
ABSTRACT

Title of dissertation: LEARNING ALGORITHMS FOR
MARKOV DECISION PROCESSES

Abraham Thomas, Doctor of Philosophy, 2009

Dissertation directed by: Professor Steven Marcus
Department of Electrical and Computer

Engineering

We propose various computational schemes for solving Partially Observable

Markov Decision Processes with the finite stage additive cost and infinite horizon

discounted cost criterion. Error bounds for the corresponding algorithms are given

and it is further shown that at the expense of more computational effort the Partially

Observable Markov Decision Problem (POMDP) can be solved as closely to the

optimal as desired.

It is well known that a sufficient statistic for taking the best action at any

time for the POMDP is the aposteriori probability distribution on the underlying

states, given all the past history, and that this can be updated recursively. We prove

that the finite stage optimal costs as well as the optimal cost for the infinite horizon

discounted cost problem are both Lipschitz continuous (with domain the unit sim-

plex of probability distributions over the underlying states) and gives bounds for the

Lipschitz constant. We use these bounds to provide error bounds for computational

algorithms for solving POMDPs.

We extend the almost sure convergence result of a very general stochastic

approximation algorithm to the case when the underlying Markov process exhibits

periodicity. This result is used to extend the proof of convergence of Temporal

Difference (TD) reinforcement learning schemes with linear function approximation

for Markov Cost processes in order to estimate the cost to go function for the

discounted cost criterion, and the differential cost function for the average cost

criterion, respectively.

Adaptive control of Markov Decision Problems (MDPs) is a problem in which

a full knowledge of the system parameters, namely transition probabilities as well

as the distribution of the immediate costs, are not available apriori. We give direct

adaptive control schemes for infinite horizon discounted cost and average cost MDPs.

Approximate Policy Iteration using on-line TD schemes for policy evaluation is

detailed for the discounted cost and average cost criteria.

Possible extensions of direct adaptive control schemes to the POMDP frame-

work are discussed.

Auxiliary results relevant to the core results of the dissertation are stated and

proved in the appendices. In particular an efficient discretization scheme for the

finite dimensional unit simplex is given. Some general error bounds for MDPs are

also given. Also TD schemes for learning in Stochastic Shortest Path problems

(SSP) are discussed.

LEARNING ALGORITHMS FOR
MARKOV DECISION PROCESSES

by

Abraham Thomas

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2009

Advisory Committee:
Professor Steven Marcus, Chair/Advisor
Professor Mark Shayman
Professor Prakash Narayan
Professor Armand Makowski
Professor Mike Boyle

c© Copyright by
Abraham Thomas

2009

Acknowledgments

I owe my gratitude to all the people who have made this dissertation possible

and because of whom my graduate experience has been one that I will cherish

forever.

First and foremost I’d like to thank my advisor, Professor Steven Marcus for

giving me an invaluable opportunity to work on challenging and extremely inter-

esting problems during my doctoral studies. I am extremely grateful for his able

guidance and patience during the course of my doctoral studies. It has been a

pleasure to work with and learn from such an extraordinary individual.

I would also like to thank Professor Mark Shayman, Professor Prakash Narayan,

Professor Armand Makowski and Professor Mike Boyle for agreeing to serve on my

dissertation committee and for sparing their invaluable time reviewing the manuscript.

I would like to acknowledge financial support from the Institute for Systems

Research and the Electrical and Computer Engineering Department at the Univer-

sity of Maryland, College Park.

I would also like to acknowledge the help and support from the staff members

at the ECE Graduate Office, ISR, IES and Graduate School Office of the University

of Maryland, College Park.

ii

Table of Contents

1 Introduction 1
1.1 Markov Decision Processes . 1

1.1.1 Cost Criterion . 4
1.1.2 Optimality Criterion . 7

1.1.2.1 Finite Horizon Problem 7
1.1.2.2 Infinite Horizon Discounted Cost Problem 7
1.1.2.3 Average Cost Problem 10
1.1.2.4 Stochastic Shortest Path Problem 13

1.2 Value Iteration and Policy Iteration 15
1.2.1 Value Iteration . 16
1.2.2 Policy Iteration . 17

1.3 Partially Observable Markov Decision Processes 19
1.4 A Stochastic Approximation Algorithm 20
1.5 Adaptive Control . 21
1.6 Organization Of The Dissertation . 23

List of Abbreviations 1

2 Computational Schemes For Partially Observable Markov Decision Processes
With Error Bounds 25
2.1 Partially Observable Markov Decision Model 25
2.2 Equivalent Fully Observable MDP . 28
2.3 Lipschitz Continuity Of Value Functions 30
2.4 Approximation By Discretization . 34
2.5 Proof Of Theorems . 39
2.6 An Example For a Non-Lipschitz Bayesian Transition Function . . . 49

3 A Stochastic Approximation Algorithm For Periodic Markov Processes 50
3.1 General Assumptions On H, ρn And Π 53
3.2 Decomposition Of The General Algorithm 56

3.2.1 . 56
3.2.2 Decomposition Of εn(φ) . 58

3.3 L2 Estimates . 61
3.3.1 . 61

3.4 A Convergence Theorem . 71
3.4.1 Assumptions . 71
3.4.2 . 73

4 Temporal Difference Schemes For Discounted Cost MDPs 76
4.1 Markov Decision Process Model Revisited 76
4.2 Stationary Randomized Policies . 79
4.3 Approximate Policy Iteration . 84
4.4 Temporal Difference (TD(λ)) Schemes 87

iii

4.5 TD(λ) For Learning . 93

5 Temporal Difference Schemes For Average Cost MDPs 101
5.1 Average Cost MDP Model Revisited 102
5.2 Classification Of MDPs . 103
5.3 Some Properties Of The Transition Probability Matrix 105

5.3.1 Basics . 105
5.3.2 Application To Markov Cost Process 108

5.4 Unichain MDP With A Common Recurrent State 112
5.4.1 Bellman Equation . 112
5.4.2 Policy Iteration . 114

5.5 Continuity Issues Of Limiting and Differential Matrices 122
5.6 Approximate Policy Iteration . 127
5.7 Average Cost Temporal Difference Schemes 129

5.7.1 Convergence Results . 134
5.7.1.1 Preliminaries . 136
5.7.1.2 Lemmas . 137

5.7.2 Approximation Error . 149
5.7.3 Using A Fixed Average Cost Estimate 153

5.8 Stationary Randomized Policies . 159
5.9 TD For Learning . 160

5.9.1 Recurrent MDPs . 161
5.9.2 Communicating Unichain MDP With A Common Recurrent

State . 168
5.9.3 Weakly Communicating Unichain MDP With A Common

Recurrent State . 173

6 Conclusion 178
6.1 Future Work : Extension Of Reinforcement Learning To POMDPs . . 181

A Discretization Of The Unit Simplex 185

B Notes On The Reachability Structure Of Finite State-Finite Action MDP 195
B.1 Structure Of A General Stochastic Matrix 196

B.1.1 Classification Of Indices For A Markov Chain 196
B.2 Rearrangement Of Index Classification, When We Move From Deterministic

To Fully Randomized Policies . 198

C Error Bounds For Markov Decision Processes 207
C.1 Contraction Mappings . 207

C.1.1 Contraction Mapping Theorem 209
C.1.2 Approximate Value Iteration 214
C.1.3 Contraction Mapping Generic Error Bounds 217

C.2 Stochastic Shortest Path MDPs Revisited 220
C.2.1 Non-Termination Probability Of SSP MDPs 222

iv

C.2.2 Absorption Or Termination Probability Of SSP MDPs 230
C.2.2.1 Notes On The Worst Case Non-Termination Proba-

bility Of SSP MDPs 239
C.2.3 Number Of Stages To Reach Terminal State 241

C.3 Notes On The Non-Absorption Probability Of SSP MDPs 243
C.3.1 Properness Of Policies . 244
C.3.2 Acyclicity Of Policies . 248

C.4 Contraction Properties Of SSP Dynamic Programming Operators . . 253
C.4.1 Preliminaries . 253
C.4.2 Error Bounds For SSP MDPs 258
C.4.3 Approximate Policy Iteration Bounds For SSP Problems . . . 262
C.4.4 Some Observations On SSP MDPs 264
C.4.5 Weighted Sup-Norm Property Of “All Proper Policies” SSP

MDP . 271
C.5 Equivalent SSP Problem For Discounted Cost MDP 274

C.5.1 Error Bounds For Discounted Cost MDPs 279
C.5.2 Approximate Policy Iteration Bounds For Discounted Cost

MDPs . 287
C.6 Error Bounds For Average Cost Problem 288

D Temporal Difference Schemes For Stochastic Shortest Path Problems 294
D.1 Stationary Randomized Policies . 295
D.2 Approximate Policy Iteration . 302
D.3 Off-Line Temporal Difference Method For A Proper Policy With

Lookup Table Representation . 305
D.3.1 Choice Of Eligibility Coefficients 308

D.4 On-Line Temporal Difference Method For A Proper Policy With
Lookup Table Representation . 310

D.5 A Remark On Step Size Selection . 312
D.6 Convergence For Discounted Cost Problems 313
D.7 TD For Learning . 315

Bibliography 334

v

Chapter 1

Introduction

In this dissertation we propose direct adaptive control schemes for Markov

Decision Processes (MDPs) and suggest their extension for Partially Observable

Markov Decision Processes (POMDPs). We also consider some discretization schemes

for solving POMDPs approximately.

In this chapter, we define the basic finite state, finite action Markov Decision

Process model as well as the finite state, finite action, finite observation Partially Ob-

servable Markov Decision Process model. We also introduce a standard Stochastic

Approximation Algorithm, which can be used to prove the convergence of Temporal

Difference schemes for evaluating the cost to go function for the infinite horizon dis-

counted cost criterion and the differential cost function for the average cost criterion

respectively of Markov Cost processes.

Subsequently we give short introductions to the contents of each of the follow-

ing chapters as well as the appendices. This essentially sums up the contributions

of the dissertation.

1.1 Markov Decision Processes

A Markov Decision Process (MDP) [12, 40] is a system which evolves as follows.

Let N0 denote the set of whole numbers and R denote the set of real numbers. At

1

any discrete time t ∈ N0, the state of the system is st ∈ S, where S is the set of pos-

sible states or state space. While in state st we can execute one out of a set A(st) of

feasible actions. The state space as well as the feasible action set for each state are as-

sumed to be non-empty. Define A =
⋃
i∈S A(i) as the action space. Upon execution

of an action ut ∈ A(st) at time t, the system moves to state st+1 at time t+1 and an

immediate cost gt ∈ R (which may be random but which depends on st, ut and st+1)

is incurred. The new state st+1 occurs with a probability which depends on st and ut.

Given st and ut the state transition probability distribution of st+1 does not depend

on the past values of states, actions or immediate costs. Similarly given st, ut and

st+1, the probability distribution of the immediate cost gt also does not depend on

the past values of states, actions or immediate costs. This is essentially the Markov

property of the problem. Let ht = (s0, u0, g0, s1, u1, g1, . . . , st−1, ut−1, gt−1, st) denote

the history of the process upto time t with h0 = (s0). The history follows the

recursion ht = (ht−1, ut−1, gt−1, st) for t ≥ 1.

An admissible policy ν is a sequence of stochastic kernels {νt} on A given the

past history ht, with the restriction that νt(A(st) | ht) = 1, that is, the probability

measure is concentrated on the set of feasible actions. Note that ν = {ν0, ν1, ν2, . . .}.

In this dissertation we focus our attention primarily on finite state, finite

action homogeneous MDPs where the state space and action space (along with

the feasible action sets) does not change over time, nor do the the state transition

probabilities and the distribution of the immediate cost. For convenience we denote

S ≡ {1, 2, . . . , n} and A(i) ≡ {1, 2, . . . , | A(i) |}, for i ∈ S. The state space and

feasible action sets for each state are non-empty. Here |A(i) | denotes the cardinality

2

of the set A(i). Now |S| and |A| are finite numbers. Here A =
⋃
i∈S A(i). The

transition probabilities may be conveniently denoted by pij(u) = Pr[st+1 = j | st =

i, ut = u], where i, j ∈ S and u ∈ A(i). Here Pr denotes probability. For u ∈ A(i),

let g(i, u, j) denote the expected value E[gt | st = i, ut = u, st+1 = j]. Then the

expected value of the immediate cost for taking action u ∈ A(i) from state i is

g(i, u) ≡ E[gt | st = i, ut = u] =
∑n
j=1 pij(u)g(i, u, j). We assume these expectations

to be finite. S and A are endowed with the discrete topology. R is endowed with the

Borel topology. LetHt denote the set of all histories up to time t. HereH0 = S,Ht =

Ht−1ARS. These spaces are endowed with the corresponding product topologies.

Here Ω = H∞ = (SAR)∞ is the sample space under consideration. H∞ is the set

of infinite sequences of the form (s0, u0, g0, s1, u1, g1, . . .) where st ∈ S, ut ∈ A and

gt ∈ R.

The set of all admissible policies is denoted byM (the set of history dependent

randomized policies). A policy ν is said to be Markov if νt depends only on the

current state st and t and not on the past history, that is νt(· | ht) = δt(· | st), where

δt is a stochastic control kernel which takes a probability distribution on A(i) for

each state i ∈ S. To be precise, it is called a Markov randomized policy. If all the

probability mass is concentrated on a single action for each i ∈ S, we call it a Markov

deterministic policy. In this case we may think of control functions µt on S with

µt(i) ∈ A(i), instead of the stochastic kernel δt. A Markov randomized policy is said

to be stationary if δt = δ for all t ∈ N0. For convenience we denote such a stationary

randomized policy with δ. If we have a Markov deterministic policy in which µt = µ

for all t ∈ N0, we call it a stationary deterministic policy. For convenience we

3

denote such a policy with µ. The set of all (Markov) stochastic control kernels or,

equivalently, all the stationary randomized policies is denoted by Λ. A (Markov)

stochastic control kernel δ may be denoted as follows. δ(i) represents a probability

distribution on the set A(i) for each i ∈ S. [δ(i)]a represents the probability of

executing action a ∈ A(i) from state i ∈ S. [δ(i)]a ≥ 0 and
∑
a∈A(i)[δ(i)]a = 1.

Likewise the set of all control functions or equivalently stationary deterministic

policies is denoted by Υ. µ ∈ Υ iff µ(i) ∈ A(i), ∀i ∈ S. The cardinality of Υ is

given by |Υ| = ∏n
i=1 |A(i)|. For a measure theoretic approach to MDPs with general

state and action spaces please refer to [4, 14, 23].

1.1.1 Cost Criterion

MDPs may be classified on the basis of the cost structure we try to minimize.

Let Pνi (·) ≡ Pν(· | s0 = i) denote the probability distribution induced on Ω under the

policy ν, when we start from state s0 = i. Eν [· | s0 = i] denotes the corresponding

expectation. We are concerned only with variations of additive cost problems.

In the finite horizon problem we try to minimize

Eν

[
N−1∑
t=0

βtgt + βNG(sN) | s0 = i

]

for each i ∈ S. Let N denote the set of natural numbers. Here N ∈ N is the horizon

and βNG(sN) is the terminal cost incurred for being in state sN at time N where

β ∈ [0,∞). The expectation is with respect to the probability measure induced by

the policy ν. Note that for the N stage problem, only ν0, ν1, . . . , νN−1 are relevant

in the computation of the expectation.

4

In the infinite horizon discounted cost criterion we try to minimize

Eν

[∞∑
t=0

βtgt | s0 = i

]

for each i ∈ S. Here β ∈ [0, 1) is the discount factor. This quantity is well defined

and is equal to

lim
N→∞

Eν

[
N−1∑
t=0

βtgt | s0 = i

]

Here the costs incurred in the future are given less weight because of the discount

factor.

In the average cost formulation we try to minimize

lim sup
N→∞

1

N
Eν

[
N−1∑
t=0

gt | s0 = i

]

for each i ∈ S.

Yet another cost formulation is the stochastic shortest path formulation where

we try to minimize the total cost

lim sup
N→∞

Eν

[
N−1∑
t=0

gt | s0 = i

]

for each i ∈ {1, 2, . . . , n}. Here we assume that there is an additional state 0, which

is a cost free termination state; once the system reaches that state it remains there

at no further cost (i.e. zero cost). The structure of the problem is assumed to

be such that termination is inevitable, at least under an optimal policy. Thus the

objective is to reach the termination state with minimal expected cost. The problem

is in effect a finite horizon problem, but the length of the horizon may be random

and may be affected by the policy being used. We may assume WLOG that there

5

is only one feasible action at state 0, namely action 1 (i.e. A(0) = {1}), under

which the system remains at state 0, incurring an immediate cost of zero. That

is E[|gt| | st = 0, ut = 1] = 0 and p00(1) = Pr[st+1 = 0 | st = 0, ut = 1] = 1.

With g(i, u, j) ≡ E[gt | st = i, ut = u, st+1 = j], g(i, u) ≡ E[gt | st = i, ut = u] =

∑n
j=0 g(i, u, j) for i, j ∈ {0, 1, . . . , n}, u ∈ A(i),

We have the following important lemma from [40, Theorem 5.5.1].

Lemma 1.1 Let ν = {ν0, ν1, ν2, . . .} be any history dependent randomized pol-

icy. Then for each fixed i ∈ S, there exists a Markov randomized policy ν ′ =

{δ0, δ1, δ2, . . .} dependent on i and ν such that

Pν (st = j, ut = a | s0 = i) = Pν′ (st = j, ut = a | s0 = i)

for all t ∈ N0, j ∈ S, a ∈ A(j). Also

Pν (st = j | s0 = i) = Pν′ (st = j | s0 = i)

2

Notice that we may choose

[δt(j)]a = Pν (ut = a | st = j, s0 = i)

for t ∈ N0, j ∈ S, a ∈ A(j). Here Pν and Pν′ denote the probability measures

induced by policy ν and ν ′ respectively.

6

1.1.2 Optimality Criterion

1.1.2.1 Finite Horizon Problem

We now state the Dynamic Programming (DP) Algorithm [11] for the homo-

geneous finite horizon problem. For every initial state i, the optimal cost J∗(i) of

the basic problem is equal to J0(i), where the function J0 ∈ Rn is given by the last

step of the following algorithm (value iteration), which proceeds backward in time

from stage N − 1 to stage 0:

JN(i) = G(i), i ∈ S

Jk(i) = min
u∈A(i)

g(i, u) + β
n∑
j=1

pij(u)Jk+1(j)

 , i ∈ S

k = 0, . . . , N − 1

Let µ∗k be the control function such that µ∗k(i) is a minimizing action in the above

equation. The N stage policy ν∗ = {µ∗0, . . . , µ∗N−1} is optimal for the N -stage

problem. Note that the above computation easily extends to the non-homogeneous

MDP, though we are concerned mostly with homogeneous MDPs.

1.1.2.2 Infinite Horizon Discounted Cost Problem

For the infinite horizon discounted cost problem with discount factor β ∈ [0, 1),

we denote by Jν ∈ Rn the cost to go vector associated with following policy ν ∈M

and is given by

Jν(i) = Eν

[∞∑
t=0

βtgt | s0 = i

]
, i ∈ S.

7

For the infinite horizon discounted cost problem define for each deterministic control

function µ ∈ Υ, the following operator Tµ : Rn → Rn, by

(TµJ) (i) = g(i, µ(i)) + β
n∑
j=1

pij(µ(i))J(j)

for each J ∈ Rn. In vector notation TµJ = ḡµ + βPµJ , where ḡµ ∈ Rn is the

expected immediate cost vector for policy µ, with ḡµ(i) = g(i, µ(i)) and Pµ is the

n× n transition probability matrix with [Pµ]ij = pij(µ(i)).

Similarly, define the dynamic programming operator [12] T : Rn → Rn as

follows

(TJ) (i) = min
u∈A(i)

g(i, u) + β
n∑
j=1

pij(u)J(j)

 .
We may use the following vector notation, namely TJ = minµ∈Υ TµJ , where the

minimization is componentwise. Note that µ̃ = arg minµ∈Υ TµJ iff Tµ̃J = TJ . It is

possibile that there may be more than one minimizing control function. It may be

easily seen that both the operator T as well as Tµ are monotone, i.e. if J, J̃ ∈ Rn

with J ≤ J̃ , then TJ ≤ T J̃ and TµJ ≤ TµJ̃ . Here the inequality is componentwise,

i.e. J ≤ J̃ means J(i) ≤ J̃(i) for each i ∈ {1, . . . , n}. Also they have the property

that

T (J + α1
¯
) = T (J) + β α1

¯

and

Tµ(J + α1
¯
) = Tµ(J) + β α1

¯

for α ∈ R and any stationary deterministic policy µ ∈ Υ. Here 1
¯

is the vector in

Rn with all components equal to one. Hence it is easy to see that T and Tµ are

8

contraction mappings under the supremum norm ‖ · ‖ with contraction coefficient

β. That is

‖TJ − T J̃ ‖≤ β ‖J − J̃ ‖

and

‖TµJ − TµJ̃ ‖≤ β ‖J − J̃ ‖

for J, J̃ ∈ Rn. Here for J ∈ Rn, the supremum norm (or sup-norm) is given by

‖J ‖= max
1≤i≤n

|J(i)|

The contraction mappings T and Tµ have unique fixed points. That is, there

exists J∗ ∈ Rn such that

TJ∗ = J∗ (1.1)

and Jµ ∈ Rn such that

TµJ
µ = Jµ.

In fact, it can be shown [12, 23] that J∗ is the optimal cost to go function (or vector)

for the infinite horizon discounted cost problem, and Jµ is the cost to go function

(or vector) associated with following the stationary policy µ. That is,

J∗(i) = inf
ν∈M

Eν

[∞∑
t=0

βtgt | s0 = i

]

and

Jµ(i) = Eµ

[∞∑
t=0

βtgt | s0 = i

]
,

for i ∈ S. Equation 1.1 is called the Bellman equation for the discounted cost

problem. It can be shown that a stationary deterministic policy µ̃ ∈ Υ is optimal

9

iff

µ̃(i) = arg min
u∈A(i)

g(i, u) + β
n∑
j=1

pij(u)J∗(j)


for all i ∈ S. In fact, it can also be shown that

Jµ =
∞∑
k=0

βtP k
µ ḡ

µ

= (I − βPµ)−1ḡµ,

where P 0
µ ≡ I, is the identity matrix. P k

µ is Pµ raised to the kth power.

Define, for each δ ∈ Λ, the expected immediate cost vector ḡδ ∈ Rn as ḡδ(i) =

∑
a∈A(i)[δ(i)]ag(i, a) and the n × n transition probability matrix Pδ to be [Pδ]ij =

∑
a∈A(i)[δ(i)]apij(a). Consider the operator Tδ : Rn → Rn given by

TδJ = ḡδ + β PδJ

for J ∈ Rn. In fact

(TδJ) (i) =
∑

a∈A(i)

[δ(i)]a

g(i, a) + β
n∑
j=1

pij(a)J(j)


for i ∈ S. Tδ is also a monotone operator which is a contraction mapping under the

sup-norm with contraction coefficient β. It has a unique fixed point Jδ. The cost to

go vector corresponding to the stationary policy δ is given by Jδ =
∑∞
t=0 β

tP t
δ ḡ

δ =

(I − βPδ)−1ḡδ. Any δ ∈ Λ is optimal iff TδJ
∗ = TJ∗.

1.1.2.3 Average Cost Problem

Note that for any policy ν ∈M, the average cost vector ϑ̄ν ∈ Rn denotes the

average cost to go function, namely

ϑ̄ν(i) = lim sup
N→∞

1

N
Eν

[
N−1∑
t=0

gt | s0 = i

]

10

for each i ∈ S. For stationary policies the limit exists [12], i.e. for any stationary

policy δ ∈ Λ

ϑ̄δ(i) = lim
N→∞

1

N
Eδ

[
N−1∑
t=0

gt | s0 = i

]

for i ∈ S.

Let ϑ̄∗ ∈ Rn denote the optimal average cost vector given by

ϑ̄∗(i) = inf
ν∈M

ϑ̄ν(i)

for i ∈ S. We add that [12, 40]

ϑ̄∗(i) = inf
ν∈M

lim inf
N→∞

1

N
Eν

[
N−1∑
t=0

gt | s0 = i

]

= inf
ν∈M

lim sup
N→∞

1

N
Eν

[
N−1∑
t=0

gt | s0 = i

]
. (1.2)

Let ḡδ, the expected immediate cost vector and Pδ, the transition probability matrix

corresponding to stationary randomized policy δ, be defined as earlier. Note that

ϑ̄δ =

(
lim
N→∞

1

N

N−1∑
k=0

P k
δ

)
ḡδ.

An important result regarding transition probability matrices is that the limit in

the preceding equation exists [12].

For δ ∈ Λ, define the operator T̄δ : Rn → Rn by

T̄δJ = ḡδ + PδJ

for J ∈ Rn. Define the operator T̄ : Rn → Rn by

T̄ J = min
µ∈Υ

T̄µJ

11

for J ∈ Rn. Here, minimization is done componentwise, namely

(T̄ J)(i) = min
a∈A(i)

g(i, a) +
n∑
j=1

pij(a)J(j)

 .
For the average cost problem we have the following result [12]. If a scalar ϑ ∈ R

and a vector J ∈ Rn satisfy

ϑ1
¯

+ J = T̄ J,

then ϑ is the optimal average cost per stage ϑ̄∗(i) for all i ∈ S. Furthermore, if

T̄δ∗J = T̄ J , then the stationary policy δ∗ is optimal, i.e. ϑ̄δ
∗

= ϑ1
¯

= ϑ̄∗. Also, if

the optimal average cost starting from any state is the same, namely ϑ∗ ∈ R, then

there exists J ∈ Rn such that [12, Proposition 4.1.4]

ϑ∗1
¯

+ J = T̄ J.

We have the following corollary. Let δ be a stationary policy. If a scalar ϑ and a

vector J ∈ Rn satisfy

ϑ1
¯

+ J = T̄δJ

then ϑ̄δ(i) = ϑ, ∀i ∈ S. Infact if ϑ̄δ(i) = ϑδ, ∀i ∈ S, then there exists J ∈ Rn such

that

ϑδ1
¯

+ J = T̄δJ.

A stationary deterministic policy µ∗ is said to be Blackwell optimal if it is

simultaneously optimal for all β-discounted infinite horizon problems with β in an

interval (β̄, 1), where β̄ is some scalar with 0 < β̄ < 1. For the finite state, finite

action MDP there exists a Blackwell optimal policy. Blackwell optimal policies are

12

average cost optimal, irrespective of whether the optimal average cost is the same

for all starting states i ∈ S [12, 40].

1.1.2.4 Stochastic Shortest Path Problem

The cost to go function (or vector) for the stochastic shortest path problem

(SSP) corresponding to policy ν ∈M is given by

J̃ν(i) = lim sup
N→∞

Eν

[
N−1∑
t=0

gt | s0 = i

]
(1.3)

for i ∈ {1, 2, . . . , n}. For the SSP we say that a stationary deterministic policy

µ ∈ Υ (assume WLOG that in the termination state 0 we take the unique feasible

action namely 1, under which the system remains in state 0 at zero cost) is proper

if when using this policy, there is a positive probability that the termination state

will be reached after at most n stages, regardless of the initial state, i.e.

max
i∈{1,2,...,n}

Pµ (sn 6= 0 | s0 = i) < 1.

A similar definition of properness exists for stationary randomized policies. A sta-

tionary policy that is not proper is called improper. For a stationary proper policy,

the limit exists in equation 1.3, i.e. lim sup may be replaced by lim. For the SSP,

define for each stationary deterministic policy µ ∈ Υ, the n×n sub-stochastic matrix

Pµ to be [Pµ]ij = pij(µ(i)) for i, j ∈ {1, 2, . . . , n}. Similarly, define the expected im-

mediate cost vector ḡµ ∈ Rn to be ḡµ(i) = g(i, µ(i)) for i ∈ {1, 2, . . . , n}. Note that

g(i, u) ≡ E [gt | st = i, ut = u] =
∑n
j=0 pij(u)g(i, u, j) for i ∈ {1, 2, . . . , n}, u ∈ A(i).

Here,

g(i, u, j) ≡ E [gt | st = i, ut = u, st+1 = j]

13

for i, j ∈ {0, 1, 2, . . . , n}, u ∈ A(i). Similarly, for a stationary randomized policy

δ ∈ Λ, define the n× n sub-stochastic matrix Pδ by

[Pδ]ij =
∑

a∈A(i)

[δ(i)]apij(a)

for i, j ∈ {1, 2, . . . , n}. Define the expected immediate cost vector ḡδ ∈ Rn by

ḡδ(i) =
∑
a∈A(i)[δ(i)]ag(i, a) for i ∈ {1, . . . , n}.

Define for stationary policy δ ∈ Λ, the operator T̃δ : Rn → Rn by

T̃δJ = ḡδ + PδJ

for J ∈ Rn. Also define the operator T̃ : Rn → Rn by T̃ J = minµ∈Υ T̃µJ , where

the minimization is componentwise. That is,

(
T̃ J

)
(i) = min

a∈A(i)

g(i, a) +
n∑
j=1

pij(a)J(j)


for J ∈ Rn and i ∈ {1, 2, . . . , n}. The cost to go function (or vector) for the SSP

corresponding to a stationary policy δ ∈ Λ is given by

J̃δ(i) = lim sup
N→∞

[
N−1∑
k=0

P k
δ ḡ

δ

]
i

for i ∈ {1, 2, . . . , n}.

We make the following assumptions [12].

Assumption 1.1 There exists at least one stationary deterministic proper policy.

Assumption 1.2 For every improper stationary deterministic policy µ, the corre-

sponding cost J̃µ(i) is∞ for at least one state i ∈ {1, 2, . . . , n}, i.e. some component

of the sum
∑N−1
k=0 P

k
µ ḡ

µ diverges to ∞ as N →∞.

14

A stationary deterministic policy µ ∈ Υ satisfying, for some vector J ∈ Rn, the

relation T̃µJ ≤ J (the inequality is componentwise) is proper under Assumption 1.1

and Assumption 1.2 [12].

Under Assumption 1.1 and Assumption 1.2 the optimal cost to go vector J̃∗ ∈

Rn is the unique solution of Bellman’s equation

T̃ J̃∗ = J̃∗.

Here,

J̃∗(i) = inf
µ∈M

J̃ν(i)

for i ∈ {1, 2, . . . , n}. A stationary deterministic policy µ ∈ Υ is optimal iff

T̃µJ̃
∗ = T̃ J̃∗.

Note that such a µ is proper. For a proper policy δ ∈ Λ, the cost to go vector is

given by

J̃δ = lim
N→∞

N−1∑
k=0

P k
δ ḡ

δ = (I − Pδ)−1ḡδ.

1.2 Value Iteration and Policy Iteration

In this section we will discuss the two main schemes for solving the MDPs

(that is finding the optimal cost to go and optimal policies). We will be discussing

Value Iteration and Policy Iteration for infinite horizon discounted cost problems

and SSPs. The value iteration schemes and policy iteration schemes for the general

average cost problem are more involved and will not be discussed here. See [12, 40]

for details. In this dissertation we are interested in average cost policy iteration

15

schemes for unichain [12, 40] MDPs with a common recurrent state. This will be

discussed in Chapter 5.

1.2.1 Value Iteration

First we focus on the infinite horizon discounted cost problem. Since T is a

contraction mapping with contraction coefficient β, we have the result that for any

two vectors J, Ĵ ∈ Rn and for all k = 0, 1, . . ., there holds

max
i∈S
|(T kJ)(i)− (T kĴ)(i)| ≤ βk max

i∈S
|J(i)− Ĵ(i)|.

In the value iteration scheme we start with any vector J ∈ Rn and successively

compute TJ, T 2J, Here T kJ = T (T k−1J) for k ∈ N with T 0J = J . Since T is

a contraction mapping, we have [12]

lim
k→∞

(T kJ)(i) = J∗(i)

for all i ∈ S. Here, J∗ is the optimal cost to go function for the infinite horizon

discounted cost problem. Furthermore, the error sequence |(T kJ)(i) − J∗(i)| is

bounded by a constant multiple of βk for all i ∈ S. This method is also called

successive approximation.

For the SSP we assume that Assumption 1.1 and Assumption 1.2 hold. The

DP operator T̃ is in general not a contraction mapping. In the value iteration

scheme we start with a vector J ∈ Rn and successively compute T̃ J, T̃ 2J,

Here T̃ kJ = T̃ (T̃ k−1J) for k ∈ N, with T̃ 0J = J . Under Assumption 1.1 and

Assumption 1.2 we have [12]

lim
k→∞

(T̃ kJ)(i) = J̃∗(i)

16

for all i ∈ {1, 2, . . . , n}. Here, J̃∗ ∈ Rn is the optimal cost to go function for the

SSP. This method is also called successive approximation.

1.2.2 Policy Iteration

The policy iteration algorithm generates a sequence of stationary deterministic

policies, each with improved cost over the preceding one.

First we deal with the discounted cost problem. Given the stationary deter-

ministic policy µ, and the corresponding cost function Jµ, an improved policy µ̄

is computed by minimization in the Dynamic Programming (DP) equation corre-

sponding to Jµ, that is Tµ̄J
µ = TJµ, and the process is repeated. The algorithm is

based on the following result [12].

Let µ and µ̄ be stationary deterministic policies such that Tµ̄J
µ = TJµ, or

equivalently, for i = 1, . . . , n,

g(i, µ̄(i)) + β
n∑
j=1

pij(µ̄(i))Jµ(j) = min
u∈A(i)

g(i, u) + β
n∑
j=1

pij(u)Jµ(j)

 .
Then we have

J µ̄(i) ≤ Jµ(i), i = 1, . . . , n.

Furthermore, if µ is not optimal, strict inequality holds in the above equation for at

least one state i.

The policy iteration algorithm is given below.

Step 1: (Initialization) Guess an initial stationary deterministic policy µ0.

Step 2: (Policy Evaluation) Given the stationary deterministic policy µk, compute

17

the corresponding cost function Jµk from the linear system of equations

(I − βPµk)Jµk = ḡµk .

Step 3: (Policy Improvement) If Jµk = TJµk stop; else obtain a new stationary

deterministic policy µk+1 satisfying

Tµk+1
Jµk = TJµk

and go to step 2 and repeat the process.

2

Note that since the number of stationary deterministic policies is finite, policy

iteration algorithm converges in a finite (≤ |Υ|) steps.

Now we discuss the policy iteration scheme for SSP. The policy iteration for

SSP is along the same lines as for the discounted cost problem. The policy iteration

algorithm generates a sequence of proper stationary deterministic policies, each with

improved cost over the preceding one. Given a proper stationary deterministic policy

µ and the corresponding cost to go function J̃µ ∈ Rn, an improved proper stationary

deterministic policy µ̄ is obtained by minimization in the DP equation corresponding

to J̃µ, that is T̃µ̄J̃
µ = T̃ J̃µ, and the process is repeated. The algorithm is based on

the following result [12]. Let µ be proper stationary deterministic policy. Let µ̄ be

a stationary deterministic policy such that T̃µ̄J̃
µ = T̃ J̃µ or equivalently

g(i, µ̄(i)) +
n∑
j=1

pij(µ̄(i))J̃µ(j) = min
u∈A(i)

g(i, u) +
n∑
j=1

pij(u)J̃µ(j)

 .
Then µ̄ is a proper policy and

J̃ µ̄(i) ≤ J̃µ(i), i = 1, . . . , n.

18

Furthermore if µ is not optimal, strict inequality holds in the above equation for at

least one state i.

The policy iteration algorithm for SSP is as in the discounted problem. We

start with a proper stationary deterministic policy µ0. In step 2 (policy evaluation)

we compute the cost to go function by

J̃µk = (I − Pµk)−1ḡµk .

For asynchronous value iteration, modified policy iteration, and approximate

policy iteration see [12, 16]. For adaptive aggregation schemes see [12, 13]. For

parallel distributed implementations see [15].

1.3 Partially Observable Markov Decision Processes

These are problems in which we cannot directly observe the current state of

the process for decision making [5, 6, 35, 39, 47, 48, 49] . Instead we get noisy

observations of the underlying state transitions. In this problem we assume that

the feasible control actions for all the underlying states are the same, namely A.

Here at time t, the system is in state st ∈ S, but we don’t have access to this state

information. We take an action ut ∈ A and the system moves to state st+1 with

probability pstst+1(ut), incurs a cost gt with E[gt | st = i, ut = u, st+1 = j] = g(i, u, j)

and E[gt | st = i, ut = u] = g(i, u). An observation yt+1 ∈ O = {1, 2, . . . , |O|} is

observed with probability Q(yt | st, ut, st+1). This additional information can be

utilized for taking an action at time t + 1. We deal with finite state, finite action,

finite observation POMDPs. A sufficient statistic for taking the best action at any

19

time t is the aposteriori probability distribution on the underlying states given the

history of past actions and observations and the initial distribution on the underlying

states. This aposteriori probability may be computed recursively at each time step.

A more systematic approach to the definition of the POMDP is given in Chapter 2.

Here again we may have different cost criteria like finite horizon, infinite horizon

discounted cost and average cost formulation. We will be primarily interested in

finite horizon and infinite horizon discounted cost criteria.

1.4 A Stochastic Approximation Algorithm

Next we consider a stochastic approximation algorithm [8] which is used in

proving the convergence of temporal difference schemes [54, 55]

Consider the following algorithm

θt+1 = θt + γt+1H(θt, Xt+1) + γ2
t+1ρt+1(θt, Xt+1),

where θt evolves in Rd and the state vector Xt lies in Rk or in a subset of Rk. H

and ρt are two functions from Rd×Rk to Rd. We assume that the random variables

(r.v.) θ0, X0, X1, . . . , Xt, . . . are defined on a probability space (Ω,F , P), and we

denote the σ-field of events generated by the r.v. θ0, X0, . . . , Xt by Ft. (γt)t∈N is

a sequence of non-negative real numbers called the step sizes where N is the set of

natural numbers. The following assumption is made, namely there exists a family

{Πθ : θ ∈ Rd} of transition probabilities Πθ(x,A) on Rk such that, for any Borel

subset A of Rk, we have

P [Xt+1 ∈ A | Ft] = Πθt(Xt, A)

20

From the above it can be seen that the 2-tuple (Xt, θt)t≥0 is a Markov process.

Its transition probability depends on t (since γt and ρt depend on t). It is therefore

an inhomogeneous Markov process. We prove the convergence of this algorithm

under asssumptions which are weaker than in [8].

1.5 Adaptive Control

The issue of adaptive control arises when we don’t have knowledge of the

underlying transition probabilities or the probability distribution of the immediate

cost. In the indirect adaptive control approach we try to estimate the transition

probabilities and the expected values of immediate costs, and based on this infor-

mation we try to choose control stratergies. In direct adaptive control schemes we

will be interested in directly finding an optimal control strategy and maybe the

optimal cost to go, without estimating the transition probabilities or the expected

values of immediate costs. In this dissertation we will be interested in direct adaptive

control schemes, in particular we use approximate policy iteration schemes [12, 16]

for MDPs. In particular, for the discounted cost problem we will be using tempo-

ral difference schemes [16, 19, 20, 26, 50, 54] to estimate the cost to go function

and estimate Q-values [16] for further policy improvement. For the average cost

problem, we use temporal difference schemes [55] to estimate the differential cost

and estimate Q-values for further policy improvement. Q-values are defined in the

appropriate chapters for the discounted and average cost problem.

When it comes to adaptive control of POMDPs, the issue becomes even more

21

complicated. In indirect adaptive control, we should know the cardinality of the

underlying state space S or else it must be estimated. Further the state transi-

tion probabilities and observation probabilities along with the expected values of

immediate costs need be estimated to arrive at a control strategy. In direct adap-

tive control of POMDPs we try to arrive at a control law without such estimates.

We suggest possible extensions of the direct adaptive control schemes developed for

MDPs to the discounted cost POMDP.

Q learning schemes are reinforcement learning schemes based on concepts from

value iteration. For Q learning schemes for discounted cost problems see [51, 57].

For Q learning schemes for average cost unichain MDP with a common recurrent

state see [1, 17]. For Q learning schemes for SSP see [2, 51]. See [42] for simulation

studies of various reinforcement learning schemes for MDPs. For empirical results on

average cost reinforcement learning see [38]. For actor-critic reinforcement learning

methods for MDPs see [29, 30]. For reinforecement learning schemes for POMDPs

see [18, 27, 32, 45]. For an analysis of an adaptive control scheme for a partially

observable controlled Markov Chain see [22].

For feature based schemes for large scale dynamic programming see [53]. For

real time dynamic programming see [7]. Various learning schemes for solving MDPs

are given in [44]. Some interesting algorithms for sequential decision making in-

cluding solving POMDPs are given in [31]. For linear programming formulations of

MDP see [12].

22

1.6 Organization Of The Dissertation

The rest of the dissertation is organized as follows.

In Chapter 2, we propose various computational schemes for solving POMDPs

with finite stage additive cost and infinite horizon discounted cost criteria. Error

bounds for the corresponding algorithm are given, and it is further shown that at

the expense of additional computational effort the POMDP can be solved as closely

to the optimal as desired. We prove that the finite stage optimal costs as well as

the optimal cost for the infinite horizon discounted cost problem are both Lipschitz

continuous (with domain the belief space, which is the unit simplex of probability

distributions over the underlying states) and give bounds for the Lipschitz constant.

In Chapter 3 we prove the convergence of the standard stochastic approxima-

tion algorithm presented in [8] under more general assumptions. This in turn can

be used to prove the convergence of the TD(λ), the temporal difference schemes

discussed later in Chapter 4 and Chapter 5 under more general assumptions.

In Chapter 4 we give an on-line direct adaptive scheme for discounted cost

MDP using approximate policy iteration [16] where we use TD(λ) updates to es-

timate the approximate value function and estimate the corresponding Q-values

on-line using a small step stochastic approximation scheme, in order for subsequent

policy updating. We use stationary fully randomized policies to approximate deter-

ministic policies, since this allows for exploration and hence lends itself to conver-

gence analysis under weaker assumptions on the transition probabilities. Note that

the optimal stationary deterministic policy for sufficiently large (close to 1) discount

23

factor is a Blackwell optimal policy for the average cost problem [12].

In Chapter 5 we give on-line direct adaptive schemes for average cost unichain

MDPs with a common recurrent state using approximate policy iteration. Here

also we use temporal difference schemes for estimating the differential cost. Q-value

estimates are also obtained on-line using stochastic small step approximation in

order for subsequent policy updating.

In Chapter 6 we summarize the contributions of the dissertation and discuss

possible extensions of temporal difference schemes to POMDPs.

Appendix A deals with a particular discretization scheme for the unit simplex

and provides the bounds on approximation by discretization of the unit simplex.

The appendix also deals with some combinatoric results.

Appendix B discusses results on the reachability structure of MDPs.

Appendix C discusses various error bounds for MDPs.

Appendix D discusses temporal difference schemes for SSPs.

24

Chapter 2

Computational Schemes For Partially Observable Markov Decision

Processes With Error Bounds

In this chapter we give computationally feasible techniques for solving the

Partially Observable Markov Decision Problem (POMDP) with the infinite horizon

total discounted cost criterion. Error bounds for the corresponding algorithm are

given, and it is further shown that at the expense of more computational effort the

POMDP can be solved as closely to the optimal as desired. The methodology can

be easily extended for finite stage additive cost problems with terminal cost. The

proofs of all the theorems in this chapter are given in Section 2.5.

2.1 Partially Observable Markov Decision Model

Let N denote the set of positive integers, N0 denote the set of non-negative

integers. For a set A, |A| denotes the cardinality of A, whereas for a real number α,

|α| denotes the absolute value of α. The homogeneous POMDP [23, 35, 39] can be

specified by the tuple (S,O,A, P,Q,Q0, p,G) where S = {1, ..., n} is the nonempty

finite set representing the underlying state space, O = {1, ..., |O|} is the nonempty

finite set of observations and A = {1, ..., |A|} is the finite nonempty set of actions

common to all the states in S. Define P (j | i, a) = pij(a) ≡ Pr[st+1 = j | st =

i, ut = a], ∀t ∈ N0, i, j ∈ S and a ∈ A, where st and ut denote the state and action,

25

respectively, at time t ∈ N0. Here ‘Pr’ denotes probability. Let P (a) denote the

n× n state transition matrix corresponding to action a with the (i, j)th entry equal

to pij(a). Let the observation probabilities be given by Q(l | i, a, j) = q(i, a, j, l) ≡

Pr[yt+1 = l | st = i, ut = a, st+1 = j], ∀t ∈ N0, i, j ∈ S, l ∈ O and a ∈ A. Here yt+1

is the observation made at time t + 1, after taking action ut at time t, but before

taking action ut+1 at time t + 1. Q0(l | i) ≡ Pr[y0 = l | s0 = i] with i ∈ S, l ∈ O

is the initial observation kernel. Let p ∈ ∆ ≡ {π ∈ Rn | πi ≥ 0,
∑n
i=1 πi = 1}, the

n − 1 dimensional unit simplex in Rn, where πi is the ith component of the vector

π ∈ Rn. Here p represents the initial distribution on the states S at time t = 0.

G(· | i, a, j, l) = Pr[· | st = i, ut = a, st+1 = j, yt+1 = l] is the probability distribution

kernel for the immediate cost gt ∈ R incurred at time t, conditioned on the fact that

the state at time t is i, action at time t is a, state at time t+ 1 is j and observation

at time t + 1 is l. For each i ∈ S, a ∈ A, g(i, a) represents the expected immediate

cost incurred when action a is taken in state i. g(i, a, j) represents the expected

immediate cost incurred at time t given that the current state is st = i, current

action is ut = a and next state at time t + 1 is st+1 = j. g(i, a, j) is assumed to be

finite. Note that g(i, a) =
∑n
j=1 pij(a)g(i, a, j) and that

g(i, a, j) =
∑
l∈O

q(i, a, j, l)
∫
R
ωG(dω | i, a, j, l).

The POCM (Partially Observable Control Model) evolves as follows. At time

t = 0, the initial unobservable state s0 has a prior distribution p ∈ ∆, and the initial

observation y0 is generated according to the initial observation kernel Q0(y0 | s0). If

at time t ∈ N0, the state is st and the control ut is applied, then an immediate cost

26

gt ∈ R is incurred and the system moves to the state st+1 according to the transition

probability P (st+1 | st, ut). The observation yt+1 ∈ O is generated with probability

Q(yt+1 | st, ut, st+1). A realization of the partially observable system looks like

(s0, y0, u0, g0, s1, y1, u1, g1, . . .) ∈ Ω ≡ (SOAR)∞, with s0 having distribution p ∈ ∆

and {ut} is a control sequence in A determined by a control policy. S, O and A

are endowed with the discrete topology. R is endowed with the Borel topology.

With the metric d(π, ξ) =
∑n
i=1 |πi − ξi| on ∆ (here π, ξ ∈ ∆) the corresponding

space (∆, d) is a Polish space. Note that d is the restriction to ∆ of the metric

corresponding to the `1 norm on Rn. Let h0 = (p, y0) ∈ H0 and the observable

history ht = (p, y0, u0, y1, u1, ..., yt−1, ut−1, yt) ∈ Ht for t ∈ N. Here H0 = ∆O and

Ht = Ht−1AO for t ∈ N, where these spaces are endowed with the corresponding

product topologies. An admissible policy for a POMDP is a sequence ν = {νt}

such that for each t ∈ N0, νt is a stochastic kernel on A given Ht. The set of all

admissible policies is denoted by M. In the POCM we assume that the state st is

not directly observable, to aid us in selecting the action ut.

A policy ν ∈M and an initial distribution p ∈ ∆, together with the stochastic

kernels P,Q,Q0,G, determine a unique probability measure denoted by Pνp on the

space Ω of all possible realizations of the partially observable system [23]. The

expectation with respect to this probability is denoted by Eν
p. The performance

criterion for the infinite horizon discounted cost problem is J(ν, p) = Eν
p[
∑∞
t=0 β

tgt],

the expected total discounted cost when the policy ν ∈ M is used and the initial

distribution on S is p. Here β ∈ [0, 1) is the discount factor. The aim of the

POMDP is to find a policy ν∗ ∈ M such that J(ν∗, p) = J∗(p), ∀p ∈ ∆. Here

27

J∗(p) = infν∈M J(ν, p), p ∈ ∆, is the optimal cost function. For a finite stage

problem with k stages the objective function is Jk(ν, p) = Eν
p[
∑k−1
t=0 β

tgt + βkr(sk)],

where βkr(i), i ∈ S, is the terminal cost of being in state i at the kth instant. In

the finite stage problem the restriction that β < 1 can be removed, i.e. β ∈ [0,∞).

In the finite horizon problem with k stages, as far as the policy is concerned, only

{ν0, ν1, . . . , νk−1} is of interest. Let the optimal k stage cost function be defined as

J∗k (p) = infν∈M Jk(ν, p).

2.2 Equivalent Fully Observable MDP

It is well known [5, 23, 47, 49] that the useful information in ht can be encap-

sulated in a vector pt ∈ ∆ for determining the best action ut at time t, ∀t ∈ N0, (i.e.

pt is a sufficient statistic), and the POMDP can be recast into an equivalent com-

pletely observed Markov Decision Process (MDP) with stationary structure [10, 11]

having as its state space the uncountable set ∆. Here [pt]i = Pr[st = i | ht] for each

i ∈ S. This may be computed recursively as follows (here h0 = (p, y0)):

[p0]i =
Q0(y0|i) [p]i∑n
j=1[p]j Q0(y0|j)

for i ∈ {1, ..., n}.

For t ∈ N0 the following Bayesian update rule is used :

pTt+1 = F (pt, ut, yt+1) where

F (π, a, o) =
πT P̄ o(a)

σ(π, a, o)
; π ∈ ∆, a ∈ A, o ∈ O.

Here P̄ o(a) ≡ P (a)� Q̄o
a where the operator � denotes term by term multiplication;

i.e. [P̄ o(a)]i,j = [P (a)]i,j [Q̄o
a]i,j. Also σ(π, a, o) = πT P̄ o(a) 1

¯
. The superscript of

28

πT denotes transposition of the vector π and Q̄l
a is the n × n matrix with (i, j)th

entry equal to q(i, a, j, l). 1
¯
∈ Rn is the vector with all components equal to 1.

σ(π, a, o) is the probability of observing o ∈ O at time t+ 1, given prior distribution

π ∈ ∆ on S at time t and that action a ∈ A is taken at time t, for any t ∈ N0.

[F (π, a, o)]T denotes the aposterior probability on the states S at time t + 1, given

prior probability π ∈ ∆ on S at time t, action a ∈ A is executed at time t and

observation o ∈ O is made at time t + 1. The above relations on the Bayesian

transition function F and the observation probability σ, may be arrived at as follows.

Notice that

Pr[st+1 | pt, ut, yt+1] =
Pr[st+1, yt+1 | pt, ut]

Pr[yt+1 | pt, ut]
.

For j ∈ S, o ∈ O, a ∈ A, we may compute

Pr[st+1 = j, yt+1 = o | pt = π, ut = a]

=
n∑
i=1

Pr[st+1 = j, yt+1 = o | st = i, ut = a] πi

=
n∑
i=1

Pr[yt+1 = o | st+1 = j, st = i, ut = a] Pr[st+1 = j | st = i, ut = a] πi

=
n∑
i=1

Pr[yt+1 = o | st+1 = j, st = i, ut = a] pij(a)πi

=
n∑
i=1

q(i, a, j, o) pij(a)πi.

Also

Pr[yt+1 = o | pt = π, ut = a] =
n∑
j=1

Pr[st+1 = j, yt+1 = o | pt, ut = a]

=
n∑
j=1

n∑
i=1

q(i, a, j, o) pij(a)πi.

With

P̄ o(a) = P (a)� Q̄o
a

29

we obtain the desired result.

The transition kernel for the equivalent MDP [5, 23] with state space ∆ is

given by :

K(D | π, a) =
∑
o∈O

σ(π, a, o)I [[F (π,a,o)]T ∈D] (2.1)

with D ∈ B(∆), where B(∆) is the Borel sigma field on ∆. Here I is the indicator

function. In fact the above equation 2.1 holds for any D ⊂ ∆. We could have chosen

as our σ-field the collection of arbitrary subsets of ∆. The expected immediate cost

for taking action a ∈ A from state π ∈ ∆ for this MDP is given by πT ḡ(a), where

ḡ(a) = (g(1, a), ..., g(n, a))T . The original discounted cost criterion POMDP can be

solved by solving this new MDP with the infinite horizon discounted cost criterion

(using the same discount factor β) [35, 39]. For the k stage problem the terminal

cost at time k for this new MDP at state π ∈ ∆ is set to be βk (πT r), where

r = (r(1), ..., r(n))T ∈ Rn.

