemo dataset was collected using a mix of subspace projection and

compressive measurements. A total of 256 measurements were taken, of which

2All images were obtained in HD by taking multiple images at different exposures and aver-

aging them
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Chapter 7. Compressive Acquisition of Visual Signals

Figure 7.7: Reconstructed 16×16 RF of a robot exhibiting both Lamberts and Specular

shading from 128 compressive measurements using a HSS model. The top 64 Haar

coefficients were chosen as the subspace Bp.

Figure 7.8: Reconstructed 32×32 RF of a soft toy (Nemo) exhibiting Lamberts shading

from 256 measurements using a HSS model. The top 128 Haar coefficients were chosen

as the subspace Bp.

128 were the top Haar basis elements. Reconstruction was performed again with

the Haar basis, with the top 128 coefficients chosen for Bp. Note how the results

capture the gentle shading on the sides of the subject. Relighting results are

shown in Figure 7.9.
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Figure 7.9: Relighting experiment on a 16 × 16 acquisition problem using the lighting

shown in the inset figure. The RF was acquired from 192 measurements. The bottom

row shows the blending of lighting in detail.
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Chapter 8

Future Directions

There are multiple avenues in theory as well as applications for extending the

findings of this dissertation. We discuss a few below.

8.1 Projective Geometry and Grassmann Manifold

Much of the analysis in the dissertation is done under the assumption of replacing

projective transformation by the direct linear transform (DLT). For the appli-

cations discussed in the dissertation this serves as a reasonable approximation.

However, the DLT does not explain what happens at the Line at Infinity and

leaves a interesting open problem.

An interesting avenue for pursuing this lies in choosing an appropriate model

for points that lie on projective spaces. Recall that x̃, ỹ ∈ P
n can be represented

in the homogeneous coordinates. In the homogeneous coordinates, x̃ and ỹ are

identical if x̃ = λỹ or equivalently they lie on a line connecting them to the origin.

Equivalently, a point on P
n is identical to the one dimensional subspace generated

by it. In such a viewpoint, points on the projective space can be mapped onto a

well studied manifold called the Grassmann Manifold. The Grassmann manifold

is defined as the space of all linear subspaces of a vector space. There has been

a lot of work on developing appropriate theory and tools for the geometry [1] as

well as the statistics [33] on the Grassmann manifold. A study in understanding

how projective transformations affect statistics on these manifolds might help in

formulating a theory that address the shortcomings of existing literature.

148



8.2 Steering PTZ cameras for improved inference

8.2 Steering PTZ cameras for improved inference

Pan-Tilt-Zoom (PTZ) cameras allow for steering of the camera view keeping the

camera center (pinhole) in place. Such a rotating (pan and tilt) and zooming

camera produces views that satisfy elegant geometric properties [123] [128] [125].

The advantage of using PTZ cameras is that one may now control the specific set-

tings of the PTZ cameras so as to improve tracking and recognition performance.

Thus while one or few ‘master cameras’ observe a wide sensing field of view, their

tracking results in turn guide the PTZ controls for other slave cameras that can

then zoom into objects of interest in order to obtain high resolution imagery of

these objects. In general, such a problem may be posed as an optimization of

some desirable cost functional over the steering controls of the cameras. One ex-

ample of such a cost functional would be the average tracking error over the whole

scene. Here, we want to obtain new views (using the PTZ controls) that minimize

the desired objective. We envision steering algorithms that operate some of the

cameras in the slave mode, tethered with inputs from other cameras that sense

the entire region of interest.

8.3 Distributed particle Filtering

This dissertation address the challenges in reducing the computational complexity

of particle filters by making the computations inherently parallel. However, in a

smart camera network, the sensors as well as the processing power is distributed.

In order to make the filter truly distributed and enable its implementation on

huge camera networks containing hundreds of cameras one needs to pay attention

to methods that enable these particle filter-based estimates to be performed in

a distributed manner. This can be achieved either using Synchronized Particle

Filtering or by the more general means of Distributed function estimation.
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8.3.1 Synchronized Particle Filtering

One way to decentralize the filter operations is to replicate it identically at each

node. For particle filtering, this can be done easily if the random number genera-

tors are made identical across nodes. Such a scheme is referred to as synchronized

particle filtering [34]. By initializing the random number generator with the same

seed, all nodes can be made to generate the same particles, which in turn makes fu-

sion of the associated weights simpler. The communication costs are then limited

to the transmission of the associated weights across the whole network.

The immense flexibility of this approach allows for it to be effective in any

particle filtering algorithm. However, this freedom in generality comes with as-

sociated drawbacks. For one, the stability of the algorithm depends critically on

the requirement of synchronized random numbers, which requires that the hard-

ware at each node be the same. Further, this particular way of decentralization,

does not efficiently use the processing power of the nodes, as in the end the same

computations are performed identically at each node.

8.3.2 Distributed function estimation

However, we can relax the need to make our distributed inference algorithm to be

identical to the centralized one. There are a host of methods that allow for the

computation of average mean through explicit global communication or through

local consensus [137] [138].

An alternative to the concept of synchronous filtering can be by approximating

the inference at each camera with a Gaussian mixture model [124, 133, 55] or in

general, any parametric density family. The parameters can then be transmitted

to all nodes in the sensor network, each of which locally updates their densities.
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8.4 Compressive Sensing

In this dissertation, we argued for the need for models that go beyond simple

subspace or sparse models. Towards this end, we proposed the hybrid subspace

sparse model, that build on knowledge of a subspace that is representative of

the signal we want to sense, and an over-complete dictionary for the residue.

However, there is still a disconnect between both data-driven as well as analytic

models for visual signals and the ones used in sensing and recovery of signals. As

an example, it is well known that natural images exhibit a gradient distribution

that is peaked at zero with heavy non Gaussian tails [106]. The Fields of Experts

(FOE) [114] model learns filters for a classes of images (or any data) and uses them

for image restoration. For reflectance fields, non-linear analytical models such as

the Blinn-Phong and Terrance-Cook models have been used to parametrize and

compress reflectance fields. Towards this end, signal recovery (from compressive

measurements) can benefit significantly by clever use of such models.

One potential way of applying these statistical priors on signals is by modeling

the recovery problem as one of Bayesian inference. Given (compressive) measure-

ments y = Φx + n and a prior model for the signal p(x), we can aim to recover

the posterior,

p(x|y,Φ) ∝ p(y|x,Φ)p(x) (8.1)

The Relevance Vector Machine (RVM) [46] computes the posterior efficiently when

x is modeled to be sparse. This forms the basis of much of Bayesian methods

for recovery of signals from compressive measurements [67]. The key problem is

extending this to alternate signal models such as one of non-Gaussian gradient

distribution lies in the inference problem which becomes intractable. Further, the

high dimensionality of visual signals makes Monte-Carlo based inference infeasible.
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