2.3 Lipschitz Continuity Of Value Functions

The optimal value function for the infinite horizon discounted cost problem

on this equivalent MDP, denoted by V ∗ : ∆ → R, is known to be concave and

continuous [6, 23, 33, 36]. Also, the existence of a stationary non-randomized optimal

Markov policy for this equivalent MDP is guaranteed. In fact

J∗(p) =
∑
o∈O

(
∑
j∈S

Q0(o|j) [p]j)V
∗($(p, o))


where

30

[$(p, o)]i =
Q0(o|i) [p]i∑
j∈S Q0(o|j) [p]j

. (2.2)

The function J∗ is also continuous and concave on ∆. Let B(∆) be the set of all

bounded real valued functions on ∆ with the distance between U, V ∈ B(∆) given

by

ρ(U, V) = sup
π∈∆
|U(π)− V (π)|.

With this metric B(∆) is a complete metric space.

Define the function h : ∆×A×B(∆)→ R by

h(π, a, V) = πT ḡ(a) + β
∑
o∈O

σ(π, a, o)V ([F (π, a, o)]T)

where π ∈ ∆, a ∈ A, V ∈ B(∆). Let the function H : B(∆) → B(∆) be defined

by

(H V) (π) = min
a∈A

h(π, a, V)

where π ∈ ∆ and V ∈ B(∆). For a control function δ : ∆ → A, define the

corresponding mapping Hδ : B(∆)→ B(∆) by

(Hδ V) (π) = h(π, δ(π), V)

where π ∈ ∆ and V ∈ B(∆). For U, V ∈ B(∆) we denote U ≤ V if and only

if U(π) ≤ V (π), ∀π ∈ ∆. Note that Hδ and H are monotone operators, i.e.

U, V ∈ B(∆), U ≤ V implies HδU ≤ HδV and HU ≤ HV . Also if β ∈ [0, 1),

Hδ and H are contraction mappings with contraction coefficients β; i.e. for U, V ∈

B(∆), ρ(HU,HV) ≤ βρ(U, V) and ρ(HδU,HδV) ≤ βρ(U, V).

A control function δ : ∆ → A is said to be “greedy” for a V ∈ B(∆) if

31

HδV = HV , that is

δ(π) = arg min
a∈A

h(π, a, V) ∀π ∈ ∆.

(If there are multiple minimizing arguments, we could pick any of them.)

Also if β ∈ [0, 1), H has unique fixed point V ∗, the optimal value function

under the infinite horizon discounted cost criterion for the equivalent MDP with

state space ∆. Similarly for a stationary policy δ (using control function δ) Hδ

has unique fixed point V δ, the value function corresponding to policy δ for the

discounted cost problem defined on the equivalent MDP with state space ∆. Note

that a stationary policy δ∗ such that Hδ∗V
∗ = HV ∗ is optimal for the equivalent

MDP. Define Γ0 ≡ {r}, the singleton set with its element in Rn.

Let V ∗k : ∆ → R, k = 0, 1, 2, ... denote the optimal value function for the

k stage problem. For the finite stage problem, V ∗0 (π) = πT r and V ∗k , k = 1, 2, ...

can be computed in that order by value iteration [23, 36], namely V ∗k = H V ∗k−1.

The functions {V ∗k } are known to be piecewise linear and concave and can each be

represented as the minimum of a finite number of linear functions [35, 39, 48], i.e.

V ∗k (π) = min
W∈Γk

πTW

k ∈ N0, π ∈ ∆. For each k ∈ N0, Γk is a finite set of vectors in Rn and for k ∈ N,

each W ∈ Γk has the form W = ḡ(a) + β
∑
o∈O P̄

o(a)Wϕo ; for some a ∈ A. Here ϕo

is some indexing into the set Γk−1 so that Wϕo ∈ Γk−1. But the number of linear

functions needed to represent V ∗k or equivalently |Γk| may grow exponentially fast

(at most |A|
|O|k−1
|O|−1 for V ∗k); to get a minimal representation for the exact values of

V ∗k one may have to use linear programming as in Sondik’s method [35, 39, 48] or

32

the more recent method due to Littman [28, 31], and this may be computationally

expensive. Note that

J∗k (p) =
∑
o∈O

(
∑
j∈S

Q0(o | j)[p]j)V ∗k ($(p, o))


where $(p, o) is defined as in equation 2.2. J∗k is also piecewise linear and concave

and can be represented as the minimum of a finite number of linear functions. When

β ∈ [0, 1), V ∗k converges to V ∗ uniformly as k →∞ irrespective of the terminal cost

which is used. However we may assume that the terminal cost is zero when we use

value iteration to approximate V ∗.

Define the following constants :

Gmax = max
i∈S

max
a∈A

g(i, a), Gmin = min
i∈S

min
a∈A

g(i, a),

rmax = max
i∈S

r(i), rmin = min
i∈S

r(i),

C = Gmax −Gmin.

Fix integer k > 1. Let control functions δ∗t be such that Hδ∗t
V ∗t = HV ∗t for

t = 0, 1, . . . , k−1. Then the Markov policy {δ∗k−1, δ
∗
k−2, . . . , δ

∗
1, δ
∗
0} is optimal for the

k stage problem of the equivalent MDP. Here control function δ∗t is used at stage

(k − 1− t) for k = 0, 1, . . . , k − 1.

Theorem 2.1 {V ∗k } and V ∗ are Lipschitz continuous, and a Lipschitz constant for

V ∗ is C
2

1
1−β . In the k stage finite horizon case with non-zero terminal cost, a Lip-

schitz constant for V ∗k is given by C
2

(
∑k−1
t=0 β

t) + 1
2
βk(rmax − rmin). Note that C is

a constant, independent of P and Q, that depends only on the expected immediate

cost. 2

Note that
∑k−1
t=0 β

t = 1−βk
1−β when β 6= 1, and

∑k−1
t=0 β

t = k for β = 1.

33

2.4 Approximation By Discretization

A method for approximating V ∗ is given by finding the value function for

a finite state MDP derived from the uncountable state MDP by partitioning the

state space ∆ in the spirit of [24]. However the theorems given in [24] are not

directly applicable to this problem since some of the assumptions are not satisfied by

the present problem, for example the Bayesian transition function is not Lipschitz

continuous in general. But we use the Lipschitz continuity of the optimal value

functions {V ∗k } and V ∗ to circumvent this. Let D = {D1,D2, ...,Dm} be a finite

partition of ∆, where Di, i = 1, 2...,m, are disjoint measurable subsets of ∆ such

that ∆ =
⋃m
i=1Di. For each i = 1, ...,m, let di ∈ Di be an arbitrary representative

point in Di. A new finite state MDP is constructed with the states being the

points in the grid E = {di | i = 1, ...,m}, the transition probabilities being pDij(a) =

K(Dj | di, a), i, j ∈ {1, ...,m}, a ∈ A, with the stochastic kernel K as defined earlier

in equation 2.1. The immediate cost function is given by gD(i, a) = dTi ḡ(a) for

i ∈ {1, ...,m}, a ∈ A. Let V̄ D ∈ Rm be the optimal value function for this infinite

horizon discounted cost minimization problem with the same β ∈ [0, 1). For the

finite horizon problem we may assign a terminal cost rD(i) = dTi r; i ∈ {1, ...,m}.

Let V̄ Dk ∈ Rm; k = 0, 1, ..., denote the finite k stage optimal costs obtained by value

iteration, i.e.,

[V̄ D0]i = rD(i) ∀i ∈ {1, ...,m}.

34

For k ≥ 1,

[V̄ Dk]i = min
a∈A

gD(i, a) + β
m∑
j=1

pDij(a)[V̄ Dk−1]j


∀i ∈ {1, ...,m}.

Note that V̄ Dk −→
k→∞

V̄ D and

‖ V̄ D − V̄ Dk ‖ ≤ βk ‖ V̄ D − V̄ D0 ‖

where ‖ · ‖ denotes the sup-norm given by ‖ V̄ ‖= maxi∈{1,2,...,m} |[V̄]i| for V̄ ∈ Rm.

Extend V̄ D to the whole of ∆ by taking V D(π) = [V̄ D]i if π ∈ Di. A similar

piecewise constant extension can be performed to obtain V Dk (π) = [V̄ Dk]i if π ∈ Di,

for the finite stage problem. Define the diameter of the partition D by Diam(D) ≡

max1≤i≤m supπ,ξ∈Di d(π, ξ).

Theorem 2.2 For the infinite horizon discounted cost problem,

ρ(V D, V ∗) ≤ C

2

Diam(D)

(1− β)2
.

For the finite k stage problem,

ρ(V ∗k , V
D
k) ≤

[
C

2
(
k−1∑
t=0

(t+ 1)βt) +
(k + 1)

2
βk(rmax − rmin)

]
Diam(D).

2

Note that

k−1∑
t=0

(t+ 1)βt =
d

dβ

(
k∑
t=0

βt
)

=
d

dβ

(
1− βk+1

1− β

)

=
1− (k + 1)βk + kβk+1

(1− β)2
.

35

Also for β = 1,

k−1∑
t=0

(t+ 1)βt =
k(k + 1)

2
.

Now V̄ D ∈ Rm may be solved by any of the standard methods like policy

iteration or may be approximated as closely as desired by value iteration over a

finite, though large, number of steps [10, 12]. The following result (see Lemma C.2

in Appendix C) which is an extension of the results in [16, 46] may be used to find

a suboptimal stationary nonrandomized policy for the infinite horizon discounted

cost problem with state space ∆.

Lemma 2.1 Let U ∈ B(∆) be such that ρ(U, V ∗) ≤ ε. Assume that V δ : ∆→ R is

the value function for the infinite horizon discounted cost problem (with state space

∆) obtained by following the stationary non-randomized Markov policy δ, where

δ : ∆→ A corresponds to the one-step “near greedy” control function obtained while

doing approximate dynamic programming update [12] on U (i.e. ρ(HδU,HU) ≤ ε

). Then ρ(V ∗, V δ) ≤ 2εβ+ε
1−β .

2

(With slight abuse of notation we use δ to represent both the control func-

tion δ : ∆ → A as well as the stationary policy). Lemma 2.1 along with Theo-

rem 2.2 (which gives the bound for ρ(V D, V ∗)) can be used to find a stationary

non-randomized suboptimal policy (which can be made as close to the optimal as

desired) for the MDP with state space ∆. Similar bounds for the approximate value

functions for finite stage problems, along with suboptimal nonrandomized Markov

policies (though not guaranteed to be stationary), may be obtained.

36

For k ∈ N0, define the control functions δk : ∆→ A by

δk(π) = arg min
a∈A

h(π, a, V Dk) ∀π ∈ ∆.

Let Ψk ≡ {δk−1, δk−2, . . . , δ0}, denote a Markov policy [35] for the k stage equivalent

MDP with state space ∆. Under this policy, for a k stage problem, the control func-

tion δk−1−t is used to choose the control action at the tth stage for t ∈ {0, 1, . . . , k−1}.

Let V Ψ
k : ∆→ R denote the corresponding value function for the k stage problem

while using the control policy Ψk, with V Ψ
0 = V ∗0 . It is easy to see that for k ∈ N,

V Ψ
k = Hδk−1

V Ψ
k−1. The following result holds.

Theorem 2.3 For k ∈ N, the k stage value function V Ψ
k corresponding to the policy

Ψk satisfies the relationship

ρ(V Ψ
k , V

∗
k) ≤

[
C

2
(
k−1∑
t=0

t(t+ 1)βt) +
k(k + 1)

2
βk(rmax − rmin)

]
Diam(D).

2

We also give another Markov policy defined as follows. For k ∈ N0, define the

control functions δ̂k : ∆→ A by,

δ̂k(π) = arg min
a∈A

h(di, a, V
D
k) ∀π ∈ Di

for i ∈ {1, . . . ,m}. Observe that h(di, a, V
D
k) = gD(i, a) + β

∑m
j=1 p

D
ij(a)[V̄ Dk]j. Let

Ψ̂k ≡ {δ̂k−1, δ̂k−2, . . . , δ̂0}, denote another Markov policy for the k stage equivalent

MDP with state space ∆. Under this policy, for a k stage problem, the control func-

tion δ̂k−1−t is used to choose the control action at the tth stage for t ∈ {0, 1, . . . , k−1}.

Let V Ψ̂
k : ∆→ R denote the value function for the k stage problem while using the

control policy Ψ̂k, with V Ψ̂
0 = V ∗0 . It may be seen that for k ∈ N, V Ψ̂

k = Hδ̂k−1
V Ψ̂
k−1.

37

Theorem 2.4 For k ∈ N the k stage value function V Ψ̂
k corresponding to the policy

Ψ̂k satisfies the relationship

ρ(V Ψ̂
k , V

∗
k) ≤

[
C

2
(
k−1∑
t=0

(t+ 1)(t+ 2)βt) +
k(k + 3)

2
βk(rmax − rmin)

]
Diam(D).

2

Note that

k−1∑
t=0

(t+ 1)(t+ 2)βt =
d

dβ

(
k∑
t=0

(t+ 1)βt
)

=
d

dβ

(
1− (k + 2)βk+1 + (k + 1)βk+2

(1− β)2

)

=
2− (k + 1)(k + 2)βk + 2k(k + 2)βk+1 − k(k + 1)βk+2

(1− β)3
.

Also for β = 1,

k−1∑
t=0

(t+ 1)(t+ 2)βt =
k(k + 1)(k + 2)

3
.

Let the control function δ̂ : ∆→ A be defined by,

δ̂(π) = arg min
a∈A

h(di, a, V
D), ∀π ∈ Di

for i ∈ {1, . . . ,m}. Note that h(di, a, V
D) = gD(i, a) + β

∑m
j=1 p

D
ij(a)[V̄ D]j. This

control function is essentially the “piecewise constant” extension to ∆ of the optimal

stationary control function of the discretized finite state MDP. Let V δ̂ : ∆ → R,

denote the value function obtained for the equivalent MDP under the infinite horizon

discounted cost criterion while following the stationary “policy” δ̂. When β ∈ [0, 1)

the following corollary to Theorem 2.4 may be obtained. The proof can be adapted

from that of Theorem 2.4. We omit the details.

38

Corollary 2.1 The value function V δ̂ for the infinite horizon dicounted cost prob-

lem, obtained while following the stationary “policy” δ̂, satisfies the relationship

ρ(V δ̂, V ∗) ≤ C

(1− β)3
Diam(D).

2

We mention in passing that our analysis can be used for finding analytical

error bounds for the schemes discussed in [36] and may be used to show that by

making the grid finer in [36] we can obtain suboptimal policies which are as close to

the optimal as desired.

2.5 Proof Of Theorems

In this section we give the proofs of Theorem 2.1 and Theorem 2.2, and outline

the proofs of Theorem 2.3 and Theorem 2.4.

Definition 2.1 For W ∈ Rn define

slope(W) ≡ max
i∈{1,···,n}

[W]i − min
i∈{1,···,n}

[W]i.

2

Here [W]i is the ith component of W . Note that the following three properties

of slope follow easily from the definition.

1. For any n×n stochastic matrix P̃ and any W ∈ Rn, slope(P̃ W) ≤ slope(W).

39

2. For any λ ∈ R and W ∈ Rn, slope(λW) = |λ| slope(W).

3. For any W, W̃ ∈ Rn, slope(W + W̃) ≤ slope(W) + slope(W̃).

Lemma 2.2 For any given π, ξ ∈ ∆ and W ∈ Rn

|πTW − ξTW | ≤ 1

2
d(π, ξ) slope(W).

2

Proof of Lemma 2.2

Let Wmax ≡ maxi∈{1,···,n}[W]i, and Wmin ≡ mini∈{1,···,n}[W]i. Let

Ī = {i ∈ {1, · · · , n} : πi > ξi},

J̄ = {i ∈ {1, · · · , n} : πi < ξi}.

Note that ∑
i∈Ī

(πi − ξi) +
∑
i∈J̄

(πi − ξi) =
∑

i∈{1,···n}
(πi − ξi) = 0.

This implies that ∑
i∈Ī

(πi − ξi) =
∑
i∈J̄

(ξi − πi) =
1

2
d(π, ξ).

Now

∑
i∈Ī

(πi − ξi)[W]i ∈
[
1

2
d(π, ξ)Wmin,

1

2
d(π, ξ)Wmax

]
and

∑
j∈J̄

(ξj − πj)[W]j ∈
[
1

2
d(π, ξ)Wmin,

1

2
d(π, ξ)Wmax

]
.

Hence

40

∣∣∣πTW − ξTW ∣∣∣
=

∣∣∣∣∣∣
∑
i∈Ī

(πi − ξi)[W]i −
∑
j∈J̄

(ξj − πj)[W]j

∣∣∣∣∣∣
≤ 1

2
d(π, ξ)(Wmax −Wmin)

=
1

2
d(π, ξ) slope(W).

2

Let Γ be a finite nonempty set of vectors in Rn. Define

maxΓ ≡ max
W∈Γ

max
i∈{1,···,n}

[W]i,

minΓ ≡ min
W∈Γ

min
i∈{1,···,n}

[W]i.

Lemma 2.3 For any a ∈ A consider the vector [ḡ(a) + β
∑
o∈O P̄

o(a)Wϕo] ∈ Rn,

where ϕo is an indexing into the set Γ dependent on o so that Wϕo ∈ Γ. Then for

i ∈ {1, · · · , n}

min
j∈S

g(j, a) + βminΓ ≤
[
ḡ(a) + β

∑
o∈O

P̄ o(a)Wϕo

]
i

and

max
j∈S

g(j, a) + βmaxΓ ≥
[
ḡ(a) + β

∑
o∈O

P̄ o(a)Wϕo

]
i

.

2

Proof of Lemma 2.3

Observe that[∑
o∈O

P̄ o(a)Wϕo

]
i

=
∑
o∈O

n∑
j=1

[P̄ o(a)]i,j[Wϕo]j

=
∑
o∈O

n∑
j=1

pij(a)q(i, a, j, o)[Wϕo]j

=
n∑
j=1

pij(a)
∑
o∈O

q(i, a, j, o)[Wϕo]j

41

Also minΓ ≤
∑
o∈O q(i, a, j, o)[Wϕo]j ≤ maxΓ for each i, j ∈ {1, . . . , n}. Hence it

follows that for each i ∈ {1, . . . , n}

minΓ ≤
[∑
o∈O

P̄ o(a)Wϕo

]
i

≤ maxΓ.

Now it may be seen that for i ∈ {1, · · · , n}

min
j∈S

g(j, a) + βminΓ ≤
[
ḡ(a) + β

∑
o∈O

P̄ o(a)Wϕo

]
i

and

max
j∈S

g(j, a) + βmaxΓ ≥
[
ḡ(a) + β

∑
o∈O

P̄ o(a)Wϕo

]
i

.

It may also be seen that

slope

(
ḡ(a) + β

∑
o∈O

P̄ o(a)Wϕo

)
≤(

max
j∈S

g(j, a)−min
j∈S

g(j, a)
)

+ β (maxΓ −minΓ) . (2.3)

2

Corollary 2.2 The function from ∆→ R defined by

π 7→ πT [ḡ(a) + β
∑
o∈O

P̄ o(a)Wϕo] = πT ḡ(a) + β
∑
o∈O

σ(π, a, o)F (π, a, o)Wϕo

is Lipschitz continuous with a Lipschitz constant 1
2
[(maxj∈S g(j, a)−minj∈S g(j, a))+

β (maxΓ −minΓ)].

2

42

Proof of Corollary 2.2

This follows from Lemma 2.3 and Lemma 2.2.

2

Let minΓk ≡ minW∈Γk mini∈{1,···,n}[W]i and maxΓk ≡ maxW∈Γk maxi∈{1,···,n}[W]i,

where Γk was defined earlier. Note that Γ0 = {r}, and hence minΓ0 = rmin and

maxΓ0 = rmax.

Proof of Theorem 2.1

For k ≥ 1, if W ∈ Γk then for some a ∈ A, W = ḡ(a) + β
∑
o∈O P̄

o(a)Wϕo ,

where ϕo is an indexing into the set Γk−1 dependent on o so that Wϕo ∈ Γk−1. This

together with Lemma 2.3 implies

Gmin + βminΓk−1
≤ minΓk ≤ maxΓk ≤ Gmax + βmaxΓk−1

.

By induction it may be seen that

Gmin

k−1∑
t=0

βt + βk minΓ0 ≤ minΓk

and

Gmax

k−1∑
t=0

βt + βk maxΓ0 ≥ maxΓk .

This in turn implies that for k ≥ 1, if W ∈ Γk then slope(W) ≤ C(
∑k−1
t=0 β

t) +

βk(maxΓ0 −minΓ0). Now V ∗k = minW∈Γk π
TW . Since V ∗k is the minimum of a finite

number of Lipschitz continuous functions defined on the convex subset ∆ of Rn, V ∗k

itself is Lipschitz continuous with a Lipschitz constant which is the largest among

the constituent ones.

43

Hence by Lemma 2.2, V ∗k is Lipschitz continuous with a Lipschitz constant

C
2

(
∑k−1
t=0 β

t) + βk

2
(maxΓ0 − minΓ0). When β ∈ [0, 1), V ∗k converges to V ∗ uniformly

on ∆ at a geometric rate governed by β. Hence taking the limit gives that V ∗ is

Lipschitz continuous with Lipschitz constant C
2

1
1−β .

2

Proof of Theorem 2.2

From Theorem 2.1, Lemma 2.2 and the definition of V D0 it follows that π ∈

Di, i ∈ {1, · · · ,m} implies |V ∗0 (π) − V D0 (π)| = |V ∗0 (π) − V ∗0 (di)| ≤ 1
2
(maxΓ0 −

minΓ0) Diam(D), since V D0 (π) = V D0 (di) = V ∗0 (di). This implies that ρ(V ∗0 , V
D

0) ≤

1
2
(maxΓ0 − minΓ0) Diam(D). For each k ∈ N, i ∈ {1, . . . ,m}, a ∈ A note that

|h(di, a, V
D
k−1) − h(di, a, V

∗
k−1)| ≤ βρ(V ∗k−1, V

D
k−1). This in turn implies |V Dk (di) −

V ∗k (di)| ≤ βρ(V ∗k−1, V
D
k−1) from the corresponding definitions of V Dk and V ∗k . Now V ∗k

is Lipschitz continuous with a Lipschitz constant C
2

(
∑k−1
t=0 β

t)+ 1
2
βk(maxΓ0−minΓ0).

By the definition of V Dk , for any π ∈ Di, V Dk (π) = V Dk (di). Hence for any π ∈ Di,

|V Dk (π)− V ∗k (π)|

= |V Dk (di)− V ∗k (di) + V ∗k (di)− V ∗k (π)|

≤ |V Dk (di)− V ∗k (di)| + |V ∗k (di)− V ∗k (π)|

≤ βρ(V Dk−1, V
∗
k−1) +[

C

2

(
k−1∑
t=0

βt
)

+
1

2
βk(maxΓ0 −minΓ0)

]
Diam(D).

This implies

ρ(V Dk , V
∗
k)

44

≤ βρ(V Dk−1, V
∗
k−1) +[

C

2

(
k−1∑
t=0

βt
)

+
1

2
βk(maxΓ0 −minΓ0)

]
Diam(D).

By an induction argument it easily follows that ∀k ∈ N

ρ(V ∗k , V
D
k)

≤ C

2

(
k−1∑
t=0

(t+ 1)βt
)

Diam(D) +

(k + 1)

2
βk(maxΓ0 −minΓ0) Diam(D)

=
C

2

k−1∑
t=0

βt

k−1−t∑
j=0

βj

 Diam(D) +

(k + 1)

2
βk(maxΓ0 −minΓ0) Diam(D).

When β ∈ [0, 1),

k−1∑
t=0

βt

k−1−t∑
j=0

βj

 ≤
k−1∑
t=0

βt
1

1− β

≤ 1

(1− β)2
.

Hence when β ∈ [0, 1),

ρ(V ∗k , V
D
k) ≤ C

2

1

(1− β)2
Diam(D) +

(k + 1)

2
βk(maxΓ0 −minΓ0) Diam(D).

When β ∈ [0, 1), V Dk → V D as k →∞ uniformly on ∆ since V̄ Dk → V̄ D. Similarly,

V ∗k → V ∗ as k →∞ uniformly on ∆. Hence taking the limit gives

ρ(V ∗, V D) ≤ C

2

1

(1− β)2
Diam(D),

since (k + 1)βk → 0 as k →∞.

2

45

Proof of Theorem 2.3

For any π ∈ ∆, a ∈ A, and U, V ∈ B(∆), |h(π, a, V)−h(π, a, U)| ≤ β ρ(U, V).

For k ∈ N this can be used to prove that ρ(Hδk−1
V ∗k−1, H V ∗k−1) ≤ 2β ρ(V ∗k−1, V

D
k−1).

Also ρ(Hδk−1
V Ψ
k−1, Hδk−1

V ∗k−1) ≤ βρ(V ∗k−1, V
Ψ
k−1). Hence

ρ(V ∗k , V
Ψ
k)

= ρ(H V ∗k−1, Hδk−1
V Ψ
k−1)

≤ ρ(H V ∗k−1, Hδk−1
V ∗k−1) + ρ(Hδk−1

V ∗k−1, Hδk−1
V Ψ
k−1)

≤ 2β ρ(V ∗k−1, V
D
k−1) + βρ(V ∗k−1, V

Ψ
k−1).

Now ρ(V ∗0 , V
Ψ

0) = 0. Hence ρ(V ∗1 , V
Ψ

1) ≤ 2β ρ(V ∗0 , V
D

0) ≤ β (maxΓ0−minΓ0) Diam(D).

Using the bounds for ρ(V ∗k , V
D
k) from Theorem 2.2, we may see by an induction ar-

gument that for k > 1,

ρ(V ∗k , V
Ψ
k)

≤ C

k−1∑
t=1

 t∑
j=1

j

 βt
 Diam(D) +

(
k∑
t=1

t

)
βk (maxΓ0 −minΓ0) Diam(D)

= C

(
k−1∑
t=0

t(t+ 1)

2
βt
)

Diam(D) +

k(k + 1)

2
βk (maxΓ0 −minΓ0) Diam(D).

This proves Theorem 2.3. Observe that for k > 1,
∑k−1
t=1 (

∑t
j=1 j)β

t =
∑k−1
t=1 t(

∑k−1
j=t β

j).

Hence when β ∈ [0, 1),

k−1∑
t=1

 t∑
j=1

j

 βt ≤ β

1− β

(
k−2∑
t=0

(t+ 1)βt
)

≤ β

(1− β)

1

(1− β)2
,

46

where the last inequality follows as in the proof of Theorem 2.2.

Hence limk→∞ ρ(V ∗, V Ψ
k) = limk→∞ ρ(V ∗k , V

Ψ
k) ≤ C β

(1−β)3 Diam(D).

2

Proof of Theorem 2.4

For any a ∈ A and k ∈ N, h(π, a, V ∗k−1) considered as a function of π is

representable as the minimum of a finite number of linear functions on ∆ and is

Lipschitz continuous, and the same Lipschitz constant given in Theorem 2.1 for

V ∗k holds. This fact may be obtained in a manner similar to that of the proof

of Theorem 2.1. It may also be seen that for each i ∈ {1, . . . ,m} and k ∈ N,

|h(di, δ̂k−1(di), V
∗
k−1) − V ∗k (di)| ≤ 2β ρ(V ∗k−1, V

D
k−1). Now for any π ∈ Di, δ̂k(π) =

δ̂k(di) by definition. Hence for any π ∈ Di,

|V Ψ̂
k (π)− V ∗k (π)|

= |h(π, δ̂k−1(π), V Ψ̂
k−1)− V ∗k (π)|

≤ |h(π, δ̂k−1(π), V Ψ̂
k−1)− h(π, δ̂k−1(π), V ∗k−1)| +

|h(π, δ̂k−1(π), V ∗k−1)− h(di, δ̂k−1(di), V
∗
k−1)| +

|h(di, δ̂k−1(di), V
∗
k−1)− V ∗k (di)| +

|V ∗k (di)− V ∗k (π)|

≤ β ρ(V ∗k−1, V
Ψ̂
k−1) +

2

(
C

2
(
k−1∑
t=0

βt) +
1

2
βk(maxΓ0 −minΓ0)

)
Diam(D)

+ 2β ρ(V ∗k−1, V
D
k−1).

47

Hence

ρ(V Ψ̂
k , V

∗
k)

≤ β ρ(V ∗k−1, V
Ψ̂
k−1) +

2

(
C

2
(
k−1∑
t=0

βt) +
1

2
βk(maxΓ0 −minΓ0)

)
Diam(D)

+ 2β ρ(V ∗k−1, V
D
k−1).

Now ρ(V ∗0 , V
Ψ̂

0) = 0. Using the bounds for ρ(V ∗k , V
D
k) from Theorem 2.2, we may

see by an induction argument that for k ∈ N,

ρ(V ∗k , V
Ψ̂
k)

≤ C

k−1∑
t=0

 t∑
j=0

(j + 1)

 βt
 Diam(D) +

(
k∑
t=1

(t+ 1)

)
βk (maxΓ0 −minΓ0) Diam(D)

= C

(
k−1∑
t=0

(t+ 1)(t+ 2)

2
βt
)

Diam(D) +

k(k + 3)

2
βk (maxΓ0 −minΓ0) Diam(D).

When β ∈ [0, 1), it may be seen in a manner similar to that in the proof of Theo-

rem 2.3, that for k ∈ N,

k−1∑
t=0

 t∑
j=0

(j + 1)

 βt ≤ 1

(1− β)3
.

Hence limk→∞ ρ(V ∗, V Ψ̂
k) = limk→∞ ρ(V ∗k , V

Ψ̂
k) ≤ C 1

(1−β)3 Diam(D).

2

48

2.6 An Example For a Non-Lipschitz Bayesian Transition Function

We give an example to show that the Bayesian transition function F (π, a, o)

is not necessarily a Lipschitz continuous function of π for fixed action a and a fixed

observation o. This implies that Assumption A.2 of [9] need not be satisfied in

general for a POMDP, and hence the results given in [9] cannot be adapted directly

to our case. Consider a POMDP with S = {1, 2, 3}; O = {1, 2}; A = {1}. Let

P (1) =



1
2

1
2

0

1
2

0 1
2

0 0 1


,

q(i, 1, 1, 1) = q(i, 1, 1, 2) = 1
2
; q(i, 1, 2, 1) = q(i, 1, 2, 2) = 1

2
; q(i, 1, 3, 1) = 0, q(i, 1, 3, 2) =

1; for all i ∈ {1, . . . , n}. In this case it may be seen that

[F (π, 1, 1)]2 =
1
4
π1

2
4
π1 + 1

4
π2

and

∂ [F (π, 1, 1)]2
∂π2

=
− 1

16
π1(

2
4
π1 + 1

4
π2

)2 .

Let π = (α, α, 1− 2α) with α ∈ (0, 1
2
). Then

∂ [F (π, 1, 1)]2
∂π2

∣∣∣∣∣
π=(α,α,1−2α)

= −1

9

1

α
.

Now as α → 0+ this quantity tends to −∞. This implies that F (π, 1, 1) is not

Lipschitz continuous.

49

Chapter 3

A Stochastic Approximation Algorithm For Periodic Markov

Processes

In this chapter we discuss a stochastic approximation algorithm which is a

slight generalization of the results in [8]. We allow the Markov process to be periodic

(i.e. it need not be aperiodic). The discussion of this chapter closely follows that

of Chapter 1 in part II of [8]. We use the same notations as in Chapter 1, Part II

of [8]. The notations in this chapter are self contained. Consider the algorithm

θn+1 = θn + γn+1H(θn, Xn+1) + γ2
n+1ρn+1(θn, Xn+1) (3.1)

where θn evolves in Rd and the state vector Xn lies in Rk or in a subset of Rk, say

X . H and ρn are two functions from Rd ×Rk to Rd. We assume that the random

variables (r.v.) θ0, X0, X1, . . . , Xn, . . . are defined on a probability space (Ω,F , P),

and we denote the σ-field of events generated by the r.v. θ0, X0, . . . , Xn by Fn. Let

N denote the set of natural numbers, i.e. the set of positive integers. In all that

follows, the following assumptions are made:

(A.1) (γn)
n∈N is a sequence of non-negative real numbers such that

∑
n γn = +∞

and
∑∞
n=1 | γn+1 − γn |≡ K̃γ <∞. Then γ̃ ≡ sup

n∈N γn <∞.

2

Denote Kn
γ =

∑∞
k=n | γk − γk+1 |. Then K1

γ = K̃γ. Note that limn→∞K
n
γ = 0.

50

(A.2) There exists a family {Πθ : θ ∈ Rd} of transition probabilities Πθ(x,A) on

Rk such that, for any Borel subset A of Rk, we have

P [Xn+1 ∈ A | Fn] = Πθn(Xn, A) (3.2)

2

Assumption (A.2) says that the 2-tuple (Xn, θn)n≥0 is a Markov process. Its

transition probability depends on n (since γn and ρn depend on n). It is therefore

an inhomogeneous Markov process. Note that Assumption (A.1) is different than

in [8] and does not need (γn) to be a non-increasing sequence.

Notation.

a. Let Px,a denote the distribution of (Xn, θn)n≥0 for the initial conditions X0 =

x, θ0 = a.

b. If, more precisely,

P (γn,ρn;n≥0)
x,a

denotes the distribution of (Xn, θn)n≥0 for the given sequence (γn, ρn)n≥0,

with initial conditions X0 = x, θ0 = a, then the conditional distribution of

(Xn+k, θn+k)k≥0 given Fn is

P
(γn+k,ρn+k;k≥0)
Xn,θn

c. In what follows, it will be useful to express the trajectory of the algorithm

n→ θn in the form of a continuous-time process. To this end, we set

t0 = 0, t1 = γ1, . . . , tn =
n∑
i=1

γi (3.3)

51

θ(t) =
∑
k≥0

I(tk ≤ t < tk+1)θk (3.4)

where I(A) denotes the characteristic function of the set A (often denoted by

1A).

The study of the behaviour of θ(t) between times tn and tn+T thus reduces to

the study of the behaviour of θk for integers k between n and m(n, T), where

m(n, T) = inf{k : k ≥ n, γn+1 + . . .+ γk+1 ≥ T} (3.5)

For simplicity, we shall denote

m(T) = m(0, T) (3.6)

d. For any function f(x, θ) on Rk × Rd, we shall denote the partial mapping

x→ f(x, θ) by fθ. In particular, Πθfθ denotes the function

x →
∫
f(y, θ)Πθ(x, dy)

Similarly Πk
θfθ for k ≥ 1 denotes the function

x →
∫

(Πk−1
θ fθ(y))Πθ(x, dy)

with Π0
θfθ ≡ fθ.

e. For a real number α, |α| denotes the absolute value of α. For a vector v, |v|

denotes the `2 norm (Eucledian norm) of v. For a matrix A, |A| denotes the

matrix norm induced by the `2 norm [25].

52

3.1 General Assumptions On H, ρn And Π

We shall frequently denote the function x→ H(θ, x) by Hθ. We shall assume

that D is an open subset of Rd. The functions H and ρn will be required to satisfy:

(A.3) For any compact subsetQ ofD, there exist constants C1, C2, q1, q2 (depending

on Q), such that for all θ ∈ Q, and all n we have

(i)

|H(θ, x)| ≤ C1(1 + |x|q1)

(ii)

|ρn(θ, x)| ≤ C2(1 + |x|q2)

2

When we wish to express the dependence on Q explicitly in the above formulae,

we shall write Ci(Q) or qi(Q).

The verification of the fundamental assumption which we shall introduce next

is central to the study of the algorithm. Note that this assumption is slightly different

from that of [8, page 216] to take into account the periodicity of the Markov process.

(A.4) There exists a positive integer p such that the state space X can be parti-

tioned into disjoint Borel sets X0, · · · ,Xp−1 with Πθ(x,X(i+1) mod p) = 1 ∀x ∈

Xi, θ ∈ D. Further there exist functions h0, · · · , hp−1 on D, and for each θ ∈ D

a function νθ(·) on X such that

(i) hi is locally Lipschitz on D for i = 0, · · · , p− 1

53

(ii) (I − Πθ)νθ = H̃θ for all θ ∈ D, where H̃θ(x) = Hθ(x) − hp̃(x)(θ) with

p̃(x) = i, if x ∈ Xi.

(iii) for all compact subsets Q of D, there exist constants C3, C4, q3, q4, λ ∈

[1
2
, 1], such that for all θ, θ′ ∈ Q

|νθ(x)| ≤ C3(1 + |x|q3) (3.7)

|Πθνθ(x)− Πθ′νθ′(x)| ≤ C4|θ − θ′|λ(1 + |x|q4) (3.8)

2

Let h(θ) ≡ 1
p
(h0(θ) + · · ·+ hp−1(θ)). Let

L̃(Q) ≡ max{L̃0(Q), · · · , L̃p−1(Q)}

where L̃i(Q) is the Lipschitz constant for hi(·) on Q. Let

M̃(Q) = max
i∈{0,···,p−1}

sup
θ∈Q
|hi(θ)|

Comments on (A.4)

Note that the functions Hθ, h(θ), ν(θ), H̃θ and hi(θ) take their values in Rd.

Condition (A.4-ii) implies that for each i = 1, . . . , d

(I − Πθ)ν
i
θ(x) = H̃ i

θ(x), ∀x ∈ X

where the superscript i denotes the ith coordinate in Rd.

Concerning the importance of (A.4), note that if for all θ, the Markov process

with transition probability Πθ is positive recurrent, with invariant distibution Γθ,

54

and if we set

hi(θ) = p
∫
Xi
Hθ(y)Γθ(dy) i = 0, . . . , p− 1 (3.9)

then

h(θ) =
∫
X
Hθ(y)Γθ(dy) (3.10)

(or more concisely ΓθHθ), and the function H̃θ has the property that for each

i = 0, . . . , p− 1, ∫
Xi
H̃θ(y)Γθ(dy) = 0

since ∫
Xi

Γθ(dy) =
1

p
i = 0, . . . , p− 1

and thus equation (A.4-ii) has a solution νθ. Moreover in most cases, this solution

may be expressed in the form

νθ(y) =
∑
k≥0

Πk
θH̃θ(y) (3.11)

when the series is convergent.

The Local Boundedness assumption

(A.5) For any compact subset Q of D and any q > 0, there exists µq(Q) <∞ such

that for all n, x ∈ Rk, a ∈ Rd

Ex,a{I(θk ∈ Q, k ≤ n)(1 + |Xn+1|q)} ≤ µq(Q)(1 + |x|q) (3.12)

2

55

Remarks on Assumption (A.5)

1. If the inequality (3.12) is true for q, then it is true for q′ < q [8, page 220].

2. In the definition of (A.5) the inequality is assumed for all q > 0. In fact, for the

proofs we need only a weaker assumption, namely that the inequality (3.12)

is valid for a sufficiently large q, i.e. larger than a well-defined function of the

exponents qi in (A.3) and (A.4) (refer Proposition 3.1).

3. Without loss of generality we assume that µq is an increasing (non-decreasing)

function of q.

3.2 Decomposition Of The General Algorithm

3.2.1

When γ̃ tends to zero, the algorithm θ(t) has a tendency to follow the solution

of the differential equation (deterministic) with initial condition a = θ̄(0).

θ̄′(t) = h(θ̄(t)) (3.13)

This is because θ̄(tn) is close (Euler’s approximation) to the solution θ̄n of

θ̄n+1 = θ̄n + γn+1h(θ̄n)

θ̄0 = a (3.14)

and because Algorithm 3.1 (or equation 3.1) may be written in the form

θn+1 = θn + γn+1h(θn) + εn (3.15)

56

where

εn = θn+1 − θn − γn+1h(θn)

= γn+1[H(θn, Xn+1)− h(θn) + γn+1ρn+1(θn, Xn+1)] (3.16)

is a small fluctuation for small γ̃. We desire to obtain upper bounds on the fluc-

tuations εn. More generally, in the sequel we shall require upper bounds for the

expressions

εn(φ) = φ(θn+1)− φ(θn)− γn+1φ
′(θn) · h(θn) (3.17)

Let φ be a C2 function (i.e. having continuous second partial derivatives) from

Rd to R with bounded second derivatives. For the compact subset Q of D we denote

M0(Q) = supθ∈Q |φ(θ)|

M1(Q) = supθ∈Q |φ′(θ)|

M2(Q) = supθ∈Q |φ′′(θ)|

M2 = supθ∈Rd |φ′′(θ)|


(3.18)

Here φ′ is the gradient of φ and φ′′ is the Hessian,
[
∂2φ(θ)
∂θi∂θj

]
of φ at θ [25]. Then

there exists a matrix R̃(φ, θ, θ′) by Taylor’s formula [3], such that

φ(θ′)− φ(θ)− (θ′ − θ) · φ′(θ) = (θ − θ′)R̃(φ, θ, θ′)(θ − θ′)︸ ︷︷ ︸
R(φ,θ,θ′)

(3.19)

with, for all θ, θ′ ∈ Rd

|R(φ, θ, θ′)| ≤ M2|θ′ − θ|2 (3.20)

57

Thus for all k

εk(φ) = φ′(θk) · [(θk+1 − θk)− γk+1h(θk)] +R(φ, θk, θk+1)

= γk+1φ
′(θk) · [H(θk, Xk+1)− h(θk)]

+
(
γ2
k+1φ

′(θk) · ρk+1(θk, Xk+1) +R(φ, θk, θk+1)
)

︸ ︷︷ ︸
A1
k

(3.21)

with

|R(φ, θk, θk+1)|

≤ γ2
k+1M2|H(θk, Xk+1) + γk+1ρk+1(θk, Xk+1)|2 (3.22)

3.2.2 Decomposition Of εn(φ)

Using (A.4-ii) we may write (3.21) as

εk(φ)

= φ(θk+1)− φ(θk)− γk+1φ
′(θk) · h(θk)

= γk+1φ
′(θk)[H(θk, Xk+1)− hp̃(Xk+1)(θk)− h(θk) + hp̃(Xk+1)(θk)] + A1

k

= γk+1φ
′(θk)[νθk(Xk+1)− Πθkνθk(Xk+1)− h(θk) + hp̃(Xk+1)(θk)] + A1

k

= γk+1φ
′(θk) · [νθk(Xk+1)− Πθkνθk(Xk)]

+γk+1φ
′(θk)[Πθkνθk(Xk)− Πθkνθk(Xk+1)]

+γk+1φ
′(θk)[hp̃(Xk+1)(θk)− h(θk)] + A1

k

= A2
k + A3

k + A4
k + A1

k

This calculation makes sense only when θk ∈ D, since h is only defined on D.

58

Hence we introduce for a fixed compact subset Q of D

τ = τ(Q) = inf(n : θn /∈ Q) (3.23)

Let

ψθ(x) = φ′(θ) · Πθνθ(x) (3.24)

Then in {τ ≥ n} and for r < n we have :

n−1∑
k=r

εk(φ) =
n−1∑
k=r

(A1
k + A2

k + A4
k) +

n−1∑
k=r

γk+1(ψθk(Xk)− ψθk(Xk+1))

=
n−1∑
k=r

(A1
k + A2

k + A4
k)

+
n−1∑
k=r+1

γk+1(ψθk(Xk)− ψθk−1
(Xk))

+
n−1∑
k=r+1

(γk+1 − γk)ψθk−1
(Xk)

+γr+1ψθr(Xr)− γnψθn−1(Xn)

We have the following lemma

Lemma 3.1 For r < n in {n ≤ τ} we have

n−1∑
k=r

εk(φ) =
n−1∑
k=r

ε
(1)
k +

n−1∑
k=r+1

ε
(2)
k +

n−1∑
k=r+1

ε
(3)
k +

n−1∑
k=r

ε
(4)
k

+
n−1∑
k=r

ε
(5)
k + ηn;r

where

ε
(1)
k = γk+1φ

′(θk) · (νθk(Xk+1)− Πθkνθk(Xk))

ε
(2)
k = γk+1(ψθk(Xk)− ψθk−1

(Xk))

59

ε
(3)
k = (γk+1 − γk)ψθk−1

(Xk)

ε
(4)
k = γ2

k+1φ
′(θk) · ρk+1(θk, Xk+1) +R(φ, θk, θk+1)

ε
(5)
k = γk+1φ

′(θk)[hp̃(Xk+1)(θk)− h(θk)]

ηn;r = γr+1ψθr(Xr)− γnψθn−1(Xn)

2

Remark 3.1 Using (A.5) and (A.4-iii) we get

|Πθνθ(x)| = |Ex,θ(νθ(X1))|

≤ Ex,θ|νθ(X1)|

≤ C3Ex,θ(1 + |X1|q3)

≤ C3µq3(1 + |x|q3)

for all θ ∈ Q, i.e.

sup
θ∈Q
|Πθνθ(x)| ≤ C3µq3(1 + |x|q3)

2

Remark 3.2 From (3.7), (3.8) and (3.18) we have

sup
θ∈Q
|ψθ(x)| ≤ M1C3µq3(1 + |x|q3) (3.25)

sup
θ,θ′∈Q

|ψθ(x)− ψθ′(x)| ≤ M1C4(1 + |x|q4)|θ − θ′|λ

+M2C3µq3(1 + |x|q3)|θ − θ′| (3.26)

2

60

3.3 L2 Estimates

The aim of this section is to prove Proposition 3.1 (below), which gives a mean

squares upper bound for the “fluctuation”

sup
n≤m∧τ

∣∣∣∣∣
n−1∑
k=0

εk(φ)

∣∣∣∣∣
where τ is the time at which the process θn leaves the compact subset Q.

In this section, Q is a fixed compact set. The “constants” which appear in the

results may depend upon Q just as they depend upon the parameters Ci, µq and λ

of the assumptions and upon the numbers Mi(φ) associated with the given function

φ (cf. (3.18)). On the other hand they are valid for all non-negative sequences

(γn)n≥1 such that
∑∞
k=1 |γk − γk+1| ≤ K̃γ < +∞. Let γ̃ ≡ supk γk < +∞.

3.3.1

We state the following lemmas from [8, pages 224-228]

Lemma 3.2 There exists a constant A1 such that:

Ex,a{sup
n≤m

I(n ≤ τ)

∣∣∣∣∣
n−1∑
k=0

ε
(1)
k

∣∣∣∣∣
2

} ≤ A1(1 + |x|2q3)
m−1∑
k=0

γ2
k+1

where using the constants of Assumptions (A.3) and (A.4)

A1 ≤ Ã1µ2q3(Q)M2
1 (Q)C2

3(Q)

the constant Ã1 being independent of Q. Moreover on {τ = +∞}, ∑n−1
k=0 ε

(1)
k con-

verges a.s. and in L2 if
∑∞
k=0 γ

2
k+1 < ∞. 2

61

In considering the following terms we note that for i = 2, 3, 4

E{sup
n≤m

I(n ≤ τ)

∣∣∣∣∣
n−1∑
k=0

ε
(i)
k

∣∣∣∣∣
2

} ≤ E

(
m∧τ−1∑
k=0

|ε(i)
k ‖

)2

= E

(
m−1∑
k=0

|ε(i)
k |I(k + 1 ≤ τ)

)2

with the convention: ε
(2)
0 = ε

(3)
0 = 0.

Lemma 3.3 If γ̃ ≤ 1, then there exists a constant A2 such that for all m:

Ex,a

{
m∧τ−1∑
k=1

|ε(2)
k |
}2

≤ A2(1 + |x|s1)(
m−1∑
k=0

γ1+λ
k+1)2

with s1 = max(2q4 + 2λ(q1 ∨ q2), 2q3 + 2(q1 ∨ q2)), and using the constants of (A.3),

(A.4) and (A.5) and denoting C1(Q) + γ̃C2(Q) by C̄(Q):

A2 ≤ Ã2 µs1(Q) max{1, µ2
q3

(Q)} [C̄2λ(Q)M2
1 (Q)C2

4(Q) + C̄2(Q)M2
2 (Q)C2

3(Q)]

Ã2 being a constant independent of Q.

2

Note that [8, Lemma 3, page 225] γ1 is replaced by γ̃ in the definition of C̄(Q)

in the statement of Lemma 3.3. Also we have an additional term max{1, µ2
q3

(Q)}

in the bound for A2 (which was inadvertently omitted in [8]). The restriction that

γ̃ ≤ 1 can be removed if we allow Ã2 to be dependent on γ̃.

Lemma 3.4 There exists a constant A3, such that for all n

Ex,a

{
m∧τ−1∑
k=1

|ε(3)
k |
}2

≤ A3(1 + |x|2q3)K̃2
γ

with

A3 ≤ Ã3M
2
1 (Q)C2

3(Q)µ3
2q3

(Q)

62

Ã3 being a constant independent of Q.

2

Note that Lemma 3.4 is slightly different from Lemma 4 of [8, page 226] in

that γ1 is replaced by K̃γ.

Lemma 3.5 Denote s2 = sup(4q1, 4q2). There exists a constant A4 such that for

all m

Ex,a

{
m∧τ−1∑
k=0

|ε(4)
k |
}2

≤ A4(1 + |x|s2)(
m−1∑
k=0

γ2
k+1)2

with

A4 ≤ Ã4µs2(Q)[C2
2(Q)M2

1 (Q) + C4
1(Q) + γ̃4C4

2(Q)]

Ã4 being a constant independent of Q.

2

Note that [8, Lemma 5, page 227] γ1 is replaced by γ̃ in the statement of

Lemma 3.5.

Lemma 3.6 There exists a constant A5 such that

Ex,a{ sup
1≤n≤m

I(n ≤ τ) |ηn;0|2} ≤ A5(1 + |x|2q3)
m−1∑
k=0

γ2
k+1

with

A5 ≤ Ã5M
2
1 (Q)C2

3(Q)µ3
2q3

(Q)

Ã5 being independent of Q. Moreover ηn;0 converges a.s. and in L2 on {τ = +∞}

when
∑∞
k=0 γ

2
k+1 <∞. 2

63

Note that [8, Lemma 6, page 227] µ2
2q3

is replaced by µ3
2q3

in the statement of

Lemma 3.6.

The following lemma is new.

Lemma 3.7 There exist constants A6 and A7 such that

Ex,a{sup
n≤m

I(n ≤ τ)

∣∣∣∣∣
n−1∑
k=0

ε
(5)
k

∣∣∣∣∣
2

} ≤ A6[K̃2
γ +

m−1∑
k=0

γ2
k+1] + A7(1 + |x|s3)(

m−1∑
k=0

γ2
k+1)2

with s3 = 2(q1∨q2), A6 ≤ Ã6M
2
1 (Q)M̃2(Q) and A7 ≤ Ã7µs3(Q)C̄2(Q)[M2

1 (Q)L̃2(Q)+

M2
2 M̃

2(Q)]. Here C̄(Q) = [C1(Q) + γ̃C2(Q)] and Ã6 and Ã7 are constants inde-

pendent of Q. Moreover, on {τ = +∞}, ∑n−1
k=0 ε

(5)
k converges a.s. and in L2 if

∑
γ2
k+1 <∞.

2

The proofs of Lemmas 3.2, 3.3, 3.5 and Lemma 3.6 are given in [8]. The

proof of Lemma 3.2 uses L2 maximal inequality and the L2 convergence theorem of

martingales [21, pages 248-249].

The proof of Lemma 3.4 is almost similar to that in [8], but is given below.

Proof of Lemma 3.4

Using (3.25) we obtain

Ex,a

{
m∧τ−1∑
k=1

|ε(3)
k |
}2

≤ KEx,a

{
m−1∑
k=1

|(γk − γk+1)|(1 + |Xk|q3)I(k + 1 ≤ τ)

}2

≤ K
m−1∑
k=1

|(γk − γk+1)|
m−1∑
k=1

|(γk − γk+1)|Ex,a{(1 + |Xk|q3)2I(k + 1 ≤ τ)}

64

with K ≤M2
1 (Q)C2

3(Q)µ2
q3

(Q). Thus from (A.5)

Ex,a

{
m∧τ−1∑
k=1

|ε(3)
k |
}2

≤ A3(1 + |x|2q3)K̃2
γ

with A3 ≤ Ã3M
2
1 (Q)C2

3(Q)µ3
2q3

(Q).

2

Next we embark on proving Lemma 3.7.

Proof of Lemma 3.7

Let 0 ≤ n ≤ m ∧ τ − 1.

∣∣∣∣∣
n∑
k=0

ε
(5)
k

∣∣∣∣∣ ≤ I{bn+1
p
c≥1}

bn+1
p
c−1∑

k=0

∣∣∣∣∣∣
p−1∑
l=0

ε
(5)
(kp+l)

∣∣∣∣∣∣
+I{bn+1

p
cp6=(n+1)}

n∑
k=bn+1

p
cp

|ε(5)
k |

︸ ︷︷ ︸
atmost p−1 terms

Here bαc denotes the floor of the real number α. Note that ε
(5)
k = 0 when p = 1.

Now let j be an integer such that θj, θj+1, · · · , θj+p−1 are in the set Q. Then

p−1∑
l=0

ε
(5)
j+l =

p−1∑
l=0

γj+l+1φ
′(θj+l)

[
hp̃(Xj+l+1)(θj+l)− h(θj+l)

]

=
p−1∑
l=0

(γj+1φ
′(θj) + (γj+l+1 − γj+1)φ′(θj)

+γj+l+1(φ′(θj+l)− φ′(θj)))
[
hp̃(Xj+l+1)(θj+l)− h(θj+l)

]

= γj+1φ
′(θj)

0︷ ︸︸ ︷
p−1∑
l=0

[
hp̃(Xj+l+1)(θj)− h(θj)

]

+γj+1φ
′(θj)

p−1∑
l=0

([
hp̃(Xj+l+1)(θj+l − hp̃(Xj+l+1)(θj)

]
− [h(θj+l)− h(θj)]

)

+φ′(θj)
p−1∑
l=0

(γj+l+1 − γj+1)
[
hp̃(Xj+l+1)(θj+l)− h(θj+l)

]

+
p−1∑
l=0

γj+l+1[φ′(θj+l)− φ′(θj)]
[
hp̃(Xj+l+1)(θj+l)− h(θj+l)

]

65

Now since

θk+1 − θk = γk+1H(θk, Xk+1) + γ2
k+1ρk+1(θk, Xk+1)

we have for l = 1, · · · , p− 1 (assume p ≥ 2)

|θj+l − θj| ≤
l−1∑
k=0

(
|γj+k+1H(θj+k, Xj+k+1)|+

∣∣∣γ2
j+k+1ρj+k+1(θj+k, Xj+k+1)

∣∣∣)

≤ 2
l−1∑
k=0

[C1(Q) + γ̃C2(Q)]γj+k+1(1 + |Xj+k+1|(q1∨q2))

≤ 2
p−2∑
k=0

[C1(Q) + γ̃C2(Q)]γj+k+1(1 + |Xj+k+1|(q1∨q2))

Hence we have (for p ≥ 2)

∣∣∣∣∣∣
p−1∑
l=0

ε
(5)
j+l

∣∣∣∣∣∣ ≤ 2γj+1M1(Q)L̃(Q)
p−1∑
l=0

|θj+l − θj|

+2M1(Q)M̃(Q)
p−1∑
l=0

|γj+l+1 − γj+1|

+2M2M̃(Q)
p−1∑
l=0

γj+l+1|θj+l − θj|

≤ 4(p− 1)M1(Q)L̃(Q)[C1(Q) + γ̃C2(Q)]
p−2∑
k=0

γ̃2
j (1 + |Xj+k+1|(q1∨q2))

+2(p− 1)M1(Q)M̃(Q)
p−1∑
l=1

|γj+l+1 − γj+l|

+4(p− 1)M2M̃(Q)[C1(Q) + γ̃C2(Q)]
p−2∑
k=0

γ̃2
j (1 + |Xj+k+1|(q1∨q2))

Here γ̃j = max
l=1,...,p−1

γj+l. Let

K5 = 4(p− 1)[C1(Q) + γ̃C2(Q)](M1(Q)L̃(Q) +M2M̃(Q))

Then we have for 0 ≤ n ≤ m ∧ τ − 1,

∣∣∣∣∣
n∑
k=0

ε
(5)
k

∣∣∣∣∣ ≤ I{bn+1
p
c≥1}

b
n+1
p
c−1∑

k=0

K5

p−2∑
l=0

γ̃2
kp(1 + |Xkp+l+1|(q1∨q2))

66

+ 2(p− 1)M1(Q)M̃(Q)

bn+1
p
c−1∑

k=0

p−1∑
l=1

|γkp+l+1 − γkp+l|︸ ︷︷ ︸
≤K̃γ


+I{bn+1

p
cp6=(n+1)}

n∑
k=bn+1

p
cp

γk+12M1(Q)M̃(Q)

︸ ︷︷ ︸
≤2(p−1)M1(Q)M̃(Q)γ̃

Remark 3.3 Note that the last term actually tends to zero if γk → 0 and n→∞.

2

Also for 0 ≤ n ≤ m ∧ τ − 1I{bn+1
p
cp6=(n+1)}

n∑
k=bn+1

p
cp

γk+12M1(Q)M̃(Q)


2

≤ I{bn+1
p
cp6=(n+1)}4M

2
1 (Q)M̃2(Q)(p− 1)

n∑
k=bn+1

p
cp

γ2
k+1

≤ I{bn+1
p
cp6=(n+1)}4M

2
1 (Q)M̃2(Q)(p− 1)2

m−1∑
k=0

γ2
k+1

Let

K6 = 2(p− 1)M1(Q)M̃(Q)

Thus we have for p ≥ 2,

Ex,a{sup
n≤m

I(n ≤ τ)

∣∣∣∣∣
n−1∑
k=0

ε
(5)
k

∣∣∣∣∣
2

}

≤ 4K2
6 [K̃2

γ +
m−1∑
k=0

γ2
k+1]

+2K2
5Ex,a

I{bmp c≥1}

b
m
p
c−1∑

k=0

p−2∑
l=0

γ̃2
kp(1 + |Xkp+l+1|(q1∨q2))I(kp+ l + 1 ≤ τ)




2

67

≤ 4K2
6 [K̃2

γ +
m−1∑
k=0

γ2
k+1] + 2K2

5

≤(p−1)
∑m−1

k=0
γ2
k+1︷ ︸︸ ︷I{bm

p
c≥1}

bm
p
c−1∑

k=0

p−2∑
l=0

γ̃2
kp


·Ex,a

I{bmp c≥1}

bm
p
c−1∑

k=0

p−2∑
l=0

γ̃2
kp(1 + |Xkp+l+1|(q1∨q2))2I(kp+ l + 1 ≤ τ)


≤ 4K2

6 [K̃2
γ +

m−1∑
k=0

γ2
k+1]

+4K2
5(p− 1)2µ2(q1∨q2)(Q)

(
m−1∑
k=0

γ2
k+1

)2

(1 + |x|2(q1∨q2))

The first inequality comes from the fact that for any positive integer n and

real numbers ai we have (
∑n
i=1 ai)

2 ≤ n(
∑n
i=1 a

2
i) by Schwartz inequality. The second

inequality essentially comes from Schwartz inequality.

Moreover on {τ = +∞}, ∑n−1
k=0 ε

(5)
k converges a.s. and in L2 if

∑
γ2
k+1 < ∞.

See Remark 3.3. Also note that for real numbers a and b, 2ab ≤ (a2 + b2).

Combining the above results we have the following, which is the equivalent of

Proposition 7 in [8, pages 228–229].

2

Proposition 3.1 Assume γ̃ ≤ 1. For any compact subset Q of D, and for any C2

function φ on Rd with bounded second derivatives, there exist constants B1, B2 and

s such that for all m ≥ 1:

1. We have

Ex,a

{
sup
n≤m

I(n ≤ τ(Q))

∣∣∣∣∣
n−1∑
k=0

εk(φ)

∣∣∣∣∣
}2

≤

B1(1 + |x|s)(1 +
m−1∑
k=0

γ2λ
k+1)(K̃2

γ +
m−1∑
k=0

γ2
k+1) (3.27)

68

where λ is the constant ∈ [1/2, 1] of (A.4); and similarly making explicit the

constants of Assumptions (A.3), (A.4) and (A.5)

B1 ≤ B̃1(1 + µ3
s(Q))

[
M4

1 (Q) + C4
1(Q) + C4

2(Q) + C4
3(Q)

+M̃4(Q) + C̄4λ(Q)C4
4(Q) +M4

1 (Q)L̃4(Q)
]

where C̄(Q) = C1(Q) + γ̃C2(Q), B̃1 being independent of Q. Lastly we may

take s = max(2q4 + 2λ(q1 ∨ q2), 2q3 + 2(q1 ∨ q2), 4q1, 4q2).

2. If
∑
k≥1 γ

1+λ
k <∞

(i)

Ex,a

{
sup
n
I(n ≤ τ(Q))

∣∣∣∣∣
n−1∑
k=0

εk(φ)

∣∣∣∣∣
}2

≤ B2(1 + |x|s)(K̃2
γ +

∑
k≥1

γ1+λ
k) (3.28)

where B2 ≤ CB1 for some constant C independent of Q but depending on

the sequence {γk}. In particular C ≤ C̃(1+
∑∞
k=0 γ

1+λ
k+1) for some constant

C̃.

(ii) On {τ(Q) =∞} the series
∑
k εk(φ) converges a.s. and in L2.

2

Proof of Proposition 3.1

Essentially the same as the proof for Proposition 7 in [8, pages 228–229], taking

into consideration the additional bounds given for

Ex,a{sup
n≤m

I(n ≤ τ)

∣∣∣∣∣
n−1∑
k=0

ε
(5)
k

∣∣∣∣∣
2

}

69

by Lemma 3.7.

2

The restriction that γ̃ ≤ 1 can be removed if we allow B̃1 to be dependent on

γ̃.

Corollary 3.1 For all T > 0

Ex,a

{
sup

n≤m(T)

I(n ≤ τ(Q))|
n−1∑
k=0

εk(φ)|
}2

≤ B1(1 + |x|s)(1 + T γ̃2λ−1)(K̃2
γ +

m(T)∑
k=1

γ2
k) (3.29)

2

The assumption γ̃ ≤ 1, is introduced to simplify the expression of the con-

stants. It is unimportant, since it can always be obtained by modifying H and

ρn.

Let Pn,x,a denote the distribution of (Xn+k, θn+k) with Xn = x, θn = a. We

introduce the following assumptions [8, page 233].

(A.6)
∑
n≥1 γ

1+λ
n < +∞, where λ is given by (A.4-iii).

2

(A.7) There exists a positive function U of class C2 on D such that U(θ) → C ≤

+∞ if θ → ∂D or |θ| → +∞ and U(θ) < C for θ ∈ D satisfying:

U ′(θ) · h(θ) ≤ 0 for all θ ∈ D

2

Let F be a compact subset of D satisfying for some non-negative real number

c0,

F = {θ : U(θ) ≤ c0} ⊃ {θ : U ′(θ) · h(θ) = 0} (3.30)

We add the following remarks.

70

Remark 3.4 Essentially the result of Theorem 9 of [8, page 232] holds but with

the modification brought about by replacing Proposition 7 in [8, page 228-229] by

Proposition 3.1. The results given by Proposition 10, Proposition 11, Lemma 12,

Theorem 13 and Theorem 15 of [8, pages 234–238] hold, with γ̃ replacing γ1 wher-

ever it appears. (Note the changes in the values of the constants brought about by

replacing Proposition 7 in [8, pages 228–229] by Proposition 3.1).

2

In particular we restate Theorem 13 of [8, page 236] with the proper modifi-

cations.

Theorem 3.1 We assume that (A.1) to (A.7) hold and that F is a compact set

satisfying 3.30. Then for any compact Q ⊂ D, there exist constants B4 and s such

that for all n ≥ 0, all a ∈ Q, all x,

Pn,x,a{θk converges to F} ≥ 1−B4(1 + |x|s)

(Kn+1
γ)2 +

+∞∑
k=n+1

γ1+λ
k


2

We have the following global convergence theorem, which is essentially the

same as Theorem 17 of [8, page 239] but under our modified assumptions.

3.4 A Convergence Theorem

3.4.1 Assumptions

Assume that the constants Ci(Q) of Assumptions (A.3) and (A.4) grow atmost

linearly with the diameter of Q, the constant C4 being independent of Q if λ = 1

71

and the order of (diam(Q))1−λ if λ < 1. Also we suppose that the constants µq in

Assumption (A.5) are independent of Q. We make the following additional assump-

tion that M̃(Q), the bound on the magnitude of hi(θ), i = 0, · · · , p−1 grows atmost

linearly with the diameter of Q and the Lipschitz constant for hi(θ) is independent

of Q. Thus we suppose the existence of constants C̄i, qi, i = 1, . . . , 4, M̄, L̄ and

µq (q > 0), such that for all θ ∈ Rd, a ∈ Rd, n ≥ 0, R > 0, we have:

|H(θ, x)| ≤ C̄1(1 + |θ|)(1 + |x|q1) (3.31)

|ρn(θ, x)| ≤ C̄2(1 + |θ|)(1 + |x|q2) (3.32)

Ex,a{1 + |Xn+1|q} ≤ µq(1 + |x|q) (3.33)

|νθ(x)| ≤ C̄3(1 + |θ|)(1 + |x|q3) (3.34)

|hi(θ)| ≤ M̄(1 + |θ|) i = 0, · · · , p− 1 (3.35)

|h(θ)| ≤ M̄(1 + |θ|) (3.36)

and for all θ, θ′ such that |θ| ≤ R, |θ′| ≤ R and some λ ∈ [1
2
, 1],

|Πθνθ(x)− Πθ′νθ′(x)|

≤ C̄4(1 +R1−λ)|θ − θ′|λ(1 + |x|q4) (3.37)

where νθ satisfies Assumption (A.4-ii). Also for all θ, θ′

|hi(θ)− hi(θ′)| ≤ L̄|θ − θ′| (3.38)

|h(θ)− h(θ′)| ≤ L̄|θ − θ′| (3.39)

We further assume the existence of a constant K̃γ and hence that of a constant

72

γ̃ such that

∞∑
k=1

|γk − γk+1| ≤ K̃γ (3.40)

sup
k
γk = γ̃ (3.41)

and

∑
k

γ1+λ
k < +∞ (3.42)

3.4.2

Theorem 3.2 We suppose that Assumptions (A.1), (A.2) and (3.31) to (3.42)

are satisfied. Then the following holds:

a. if there exists a positive function U on Rd of class C2(i.e. continuous second

partials exist) with bounded second derivatives such that for all θ, |θ| ≥ ρ0

(i)

U ′(θ) · h(θ) ≤ 0

(ii)

U(θ) ≥ α|θ|2, α > 0

then for all a ∈ Rd, x ∈ Rk, the sequence (θn) is Px,a a.s. bounded;

b. if further there exists θ∗ ∈ Rd such that

(i)’

U ′(θ) · h(θ) < 0 for all θ 6= θ∗

73

(iii)

U(θ) = 0 iff θ = θ∗

then the sequence (θn) converges Px,a a.s. to θ∗.

2

Proof of Theorem 3.2

The proof is essentially the same as the proof of Theorem 17 in [8, pages

240– 243] but using Proposition 3.1 instead of Proposition 7 of [8, pages 228–229]

in the proof of Lemma 21 of [8, pages 242–243]. Note that Lemmas 18, 19 and

20 of [8, pages 241-242] continue to hold. Also refer to the Remark 3.4. The only

other thing to be verified is whether the terms [8, page 243] B1(Qn) and B2(Qn)

can be bounded above by a constant times 22n, under our modified assumptions,

where Qn = {θ : U(θ) ≤ A2n+1}, with A being a constant (as defined in [8, page

240]). But this is indeed true since M̃(Qn) increases as a constant times 2n/2 and

L̃(Qn) ≤ L̄.

2

Note that for the algorithm in equation 3.1 to converge we need not know

the exact period p of the underlying Markov process (Xn). Let n > 0 and focus

on a particular sample path (Xn). Then we say that the weightage given to class

m ∈ {0, · · · , p− 1} on the discrete time inteval [n, n+N] for some N > 0 is

Wn,n+N(m) ≡
∑n+N
k=n γkI{p̃(Xk)=m}∑n+N

k=n γk

noting the fact that p̃(Xk+1) = (p̃(Xk) + 1) mod p. We define the weight vector W

74

with W (m) = limN→∞W1,N(m) whenever it exists. For any p dimensional vector w

(with w(i) ≥ 0,
∑p−1
i=0 w(i) = 1), define hw(θ) ≡ ∑p−1

i=0 w(i)hi(θ). If the weight vector

W exists and W (m) 6= 1
p

for atleast one m ∈ {0, · · · p−1}, then the different periodic

classes (when p > 1) are being sampled with ‘unequal weightage’ and hence there is

a possibility for the algorithm converging to the point θ̃ such that hW (θ̃) = 0 instead

of converging to θ∗ such that h(θ∗) = 0. When the condition
∑
k |γk+1 − γk| < +∞

is imposed we have W (m) = 1
p
,∀m ∈ {0, · · · p−1}. This ensures that the p different

classes are ‘sampled’ with equal ‘weightage’. Also note that for any non-increasing

sequence of non-negative numbers (γk),
∑
k≥1 |γk − γk+1| is bounded.

We close this chapter with the following remark.

Remark 3.5 We may suppose the non-negative step-sizes γn to be random. Let

γn+1 be measurable w.r.t the sigma-field Fn (c.f. the proof of Lemma 2 of [8, page

224]) but with the additional restriction that
∑
k γk = +∞ Px,a a.s. Let there be

a deterministic non-negative sequence γ̂n, such that
∑∞
k=1 γ̂

1+λ
n < +∞, and detem-

inistic non-negative sequence δ̂n such that
∑∞
k=1 δ̂n < +∞ such that γn ≤ γ̂n and

|γn+1 − γn| ≤ δ̂n for all but a finite number of n, Px;a a.s. Then the conclusion of

Theorem 3.2 continues to hold. An outline of the proof is as follows. Let

An ≡ {ω ∈ Ω : γk(ω) ≤ γ̂k, |γk+1(ω)− γk(ω)| ≤ δ̂k for all k ≥ n}

. Then An is an ‘increasing’ sequence of sets and that Px,a(
⋃
nAn) = 1.

2

As a final note see that our result does not deal with the case when the period

or periodic classes of the Markov process changes with θ.

75

Chapter 4

Temporal Difference Schemes For Discounted Cost MDPs

In this chapter we propose a reinforcement learning scheme for finding optimal

and sub-optimal policies for the finite state, finite action Markov Decision Problem

(MDP) with the infinite horizon discounted cost criterion. Online learning is utilized

along with temporal difference schemes for approximating value functions to obtain

a direct adaptive control scheme for the MDP. The approach features the approxi-

mation of stationary deterministic policies with stationary randomized policies. We

provide convergence results of the algorithm under very reasonable assumptions, in

particular without aperiodicity assumptions.

In Section 4.2 we discuss Stationary Randomized Policies. Section 4.3 deals

with approximate policy iteration [16]. This is followed by Temporal Difference

(TD) schemes [16, 26, 50, 54] for estimating the value function (with linear func-

tion approximation) for discounted cost Markov Cost processes in Section 4.4. In

Section 4.5 we discuss on-line learning schemes for finding optimal and sub-optimal

policies for discounted cost MDPs which uses TD schemes for policy evaluation.

4.1 Markov Decision Process Model Revisited

We restate the MDP model discussed in Chapter 1, for convenience. Let N

denote the set of positive integers and N0 denote the set of non-negative integers. For

76

a set A, |A| denotes the cardinality of A, whereas for a real number α, |α| denotes

the absolute value of α. Let the non-empty state space of the MDP [4, 12, 23] be S =

{1, 2, · · · , n} and the non-empty control constraint sets be A(i) = {1, 2, · · · , |A(i)|},

for each i ∈ S, which denote the possible control actions (feasible actions) from

state i. Define the action space A =
⋃n
i=1A(i). Note that we are dealing with finite

state finite action homogeneous MDPs [11, 12]. The state at time t ∈ N0 is denoted

by st and the action taken at time t is denoted by ut. The transition probabilities

may be conveniently denoted by pij(u) = Pr[st+1 = j | st = i, ut = u], where i, j ∈ S

and u ∈ A(i). Here Pr denotes probability. gt ∈ R denotes the immediate cost

incurred at time t when action ut ∈ A(st) is taken from state st. The distribution of

the immediate cost which may be random is independent of past states, actions and

immediate costs, given current state st, current action ut and successive state st+1.

For u ∈ A(i) let g(i, u, j) denote the expected value E[gt | st = i, ut = u, st+1 = j].

For u ∈ A(i) let g(i, u) denote the expected value E[gt | st = i, ut = u]. Now

g(i, u) =
∑n
j=1 pij(u) g(i, u, j). We assume these expectations to be finite.

The MDP evolves as follows. At time t = 0, let the initial state be s0. If

at time t ∈ N0, the state is st and the control ut ∈ A(st) is applied, then an

immediate cost gt (which may be random) is incurred and the system moves to

the state st+1 according to the transition probability pst, st+1(ut). A realization of

the process looks like (s0, u0, g0, s1, u1, g1, · · ·) ∈ Ω ≡ (SAR)∞, where R is the set

of real numbers. {ut} is a control sequence in A determined by a control policy.

S and A are endowed with the discrete topology. R is endowed with the Borel

topology. Let ht = (s0, u0, g0, s1, u1, g1, · · · , st−1, ut−1, gt−1, st) denote the history

77

of the process upto time t with h0 = (s0). The history follows the recursion ht =

(ht−1, ut−1, gt−1, st) for t ≥ 1. Let Ht denote the set of all histories upto time t. Here

H0 = S, Ht = Ht−1ARS. These spaces are endowed with the product topologies.

Here Ω = H∞ = (SAR)∞ is the sample space under consideration.

An admissible policy for the MDP is a sequence ν = {νt} such that for each

t ∈ N0, νt is a stochastic kernel on A given ht with all the probability measure

concentrated on A(st). The set of all admissible policies is denoted by M. The set

of all stationary deterministic policies (or control functions to be precise) is denoted

by Υ, and the set of all stationary randomized policies (stochastic control kernels

to be precise) is denoted by Λ.

A policy ν ∈M and an initial state s0, together with the transition probabil-

ities of the MDP and the immediate cost (which may be random for any particular

state and action) generating mechanism, determine a unique probability measure

denoted by Pνs0(·) ≡ Pν(· | s0) on the space Ω of all possible realizations of the sys-

tem [4, 23]. The expectation with respect to this probability is denoted by Eν [· | s0].

The performance criterion for the infinite horizon discounted cost problem is the well

defined quantity Jν(i) = Eν [
∑∞
t=0 β

tgt | s0 = i], the expected total discounted cost

when the policy ν ∈M is used and the initial state is s0 = i. Here β ∈ [0, 1) is the

discount factor. The aim is to find a policy ν∗ ∈M such that Jν
∗
(i) = J∗(i), ∀i ∈ S.

Here J∗(i) = infν∈M Jν(i) for i ∈ S. J∗ is called the optimal cost function. It is well

known that there exists a stationary deterministic policy [12, 23] which is optimal.

Let Q = {(i, u)|i ∈ S, u ∈ A(i)}, be the set of all state-action pairs.

78

4.2 Stationary Randomized Policies

Define for each positive integer k, ∆k ≡
{

(p1, p2, · · · , pk) | pl ≥ 0;
∑k
l=1 pl = 1

}
,

the k − 1 dimensional unit simplex. A stationary randomized policy (stochastic

control kernel to be precise) can be specified as

δ ∈ Λ

where

Λ ≡ ∆|A(1)| ×∆|A(2)| × · · · ×∆|A(n)|

and for each i ∈ S

δ(i) ∈ ∆|A(i)|, denotes

[δ(i)]a = Pr(a | i) = Pr[ut = a | st = i]; a ∈ A(i)

Here ‘Pr’ denotes probability. For a particular stationary randomized policy

δ, we obtain a homogeneous Markov chain with state space S, transition probability

from state i to state j, given by pδij =
∑
a∈A(i)[δ(i)]a pij(a) and expected immediate

cost from state i given by ḡδ(i) =
∑
a∈A(i)[δ(i)]a g(i, a). For δ ∈ Λ, let Pδ = [pδij],

denote the corresponding transition probability matrix and ḡδ ∈ Rn denote the

expected immediate cost vector whose ith component ḡδ(i) is the expected immediate

cost from state i under policy δ. A stationary deterministic policy or equivalently a

control function µ ∈ Υ may be regarded as a special case of stationary randomized

policy (or stochastic control kernel) in which the probability distribution on the

set of actions is degenerate, i.e. all the probability is concentrated on one action,

namely µ(i) for each i ∈ S. The infinite horizon discounted cost function for the

79

policy δ ∈ Λ, denoted by Jδ ∈ Rn is given by

Jδ(i) = Eδ

[∞∑
t=0

βtgt | s0 = i

]

Actually Jδ = (I − βPδ)−1ḡδ. Equivalently we may think of another Markov Chain

with state space

Q = {(i, a) | i ∈ S, a ∈ A(i)}

and transition probability

pδ(i,a)(j,b) = pij(a)[δ(j)]b

The expected immediate cost from “state” (i, a) is given by g(i, a). Then

V δ(i, a) = Eδ

[∞∑
t=0

βtgt | (s0, u0) = (i, a)

]

represents the expected discounted cost of starting from “state” (i, a) for this new

Markov Chain. It is easy to see that

Jδ(i) =
∑

a∈A(i)

[δ(i)]a V
δ(i, a)

We introduce the following function h : (i, a, V) 7→ R as follows

h(i, a, V) = g(i, a) + β
∑
j∈S

pij(a) V (j)

for each i ∈ S, a ∈ A(i), V ∈ Rn.

For J ∈ Rn, let Tδ : Rn → Rn be

(TδJ) (i) = ḡδ(i) + β
n∑
j=1

pδij J(j)

=
∑

a∈A(i)

[δ(i)]a h(i, a, J)

80

Tδ is a monotone contraction mapping (with contraction coefficient β) with respect

to the supremum norm [12, 16]. See also Section 1.1.2.2.

In fact Jδ is the unique fixed point of the contraction mapping Tδ. Thus

Jδ(i) =
∑

a∈A(i)

[δ(i)]a

g(i, a) + β
n∑
j=1

pij(a)Jδ(j)


︸ ︷︷ ︸

Qδ(i,a)

It is easy to see from the definition that Qδ(i, a) is the expected discounted cost of

taking action a from state i at time t = 0 and from then on following the policy δ.

Note that V δ(i, a) = Qδ(i, a). Q∗(i, a) = h(i, a, J∗) denotes the optimal Q-values,

where J∗ ∈ Rn is the optimal cost to go vector for the discounted cost MDP. Let δ̃

be another stationary randomized policy such that

∑
a∈A(i)

[
δ̃(i)

]
a
Qδ(i, a) ≤ Jδ(i), ∀i ∈ S

Then it follows from the monotonicity property [12] of the operator Tδ that J δ̃ ≤ Jδ,

the inequality is componentwise. Let αi > 0, i ∈ {1, . . . , n}. Then it follows that

any local minimum of s(δ) ≡ ∑n
i=1 αiJ

δ(i) is also a global minimum of s(δ) in the

domain Λ. Denote by

Λε̄ ≡ {δ ∈ Λ | [δ(i)]a ≥ ε̄(i), i ∈ S, a ∈ A(i)}

where ε̄ ∈ Rn with ε̄(i) ≥ 0, ∀i ∈ S. Here ε̄(i) denotes the ith component of ε̄. Let

ε̃ ∈ Rn be the vector with ε̃(i) = 1
|A(i)| , ∀i ∈ S.

Then 0 ≤ ε̄ ≤ ε̃ implies that Λε̄ is nonempty, where 0 is the vector with all

components equal to zero and the inequality is componentwise. Also 0 ≤ ε̄ ≤ ε̂ ≤ ε̃

81

implies that Λε̂ ⊂ Λε̄. For each positive integer k and 0 ≤ ε ≤ 1
k

define

∆ε
k ≡

{
(p1, · · · , pk) | pi ≥ ε,

k∑
i=1

pi = 1

}

We define the k extremal points of ∆ε
k (when 0 ≤ ε < 1

k
) as follows; the ith one is

defined as the probability vector (p1, p2, · · · , pk) with

pi = (1− (k − 1)ε)

pj = ε; j 6= i

Note that when k > 1, pi > pj for j 6= i. Also Λ0 = Λ. A δ ∈ Λε̄, with 0 ≤ ε̄ < ε̃ is

called an extremal policy of Λε̄ if δ(i) is an extremal point of ∆
ε̄(i)
|A(i)| for each i ∈ S.

The strict inequality holds component wise.

Observe that the extremal policies of Λ0 are precisely the stationary determin-

istic policies. Let Υ denote the set of stationary deterministic policies (or control

functions to be precise). We will use the notation µ exclusively to denote stationary

deterministic policies. Note that there is a natural one to one correspondence be-

tween the elements of Υ and the extremal policies of Λε̄ when 0 ≤ ε̄ < ε̃. An extremal

policy δ of Λε̄ corresponding to a stationary stationary deterministic policy µ ∈ Υ

has the property that [δ(i)]µ(i) > [δ(i)]a if a ∈ A(i), a 6= µ(i) for i ∈ {1, 2, . . . , n}.

Without loss of generality we will use µ ∈ Υ to denote either the extremal policies

of Λ0 or the corresponding control law mapping the states in S to the corresponding

action in each state on which all the probability mass is concentrated. It will be

clear from the context whether µ(i), i ∈ S denotes an extremal point of ∆0
|A(i)| or

the corresponding action in A(i).

82

For any positive integer k and any w ∈ Rk let ‖w‖1 denote the `1 norm defined

by
∑k
i=1 |wi|. Similarly for any w ∈ Rk define ‖w‖ to be the `∞ or supremum norm,

namely maxi∈{1,...,k} |wi|. We define a metric d on the set Λ. For any δ, δ̃ ∈ Λ, define

d(δ, δ̃) ≡ max
i∈S

‖δ(i)− δ̃(i)‖1

It is easy to verify that this is a metric and further that Λ is a compact space under

this metric. Define

Interior(Λ) ≡
⋃

ε̄:0<ε̄≤ε̃
Λε̄

Note that δ is an element of Interior(Λ) if and only if δ assigns positive probabilities

to each possible action from each state. Such policies are called stationary fully

randomized policies. Since Pδ and ḡδ are continuous functions on the space Λ, it

follows that the cost to go vector Jδ is a continuous function on Λ. In fact the

compactness of Λ implies that Jδ is uniformly continuous on Λ. In particular given

any ε > 0, there exists ς > 0 (dependent on ε) such that ‖Jµ − Jδ‖< ε for each

µ ∈ Υ and δ ∈ Λ with d(µ, δ) < ς.

A policy µ ∈ Υ is said to be a greedy policy for V ∈ Rn if

µ(i) = arg min
a∈A(i)

h(i, a, V) ∀i ∈ S.

or equivalently

h(i, µ(i), V) = min
a∈A(i)

h(i, a, V) ∀i ∈ S.

Note that the dynamic programming operator T : Rn → Rn is actually given by

(TV)(i) = min
a∈A(i)

h(i, a, V) ∀i ∈ S

83

and is a monotone contraction mapping with contraction coefficient β, under the

supremum norm and has as its unique fixed point J∗. Note that for each i ∈ S

and a ∈ A(i) the function h(i, a, ·) is an affine function on the space Rn. Note that

for any µ ∈ Υ the function (TµV)(i) = h(i, µ(i), V). We define for each µ ∈ Υ the

greedy region for µ as

Rµ = {V ∈ Rn | µ is greedy for V }.

It is easy to see that Rµ is a polyhedron. Also note that Rµ may be empty for

some µ and that Rn =
⋃
µ∈ΥRµ. Since a policy µ ∈ Υ is optimal if and only if

TµJ
µ = TJµ, a policy µ ∈ Υ is optimal if and only if Jµ ∈ Rµ. In fact such optimal

µ∗ ∈ Υ exists [12].

4.3 Approximate Policy Iteration

For V ∈ Rn, let h̃(i, a, V) denote an approximation to h(i, a, V) for each i ∈ S

and a ∈ A(i). We have the following lemma.

Lemma 4.1 Let Ṽ be any fixed vector in Rn. Then there exist scalars ε > 0, ς > 0

dependent on Ṽ such that if V is any vector in Rn with ‖V − Ṽ ‖< ε and h̃ is such

that |h̃(i, a, V) − h(i, a, V)| < ς, ∀a ∈ A(i), i ∈ S; then the control policy µ̃ ∈ Υ

obtained by setting µ̃(i) = arg mina∈A(i) h̃(i, a, V) for each i ∈ S is a greedy policy

for the vector Ṽ .

2

Proof of Lemma 4.1

Note that for any i ∈ S and a ∈ A(i) the operator h(i, a, ·) is an affine function

with the property that h(i, a, U + α1
¯
) = h(i, a, U) + β α1

¯
for U ∈ Rn, α ∈ R. Here

84

1
¯
∈ Rn is the vector with all components equal to one. Also h(i, a, ·) is monotone,

i.e. if U, J ∈ Rn and U ≥ J then h(i, a, U) ≥ h(i, a, J).

Now in the Lemma 4.1, |h(i, a, V)−h(i, a, Ṽ)| < βε. We can choose ε > 0, ς > 0

such that

h(i, u, Ṽ)− min
a∈A(i)

h(i, a, Ṽ) > 2βε+ 2ς

∀i ∈ S, u ∈ A(i) such that u 6= arg mina∈A(i) h(i, a, Ṽ). Hence if

µ̃(i) = arg mina∈A(i) h̃(i, a, V) for i ∈ A(i), then

h(i, µ̃(i), Ṽ) = min
a∈A(i)

h(i, a, Ṽ), ∀i ∈ S.

2

We have the following corollary to Lemma 4.1.

Corollary 4.1 For any finite state, finite action MDP there exist scalars ε >

0, ς > 0 such that if J is any vector in Rn with ‖J − Jµ ‖< ε and |h̃(i, a, J) −

h(i, a, J)| < ς, ∀a ∈ A(i), i ∈ S; then the control policy µ̃ obtained by setting

µ̃(i) = arg mina∈A(i) h̃(i, a, J) for each i ∈ S is a greedy policy for the vector Jµ. In

fact the ε and ς are uniformly applicable to all µ ∈ Υ.

2

Proof of Corollary 4.1

The proof follows from Lemma 4.1 and the fact that |Υ| is finite.

2

85

Assume that a sequence of stationary deterministic policies µk and a corre-

sponding sequence of approximate cost-to-go functions Jk satisfy

max
i∈S
|Jk(i)− Jµk(i)| ≤ ε, for k = 0, 1, . . . (4.1)

and

max
i∈S
|(Tµk+1

Jk)(i)− (TJk)(i)| ≤ ς, for k = 0, 1, . . . (4.2)

where ε and ς are some positive scalars. Then we have the following lemma from [16,

Proposition 6.2, page 276].

Lemma 4.2 A sequence of policies µk and functions Jk satisfying inequalities (4.1)

and (4.2) satisfy

lim sup
k→∞

‖Jµk − J∗ ‖ ≤ ς + 2βε

(1− β)2
.

2

We may use Lemma 4.2 to prove the next result.

Consider the following algorithm. Pick some µ0 ∈ Υ. The sequence {µk} of

stationary deterministic policies is generated as follows. Let δk ∈ Λ be a sequence of

stationary randomized policies generated in such a manner that ‖Jδk − Jµk ‖≤ εk.

Let Qδk(i, a) = h(i, a, Jδk). Let Q̃k(i, a), a ∈ A(i), i ∈ S, be such that |Q̃k(i, a) −

Qδk(i, a)| ≤ ςk,∀a ∈ A(i), i ∈ S. We set

µk+1(i) = arg min
a∈A(i)

Q̃k(i, a) ∀i ∈ S.

Note that

min
i∈S
|(Tµk+1

Jδk)(i)− (TJδk)(i)| ≤ 2ςk.

86

Corollary 4.2 Suppose ε = lim supk→∞ εk and ς = lim supk→∞ ςk. Then

lim sup
k→∞

‖Jµk − J∗ ‖ ≤ 2
(ς + βε)

(1− β)2

2

Note that if ς and ε are sufficiently small then Jµk = J∗ for all large k, since

Υ has finite cardinality. Observe that by Corollary 4.1, there exists ε > 0 and ς > 0

such that if εk < ε and ςk < ς, ∀k then the µks obtained are the same ones obtained

while doing policy iteration and hence converges to optimal policy in a finite (≤ |Υ|)

number of steps.

4.4 Temporal Difference (TD(λ)) Schemes

Consider a homogeneous Markov Cost process [54] with state space S =

{1, 2, · · · , n}, and transition probability matrix P = [pij]. Let gt denote the im-

mediate cost incurred while making a transition from state it to state it+1 at time

t ∈ N0, the cost may be random but has finite mean and variance. The probability

distribution of gt may depend on states it and it+1, but given it and it+1 does not

depend on the past values of il and gl (l < t). Let g(i) ≡ E[gt | it = i], and ḡ ∈ Rn

denote the expected immediate cost vector with ḡ(i) = g(i). . We are interested in

obtaining the value function J : S → R given by

J(i) ≡ E

[∞∑
t=0

βtgt | i0 = i

]
= (I − βP)−1ḡ.

Here β ∈ [0, 1). Neither P nor the distribution of g is known in advance. In a

general setting of the TD(λ) scheme [19, 20, 26, 50, 54] the aim is to approximate

87

J using J̃(·, r) =
∑K
k=1 r(k)φk, where r = (r(1), · · · , r(K))T ∈ RK is a parameter

vector; φk ∈ Rn, k = 1, . . . , K are basis functions. Essentially the interest is in

finding r ∈ RK , such that some error metric between J and J̃(·, r) is minimized.

Define φ(i) by φ(i) = (φ1(i), · · · , φK(i))T . With this notation

J̃(i, r) = r′φ(i)

J̃(r) = Φr

where

Φ = [φ(1) | φ(2) | · · · | φ(n)]T ∈ Rn×K

Note that the kth column of Φ is φk. See that

∇J̃(i, r) = φ(i),

is the gradient vector for J̃(i, r), and

∇J̃(r) = Φ′

is the Jacobian matrix. Define the temporal difference as

dt = gt + βJ̃(it+1, rt)− J̃(it, rt)

where rt is the parameter vector at time t. For λ ∈ [0, 1], TD(λ) updates rt according

to

rt+1 = rt + γtdt
t∑

k=0

(βλ)t−k∇J̃(ik, rt)

= rt + γtdt
t∑

k=0

(βλ)t−kφ(ik)

88

where γt is a sequence of non-negative scalar step sizes. If we define the sequence of

eligibility vectors by

zt =
t∑

k=0

(βλ)t−kφ(ik)

then the TD(λ) updates are given by

zt = (βλ)zt−1 + φ(it)

rt+1 = rt + γtdtzt

with

z−1 = 0
¯

We have the following assumptions.

Assumption 4.1 Let the following hold.

(a). The Markov Chain is irreducible with unique invariant distribution π (which

satisfies π′P = π′ with π(i) > 0 for all i ∈ S).

(b). Φ has full column rank, i.e. φ′ks are linearly independent.

2

Assumption 4.2 Let the following hold.

(a). The non-negative step sizes γt ↓ 0 are pre-determined and satisfy

∞∑
t=0

γt =∞;
∞∑
t=0

γ2
t <∞.

(b). The immediate cost gt has finite moments, i.e. E[(|gt|)k | it = i] < ∞; ∀i ∈

S,∀k ∈ N.

2

Actually Assumption 4.2(a) may be replaced by (see Chapter 3)

89

4.2(a’) The non-negative step sizes γt are pre-determined and satisfy

∞∑
t=0

γt =∞,
∞∑
t=0

γ2
t <∞, and

∞∑
t=0

|γt+1 − γt| <∞.

2

For λ ∈ [0, 1) define the operator T (λ) : Rn → Rn as

T (λ)J̄ = (1− λ)
∞∑
m=0

λm
(

m∑
t=0

βtP tḡ + βm+1Pm+1J̄

)

and

T (1)J̄ = J = (I − βP)−1ḡ

Here J̄ ∈ Rn. Note that for λ ∈ [0, 1)

T (λ)J̄ = (1− λ)
∞∑
m=0

λm
m∑
t=0

βtP tḡ + (1− λ)
∞∑
m=0

λmβm+1Pm+1J̄

=
∞∑
m=0

βmλmPmḡ + (1− λ)
∞∑
m=0

λmβm+1Pm+1J̄

= (I − βλP)−1ḡ + P (λ)J̄

where

P (λ) = (1− λ)
∞∑
m=0

λmβm+1Pm+1

Since limλ↑1 P
(λ) = 0, the zero matrix, we have

lim
λ↑1

(T (λ)J̄) = (I − βP)−1ḡ = J = T (1)J̄

Let Assumption 4.1 hold. Let D be the n× n diagonal matrix with diagonal

entries (π(1), π(2), . . . , π(n)). For any x, y ∈ Rn, let the inner product be defined

as < x, y >D= x′Dy. The corresponding weighted Eucledian norm is

‖x‖D=
√
< x, x >D

90

We say two vectors J̄ , Ĵ ∈ Rn are D-orthogonal ifJ̄TDĴ = 0. Define the projection

operator

Π = Φ(Φ′DΦ)−1Φ′D

Note that

ΠJ̄ = arg min
Ĵ∈{Φr|r∈RK}

‖ J̄ − Ĵ ‖D

Note that (J̄ − ΠJ̄) is D-orthogonal to φks for k = 1, . . . , K and ΠJ̄ is unique.

It may be shown that T (λ) and ΠT (λ) are contraction mappings [12, 54] with

respect to the weighted Eucledian norm ‖ · ‖D, and has contraction factor [12,

Proposition 6.3.3, page 350]

βλ =
β(1− λ)

1− βλ

In fact βλ = 1− (1−β)
1−βλ and hence βλ ↓ 0 as λ ↑ 1. Let Φr∗ be the unique fixed point

of ΠT (λ). The unique fixed point of T (λ) is J = (I − βP)−1ḡ.

We have the following result which is an extension of the result in [12, 54], in

that the Markov chain need not be aperiodic.

Lemma 4.3 Under Assumption 4.1 and Assumption 4.2, for any fixed λ ∈ [0, 1],

the TD(λ) algorithm converges w.p.1 to a unique r∗ ∈ RK irrespective of the initial

value of r or the initial state i0. Here ΠT (λ)(Φr∗) = Φr∗. Further r∗ satisfies

‖Φr∗ − J ‖D ≤
1√

1− β2
λ

‖ΠJ − J ‖D

2

The initial value of the eligibility vector z−1 is irrelevant. Note that if J lies

in the linear span of φk’s, then J̃(·, r∗) = J . In particular if K = n then we have

91

J̃(·, r∗) = J . In fact [54] proves the result only for aperiodic case. The proof for the

general irreducible case follows from the results of the Chapter 3 and an analysis

along the same lines as in [54]. We outline the proof below.

Let Xt = (it, it+1, zt, gt). Then Xt is a Markov process which has a steady

state distribution. From [54] the TD(λ) update may be written as

rt+1 = rt + γt[A(Xt)rt + b(Xt)]

where A(Xt) = zt(βφ
′(it+1) − φ′(it)) and b(Xt) = ztgt. Note that the probability

transition kernel for the process Xt does not depend on rt. If we denote by E0[·] the

steady state expectation with respect to the invariant distribution of the Markov

process Xt, then

A = E0[A(Xt)] = Φ′D(P (λ) − I)Φ

b = E0[b(Xt)] = Φ′D(I − βλP)−1ḡ

A is negative definite and Ar∗+b = 0 (see [54]). Hence by Theorem 3.2 in Chapter 3

we have rt → r∗.

In Theorem 3.2 we may use the Lyapunov function U(θ) = 1
2
(θ− θ∗)′(θ− θ∗),

where θ = r and θ∗ = r∗. All the assumptions of Theorem 3.2 are satisfied (see also

Chapter 5).

Also the moment conditions on the immediate cost in Assumption 4.2(b) may

be relaxed in that

E
[
(|gt|)k | it = i

]
<∞, ∀i ∈ S

need be satisfied only upto a sufficiently large k (k = 4) and not for all k > 0 (see

Chapter 3, Proposition 3.1).

92

4.5 TD(λ) For Learning

Here we are interested in learning the optimal value function and policy by

reinforcement methods in an MDP framework. The notation for state space, action

space, the transition probabilities and the assumptions on the immediate cost are as

in Section 4.1. Neither the transition probabilities nor the distibution or expected

value of immediate cost are known in advance. In this section we use it to denote

the state at time t and at to denote the action taken at time t.

Assumption 4.3 Let the following hold.

(a). The non-negative step sizes γt ↓ 0 are pre-determined and satisfy

∞∑
t=0

γt =∞;
∞∑
t=0

γ2
t <∞.

(b). For each state action pair (i, a) ∈ Q, let the pre-determined scalar non-negative

step sizes γt(i, a) be such that

∞∑
t=1

γt(i, a) =∞;
∞∑
t=1

(γt(i, a))2 <∞.

(c). K = n and

φk = ek = [0, · · · , 0,
kth entry︷︸︸︷

1 , 0, · · · , 0]T

implying lookup table representation. Here ek is the kth standard basis vector

in Rn.

(d). The immediate cost gt has finite moments, i.e. E[(|gt|)k | it = i, at = a] <

∞; ∀i ∈ S, a ∈ A(i),∀k ∈ N.

93

(e). For some δ ∈ Λε̄ with 0 < ε̄ ≤ ε̃, assume that the Markov chain corresponding to

the stationary policy δ is irreducible. In fact this implies that for any δ ∈ Λε̂,

with 0 < ε̂ ≤ ε̃, the corresponding Markov chain is irreducible with the same

period and has a unique invariant distribution πδ with positive components,

which depends on δ. Note that ε̃(i) = 1
|A(i)| .

2

Assumption 4.3(a) may be replaced by Assumption 4.2(a’).

Assumption 4.3(e) is equivalent to the statement that any stationary fully

randomized policy gives rise to an irreducible Markov chain, that is the MDP is

communicating (see Section 5.2 in Chapter 5). Fix a policy δ ∈ Λε̄, 0 < ε̄ ≤ ε̃.

We want to estimate Jδ, the cost to go for the stationary fully randomized policy

δ and the Q values for policy δ given by Qδ(i, a) = h(i, a, Jδ), ∀(i, a) ∈ Q. We use

J̃(·, r) = Φr = r to approximate Jδ(·). Note that Φ is the identity matrix. Let it

and at be the state and action taken at time t ∈ N0, while using policy δ and let

gt be the corresponding immediate cost incurred. Note that our results handle any

irreducible Markov chain, whether aperiodic or not.

Algorithm 4.1

z−1 = 0
¯
,

τ−1(i, a) = 0, i ∈ S, a ∈ A(i)

The update rule is as follows (starting at t = 0)

zt = (βλ)zt−1 + φ(it)︸ ︷︷ ︸
eit

,

94

dt = gt + βJ̃(it+1, rt)− J̃(it, rt),

rt+1 = rt + γtdtzt,

τt(it, at) = τt−1(it, at) + 1,

τt(i, a) = τt−1(i, a), ∀(i, a) 6= (it, at), (i, a) ∈ Q

Qt+1(it, at) = Qt(it, at) + γτt(it,at)(it, at) ·(
gt + βJ̃(it+1, rt)−Qt(it, at)

)
Qt+1(i, a) = Qt(i, a), ∀(i, a) 6= (it, at), (i, a) ∈ Q

t = t+ 1

2

τt(i, a) represents the number of times action a has been taken from state i by

time t ∈ N0. Under Assumption 4.3, Lemma 4.3 ensures that J̃(·, rt) → Jδ almost

surely. In addition, since all state-action pairs in Q are “visited” infinitely often

under policy δ, standard results from stochastic approximation theory [16] can be

used to show that Qt → Qδ almost surely. The convergence holds irrespective of

the initialization of z, r and Q. All that is required of the non-negative step size

parameters γt(i, a) is that they should satisfy the standard assumptions

∞∑
t=1

γt(i, a) =∞;
∞∑
t=1

(γt(i, a))2 <∞

almost surely and may be allowed to be random and can depend on the past history

(at the time the step size is used).

Consider the following algorithm.

95

Algorithm 4.2 Let 0 < ε̄k < ε̃ be a sequence of positive vectors in Rn.

1. Set k = 0

2. Select an arbitrary stationary deterministic policy µ0 ∈ Υ.

3. Choose the stationary randomized extremal policy δk ∈ Λε̄k associated with

µk and run Algorithm 4.1, for “large” random number of steps nk till Qnk

“nearly”converges to Qδk and J̃(·, rnk) “nearly” converges to Jδk . Set Q̃ = Qnk .

Let

ςk = max
(i,a)∈Q

|Qδk(i, a)− Q̃(i, a)|

4. Set k = k + 1 and update the policy to µk, where

µk(i) = arg min
a∈A(i)

Q̃(i, a)

5. Go to step 3.

2

Theorem 4.1 Consider the Algorithm 4.2 and let Assumption 4.3 hold. Then we

have the following results

1. Given any scalar ε > 0, there exists an ε̄ ∈ Rn with 0 < ε̄ < ε̃ and a number

ς > 0 such that if

lim sup
k→∞

ε̄k(i) < ε̄(i), ∀i ∈ S

and

96

lim sup
k→∞

ςk < ς,

then lim supk→∞ ‖Jµk − J∗ ‖ < ε and lim supk→∞ ‖Jδk − J∗ ‖ < ε.

2. Given any scalar ε > 0 there exists ς > 0 and ε̄ with 0 < ε̄ < ε̃ such that if

ε̄k < ε̄ and ςk < ς, ∀k then Jµk converges to J∗ in a finite number of steps

(≤ |Υ|) and ‖Jδk − Jµk ‖ < ε ∀k.

3. In particular if lim supk→∞ ε̄k(i) = 0, ∀i ∈ S and lim supk→∞ ςk = 0 then

‖Jµk − J∗ ‖→ 0 and ‖Jδk − J∗ ‖→ 0. In fact Jµk = J∗ for all large k.

2

Proof of Theorem 4.1

The fact that Jδ is a continuous function of δ on Λ implies that given any

ε > 0, there exists η > 0 (dependent on ε) such that ‖Jµ − Jδ ‖< ε for each µ ∈ Υ

and δ ∈ Λ with d(µ, δ) < η. Also the extremal policies of Λε̄, 0 < ε̄ < ε̃ converges

under the metric d to the corresponding deterministic policies as ε̄→ 0. These along

with Corollary 4.2 and the comments following its statement proves the claims in

Theorem 4.1.

2

The step size parameters used in step 3 of Algorithm 4.2 can vary for different

policy evaluations (i.e. different k s). Our algorithm is somewhat similar in spirit

to the Modified Q-learning in [42]. Finally the requirements on the existence of

all moments of the immediate cost in Assumption 4.3(d) may be relaxed to the

97

requirement that E[(|gt|)k | it = i, at = a] < ∞, ∀(i, a) ∈ Q need be satisfied

only upto a sufficiently large k (k = 4) and not for all k > 0 (see Chapter 3,

Proposition 3.1).

Note that instead of using an extremal policy δk ∈ Λε̄k to approximate µk,

we could have chosen any δ̃k ∈ Interior(Λ) such that [δ̃k(i)]µk(i) ≥ (1 − (|A(i)| −

1)ε̄k(i)), ∀i ∈ S; for instance δ̃k could be made to depend on the approximation to

Qδ̃k−1 obtained in the previous step. We note that the initial condition i0, r0, z−1

and Q0 when calling Algorithm 4.1 in step 3 of Algorithm 4.2 may be arbitray, but

can be set to the final values obtained in the previous iteration.

In [16], a particular learning scheme uses TD(λ) to approximate the value

functions for deterministic stationary policies, before trying to estimate the corre-

sponding Q-values by further simulation, in order to obtain a policy update. This

may lead to problems with convergence when we are using online schemes with ar-

bitrary initialization. This methodology thus differs from the one proposed in this

paper, where we deal with stationary randomized policies, and on-line updates of

the Q-values, along with the TD updates.

Now we give an example which shows the problem associated with arbitrary

initialization when we use only deterministic policies. Consider the following two

state MDP where S = {1, 2}, A(1) = {1, 2}, A(2) = {1}. Let the discount factor

be β, where 0 < β < 1. At state 1, there are two options: under the first, say

u = 1, we stay at state 1 with probability 1 and a cost M > 0 is incurred; under the

second, say u = 2, we move to state 2 with probability 1 at zero cost. From state 2,

there is only one possible action, say u = 1, under which we move to state 1 with

98

probability 1 at zero cost.

The optimal action at state 1 is to use action 2 . The corresponding optimal

cost is J∗(1) = J∗(2) = 0. The only other possible stationary deterministic policy is

µ = (1 1)′, the one corresponding to using action 1 in state 1, and the corresponding

cost to go is Jµ(1) = M
(1−β)

and Jµ(2) = β M
(1−β)

. Suppose that we initialize the

algorithm with J0(1) = α1 and J0(2) = α2 with α1 ≤ M
(1−β)

and α2 >
1
β

M
(1−β)

+ α, α

a large positive number.

The corresponding greedy policy is µ = (1 1)′. Let the initial state be i0 = 1.

This means that the system stays at state 1 and J(2) is not updated, whereas J(1)

converges to M
(1−β)

. The greedy policy for this remains the same µ = (1 1)′. Thus,

as long as we start in state 1, the greedy policy does not visit state 2, and the value

of J(2) never changes, and we are stuck with a non-optimal policy.

Now we give an example of an MDP where under any stationary policy (de-

terministic or randomized) the corresponding Markov chain is periodic (not aperi-

odic). We consider a finite one dimensional random walk with n states (n ≥ 3);

S = {1, 2, . . . , n}. The feasible actions are given by A(1) = {1} = A(n), A(i) =

{1, 2} for 1 < i < n. The transition probabilities for states 1 < i < n are given by

pi,i+1(1) = 1− p, pi,i−1(1) = p, where 1 > p > 1
2

and pi,i+1(2) = q, pi,i−1(2) = 1− q,

where 1 > q > 1
2
. Also p1,2(1) = 1, pn,n−1(1) = 1. The immediate costs are given

by g(i, a, j) = c(j) for i, j ∈ S and a ∈ A(i). Also

c(j) = c(n− j + 1) for j = 1, . . . ,
⌊
n

2

⌋
,

c(j + 1) < c(j) for j = 1, . . . ,
⌈
n

2

⌉
− 1.

99

Here under any stationary policy (deterministic or randomized) the Markov

chain is irreducible and has period 2. c(i) might represent the temperature of state

i ∈ S. We are interested in moving toward states with lower temperature.

100

Chapter 5

Temporal Difference Schemes For Average Cost MDPs

In this chapter we propose a reinforcement learning scheme for finding optimal

and sub-optimal policies for the finite state, finite action, Markov Decision Problem

(MDP) with the average cost criterion [4, 12, 40]. Online learning is utilized along

with temporal difference schemes for approximating differential cost functions to

obtain a direct adaptive control scheme for the MDP. We provide convergence results

of the algorithm for unichain MDP with a common recurrent state [12, 40]. In

particular we do not assume that the recurrent class is aperiodic as in [55], for any

stationary policy.

In Section 5.1 we revisit the average cost MDP model. Section 5.2 deals with

a classification scheme of MDPs. In Section 5.3 we discuss some properties of the

transition probability matrix and its application to Markov Cost process. In Sec-

tion 5.4 we deal with Bellman equation and policy iteration schemes for unichain

MDP with a common recurrent state. Continuity issues of the limiting and differen-

tial matrices are dealt with in Section 5.5. In Section 5.6 we deal with approximate

policy iteration for average cost MDPs. Section 5.7 deals with temporal difference

schemes for estimating the average cost and differential cost (with linear function

approximation) of a Markov Cost process. In particular we extend the results in[55]

to Markov chains which are not necessarily aperiodic. Corresponding variations in

101

the proofs of the sub-results leading to the main results are dealt with. In particular

we use the general stochastic approximation algorithm in Chapter 3. TD schemes

are used in conjunction with on-line estimates of Q-values to solve the average cost

MDP in Section 5.9

5.1 Average Cost MDP Model Revisited

We refer the reader to Section 4.1 and Section 4.2 of Chapter 4 for notations

regarding the homogeneous MDP model, the admissible policies and stationary ran-

domized policies. However in this chapter we are dealing with the average cost

problem. The changes in the notation are dealt with in the appropriate sections of

the chapter. In particular we assume the state space to be S = {1, 2, . . . , n}, where

n is a positive integer. The state of the system at time t ∈ N0 is denoted by st,

which is an element of S. Here N0 denotes the set of non-negative integers. The

action taken at time t, is denoted by ut, where ut ∈ A(st). A(i) = {1, 2, . . . , |A(i)|}

denotes the nonempty finite control constraint set for i ∈ S. Let pij(a) denote the

transition probability from state i to state j, when action a is taken from state i

at any time t ∈ N0, for i ∈ S and a ∈ A(i). The immediate cost incurred at time

t ∈ N0, while taking action ut from state st is denoted by gt, where ut ∈ A(st).

The probability distribution of gt might depend on st, st+1 and ut, but not on the

past history up to time t, given st, st+1 and ut. Let g(i, a) = E [gt|st = i, ut = a]

denote the expected value of the immediate cost for taking action a from state i

at any time t, for i ∈ S, a ∈ A(i). We assume that the expected immediate costs

102

have finite (hence bounded) second moments; i.e. E [(|gt|)2 | st = i, ut = a] <∞ for

i ∈ S, a ∈ A(i). The set of all admissible policies is denoted by M. The set of

all stationary deterministic policies is denoted by Υ, and the set of all stationary

randomized policies is denoted by Λ. We use the terminology, (fully) randomized

stationary policies and stationary (fully) randomized policies interchangeably.

The performance criterion for the average cost problem is the well defined

quantity ϑ̄ν ∈ Rn, given by

ϑ̄ν(i) = lim sup
N→∞

1

N
Eν

[
N−1∑
t=0

gt | s0 = i

]
, (5.1)

when the policy ν ∈ M is used and the initial state is i ∈ S. The aim is to find a

policy ν∗ ∈M such that ϑ̄ν
∗
(i) = ϑ̄∗(i), ∀i ∈ S. Here ϑ̄∗ ∈ Rn, given by

ϑ̄∗(i) = inf
ν∈M

ϑ̄ν(i), i ∈ S

is the optimal average cost function or vector. It is well known that there exists a

stationary deterministic policy [12, 40] which is optimal. We would like to add that

(see [40]),

inf
ν∈M

lim sup
N→∞

1

N
Eν

[
N−1∑
t=0

gt | s0 = i

]
= inf

ν∈M
lim inf
N→∞

1

N
Eν

[
N−1∑
t=0

gt | s0 = i

]
, i ∈ S

Also note that the limit exists in equation 5.1, for any stationary policy δ ∈ Λ, i.e.

ϑ̄δ(i) = lim
N→∞

1

N
Eδ

[
N−1∑
t=0

gt | s0 = i

]
, ∀i ∈ S.

5.2 Classification Of MDPs

We may classify MDPs as follows [40].

103

Any MDP is referred to as general.

An MDP is called recurrent or ergodic, if the transition probability matrix

corresponding to every stationary deterministic policy gives rise to an irreducible

Markov chain, i.e. has only one recurrent class which encompasses all the states.

An MDP is called unichain, if the transition probability matrix correspond-

ing to every stationary deterministic policy is unichain, that is, the corresponding

Markov chain consists of a single recurrent class plus a possibly empty set of tran-

sient states.

An MDP is called communicating, if for every pair of states i and j in S, there

exists a stationary deterministic policy µ ∈ Υ (depending on i and j) under which

j is accessible from i, that is [P k
µ]ij > 0 for some k ≥ 1. (In fact if such a k exists,

there exists an l, with 1 ≤ l ≤ n, such that [P l
µ]ij > 0). Here Pµ is the transition

probability matrix associated with stationary deterministic policy µ. In other words

an MDP is a communicating MDP, if for any stationary fully randomized policy

δ ∈ Λ, the corresponding Markov chain is irreducible (see Appendix B).

An MDP is called weakly communicating, if there exists a closed set of states,

with each state in that set accessible from every other state in the set, under some

stationary deterministic policy, plus a possibly empty set of states which is transient

under every policy. In other words an MDP is weakly communicating, if for any

stationary fully randomized policy δ, the corresponding Markov chain has a single

recurrent class (i.e. δ is a unichain policy) and every transient state (if it exists) of δ

are transient under every policy. Note that it may be shown that for a set of states

to be transient under every policy, it is sufficient that they be transient under every

104

stationary deterministic policy.

An MDP is called multichain, if the Markov chain corresponding to at least

one stationary deterministic policy contains two or more closed irreducible recurrent

classes.

Note that a recurrent MDP is unichain as well as communicating. A commu-

nicating MDP is weakly communicating and a unichain MDP is weakly communi-

cating. In fact (see Appendix B) for any stationary fully randomized policy of a

unichain MDP, the unique recurrent class is the union of recurrent classes of all the

stationary deterministic policies.

5.3 Some Properties Of The Transition Probability Matrix

5.3.1 Basics

Here we give an important result stated in [12, Proposition 4.1.1].

Lemma 5.1 For any stochastic matrix P and β ∈ [0, 1) there holds

(I − βP)−1 = (1− β)−1P ∗ + L+O(|1− β|),

where O(|1− β|) is a β-dependent matrix such that

lim
β→1
O(|1− β|) = 0,

and the matrix P ∗ and L are given by

P ∗ = lim
N→∞

1

N

N−1∑
k=0

P k, (5.2)

L = (I − P + P ∗)−1 − P ∗. (5.3)

105

The limit and the inverse, in the above equations exist. Furthermore P ∗ and L

satisfy the following equations:

P ∗ = PP ∗ = P ∗P = P ∗P ∗,

P ∗L = LP ∗ = 0, (5.4)

P ∗ + L = I + PL. (5.5)

2

Here 0 is the zero matrix. Note that

(I − P + P ∗)(I − P ∗) = (I − P + P ∗)− P ∗,

and hence

(I − P ∗) = I − (I − P + P ∗)−1P ∗,

which implies

(I − P + P ∗)−1P ∗ = P ∗.

Hence

L = (I − P + P ∗)−1 − P ∗

= (I − P + P ∗)−1(I − P ∗).

Let {Ml : l ≥ 0} be a sequence of n× n real valued matrices. We say that M

is a Cesaro limit of {Ml : l ≥ 0} if

lim
N→∞

1

N

N−1∑
l=0

Ml = M,

and we write

C − lim
N→∞

MN = M.

106

Note that if the limit of the sequence {Ml : l ≥ 0} exists, that limit is the Cesaro

limit. See [40].

Note that P ∗ is called the limiting matrix corresponding to P , with [40]

P ∗ =C − lim
N→∞

PN .

L is called the differential matrix corresponding to P , also known as the Drazin

Inverse of (I − P). See [40].

Lemma 5.2 We have

L =C − lim
N→∞

N−1∑
k=0

(P k − P ∗),

where P 0 = I.

2

Proof of Lemma 5.2

To prove this we need to prove

(I − P + P ∗)−1 =C − lim
N→∞

N−1∑
k=0

(P − P ∗)k,

with (P − P ∗)0 = I. Note that (P − P ∗)k = P k − P ∗ for k ≥ 1.

Note that in the following,

j∑
k=i

fk = 0,

if j < i, by convention, where fk is some real valued quantity indexed by integer k.

Now

(I − P + P ∗)

(
1

N

N−1∑
l=0

l∑
k=0

(P − P ∗)k
)

107

=
1

N

N−1∑
l=0

(
(I − P + P ∗) +

l∑
k=1

(P k − P k+1 + P ∗ − P ∗)
)

=
1

N

[
N(I − P + P ∗) +

N−1∑
l=1

l∑
k=1

(P k − P k+1)

]

=
1

N

[
N(I − P + P ∗) +

N−1∑
l=1

(P − P l+1)

]

= I − P + P ∗ +
(N − 1)

N
P − (N − 1)

N

1

(N − 1)

N−1∑
l=1

P l+1

Note that

lim
N→∞

(
I − P + P ∗ +

(N − 1)

N
P − (N − 1)

N

1

(N − 1)

N−1∑
l=1

P l+1

)
= I.

Since (I − P + P ∗) is invertible,

C − lim
N→∞

N−1∑
k=0

(P − P ∗)k = (I − P + P ∗)−1I

= (I − P + P ∗)−1.

2

5.3.2 Application To Markov Cost Process

Define the expected immediate cost vector ḡδ and transition probability matrix

Pδ, corresponding to stationary randomized policy δ ∈ Λ, by

ḡδ(i) =
∑

a∈A(i)

[δ(i)]a g(i, a),

[Pδ]ij ≡ pδij =
∑

a∈A(i)

[δ(i)]a pij(a).

Let Jβ,δ denote the infinite horizon discounted cost corresponding to stationary

randomized policy δ ∈ Λ and discount factor β ∈ [0, 1). That is

Jβ,δ =
∞∑
k=0

βkP k
δ ḡ

δ

108

=

(∞∑
k=0

βkP k
δ

)
ḡδ = (I − βPδ)−1ḡδ.

The following proposition follows from Lemma 5.1 and relates the β discounted

cost and average cost corresponding to a stationary policy (see [12, Proposition 4.1.2,

page 182]).

Proposition 5.1 (Truncated Laurent Series Expansion) For any stationary

policy δ ∈ Λ and β ∈ [0, 1)

Jβ,δ = (1− β)−1ϑ̄δ + J∗δ +O(|1− β|), (5.6)

where ϑ̄δ and J∗δ are given by

ϑ̄δ = P ∗δ ḡ
δ,

and

J∗δ = Lδḡ
δ,

with

P ∗δ =

(
lim
N→∞

1

N

N−1∑
k=0

P k
δ

)
,

Lδ = (I − Pδ + P ∗δ)−1 − P ∗δ .

Furthermore

ϑ̄δ = Pδϑ̄
δ,

ϑ̄δ + J∗δ = ḡδ + PδJ
∗
δ .

2

109

Here O(|1− β|) is a β dependent vector, such that limβ→1O(|1− β|) = 0
¯
, the zero

vector.

Equation 5.6 is referred to as the Truncated Laurent Series Expansion of the

discounted cost of a stationary policy δ. The vectors J∗δ and ϑ̄δ in the Truncated

Laurent series expansion are uniquely defined, and will be referred to as the bias

and gain of δ, respectively.

If P is the transition probability matrix corresponding to a unichain Markov

chain, then

P ∗ = 1
¯
π′,

where π ∈ Rn is the unique invariant distribution corresponding to P , and 1
¯
∈ Rn

is the vector with all components equal to one. Note that π(i) = 0, if i is a

transient state and π(i) > 0, if i is an element of the unique recurrent class. Also

∑n
i=1 π(i) = 1. Note that π′P = π′. Also note that the eigen value 1 has an algebraic

multiplicity of one and that any left eigen vector of P corresponding to eigen value

1 is a scalar multiple of π.

Let the operators T̄δ : Rn → Rn and T̄ : Rn → Rn be defined as

(T̄δJ)(i) = ḡδ(i) +
n∑
j=1

pδijJ(j), for i = 1, 2, . . . , n.

and

(T̄ J)(i) = min
a∈A(i)

g(i, a) +
n∑
j=1

pij(a)J(j)

 , for i = 1, 2, . . . , n.

Here J ∈ Rn. In particular for a stationary deterministic policy µ (∈ Υ), we have,

(T̄µJ)(i) = g(i, µ(i)) +
n∑
j=1

pij(µ(i))J(j), for i = 1, 2, . . . , n.

110

We have the following lemma. See [12, Proposition 4.2.4] and [40].

Lemma 5.3 Let δ ∈ Λ be a stationary policy which is unichain.

(a) Then there exists a scalar ϑδ and a vector Jδ ∈ Rn, such that

ϑδ1
¯

+ Jδ = T̄δJδ.

(b) Let k be a fixed state. Then the system of equations

ϑ1
¯

+ J = T̄δJ and J(k) = 0,

in the (n + 1) unknowns ϑ, J(1), J(2), . . . , J(n); has a unique solution, with

ϑ = ϑδ. 2

Note that the average cost starting at any state i ∈ S under policy δ is

ϑ̄δ(i) = ϑδ. In the above lemma ϑδ = (πδ)′ḡδ, where πδ is the unique invariant

distribution for the policy δ, and ḡδ is the expected immediate cost vector for policy

δ. Note that if Lδ = (I − Pδ + P ∗δ)−1 − P ∗δ , where

P ∗δ = lim
N→∞

1

N

N−1∑
k=0

P k
δ ,

then from equation 5.5,

P ∗δ + Lδ = I + PδLδ,

and hence

P ∗δ ḡ
δ + Lδḡ

δ = ḡδ + PδLδḡ
δ.

Now P ∗δ = 1
¯
(πδ)′. With ϑδ = (πδ)′ḡδ and J∗δ = Lδḡ

δ, the above equation can be

written as

ϑδ1
¯

+ J∗δ = T̄δJ
∗
δ .

111

Note that (πδ)′J∗δ = (πδ)′Lδḡ
δ = 0, since P ∗δ Lδ = 0, from equation 5.4.

ϑδ is called the average cost (gain) and Lδḡ
δ is called the basic differential cost

(bias) for the Markov Cost process corresponding to policy δ. Note that a scalar ϑ

and a vector J satisfies

ϑ1
¯

+ J = T̄δJ,

if and only if ϑ = ϑδ and sp(J − Lδḡδ) = 0, where, for a vector J the span semi-

norm [40],

sp(J) ≡ max
i∈S

J(i)−min
i∈S

J(i).

Notice that as stated in Chapter 1, if ϑ ∈ R and J ∈ Rn satisfy

ϑ1
¯

+ J = T̄ J, (5.7)

then ϑ = ϑ∗, the optimal average cost starting from any state i ∈ S. In addition if

δ ∈ Λ is any stationary policy such that T̄δJ = T̄ J , then δ is average cost optimal.

Note that for vector J, J̄ ∈ Rn, sp(J − J̄) = 0 if and only if J = J̄ + α1
¯

for

some α ∈ R.

5.4 Unichain MDP With A Common Recurrent State

5.4.1 Bellman Equation

Assumption 5.1 The MDP is unichain and one of the states, say ‘s’, is such that

it is recurrent under all stationary deterministic policies.

2

We have the following variant of [11, Proposition 7.4.1].

112

Lemma 5.4 Under Assumption 5.1, the following hold for the average cost per

stage problem.

(a) The optimal average cost is the same for all initial states and together with some

vector J� = (J�(1), J�(2), . . . , J�(n))′ satisfies the Bellman Equation:

ϑ∗1
¯

+ J� = T̄ J�, (5.8)

that is

ϑ∗ + J�(i) = min
a∈A(i)

g(i, a) +
n∑
j=1

pij(a)J�(j)

 , for i = 1, 2, . . . , n.

Furthermore, if µ(i) attains the minimum in the above equation for all i, the

stationary policy µ is optimal. Fix k ∈ {1, 2, . . . , n}. Then in addition, out

of all vectors J� satisfying this equation, there is a unique vector for which

J�(k) = 0.

(b) A scalar ϑ and a vector J = (J(1), J(2), . . . , J(n))′ satisfy Bellman’s equation

if and only if ϑ = ϑ∗ (the optimal average cost for each initial state) and

sp(J� − J) = 0.

(c) Fix k ∈ {1, 2, . . . , n}. Given a stationary deterministic policy µ, with corre-

sponding average cost per stage ϑµ, there is a unique vector Jµ ∈ Rn, such

that Jµ(k) = 0 and

ϑµ + Jµ(i) = g(i, µ(i)) +
n∑
j=1

pij(µ(i))Jµ(j), i = 1, 2, . . . , n.

2

113

We may characterize J� in part (a) of Lemma 5.4 as follows. Let µ∗ be any

Blackwell optimal policy [12, 40]. Then by [12, Propostion 4.1.4] (see it’s proof)

the scalar ϑ∗ = (πµ
∗
)′ḡµ

∗
and vector Lµ∗ ḡ

µ∗ satisfy the Bellman equation. All the

Blackwell optimal policies have the same gain and bias.

Note that ϑ ∈ R and J ∈ Rn satisfy Bellman’s equation if and only if ϑ = ϑ∗

and sp(J−Lµ∗ ḡµ
∗
) = 0. Also note that if there is a unique policy µ which minimizes

the RHS (Right Hand Side) of the Bellman equation, then it is a Blackwell Optimal

policy (unique Blackwell optimal policy).

5.4.2 Policy Iteration

Let µ and µ̄ be unichain policies, and ϑµ and ϑµ̄ be the average cost (indepen-

dent of initial state) corresponding to policies µ and µ̄. Let Jµ and Jµ̄ be differential

cost vectors for µ and µ̄ which satisfy

ϑµ1
¯

+ Jµ = ḡµ + PµJµ = T̄µJµ, (5.9)

and

ϑµ̄1
¯

+ Jµ̄ = ḡµ̄ + Pµ̄Jµ̄ = T̄µ̄Jµ̄. (5.10)

Let

P ∗µ = lim
N→∞

1

N

N−1∑
k=0

P k
µ ,

P ∗µ̄ = lim
N→∞

1

N

N−1∑
k=0

P k
µ̄ .

Lemma 5.5 Let µ and µ̄ be stationary deterministic policies that are unichain.

114

Then

(ϑµ − ϑµ̄)1
¯

= P ∗µ̄ (ϑµ1
¯

+ Jµ − ḡµ̄ − Pµ̄Jµ)︸ ︷︷ ︸
T̄µJµ−T̄µ̄Jµ

2

Proof of Lemma 5.5

Note that from equation 5.9 and equation 5.10

(ϑµ1
¯

+ Jµ − ḡµ̄ − Pµ̄Jµ) = (ϑµ − ϑµ̄)1
¯

+ (Jµ − Jµ̄)− Pµ̄(Jµ − Jµ̄).

Multiplying the above relation with P k
µ̄ and adding from k = 0 to N − 1, we obtain,

N−1∑
k=0

P k
µ̄ (ϑµ1

¯
+ Jµ − ḡµ̄ − Pµ̄Jµ) = N(ϑµ − ϑµ̄)1

¯
+ (Jµ − Jµ̄)− PN

µ̄ (Jµ − Jµ̄).

Divide by N and taking the limit as N →∞ we obtain

P ∗µ̄

(T̄µJµ−T̄µ̄Jµ)︷ ︸︸ ︷
(ϑµ1

¯
+ Jµ − ḡµ̄ − Pµ̄Jµ) = (ϑµ − ϑµ̄)1

¯
.

2

Corollary 5.1 Let µ and µ̄ be unichain stationary deterministic policies. If T̄µ̄Jµ = T̄ Jµ,

then ϑµ̄ ≤ ϑµ.

2

This follows from the fact that

T̄µ̄Jµ = T̄ Jµ ≤ T̄µJµ.

Notice that for any α ∈ R and any stationary policy δ ∈ Λ and any J ∈ Rn,

T̄δ(J + α1
¯
) = T̄δJ + α1

¯
,

and

115

T̄ (J + α1
¯
) = T̄ J + α1

¯
.

Lemma 5.6 Let µ and µ̄ be unichain stationary deterministic policies. Let ϑµ and

ϑµ̄ be the corresponding average costs, Jµ and Jµ̄ be corresponding differential costs

satisfying

ϑµ1
¯

+ Jµ = T̄µJµ,

and

ϑµ̄1
¯

+ Jµ̄ = T̄µ̄Jµ̄

Also let T̄ Jµ = T̄µ̄Jµ and sp(Jµ − Jµ̄) = 0. Then

T̄µ̄Jµ̄ = T̄ Jµ̄

and hence ϑµ̄ = ϑ∗, i.e. µ̄ is an optimal policy.

2

Proof of Lemma 5.6

Now Jµ̄ − Jµ = α1
¯

for some scalar α since sp(Jµ − Jµ̄) = 0.

ϑµ̄ + Jµ̄ = T̄µ̄Jµ̄

= T̄µ̄(Jµ + α1
¯
) = T̄ (Jµ + α1

¯
)

= T̄ Jµ̄.

implying that ϑµ̄ = ϑ∗. See Chapter 1 and [12, Proposition 4.2.1 and Proposition

4.2.2]. 2

116

Lemma 5.7 Let µ be a unichain policy with average cost ϑµ ∈ R and differential

cost Jµ satisfying

ϑµ1
¯

+ Jµ = T̄µJµ = T̄ Jµ

Let µ̄ be any unichain policy (with average cost ϑµ̄ and differential cost Jµ̄ satisfying

ϑµ̄1
¯

+ Jµ̄ = T̄µ̄Jµ̄) such that

T̄µ̄Jµ = T̄ Jµ

Then ϑµ̄ = ϑµ = ϑ∗ and sp(Jµ̄ − Jµ) = 0. Also T̄µ̄Jµ̄ = T̄ Jµ̄. 2

Proof of Lemma 5.7

ϑµ = ϑ∗ follows immediately from

ϑµ1
¯

+ Jµ = T̄ Jµ = T̄µJµ.

Now since T̄µ̄Jµ = T̄ Jµ we have

ϑµ1
¯

+ Jµ = T̄µJµ = T̄ Jµ = T̄µ̄Jµ.

Hence by Lemma 5.3, we have ϑµ = ϑµ̄ and sp(Jµ − Jµ̄) = 0. Since Jµ̄ = α1
¯

+ Jµ,

for some scalar α, we have

T̄µ̄Jµ̄ = T̄µ̄(Jµ + α1
¯
)

= T̄µ̄Jµ + α1
¯

= T̄ Jµ + α1
¯

= T̄ (Jµ + α1
¯
) = T̄ Jµ̄.

2

Let Assumption 5.1 hold. We now give the policy iteration algorithm [11,

pages 432–435]. It operates as follows.

117

Given a stationary deterministic policy, we obtain an improved stationary de-

terministic policy by means of a minimization process, until no further improvement

is possible. In particular at the typical step of the algorithm, we have a stationary

deterministic policy µk. We then perform a policy evaluation step; that is, we obtain

corresponding average and differential costs ϑk ∈ R and Jk ∈ Rn satisfying

ϑk1
¯

+ Jk = T̄µkJk with Jk(s) = 0.

Here ‘s’ is the common recurrent state. We subsequently perform a policy improve-

ment step; that is, we find stationary deterministic policy µk+1 such that

T̄µk+1
Jk = T̄ Jk

If ϑk+1 = ϑk and Jk+1 = Jk then the algorithm terminates; otherwise the process is

repeated with µk+1 replacing µk. To prove that the policy iteration algorithm ter-

minates, it is sufficient that each iteration makes some irreversible progress towards

optimality, since there are finitely many stationary deterministic policies. The fol-

lowing proposition [11, Proposition 7.4.2] shows the type of irreversible progress we

can demonstrate. It also shows that an optimal policy is obtained upon termination.

Proposition 5.2 (Policy Iteration) Under Assumption 5.1, in the policy itera-

tion algorithm, for each k we either have

ϑk+1 < ϑk

or else we have

ϑk+1 = ϑk, Jk+1(i) ≤ Jk(i), for i = 1, 2, . . . , n.

118

Furthermore the algorithm terminates and the policies µk and µk+1 obtained upon

termination are optimal.

2

In fact from the termination condition and Lemma 5.6 it follows that

T̄µkJk = T̄ Jk = T̄ Jk+1 = T̄µk+1
Jk+1

upon termination. From Lemma 5.4 and Lemma 5.7, it is clear that sp(Jk−J�) = 0

and ϑk = ϑ∗ for k ≥ k∗, where k∗ is the step at which termination occurs and J� is

as in Equation 5.8.

Lemma 5.7 implies that the smallest k for which T̄ Jk = T̄µkJk occurs is k∗.

Proposition 5.2 and Lemma 5.7, also implies that for l, k ≤ k∗, µl 6= µk if l 6= k.

Hence optimal policy is obtained within |Υ| steps, where Υ is the set of stationary

deterministic policies and |Υ| is its cardinality.

Note that we could as well have imposed the termination condition to be:

terminate if T̄µkJk = T̄ Jk.

Also note that at each step we could have used any differential cost Jk corre-

sponding to policy µk (satisfying ϑk1
¯

+ Jk = T̄µkJk), since this would not have

changed policy µk+1. The termination condition will then be ϑk = ϑk+1 and

sp(Jk − Jk+1) = 0.

Lemma 5.8 Let us consider a Unichain MDP. Let µ and µ̄ be stationary deter-

ministic policies such that T̄µ̄Jµ = T̄ Jµ, where Jµ is a differential cost for policy

µ satisfying ϑµ1
¯

+ Jµ = T̄µJµ. Suppose the Markov chain corresponding to µ̄ is

119

irreducible. Then ϑµ̄ < ϑµ if µ is not optimal and ϑµ̄ = ϑµ if µ is optimal.

2

Proof of Lemma 5.8

Now ϑµ̄ ≤ ϑµ from Corollary 5.1. Of course if µ is optimal, ϑµ̄ cannot be less

than ϑµ = ϑ∗. Hence ϑµ̄ = ϑµ. By Lemma 5.5

ϑµ̄1
¯

= ϑµ1
¯

+ P ∗µ̄ (T̄ Jµ − T̄µJµ)︸ ︷︷ ︸
≤0

¯

.

That is ϑµ̄ = ϑµ + (πµ̄)′(T̄ Jµ− T̄µJµ). Here 0
¯

is the zero vector and the inequality is

componentwise. Note that P ∗µ̄ = 1
¯
(πµ̄)′, where πµ̄ is the unique invariant distribution

corresponding to policy µ̄ (i.e. corresponding to transition probability matrix Pµ̄).

πµ̄ has all elements positive, since the Markov chain corresponding to policy µ̄ is

irreducible.

Suppose µ is not optimal and ϑµ̄ = ϑµ. This implies T̄ Jµ = T̄µJµ = ϑµ1
¯

+ Jµ.

Hence µ is optimal, a contradiction (see the comments following equation 5.7).

Hence ϑµ̄ < ϑµ.

2

Lemma 5.8 says that ϑµ̄ = ϑµ if and only if µ is optimal.

Now let us consider a recurrent MDP; where all stationary deterministic poli-

cies are irreducible. If we use policy iteration, ϑµk+1 < ϑµk if and only if µk is not

optimal. Hence the termination condition could be ϑk = ϑk+1, at which stage µk

and µk+1 are optimal.

120

Lemma 5.9 For a recurrent MDP, a stationary deterministic policy µ is optimal

if and only if T̄ Jµ = T̄µJµ; where Jµ is a differential cost for policy µ satisfying

ϑµ1
¯

+ Jµ = T̄µJµ.

2

Proof of Lemma 5.9

The if part follows from equation 5.7 and the comments following that. Now

to prove the only if part, note that if stationary deterministic policy µ̄ is such that,

T̄µ̄Jµ = T̄ Jµ, then

ϑµ̄ = ϑµ + (πµ̄)′ (T̄ Jµ − T̄µJµ)︸ ︷︷ ︸
≤0

¯
by Lemma 5.5. πµ̄ has all elements positive. Since µ is optimal ϑµ̄ = ϑµ. Hence

T̄ Jµ = T̄µJµ. 2

We would like to add that, in general an MDP being unichain, does not mean

that it has a common recurrent state. For instance consider the following example.

Example 5.1 Consider the following three state (deterministic) MDP, where state

space S̃ = {1, 2, 3}, and action set Ã(i) = {1, 2}, ∀i ∈ S̃. The transition probabili-

ties are given by

pi,(((i−1+u) mod 3)+1)(u) = 1 for u ∈ {1, 2} = Ã(i) and i ∈ {1, 2, 3} = S̃

There are eight different stationary deterministic policies, each of which are unichain,

but has no common recurrent state.

2

121

5.5 Continuity Issues Of Limiting and Differential Matrices

In this section, let us define ‖P ‖∞ for a Rn×n matrix P as

‖P ‖∞ = max
i,j
|pij| (5.11)

where pij = [P]ij. Note that this is a vector norm on Rn×n matrices. Our first

attempt might be to approximate any stationary deterministic policy with a station-

ary fully randomized policy; but this has the following problem, that for multichain

policies the approximation by stationary fully randomized policies won’t work as

illustrated in the following example.

Example 5.2 Let us consider a two state problem. With slight abuse of notation

we use ε as the subscript for the matrices Pε, P̄ε, Lε and L̄ε. Let

P̄ =

 1 0

0 1

 , Pε =

 1− ε ε

ε 1− ε

 , P̄ε =

 1− 2ε 2ε

ε 1− ε

 .

for 0 < ε < 1
2
. Note that

limε↓0 ‖Pε − P̄ ‖∞ = 0

limε↓0 ‖ P̄ε − P̄ ‖∞ = 0

limε↓0 ‖ P̄ε − Pε ‖∞ = 0


(5.12)

Note that we have for ε ∈ (0, 1
2
)

P ∗ε ≡ lim
N→∞

1

N

N∑
k=0

P k
ε =


1
2

1
2

1
2

1
2

 ,
Lε ≡ (I − Pε + P ∗ε)−1 − P ∗ε

122

=


1
4ε
− 1

4ε

− 1
4ε

1
4ε

 ,

P̄ ∗ε ≡ lim
N→∞

1

N

N∑
k=0

P̄ k
ε =


1
3

2
3

1
3

2
3

 ,
L̄ε ≡ (I − P̄ε + P̄ ∗ε)−1 − P̄ ∗ε

=


2
9ε
− 2

9ε

− 1
9ε

1
9ε

 ,

P̄ ∗ ≡ lim
N→∞

1

N

N∑
k=0

P̄ k =

 1 0

0 1

 ,
L̄ ≡ (I − P̄ + P̄ ∗)−1 − P̄ ∗

=

 0 0

0 0

 .

Note that in spite of the relation 5.12,

limε↓0 ‖P ∗ε − P̄ ∗ ‖∞ 6= 0, limε↓0 ‖Lε − L̄‖∞ = ∞ 6= 0.

limε↓0 ‖ P̄ ∗ε − P̄ ∗ ‖∞ 6= 0, limε↓0 ‖ L̄ε − L̄‖∞ = ∞ 6= 0.

limε↓0 ‖P ∗ε − P̄ ∗ε ‖∞ 6= 0, limε↓0 ‖Lε − L̄ε ‖∞ = ∞ 6= 0.

Consider the two state deterministic problem, where state space S̃ = {1, 2}

and action space Ã(i) = {1, 2} for i ∈ S. Also g(1, 1) = g(1, 2) = 1 and g(2, 1) =

g(2, 2) = 0. Let p11(1) = 1, p12(2) = 1, p21(1) = 1, p22(2) = 1. Let µ be a stationary

deterministic policy such that µ(1) = 1, µ(2) = 2. For 0 < ε < 1
2
, let δε and δ̄ε be

stationary fully randomized policies (unichain) such that

[δε(1)]1 = 1− ε, [δε(1)]2 = ε, [δε(2)]1 = ε, [δε(2)]2 = 1− ε.

123

and

[δ̄ε(1)]1 = 1− 2ε, [δ̄ε(1)]2 = 2ε, [δ̄ε(2)]1 = ε, [δ̄ε(2)]2 = 1− ε.

Now the immediate cost vectors are given by

ḡµ =

 1

0

 , ḡδε =

 1

0

 , ḡδ̄ε =

 1

0

 .

Also Pµ = P̄ , Pδε = Pε and Pδ̄ε = P̄ε. The average cost vectors are

ϑ̄µ = P ∗µ ḡ
µ =

 1

0

 ,

ϑ̄δε = P ∗δε ḡ
δε =


1
2

1
2

 ,

ϑ̄δ̄ε = P ∗δ̄ε ḡ
δ̄ε =


1
3

1
3

 .
Consider the differential cost vectors

Jδε = Lδε ḡ
δε = Lεḡ

δε =


1
4ε

− 1
4ε

 ,

Jδ̄ε = Lδ̄ε ḡ
δ̄ε = L̄εḡ

δ̄ε =


2
9ε

− 1
9ε

 .

Note that though Pδε and Pδ̄ε converge to Pµ in the ‖·‖∞ norm,

lim
ε↓0
‖ ϑ̄δε − ϑ̄µ ‖∞ 6= 0,

lim
ε↓0
‖ ϑ̄δ̄ε − ϑ̄µ ‖∞ 6= 0,

lim
ε↓0
‖ ϑ̄δε − ϑ̄δ̄ε ‖∞ 6= 0.

124

where for a vector J ∈ Rn,

‖J ‖∞= max
i
|J(i)|.

Also

sp(Jδε − Jδ̄ε) =


1

36ε

− 5
36ε

 =
1

6ε
.

Note that

lim
ε↓0

sp(Jδε − Jδ̄ε) =∞ 6= 0.

2

But however we have the following lemma [40, Proposition 8.4.6]

Lemma 5.10 Let {Pk : k ≥ 0} denote a sequence of unichain transition probability

(or stochastic) matrices and suppose

lim
k→∞

‖Pk − P ‖∞= 0,

where P is also a unichain stochastic matrix. Then

(a)

lim
k→∞

‖P ∗k − P ∗ ‖∞= 0,

(b)

lim
k→∞

‖Lk − L‖∞= 0,

where P ∗k and Lk are the limiting matrix and differential matrix corresponding to Pk

(see the statements following Lemma 5.1). Similarly P ∗ and L are the limiting and

differential matrix, respectively of the stochastic matrix P . 2

125

Note that in [40, Proposition 8.4.6] we should impose the condition that P is

unichain; else the result does not hold, as was shown in the previous example.

Note that, by the results in Appendix B, for a unichain MDP, if µ is a sta-

tionary deterministic policy and δ is a stationary randomized policy that subsumes

policy µ (that is [δ(i)]µ(i) > 0 for i ∈ {1, 2, . . . , n}), then δ is also unichain and has

as its recurrent class, a super set of the unique recurrent class of µ.

Hence for a unichain MDP, if {δn} is a sequence of stationary randomized

policies which “converge” to a stationary deterministic policy µ, Then the immediate

cost vectors

ḡδk −→
k→∞

ḡµ

and the average cost (same for all starting states)

ϑδk −→
k→∞

ϑµ

Also the basic differential cost vectors

J∗δk −→k→∞ J∗µ

where J∗δk = Lδk ḡ
δk and J∗µ = Lµḡ

µ. Here Lδk and Lµ are the differential matrices

corresponding to Pδk and Pµ (the stochastic matrices corresponding to policies δk

and µ respectively).

Thus we can approximate stationary deterministic policies with stationary

randomized policies.

Lemma 5.11 Let P be a stochastic matrix corresponding to a unichain MDP. Then

there exists an ε > 0, such that if P̄ is any stochastic matrix with ‖P − P̄ ‖∞≤ ε,

126

then the Markov chain corresponding to P̄ is also unichain, with the recurrent class

of P̄ being a super-set of the recurrent class of P .

2

Proof of Lemma 5.11

Choose

ε =
1

2

(
min

i,j with pij 6=0
pij

)

Hence pij > 0 implies p̄ij > 0. Here p̄ij = [P̄]ij. It is easily seen that any recurrent

state under P is recurrent under P̄ (since any recurrent state under P is reachable

or accessible with positive probability from any state under P̄).

2

5.6 Approximate Policy Iteration

In the following ‖·‖ denotes the sup-norm. We have the following lemma.

Lemma 5.12 Let J̃ be any fixed vector in Rn. Then there exist scalars ς > 0, ε > 0,

depending on J̃ such that if J is any vector in Rn, with sp(J − J̃) < ε and µ̃ is a

stationary deterministic policy such that

‖ T̄µ̃J − T̄ J ‖< ς

then

T̄µ̃J̃ = T̄ J̃

2

127

Proof of Lemma 5.12

This follows from the affine nature of the operator T̄µ for any stationary de-

terministic policy µ along with the property that T̄µ(V + α1
¯
) = T̄µV + α1

¯
(where

V ∈ Rn, α ∈ R) and monotonicity of T̄µ (i.e. if V, Ṽ ∈ Rn and V ≥ Ṽ then

T̄µV ≥ T̄µṼ . Here the inequality is componentwise). Also T̄ (V + α1
¯
) = T̄ V + α1

¯

and T̄ is a monotone operator. Also note that the set of stationary deterministic

policies is finite (i.e. |Υ| is finite). 2

Corollary 5.2 For any finite state, finite action unichain MDP, there exist scalars

ε > 0, ς > 0, such that if J is any vector in Rn with sp(J − Jµ) < ε (where Jµ is a

differential cost vector for stationary deterministic policy µ) and µ̃ is a stationary

deterministic policy such that

‖ T̄µ̃J − T̄ J ‖< ς

then T̄µ̃Jµ = T̄ Jµ. In fact because |Υ| is finite, the ε and ς can be chosen to be

uniformly applicable to all µ ∈ Υ. 2

Consider a finite state, finite action unichain MDP with a common recur-

rent state. Assume that a sequence of stationary deterministic policies {µk} and a

corresponding sequence of approximate differential cost vectors {Jk} satisfy

sp(Jk − Jµk) ≤ εk for k = 0, 1, 2, . . .

and

‖ T̄µk+1
Jk − T̄ Jk ‖ ≤ ςk for k = 0, 1, 2, . . .

128

where Jµk is a differential cost for stationary deterministic policy µk.

Then there exists an ε > 0, ς > 0, such that if εk ≤ ε, ςk ≤ ς, ∀k, then the

sequence of policies µk generated are the same as that would be generated in the

policy iteration scheme and hence ϑµk converges to ϑ∗ (the optimal average cost) in

a finite (≤ |Υ|) number of steps.

Observe that if lim supk→∞ εk < ε and lim supk→∞ ςk < ς, then ϑµk = ϑ∗ and

sp(Jµk − J�) = 0 for all large k. Here J� is the unique vector satisfying

ϑ∗1
¯

+ J� = T̄ J�

with J�(k) = 0 for some fixed state k ∈ S.

For error bounds for the average cost problem, see Section C.6 in Appendix C.

These results can be used to check the nearness of convergence of the approximate

policy iteration schemes developed in Section 5.9.

5.7 Average Cost Temporal Difference Schemes

The purpose of the present section is to discuss a variant of TD (Temporal

Difference) learning that is suitable for approximating differential cost functions of

undiscounted (average cost) Markov chains (i.e. solutions to Poisson’s equation) [55].

Actually we are dealing with Markov Cost Processes. The results parallel those

available for the discounted cost (see [54] and Chapter 4) : we have convergence

with probability one, a characterization of the limit , and graceful bounds on the

resulting approximation error. Note that [55] discusses only a finite state irreducible

aperiodic Markov chain. We extend this to any finite state irreducible Markov chain

129

(periodic or otherwise) where the immediate cost may be random but stationary.

The results are essentially the same, and the proof is almost on the same lines as

in [55], but one of the main differences is in the use of results from Chapter 3.

Additional variations in the proofs of sub-results leading to the main results are

given as and when required.

Consider the homogeneous Markov chain with the state space S = {1, 2, . . . , n}

and the n× n transition probability matrix P = [pij]. Let gt denote the immediate

cost incurred while making a transition from state it at time t to state it+1 at time

t+1; the cost may be random but has finite variance and mean. Let g(i) denote the

expected value of the immediate cost incurred from state i, namely E[gt | it = i].

The probability distribution of gt may depend on it and it+1, but given it and it+1,

does not depend on the past values of il and gl (l < t) (Markov property).

Assumption 5.2 The Markov chain corresponding to P is irreducible (may be ape-

riodic or periodic). 2

It follows that the Markov chain has a unique invariant probability distribution

π ∈ Rn, that satisfies π′P = π′, with π(i) > 0 for all i ∈ S. Let E0[·] denote

expectation with respect to this distribution. We define the average cost by

ϑ∗ = E0[gt] =
n∑
i=1

π(i)g(i),

and a differential cost function as any function J : S → R, satisfying Poisson’s

130

equation which takes the form

J = ḡ − ϑ∗1
¯

+ PJ

Here ḡ ∈ Rn is the expected immediate cost column vector, whose ith component is

g(i). J is viewed as a vector in Rn.

Under Assumption 5.2, it is known that the differential cost functions exist

and the set of all differential cost functions takes the form {J∗ + c1
¯
|c ∈ R} for

some function satisfying π′J∗ = 0 (see Lemma 5.3 and the statements after that).

We will refer J∗ as the basic differential cost function and it is known that under

Assumption 5.2,

J∗ = Lḡ =C − lim
N→∞

N∑
t=0

P t(ḡ − ϑ∗1
¯
), (5.13)

where

L = (I − P + P ∗)−1 − P ∗,

is the differential matrix corresponding to P . Here

P ∗ = lim
N→∞

1

N

N−1∑
k=0

P k = 1
¯
π′

is the limiting matrix corresponding to P .

Neither P nor the distribution of the immediate cost gt is known in advance. In

a general setting of the TD(λ) scheme [55] we consider approximations to differential

cost functions using a function of the form

J̃(i, r) =
K∑
k=1

r(k)φk(i)

where r = (r(1), r(2), . . . , r(K))′ is a tunable parameter vector and each φk ∈ Rn is

a basis function defined on the state space S.

131

It is convenient to define a vector valued function φ : S → RK , by letting

φ(i) = (φ1(i), φ2(i), . . . , φK(i))′.

With this notation, the approximation can also be written in the form J̃(i, r) =

r′φ(i) or J̃ = Φr, where Φ is an n×K matrix whose kth column is equal to φk.

Assumption 5.3

(a) The basis functions {φk|k = 1, . . . , K} are linearly independent; i.e. Φ has full

column rank.

(b) For every r ∈ RK, Φr 6= 1
¯

, i.e. 1
¯

does not lie in the space spanned by φks,

k = 1, 2, . . . , K.

2

In particular K < n.

Suppose that we observe a sequence of states it generated according to the

transition probability matrix P . Given that at time t, the parameter vector r has

been set to some value rt, and we have an approximation ϑt to the average cost ϑ∗,

we define the temporal difference dt corresponding to the transition from state it to

state it+1 by

dt = gt − ϑt + J̃(it+1, rt)− J̃(it, rt) (5.14)

The TD(λ) algorithm updates rt and ϑt according to

ϑt+1 = (1− ηt)ϑt + ηtgt (5.15)

and

132

rt+1 = rt + γtdt
t∑

k=0

λt−kφ(ik) (5.16)

where γt and ηt are scalar step sizes and λ is a parameter in [0, 1). Define eligibility

vectors zt ∈ RK , by

zt =
t∑

k=0

λt−kφ(ik) (5.17)

With this new notation, the parameter updates are given by

rt+1 = rt + γtdtzt

zt+1 = λzt + φ(it+1)

with z−1 = 0.

Assumption 5.4

(a) The non-negative monotonic step sizes γt ↓ 0 are pre-determined (deterministic)

and satisfy

∞∑
t=0

γt =∞;
∞∑
t=0

γ2
t <∞.

(b) There exists a positive scalar c such that the sequence ηt satisfies ηt = cγt for

all t ≥ 0.

2

Note the variation in Assumption 5.4(a) from [55, Assumption 3(a)]. Actually

Assumption 5.4(a) may be replaced by (see Chapter 3)

5.4(a’) The non-negative step sizes γt are pre-determined and satisfy

∞∑
t=0

γt =∞,
∞∑
t=0

γ2
t <∞, and

∞∑
t=0

|γt+1 − γt| <∞.

133

Assumption 5.5 The immediate cost gt has finite moments, i.e.

E
[
|gt|k | it = i

]
<∞; ∀i ∈ S, ∀k ∈ N

where N is the set of natural numbers.

2

5.7.1 Convergence Results

We define an n×n diagonal matrixD with diagonal entries π(1), π(2), . . . , π(n).

It is easy to see that <x, y >D≡ x′Dy, x, y ∈ Rn defines an inner product space,

with norm

‖x‖D =
√
<x, x>D

We say that two vectors J and J̄ are D-orthogonal if J ′DJ̄ = 0. Here J ′ is the

transpose of the vector J . In this section we use ‖·‖ without a subscript, to denote

the Eucledian norm on vectors or the Eucledian induced norm on matrices (that is

for any matrix M , we have ‖M ‖= max‖x‖=1 ‖Mx‖.)

We define the projection matrix Π that projects onto the subspace spanned

by the basis functions. In particular Π = Φ(Φ′DΦ)−1Φ′D. For any J ∈ Rn, we then

have

ΠJ = arg min
J̄∈{Φr|r∈RK}

‖J − J̄ ‖D

Note that

Φ′D(J − ΠJ) = 0
¯

where 0
¯

is a K dimensional zero vector.

134

In fact ΠJ is the unique vector which lies in the span of φks (k = 1, 2, . . . , K)

such that (J − ΠJ) is D-orthogonal to all φks (k = 1, 2, . . . , K).

For any λ ∈ [0, 1), we define an operator T̄ (λ) : Rn → Rn by

T̄ (λ)J = (1− λ)
∞∑
m=0

λm
(

m∑
t=0

P t(ḡ − ϑ∗1
¯
) + Pm+1J

)
,

where J ∈ Rn. Note that since the elements of the vector
∑m
t=0 P

t(ḡ−µ∗1
¯
) grows at

most linearly in m, the outer sum is well defined. In fact it may be shown that the

elements of the vector
∑m
t=0 P

t(ḡ−µ∗1
¯
) is bounded. Thus T̄ (λ) is an affine function.

From the relation

(I − λP)−1 =
∞∑
m=0

(λP)m = (1− λ)
∞∑
m=0

λm
m∑
t=0

P t, (5.18)

we may rewrite

T̄ (λ)J = (I − λP)−1(ḡ − ϑ∗1
¯
) + P (λ)J

where P λ is defined later in equation 5.20. Our convergence result follows [55,

Theorem 1].

Theorem 5.1 Under Assumptions 5.2–5.5, the following hold:

(a) For any λ ∈ [0, 1), the average cost TD(λ) algorithm, as defined in the earlier

part of this section converges with probability one.

(b) The limit of convergence of the sequence ϑt is the average cost ϑ∗.

(c) The limit r∗ of the sequence rt is the unique solution of the equation

ΠT̄ (λ)(Φr∗) = Φr∗.

2

135

We follow along the lines of [55].

5.7.1.1 Preliminaries

Construct a process Xt = (it, it+1, zt, gt), where zt is the eligibility vector zt

defined in equation 5.17. It is easy to see that Xt is a Markov process. In particular

zt+1 and it+1 are deterministic functions of Xt, and the distribution of it+2 only

depends on it+1; also the distribution of gt+1 depends only on it+1 and it+2. Note

that at each time t, the random vector Xt, together with the current values of ϑt

and rt, provides all necessary information for computing ϑt+1 and rt+1.

So that we can think of the TD(λ) algorithm as adapting only a single vector,

we introduce a sequence θt ∈ RK+1 with components, θt(1) = ϑt and θt(i) = rt(i−1)

for i ∈ {2, . . . , K + 1}, or using more compact notation,

θt =

 ϑt

rt


The TD(λ) updates can be rewritten as

θt+1 = θt + γt(A(Xt)θt + b(Xt)), (5.19)

where for any X = (i, j, z, g), we have

A(X) =

 −c 0 · · · 0

−z z(φ′(j)− φ′(i))


and

b(X) =

 cg

zg


136

and c is the constant in Assumption 5.4(b). As is shown in [55], A(Xt) and b(Xt)

have well known “steady state” expectation which we denote by A and b. Note

that [55] deals with the case where gt depends only on it; but it easily extends to

the case where gt is random.

General results concerning stochastic approximation algorithms can be used

to show that the asymptotic behaviour of the sequence generated by equation 5.19,

mimics that of an ordinary differential equation

θ̇t = Aθt + b.

We essentially use the very general stochastic approximation result (Theorem 3.2,

Chapter 3) to prove that θt converges with probability one.

5.7.1.2 Lemmas

Lemma 5.13 Under Assumption 5.2, for all J ∈ Rn,

‖PJ ‖D≤‖J ‖D .

Furthermore, unless J is proportional to 1
¯

, we have PJ 6= J . 2

Proof of Lemma 5.13

The first part of the lemma is proved in [54]. We prove the second part as

follows. If J is proportional to 1
¯
, it is easy to see that PJ = J .

Suppose PJ = J . This implies P 2J = PJ = J . Continuing similarly

P kJ = J , ∀k ≥ 1. Hence

N−1∑
k=0

P kJ = NJ,

137

lim
N→∞

1

N

N−1∑
k=0

P kJ = J.

That is

P ∗J = J,

1
¯
π′J = J.

This implies that J is proportional to 1
¯
. 2

Under Assumption 5.2, the matrix P (λ) defined below in equation 5.20, is an

irreducible stochastic matrix for λ ∈ [0, 1). Note that P (0) = P . Furthermore for

λ ∈ (0, 1), P (λ) is aperiodic (actually all elements of P (λ) are positive) even when P

is periodic. Also P (λ) has unique invariant distribution π.

Lemma 5.14 Let

P (λ) = (1− λ)
∞∑
m=0

λmPm+1 (5.20)

Then under Assumption 5.2, for any λ ∈ [0, 1) and J ∈ Rn,

‖P (λ)J ‖D ≤ ‖J ‖D

Furthermore unless J is proportional to 1
¯

, we have P (λ)J 6= J .

2

Proof of Lemma 5.14 is similar to that of Lemma 5.13. Note that P (λ) is

continuous at λ = 0. Also for λ ∈ (0, 1)

P (λ) =
1− λ
λ

((I − λP)−1 − I).

138

Hence P (λ) is continuous in λ ∈ [0, 1). The proof of the following lemma needs a

different line of argument than in [55] for the general (not necessarily aperiodic)

case.

Lemma 5.15 Under Assumption 5.2, for any λ ∈ [0, 1), we have T̄ (λ)J = J if and

only if J ∈ {J∗ + c1
¯
|c ∈ R}.

2

Proof of Lemma 5.15

By Lemma 5.1 in the earlier section

P ∗ + L = I + PL,

P ∗P = PP ∗ = P ∗,

where

P ∗ = lim
N→∞

1

N

N−1∑
k=0

P k,

L = (I − (P − P ∗))−1 − P ∗.

Also

J∗ = Lḡ.

Note that

PL = P ∗ + L− I,

P 2L = P ∗ + PL− P

= 2P ∗ + L− (I + P).

By induction for k ≥ 1

P kL = kP ∗ + L− (
k−1∑
l=0

P l),

139

where P 0 = I.

Suppose J = J∗ + c1
¯

for some scalar c. Then

T̄ (λ)J

= (1− λ)
∞∑
m=0

λm
(

m∑
t=0

P t(ḡ − ϑ∗1
¯
) + Pm+1(J∗ + c1

¯
)

)

= (1− λ)
∞∑
m=0

λm
(

m∑
t=0

P tḡ −
m∑
t=0

P tP ∗ḡ + Pm+1Lḡ

)
+ c1

¯

= (1− λ)
∞∑
m=0

λm
(

m∑
t=0

P tḡ − (m+ 1)P ∗ḡ + (m+ 1)P ∗ḡ + Lḡ −
m∑
l=0

P lḡ

)
+ c1

¯

= (1− λ)
∞∑
m=0

λmLḡ + c1
¯

= Lḡ + c1
¯

= J∗ + c1
¯

= J.

The only if part of the proof is as in [55], which we include for completeness. Suppose

J is not of the form J∗ + c1
¯
. Then

T̄ (λ)J = T̄ (λ)J∗ + P (λ)(J − J∗)

= J∗ + P (λ)(J − J∗)

6= J∗ + (J − J∗)

= J,

where the inequality follows from Lemma 5.14. 2

The process Xt constructed earlier is a Markov process with a steady state

behaviour. Let X be the state space for the process. Let E0[·] denote the expectation

with respect to the invariant distribution of this process [55]. An argument along

140

the same line as in [55], gives the following lemma. See also [54].

Lemma 5.16 Under Assumption 5.2, the steady state invariant expectations A =

E0[A(Xt)] and b = E0[b(Xt)] are given by

A =

 −c 0 · · · 0

− 1
1−λΦ′D1

¯
Φ′D(P (λ) − I)Φ

 ,
and

b =

 cϑ∗

Φ′D(1− λ)
∑∞
m=0 λ

m∑m
t=0 P

tḡ

 .
2

Consider the following Markov chain derived from the original irreducible Markov

chain with state space S; the state space being

S̃ = {(i, j)|i, j ∈ S; pij > 0}.

The transition probability is defined as

Pr{(it+1, jt+1) = (i′, j′)|(it, jt) = (i, j)} = pi′j′I [j=i′]

for (i, j) ∈ S̃, (i′, j′) ∈ S̃; where the indicator function I [j=i′] = 1, if i′ = j, else

equal to zero.

It may be seen that this new Markov chain with state space S̃ is irreducible

and has period ‘d’, the same period as that for the original Markov chain with state

space S. The state space S̃ may be partitioned into periodic classes C̃0, . . . , C̃d−1;

such that

d−1⋃
l=0

C̃l = S̃; C̃i ∩ C̃j = ∅ for i 6= j.

141

Also

Pr{(it+1, jt+1) ∈ C̃((l+1) mod d)|(it, jt) = (i, j)} = 1

for all (i, j) ∈ C̃l, l ∈ {0, . . . , d− 1}. Hence we can partition the state space X into

disjoint Borel sets X0,X1, . . . ,Xd−1 with

Πθ(x,X(l+1) mod d) = 1, ∀x ∈ Xl

where Πθ is the transition probability kernel for the Markov process Xt, when

θ ∈ RK+1. (Note the slight abuse of notation in the use of Πθ for the transi-

tion probability kernel and Π for the projection matrix). Note that in our case Πθ

is independent of θ. Note that

Xl = {(i, j, z, g)|(i, j) ∈ C̃l, z ∈ RK , g ∈ R}.

We are a bit imprecise in the definition of Xl in that, actually z might take values

in a proper sub-set of RK , which is dependent on (i, j), λ and the choice of φks.

Similarly g might take values in a proper sub-set of R, which is dependent on (i, j).

We say that a square matrix M ∈ Rn×n is negative definite if x′Mx < 0 for all

x ∈ Rn, x 6= 0
¯
; even if M is not symmetric. The matrix A is not necessarily

negative definite, but becomes negative definite under an appropriate co-ordinate

scaling.

Lemma 5.17 Under Assumption 5.2 and Assumption 5.3, Φ′D(P (λ) − I)Φ is neg-

ative definite.

2

142

Proof of Lemma 5.17

Let J be a non-constant function on the state space S. Since the Markov chain

{it} is irreducible, J(it) is not a constant function of time, which implies that

0 <
1

2
E0

[
(J(it+1)− J(it))

2
]

= E0

[
J2(it)

]
− E0 [J(it)J(it+1)]

= J ′DJ − J ′DPJ

= J ′D(I − P)J (5.21)

For any r 6= 0, J = Φr, is a nonconstant vector because of Assumption 5.3.

Thus r′Φ′D(P − I)Φr < 0, for every r 6= 0
¯
, which shows that the matrix Φ′D(P −

I)Φ is negative definite. The same argument works for the matrix Φ′D(P (λ) −

I)Φ, because P (λ) is also an irreducible stochastic matrix with the same invariant

distribution.

2

Another way for deriving equation 5.21, is as follows. Since the Markov chain

is irreducible and hence π(i) > 0, ∀i ∈ S and also since J is a non-constant function

0 <
1

2
E0

[
(J(it+1)− J(it))

2
]

=
1

2

n∑
i=1

π(i)
n∑
j=1

pij(J(i)− J(j))2

=
1

2

n∑
i=1

π(i)
n∑
j=1

pij(J
2(i) + J2(j)− 2J(i)J(j))

=
1

2


n∑
i=1

π(i)J2(i)

1︷ ︸︸ ︷
n∑
j=1

pij +
n∑
j=1

J2(j)

π(j)︷ ︸︸ ︷
n∑
i=1

π(i)pij



143

−

 n∑
i=1

π(i)J(i)
n∑
j=1

pijJ(j)


=

1

2
(J ′DJ + J ′DJ)− J ′DPJ

= J ′DJ − J ′DPJ

= J ′D(I − P)J

Lemma 5.18 Under Assumption 5.2 and Assumption 5.3, there exists a diagonal

matrix L̂ with positive diagonal entries, such that the matrix L̂A is negative definite.

2

Proof of Lemma 5.18

Let L̂ be a diagonal matrix with the first diagonal entry equal to some scalar

l̂ > 0 and every other diagonal entry equal to one. Using the special form of the

matrix A (see Lemma 5.16) and the negative definiteness of the lower diagonal block

of A (see Lemma 5.17) it is a matter of simple algebra to verify that L̂A becomes

negative definite for l̂ sufficiently large.

2

Note that L̂A negative definite implies A is non-singular. Consider the change

of co-ordinates θ̃t = L̂
1
2 θt. We may rewrite the equation 5.19, in terms of θ̃t, to

obtain

θ̃t+1 = θ̃t + γt
[
L̂

1
2A(Xt)L̂

− 1
2 θ̃t + L̂

1
2 b(Xt)

]
Note that

E0

[
L̂

1
2A(Xt)L̂

− 1
2

]
= L̂

1
2AL̂−

1
2 ≡ Â

144

E0

[
L̂

1
2 b(Xt)

]
= L̂

1
2 b ≡ b̂

Note that L̂A negative definite implies Â is negative definite. Here L̂
1
2 = diag(l̂

1
2 , 1, . . . , 1)

and L̂−
1
2 = diag(l̂−

1
2 , 1, . . . , 1).

Now we may use the very general result (Theorem 3.2 of Chapter 3) to show

that θ̃t converges to the unique solution of

Âθ̃ + b̂ = 0
¯
,

namely

θ̃∗ = −Â−1b̂

Note that all the assumptions of Theorem 3.2 of Chapter 3 are satisfied (see [54, 55]).

Hence we have θt converges to

θ∗ = L̂−
1
2 θ̃∗

= −L̂−
1
2 L̂

1
2A−1L̂−

1
2 L̂

1
2 b

= −A−1b,

i.e. to the unique solution of the linear equation

Aθ + b = 0
¯

Hence the following corollary.

Corollary 5.3 Under Assumption 5.2, Assumption 5.3, Assumption 5.4 and As-

sumption 5.5, θt as defined by equation 5.19 converges to the unique solution of

Aθ + b = 0
¯

, where A and b are as in Lemma 5.16. 2

145

Notice that if we use θ̃ instead of θ in Theorem 3.2 of Chapter 3, we may use

the Lyapunov function

U(θ̃) =
1

2
(θ̃ − θ̃∗)′(θ̃ − θ̃∗)

Also

U(θ̃) ≥ α|θ̃|2, if |θ̃| > ρ0,α︸︷︷︸
depends on α

for any 1
2
> α > 0. Here |θ̃| denotes the Eucledian norm of θ̃ as in Chapter 3.

We derive the desired properties of U(θ̃) next. But before that, we have the

following lemma.

Lemma 5.19 Note that M ∈ Rn×n is negative definite implies

(a) MT is negative definite.

(b) M−1 is negative definite.

2

Proof of Lemma 5.19

Proof of part (a) is straightforward.

x′Mx < 0, ∀x 6= 0
¯
, x ∈ Rn,

Hence

x′MTx < 0, ∀x 6= 0
¯
.

Thus MT is negative definite.

146

Proof of part (b) is as follows.

(MT)−1MTM−1 = M−1.

Hence

x′(MT)−1MTM−1x = x′M−1x.

That is

y′MTy = x′M−1x where y = M−1x.

Note that y = 0
¯

if and only if x = 0
¯
. Hence by part (a),

0 > y′MTy = x′M−1x whenever x 6= 0
¯
.

2

Now back to the properties of U(θ̃).

U(θ̃) =
1

2
(θ̃ − θ̃∗)′(θ̃ − θ̃∗),

U ′(θ̃) = (θ̃ − θ̃∗),

where U ′(θ̃) is the derivative of U(θ̃) at θ̃. Now

U ′(θ̃) · (Âθ̃ + b̂) = (θ̃ + Â−1b̂)′(Âθ̃ + b̂)

= (Â−1(Âθ̃ + b̂))′(Âθ̃ + b̂)

= (Âθ̃ + b̂)′(Â−1)T (Âθ̃ + b̂)

< 0, whenever Âθ̃ + b̂ 6= 0
¯
,

that is whenever θ̃ 6= θ̃∗. Note that U(θ̃) = 0 if and only if θ̃ = θ̃∗.

Let 0 < α < 1
2
. Now

U(θ̃)− αθ̃′θ̃ =
1

2
(1− 2α)θ̃′θ̃ − (θ̃∗)

′θ̃ +
1

2
(θ̃∗)

′θ̃∗.

147

This is a quadratic function with positive definite Hessian matrix and has its minima

at (1− 2α)−1θ̃∗ and minimum value

1

2
|θ̃∗|2 · (1−

1

1− 2α
).

It’s Hessian matrix is (1− 2α)I, where I is the identity matrix. Hence if

|θ̃| >

ρ0,α︷ ︸︸ ︷
|θ̃∗|(

√
2α

1− 2α
+

1

1− 2α
),

then U(θ̃) > αθ̃′θ̃.

The proof of Theorem 5.1 is exactly similar to that in [55]; that is θt converges

with probability one to the unique limit θ∗ that satisfies Aθ∗ + b = 0.

Thus ϑt = θt(1) converges with probability one to ϑ∗ and rt converges to

r∗ = (θ∗(2), . . . , θ∗(K + 1))′. Note that [55] shows that r∗ satisfies

Φr∗ = ΠT̄ (λ)(Φr∗),

that is Φr∗ is a fixed point of the operator ΠT̄ (λ).We now prove that ΠT̄ (λ) has a

unique fixed point (which is not proved in [55]).

Lemma 5.20 ΠT̄ (λ) has a unique fixed point.

2

Proof of Lemma 5.20

Note that Φr∗ is a fixed point of ΠT̄ (λ) was established in [55]; hence ΠT̄ (λ)

has a fixed point. To prove uniqueness, first note that any fixed point should be of

the form Φr. Let Φr and Φr̄ be two fixed points, that is

ΠT̄ (λ)(Φr) = Φr

148

and

ΠT̄ (λ)(Φr̄) = Φr̄.

Subtracting the above equations, we get

ΠP (λ)Φ(r − r̄) = Φ(r − r̄).

Hence P (λ)Φ(r − r̄)− Φ(r − r̄) is D−orthogonal to φks, k = 1, . . . , K. That is

Φ′D
(
P (λ)Φ(r − r̄)− Φ(r − r̄)

)
= 0

¯
,

the zero vector. Hence

Φ′D(P (λ) − I)Φ(r − r̄) = 0
¯
.

But Φ′D(P (λ) − I)Φ is negative definite (and hence non-singular) by Lemma 5.17.

Hence r − r̄ = 0
¯

or r = r̄. 2

Note that T̄ (λ) has multiple fixed points (Lemma 5.15). It may be shown that

ΠT̄ (λ) is a contraction mapping under ‖·‖D norm if λ ∈ (0, 1) [12, Proposition 6.6.2,

pages 381-382] and hence has a unique fixed point. Another proof for the unique

fixed point of ΠT̄ (λ) when λ = 0 is given in [12, Proposition 6.6.1, pages 379-381].

5.7.2 Approximation Error

In this sub-section we deal with the approximation error [55, Section 4]. In

the context of average cost problem, one is usually content with an approximation

of any differential cost J , not necessarily the basic one. We will define the approxi-

mation error as the infimum of the weighted Eucledian distance from the set of all

149

differential cost functions.

inf
J∈{J∗+c1

¯
|c∈R}

‖Φr∗ − J ‖D = inf
c∈R
‖Φr∗ − (J∗ + c1

¯
)‖D .

Now any vector J ∈ Rn can be decomposed into a componentPJ that isD−orthogonal

to 1
¯
, and a component (I −P)J that is a multiple of 1

¯
, where P is the projection

matrix defined by

P = I − 1
¯
1
¯
′D = I − 1

¯
π′

Note that ‖ 1
¯
‖D = 1. Also note that for any J ∈ Rn, PJ is the projection of J

under the ‖ · ‖D metric onto the sub-space which is D-orthogonal to 1
¯
.

Also PP = PP . By the definition of J∗, we have π′J∗ = 0; hence PJ∗ = J∗.

Since for any r ∈ RK , J ∈ Rn, the minimum distance (under the ‖ · ‖D metric) of

the vector Φr − J from the sub-space {c1
¯
|c ∈ R} is equal to the magnitude of the

projection onto the orthogonal complement of the sub-space; we have

inf
c∈R
‖Φr − (J + c1

¯
)‖D = ‖PΦr −PJ ‖D

In particular

inf
c∈R
‖Φr∗ − (J∗ + c1

¯
)‖D=‖PΦr∗ − J∗ ‖D

In [55] it is shown that if we replace the basis functions φk with φ̄k = Pφk (which

is D−orthogonal to 1
¯
), the limit to which the TD(λ) converges and the resulting

approximation error remains the same. If we let Φ̄ ≡ PΦ, then Φ̄ also satisfies

Assumption 5.3. Letting

Π̄ = Φ̄(Φ̄′DΦ̄)−1Φ̄′D,

150

the projection matrix onto the space spanned by φ̄ks {k = 1, . . . , K}, it may be

shown that [55]

Π̄T̄ (λ)(Φ̄r∗) = Φ̄r∗,

where r∗ is as before, obtained from the unique solution of Aθ+ b = 0, where A and

b are defined as in Lemma 5.16 (i.e. r∗ = (θ∗(2), . . . , θ∗(K+1))′, where Aθ∗+b = 0).

We let

Pς = I + ς(P − I),

P (λ)
ς = I + ς(P (λ) − I), (5.22)

for ς ≥ 0, and we define a scalar αλ for each λ ∈ [0, 1) by

αλ ≡ inf
ς>0
‖ Π̄P (λ)

ς ‖D

where the norm in the above equation is the induced matrix norm (under the ‖·‖D

norm). We have the following error bound [55].

Lemma 5.21 Let Assumption 5.2 and Assumption 5.3 hold. For each λ ∈ [0, 1),

let r∗λ ∈ RK be the unique vector satisfying

Φr∗λ = ΠT̄ (λ)(Φr∗λ).

Then

(a) For each λ ∈ [0, 1), αλ is in [0, 1) and limλ↑1 αλ = 0.

(b) The following bound holds:

‖PΦr∗λ − J∗ ‖D≤
1√

1− α2
λ

inf
r∈RK

‖PΦr − J∗ ‖D .

2

151

Note that the bound is a multiple of

inf
r∈RK

‖PΦr − J∗ ‖D,

which is the minimal error possible, given the fixed set of basis functions. This

term becomes zero if there exists a parameter vector r and a scalar c for which

Φr = J∗+ c1
¯
, that is, if the “approximation architecture” is capable of representing

exactly some differential cost function. Note that because of Assumption 5.3(b) this

r is unique, if at all such an r exists. That is if {J∗+ c1
¯
|c ∈ R} intersects the space

spanned by φks for k = 1, 2, . . . , K; then it intersects at a unique point. Note that

in this case, by Lemma 5.15 and the definition of Π̄, r = r∗.

The proof of Lemma 5.21 is exactly as in the proof of [55, Theorem 3]; but we

need to prove limλ↑1 αλ = 0, for the case when the transition probability matrix P

corresponds to a general (not necessarily aperiodic) Markov chain. As in [55]

lim sup
λ↑1

αλ = lim sup
λ↑1

inf
ς>0
‖ Π̄P (λ)

ς ‖D

≤ lim sup
λ↑1

‖ Π̄P (λ) ‖D ≤ lim sup
λ↑1

‖PP (λ) ‖D,

the last inequality follows from the fact that Π̄ projects onto a subspace of 1
¯⊥

(the

sub-space onto which P projects), that is Π̄ = Π̄P and that projection does not

increase the norm.

Since P ∗ = 1
¯
π′, we have PP ∗ = 0, the zero matrix. Based on the discussion

following Lemma 5.14, for λ ∈ (0, 1),

P (λ) =
1− λ
λ

(
(I − λP)−1 − I

)

152

Also by Lemma 5.1,

(I − λP)−1 = (1− λ)−1P ∗ + L+O(|1− λ|),

where P ∗ is the limiting matrix corresponding to P and L is the differential matrix

corresponding to P , given by

L = (I − P + P ∗)−1 − P ∗

and limλ→1O(|1− λ|) = 0. Hence

PP (λ) =
1− λ
λ
P
[
(1− λ)−1P ∗ + L+O(|1− λ|)− I

]
=

1− λ
λ
P(L− I) +PO(|1− λ|)

which tends to 0 as λ ↑ 1. Hence

lim
λ↑1
‖PP (λ) ‖D = 0.

Thus limλ↑1 αλ = 0.

5.7.3 Using A Fixed Average Cost Estimate

In this subsection, we introduce, as in [55], a variant of the temporal difference

scheme that employs a fixed estimate ϑ of the average cost, in place of ϑt. In

particular the parameter vector rt is updated according to the same rule 5.16, but

the definition of the temporal difference equation 5.14 is changed to

dt = (gt − ϑ) + φ′(it+1)rt − φ′(it)rt

Also define

α̃λ ≡ inf
ς∈[0,1]

‖ΠP (λ)
ς ‖D,

153

where the norm in the above equation is the induced matrix norm (under the ‖·‖D

norm). Then we have the following lemma [55, Theorem 4]

Lemma 5.22 Under Assumptions 5.2–5.5, for any λ ∈ [0, 1), the following hold:

(a) The TD(λ) algorithm with a fixed average cost estimate, as defined above con-

verges with probability one.

(b) The limit of convergence r̄λ is the unique solution of the equation

ΠT̄ (λ)(Φr̄λ) +
ϑ∗ − ϑ
1− λ

Π1
¯

= Φr̄λ.

(c) For any λ ∈ [0, 1), α̃λ is in [‖1
¯
‖D, 1), and

lim
λ↑1

α̃λ =‖Π1
¯
‖D .

(d) The limit of convergence r̄λ satisfies

‖PΦr̄λ − J∗ ‖D ≤ 1√
1− α2

λ

inf
r∈RK

‖PΦr − J∗ ‖D

+
|ϑ∗ − ϑ|

(1− α̃λ)(1− λ)
‖Π1

¯
‖D,

where αλ and P are defined as earlier.

2

Proof of Lemma 5.22

Note that we are dealing with the general (aperiodic or periodic) Markov

chain. We omit the proofs of parts (a)–(b), because it is very similar to the proof

of Theorem 5.1.

154

Note that there is some correction to part (c) from [55]. The proof that α̃λ < 1,

is similar to that of Lemma 5.21, part (a) [55, Theorem 3]. However it needs a bit

more explanation. From Lemma 5.14 we have ‖P (λ) ‖D≤ 1, and P (λ)J 6= J if J is

not proportional to 1
¯
. It follows that for any ς ∈ (0, 1) and J that is not proportional

to 1
¯
, we have

‖ΠP (λ)
ς J ‖D≤‖P (λ)

ς J ‖D = ‖ ςP (λ)J + (1− ς)J ‖D< ‖J ‖D .

The first inequality uses the non-expansive property of the projection. The last one

holds because J and P (λ)J are distinct elements of the ball {J̄ | ‖ J̄ ‖D≤‖J ‖D}, so

their strict convex combination must lie in the interior interior.

Also note that ‖Π1
¯
‖D< 1, since ‖1

¯
‖D= 1, and Π1

¯
+ (1

¯
−Π1

¯
) = 1

¯
. Note that

by Assumption 5.3(b), (1
¯
− Π1

¯
) 6= 0

¯
; also Π1

¯
is D-orthogonal to (1

¯
− Π1

¯
). Hence

by Pythagorean theorem

1 =‖1
¯
‖2
D=‖Π1

¯
‖2
D + ‖1

¯
− Π1

¯
‖2
D,

and hence ‖Π1
¯
‖D< 1. Hence if J = c1

¯
, with |c| ≤ 1, then ‖ΠJ ‖D< 1.

(Note that ‖ΠP (λ)
ς J ‖D is a continuous function of J and that the set {J | ‖J ‖D≤ 1}

is compact. Thus for any ς ∈ (0, 1), ‖ΠP (λ)
ς ‖D< 1. Since

α̃λ = inf
ς∈[0,1]

‖ΠP (λ)
ς ‖D≤ inf

ς∈(0,1)
‖ΠP (λ)

ς ‖D< 1.

Also for any ς, ΠP (λ)
ς 1

¯
= Π1

¯
. Thus α̃λ ≥‖Π1

¯
‖D. Now

lim sup
λ↑1

α̃λ = lim sup
λ↑1

inf
ς∈[0,1]

‖ΠP (λ)
ς ‖D

≤ lim sup
λ↑1

‖ΠP (λ) ‖D

155

Based on Lemma 5.1 and the discussion following Lemma 5.14, for any λ ∈ (0, 1),

ΠP (λ) =
1− λ
λ

Π
[
(I − λP)−1 − I

]
=

1− λ
λ

Π
[
(1− λ)−1P ∗ + L+O(|1− λ|)− I

]
.

Here P ∗ and L are the limiting matrix and differential matrix, respectivelty of the

stochastic matrix P . Hence

lim
λ↑1

ΠP (λ) = ΠP ∗.

Now P ∗ = 1
¯
π′.

‖ΠP ∗ ‖D = sup
‖J‖D=1

‖Π1
¯
π′J ‖D

= ‖Π1
¯
‖D sup

‖J‖D=1
|π′J |

Now any J can be decomposed as

J = PJ + (π′J)1
¯

the two terms being D-orthogonal. By Pythagorean theorem,

‖J ‖2
D = ‖PJ ‖2

D +|π′J |2 ‖1
¯
‖2
D .

Hence if ‖J ‖D= 1, then |π′J | ≤ 1 (note ‖1
¯
‖D= 1). If J = 1

¯
, |π′J | = 1. Hence

‖ΠP ∗ ‖D=‖Π1
¯
‖D

Thus

lim sup
λ↑1

α̃λ ≤ lim sup
λ↑1

‖ΠP (λ) ‖D = ‖Π1
¯
‖D .

Hence

lim
λ↑1

α̃λ =‖Π1
¯
‖D

156

Note that Π1
¯

= 0
¯

if and only if Π = Π̄. That is the basis functions φks (for

k = 1, 2, . . . , K) lie in 1
¯⊥

(the sub-space which is D-orthogonal to 1
¯
), since (1

¯
−Π1

¯
)

is D-orthogonal to φks (for k = 1, 2, . . . , K).

Proof of part (d) of the Lemma 5.22 is as in [55].

2

Note that α̃λ could have been defined as infς>0 ‖ΠP (λ) ‖D, and all the results

of Lemma 5.22 hold.

Also note that for the TD(λ) scheme, the initial eligibility vector z−1, could be

any value, not necessarily 0
¯
. Note that ηt could be any non-negative deterministic

sequence satisfying

∞∑
t=0

ηt =∞;
∞∑
t=0

η2
t <∞, and

∞∑
t=0

|ηt+1 − ηt| <∞,

and the estimate of the average cost ϑt will converge with probability one to ϑ∗. If

ηt is a non-increasing sequence then
∑∞
t=0 |ηt+1 − ηt| <∞ is satisfied.

In the TD(λ) algorithm, ηt need not be cγt, but any deterministic sequence

which satisfies the above property, and Theorem 5.1 holds. Notice how ϑt enters the

computation of rt, from equation 5.19. We are not providing the rigorous proof of

this, but may be inferred from Lemma 5.22 (a) and (b). Also the moment condition

on immediate costs in Assumption 5.5, namely

E
[
|gt|k|it = i

]
<∞,

∀i ∈ S, need be satisfied only upto a sufficiently large k (k = 4) and not for all

k > 0. (see Chapter 3, Proposition 3.1).

157

We have the following useful lemma which comes in handy later.

Lemma 5.23 Let R be an n − 1 dimensional subspace of Rn, such that 1
¯
/∈ R.

Let J be an arbitrary vector in Rn. Then the line {J + c1
¯
|c ∈ R}, intersects the

subspace R at a unique point.

2

Proof of Lemma 5.23

Let v1, v2, . . . , vn−1 be a basis for R; that is, the vis are non-zero vectors which

are linearly independent and span R. Since v1, v2, . . . , vn−1 together with 1
¯

form a

basis for Rn,

J =
n−1∑
l=1

clvl + cn1
¯
,

where cls are scalar values in R. Note that the cls are unique. Let

J̄ =
n−1∑
l=1

clvl.

J̄ ∈ R and J̄ = J − cn1
¯
. Hence J̄ ∈ R ∩ {J + c1

¯
|c ∈ R}.

To prove the uniqueness of J̄ , suppose Ĵ ∈ R ∩ {J + c1
¯
|c ∈ R} and Ĵ 6= J̄ .

Hence Ĵ − J̄ lies in R, and is a non-zero scalar multiple of 1
¯
, which leads to a

contradiction, since we assume that 1
¯

does not lie in the subspace R. Note that J̄

does not depend on the choice of the basis for R. For example let w1, w2, . . . , wn−1

be another basis for R. Let ĉ1, . . . , ĉn−1 be such that,
∑n−1
l=1 ĉlwl = J̄ , which is

possible since J̄ ∈ R. Note that

J = J̄ + ĉn1
¯

=
n−1∑
l=1

ĉlwl + ĉn1
¯
.

158

where ĉn = cn. Note that the ĉl are unique, and

J̄ = J − ĉn1
¯
∈ R ∩ {J + c1

¯
|c ∈ R}.

2

Corollary 5.4 In particular if in Assumption 5.3, K = n−1; that is φ1, φ2, · · · , φn−1 ∈

Rn are linearly independent and 1
¯

is not in the span of φ1, . . . , φn−1; then the line

{J∗ + c1
¯
|c ∈ R} intersects the subspace {Φr|r ∈ RK} at a unique point J̄ , which

is the unique fixed point of the operator ΠT̄ (λ) (see Lemma 5.15). Hence J̄ = Φr∗,

where r∗ is as in Theorem 5.1. Note that Φ is an n×K matrix where the kth column

is φk.

2

Corollary 5.5 Let ek = (0, . . . , 0,

kth entry︷︸︸︷
1 , 0, . . . , 0)′, the kth standard basis vector in

Rn. Fix m ∈ {1, . . . , n}. Let φl = eil, for l = 1, . . . , n−1, where il ∈ {1, . . . , n}\{m}

(that is il ∈ {1, . . . , n}, but not m). Here il 6= il̃, if l 6= l̃.

Then {J∗ + c1
¯
|c ∈ R} intersects the span of {φ1, . . . , φn−1} at a unique point

J̄ , which is the unique fixed point of operator ΠT̄ (λ). In particular e′iΦr
∗ = J̄(i) =

J∗(i)− J∗(m), for i ∈ {1, . . . , n}.

2

5.8 Stationary Randomized Policies

Please see the Section 4.2 in Chapter 3.

159

Suppose all the stationary deterministic policies are unichain; then any sta-

tionary randomized policy is unichain and the recurrent class for a stationary fully

randomized policy is the union of the recurrent classes of all the stationary deter-

ministic policies (see Appendix B). Hence in this case, the limiting matrix P ∗δ and

differential matrix Lδ corresponding to Pδ, where

P ∗δ = lim
N→∞

1

N

N−1∑
k=0

P k
δ ,

Lδ = (I − Pδ + P ∗δ)−1 − P ∗δ ,

are continuous functions on the space Λ of stationary randomized policies (see

Lemma 5.10). In fact compactness of Λ implies that P ∗δ and Lδ are uniformly

continuous on Λ for a unichain MDP. In particular given any ε > 0, there exists a

ε > 0 (dependent on ε) such that ‖P ∗δ − P ∗µ ‖∞< ε, ‖Lδ −Lµ ‖∞< ε for each µ ∈ Υ

and δ ∈ Λ, with d(µ, δ) < ε, where ‖ · ‖∞ is the vector norm on matrices, defined

by equation 5.11 in Section 5.5, and d is the metric defined on Λ (see the section on

Stationary Randomized Policies in Chapter 4).

5.9 TD For Learning

Here we are interested in learning the optimal average cost, an optimal policy

(stationary deterministic) and associated differential cost function for a unichain

MDP with a common recurrent state (see Lemma 5.4). Neither the transition prob-

abilities nor the distribution of (or expected value of) immediate costs are known in

advance.

In the following, Q represents the set of feasible state-action pairs.

160

5.9.1 Recurrent MDPs

We first give an algorithm for recurrent MDPs.

Assumption 5.6 Let the following hold.

(a) The monotonic step sizes γt ↓ 0, are pre-determined non-negative scalars and

satisfy
∑∞
t=0 γt =∞;

∑∞
t=0 γ

2
t <∞. Let ηt = cγt for some positive real value c.

(b) Let K = n− 1, and without loss of generality

φk = (0, . . . , 0,

kth entry︷︸︸︷
1 , 0, . . . , 0)′,

the kth standard basis vector in Rn; implying lookup table representation.

(c) The immediate cost gt, has finite moments, that is

E
[
|gt|k|it = i, ut = a

]
<∞,

∀i ∈ S, a ∈ A(i),∀k ∈ N.

(d) For each state action pair (i, a) ∈ Q, let the pre-determined scalar non-negative

step sizes γt(i, a) be such that

∞∑
t=1

γt(i, a) =∞,
∞∑
t=1

(γt(i, a))2 <∞.

2

Assumption 5.7 The MDP is recurrent, that is under each stationary determin-

istic policy, the corresponding Markov Chain is irreducible (it may be aperiodic or

periodic). 2

161

Assumption 5.7 says that any δ ∈ Λ, gives rise to an irreducible Markov chain

with unique invariant distribution πδ where πδ(i) > 0, ∀i ∈ S. Fix a policy δ ∈ Λ.

We want to estimate the average cost ϑδ = (πδ)′ḡδ and a differential cost Jδ, which

is the unique point in {J∗δ + c̃1
¯
|c̃ ∈ R} ∩ {Φr|r ∈ RK}, given by

Jδ(i) = J∗δ (i)− J∗δ (n), i ∈ S (5.23)

Here J∗δ is the basic differential cost for policy δ. We use J̃(·, r) = Φr, to approximate

Jδ. Note that for our choice of φks, J̃(i, r) = r′φ(i) = r(i), i ∈ {1, . . . , n − 1} and

J̃(n, r) = 0.

Note that instead of state n, we could have chosen any state n̂ ∈ S, with an

appropriate choice of φks (leaving out en̂ instead of en to form the set of n− 1 basis

functions).

In the following three algorithms in this subsection, we assume that Assump-

tion 5.7 holds.

Fix a policy δ ∈ Λ. We want to estimate the average cost ϑδ ∈ R and a

differential cost Jδ ∈ Rn corresponding to stationary policy δ. Let it and at be

the state and action taken at time t ∈ N0, while using polcy δ. Let gt be the

corresponding immediate cost incurred.

Algorithm 5.1 The update rule is as follows (starting at t = 0):

dt = gt − ϑt + J̃(it+1, rt)− J̃(it, rt)

zt = λzt−1 + φ(it)

ϑt+1 = (1− ηt)ϑt + ηtgt

162

rt+1 = rt + γtdtzt

t = t+ 1

2

Under Assumption 5.6(a),(b),(c) and Assumption 5.7, in Algorithm 5.1, J̃(·, rt)→ Jδ

almost surely (where Jδ is given by equation 5.23) by Theorem 5.1 and Corollary 5.5.

Similarly ϑt → ϑδ. Note that the convergence holds irrespective of the initialization

r0, z−1, ϑ0 or initial state i0.

In the following algorithm, we try to estimate by simulation, the Q-values

corresponding to one step look ahead, with terminal cost J ∈ Rn, that is

QJ(i, a) = g(i, a) +
n∑
j=1

pij(a)J(j)

(With slight abuse of notation for the Q-values, we use J instead of a policy δ ∈ Λ,

as the superscript).

Fix a stationary fully randomized policy δ ∈ Interior(Λ) and a vector J ∈ Rn

(refer the section on Stationary Randomized Policies in Chapter 4, for the definition

of Interior(Λ)). Let it and at be the state and action taken at time t ∈ N0, while

using policy δ. Let gt be the corresponding immediate cost incurred.

Algorithm 5.2

τ−1(i, a) = 0, ∀(i, a) ∈ Q

The update rule is as follows (starting at t = 0):

τt(it, at) = τt−1(it, at) + 1

163

τt(i, a) = τt−1(i, a), ∀(i, a) 6= (it, at), (i, a) ∈ Q

Qt+1(it, at) = Qt(it, at) + γτt(it,at) (gt + J(it+1)−Qt(it, at))

Qt+1(i, a) = Qt(i, a), ∀(i, a) 6= (it, at), (i, a) ∈ Q

t = t+ 1

2

Here τt(i, a) represents the number of times, action a has been taken from state i, by

time t ∈ N0. Since policy δ is fully randomized, each state-action pair in Q is visited

infinitely often, as t → ∞. Hence standard results from stochastic approximation

theory [16] can be used to show that Qt → QJ almost surely. The convergence

holds irrespective of the initial value Q0 or initial state i0. All that is required of the

non-negative step size parameters γt(i, a) (for each (i, a) ∈ Q) is that they should

satisfy the standard assumptions

∞∑
t=1

γt(i, a) =∞;
∞∑
t=1

((γt(i, a))2 <∞,

almost surely and may be allowed to be random and can depend on past history (at

the time the step size is used). Note that the constraint on the moments of gt, for

Algorithm 5.2 is that

E
[
|gt|2|it = i, at = a

]
<∞ ∀(i, a) ∈ Q.

Consider the following algorithm. Here the inequality applied to vectors is

componentwise.

164

Algorithm 5.3

Let 0
¯
< ε̄k < ε̃ be a sequence of positive vectors in Rn; where ε̃ ∈ Rn is defined

as a vector with ε̃(i) = 1
|A(i)| .

1. Set k = 0.

2. Select an arbitrary stationary deterministic policy µ0 ∈ Υ.

3. With policy µk, run Algorithm 5.1, for “large” random number nk of steps, till

Φrnk “nearly” converges to Jµk . Let Jk = Φrnk .

4. Choose the stationary fully randomized extremal policy δk ∈ Λε̄k , associated

with µk and run Algorithm 5.2 with one step terminal cost Jk, for “large”

random number ñk of steps, till Qñk “nearly” converges to QJk . Let Q̃ = Qñk .

Let

ζk = max{max
i∈S
|Jk(i)− Jµk(i)|, max

(i,a)∈Q
|Q̃(i, a)−QJk(i, a)|}.

5. Set k = k + 1 and update the policy to µk, where

µk(i) = arg min
a∈A(i)

Q̃(i, a)

6. Go to step 3.

2

We note that the initial condition r0, z−1 and ϑ0, when calling Algorithm 5.1 in

step 3 may be arbitray, but can be set to the final values obtained in the previous

iteration, if needed. Similarly i0, when calling Algorithm 5.1 in step 3 may also be

165

arbitrary, but may be set to the final value of state obtained in step 4 in the previous

iteration.

Similarly the initial condition Q0, when calling Algorithm 5.2 in step 4 may

be arbitrary, but can be set to the final value obtained in the previous iteration if

needed. When calling Algorithm 5.2 in step 4, i0 may be arbitrary, but can be set

to the final value of state obtained in step 3 of the current iteration.

In the following theorem and the next one, the following notations hold:

J� is defined as the unique vector satisfying

ϑ∗1
¯

+ J� = T̄ J�, J�(n) = 0.

Here ϑ∗ is the optimal average cost.

Also for any δ ∈ Λ, Jδ is the unique vector satisfying

ϑδ1
¯

+ Jδ = T̄δJδ, Jδ(n) = 0.

Here ϑδ is the average cost corresponding to δ. Note that Jδ = J∗δ − J∗δ (n)1
¯
, where

J∗δ is the basic differential cost corresponding to δ. In the following, ‖ · ‖ denotes

the Eucledian norm for a vector in Rn.

Theorem 5.2 Consider the Algorithm 5.3, and let Assumption 5.6 and Assump-

tion 5.7 hold. Then we have the following results.

1. Given any scalar ε > 0, there exists scalar ζ > 0 and vector ε̄, with 0
¯
< ε̄ <

ε̃, such that if ε̄k < ε̄ and ζk < ζ, ∀k; then µk “converges” to an optimal

stationary deterministic policy (if there are multiple stationary deterministic

policies that are optimal, it may take any of them) in a finite number of steps.

166

In particular Jµk converges to J� and ϑµk converges to ϑ∗ in a finite number

of steps (≤ |Υ|). Also

|ϑδk − ϑµk | < ε, and max
i∈S

(Jδk(i)− Jµk(i)) < ε, ∀k.

2. In particular if lim supk→∞ ε̄k(i) = 0, ∀i ∈ S, and lim supk→∞ ζk = 0, then

‖Jµk−J� ‖→ 0, |ϑµk−ϑ∗| → 0, ‖Jδk−J� ‖→ 0 and ϑδk → ϑ∗. Infact Jµk = J�

and ϑµk = ϑ∗, for all large k.

2

Proof of Theorem 5.2

Proof of part (1) follows from Lemma 5.4, Proposition 5.2, Lemma 5.10 and

the arguments following Corollary 5.2. See also Lemma 5.8 and Lemma 5.9.

Proof of part (2) follows from part (1) and arguments along the same line as

in the proof of part (1).

2

Note that instead of using an extremal policy δk ∈ Λε̄k to approximate µk, in

Algorithm 5.3, we could have chosen δ̃k ∈ Interior(Λ) such that

[δ̃k(i)]µk(i) ≥ (1− (|A(i)| − 1)ε̄k(i)), ∀i ∈ S;

for instance δ̃k could be made to depend on the approximation to the Q-values

obtained in the previous iteration. Also the step size parameters used in step 3

and step 4 of Algorithm 5.3 could vary for different policy evaluations and Q-value

computations (i.e. different iterations).

167

Note that we could have used as basis vectors (φks), any n− 1 vectors whose

span does not contain 1
¯
, instead of eks. However in this case, in Algorithm 5.3, Jk ap-

proximates the differential cost Jµk which is the unique element of
{
J∗µk + c̃1

¯
|c̃ ∈ R

}
∩

{Φr|r ∈ RK}. Here J∗µk is the basic differential cost corresponding to policy µk.

With a similar definition of Jδk , Jδk and Jµk converges to the unique point in

{J� + c̃1
¯
|c̃ ∈ R} ∩ {Φr|r ∈ RK}.

5.9.2 Communicating Unichain MDP With A Common Recurrent

State

Assumption 5.8 The MDP is unichain, has a common recurrent state and is com-

municating. 2

The communicating property in the above assumption is equivalent to the fact

that for any stationary fully randomized policy δ (∈ Interior(Λ)), the corresponding

Markov chain is irreducible. Any stationary fully randomized policy gives rise to an

irreducible Markov chain with the same period and the same periodic classes. Note

that the periods of the recurrent classes of the Markov chains corresponding to the

various stationary deterministic policies are irrelevant.

In the following algorithms in this subsection, we assume that Assumption 5.6

and Assumption 5.8 hold.

We fix a stationary fully randomized policy δ ∈ Interior(Λ). We want to

estimate the average cost ϑδ = (πδ)′ḡδ, and a differential cost Jδ which is the unique

168

point in {J∗δ + c̃1
¯
|c̃ ∈ R} ∩ {Φr|r ∈ RK}, given by Jδ(i) = J∗δ (i)− J∗δ (n), where J∗δ

is the basic differential cost corresponding to δ. We use J̃(·, r) = Φr to approximate

Jδ(·). Note that with our choice of φks, J̃(i, r) = r′φ(i) = r(i) for i ∈ {1, 2, . . . , n−1}

and J̃(n, r) = 0.

Note that instead of state n, we could have chosen any state n̂ ∈ S, with an

appropriate choice of φks (leaving out en̂ instead of en to form the set of n− 1 basis

functions).

We also want to estimate the Q-values for the policy δ, given by

Qδ(i, a) = g(i, a) +
n∑
j=1

pij(a)Jδ(j), ∀(i, a) ∈ Q.

Algorithm 5.4

τ−1(i, a) = 0, ∀(i, a) ∈ Q

The update rule is as follows (starting at t = 0):

dt = gt − ϑt + J̃(it+1, rt)− J̃(it, rt)

zt = λzt−1 + φ(it)

ϑt+1 = (1− ηt)ϑt + ηtgt

rt+1 = rt + γtdtzt

τt(it, at) = τt−1(it, at) + 1

τt(i, a) = τt−1(i, a), ∀(i, a) 6= (it, at), (i, a) ∈ Q

Qt+1(it, at) = Qt(it, at) + γτt(it,at)
(
gt + J̃(it+1, rt)−Qt(it, at)

)
Qt+1(i, a) = Qt(i, a), ∀(i, a) 6= (it, at), (i, a) ∈ Q

2

169

Note that z−1 need not be the zero vector but may take any arbitrary value.

The initial values Q0, ϑ0 and r0 can be arbitrary. Here τt(i, a) represents the number

of times action a has been taken from state i by the time t ∈ N0. Under Assump-

tion 5.6 and Assumption 5.8, J̃(·, rt) → Jδ, almost surely by Theorem 5.1 and

Corollary 5.5. In addition since all the state-action pairs in Q are visited infinitely

often (under stationary fully randomized policy δ) as t→∞, standard results from

stochastic approximation theory [16] can be used to show that Qt → Qδ almost

surely.

All that is required of the non-negative step size parameters γt(i, a) (for (i, a) ∈

Q) is that they should satisfy the standard assumptions

∞∑
t=1

γt(i, a) =∞,
∞∑
t=1

(γt(i, a))2 <∞,

almost surely and may be allowed to be random and can depend on the past history

(at the time the step sized is used).

Consider the following algorithm.

Algorithm 5.5

Let 0
¯
< ε̄k < ε̃ be a sequence of positive vectors in Rn; where ε̃ ∈ Rn is defined

as a vector with ε̃ = 1
|A(i)| .

1. Set k = 0.

2. Select an arbitrary stationary deterministic policy µ0 ∈ Υ.

3. Choose the stationary fully randomized extremal policy δk ∈ Λε̄k , associated

with µk and run Algorithm 5.4, for “large” random number nk of steps, till

170

Φrnk “nearly” converges to Jδk and Qnk “nearly” converges to Qδk . Let Q̃ =

Qnk and Jk = Φrnk . Let

ζk = max{max
i∈S
|Jk(i)− Jδk(i)|, max

(i,a)∈Q
|Q̃(i, a)−Qδk(i, a)|}.

4. Set k = k + 1 and update the policy to µk, where

µk(i) = arg min
a∈A(i)

Q̃(i, a)

5. Go to step 3.

2

Note that the initial values z−1, ϑ0, r0, i0 and Q0 when calling Algorithm 5.4

at each iteration in step 3 of Algorithm 5.5 may be arbitrary, but may be set to

the final values obtained while running Algorithm 5.4 by calling it in step 3 in the

previous iteration of Algorithm 5.5.

Theorem 5.3 Consider the Algorithm 5.5, and let Assumption 5.6 and Assump-

tion 5.8 hold. Then we have the following results.

1. Given any scalar ε > 0, there exists scalar ζ > 0 and vector ε̄, with 0
¯
< ε̄ <

ε̃, such that if ε̄k < ε̄ and ζk < ζ, ∀k; then µk “converges” to an optimal

stationary deterministic policy (if there are multiple stationary deterministic

policies that are optimal, it may take any of the stationary deterministic policy

which minimizes the RHS of the Bellman Equation 5.8) in a finite number of

steps. In particular Jµk converges to J� and ϑµk converges to ϑ∗ in a finite

171

number of steps (≤ |Υ|). Also

|ϑδk − ϑµk | < ε, and max
i∈S

(Jδk(i)− Jµk(i)) < ε, ∀k.

2. In particular if lim supk→∞ ε̄k(i) = 0, ∀i ∈ S, and lim supk→∞ ζk = 0, then

‖Jµk−J� ‖→ 0, |ϑµk−ϑ∗| → 0, ‖Jδk−J� ‖→ 0 and ϑδk → ϑ∗. Infact Jµk = J�

and ϑµk = ϑ∗, for all large k.

2

Proof of Theorem 5.3

Proof of part (1) follows from Lemma 5.4, Proposition 5.2, Lemma 5.10 and

the arguments following Corollary 5.2.

Proof of part (2) follows from part (1) and arguments along the same line as

in the proof of part (1).

2

Notice that for communicating MDP which is unichain, the state space S is the

union of the recurrent classes corresponding to the stationary deterministic policies

(refer Appendix B). Note that in Algorithm 5.5, we need not know the common

recurrent state.

Comments following the proof of Theorem 5.2 hold for Theorem 5.3.

172

5.9.3 Weakly Communicating Unichain MDP With A Common

Recurrent State

Note that any unichain MDP is weakly communicating. We now extend the

TD learning scheme to general Unichain MDP with a common recurrent state.

Note that for any stationary fully randomized policy of the Unichain MDP,

the unique recurrent class is the union of the recurrent classes of the stationary

deterministic policies. Also for any policy, stationary or otherwise, the process

almost surely gets absorbed into this unique recurrent class, irrespective of the

starting state.

We are interested in finding the states belonging to this unique recurrent class,

by simulation. Let δ ∈ Λ be any stationary randomized policy. The elements of

its recurrent class (note that the Markov chain corresponding to δ is unichain) are

precisely, those states ‘i’ for which πδ(i) is positive, where πδ ∈ Rn is the unique in-

variant distribution (or occupation probabilities) of the Markov chain corresponding

to δ.

Fix δ ∈ Λ. Let γt(i), t ≥ 1 be a sequence of non-negative real valued step

size parameters for each i ∈ S. We are interested in estimating the occupation

probability πδ(i), with Ut(i) at time t. We start at time t = 1, and let it denote the

state at time t.

Assumption 5.9 For each i ∈ S, the non-negative monotonic step sizes γt(i) ↓ 0,

are pre-determined and satisfy
∑∞
t=1 γt(i) =∞;

∑∞
t=1 γ

2
t (i) <∞.

2

173

We have the following stochastic small step algorithm for estimating the oc-

cupation probabilities. The starting state i1 can be arbitrary.

Algorithm 5.6

U0(i) = 0, ∀i ∈ S

The update rule is as follows (starting at t = 1):

Ut(i) = (1− γt(i))Ut−1(i) + γt(i)I [it=i], ∀i ∈ S

2

Here I [it=i] is the indicator function which takes the value one, if it equal to

i, and takes the value zero, if it not equal to i. Note that if γt(i) = 1
t
, then Ut(i) is

the fraction of time the Markov chain has been in state i, by time t.

Lemma 5.24 Fix a stationary randomized policy δ ∈ Λ, for the Unichain MDP.

Under Assumption 5.9, in Algorithm 5.6, Ut(i)→ πδ(i) almost surely for each i ∈ S.

2

Proof of Lemma 5.24

The proof is straightforward and follows from Theorem 3.2 of Chapter 3.

2

In general U0(i) can be arbitrary and need not be zero. Also Assumption 5.9

may be replaced by the condition that for each i ∈ S, the predetermined non-

174

negative step sizes γt(i), t ≥ 1, satisfies
∑∞
t=1 |γt(i) − γt+1(i)| < ∞, ∑∞t=1 γt(i) = ∞

and
∑∞
t=1 γ

2
t (i) <∞.

Hence if we fix a stationary fully randomized policy δ ∈ Λ, (for example the

one in which for each state, all the feasible actions are taken with equal probability)

and run the above algorithm for sufficiently large t, then we can find the states

in the unique recurrent class corresponding to stationary fully randomized policies

(they are precisely the states for which πδ(i) > 0).

Once we identify this unique recurrent class, we can focus our attention on

this subset of states and apply the average cost TD(λ) algorithm developed in sub-

section 5.9.2 for the MDP restricted to this set of states. Actually for the original

MDP, the actions taken at the transient states are irrelevant, since given any policy

(stationary or otherwise) the system gets absorbed into the above mentioned unique

recurrent class of states, almost surely.

But we might like to solve the Bellman Equation 5.8, for the original MDP;

that is we need to find ϑ∗ ∈ R and J� ∈ Rn. This can be done in two steps.

Step 1: First we solve the Bellman equation for the MDP restricted to the

unique recurrent class (corresponding to stationary fully randomized policies). As-

sume without loss of generality that the states in this unique recurrent class are the

last n − m states of the MDP. That is, the first m states are the transient states

under any stationary fully randomized policy. Then ϑ∗, the optimal average cost

along with (J�(m + 1), . . . , J�(n))′, the differential cost vector, solves the average

cost MDP restricted on the unique recurrent class. This may be approximately

obtained as in the previous subsection using average cost TD(λ) schemes.

175

Step 2: Once we solve the first step, we solve a stochastic shortest path

problem (using TD(λ) schemes mentioned in Appendix D) to solve the original

average cost Bellman Equation 5.8. The details are given next. Consider an n

state Stochastic Shortest Path MDP, in which the feasible actions and transition

probabilities for the first m states are exactly similar the the original Average Cost

MDP, except that the expected value of immediate cost for taking action a from

state i is (g(i, a) − ϑ∗) (for i ∈ {1, . . . ,m}, a ∈ A(i)). For the last n − m states,

we assume that it has only one fictitious feasible action from each of these states,

under which the system moves to the terminal state 0, with probability one. The

corresponding immediate cost for taking this fictitious action from state i being

J�(i), a deterministic quantity (for i ∈ {m+ 1, . . . , n}). See that for this Stochastic

Shortest Path problem (SSP), all stationary deterministic policies are proper. Note

that the Bellman Equation for this new SSP [12, 16] is J� = T̃ J�, where T̃ is

the dynamic programming operator for the SSP (see Appendix D). Note that the

minimizing action in the Bellman Equation for the SSP is the same as the minimizing

action for the Bellman Equation 5.8, for the average cost MDP for states 1, . . . ,m.

Thus once we have an estimate for ϑ∗ and J�(m+ 1), . . . , J�(n) from step one,

we may plug in these estimates for solving the SSP mentioned in step 2, using the

TD(λ) schemes in Appendix D.

Note that throughout this section, the moment condition on immediate costs

in Assumption 5.6(c), namely

E
[
|gt|k|it = i, ut = a

]
<∞,

176

∀i ∈ S, a ∈ A(i), need be satisfied only upto a sufficiently large k (k = 4) and not

for all k > 0. (see Chapter 3, Proposition 3.1).

177

Chapter 6

Conclusion

In Chapter 2 of the dissertation we prove the Lipschitz continuity of the cost

go function for the finite horizon and infinite horizon discounted cost POMDP (with

domain the unit simplex of probability distributions over the underlying states) and

give bounds for the Lipschitz constant. We use these Lipschitz constant bounds to

provide error bounds for computational algorithms which rely on the discretization

of the unit simplex.

For the computational schemes for POMDPs discussed in Chapter 2, parti-

tioning of the unit simplex ∆n, and representative points in each member of the

partition may be obtained as in Appendix A, by mapping each point in the unit

simplex ∆n to the nearest point in ∆m
n (the set of representative points), ties being

resolved consistently. Larger the value of m, finer the partition.

In Chapter 3 we discuss generalization of a standard stochastic approximation

algorithm to handle periodicity of the underlying Markov process. This result is used

to extend the proof of convergence of temporal difference (TD) schemes with linear

function approximation to estimate cost to go function for discounted cost criterion

and differential cost function for average cost criterion. This is an extension of the

work in [54, 55].

In Chapter 4 we outline an approximate policy iteration scheme for infinite

178

horizon discounted cost MDPs, using TD schemes to evaluate the cost to go function

for stationary fully randomized policies which are “near” to stationary deterministic

policies. This allows for exploration and the corresponding Q-values are estimated

via online small step stochastic approximation and this in turn is used for policy

improvement.

In Chapter 5 we outline an approximate policy iteration scheme for average

cost unichain MDPs with a common recurrent state. We use TD schemes to eval-

uate the differential cost for stationary policies. Corresponding Q-values are also

estimated (incorporating exploration using stationary randomized policies which are

“near” to stationary deterministic policies) via online small step stochastic approx-

imation and this in turn is used for policy improvement.

Appendix A deals with a discretization scheme for unit simplex.

Appendix B deals with reachability structure of finite state finite action MDPs.

Appendix C deals with error bounds for MDPs and some contraction mapping

theorems.

Appendix D deals with TD schemes for stochastic shortest path MDPs.

Some notes on the discounted cost MDP and average cost MDP follow.

We may use either the Least Squares Policy Evaluation (LSPE(λ)) or the

Least squares Temporal Difference (LSTD(λ)) [12] for policy evaluation instead of

the TD(λ) schemes in the discounted cost and average cost cases of Chapter 4

and Chapter 5 respectively. These schemes converge much faster than the TD(λ)

schemes, but is computationally expensive at each step. For example, if we use a

basis of K vectors for linear function approximation, at each time step we need the

179

inversion of a K × K matrix and a fixed number of matrix vector multiplications

(matrix multiplying a vector) in both the LSPE(λ) and LSTD(λ). Multiplication of

a vector of dimension K with a K×K matrix involves computation of order O(K2).

Inversion of a K ×K matrix is an order O(K3) operation. Howerver because of the

particular way in which the matrix evolves, we may use the matrix inversion lemma

and can manage to compute the matrix inversion with O(K2) operation. Hence the

LSPE(λ) or LSTD(λ) requires O(K2) operation at each step, whereas TD(λ) needs

only O(K) operation per time step.

Note that for the discounted cost MDP, if we define, for each stationary de-

terministic policy µ ∈ Υ, the “greedy region” for µ as

Rµ = {J ∈ Rn|TµJ = TJ},

where the operators T and Tµ are defined as in Chapter 4, then Rµ is a polyhedron.

It might be an empty set. In Chapter 4, if we use linear function approximation

(instead of look up table representation) for the TD(λ) schemes for discounted cost

problems, along with approximate policy iteration, and the space spanned by the

basis functions does not intersect the greedy region corresponding to any of the

optimal stationary deterministic policies, then the methodology in Chapter 4 cannot

converge to an optimal policy.

The same observations hold even if we use TD(λ) schemes for discounted cost

problems, along with approximate policy iteration, using the equivalent Stochastic

Shortest Path (SSP) formulation [16].

For the average cost MDP, we may define for each stationary deterministic

180

policy µ ∈ Υ, the “greedy region” for µ as

R̄µ = {J ∈ Rn|T̄µJ = T̄ J},

where T̄µ and T̄ are defined as in Chapter 5. Here also R̄µ is a polyhedron and may

be an empty set. In Chapter 5, if we use linear function approximation (instead of

look up table representation) for the TD(λ) schemes for average cost problem, along

with approximate policy iteration, and the space spanned by the basis functions does

not intersect the “greedy region” corresponding to any of the optimal stationary

deterministic policies, then the methodology in Chapter 5 cannot converge to an

optimal policy.

The above observations also hold when we use linear function approximation

with LSPE(λ) and LSTD(λ) policy evaluation.

For a comparitive study of discounted versus average cost temporal difference

schemes for a Markov Cost Process see [56].

For optimistic policy iteration schemes see [16, 52].

6.1 Future Work : Extension Of Reinforcement Learning To POMDPs

We consider direct adaptive control of POMDPs in this section for the infinite

horizon discounted cost case (with discount factor β ∈ [0, 1)) using temporal differ-

ence schemes to obtain near optimal policies. See Chapter 2 for details about the

definition of a POMDP. We need not know about the cardinality of the underlying

state space, which is assumed finite. We need to know the finite set of feasible

actions A, common to all underlying states. We also need to know the finite set of

181

observations, namely O. We need to observe the immediate cost incurred as well as

the associated observation, in response to taking an action, at each time step. We

don’t assume any direct knowledge about the underlying probabilities, but assume

that the immediate costs have finite moments for the underlying MDP. We assume

that the underlying MDP is communicating.

Fix an integer N > 0. Consider an associated MDP with state at time t, given

by the tuplet (st−N+1, ot−N+1, ut−N+1, st−N+2, ot−N+2, ut−N+2, · · · , st−1, ot−1, ut−1, st, ot),

where st is the underlying state at time t, of the original MDP, ut is the action taken

at time t, ot is the observation obtained at time t in response to the action ut−1 taken

at time t− 1 and subsequent transition of the underlying state from st−1 to st.

Note that the observation ot at time t, might also include a finite discretized

version of gt−1, along with the traditional observation from the finite set O. This

is because the immediate cost incurred at time t − 1 (in response to taking action

ut−1), namely gt−1, might contain information about the underlying state st of the

MDP.

The feasible action set for the associated MDP is same as that of the original

POMDP. The transition probability and the immediate cost for the associated MDP

is obtained in the most natural way (we omit the details) from the original POMDP.

At time t, the N -stage observable history is (ot−N+1, ut−N+1, · · · , ot−1, ut−1, ot), and

is considered to be the pseudo state at time t, and denoted by s̃t. When N = 1, the

pseudo state at time t is just (ot).

We work with stationary fully randomized policies with the pseudo state as

the “current state”. Such a policy is also a stationary fully randomized policy on

182

the associated MDP mentioned earlier.

Once we fix a stationary fully randomized policy δ, we may use any linear

function approximation (on the pseudo states) along with TD(λ) (as in Chapter 4),

to obtain an estimate of the approximate cost to go J̃δ(s̃) from the pseudo state s̃.

The restriction on the step sizes γt used in the TD(λ) scheme is as in Chapter 4. We

call any collection of pseudo states an aggregated pseudo state ŝ. We may estimate

the Q-value corresponding to any “aggregated pseudo state - action” pair (with one

step look ahead function J̃δ) by the small step stochastic approximation

Qt+1(ŝ, u) = (1− γτt(ŝ,u)(ŝ, u))Qt(ŝ, u) + γτt(ŝ,u)(ŝ, u)
[
gt + βJ̃t+1(s̃t+1)

]

if and only if s̃t ∈ ŝ and ut = u; otherwise Qt+1(ŝ, u) = Qt(ŝ, u). Here β ∈

[0, 1) is the discount factor, ŝ is the aggregated pseudo state, and u is the action

under consideration. J̃t(s̃t) is the estimate of J̃δ(s̃t) at time t obtained via TD(λ)

scheme. In the above update equation for Qt+1, we could have used J̃t(s̃t+1) instead

of J̃t+1(s̃t+1). Here τt(ŝ, u) is the number of times action u is taken by time t, from

any of the pseudo states belonging to the aggregated pseudo state ŝ. Here for ŝ and

u, γk(ŝ, u) is a deterministic non-negative step size sequence which satisfies

∞∑
k=1

γk(ŝ, u) =∞;
∞∑
k=1

γ2
k(ŝ, u) <∞;

∞∑
k=1

|γk+1(ŝ, u)− γk(ŝ, u)| < ∞.

In particular a non-increasing non-negative sequence satisfies the third condition

above. We may prove that Qt(ŝ, u) converges to a quantity Qδ(ŝ, u) (which actually

depends also on J̃δ(·) and hence on the choice of the basis functions for linear func-

tion approximation) which may be characterized analytically (we omit the details).

183

In particular, we may partition the space of pseudo states, and use the indicator

functions for each member of the partition (the aggregated pseudo state) as the basis

functions for the linear approximation, and correspondingly estimate the cost to go

and Q-values for aggregated state - action pairs. Here each member of the partition

is considered to be an aggregated pseudo state. But does these Q-values and cost

to go approximation converge to anything useful?

Suppose the original POMDP is such that the aposteriori probability on the

underlying states, given the past observable history becomes less and less depen-

dent on the initial apriori probability on the underlying states, uniformly for all

observable past histories; then for sufficiently large fixed integer N, each pseudo

state corresponds roughly to a point (actually a small neighbourhood of a point)

on the unit simplex of belief states (the space of probability distributions on the

underlying states of the original POMDP).

If we partition the space of pseudo states, such that each member of the

partition (aggregated pseudo state) has the property that the pseudo state in each

aggregated pseudo state corresponds roughly to the same point (or neighbourhood)

of the unit simplex of the belief states, then the TD(λ) scheme for learning as in

Chapter 4 leads to a near optimal solution for the original POMDP.

In this scheme, only those belief states (actually neighbourhoods) which corre-

spond to the N -stage observable history are involved or explored, which is all what

we need.

Again we could have used LSPE(λ) or LSTD(λ) instead of TD(λ) to estimate

the cost to go .

184

Appendix A

Discretization Of The Unit Simplex

We are interested in the simple problem of approximation (by discretization) of

probability mass functions on a finite sample space. Please note that the notations

in this appendix are self contained. For any positive integer n, let

∆n ≡
{
p = (p1, p2, . . . , pn) | pi ≥ 0, i = 1, . . . , n;

n∑
i=1

pi = 1

}

be the n− 1 dimensional unit simplex in Rn (the n dimensional Eucledian space).

For any positive integers m and n, let

∆m
n ≡{

q = (q1, q2, . . . , qn) | qi =
li
m
, li non-negative integer, i = 1, . . . , n;

n∑
i=1

li = m

}
.

For any positive integers m, n and a non-negative integer l with 0 ≤ l ≤ m,

define

∆m,l
n ≡{
v = (v1, v2, . . . , vn) | vi =

li
m
, li non-negative integer, i = 1, . . . , n;

n∑
i=1

li = m− l
}
.

Note that ∆m
n ⊂ ∆n and ∆m,0

n = ∆m
n . The cardinality of the set ∆m,l

n is

|∆m,l
n |=

(m−l+n−1)!
(m−l)! (n−1)!

.

For any real α ∈ [1,+∞) we define the `α norm as follows,

‖v‖α =

(
n∑
i=1

|vi|α
) 1
α

, v ∈ Rn

185

and the `∞ norm as

‖v‖∞= max
i∈{1,2,...,n}

|vi|, v ∈ Rn.

We have the following lemma.

Lemma A.1 For any v ∈ Rn, ‖v‖α ↓ ‖v‖∞ as α→ +∞.

2

Proof of Lemma A.1

If vi = 0, ∀i ∈ {1, 2, . . . , n}, i.e. v = 0 (0 is the zero vector), then the

claim is trivially true. Suppose v 6= 0. Without loss of generality assume that

| vi | ≥ | vi+1 |, i = 1, 2, . . . , n − 1. Otherwise we could do a permutation of the

indices without changing the norm. Note that |v1|> 0. Let ṽi = |vi| / |v1|. Note

that 0 ≤ ṽi ≤ 1, ∀i with ṽ1 = 1. Then ‖v‖∞= |v1| and ‖v‖α = |v1| (
∑n
i=1 ṽ

α
i)

1
α for

α ∈ [1,+∞). If 1 ≤ α < β < +∞, then 1 ≤ (
∑n
i=1 ṽ

β
i) ≤ (

∑n
i=1 ṽ

α
i) ≤ n. This

implies that 1 ≤ (
∑n
i=1 ṽ

β
i)

1
β ≤ (

∑n
i=1 ṽ

β
i)

1
α ≤ (

∑n
i=1 ṽ

α
i)

1
α ≤ n

1
α . This proves that

‖v‖β ≤‖v‖α and ‖v‖α ↓ ‖v‖∞ as α→ +∞ .

2

Fix positive integers n, m. Given a p ∈ ∆n, we are interested in finding an

element q ∈ ∆m
n depending on p, such that the metric ‖p − q‖1 is minimized. We

seek to find a function f : ∆n → ∆m
n such that

‖f(p)− p‖1 = inf
q̂∈∆m

n

‖q̂ − p‖1

f need not be a true function in the sense that for a given argument p ∈ ∆n, it can

186

pick any element q ∈ ∆m
n (if there are ties), such that ‖p − q‖1 is the minimum.

Since the case n = 1 is trivial, we assume n > 1.

For a real number β, bβc denotes the floor of β. Consider the following algo-

rithm to find an f .

Algorithm A.1

1. Given any p ∈ ∆n, let w ∈ Rn be chosen such that wi = b(pim)c 1
m

; i =

1, . . . , n. Note that 0 ≤ pi − wi < 1
m

.

Define the function g : ∆n →
⋃m
l=0 ∆m,l

n by g(p) = w.

2. Let k = m (1 − (
∑n
i=1 wi)). Note that k is an integer such that 0 ≤ k ≤

min{m,n− 1}.

Define the function h : ∆n → {0, 1, . . . ,m} by h(p) = k.

3. Order the n indices into i1, i2, . . . , in, such that (pij−wij) ≥ (pij+1
− wij+1

), j =

1, . . . , n− 1. Ties may be resolved arbitrarily.

4. If k = 0, then set k̂ = 0, else set k̂ = max{j | (pij − wij) > 0}. If k = 0 then

set k̃ = 0, else set k̃ = max{j | k ≤ j ≤ n and (pij − wij) = (pik − wik)}.

5. Let q ∈ Rn be defined by the folowing steps.

• For j = k + 1, . . . , n, set qij = wij .

• If k > 0,then for j = 1, . . . , k, set qij = wij + 1
m

.

Note that q ∈ ∆m
n .

187

6. Set f(p) = q.

2

Remarks on Algorithm A.1

Note that f depends on n and m. Observe that g(p) ∈ ∆m,k
n and h(p) ∈

{0, 1, · · · ,min{m,n−1}} are well defined. Note that f(p) = p if and only if k = 0 in

step 2 of Algorithm A.1. Note that ‖f(p)−p‖∞< 1
m

. Also note that k̂ > k whenever

k > 0, since
∑n
i=1(qi − pi) = 0. We have k ≤ k̃ ≤ k̂. When k > 0, we have 1

m
>

(qij−pij) > 0 for j = 1, . . . , k; − 1
m
< (qij−pij) < 0 for j = k+1, . . . , k̂ and pij = qij

for k̂ < j ≤ n. If k > 1, then 0 < (qij − pij) ≤ (qij+1
− pij+1

) for j = 1, . . . , k − 1.

Also if k̂ > k + 1, then (pij − qij) ≥ (pij+1
− qij+1

) > 0 for j = k + 1, . . . , k̂ − 1.

If p = (0, 0, . . . , 0, 1, 0, . . . , 0, 0), with an entry one in the ith position, and zero

elsewhere, then k = 0 in step 2 of Algorithm A.1. Also note that for any fixed

α ∈ [1,+∞], ‖f(p)− p‖α is the same irrespective of the ordering taken in step 3 of

Algorithm A.1, when ties need to be resolved arbitrarily.

2

Fix positive integers n, m. For any fixed p ∈ ∆n, define

C(p) ≡
{
q̃ ∈ ∆m

n | ‖p− q̃‖∞<
1

m

}
.

Note that this is a non-empty set (f(p) ∈ C(p)). Also note that any element in C(p)

is obtained as follows. If f(p) = p then C(p) = {p}, a singleton set. Otherwise (i.e.

if k > 0 in step 2 of Algorithm A.1) we have

C(p) =
{
q̃ ∈ ∆n | q̃i = wi +

1

m
, i ∈ E, q̃i = wi, i /∈ E; for some E ∈ D(p)

}
.

188

Here w ∈ Rn is obtained from step 1 of Algorithm A.1, and D(p) ≡ {E ⊂

{i1, i2, . . . , ik̂} | |E |= k}. Note that the indices i1, i2, . . . , ik̂ are obtained from

steps 3 and 4 in Algorithm A.1 and depend only on p, n and m. Here |E| represents

the cardinality of the set E.

We state and prove the following result.

Lemma A.2 The function f defined in Algorithm A.1 satisfies

‖f(p)− p‖α = inf
q̃∈∆m

n

‖q̃ − p‖α

for any p ∈ ∆n and any α ∈ [1,+∞].

2

Proof of Lemma A.2

We will show that q̃ ∈ ∆m
n \ C(p) implies that there exists q̂ ∈ ∆m

n such that

‖p− q̂‖α< ‖p− q̃‖α. This is easy for the case α = +∞, since q̂ = f(p) does the job.

Suppose α ∈ [1,∞). Then since q̃ ∈ ∆m
n \ C(p), there exists an index i such that

‖p− q̃‖∞= |pi − q̃i| ≥ 1
m

. Then either pi ≥ q̃i + 1
m

or pi ≤ q̃i − 1
m

.

First we consider the case pi ≥ q̃i + 1
m

. Then there exists index j such that

pj < q̃j since
∑n
l=1(pl − q̃l) = 0. Define q̂ ∈ ∆m

n as follows : q̂l = q̃l, l 6= i, l 6= j,

q̂i = q̃i + 1
m

and q̂j = q̃j − 1
m

. Note that q̂ ∈ ∆m
n . We will show that |pi − q̃i|α +

|pj − q̃j|α> |pi − q̂i|α + |pj − q̂j|α and ‖p − q̃‖α> ‖p − q̂‖α follows. Let x ≡ pi − q̃i.

Then |pi − q̃i |= x ≥ 1
m

and x >|pi − q̂i |= pi − q̂i = x − 1
m
≥ 0. Supposing that

q̃j ≥ pj + 1
m

, it is clear that |pj − q̃j |> |pj − q̂j |= (q̂j − pj) = (q̃j − pj − 1
m

) ≥ 0

and hence |pi − q̃i |α + |pj − q̃j |α> |pi − q̂i |α + |pj − q̂j |α. On the other hand, if

189

0 < (q̃j − pj) < 1
m

, then y ≡ pj − q̂j is such that 0 < y < 1
m

. We show that

xα + (
1

m
− y)α > (x− 1

m
)α + yα

for α ∈ [1,+∞). Note that (1
m

)α > ((1
m
− y)α − yα) > −(1

m
)α. Hence all that is

required to prove the above inequality is to show that xα − (x− 1
m

)α ≥ (1
m

)α. Now

xα(1−(1− 1
m

1
x
)α) ≥ xα(1

m
1
x
)α, since for 0 ≤ β ≤ 1 and α ∈ [1,+∞), we have 1−βα ≥

(1− β)α. Thus we have shown that |pi − q̃i|α + |pj − q̃j|α> |pi − q̂i|α + |pj − q̂j|α.

For the case where pi ≤ q̃i − 1
m

, note that there exists an index j such that

pj > q̃j since
∑n
l=1(pl − q̃l) = 0. We define q̂ ∈ ∆m

n as follows : q̂l = q̃l, l 6= i, l 6= j,

q̂i = q̃i− 1
m

and q̂j = q̃j+
1
m

. Now an argument similar to that in the above paragraph

shows that |pi− q̃i|α + |pj− q̃j|α> |pi− q̂i|α + |pj− q̂j|α and hence ‖p− q̃‖α> ‖p− q̂‖α.

Now to prove our main result, namely ‖f(p) − p‖α = inf q̃∈∆m
n
‖ q̃ − p‖α, we

use an argument of contradiction. We consider the cases α ∈ [1,∞) and α = +∞

separately.

First assume that α ∈ [1,+∞). Suppose there exists q̃ ∈ ∆m
n such that

inf q̌∈∆m
n
‖q̌ − p‖α = ‖q̃ − p‖α< ‖f(p) − p‖α. We need to consider only that case in

which ‖f(p)− p‖α> 0. By way of the argument in the earlier paragraphs, q̃ ∈ C(p).

Since q̃ 6= f(p), we have indices i 6= j and real values x and y with 1
m
> x > y > 0

such that q̃i− pi = 1
m
− y > 0 and pj − q̃j = x > 0. Now consider the vector q̂ ∈ ∆m

n

defined as follows q̂l = q̃l, l 6= i, l 6= j, q̂i = q̃i − 1
m

and q̂j = q̃j + 1
m

. It is easy to see

that q̂ ∈ C(p). We will show that for α ∈ [1,+∞), ‖q̂ − p‖α< ‖q̃ − p‖α. In fact, it

is sufficient to show that |pi − q̂i|α + |pj − q̂j|α< |pi − q̃i|α + |pj − q̃j|α. That is, we

need to show that yα + (1
m
− x)α < (1

m
− y)α + xα, which is true by virtue of the

190

fact that xα > yα and (1
m
− y)α > (1

m
− x)α, since 1

m
> x > y > 0. This along with

the fact that for any fixed α ∈ [1,+∞], ‖f(p)− p‖α is the same irrespective of the

ordering taken in step 3 of Algorithm A.1, when ties need to be resolved arbitrarily,

implies that ‖f(p)− p‖α = inf q̃∈∆m
n
‖q̃ − p‖α.

Next we consider the case when α = +∞. Fix a p ∈ ∆n and any q̃ ∈ ∆m
n . For

any α ∈ [1,+∞) we have ‖f(p)− p‖α≤‖q̃− p‖α. Since for any v ∈ Rn, ‖v‖α ↓ ‖v‖∞

as α ↑ +∞, we have ‖f(p)− p‖∞≤‖q̃ − p‖∞. Since this is true for all q̃ ∈ ∆m
n we

have ‖f(p)− p‖∞= inf q̃∈∆m
n
‖q̃ − p‖∞.

2

Fix any p ∈ ∆n and let q̃ ∈ ∆m
n . Consider the case when α ∈ [1,+∞). Then

the proof of the above theorem shows that ‖p− q̃‖α = inf q̌∈∆m
n
‖q̌ − p‖α if and only

if q̃ = f(p) where f is obtained by Algorithm A.1. Now consider the case when

α = +∞. ‖p− q̃‖∞= inf q̌∈∆m
n
‖q̌ − p‖∞, does not necessarily imply that q̃ is of the

form f(p), where f is obtained by Algorithm A.1.

Fix positive integers n, m. We give the following error bounds when α = 1.

Lemma A.3 When α = 1 we have the following bounds on the approximation error

sup
p∈∆n

‖f(p)− p‖1 = 2
(n−m)

n
if m <

⌊
n

2

⌋

=
1

2

(n2 − 1)

m

1

n
if n is odd and m ≥

⌊
n

2

⌋
=

1

2

n

m
if n is even and m ≥

⌊
n

2

⌋

2

191

Proof of Lemma A.3

Fix positive integers n, m. First of all we define H(k) ≡ {p̂ ∈ ∆n | h(p̂) = k}

for k = 0, 1, · · · ,min{m,n− 1} (refer to Algorithm A.1 for the definition of h(·) and

g(·)). Observe that H(k) = {p̂ ∈ ∆n | g(p̂) ∈ ∆m,k
n }.

Fix a p ∈ ∆n. Let the corresponding wi, i = 1, . . . , n be obtained as in Algo-

rithm A.1 (i.e. g(p) = w) and the corresponding ordering of indices be i1, i2, . . . , in.

Let k, k̂ and f(p) be obtained as in Algorithm A.1. This implies that p ∈ H(k).

When k = 0 we have ‖p− f(p)‖1 = 0. We focus on the case when k > 0 (note

that k ≤ n − 1). Let aij ≡ pij − wij j = 1, . . . , n. See that 1
m
> ai1 ≥ ai2 ≥ · · · ≥

ain ≥ 0. Also see that aik̂ > 0. When k̂ < n, we have aik̂+1
= 0. Note that f(p) is

defined as follows, namely [f(p)]ij = wij + 1
m

j = 1, . . . , k and [f(p)]ij = wij j =

k+1, . . . , n. Let ε ∈ R be such that k ε =
∑k
j=1(1

m
−aij) =

∑n
j=k+1 aij = 1

2
‖f(p)−p‖1

> 0. Note that (1
m
− ε) ≥ aik+1

> 0 and hence (n − k)(1
m
− ε) ≥ k ε. This implies

ε ≤ ε̄ where ε̄ ≡ (n−k)
n

1
m

. Given any such p, we can define a p̃ ∈ ∆n as follows.

p̃ij = wij + 1
m
− ε, j = 1, · · · , k and p̃ij = wij + k ε

(n−k)
, j = k + 1, · · · , n. Note that

g(p̃) = w (refer to Algorithm A.1) and (p̃ij −wij) ≥ (p̃ij+1
−wij+1

), j = 1, · · · , n−1.

Hence f(p) also serves as f(p̃) and ‖p− f(p)‖1 = ‖p̃− f(p̃)‖1.

Let p̄ ∈ ∆n be defined as follows : p̄ij = wij + 1
m
− ε̄, j = 1, · · · , k and

p̄ij = wij + k
n

1
m
, j = k + 1, · · · , n. Note that g(p̄) = w (refer to Algorithm A.1) and

(p̄ij − wij) ≥ (p̄ij+1
− wij+1

), j = 1, · · · , n − 1. Also ‖f(p̄) − p̄‖1= 2kε̄. Hence f(p)

also serves as f(p̄) and a bit of thought shows that

2k
(n− k)

n

1

m
= ‖p̄− f(p̄)‖1 = sup

p̂:p̂∈H(k)

‖p̂− f(p̂)‖1

192

Maximizing over k gives the result.

2

Fix positive integers n, m. For any q̃ ∈ ∆m
n , define

M(q̃) ≡
{
q̌ ∈ ∆m

n | ‖q̌ − q̃‖∞≤
1

m

}
.

Define I(q̃) ≡ {i | 0 < q̃i < 1} and J(q̃) ≡ {i | q̃i = 0}. Let r(q̃) ≡ |I(q̃)|, s(q̃) ≡

| {i | q̃i = 1} | and t(q̃) ≡ | J(q̃) |. Note that s(q̃) is either zero or one and that

r(q̃) + s(q̃) + t(q̃) = n. If s(q̃) = 1 then r(q̃) = 0 and t(q̃) = n− 1. Note that for any

q̂, q̃ ∈ ∆m
n , ‖q̂− q̃‖∞= l 1

m
for some integer l, such that 0 ≤ l ≤ m, with ‖q̂− q̃‖∞= 0

iff q̂ = q̃. For the set M(q̃), |M(q̃)| denotes the cardinality of the set. We have the

following lemma.

Lemma A.4 Let q̃ ∈ ∆m
n . Then |M(q̃)|= n if s(q̃) = 1, else if s(q̃) = 0 then

|M(q̃)| =

b r(q̃)
2
c∑

l=0

r(q̃)
l


 n− l

r(q̃)− 2l


2

Proof of Lemma A.4

The case when s(q̃) = 1 is trivial. We focus on the case s(q̃) = 0. When

s(q̃) = 0, we have r(q̃) + t(q̃) = n and r(q̃) > 0, t(q̃) ≥ 0. Note that I(q̃) ∪ J(q̃) =

{1, 2, . . . , n} when s(q̃) = 0. Also I(q̃) ∩ J(q̃) = ∅. Let v ∈ Rn be defined as

vi = q̃i − 1
m
, i ∈ I(q̃) and vi = q̃i, i ∈ J(q̃). Any q̌ ∈ M(q̃) has the following form,

namely q̌i = vi+2 1
m
, i ∈ A, q̌i = vi+

1
m
, i ∈ B and q̌i = vi, i 6∈ A∪B. Here A ⊂ I(q)

is such that 0 ≤ |A| ≤ b r(q̃)
2
c, B ⊂ {1, . . . , n} \ A is such that |B |= r(q̃) − 2 |A|.

193

Thus the various possible number of ways of choosing q̌ ∈M(q̃) is

|M(q̃)| =

b r(q̃)
2
c∑

l=0

r(q̃)
l


 n− l

r(q̃)− 2l


2

Note that for positive integer k and non-negative integer l ≤ k,k
l

 =
k!

(k − l)! l!
.

194

Appendix B

Notes On The Reachability Structure Of Finite State-Finite Action

MDP

Consider a finite state-finite action MDP, with state space S ≡ {1, 2, · · · , n}

for some finite integer n. Let the finite non-empty control constraint sets A(i) =

{1, 2, · · · , |A(i)|} denote the possible control actions from state i ∈ S. Define A =

⋃n
i=1A(i). Let pij(u) denote the probability of making a transition from state i to

state j when action u is taken from state i. Please refer Section 4.2 on Stationary

Randomized Policies in Chapter 4, for information on notations. Λ denotes the set of

stationary randomized policies (stochastic control kernels to be precise), whereas Υ

denotes the set of stationary deterministic policies (control functions to be precise).

Note that |Υ| = ∏n
i=1 |A(i)|, where |A| denotes the cardinality of the set A. In this

appendix we are not interested in the cost structure.

Any stationary deterministic policy µ will give rise to a Markov Chain (M.C.)

with transition probability matrix Pµ, where [Pµ]i j = pi j(µ(i)). Similarly any sta-

tionary randomized policy δ ∈ Λ will give rise to a M.C. with transition probability

matrix Pδ = [pδij], where pδij =
∑
a∈A(i)[δ(i)]a pij(a). Here [δ(i)]a is the probability of

taking action a from state i under the stationary randomized policy δ. A stationary

fully randomized policy δ ∈ Interior(Λ) (see Section 4.2 on Stationary Randomized

Policies in Chapter 4 for the definition of Interior(Λ)) is any stationary randomized

195

policy which assigns positive probability to each possible action from every state.

In this appendix we are concerned about the changes in the “reachability”

structure as we go from stationary deterministic to stationary fully randomized

policies.

B.1 Structure Of A General Stochastic Matrix

We borrow the terminology for the classification of the states from [43, pages

11–12]. Let P = [pi j], i, j = 1, · · · , n; be any n × n stochastic matrix, which

represents the transition probability matrix for some n state Markov Chain (M.C.).

A sequence (i, i1, i2, · · · , it−1, j), for t ≥ 1 (where i0 = i, it = j), from the index

set {1, 2, . . . , n} (states of the M.C.) is said to form a chain of length t between the

ordered pair (i, j) if

pii1 pi1i2 · · · pit−2it−1 pit−1j > 0

Such a chain for which i = j is called a cycle of length t between i and itself. Without

loss of generality we may impose the restriction that, for fixed (i, j), i, j 6= i1 6= i2 6=

· · · 6= it−1 , to obtain a ‘minimal’ length chain or cycle, from a given one. Note that

this does not preclude the possibility of i being the same as j.

B.1.1 Classification Of Indices For A Markov Chain

Let i, j, k be arbitrary indices from the index set {1, 2, . . . , n} of the matrix P .

For any positive integer m, let p
(m)
ij denote the (i, j)th entry of Pm, the mth power of

P . We say that i leads to j, and write i −→ j, if there exists an integer m ≥ 1 such

196

that p
(m)
ij > 0, or equivalently, if there is a chain between i and j. If i does not lead

to j we write i 6−→ j. Clearly, if i −→ j and j −→ k then, from the rule of matrix

multiplication, i −→ k. Note that for each i, there is some j (depending on i and

the matrix P) such that i −→ j, since
∑n
j=1 pij = 1 > 0 for each i. We say that i

and j communicate if i −→ j and j −→ i, and denote it by i←→ j.

The indices of the stochastic matrix P , or equivalently the states of the M.C.

can be classified and grouped as follows.

(a) If i −→ j but j 6−→ i for some j, then the index i is called inessential.

(b) Otherwise the index i is called essential. Thus if i is essential, i −→ j implies

i←→ j; and there is at least one j such that i −→ j.

(c) Hence it is clear that all essential indices can be subdivided into essential classes

or ergodic classes in such a way, that all indices belonging to one class com-

municate, but cannot lead to an index outside the class. It can be proved that

for a finite state M.C. there is at least one essential class [43, page 16].

(d) All inessential indices (if any) which communicate with some index, can be

subdivided into inessential classes such that all indices in a class communicate.

Note that any index which communicates with an index of an inessential class

also belongs to that inessential class.

Classes of the type described in (c) and (d) are called self-communicating

classes. Note that an index i belongs to some self-communicating class iff

i −→ i (or equivalently i←→ i).

197

(e) In addition there may be inessential indices which communicate with no index;

these are defined as forming an inessential class by themselves (which, of

course, if not self-communicating).

The inessential indices (or states) are also called transient indices (or transient

states). Note that if a state i is transient and if j is such that j −→ i, then j too is

transient. For any square non-negative matrix T (i.e. all the entries of T are non-

negative real values) the corresponding incidence matrix T̃ replaces all the positive

entries of T by ones. Note that the classification of indices (and hence grouping into

classes) for the stochastic matrix (or equivalently the states of the M.C.) depends

only on the location of the positive elements, and not on their magnitude, so any

two stochastic matrices with the same incidence matrix will have the same index

classification and grouping.

B.2 Rearrangement Of Index Classification, When We Move From

Deterministic To Fully Randomized Policies

For any stationary deterministic policy µ of the MDP, we denote i
µ−→ j iff i

leads to j under the policy µ. We say i
µ

6−→ j iff i does not lead to j under the policy

µ. Similarly we denote i
µ←→ j iff i ←→ j under the policy µ. Similar notations

hold for any stationary randomized policy δ.

Lemma B.1 Let i, j be arbitrary indices from the index set {1, 2, . . . , n} (or states)

and let δ be any stationary fully randomized policy. Then i
δ−→ j iff i

µ−→ j for at

least one stationary deterministic policy µ. 2

198

Proof of Lemma B.1

It is easy to see that if i
µ−→ j for some deterministic policy µ, then i

δ−→ j

from the definition of “leads to” and the fact that δ is a fully randomized policy.

Now the only if part can be proved as follows. Let i, j be such that i
δ−→ j.

Hence we can find a chain (i, i1, i2, · · · , it−1, j) of length t between the ordered pair

(i, j) for the M.C. with transition probability matrix P δ. Without loss of generality

we may assume this to be a minimal length chain. Note that 0 < t ≤ n. With

the notation that i0 = i and it = j, we have that pδik ik+1
> 0 for 0 ≤ k ≤ t − 1.

Hence there exists actions ak ∈ A(ik) for 0 ≤ k ≤ t− 1 such that pik ik+1
(ak) > 0 for

0 ≤ k ≤ t − 1. Pick any stationary deterministic policy µ such that µ(ik) = ak for

each 0 ≤ k ≤ t− 1. Then i
µ−→ j.

2

Lemma B.2 An index i ∈ {1, 2, . . . , n} belongs to some self-communicating class

for a stationary fully randomized policy δ iff i belongs to a self-communicating class

for some stationary deterministic policy µ.

2

Proof of Lemma B.2

Apply Lemma B.1 with i = j and use the fact that for any Markov Chain, i

belongs to one of its self communicating classes iff i −→ i for this Markov Chain.

2

199

Let mµ represent the number of distinct ergodic classes for the stationary de-

terministic policy µ. Similarly, let mδ denote the number of distinct ergodic classes

for the stationary randomized policy δ. Let Cµ
1 , C

µ
2 , . . . , C

µ
mµ be the ergodic classes

for the deterministic policy µ. Similarly for any stationary randomized policy δ, let

Cδ
1 , C

δ
2 , . . . , C

δ
mδ

be its ergodic classes. We have the following results.

Theorem B.1 Let µ be a stationary deterministic policy and let δ be a stationary

fully randomized policy. Then

1. Given any Cδ
i and any µ, we can find a j such that Cµ

j ⊆ Cδ
i .

2.

mδ = min
µ∈Υ

mµ

3.

mδ⋃
i=1

Cδ
i =

⋃
{µ :mµ=mδ}

mµ⋃
i=1

Cµ
i

2

The proof of Theorem B.1 is given later. The above theorem implies that for

any stationary deterministic policy µ with mµ = mδ, precisely one of its ergodic

classes will be a subset of each ergodic class of any stationary fully randomized pol-

icy δ. Note that if a state i belongs to an ergodic class of δ then a state j is in the

same ergodic class of δ iff i
δ−→ j. Please refer Lemma B.1.

200

Corollary B.1 If a state i is transient for every stationary deterministic policy µ,

then i is transient for any stationary fully randomized policy δ. Equivalently if a

state i belongs to some ergodic class for a stationary fully randomized policy, then i

belongs to an ergodic class for some stationary deterministic policy.

2

Proof of Corollary B.1

Refer the proof of Theorem B.1.

2

Corollary B.2 If a state i belongs to some ergodic class for every stationary de-

terministic policy µ, then i belongs to some ergodic class for any stationary fully

randomized policy δ. Equivalently if a state i is transient for a stationary fully

randomized policy, then i is transient for some stationary deterministic policy.

2

Proof of Corollary B.2

Refer the proof of Theorem B.1.

2

Let B ⊆ S, be nonempty. For any stationary fully randomized policy δ and

any stationary deterministic policy µ we denote

Bδ = {i ∈ S | i δ−→ j, for some j ∈ B}

201

and

Bµ = {i ∈ S | i µ−→ j, for some j ∈ B}

Note that Bδ (respectively Bµ) is constituted of precisely those states which lead

to some state in B under policy δ (respectively µ). Observe that these sets can be

empty. In the following algorithm and discussions, we say that a state i ∈ S is

marked if we assign a particular action a ∈ A(i) to the state i.

Before we prove Theorem B.1, we prove the following lemma.

Lemma B.3 Let B ⊆ S be nonempty and δ be any stationary fully randomized

policy. Then there exists a marking of the states in Bδ \B such that any stationary

deterministic policy µ which agrees on the actions taken from the set Bδ \ B with

the above mentioned marking, has Bδ \B = Bµ \B.

2

Proof of Lemma B.3

Using Lemma B.1 we have that if µ̃ is any stationary deterministic policy, then

Bµ̃ ⊆ Bδ. Hence Bµ \ B ⊆ Bδ \ B. Hence we only need to prove that there exists

a marking of the states in Bδ \ B such that any stationary deterministic policy µ

which agrees on the actions taken from the set Bδ \ B with the above mentioned

marking has Bδ \B ⊆ Bµ \B.

If Bδ \B is empty, we have nothing to prove. Suppose Bδ \B is nonempty. We

assume that the states in Bδ \B are not marked initially. Then we use the following

algorithm to mark the states in Bδ \B and the result follows.

2

202

A systematic algorithm which does not assume the apriori knowledge of the

set Bδ \B is given below.

Algorithm B.1

• Initialize C = S \B, C̃ = ∅, S0 = B, k = 0.

• While C is nonempty and there exists i ∈ C such that pδij > 0 with j ∈ Sk, do

the following.

(a) Set Sk+1 = ∅.

(b) For all i ∈ C do

If i is such that pδij > 0 for some j ∈ Sk

1. Pick a ∈ A(i) such that pi j(a) > 0. It is easy to see that such an

a exists.

2. Mark state i with the corresponding action a ∈ A(i) obtained

from the previous step. Remove state i from the set C. Add state

i to the set Sk+1.

(c) Set C̃ = C̃ ∪ Sk+1.

(d) Set k = k + 1.

2

The while loop will iterate at most |S\B| times. It is clear from Algorithm B.1,

that at the end of each iteration of the while loop, all the states which have already

been marked until that iteration (i.e. C̃), belong to the set Bµ̃\B for any stationary

203

deterministic policy µ̃ which agree on the already marked states C̃. Note that in

Algorithm B.1, the while loop condition is true as long as C ∩ (Bδ \B) 6= ∅. When

the algorithm terminates, C̃ will be equal to Bδ \B.

Corollary B.3 Let δ be any stationary fully randomized policy. Suppose that the

M.C. with transition probability matrix Pδ is unichain, i.e. it has only one ergodic

class. Let B be any nonempty subset of this ergodic class. Suppose all the states

of this set B are marked (i.e. for each state i in the set B, we assign a particular

action ai from the set A(i)), and the corresponding marking on the set B gives rise

to a M.C. over the subset B, i.e. pij(ai) = 0, ∀j /∈ B, i ∈ B. Then there exists a

deterministic policy µ, which agrees with the afore mentioned markings on the set

B, and having the property that Bµ = S. Also the ergodic classes for the M.C. with

transition probability matrix Pµ are the same as the ergodic classes for the M.C.

restricted to the subset B.

2

Proof of Corollary B.3

First note that Bδ = S, since the M.C. corresponding to the transition prob-

ability matrix Pδ is unichain and B is a subset of this unique ergodic class for this

Markov Chain. By Lemma B.3, we can find a stationary deterministic policy µ,

which agrees with the markings (mentioned in the statememt of Corollary B.3) on

the set B, and having the property that Bµ \ B = S \ B. By the choice of the

markings on B, we have Bµ ∩ B = B. Hence Bµ = S. This along with the fact

that, the M.C. restricted to the set B (for the deterministic policy µ) is a M.C. tells

204

us that B is an absorbing set for the policy µ (i.e. pij(µ(i)) = 0, ∀j /∈ B, i ∈ B).

Note that i ∈ S \B imply that i is an inessential index for the M.C. with transition

probability matrix Pµ. Hence the ergodic classes for the M.C. with transition prob-

ability matrix Pµ are the same as the ergodic classes for the M.C. restricted to the

subset B.

2

Proof of Theorem B.1

First of all we prove that given any Cδ
i and any µ then we can find a j such

that Cµ
j ⊆ Cδ

i . Fix any deterministic policy µ and any one of the ergodic classes Cδ
i .

Let k ∈ Cδ
i . Then k

µ

6−→ l for any l /∈ Cδ
i , since Cδ

i is an ergodic class for the fully

randomized policy δ (refer Lemma B.1). But there exists j ∈ {1, . . . ,mµ} such that

k ∈ (Cµ
j)µ where

(Cµ
j)µ = {l ∈ S | l µ−→ l̃, for some l̃ ∈ Cµ

j }

and this in turn implies Cµ
j ⊆ Cδ

i (again by referring to Lemma B.1). This also

implies that mµ ≥ mδ. From the above arguments, it is clear that for any deter-

ministic policy µ̃ with mµ̃ = mδ (if at all it exists), precisely one each of its ergodic

classes will be a subset of each Cδ
k for k ∈ {1, . . . ,mδ}. Hence

⋃
{µ :mµ=mδ}

mµ⋃
i=1

Cµ
i ⊆

mδ⋃
k=1

Cδ
k

Now to prove the last statement of the theorem. Pick arbitrary i1, . . . , imδ

such that ik ∈ Cδ
k for k ∈ {1, . . . ,mδ}. Let B ≡ {i1, . . . , imδ}. Notice that Bδ = S.

Then by Lemma B.3 there exists marking of the states in S \ B (i.e. a particular

205

assignment of action to each state in S \ B, say action al to state l ∈ S \ B) such

that any deterministic policy µ with µ(l) = al, ∀l ∈ S \ B, has S \ B = Bµ \ B.

Now for l ∈ B, pick any al ∈ A(l) and assign µ(l) = al. Note that under this choice

of µ, l
µ−→ ik for each l ∈ Cδ

k . Also l ∈ Cδ
k implies l

µ

6−→ l̃, for all l̃ /∈ Cδ
k . This also

implies that there is exactly one ergodic class of this policy µ in each of the sets Cδ
k

and ik is an element of this ergodic class. Since S \ (
⋃mδ
k=1 C

δ
k) ⊆ Bµ \B, the states in

S \ (
⋃mδ
k=1 C

δ
k) are transient under the deterministic policy µ (by virtue of the choice

of the set B). This also implies that mµ = mδ. Hence we have mδ = minµ̃∈Γmµ̃.

Since ik could have been any state in Cδ
k in the choice of the set B, we have

mδ⋃
k=1

Cδ
k =

⋃
{µ :mµ=mδ}

mµ⋃
i=1

Cµ
i

Also this imples Corollaries B.1 and B.2.

2

206

Appendix C

Error Bounds For Markov Decision Processes

In this appendix we discuss some results related to the error bounds for Markov

Decision Processes (MDPs).

In Section C.1 we discuss a general contraction mapping theorem [12, 37], ap-

proximate value iteration and some generic error bounds for contraction mappings.

In Section C.2 we deal with the Stochastic Shortest Path problem (SSP) model

and discuss absorption probability issues of SSPs and explore the average number

of stages needed to reach the terminal state. Section C.3 discusses issues related

to properness and acyclicity of policies in SSP. In Section C.4 we discuss the con-

traction properties of SSP dynamic programming operator along with various error

bounds for SSP. Section C.5 deals with the equivalent SSP problem for discounted

cost MDP. Various error bounds for discounted cost problem are dealt with. In

Section C.6 error bounds for average cost problem are dealt with.

C.1 Contraction Mappings

Let V be a Banach Space [41] that is a normed linear space which is complete

under the norm ‖ · ‖.

Let H : V → V be a mapping such that ‖ HV − HV ′ ‖≤ K ‖ V − V ′ ‖,

∀ V, V ′ ∈ V ; where 0 ≤ K <∞. Then H is a uniformly continuous mapping. Here

207

HV is the mapping H applied to V ∈ V . If ‖ HV −HV ′ ‖≤‖ V −V ′ ‖ ∀ V, V ′ ∈ V

then H is called a nonexpansion mapping.

A mapping H : V → V is said to be a contraction mapping with modulus of

contraction α, if there exists a scalar α with 0 ≤ α < 1, such that

‖ HV −HV ′ ‖≤ α ‖ V − V ′ ‖ ∀ V, V ′ ∈ V

H : V → V is said to be an m-stage contraction mapping if there exists a positive

integer m and some scalar α, with 0 ≤ α < 1 such that

‖ HmV −HmV ′ ‖≤ α ‖ V − V ′ ‖ ∀ V, V ′ ∈ V

Here Hm denotes the composition of H with itself m times; i.e. Hk+1V = HHkV ,

∀ V ∈ V , k = 0, 1, 2, · · ·. H0 is the identity mapping, i.e. H0V = V , ∀ V ∈ V .

Again α is called the modulus of contraction. The modulus of contraction is also

called the contraction coefficient. Note that if H is a contraction mapping, then H is

uniformly continuous. However H being an m-stage contraction does not necessarily

imply that H is continuous. As in the following example, H may be discontinuous

every where.

Example C.1 Let H : R→ R be such that

Hx = 0 x rational

Hx = 1 x irrational

Let ‖x‖= |x|, ∀ x ∈ R. H is discontinuous everywhere and H2x = 0, ∀x ∈ R. Also

Hkx = 0, ∀k ≥ 2, x ∈ R. Hence

‖ Hkx−Hky ‖≤ 0· ‖ x− y ‖ ∀k ≥ 2, x, y ∈ R

208

Hence the modulus of contraction may be chosen to be 0 and H is a two stage

contraction.

2

C.1.1 Contraction Mapping Theorem

Proposition C.1 (Contraction Mapping Fixed Point Theorem) Let H : V →

V be a contraction mapping (i.e. a one stage contraction mapping) or an m-stage

contraction mapping for some positive integer m. Let α where 0 ≤ α < 1 be the

contraction coefficient. Then there exists a unique fixed point V ∗ ∈ V such that

1.

HV ∗ = V ∗

2. Furthermore if V is any element in V and Hk is the composition of H with

itself k times for k ≥ 0, then

lim
k→∞

‖ HkV − V ∗ ‖= 0

Also

‖ Hkm+lV − V ∗ ‖ ≤ αk ‖ H lV − V ∗ ‖

≤ αk
(

max
l̃∈{0,1,...,m−1}

‖ H l̃V − V ∗ ‖
)

for l = 0, 1, . . . ,m− 1 and k ≥ 0.

2

209

We provide a proof of the result below. Note that we do not assume H to be

continuous as in the proof given in [37]. See [12] for an alternate proof.

Proof of Proposition C.1

Let H be an m-stage contraction mapping for some integer m > 0 and let the

contraction coefficient be α where 0 ≤ α < 1. Let V ∈ V . Define

Vk = HkV for integer k ≥ 0

with V0 = H0V = V . Notice that for all integers k ≥ 0, l ≥ 0

‖ HmlVk+1 −HmlVk ‖≤ αl ‖ Vk+1 − Vk ‖

Let

K̄ = max
k∈{1,2,...,m}

‖ Vk − Vk−1 ‖

Note that for 0 ≤ k < m and l ≥ 0

‖ Vml+k+1 − Vml+k ‖≤ αlK̄

Hence for l ≥ 0

∞∑
k=0

‖ Vml+k+1 − Vml+k ‖ ≤ mK̄
∞∑
i=l

αi

= mK̄
αl

1− α

Hence {Vk} is a Cauchy sequence. Thus there exists V ∗ ∈ V such that Vk
k→∞−→ V ∗;

i.e. limk→∞ ‖ Vk − V ∗ ‖= 0. Let V̄ ∈ V and

V̄k = HkV̄ for integer k ≥ 0

210

with V̄0 = H0V̄ = V̄ . Note that {V̄k} is a Cauchy sequence and hence converges to

some V̄ ∗ ∈ V . Consider the subsequence {Vml} and {V̄ml} where l ∈ N0 (Note that

N0 is the set of non-negative integers). Now Vml
l→∞−→ V ∗ and V̄ml

l→∞−→ V̄ ∗. But

‖ Vml − V̄ml ‖≤ αl ‖ V − V̄ ‖

Thus liml→∞ ‖ Vml− V̄ml ‖= 0, implying V ∗ = V̄ ∗. Thus irrespective of the starting

element V ∈ V , the sequence {HkV }, k ∈ N0 converges to the unique vector V ∗.

Since Hm is a contraction mapping with contraction coefficient α, we have that

Hm is continuous. Now Vmk
k→∞−→ V ∗. Also HmVmk = Vm(k+1). Hence HmV ∗ = V ∗.

We will prove that for m > 1, HV ∗ = V ∗. Suppose not, i.e. HV ∗ = Ṽ and

V ∗ 6= Ṽ . Thus ‖ V ∗ − Ṽ ‖> 0. Let us start the iteration with V0 = V ∗ and

Vk = HkV0 for k ≥ 0. Now Vml = HmlV0 = HmlV ∗ = V ∗ for l ≥ 0. Now

Vml+1 = Hml+1V0 = Hml+1V ∗ = HV ∗ = Ṽ . Now the sequence {Vk = HkV ∗}

converges to V ∗ by our earlier discussion. Hence any subsequence of {HkV ∗}, k ∈ N0

should converge to V ∗. But the subsequence {Vml+1 = Hml+1V ∗}, l ∈ N0 converges

to Ṽ 6= V ∗. Hence we have a contradiction. Thus HV ∗ = V ∗.

Uniqueness of the fixed point follows immediately. Let V ′ and V ∗ be fixed

points of H. Then HkV ′ = V ′ for k ≥ 0 and likewise HkV ∗ = V ∗ for k ≥ 0. Now

‖ HmlV ′ −HmlV ∗ ‖=‖ V ′ − V ∗ ‖

for all l ≥ 0. But since Hm is a contraction mapping

‖ HmlV ′ −HmlV ∗ ‖≤ αl ‖ V ′ − V ∗ ‖

211

for all l ≥ 0. Here 0 ≤ α < 1. Thus

‖ V ′ − V ∗ ‖≤ αl ‖ V ′ − V ∗ ‖

forall l ≥ 0, implying ‖ V ′−V ∗ ‖= 0; i.e. V ′ = V ∗. Part 2 of the proposition follows

immediately from the definition of m-stage contraction mapping.

2

Note that H need not be continuous at the fixed point V ∗ as was shown in

Example C.1.

Proposition C.2 Let H : V → V be an m-stage contraction mapping with m > 0,

where m is an integer. Let α with 0 ≤ α < 1 be the contraction coefficient. Assume

further that H is a non-expansion. Suppose that for some V ∈ V, ‖ HV − V ‖≤ ε.

Then ‖ V ∗ − V ‖≤ mε
1−α where V ∗ is the unique fixed point of H.

2

Proof of Proposition C.2

Now ‖ HV − HV ′ ‖≤‖ V − V ′ ‖ and ‖ HmV − HmV ′ ‖≤ α ‖ V − V ′ ‖

for all V, V ′ ∈ V . Let Vk = HkV for k ≥ 0, with V0 = H0V = V . Note that

‖ Vk − Vk−1 ‖≤ ε for k ∈ {1, 2, . . . ,m}. Also

‖ Vml+k+1 − Vml+k ‖≤ αl ‖ Vk+1 − Vk ‖ ∀ l ≥ 0, k ≥ 0

Hence for k ∈ {0, 1, . . . ,m− 1} and l ≥ 0

‖ Vml+k+1 − Vml+k ‖≤ αlε

212

Thus

∞∑
j=0

‖ Vj+1 − Vj ‖ =
∞∑
l=0

m−1∑
k=0

‖ Vml+k+1 − Vml+k ‖

≤
∞∑
l=0

αlmε

=
mε

1− α

Since Vk
k→∞−→ V ∗, given any scalar ε > 0, there exists k′ > 0 such that ‖ Vk − V ∗ ‖≤ ε

for all k ≥ k′. Thus

‖ V − V ∗ ‖ = ‖ V0 − V ∗ ‖

≤ ‖ V0 − Vk′ ‖ + ‖ Vk′ − V ∗ ‖

≤
k′−1∑
k=0

‖ Vk+1 − Vk ‖ +ε

≤
∞∑
k=0

‖ Vk+1 − Vk ‖ +ε

≤ mε

1− α
+ ε

Since this is true for any ε > 0, we have

‖ V − V ∗ ‖≤ mε

1− α

2

Example C.2 Consider the earlier example where V = R and H : R→ R is such

that

Hx = 0 x rational

Hx = 1 x irrational

213

Let ‖x ‖= |x|, ∀ x ∈ R. Now H is a 2-stage contraction mapping with contraction

coefficient 0. However H is not a non-expansion. Let xk
k→∞−→ 1, xk irrational.

Hence Hxk = 1 for all k ≥ 0 and ‖ Hxk − xk ‖
k→∞−→ 0. But the unique fixed point of

H is x∗ = 0 and limk→∞ ‖ xk − x∗ ‖= limk→∞ ‖ xk ‖= 1.

Thus for general m-stage contraction mappings (for m > 1), it is not true that

if ‖ HV − V ‖ is “small”, then ‖ V − V ∗ ‖ is “small”.

2

C.1.2 Approximate Value Iteration

Lemma C.1 (Approximate Value Iteration) Let V be a Banach space, i.e. a

normed linear space which is complete under a norm ‖ · ‖. Let H : V → V be a

non-expansive mapping which is an m-stage contraction for some integer m > 0.

That is

‖ HV −HV ′ ‖≤‖ V − V ′ ‖ ∀ V, V ′ ∈ V

and

‖ HmV −HmV ′ ‖≤ α ‖ V − V ′ ‖ ∀ V, V ′ ∈ V

Here α is the contraction coefficient and 0 ≤ α < 1.

Consider the approximate value iteration method that generates a sequence

{Vk}, with Vk ∈ V satisfying

‖ Vk+1 −HVk ‖≤ ε

for k ≥ 0 and some scalar ε ≥ 0, starting from an arbitrary V0 ∈ V. Let V ∗ be the

214

unique fixed point of H. Then

lim sup
k→∞

‖ Vk − V ∗ ‖≤
mε

1− α

2

Proof of Lemma C.1

Note that ‖ V0 ‖<∞ and that if ε = 0 we have value iteration.

Let l be a non-negative integer. Then ‖ Vl+1 −HVl ‖≤ ε. Hence

‖ HVl+1 −H2Vl ‖≤ ε. Now ‖ Vl+2 −HVl+1 ‖≤ ε. Hence

‖ Vl+2 −H2Vl ‖ ≤ ‖ Vl+2 −HVl+1 ‖ + ‖ HVl+1 −H2Vl ‖

≤ 2ε

Now ‖ HVl+2 −H3Vl ‖≤ 2ε and ‖ Vl+3 −HVl+2 ‖≤ ε. Hence

‖ Vl+3 −H3Vl ‖ ≤ ‖ Vl+3 −HVl+2 ‖ + ‖ HVl+2 −H3Vl ‖

≤ 3ε

Continuing similarly

‖ Vl+m −HmVl ‖ ≤ mε (C.1)

Now

‖ HmVl+m −H2mVl ‖≤ αmε

since H is an m-stage contraction. Now by the inequality C.1,

‖ V2m+l −HmVm+l ‖≤ mε. Hence

‖ V2m+l −H2mVl ‖ ≤ ‖ V2m+l −HmVm+l ‖ + ‖ HmVm+l −H2mVl ‖

215

≤ mε+ αmε

= (1 + α)mε

Now ‖ HmV2m+l −H3mVl ‖≤ (α + α2)mε. Also by inequality C.1,

‖ V3m+l −HmV2m+l ‖≤ mε. Hence

‖ V3m+l −H3mVl ‖ ≤ ‖ V3m+l −HmV2m+l ‖ + ‖ HmV2m+l −H3mVl ‖

≤ mε+ (α + α2)mε

= (1 + α + α2)mε

Continuing similarly or by an induction argument, it is true that for any integer

k ≥ 1 and l ≥ 0

‖ Vkm+l −HkmVl ‖ ≤ (1 + α + α2 + . . .+ αk−1)mε

≤ mε

1− α

Hence

lim sup
k→∞

‖ Vkm+l −HkmVl ‖≤
mε

1− α

Let V ∗ be the unique fixed point of H. Now

‖ Vkm+l − V ∗ ‖ ≤ ‖ Vkm+l −HkmVl ‖ + ‖ HkmVl − V ∗ ‖

≤ mε

1− α
+ ‖ HkmVl − V ∗ ‖

Since

lim
k→∞

‖ HkmVl − V ∗ ‖= 0

by the contraction mapping fixed point Theorem C.1, we have

lim sup
k→∞

‖ Vkm+l − V ∗ ‖ ≤
mε

1− α
(C.2)

216

Since the inequality C.2 is true for l = 0, 1, 2, . . . ,m− 1 we have

lim sup
k→∞

‖ Vk − V ∗ ‖≤
mε

1− α

2

C.1.3 Contraction Mapping Generic Error Bounds

Lemma C.2 Let H and H̃ both be contraction mappings (one stage) with contrac-

tion coefficient, α (where 0 ≤ α < 1) under some norm ‖ · ‖ on a Banach space V.

Let V ∗ be the unique fixed point of H. Suppose V ∈ V be such that ‖ V − V ∗ ‖≤ ε

and ‖ HV − H̃V ‖≤ ε where scalars ε ≥ 0, ε ≥ 0. Then

‖ Ṽ − V ∗ ‖≤ 2αε + ε

1− α

where Ṽ is the unique fixed point of H̃.

2

Proof of Lemma C.2

Note that both H and H̃ have the same contraction coefficient α. Since HV ∗ =

V ∗

‖ H̃V − V ‖ ≤ ‖ H̃V −HV ‖ + ‖ HV −HV ∗ ‖ + ‖ V ∗ − V ‖

≤ ε+ α ‖ V − V ∗ ‖ + ‖ V − V ∗ ‖

= ε+ (1 + α) ‖ V − V ∗ ‖

Hence

‖ H̃2V − H̃V ‖≤ α(ε+ (1 + α) ‖ V − V ∗ ‖)

217

By Proposition C.2 given earlier we have

‖ H̃V − Ṽ ‖≤ α(ε+ (1 + α) ‖ V − V ∗ ‖)
1− α

Now HV ∗ = V ∗. Hence

‖ V ∗ − Ṽ ‖ ≤ ‖ HV ∗ −HV ‖ + ‖ HV − H̃V ‖ + ‖ H̃V − Ṽ ‖

≤ α ‖ V − V ∗ ‖ +ε+
α(ε+ (1 + α) ‖ V − V ∗ ‖)

1− α

=
2α ‖ V − V ∗ ‖ +ε

1− α

=
2αε + ε

1− α

2

We have the following extension for m-stage contraction mappings.

Lemma C.3 Let H be a non-expansive mapping on a Banach space V under the

norm ‖ · ‖. Let V ∗ be a fixed point of H. Let H̃ be a non-expansive mapping which is

an m-stage (m > 1) contraction mapping with contraction coefficient α (0 ≤ α < 1),

defined on the Banach space V under the same norm ‖ · ‖. Let V ∈ V be such that

‖ V − V ∗ ‖≤ ε and ‖ HV − H̃V ‖≤ ε where scalars ε ≥ 0, ε ≥ 0. Then

‖ V ∗ − Ṽ ‖≤ (2(m− 1) + (1 + α))ε+mε

1− α

where Ṽ is the unique fixed point of H̃.

2

218

Proof of Lemma C.3

Since HV ∗ = V ∗

‖ H̃V − V ‖ ≤ ‖ H̃V −HV ‖ + ‖ HV −HV ∗ ‖ + ‖ V ∗ − V ‖

≤ ε+ ‖ V − V ∗ ‖ + ‖ V − V ∗ ‖

= ε+ 2 ‖ V − V ∗ ‖

Also

‖ H̃ lV − H̃ l−1V ‖≤ ε+ 2 ‖ V − V ∗ ‖ forl = 1, 2, . . . ,m

For l = 1, 2, . . . ,m and k = 0, 1, 2, . . . we have

‖ H̃km+lV − H̃km+l−1V ‖≤ αk(ε+ 2 ‖ V − V ∗ ‖)

Since limk→∞ H̃
kV = Ṽ

‖ H̃mV − Ṽ ‖ ≤
∞∑
k=1

m∑
l=1

‖ H̃km+lV − H̃km+l−1V ‖

≤ mα(ε+ 2 ‖ V − V ∗ ‖)
1− α

Hence

‖ H̃V − Ṽ ‖ ≤
m−1∑
l=1

‖ H̃ l+1V − H̃ lV ‖ + ‖ H̃mV − Ṽ ‖

≤ (m− 1)(ε+ 2 ‖ V − V ∗) +
mα(ε+ 2 ‖ V − V ∗ ‖)

1− α

Since HV ∗ = V ∗, we have

‖ V ∗ − Ṽ ‖ ≤ ‖ HV ∗ −HV ‖ + ‖ HV − H̃V ‖ + ‖ H̃V − Ṽ ‖

≤ ‖ V − V ∗ ‖ +ε+ (m− 1)(ε+ 2 ‖ V − V ∗ ‖) +
mα(ε+ 2 ‖ V − V ∗ ‖)

1− α

=
(2(m− 1) + (1 + α)) ‖ V − V ∗ ‖ +mε

1− α

=
(2(m− 1) + (1 + α))ε+mε

1− α
2

219

C.2 Stochastic Shortest Path MDPs Revisited

Consider a homogeneous discrete time Stochastic Shortest Path (SSP) prob-

lem. For detailed notations on MDP see Chapter 1. We briefly state the notations

for SSP MDPs here.

The finite state space is S = {0, 1, 2, . . . , n} with state ‘0’ being the termi-

nation state or the absorption state. A(i), i ∈ S denotes the finite set of possible

actions from state i ∈ S, with A(i) = {1, 2, . . . , |A(i)|}, where |A(i)| denotes the

cardinality of the set A(i). Let A =
⋃
i∈S A(i) denote the action space. The tran-

sition probabilities may be conveniently denoted by pij(u) = Pr{st+1 = j | st =

i, ut = u}, where ‘Pr’ denotes probability, st ∈ S denotes the state at time t, ut

denotes the action taken at time t from state st (here ut ∈ A(st)). Let gt de-

note the immediate cost incurred at time t when action ut is taken from state st

and the system moves to state st+1 at time t + 1. For i, j ∈ S and u ∈ A(i),

let g(i, u, j) ≡ E [gt | st = i, ut = u, st+1 = j], where ‘E’ denotes expectation. The

expected immediate cost of taking action u from state i for i ∈ S, u ∈ A(i) is

g(i, u) ≡ E [gt | st = i, ut = u]

=
n∑
j=0

pij(u)g(i, u, j)

We assume the expectations to be well defined and finite. Note that

E [|gt| | st = 0, ut = 1] = 0 and p00(1) = 1; i.e. state 0 is a zero cost absorption state

with A(0) = {1}.

Let ht = (s0, u0, g0, s1, u1, g1, . . . , st−1, ut−1, gt−1, st) denote the history of the

process upto time t, where t ∈ N0, with h0 = (s0). The history ht follows the

220

recursion ht = (ht−1, ut−1, gt−1, st) for t ≥ 1. Let Ht denote the set of histories upto

time t. H0 = S, Ht+1 = HtARS for t ≥ 0. The sample space Ω = H∞ = (SAR)∞

is the set of all infinite sequences of the form (s0, u0, g0, s1, u1, g1, . . . , st, ut, gt, . . .),

where st ∈ S, ut ∈ A, gt ∈ R. This space is endowed with the product topology.

Here S and A are endowed with the discrete topology and the real line R is endowed

with the Borel topology.

An admissible or feasible policy ν for the SSP is a sequence of stochastic

control kernels νt on A, (i.e. ν = (ν0, ν1, ν2, . . .)) given the past history ht, with

the restriction that νt(A(st) | ht) = 1; i.e. the probability measure should be

concentrated on the set of feasible actions. M denotes the set of all feasible policies.

Let Pν(· | i) denote the probability measure induced on Ω under policy ν, starting

from state s0 = i, where i ∈ S. Eν(· | i) denotes the corresponding expectation,

under the probability measure induced by policy ν, starting from state s0 = i, where

i ∈ S. For the definition of Markov Randomized policy, Markov Deterministic policy

and Stationary policy see Chapter 1.

For SSP problems, in the case of Markov policies we implicitly assume without

loss of generality that in the termination state ‘0’, the action taken is always the

unique action ‘1’.

See Chapter 4 for notations on stationary randomized policies. The set of

stationary randomized policies (or stochastic control kernels to be precise) is denoted

by Λ. δ ∈ Λ may be used to represent the stochastic kernel or the stationary

randomized policy; it will be clear from the context what we mean. [δ(i)]a for

i ∈ {1, 2, . . . , n} and a ∈ A(i) denotes the probability of taking action a from state

221

i under the control kernel δ.

The set of stationary deterministic policies (or control functions to be precise)

is denoted by Υ. For µ ∈ Υ, µ(i) ∈ A(i) denotes the action taken from state i for

i ∈ {1, 2, . . . , n}. The cardinality of Υ is

|Υ| = |A(1)| × |A(2)| × · · · × |A(n)|

Note that µ ∈ Υ may be used to represent the control function or the stationary

deterministic policy; what we mean will be clear from the context.

The cost to go function for the SSP problem for policy ν ∈ M, starting from

state i ∈ {1, 2, . . . , n} is defined as

J̃ν(i) = lim sup
k→∞

Eν

[
k∑
t=0

gt | s0 = i

]

J̃ν ∈ Rn denotes the cost to go vector. See Chapter 1 for more details and the

conditions under which the limit exist (instead of lim sup) in the above definition.

Note that we use Prν interchangeably for Pν .

C.2.1 Non-Termination Probability Of SSP MDPs

We are interested in finding the k stage non-termination (non-absorption)

probability for the SSP problem.

Now for k ∈ N0 and a feasible policy ν = (ν0, ν1, ν2, . . .) ∈M

Prν [sk 6= 0 | s0 = i] = Eν
[
I [sk 6=0] | s0 = i

]

for i ∈ S. Here Prν denotes the probability distribution induced under policy ν,

and likewise Eν represents the expectation under policy ν. I denotes the indicator

222

function. Notice that in determining Prν [sk 6= 0 | s0 = i], i ∈ {1, 2, . . . , n} only the

decisions taken in the first k stages are relevant, i.e. only the stochastic control

kernels ν0, ν1, . . . , νk−1 are relevant. Observe that Prν [s0 6= 0 | s0 = i] = 1 for

i ∈ {1, 2, . . . , n}.We are interested in finding

sup
ν∈M

Prν [sk 6= 0 | s0 = i]

for i ∈ {1, 2, . . . , n}. By dynamic programming argument (see later subsection) we

can see that there exists a k-stage Markov deterministic policy (µk0, µ
k
1, . . . , µ

k
k−1),

where µkt , t ∈ {0, 1, 2, . . . , k−1} is the control function used at time t, that maximizes

the above probability for all i ∈ {1, 2, . . . , n}. Let νk = (νk0 , ν
k
1 , . . .) be a feasible

policy such that νkt “equals” µkt for t = 0, 1, . . . , k − 1 and νkt arbitrary for t ≥ k.

Then

Prν
k

[sk 6= 0 | s0 = i] = sup
ν∈M

Prν [sk 6= 0 | s0 = i]

for i ∈ {1, 2, . . . , n}.

For k ∈ N0 and ν ∈M define

ρν,k ≡ max
i∈{1,2,...,n}

Prν [sk 6= 0 | s0 = i] (C.3)

Since state 0 is an absorption state (i.e. it remains in state 0 once it is reached)

we have

Prν [sk+1 6= 0 | s0] ≤ Prν [sk 6= 0 | s0 = i]

for k ≥ 0 and i ∈ {1, 2, . . . , n}. Hence ρν,k is a nonincreasing function for any fixed

ν ∈M, i.e. ρν,k ↓k.

223

In this section, for stationary randomized policy (actually stochastic control

kernel) δ ∈ Λ, let Pδ denote the n× n substochastic matrix with

[Pδ]ij =
∑

a∈A(i)

[δ(i)]a pij(a)

for i, j ∈ {1, 2, . . . , n}. In particular for stationary deterministic policy (actually

control function) µ ∈ Υ

[Pµ]ij = pij(µ(i))

for i, j ∈ {1, 2, . . . , n}.

Let policy ν be a Markov randomized policy for the SSP problem, where ν

‘equal’ to (δ0, δ1, . . .). Here δt ∈ Λ for t ∈ N0. Then for i, j ∈ {1, 2, . . . , n} and t > 0

Prν [st = j | s0 = i] =
[
Pδ0Pδ1 · · ·Pδt−1

]
ij

Prν [st 6= 0 | s0 = i] = eTi
(
Pδ0Pδ1 · · ·Pδt−1

)
1
¯

where

ei = [0, 0, . . . , 0, 1︸︷︷︸
ith position

, 0, . . . , 0]T

is the ith co-ordinate vector (column vector) in Rn with one in the ith position and

zero elsewhere. 1
¯
∈ Rn is the column vector with all entries equal to one; i.e.

1
¯

= [1, 1, . . . , 1]T

Let us define for k ∈ N0

ρ̃k ≡ max
µ∈Υ

ρµ,k (C.4)

ρ̂k ≡ sup
ν∈M

ρν,k (C.5)

224

Let k > 0. With slight abuse of notation, we use ν to denote k stage Markov policies

in the following. See that

ρ̂k = sup
ν=(δ0,δ1,...,δk−1)

δt∈Λ

max
i∈{1,2,...,n}

Prν [sk 6= 0 | s0 = i]

= max
ν=(µ0,µ1,...,µk−1)

µt∈Υ

max
i∈{1,2,...,n}

Prν [sk 6= 0 | s0 = i]

Observe that ρ̃k ↓k, ρ̂k ↓k and ρ̂k ≥ ρ̃k for k ≥ 0 with ρ̂1 = ρ̃1 and ρ̂0 = ρ̃0 = 1. For

δ ∈ Λ define

pδij ≡
∑

a∈A(i)

[δ(i)]a pij(a)

for i ∈ {1, 2, . . . , n} and j ∈ S. Note that pδ00 = 1 and pδ0j = 0 for j ∈ {1, 2, . . . , n}.

pδij denotes the one stage transition probability for policy δ. We also have for µ ∈ Υ,

pµij = pij(µ(i)) for i ∈ {1, 2, . . . , n} and j ∈ S. Also pµ00 = 1 and pµ0j = 0 for

j ∈ {1, 2, . . . , n}.

For k ∈ N0 and ν ∈M, let Ĵνk ∈ Rn be such that

Ĵνk (i) = Eν
[
I [sk 6=0] | s0 = i

]

for i ∈ {1, 2, . . . , n}. We are interested in finding

sup
ν∈M

Ĵνk (i) i ∈ {1, 2, . . . , n}

Consider an associated problem in which the “immediate cost” is identically zero

for any action from any state, but the transition probabilities remain the same as

in the original SSP problem. Let the immediate cost at time t ∈ N0 be denoted by

gt, i.e.

E [|gt| | st = i, ut = a] = 0 i ∈ S, a ∈ A(i) and t ∈ N0

225

Hence

g(i, a, j) ≡ E [gt | st = i, ut = a, st+1 = j]

= 0

for i, j ∈ S and a ∈ A(i). Also for i ∈ S, a ∈ A(i)

g(i, a) ≡ E [gt | st = i, ut = a]

= 0

For δ ∈ Λ, the expected immmediate cost vector ḡδ ∈ Rn is given by

ḡδ(i) =
∑

a∈A(i)

[δ(i)]a g(i, a)

= 0

for i ∈ {1, 2, . . . , n}. Similarly for µ ∈ Υ, the expected “immediate cost” vector

ḡµ ∈ Rn is given by

ḡµ(i) = g(i, µ(i))

= 0

for i ∈ {1, 2, . . . , n}. That is ḡδ and ḡµ are zero vectors. Evaluating Ĵνk corresponds

to a k stage problem with identically zero “immediate costs” and a terminal cost

of one if sk 6= 0 and zero if sk = 0. Note that for policy ν the history used is the

same as the history of the original problem. For instance if past immediate costs

are included in the history for taking decisions, the immediate cost of the original

SSP problem is the one which is used.

226

Now for the associated problem, define operators T̂δ, T̂µ and T̂ from Rn to Rn,

for δ ∈ Λ, µ ∈ Υ as follows. For J ∈ Rn

T̂δJ = ḡδ + PδJ

= PδJ

T̂µJ = ḡµ + PµJ

= PµJ

Let

(
T̂ J

)
(i) = max

a∈A(i)

g(i, a) +
n∑
j=1

pij(a) J(j)

 for i ∈ {1, 2, . . . , n}

= max
a∈A(i)

 n∑
j=1

pij(a) J(j)


i.e.

T̂ J = max
µ∈Υ

T̂µJ

where the maximization is taken componentwise over each index i ∈ {1, 2, . . . , n}.

With 1
¯
∈ Rn being the vector with all components equal to one, let

Ĵ∗k = T̂ k1
¯

for k ∈ N0. Here T̂ k = T̂ T̂ k−1 is the composition of T̂ with itself k times. T̂ 0 is the

identity operator. Hence Ĵ∗0 = 1
¯
. Since state ‘0’ is the zero cost absorbing state we

have

Eν
[
I [sk 6=0] | sl = 0

]
= 0 for l = 0, 1, . . . k; ν ∈M

From the dynamic programming argument we get

Ĵ∗k (i) = sup
ν∈M

Prν [sk 6= 0 | s0 = i]

227

for i ∈ {1, 2, . . . , n} and k ∈ N0. Let

µ̂k = arg max
µ∈Υ

T̂µĴ
∗
k

i.e. T̂µ̂k Ĵ
∗
k = T̂ Ĵ∗k .

Fix k ∈ {1, 2, . . .}. Let ν̂k = (ν̂k0 , ν̂
k
1 , ν̂

k
2 , . . .) be an admissible policy such that

ν̂kl ‘equal’ to µ̂k−1−l, for l = 0, 1, . . . , k − 1. ν̂kl is arbitrary for l ≥ k. (Note the

slight abuse of notation; since ν̂kl is a stochastic kernel on A given history hl with

the restriction that ν̂kl (A(sl) | hl) = 1, while µ̂k−1−l is a control function.)

Thus

Prν̂
k

[sk 6= 0 | s0 = i] = Ĵ∗k (i)

for i ∈ {1, 2, . . . , n}. Note that

ρ̂k = max
i∈{1,2,...,n}

Ĵ∗k (i)

for k ∈ N0.

The following example shows that ρ̂k can be strictly greater than ρ̃k for k > 1.

Example C.3 Consider a homogeneous SSP problem with states S = {0, 1, 2}, with

‘0’ being the termination state. Let the control constraints be A(0) = {1}, A(1) =

{1, 2}, A(2) = {1}. The immediate cost of the problem is irrelevant since we are

interested in finding ρ̂k and ρ̃k for k ∈ N0.

Let the transition probabilities be p11(1) = 1
2
, p10(1) = 1

2
; p12(2) = 2

3
, p10(2) =

1
3
; p20(1) = 1; p00(1) = 1. Let

µ̄ =

 1

1

 and µ̃ =

 2

1


228

be the two possible Markov Deterministic control functions. Adhering to the nota-

tions in this section, let 1
¯

= (1 1)′ be the two dimensional column vector with all the

elements equal to one. Then

Ĵ µ̄0 = Ĵ µ̃0 =

 1

1


Also we have

Ĵ µ̄1 =


1
2

0



Ĵ µ̄k =


1
2k

0

 for k ≥ 1

Ĵ µ̃1 =


2
3

0



Ĵ µ̃k =

 0

0

 for k > 1

Here

Ĵµk (i) = Eµ
[
I [sk 6=0] | s0 = i

]
=
(
T̂ kµ1

¯

)
(i)

for i ∈ {1, 2}, µ ∈ {µ̄, µ̃}, k ∈ N0. Hence we have

ρ̃1 =
2

3

ρ̃k =
1

2k
k ≥ 2

Now Ĵ∗k = T̂ k1
¯

for k ∈ N0. Also

Ĵ∗k (i) = sup
ν∈M

Eν
[
I [sk 6=0] | s0 = i

]
229

for i ∈ {1, 2} and k ∈ N0. We have

Ĵ∗0 =

 1

1



Ĵ∗1 =


2
3

0



Ĵ∗k =


2
3

1
2k−1

0

 for k ≥ 2

Note that µ̂0 = µ̃ and µ̂k = µ̄, k ≥ 1 where

T̂µ̂k Ĵ
∗
k = T̂ Ĵ∗k

For k = 1, the policy which uses µ̃ at stage 0, maximizes the one stage non-

termination probability. For k > 1, the policy which uses µ̄ for the first k− 1 stages

(from stages 0 to k− 2) and µ̃ at stage k− 1 is the one which maximizes the k stage

non-termination probability.

Note that

ρ̂k =
2

3

1

2k−1
for k ≥ 1

ρ̂k
ρ̃k

=
2
3

1
2k−1

1
2k

=
4

3
> 1 for k > 1

2

C.2.2 Absorption Or Termination Probability Of SSP MDPs

In this subsection we consider an associated problem to the original SSP prob-

lem which can be considered to be the complementary part of the results in the

230

previous subsection.

We are interested in finding the k-stage termination or absorption probability

of the SSP problem.

Now for k ∈ N0 and any feasible policy ν = (ν0, ν1, ν2, . . .) ∈M

Prν [sk = 0 | s0 = i] = Eν
[
I [sk=0] | s0 = i

]

Here Prν denotes the induced probability under policy ν and Eν is the expectation

under policy ν (given starting state s0 = i). I denotes the indicator function. Note

that

Prν [s0 = 0 | s0 = i] = 0 i ∈ {1, 2, . . . , n}

and (Prν [sk = 0 | s0 = i]) ↑k for fixed state i ∈ S and ν ∈M, since state ‘0’ is a self

absorption state. Notice that in determining Prν [sk = 0 | s0 = i] , i ∈ {1, 2, . . . , n},

only the decisions taken in the first k stages are relevant, i.e. only the stochastic

control kernels ν0, ν1, . . . , νk−1 are relevant.

For k ∈ N0 and ν ∈M let J̌νk ∈ Rn be such that

J̌νk (i) = Eν
[
I [sk=0] | s0 = i

]
= Prν [sk = 0 | s0 = i]

for i ∈ {1, 2, . . . , n}.

We are interested in finding

inf
ν∈M

Prν [sk = 0 | s0 = i] = inf
ν∈M

J̌νk (i)

for i ∈ {1, 2, . . . , n}. Let Pδ, δ ∈ Λ and Pµ, µ ∈ Υ be defined as in the previous

231

subsection. Note that

J̌νk (i) = 1− Ĵνk (i)

where

Ĵνk (i) ≡ Eν
[
I [sk 6=0] | s0 = i

]

for i ∈ {1, 2, . . . , n} as defined in the previous subsection.

Consider the associated problem in which the “immediate costs” are as follows.

gt denotes the immediate cost at time t ∈ N0.

E [|gt| | st = i, ut = a, st+1 = j] = 0

for i, j ∈ {1, 2, . . . , n} and a ∈ A(i).

E [|gt − 1| | st = i, ut = a, st+1 = 0] = 0

for i ∈ {1, 2, . . . , n} and a ∈ A(i) and

E [|gt| | st = 0, ut = 1, st+1 = j] = 0

for j ∈ S.

Assume that the transition probabilities remain the same as in the original SSP

problem. That is we assume that a unit cost is incurred when state st ∈ {1, 2, . . . , n}

and state st+1 = 0 , and a zero cost otherwise. Hence

g(i, u, j) ≡ E [gt | st = i, ut = u, st+1 = j] = 0

if i = 0 or j 6= 0. Here u ∈ A(i). Also

g(i, u, 0) ≡ E [gt | st = i, ut = u, st+1 = 0] = 1

232

if i ∈ {1, 2, . . . , n}, u ∈ A(i). Note that

g(i, u) ≡ E [gt | st = i, ut = u]

=
n∑
j=0

pij(u) g(i, u, j)

= pi0(u) for i ∈ {1, 2, . . . , n}, u ∈ A(i)

Also

g(0, 1) ≡ E [gt | st = 0, ut = 1] = 0

If the “immediate cost” vector for δ ∈ Λ is denoted by ḡδ ∈ Rn, then

ḡδ(i) =
∑

a∈A(i)

[δ(i)]a g(i, a) =
∑

a∈A(i)

[δ(i)]a pi0(a)

for i ∈ {1, 2, . . . , n} Similarly for µ ∈ Υ, the immediate cost vector ḡµ ∈ Rn is such

that

ḡµ(i) = g(i, µ(i)) = pi0(µ(i))

for i ∈ {1, 2, . . . , n}.

For any feasible policy ν ∈M and t ∈ N0

Eν [gt | s0 = i] = Prν [st 6= 0, st+1 = 0 | s0 = i]

and for integer N > 0

Eν

[
N−1∑
t=0

gt | s0 = i

]
= Prν [sN = 0 | s0 = i] = J̌νN(i)

for i ∈ {1, 2, . . . , n}, since the termination state ‘0’ is a zero cost absorption state.

Note that for policy ν ∈ M, the history used is the same as the history of

the original SSP problem. For instance if past immediate costs are included in the

233

history for taking decisions, the immediate cost gt of the original problem is the one

which is used.

For Markov Randomized Policy ν = (δ0, δ1, . . .) where δt ∈ Λ, t ∈ N0, we have

J̌νN+1 = ḡδ0 + Pδ0 ḡδ1 + Pδ0Pδ1 ḡδ2 +

. . .+ Pδ0Pδ1 · · ·PδN−1
ḡδN

for N ∈ N0.

Note that

Pδ01
¯

= 1
¯
− ḡδ0

and

Pδ0Pδ1 · · ·PδN1
¯

= 1
¯
−
[
ḡδ0 + Pδ0 ḡδ1 + Pδ0Pδ1 ḡδ2+

. . .+ Pδ0Pδ1 · · ·PδN−1
ḡδN

]
(C.6)

This follows easily from the fact that

Ĵνk = 1
¯
− J̌νk for k ∈ N0

or by induction as follows.

Pδ01
¯

= 1
¯
− ḡδ0

is straightforward. Suppose equation C.6 is true for N ∈ N0. Since Pδk1¯
= 1

¯
− ḡδk

for all k ∈ N0, we have

1
¯
−
[(

ḡδ0 + Pδ0 ḡδ1 + Pδ0Pδ1 ḡδ2 + . . .+ Pδ0Pδ1 · · ·PδN−1
ḡδN

)
+ Pδ0Pδ1 · · ·PδN ḡδN+1

]

= Pδ0Pδ1 · · ·PδN1
¯
− Pδ0Pδ1 · · ·PδN ḡδN+1

234

= Pδ0Pδ1 · · ·PδN
[
1
¯
− ḡδN+1

]
= Pδ0Pδ1 · · ·PδNPδN+1

1
¯

Define the operators Ťδ, Ťµ from Rn to Rn for δ ∈ Λ, µ ∈ Υ by

ŤδJ = ḡδ + PδJ for J ∈ Rn

ŤµJ = ḡµ + PµJ for J ∈ Rn

Let the operator Ť : Rn → Rn be defined by

(
Ť J

)
(i) = min

a∈A(i)

g(i, a) +
n∑
j=1

pij(a) J(j)


for i ∈ {1, 2, . . . , n}; i.e.

Ť J = min
µ∈Υ

ŤµJ

where the minimization is taken componentwise.

Let 0
¯
∈ Rn be the zero vector (column vector) with all components equal to

zero. Let

J̌∗k = Ť k0
¯

for k ∈ N0

where Ť k is equal to Ť Ť k−1, the composition of Ť with itself k times. Ť 0 is the

identity operator with J̌∗0 = 0
¯
.

From the Dynamic Programming argument

J̌∗k (i) = inf
ν∈M

Prν [sk = 0 | s0 = i]

for i ∈ {1, 2, . . . , n}. Let

µ̌k = arg min
µ∈Υ

ŤµJ̌
∗
k

235

i.e.

Ťµ̌k J̌
∗
k = Ť J̌∗k

Fix k ∈ {1, 2, . . .}. Let ν̌k = (ν̌k0 , ν̌
k
1 , ν̌

k
2 , . . .) be an admissible policy such that ν̌kl

‘equal to’ µ̌k−1−l, for l = 0, 1, 2, . . . , k − 1 and ν̌kl arbitrary for l ≥ k. Then

Prν̌
k

[sk = 0 | s0 = i] = J̌∗k (i)

for i ∈ {1, 2, . . . , n}. Note that since for any ν ∈ M and i ∈ {1, 2, . . . , n},

(Prν [sk = 0 | s0 = i]) ↑k we have J̌∗k (i) ↑k for any i ∈ {1, 2, . . . , n}. Also

ρ̂k = 1− min
i∈{1,2,...,n}

J̌∗k (i)

Let k ∈ N0 and i ∈ {1, 2, . . . , n}. Since

Ĵ∗k (i) = sup
ν∈M

Prν [sk 6= 0 | s0 = i]

and

J̌∗k (i) = inf
ν∈M

Prν [sk = 0 | s0 = i]

We have

J̌∗k (i) = inf
ν∈M

(1− Prν [sk 6= 0 | s0 = i])

= 1− sup
ν∈M

Prν [sk 6= 0 | s0 = i]

= 1− Ĵ∗k

As an aside we have the following. Let Ĵ ∈ Rn and J̌ = 1
¯
− Ĵ , where 1

¯
∈ Rn

is the column vector with all components equal to one. For i ∈ {1, 2, . . . , n} and

236

a ∈ A(i)

n∑
j=1

pij(a) Ĵ(j) =
n∑
j=1

pij(a)
(
1− J̌(i)

)

= 1− pi0(a)−
n∑
j=1

pij(a) J̌(j)

= 1−

pi0(a) +
n∑
j=1

pij(a) J̌(j)

 (C.7)

Hence for µ ∈ Υ

T̂µĴ = 1
¯
− ŤµJ̌

Similarly for δ ∈ Λ

T̂δĴ = 1
¯
− ŤδJ̌

From equation C.7, we get

max
a∈A

 n∑
j=1

pij(a) Ĵ(j)

 = max
a∈A(i)

1−

pi0(a) +
n∑
j=1

pij(a) J̌(j)


= 1− min

a∈A(i)

pi0(a) +
n∑
j=1

pij(a) J̌(j)


for i ∈ {1, 2, . . . , n}. Also a∗ ∈ A(i) achieves the maximum on the left hand side

if and only if a∗ achieves the minimum in the minimization term on the right hand

side of the previous equation. In vector notation

T̂ Ĵ = max
µ∈Υ

T̂µĴ

= 1
¯
−min

µ∈Υ
ŤµJ̌

= 1
¯
− Ť J̌

where the maximum and minimum are taken component wise. Also µ∗ ∈ Υ is such

that T̂µ∗ Ĵ = T̂ Ĵ if and only if Ťµ∗ J̌ = Ť J̌ .

237

See the previous and the current subsections for the definition of µ̂k, µ̌k and

Ĵ∗k , J̌
∗
k for k ∈ N0. Another way to prove that Ĵ∗k = 1

¯
− J̌∗k is given below.

Now Ĵ∗0 = 1
¯

and J̌∗0 = 0
¯

= 1
¯
− Ĵ∗0 . Here 0

¯
∈ Rn is the zero vector. Let

Ĵ∗k = 1
¯
− J̌∗k

Since

T̂µ̂k Ĵ
∗
k = T̂ Ĵ∗k

we have

Ťµ̂k
(
1
¯
− Ĵ∗k

)
= Ťµ̂k J̌

∗
k = Ť J̌∗k

Similarly since

Ťµ̌k J̌
∗
k = Ť J̌∗k

we have

T̂µ̌k
(
1
¯
− J̌∗k

)
= T̂µ̌k Ĵ

∗
k = T̂ Ĵ∗k

Also

Ĵ∗k+1 = T̂ Ĵ∗k

= 1
¯
− Ť

(
1
¯
− Ĵ∗k

)
= 1

¯
− Ť J̌∗k

= 1
¯
− J̌∗k+1.

238

C.2.2.1 Notes On The Worst Case Non-Termination Probability Of

SSP MDPs

Consider a homogeneous SSP problem. If all stationary deterministic policies

are proper then ρ̂n < 1 (see [11, 12] and the future Section C.3 in this appendix).

Hence for any SSP problem with all proper stationary deterministic policies, we

have for any feasible policy ν ∈M

Prν [sn 6= 0 | s0 = i] ≤ ρ̂n < 1

for all i ∈ {1, 2, . . . , n}.

If ν = (δ0, δ1, δ2, . . .) is any Markov Randomized policy where δt ∈ Λ, is the

stochastic control kernel used at stage t, then for l, k positive integers we have

Prν [sl+k 6= 0 | s0 = i] ≤ ρ̂l ρ̂k for i ∈ {1, 2, . . . , n}

This follows easily from the Markov nature of the policy ν and the fact that state 0

is an absorption state.

If ν = (ν0, ν1, ν2, . . .) is an arbitrary history dependent randomized feasible

policy inM for the original SSP problem, then given any fixed starting state s0 = i

where i ∈ S, there exists (see Chapter 1 and [40, Chapter 5]) a Markov Randomized

policy dependent on i and ν called, say ν̄ = (δ0, δ1, δ2, . . .) where δt ∈ Λ for t ∈ N0.

such that

Prν [st = j | s0 = i] = Prν̄ [st = j | s0 = i]

and

Prν [st = j, ut = a | s0 = i] = Prν̄ [st = j, ut = a | s0 = i]

239

for all t ∈ N0, j ∈ S, a ∈ A(j).

Hence for any feasible policy ν ∈M and positive integers l, k we have

Prν [sl+k 6= 0 | s0 = i] ≤ ρ̂l ρ̂k for i ∈ {1, 2, . . . , n}

Thus

max
i∈{1,2,...,n}

sup
ν∈M

Prν [sl+k 6= 0 | s0 = i] ≤ ρ̂l ρ̂k

i.e.

ρ̂l+k ≤ ρ̂l ρ̂k

Hence for any feasible policy ν ∈M

Prν [s2n 6= 0 | s0 = i] ≤ ρ̂2
n for i ∈ {1, 2, . . . , n}

and

Prν [st 6= 0 | s0 = i] ≤ ρ̂
b t
n
c

n for i ∈ {1, 2, . . . , n}

where b·c denotes the floor function.

Thus if all stationary deterministic policies are proper for the SSP problem,

then

∞∑
t=0

Prν [st 6= 0 | s0 = i] <∞ for i ∈ {1, 2, . . . , n}

As will be shown later, the above quantity is the expected number of steps for

reaching the terminal state 0, under policy ν starting at state i at stage 0. Also

note that

∞∑
t=0

Prν [st 6= 0 | s0 = 0] = 0

since state 0 is an absorbing state. This is the expected number of steps to reach

the terminal state 0, starting at the terminal state 0.

240

C.2.3 Number Of Stages To Reach Terminal State

Suppose ν ∈ M be a feasible or admissible policy for the original SSP prob-

lem. In this subsection we consider another associated SSP problem in which the

transition probabilities are the same as in the original problem, but “immediate

cost” gt are as follows.

E [|gt − 1| | st = i, ut = a] = 0 for i ∈ {1, 2, . . . , n}, a ∈ A(i)

and

E [|gt| | st = 0, ut = 1] = 0

Note that A(0) = {1}. We have that the immediate cost of taking any action from

any state in {1, 2, . . . , n} is 1, and the immediate cost of taking the action in the

terminal state ‘0’ is zero. Hence

g(i, a) ≡ E [gt | st = i, ut = a] = 1 for i ∈ {1, 2, . . . , n}, a ∈ A(i)

g(0, 1) ≡ E [gt | st = 0, ut = 1] = 0

Note that gt = g(st, ut). If N is the number of steps or stages required to reach the

terminal state ‘0’, then

N =
∞∑
t=0

gt

since state ‘0’ is a zero cost absorbing state. Note that

Prν [st 6= 0 | s0 = i] = Eν [gt | s0 = i]

for i ∈ S. Here Prν is the probability induced by policy ν and Eν is the expectation

under policy ν.

241

Note that for policy ν ∈M, the history used is the same as the history of the

original SSP problem. For instance if past immmediate costs are included in the

history for taking decisions, the immmediate cost gt of the original problem is the

one which is used. Hence

Eν [N | s0 = i] =
∞∑
t=0

Eν [gt | s0 = i]

=
∞∑
t=0

Prν [st 6= 0 | s0 = i]

for i ∈ S. Note that for t ∈ N0,

{N > t} = {st 6= 0}

Hence

Prν [st 6= 0 | s0 = i] = Prν [N ≥ t+ 1 | s0 = i]

for i ∈ S.

Another way of looking at the expectation of N , or the average number of

steps to reach terminal state is as follows. Since N is a non-negative integer valued

random variable [21, pg. 42, Lemma 5.7; pg. 45, ex. 5.6]

Eν [N | s0 = i] =
∞∑
t=1

Prν [N ≥ t | s0 = i]

=
∞∑
t=0

Prν [st 6= 0 | s0 = i]

Note that this expected value is finite for all states i ∈ S if all stationary determin-

istic policies are proper.

In particular for a Markov Randomized policy ν = (δ0, δ1, δ2, . . .) (where δt ∈

Λ) and i ∈ {1, 2, . . . , n}

Eν [N | s0 = i] = eTi [I + Pδ0 + Pδ0Pδ1 + Pδ0Pδ1Pδ2 + . . .] 1
¯

242

which is finite if all stationary deterministic policies are proper. Here ei ∈ Rn is the

ith co-ordinate vector whose ith component is one and all other components are zero,

1
¯
∈ Rn is the vector with all components equal to one and I is the n × n identity

matrix (diagonal matrix with all diagonal entries equal to one).

For a ‘proper’ stationary deterministic policy δ and i ∈ {1, 2, . . . , n}

Eδ [N | s0 = i] = eTi (I − Pδ)−1 1
¯

For a policy ν ∈M let N̄ν denote the n× 1 vector with

N̄ν(i) = Eν [N | s0 = i] for i ∈ {1, 2, . . . , n}

Hence for ‘proper’ stationary randomized policy δ

N̄δ = (I − Pδ)−1 1
¯

Note that N̄ν(i) ≥ 1 for all i ∈ {1, 2, . . . , n}.

C.3 Notes On The Non-Absorption Probability Of SSP MDPs

Note that ρν,k ↓k for any admissible policy ν ∈M. Likewise ρ̃k ↓k and ρ̂k ↓k.

In the SSP problem the termination state ‘0’ is a zero cost absorbing state.

Hence for any stationary policy, whether randomized or deterministic, {0} by itself

is a recurrent class. A stationary policy δ ∈ Λ being ‘proper’ is equivalent to the

statement that there are no recurrent states in {1, 2, . . . , n} under the policy δ, or

equivalently the Markov Chain corresponding to δ has a single recurrent class (i.e.

it is unichain) namely {0}. Let

pδij ≡
∑

a∈A(i)

[δ(i)]a pij(a)

243

be the one step transition probability under stationary policy δ, where i, j ∈ S =

{0, 1, 2, . . . , n}. Note that for stationary deterministic policy µ ∈ Υ, pµij = pij(µ(i))

for i ∈ {1, 2, . . . , n}, j ∈ S and pµ00 = 1. Also pµ0j = 0 if j ∈ {1, 2, . . . , n}.

Suppose (s0, s1, . . . , sk) be a sequence of states with k ≥ 1 and sl ∈ S for

l ∈ {0, 1, 2, . . . , k}. This is called a path of length k with starting state s0 and

ending state sk. If s0 = sk we call this path a cycle.

We say that (s0, s1, s2, . . . , sk) is a path of positive probability under the

stationary policy δ ∈ Λ, if pδslsl+1
> 0 for l = 0, 1, 2, . . . , k − 1. Similarly if

(s0, s1, s2, . . . , sk) is a cycle, we call it a cycle of positive probability under policy δ,

if pδslsl+1
> 0 for l = 0, 1, 2, . . . , k − 1.

Now (sk′ , sk′+1, . . . , sl′) with 0 ≤ k′ < l′ ≤ k is said to be a sub-path of

(s0, s1, s2, . . . , sk) of length l′ − k′. If sl′ = sk′ , then we say that (sk′ , sk′+1, . . . , sl′)

is a sub-cycle of the path (s0, s1, s2, . . . , sk). We say that the sub-path (sub-cycle)

is a sub-path (sub-cycle) of positive probability under the stationary policy δ ∈ Λ

if pδslsl+1
> 0 for k′ ≤ l < l′.

C.3.1 Properness Of Policies

Let δ ∈ Λ. Note that if for some k ∈ N (where N is the set of positive integers)

we have ρδ,k < 1 then this implies that δ is proper. Also as will be shown below δ

is proper if and only if ρδ,k < 1 for all k ≥ n.

δ proper implies that there exists l ∈ N such that ρδ,l < 1. If ρδ,l < 1 for some

l ≤ n then ρδ,n < 1 since ρδ,k ↓k.

244

If ρδ,l < 1 for some l ≥ n, then this implies that there is a path (s0, s1, s2, . . . , sl)

of positive probability under δ of length l from each fixed starting state i ∈ S \ {0}

to the terminal state 0; i.e. s0 = i, sl = 0 and pδsksk+1
> 0 for 0 ≤ k < l. Hence if we

remove sub-cycles on this path , then there is a path of positive probability under δ ,

starting at state i and ending at state 0, of length l′ ≤ n namely (s′0, s
′
1, . . . , s

′
l′) with

s′0 = i, s′l′ = 0 and s′k 6= s′k′ if k′ 6= k where k, k′ ∈ {0, 1, . . . , l′}. Also pδs′
k
s′
k+1

> 0 for

0 ≤ k < l′. Since 0 is a self absorbing state (i.e. pδ00 = 1) we can extend this path

to a path(s′0, s
′
1, . . . , s

′
l′ , s
′
l′+1, . . . , s

′
n) of positive probability under δ with s′k = 0 for

l′ < k ≤ n.

Since this is true for all i ∈ S \ {0}, we have ρδ,n < 1. Since ρδ,k ↓k we have

ρδ,k < 1 for all k ≥ n.

Now since we are dealing with a finite state, finite action SSP problem, there

are only a finite number of stationary deterministic policies (i.e. |Υ| is finite). Now

all stationary deterministic policies are proper is equivalent to the statement that

the MDP is unichain [12, 40] with unique recurrent class {0} for all stationary

deterministic policies. Hence extending the above idea, if for some k ∈ N we have

ρ̃k < 1 then this implies that all stationary deterministic policies are proper. Also

all stationary deterministic policies are proper if and only if ρ̃k < 1 for all k ≥ n.

Now if ρ̃k = 1 for some k ≥ n, then it is impossible that ρ̃l < 1 for any l ≥ n,

since this would imply that all stationary deterministic policies are proper and hence

ρ̃l′ < 1 for all l′ ≥ n and hence ρ̃k < 1; a contradiction. Hence for the SSP problem,

either

ρ̃k = 1 for all k ≥ n, (and also ρ̃l = 1 for 0 ≤ l < n)

245

or

ρ̃k < 1 for all k ≥ n

Lemma C.4 For any k′ ∈ N0 we have ρ̃k′ < 1 if and only if ρ̂k′ < 1, or equivalently

ρ̃k′ = 1 if and only if ρ̂k′ = 1

2

Proof of Lemma C.4

For k′ = 0 we have ρ̃0 = ρ̂0 = 1. Hence we consider the case where k′ ≥ 1.

Since ρ̂k ≥ ρ̃k for all k ∈ N0 we have that ρ̂k′ < 1 implies ρ̃k′ < 1. We will prove

that ρ̃k′ < 1 implies that ρ̂k′ < 1.

Note that starting at each initial state in S\{0}, the maximal non-termination

probability for a k′ stage problem is achieved by a Markov deterministic policy. Note

that there are only finite number of k′ stage Markov deterministic policies. Hence

it is sufficient to prove that for any initial state i ∈ S \{0} and any k′ stage Markov

Deterministic policy ν = (µ0, µ1, . . . , µk′−1) (with slight abuse of notation we use ν

to represent the k′ stage policy) the k′ stage termination probability is greater than

zero. i.e.

Prν [sk′ = 0 | s0 = i] > 0 for i ∈ S \ {0}

We will prove this as follows. Suppose not; i.e. there exists an i ∈ S \ {0} and k′

stage Markov Deterministic policy (µ0, µ1, . . . , µk′−1) such that starting from state

i at time zero (i.e. s0 = i) the k′ stage state sk′ is not 0 with probability one.

Let

S0(i) = {i}

246

For k = 0, 1, . . . , k′ let Sk(i) be defined as the set of all the states reachable in

k steps or less, starting from state i, with positive probability under the Markov

Deterministic policy (µ0, µ1, . . . , µk′−1). Note that

Sk(i) ⊆ Sk+1(i) for 0 ≤ k < k′

Let S ′0(i) = S0(i) and for k = 1, 2, . . . , k′ let

S ′k(i) = Sk(i) \ Sk−1(i)

That is S ′k(i) is the set of states reachable with positive probability starting from

state i, in k steps, but not in less than k steps under policy (µ0, µ1, . . . , µk′−1). Note

that for 0 ≤ k ≤ k′,

Sk(i) = ∪kl=0S ′l(i)

Note that S ′k(i) ∩ S ′l(i) = ∅ for k 6= l, k, l ∈ {0, 1, 2, . . . , k′}. S ′k(i) may be empty

for some k ∈ {1, 2, . . . , k′}. By assumption the terminal state 0 /∈ Sk′(i). Hence

0 /∈ Sk(i) for 0 ≤ k ≤ k′. Let µ be a stationary deterministic policy (control

function) such that

µ(j) = µl(j) for j ∈ S ′l(i), 0 ≤ l < k′

Let µ(j) be arbitrary for j /∈ Sk′−1(i) with the restriction that µ(j) ∈ A(j).

For k ∈ N0 let S̃k(i) be defined as the set of all the states that can be reached

in k steps or less with positive probability starting from state i under stationary

deterministic policy µ. Note that S̃0(i) = S0(i) = {i}. We claim that

S̃k(i) ⊆ Sk(i) for 0 ≤ k ≤ k′

247

Since µ(i) = µ0(i) we have S1(i) = S̃1(i). For any l ∈ {0, 1, . . . , k′−1} and j ∈ S ′l(i),

pjj′(µ(j)) > 0 implies j′ ∈ Sl+1(i).

Suppose S̃k(i) ⊆ Sk(i) for some k with 0 ≤ k < k′. Now

S̃k(i) = ∪kl=0

(
S ′l(i) ∩ S̃k(i)

)

Hence if k ≥ 1, for j ∈ ∪k−1
l=0

(
S ′l(i) ∩ S̃k(i)

)
, pjj′(µ(j)) > 0 implies j′ ∈ Sk(i). Also

j ∈ S ′k(i) ∩ S̃k(i) and pjj′(µ(j)) > 0 implies j′ ∈ Sk+1(i). Thus S̃k+1(i) ⊆ Sk+1(i).

Thus for 0 ≤ k ≤ k′ we have

S̃k(i) ⊆ Sk(i)

implying 0 /∈ S̃k′(i). Thus ρµ,k′ = 1, a contradiction.

2

As an aside, see that if Sl(i) = Sl+1(i) for some l ∈ {0, 1, . . . , k′ − 1}, then

S̃k(i) ⊆ Sl(i) for all k ≥ l.

C.3.2 Acyclicity Of Policies

The following claim is self evident.

Claim C.1 Assume that the states sl, for l = 0, 1, . . . k in the path (s0, s1, . . . , sk) be

in S \{0}. If k ≥ n then at least one state in S \{0} is repeated and hence there is a

subcycle (sk′ , sk′+1, . . . , sl′) of the above path, such that sk′ = sl′ and 0 ≤ k′ < l′ ≤ k.

We can actually take l′ ≤ n.

2

248

A stationary randomized policy δ ∈ Λ for the SSP problem is called acyclic if

there are no cycles of positive probability (with states in S \ {0}) under the policy

δ.

Actually if there are no cycles of positive probability with states in S \ {0}

under the policy δ of length less than or equal to n, then there are no cycles of

positive probability with states in S \ {0} of length greater than or equal to n by

the argument in Claim C.1.

Lemma C.5 Suppose for some positive intiger k, ρδ,k = 0. Then the Markov Chain

under δ is acyclic.

2

Proof of Lemma C.5

Suppose otherwise. That is δ is not acyclic. That means there is a cycle

(s0, s1, . . . , sk′) of positive probability under δ with sl ∈ S \ {0} for l = 0, 1, . . . , k′

and s0 = sk′ (and k′ ≤ n) . Once we start within any of the states within this

cycle at time 0, then we can remain in the states within this cycle with positive

probability for any finite time. This implies ρδ,k > 0, a contradiction.

2

Claim C.2 Suppose δ ∈ Λ be acyclic. Then ρδ,k = 0 for all k ≥ n

2

249

Proof of Claim C.2

Since ρδ,l ↓l it is sufficient to prove that ρδ,n = 0.

Suppose ρδ,n > 0. Then there exists a starting state s0 = i ∈ S \ {0} and

a path (s0, s1, . . . , sn) of positive probability under δ such that sl ∈ S \ {0} for

l = 0, 1, . . . , n. This implies that by Claim C.1 there is a subcycle (sk′ , sk′+1, . . . , sl′)

of positive probability under δ with 0 ≤ k′ < l′ ≤ n and sk′ = sl′ . Hence δ is not

acyclic, a contradiction. Thus ρδ,k = 0 for all k ≥ n if δ is acyclic.

2

Since we are dealing with a finite state, finite action SSP problem, there are

only a finite number of stationary deterministic policies; i.e. |Υ| is finite. Hence

extending the above idea, if for some k ∈ N, ρ̃k = 0, then all stationary deterministic

policies are acyclic. Also all stationary deterministic policies are acyclic implies that

ρ̃k = 0 for all k ≥ n.

Now if ρ̃k > 0 for some k ≥ n, then it is not possible that ρ̃l = 0 for any l ≥ n

(and hence also for 0 ≤ l < n) since this implies that all stationary deterministic

policies are acyclic and hence ρ̃l′ = 0 for all l′ ≥ n. Hence ρ̃k = 0, a contradiction.

Hence for the SSP problem, either

ρ̃k > 0 for all k ≥ n, and also ρ̃k > 0 for 0 ≤ k < n

or

ρ̃k = 0 for all k ≥ n

Lemma C.6 For any k ∈ N we have ρ̃k = 0 if and only if ρ̂k = 0, or equivalently

ρ̃k > 0 if and only if ρ̂k > 0. 2

250

Proof of Lemma C.6

The fact that ρ̂k = 0 implies ρ̃k = 0 follows easily. To prove the claim that

ρ̃k = 0 implies ρ̂k = 0, we need to observe that the worst case k stage non-absorption

(or non-termination) probability for any starting state i ∈ S \ {0} is achieved by

a Markov deterministic policy. Only the decisions in the first k stages are relevant

and there are only a finite number of k stage Markov deterministic policies.

Suppose ρ̂k > 0. Then (with slight abuse of notation) there exists a k stage

Markov deterministic policy ν = (µ0, µ1, . . . , µk−1) (here µl ∈ Υ for l = 0, 1, . . . , k−

1) such that for some starting state s0 = i ∈ S \ {0} and ending state sk = j ∈

S \ {0} we have a path (s0, s1, . . . , sk) withsl ∈ S \ {0} for l = 0, 1, . . . , k and

pslsl+1
(µl(sl)) > 0 for l = 0, 1, . . . , k − 1.

Case 1 : Suppose there are no sub cycles in the path (s0, s1, . . . , sk), i.e. sl 6=

sl′ for l 6= l′, l, l′ ∈ {0, 1, . . . , k}. Note that this implies k < n. Suppose µ be a

stationary deterministic policy such that µ(sl) = µl(sl) for l = 0, 1, . . . , k − 1 and

µ(s) arbitrary for the other states s, with the restriction that µ(s) ∈ A(s). Hence

we have a path (s0, s1, . . . , sk) (with s0 = i, sk = j) of positive probability under

stationary deterministic policy µ. Hence ρµ,k > 0 implying ρ̃k > 0, a contradiction.

Case 2: Suppose some state is repeated in the path (s0, s1, . . . , sk) where

s0 = i and sk = j. Thus there is a sub cycle in the path. Hence there is a

first sub cycle in the path (the sub cycle with the smallest terminal index) namely

(sl′ , sl′+1, . . . sk′) where 0 ≤ l′ < k′ ≤ k. Here sl′ = sk′ and sl′′ 6= sk′′ for l′′ 6=

k′′, l′′, k′′ ∈ {0, 1, . . . , k′ − 1}. Note that k′ ≤ n.

251

For s ∈ {s0, s1, . . . , sk−1} let

l̂(s) = arg min
l∈{0,1,...,k−1}

s = sl

For s ∈ {s0, s1, . . . , sk−1} let us define

µ(s) = µl̂(s)(s)

and let µ(s) be arbitrary with the restriction that µ(s) ∈ A(s) for the other states.

Thus under stationary deterministic policy µ, pslsl+1
(µ(sl)) > 0 for l ∈ {l′, l′+

1, . . . , k′ − 1}. Thus (sl′ , sl′+1, . . . , sk′) is a subcycle of postive probability under

µ. Also if l′ > 0 then (s0, s1, . . . , sl′) is a sub path of positive probability under µ.

Hence ρµ,l > 0 for all l ≥ 0 implying that ρ̃l > 0 for all l ≥ 0, a contradiction.

2

Hence we may conclude that for any k ∈ N

ρ̂k = 1 ⇐⇒ ρ̃k = 1

ρ̂k = 0 ⇐⇒ ρ̃k = 0

ρ̂k ∈ (0, 1) ⇐⇒ ρ̃k ∈ (0, 1)

Here⇐⇒ stands for if and only if. From the above discussion we have the following.

For all stationary deterministic policies proper case, ρ̃l < 1 or ρ̂l < 1 for some

l ∈ N implying that ρ̃k < 1, ρ̂k < 1 for all k ≥ n and all k ≥ l.

If at least one of the stationary deterministic policies is not proper then ρ̂l = 1

or ρ̃l = 1 for some l ≥ n implying ρ̃k = 1, ρ̂k = 1 for all k ∈ N.

If all stationary deterministic policies are acyclic, then ρ̂l = 0 or ρ̃l = 0 for

some l ∈ N, implying ρ̂k = ρ̃k = 0 for all k ≥ n and k ≥ l.

252

If at least one stationary deterministic policy is not acyclic then ρ̂l > 0 or

ρ̃l > 0 for some l ≥ n, implying ρ̂k > 0, ρ̃k > 0 for all k ∈ N.

Hence we have the following three cases.

Corresponding to at least one non proper stationary deterministc policy, we

have

ρ̂k = 1, ρ̃k = 1 for all k ∈ N0

Corresponding to all stationary deterministic policies acyclic, we have

ρ̂k = 0, ρ̃k = 0 for all k ≥ n

Corresponding to all stationary deterministic policies proper, but atleast one sta-

tionary deterministic policy is not acyclic, we have

ρ̃k ∈ (0, 1) ρ̂k ∈ (0, 1) for all k ≥ n

C.4 Contraction Properties Of SSP Dynamic Programming Operators

C.4.1 Preliminaries

Consider the following Dynamic Programming operators for SSP problem. For

µ ∈ Υ let T̃µ : Rn → Rn be such that, for J ∈ Rn

T̃µJ = ḡµ + PµJ

where ḡµ(i) = g(i, µ(i)), i ∈ {1, 2, . . . , n} and [Pµ]ij = pij(µ(i)), i, j ∈ {1, 2, . . . , n}.

Similarly for δ ∈ Λ, let T̃δ : Rn → Rn be such that, for J ∈ Rn

T̃δJ = ḡδ + PδJ

253

where

ḡδ(i) =
∑

a∈A(i)

[δ(i)]a g(i, a)

and

[Pδ]ij =
∑

a∈A(i)

[δ(i)]a pij(a)

for i, j ∈ {1, 2, . . . , n}. Here g(i, a) is the expected immmediate cost of taking action

a from state i, and [δ(i)]a is the probability of taking action a from state i under

stationary randomized policy (stochastic control kernel to be precise) δ. Note that

ḡµ and ḡδ are expected immediate cost vectors, while Pµ and Pδ are n × n sub

stochastic matrices.

Let the operator T̃ : Rn → Rn be defined by

T̃ J = min
µ∈Υ

T̃µJ

for J ∈ Rn. Here the minimization is taken component wise, i.e.

(
T̃ J

)
(i) = min

a∈A(i)

g(i, a) +
n∑
j=1

pij(a) J(j)


for i ∈ {1, 2, . . . , n}.

It is easy to see that T̃µ and T̃δ are monotone operators for µ ∈ Υ and δ ∈ Λ.

That is for J, J ′ ∈ Rn, if J ′ ≥ J (i.e. J ′(i) ≥ J(i) for i ∈ {1, 2, . . . , n}), then

T̃µJ
′ ≥ T̃µJ

T̃δJ
′ ≥ T̃δJ

where the inequality is component wise.

254

We will show that T̃ is a monotone operator too. For J, J ′ ∈ Rn let J ≤ J ′.

Let µ ∈ Υ be such that T̃µJ
′ = T̃ J ′. Hence

T̃ J ≤ T̃µJ ≤ T̃µJ
′ = T̃ J ′

i.e. T̃ J ≤ T̃ J ′.

Note that for any δ ∈ Λ and J, J ′ ∈ Rn

T̃δ(J + J ′) = T̃δJ + PδJ
′

Let J ∈ Rn and ε ≥ 0, ε ∈ R. For k ≥ 1, k integer and δ0, δ1, δ2, . . . , δk−1 ∈ Λ,

we have

T̃δ0T̃δ1 · · · T̃δk−1
(J + ε 1

¯
) = T̃δ0T̃δ1 · · · T̃δk−1

J + ε

(
k−1∏
l=0

Pδl

)
1
¯

≤ T̃δ0T̃δ1 · · · T̃δk−1
J + ε ρ̂k 1

¯

where

k−1∏
l=0

Pδl = Pδ0Pδ1 · · ·Pδk−1

Similarly

T̃δ0T̃δ1 · · · T̃δk−1
(J − ε 1

¯
) = T̃δ0T̃δ1 · · · T̃δk−1

J − ε
(
k−1∏
l=0

Pδl

)
1
¯

≥ T̃δ0T̃δ1 · · · T̃δk−1
J − ε ρ̂k 1

¯

Let J, J ′ ∈ Rn and ε ≥ 0 be such that ‖ J − J ′ ‖≤ ε, where ‖ · ‖ is the sup

norm defined by

‖ J ‖= max
i∈{1,2,...,n}

|J(i)| for J ∈ Rn

Thus

J ′ − ε 1
¯
≤ J ≤ J ′ + ε 1

¯

255

For k ≥ 1, k integer and δ0, δ1, . . . , δk−1 ∈ Λ, we have

T̃δ0T̃δ1 · · · T̃δk−1
J ′ − ε ρ̂k 1

¯
≤ T̃δ0T̃δ1 · · · T̃δk−1

J

≤ T̃δ0T̃δ1 · · · T̃δk−1
J ′ + ε ρ̂k 1

¯

i.e.

‖ T̃δ0T̃δ1 · · · T̃δk−1
J − T̃δ0T̃δ1 · · · T̃δk−1

J ′ ‖ ≤ ε ρ̂k

Let k ∈ N0. For µ ∈ Υ let T̃ kµ denote the composition of T̃µ with itself k times;

i.e. for l ≥ 1, T̃ lµ = T̃µT̃
l−1
µ with T̃ 0

µ being the identity operator. Similarly for δ ∈ Λ

let T̃ kδ denote the composition of T̃δ with itself k times, with T̃ 0
δ being the identity

operator. Likewise define T̃ k to be the composition of T̃ with itself k times; i.e. for

l ≥ 1, T̃ l = T̃ T̃ l−1, with T̃ 0 being the identity operator.

Let k ≥ 1, k integer, J ∈ Rn and scalar ε ≥ 0. For δ ∈ Λ,

T̃ kδ (J + ε1
¯
) ≤ T̃ kδ J + ε ρδ,k 1

¯

T̃ kδ (J − ε1
¯
) ≥ T̃ kδ J − ε ρδ,k 1

¯

For J, J ′ ∈ Rn

‖ T̃ kδ J − T̃ kδ J ′ ‖≤ ρδ,k ‖ J − J ′ ‖

Similarly for µ ∈ Υ

‖ T̃ kµJ − T̃ kµJ ′ ‖≤ ρµ,k ‖ J − J ′ ‖

Let J ∈ Rn. Fix scalar ε ≥ 0 and integer k ≥ 1. Let µl ∈ Υ for l =

0, 1, . . . , k − 1 be such that

T̃µk−1
J = T̃ J

256

T̃µk−2
T̃ J = T̃ 2J

...

T̃µ0T̃
k−1J = T̃ kJ

i.e.

T̃µk−lT̃
l−1J = T̃ lJ for l = 1, 2, . . . , k

Hence

T̃ k (J + ε 1
¯
) ≤ T̃µ0T̃µ1 · · · T̃µk−1

(J + ε 1
¯
)

= T̃ kJ + ε

(
k−1∏
l=0

Pµl

)
1
¯

≤ T̃ kJ + ε ρ̂k 1
¯

Here

k−1∏
l=0

Pµl = Pµ0Pµ1 · · ·Pµk−1

Let µ̃l ∈ Υ for l = 0, 1, . . . , k − 1 be such that

T̃µ̃k−1
(J − ε 1

¯
) = T̃ (J − ε 1

¯
)

T̃µ̃k−2
T̃ (J − ε 1

¯
) = T̃ 2 (J − ε 1

¯
)

...

T̃µ̃0T̃
k−1 (J − ε 1

¯
) = T̃ k (J − ε 1

¯
)

i.e.

T̃µ̃k−lT̃
l−1 (J − ε 1

¯
) = T̃ l (J − ε 1

¯
) for l = 1, 2, . . . , k

Now

T̃ k (J − ε 1
¯
) = T̃µ̃0T̃µ̃1 · · · T̃µ̃k−1

(J − ε 1
¯
)

257

= T̃µ̃0T̃µ̃1 · · · T̃µ̃k−1
J − ε

(
k−1∏
l=0

Pµ̃l

)
1
¯

≥ T̃ kJ − ε
(
k−1∏
l=0

Pµ̃l

)
1
¯

≥ T̃ kJ − ε ρ̂k 1
¯

Thus for J, J ′ ∈ Rn, if ‖ J − J ′ ‖≤ ε for some scalar ε ≥ 0, then

J ′ − ε 1
¯
≤ J ≤ J ′ + ε 1

¯

Hence

T̃ kJ ′ − ε ρ̂k 1
¯
≤ T̃ k (J ′ − ε 1

¯
) ≤ T̃ kJ ≤ T̃ k (J ′ + ε 1

¯
) ≤ T̃ kJ ′ + ε ρ̂k 1

¯

Thus for integer k ≥ 1, we have

‖ T̃ kJ − T̃ kJ ′ ‖≤ ε ρ̂k

Note that

‖ T̃ J − T̃ J ′ ‖≤‖ J − J ′ ‖

since 0 ≤ ρ̂1 ≤ 1. Hence T̃ is a non-expansion. Similarly for δ ∈ Λ

‖ T̃δJ − T̃δJ ′ ‖≤‖ J − J ′ ‖

since 0 ≤ ρδ,1 ≤ 1.

C.4.2 Error Bounds For SSP MDPs

In this subsection we give some variants of the error bounds for the SSP

problem given in [11].

258

Lemma C.7 Let J ∈ Rn. For any stationary deterministic proper policy µ ∈ Υ,

let J ′ = T̃µJ . Let c̄ = maxi∈{1,2,...,n} (J ′(i)− J(i)). Then

J̃µ − J ≤ J̃µ − J ′ + c̄1
¯
≤ c̄N̄µ

where the inequality is component wise. Here J̃µ denotes the expected cost to go

function for the SSP problem under policy µ (which is the unique vector satisfying

T̃µJ̃
µ = J̃µ) and N̄µ ∈ Rn is such that N̄µ(i) is the expected number of steps required

to reach the terminal state 0 starting from state i ∈ {1, 2, . . . , n} under policy µ.

2

Refer Chapter 1 and [11, 12] for more on SSP problems.

Proof of Lemma C.7

Now

J ′ = ḡµ + PµJ

J̃µ = ḡµ + PµJ̃
µ

Hence

J̃µ − J ′ ≤ J̃µ − J ′ + c̄ 1
¯

= Pµ
(
J̃µ − J

)
+ c̄ 1

¯

Multiplying this relation by Pµ and adding c̄ 1
¯

Pµ
(
J̃µ − J

)
+ c̄ 1

¯
≤ P 2

µ

(
J̃µ − J

)
+ c̄ (I + Pµ) 1

¯

Here I is the n × n identity matrix. Similarly continuing, we have for any integer

l ≥ 1

P l
µ

(
J̃µ − J

)
+ c̄

(
l−1∑
k=0

P k
µ

)
1
¯
≤ P l+1

µ

(
J̃µ − J

)
+ c̄

(
l∑

k=0

P k
µ

)
1
¯

259

Here P 0
µ = I. Hence for l ≥ 1

J̃µ − J ≤ J̃µ − J ′ + c̄ 1
¯
≤ P l

µ

(
J̃µ − J

)
+ c̄

(
l−1∑
k=0

P k
µ

)
1
¯

Now since liml→∞ P
l
µ is the zero matrix (µ being proper)

lim
l→∞

(
l−1∑
k=0

P k
µ

)
1
¯

= (I − Pµ)−1 1
¯

= N̄µ

Thus

J̃µ − J ≤ J̃µ − J ′ + c̄ 1
¯
≤ c̄ N̄µ

2

For the following lemma assume all stationary deterministic policies are proper.The

lemma is also valid under the classical assumption, namely

Assumption C.1 Let the following hold.

1. There exists at least one stationary deterministic policy

2. For every improper stationary deterministic policy µ, the corresponding cost

to go J̃µ(i) is ∞ for at least one state i ∈ {1, 2, . . . , n}; i.e. some component

of the sum
∑N−1
k=0 P

k
µ ḡ

µ diverges to ∞ as N →∞.

2

Lemma C.8 Suppose J ∈ Rn. Let J ′ ∈ Rn be such that J ′ = T̃ J . If c
¯

=

mini∈{1,2,...,n} (J ′(i)− J(i)), then

c
¯
N̄µ∗ ≤ J̃∗ − J ′ + c

¯
1
¯
≤ J̃∗ − J

260

Here µ∗ is any optimal stationary deterministic policy (which is proper) and J̃∗ is

the optimal cost to go vector for the SSP problem.

2

Note that T̃ J = minµ∈Υ T̃µJ , where the minimization is taken component wise.

J∗ is the unique vector which satisfies the Bellman equation T̃ J̃∗ = J̃∗.

Proof of Lemma C.8

Now (see also [11])

J ′ ≤ ḡµ
∗

+ Pµ∗J

J̃∗ = ḡµ
∗

+ Pµ∗ J̃
∗

Hence

J̃∗ − J ≥ J̃∗ − J ′ + c
¯

1
¯
≥ Pµ∗

(
J̃∗ − J

)
+ c

¯
1
¯

Multiplying this relation by Pµ∗ and adding c
¯

1
¯

Pµ∗
(
J̃∗ − J

)
+ c

¯
1
¯
≥ P 2

µ∗

(
J̃∗ − J

)
+ c

¯
(I + Pµ∗) 1

¯

Similarly continuing, we have for any integer l ≥ 1

P l
µ∗

(
J̃∗ − J

)
+ c

¯

(
l−1∑
k=0

P k
µ∗

)
1
¯
≥ P l+1

µ∗

(
J̃∗ − J

)
+ c

¯

(
l∑

k=0

P k
µ∗

)
1
¯

Hence for l ≥ 1

J̃∗ − J ≥ J̃∗ − J ′ + c
¯
1
¯
≥ P l

µ∗

(
J̃∗ − J

)
+ c

¯

(
l−1∑
k=0

P k
µ∗

)
1
¯

Since µ∗ is proper we have liml→∞ P
l
µ∗ equals the n× n zero matrix. Hence

lim
l→∞

(
l−1∑
k=0

P k
µ∗

)
1
¯

= (I − Pµ∗)−1 1
¯

= N̄µ∗

261

So we have

J̃∗ − J ≥ J̃∗ − J ′ + c
¯

1
¯
≥ c

¯
N̄µ∗

2

The preceding lemma is also true for any proper stationary randomized policy

δ∗ which is optimal, i.e. δ∗ such that T̃δ∗ J̃
∗ = T̃ J̃∗ = J̃∗.

As a corollary we have

Corollary C.1 Suppose J ∈ Rn. Let µ be any stationary deterministic proper

policy and J ′ ∈ Rn be such that J ′ = T̃µJ . If c
¯

= mini∈{1,2,...,n} (J ′(i)− J(i)) then

c
¯
N̄µ ≤ J̃µ − J ′ + c

¯
1
¯
≤ J̃µ − J

2

Corollary C.1 and Lemma C.7 hold also for any proper stationary randomized

policy.

C.4.3 Approximate Policy Iteration Bounds For SSP Problems

In this subsection we give error bounds for approximate policy iteration [12,

16]. Assume that all stationary deterministic policies are proper. Let {µk} be a

sequence of stationary deterministic policies and {J̃k} be a corresponding sequence

of approximate cost vectors satisying

‖ J̃k − J̃µk ‖≤ ε for k = 0, 1, 2, . . .

and

‖ T̃ J̃k − T̃µk+1
J̃k ‖≤ ε for k = 0, 1, 2, . . .

262

µ0 is chosen arbitrarily. ε and ε are non negative scalars. The above scheme is called

an approximate policy iteration for the SSP problem.

Here J̃µk is the cost to go vector corresponding to policy µk for k = 0, 1, 2,

Let integer m ≥ 1 be such that ρ̃m < 1. Note that ρ̃n < 1 (since all stationary

deterministic policies are proper) and ρ̃k ↓k. Let J̃∗ be the optimal cost to go vector

for the SSP. Also let ‖ · ‖ denote the sup norm. Note that

ρµ,k = max
i∈{1,2,...,n}

Prµ [sk 6= 0 | s0 = i] for µ ∈ Υ, k ∈ N0

and

ρ̃k = max
µ∈Υ

ρµ,k for k ∈ N0

Lemma C.9 Assume that the stationary deterministic proper policies µk are gen-

erated by the approximate policy iteration. Then (see [12, 16])

lim sup
k→∞

‖ J̃µk − J̃∗ ‖≤ m(1− ρ̃m +m)(ε+ 2ε)

(1− ρ̃m)2

2

The above result also holds when the SSP problem satisfy Assumption C.1

and all the stationary deterministic policies µks generated by the approximate policy

iteration are proper. In this case we redefine ρ̃k (just for this case) as

ρ̃k = max
µ∈Υ, µ proper

ρµ,k

for k ∈ N0.

263

C.4.4 Some Observations On SSP MDPs

A stationary randomized policy δ ∈ Λ is proper if and only if the Markov chain

(with states S = {0, 1, 2, . . . , n}) corresponding to policy δ has only one recurrent

class, namely {0}.

Let δ ∈ Λ, We say that δ subsumes a stationary deterministic policy µ ∈ Υ if

and only if [δ(i)]µ(i) > 0 for i ∈ {1, 2, . . . , n}; i.e. action µ(i) is taken with positive

probability from state i under policy δ for i ∈ {1, 2, . . . , n}.

Now it can be seen that a stationary randomized policy δ is proper if and

only if there exists a proper stationary deterministic policy µ ∈ Υ subsumed by δ.

The if part is easy to prove. The only if part can be proven using Theorem B.1 of

Appendix B.

The proof of the following proposition is given in [12], but we give it here since

it is short and illustrative.

Proposition C.3 Under Assumption C.1 it can be shown that a stationary deter-

ministic policy µ ∈ Υ satisfying for some vector J ∈ Rn, J ≥ T̃µJ (i.e. J(i) ≥(
T̃µJ

)
(i), i = 1, 2, . . . , n) is proper.

2

Proof of Proposition C.3

Let J ∈ Rn be such that J ≥ T̃µJ . Now it is easy to see that for integer k ≥ 1

T̃ kµJ = P k
µJ +

k−1∑
l=0

P l
µḡ

µ

264

Hence by monotonicity of T̃µ, we have for integer k ≥ 1

J ≥ T̃ kµJ = P k
µJ +

k−1∑
l=0

P k
µ ḡ

µ

Since P k
µ is a substochastic matrix, the components of P k

µJ is bounded. If µ were not

proper, by Assumption C.1 part 2, some component of the sum in the right-hand

side of the above relation would diverge to ∞ as k →∞, which is a contradiction.

2

We may extend the above result to stationary randomized policies too.

Proposition C.4 Under Assumption C.1 it can be shown that a stationary ran-

domized policy δ ∈ Λ satisfying for some vector J ∈ Rn, J ≥ T̃δJ (i.e. J(i) ≥(
T̃δJ

)
(i), i = 1, 2, . . . , n) is proper.

2

Proof of Proposition C.4

Suppose for J ∈ Rn we have T̃δJ ≤ J . That is for each i ∈ {1, 2, . . . , n}

∑
a∈A(i)

[δ(i)]a

g(i, a) +
n∑
j=1

pij(a)J(j)

 ≤ J(i)

This implies that for each i ∈ {1, 2, . . . , n}, there exists ãi ∈ A(i) such that

g(i, ãi) +
n∑
j=1

pij(ãi)J(j)

 ≤ J(i)

and [δ(i)]ãi > 0. Let µ(i) = ãi for i ∈ {1, 2, . . . , n}. Then

T̃µJ ≤ J

265

implying that the stationary deterministic policy µ is proper. Since δ subsumes µ,

δ is proper.

2

Proposition C.5 Under Assumption C.1 it can be shown that for every improper

stationary randomized policy δ, the corresponding cost to go J̃δ(i) is ∞ for at least

one state i ∈ {1, 2, . . . , n}; i.e. some component of the sum
∑N−1
k=0 P

k
δ ḡ

δ diverges to

∞ as N →∞.

2

Proof of Proposition C.5

Let δ be an improper stationary randomized policy. Let J0 = 0
¯
, where 0

¯
∈ Rn

is the zero vector. Let Jk = T̃ kδ J0 =
∑k−1
l=0 P

l
δ ḡ
δ. Now lim infk→∞ Jk(i) ≥ J̃∗(i) for

i ∈ {1, 2, . . . , n}. Here J̃∗ ∈ Rn is the optimal cost to go vector for the SSP problem.

Let J(i) = lim infk→∞ Jk(i) for i ∈ {1, 2, . . . ,m}. J(i) is bounded below

by J̃∗(i) for i ∈ {1, 2, . . . , n}. We have to prove that J(i) is ∞ for at least one

i ∈ {1, 2, . . . , n}. Suppose not. That is J ∈ Rn. Given any scalar ε > 0, there exists

a positive integer Nε such that Jl ≥ J − ε 1
¯

for l ≥ Nε. Here 1
¯
∈ Rn is the vector

with all components equal to one. Hence for l ≥ Nε we have

T̃δJl ≥ T̃δJ − ε Pδ 1
¯
≥ T̃δJ − ε 1

¯

Fix an i ∈ {1, 2, . . . , n}. Now there exists k ≥ Nε such that Jk+1(i) ≤ J(i)+ ε. That

is (
T̃δJk

)
(i) ≤ J(i) + ε

266

Hence

J(i) + ε ≥
(
T̃δJ

)
(i)− ε

That is

2 ε+ J(i) ≥
(
T̃δJ

)
(i)

Since this is true for any ε > 0 we have J(i) ≥
(
T̃δJ

)
(i). Thus we have

T̃δJ ≤ J

Hence by Proposition C.4, δ is proper; a contradiction.

2

Let ‖ · ‖ be the sup norm on Rn. Let J, J ′ ∈ Rn. For δ ∈ Λ and integer m ≥ 1

‖ T̃mδ J − T̃mδ J ′ ‖≤ ρδ,m ‖ J − J ′ ‖

For proper stationary randomized policy δ, we have 0 ≤ ρδ,n < 1. Also ρδ,k ↓k.

Let 0 ≤ ρδ,m < 1. Then T̃δ is an m-stage contraction mapping (and also a non-

expansion) with respect to the sup norm ‖ · ‖, and has a contraction coefficient

ρδ,m. Hence if for J ∈ Rn,

‖ T̃δJ − J ‖≤ ε

for some scalar ε ≥ 0, then the cost to go vector (function) for the SSP problem

under policy δ, namely J̃δ satisfies

‖ J̃δ − J ‖≤ mε

1− ρδ,m

by Proposition C.2.

267

Similarly for integer m ≥ 1 and J, J ′ ∈ Rn, we have

‖ T̃mJ − T̃mJ ′ ‖≤ ρ̂m ‖ J − J ′ ‖

If all stationary deterministic policies are proper then 0 ≤ ρ̂n < 1 and also ρ̂k ↓k. Let

0 ≤ ρ̂m < 1. Then T̃ is an m-stage contraction mapping (and also a non-expansion)

with respect to the sup norm ‖ · ‖ and has a contraction coefficient ρ̂m. Hence if for

J ∈ Rn,

‖ T̃ J − J ‖≤ ε

for some scalar ε ≥ 0, then by Proposition C.2

‖ J̃∗ − J ‖≤ mε

1− ρ̂m

where J̃∗ is the optimal cost to go vector for the all stationary deterministic policies

proper, SSP problem.

Consider an all stationary deterministic policies proper SSP problem. Let

0 ≤ ρ̂m < 1 for some integer m ≥ 1. Consider the approximate value iteration

scheme where we generate the sequence {Jk} according to the restriction

‖ Jk+1 − T̃ Jk ‖≤ ε

starting from some J0 ∈ Rn. Here ε is non-negative scalar. Then by Lemma C.1

lim sup
k→∞

‖ Jk − J̃∗ ‖≤
mε

1− ρ̂m

where J̃∗ is the optimal cost to go vector for the SSP problem.

Consider an SSP problem with all stationary deterministic policies proper. Let

0 ≤ ρ̂m < 1 for some integer m > 1. Then T̃ is an m-stage contraction mapping

268

(also a non-expansion) under the sup norm ‖ · ‖ with contraction coefficient ρ̂m.

Let J̃∗ ∈ Rn be the optimal cost to go vector which is the unique fixed point of T̃ .

Let J ∈ Rn be such that

‖ J̃∗ − J ‖≤ ε

Let δ ∈ Λ, which is also proper and an m-stage contraction (and non-expansion) be

such that

‖ T̃ J − T̃δJ ‖≤ ε

Here ε and ε are non-negative scalars. Then by Lemma C.3

‖ J̃∗ − J̃δ ‖ ≤ (2(m− 1) + (1 + ρ̂m))ε+mε

1− ρ̂m
(C.8)

where J̃δ is the cost to go vector for stationary randomized policy δ. In the above

relation C.8, ρ̂m may be replaced by ρδ,m.

For the above problem if µ ∈ Υ, which is also proper and an m-stage contrac-

tion (and a non-expansion) is such that

‖ T̃ J − T̃µJ ‖≤ ε

then

‖ J̃∗ − J̃µ ‖≤ (2(m− 1) + (1 + ρ̃m))ε+mε

1− ρ̃m
(C.9)

where J̃µ is the cost to go vector for the stationary deterministic policy µ. In the

above relation C.9, ρ̃m may be replaced by ρµ,m.

Let

ς = min
µ̃∈Υ, µ̃ not optimal

‖ J̃ µ̃ − J̃∗ ‖

269

If not all stationary deterministic policies are optimal, then ς > 0. For all sufficiently

small ε and ε, we have J̃µ = J̃∗. This can be seen, since for sufficiently small ε and

ε, the right hand side of the relation C.9 is less than ς.

Suppose ρ̂1 < 1 (note that ρ̃1 = ρ̂1). Then T̃ , T̃µ and T̃δ for µ ∈ Υ, δ ∈ Λ are

one stage contraction mappings. For this case also the above bounds (relation C.8

and relation C.9) hold, but are looser than the bound 2ρ̂1ε+ε
1−ρ̂1

given by Lemma C.2.

Yet another observation is the following. Let δ ∈ Λ be a proper policy. For

J ∈ Rn,

T̃δJ − J = ḡδ + PδJ − J

= ḡδ − (I − Pδ)J

where I is the n× n identity matrix. Pre-multiplying by (I − Pδ)−1, we get

(I − Pδ)−1(T̃δJ − J) = (I − Pδ)−1ḡδ − J

= J̃δ − J

Here J̃δ = (I −Pδ)−1ḡδ is the cost to go vector for the SSP problem under policy δ.

Thus

N̄δ(i) min
j∈{1,2,...,n}

(
(T̃δJ)(j)− J(j)

)
≤ J̃δ(i)−J(i) ≤ N̄δ(i) max

j∈{1,2,...,n}

(
(T̃δJ)(i)− J(i)

)

for i ∈ {1, 2, . . . , n}.

Here N̄δ ∈ Rn is the vector with components N̄δ(i) equal to the expected

number of stages to reach the terminal state 0, starting from state i ∈ {1, 2, . . . , n},

under policy δ. i.e.

N̄δ(i) = eTi (I − Pδ)−11
¯

270

Here 1
¯
∈ Rn is the vector with all components equal to one and ei ∈ Rn is the ith

coordinate vector whose ith component is one and all other entries are zero. Note

that (I − Pδ)−1 =
∑∞
k=0 P

k
δ .

C.4.5 Weighted Sup-Norm Property Of “All Proper Policies” SSP

MDP

For J ∈ Rn we define the weighted sup norm

‖ J ‖ξ= max
i∈{1,2,...,n}

|J(i)|
ξ(i)

where ξ = (ξ(1), ξ(2), . . . , ξ(n))T ∈ Rn has all components positive. In this subsec-

tion we assume that all stationary deterministic policies are proper.

We have the following result from [16, page 23]

Proposition C.6 Suppose all stationary deterministic policies are proper for the

SSP problem. Then there exists a vector ξ ∈ Rn with positive components, such

that T̃ , T̃µ and T̃δ for all µ ∈ Υ, δ ∈ Λ are contraction mappings with respect to the

weighted sup norm ‖ · ‖ξ. In particular there exists a contraction coefficient β, with

0 ≤ β < 1 such that

n∑
j=1

pij(u) ξ(j) ≤ β ξ(i) (C.10)

for i ∈ {1, 2, . . . , n} and u ∈ A(i).

2

271

Note that the above relation C.10 implies that given δ ∈ Λ

n∑
j=1

[Pδ]ij ξ(j) ≤ β ξ(i) (C.11)

for i ∈ {1, 2, . . . , n}. Here

[Pδ]ij =
∑

a∈A(i)

[δ(i)]a pij(a)

[δ(i)]a being the probability of taking action a from state i under policy δ.

The proof that T̃ and T̃µ, µ ∈ Υ, are contraction mappings follows [16] from

the relation C.10. Extension to the case T̃δ for δ ∈ Λ, follows easily from the

relation C.11.

One choice for ξ and β are as follows [16, page 24]. Consider a new SSP problem

where the transition probabilities are the same as in the original SSP problem, but

the immediate costs are equal to −1 corresponding to all feasible actions from all the

states in {1, 2, . . . , n} (for the termination state 0, the self transition cost is zero).

Let J̆ ∈ Rn be the optimal cost to go vector for the new problem. Then J̆ satisfies

the Bellman equation [11, 12]

J̆(i) = −1 + min
u∈A(i)

n∑
j=1

pij(u)J̆(j)

for i ∈ {1, 2, . . . , n}. Define ξ(i) = −J̆(i) for i = 1, 2, . . . , n. Then ξ(i) ≥ 1 for

i ∈ {1, 2, . . . , n} and

n∑
j=1

pij(u) ξ(j) ≤ ξ(i)− 1 ≤ β ξ(i)

for i = 1, 2, . . . , n and u ∈ A(i). Here β is defined by

β = max
i∈{1,2,...,n}

ξ(i)− 1

ξ(i)
< 1

272

The above proposition says that given J, J ′ ∈ Rn and δ ∈ Λ we have

‖ T̃δJ − T̃δJ ′ ‖ξ≤ β ‖ J − J ′ ‖ξ

and

‖ T̃ J − T̃ J ′ ‖ξ≤ β ‖ J − J ′ ‖ξ

Note that if J ∈ Rn is such that ‖ J − T̃ J ‖ξ≤ ε for some scalar ε ≥ 0, then

‖ J̃∗ − J ‖ξ≤ ε
1−β , where J̃∗ is the optimal cost to go vector for the original SSP

problem. This follows easily from Proposition C.2.

Consider the approximate value iteration scheme in which we generate a se-

quence of vectors in Rn, namely {Jk} satisfying

‖ Jl+1 − T̃ Jl ‖ξ≤ ε

for some scalar ε ≥ 0, starting from an arbitrary vector J0 ∈ Rn. Then Lemma C.1

implies

lim sup
l→∞

‖ Jl − J̃∗ ‖ξ≤
ε

1− β

We can make the following observation too. Suppose J ∈ Rn is such that

‖ J− J̃∗ ‖ξ≤ ε for some scalar ε ≥ 0. Let µ ∈ Υ be a stationary deterministic policy

such that ‖ T̃µJ − T̃ J ‖ξ≤ ε for some scalar ε ≥ 0. Then by Lemma C.2 we have

‖ J̃µ − J̃∗ ‖ξ ≤
2 β ε+ ε

1− β
(C.12)

Here J̃µ is the cost to go vector for policy µ. Suppose

ς = min
µ̃∈Υ, µ̃ not optimal

‖ J̃ µ̃ − J̃∗ ‖ξ

273

If all stationary deterministic policies are not optimal, then ς > 0. For all sufficiently

small ε and ε, we have J̃µ = J̃∗. This can be seen, since for sufficiently small ε and

ε, the right hand side of the relation C.12 is less than ς.

Similarly if ‖ J − J̃∗ ‖ξ≤ ε and δ ∈ Λ is such that ‖ T̃ J − T̃δJ ‖ξ≤ ε, then

‖ J̃δ − J̃∗ ‖ξ≤
2 β ε+ ε

1− β

Here J̃δ ∈ Rn is the cost to go vector for policy δ.

C.5 Equivalent SSP Problem For Discounted Cost MDP

Consider the finite state, finite action homogeneous Discounted Cost Problem

with state space S = {1, 2, . . . , n} and control constraint setsA(i) = {1, 2, . . . , |A(i)|},

for i ∈ S. Let A = ∪i∈SA(i) denote the action space. See Chapter 1 for more on

notations. The state at time t ∈ N0 is denoted by st ∈ S, the action taken at time

t is denoted by ut ∈ A(st). The immediate cost incurred at time t while taking

action ut ∈ A(st) from state st is denoted by gt ∈ R. For i, j ∈ S, a ∈ A(i),

let pij(a) denote Pr[st+1 = j | st = i, ut = a]. We assume that the expected im-

mediate costs are finite, i.e. E[|gt| | st = i, ut = a] < ∞ for i ∈ S, a ∈ A(i).

Let g(i, a, j) ≡ E [gt | st = i, ut = a, st+1 = j] for i, j ∈ S, a ∈ A(i). The expected

immediate cost for taking action a from state i for i ∈ S, a ∈ A(i) is

g(i, a) ≡ E [gt | st = i, ut = a]

=
n∑
j=1

pij(a) g(i, a, j)

274

Let the discount factor be β ∈ [0, 1). Let Pν(· | i) denote the probability measure

for the discounted cost problem given the admissible policy ν ∈M and initial state

s0 = i. See Chapter 1 for definition of the admissible policy. The state space Ω under

consideration is the space of infinite sequences (s0, u0, g0, s1, u1, g1, . . . , st, ut, gt, . . .)

where st ∈ S, ut ∈ A(st), gt ∈ R. Let Eν(· | i) denote the corresponding expectation.

The infinite horizon discounted cost under policy ν, starting from state i ∈ S is

Jν(i) = Eν

[∞∑
t=0

βtgt | s0 = i

]

= lim
k→∞

Eν

[
k−1∑
t=0

βtgt | s0 = i

]

Consider an associated problem with additive cost, without discounting in

which after choosing action ut at time t we “toss a coin” independently of everything

else and decide with probability β to continue or else with probability 1− β decide

to terminate at this stage (if it has not been already terminated before time t). Here

t ∈ N0. If the termination occurs at time Ñ (random), the total additive cost is

∑Ñ
t=0 gt. We are interested in minimizing the expected value of this cost starting

from each starting state i ∈ S.

The probability that termination has not occured before time t is βt.

This problem can be translated into the following equivalent homogeneous SSP

problem with state space S̃ = {0, 1, 2, . . . , n} (i.e. with an additional termination

state 0). For want of more notation (just in this section) we denote by s̃t the state

at time t ∈ N0 for the equivalent SSP problem, ũt the action taken at time t for the

equiuvalent SSP problem, g̃t the immediate cost incurred at time t for the equivalent

SSP problem. Here the control constraints are the same as in the original Discounted

275

Cost problem, with the control constraint for the terminal state being A(0) = {1}.

Let

p̃ij(a) ≡ Pr [s̃t+1 = j | s̃t = i, ũt = a]

= β pij(a) for i, j ∈ {1, 2, . . . , n}, a ∈ A(i)

p̃i0 ≡ Pr [s̃t+1 = 0 | s̃t = i, ũt = a]

= 1− β for i ∈ {1, 2, . . . , n}, a ∈ A(i)

Also

p̃00(1) ≡ Pr [s̃t+1 = 0 | s̃t = 0, ũt = 1]

= 1

For i, j ∈ {1, 2, . . . , n}, a ∈ A(i)

Pr [g̃t ∈ B | s̃t = i, ũt = a, s̃t+1 = j] = Pr [gt ∈ B | st = i, ut = a, st+1 = j]

for B, Borel subset of R. Here ‘Pr’ on the right hand side is for the original

discounted problem and ‘Pr’ on the left hand side is for the equivalent SSP problem.

Also for i ∈ {1, 2, . . . , n}, a ∈ A(i) and Borel subset B of R

Pr [g̃t ∈ B | s̃t = i, ũt = a, s̃t+1 = 0] =

= Pr [gt ∈ B | st = i, ut = a]

=
n∑
j=1

pij(a) Pr [gt ∈ B | st = i, ut = a, st+1 = j]

Here ‘Pr’ on the left hand side is for the equivalent SSP problem and ‘Pr’ on

the two right hand side terms are for the original discounted cost problem. Also

Pr [{g̃t = 0} | s̃t = 0, ũt = 1] = 1

276

Let P̃ν(· | i) denote the probability measure for the equivalent SSP prob-

lem, given the admissible policy ν and an initial state s̃0 = i ∈ S̃. See Chap-

ter 1 and Section C.2 for the definition of the admissible policy for the SSP prob-

lem. The state space under consideration, Ω̃ is the space of infinite sequences

(s̃0, ũ0, g̃0, s̃1, ũ1, g̃1, . . . , s̃t, ũt, g̃t, . . .), where s̃t ∈ S̃, ũt ∈ A and g̃t ∈ R. Let Ẽ
ν
(· | i)

denote the corresponding expectation.

Note that for the equivalent SSP problem

E [g̃t | s̃t = i, ũt = a, s̃t+1 = j] ≡ g̃(i, a, j)

= g(i, a, j)

≡ E [gt | st = i, ut = a, st+1 = j]

for i, j ∈ {1, 2, . . . , n} and a ∈ A(i). The expectation in the above relation on the

left hand side is for the equivalent SSP problem while the expectation on the right

hand side is for the original discounted problem. Also for i ∈ {1, 2, . . . , n} and

a ∈ A(i)

E [g̃t | s̃t = i, ũt = a, s̃t+1 = 0] ≡ g̃(i, a, 0)

= g(i, a)

≡ E [gt | st = i, ut = a]

=
n∑
j=1

pij(a) g(i, a, j) (C.13)

Note that for i ∈ {1, 2, . . . , n} and a ∈ A(i)

E [g̃t | s̃t = i, ũt = a] ≡ g̃(i, a)

=
n∑
j=1

β pij(a) g̃(i, a, j) + (1− β) g̃(i, a, 0)

277

= β g(i, a) + (1− β) g(i, a)

= g(i, a)

Also

g̃(0, 1) ≡ E [g̃t | s̃t = 0, ũt = 1] = 0

Note that for the equivalent SSP problem, all stationary deterministic policies are

proper. Also the expected additive cost for the SSP problem, starting from state

i ∈ {1, 2, . . . , n} under policy ν is denoted by

J̃ν(i) = lim
k→∞

Ẽ
ν
[
k−1∑
t=0

g̃t | s̃0 = i

]

= Ẽ
ν
[∞∑
t=0

g̃t | s̃0 = i

]

With slight abuse of notation we use ν to denote the admissible policy for

the original Discounted Cost problem and also for the corresponding policy for the

equivalent SSP problem with the only difference that if at time t, state s̃t = 0, then

the action chosen is ũt = 1 and the system remains at state 0 itself with probability

one incurring zero cost, while for s̃t ∈ {1, 2, . . . , n} the action choice is the same as

in the original Discounted Cost problem.

For i, j ∈ {1, 2, . . . , n}, a ∈ A(j) and t ∈ N0

P̃ν [s̃t = j, ũt = a | s̃0 = i]

= P̃ν
[
s̃t = j, ũt = a | s̃0 = i,I [s̃t 6=0] = 1

]
P̃ν [s̃t 6= 0 | s̃0 = i]

+ P̃ν
[
s̃t = j, ũt = a | s̃0 = i,I [s̃t 6=0] = 0

]
︸ ︷︷ ︸

0

P̃ν [s̃t = 0 | s̃0]

= Pν [st = j, ut = a | s0 = i] · βt

278

Here I denotes the indicator function. Also

P̃ν [s̃t = 0, ũt = 1 | s̃0 = i] = 1− βt

for i ∈ {1, 2, . . . , n}.

Hence for i ∈ {1, 2, . . . , n}

Ẽ
ν

[g̃t | s̃0 = i]

=
n∑
j=1

∑
a∈A(j)

P̃ν [s̃t = j, ũt = a | s̃0 = i] g̃(j, a)

=
n∑
j=1

∑
a∈A(j)

βtPν [st = j, ut = a | s0 = i] g(j, a)

= Eν
[
βtgt | s0 = i

]
= βtEν [gt | s0 = i]

Hence for i ∈ {1, 2, . . . , n}

lim
k→∞

Ẽ
ν
[
k−1∑
t=0

g̃t | s̃0 = i

]
= lim

k→∞
Eν

[
k−1∑
t=0

βtgt | s0 = i

]

i.e. for i ∈ {1, 2, . . . , n}

J̃ν(i) = Jν(i)

In particular for any Markov Randomized policy and stationary (randomized or

deterministic) policy, the cost to go is the same for the original Discounted Cost

problem and the equivalent SSP problem. Note also that value iteration produces

identical iterates for the two equivalent problems.

C.5.1 Error Bounds For Discounted Cost MDPs

Consider the discounted cost problem with discount factor β ∈ [0, 1). Let Jν(i)

denote the infinite horizon discounted cost for admissible policy ν ∈ M, starting

279

from state i ∈ S = {1, 2, . . . , n}. i.e.

Jν(i) = lim
k→∞

Eν

[
k−1∑
t=0

βtgt | s0 = i

]

Here gt is the immediate cost at stage t ∈ N0. Jν ∈ Rn, with Jν(i) being its ith

component for i ∈ {1, 2, . . . , n}, is called the cost to go vector corresponding to

policy ν for the discounted cost problem. For stationary randomized policy δ ∈ Λ,

the cost to go vector is

Jδ = (I − βPδ)−1 ḡδ

where

[Pδ]ij =
∑

a∈A(i)

[δ(i)]a pij(a) for i, j ∈ S

ḡδ(i) =
∑

a∈A(i)

[δ(i)]a g(i, a) for i ∈ S

g(i, a) = E [gt | st = i, ut = a] for i ∈ S, a ∈ A(i)

Here Pδ is the n × n transition probability matrix (a stochastic matrix) for the

policy δ ∈ Λ. ḡδ ∈ Rn is the expected immediate cost vector for policy δ. [δ(i)]a is

probability of taking action a ∈ A(i) from state i ∈ S.

In particular for stationary deterministic policy µ ∈ Υ, the cost to go vector

is

Jµ = (I − βPµ)−1 ḡµ

For µ ∈ Υ let the operator Tµ : Rn → Rn be defined by TµJ = ḡµ + βPµJ for

J ∈ Rn. For δ ∈ Λ let the operator Tδ : Rn → Rn be defined by TδJ = ḡδ + βPδJ

for J ∈ Rn. Let the operator T : Rn → Rn be defined by TJ = minµ∈Υ TµJ for

280

J ∈ Rn, the minimization is taken component wise. That is for i ∈ S and J ∈ Rn

(TJ) (i) = min
a∈A(i)

g(i, a) + β
n∑
j=1

pij(a) J(j)


Tµ, Tδ and T are contraction mappings under the sup norm with contraction coeffi-

cient β.

Let J∗ ∈ Rn denote the optimal (or minimal) cost to go vector for the dis-

counted cost problem, i.e. J∗(i) = infν∈M Jν(i), for i ∈ S. We have the following

propositions which follow from the equivalent SSP problem for the Discounted Cost

problem (see Lemma C.7, Lemma C.8). Note that the expected number of steps

to reach the terminal state from any state i ∈ {1, 2, . . . , n} for the equivalent SSP

problem is 1
1−β under any admissible policy.

Proposition C.7 Let J ∈ Rn and µ ∈ Υ be any stationary deterministic policy.

Let J ′ = TµJ and c̄ = maxi∈{1,2,...,n} (J ′(i)− J(i)). Then

Jµ − J ≤ Jµ − J ′ + c̄ 1
¯
≤ c̄

1

1− β
1
¯

2

Here the inequality is component wise and 1
¯
∈ Rn is the vector with all

components equal to one. Jµ is the cost to go vector for the discounted cost problem

corresponding to stationary deterministic policy µ.

Proposition C.8 Let J ∈ Rn and J ′ ∈ Rn be J ′ = TJ .

Let c
¯

= mini∈{1,2,...,n} (J ′(i)− J(i)). Then

c
¯

1

1− β
1
¯
≤ J∗ − J ′ + c

¯
1
¯
≤ J∗ − J

281

2

Here J∗ is the optimal cost to go vector for the discounted cost problem. The

following corollary follows from Corollary C.1.

Corollary C.2 Let J ∈ Rn and µ ∈ Υ be a stationary deterministic policy. Let

J ′ = TµJ and c
¯

= mini∈{1,2,...,n} (J ′(i)− J(i)). Then

c
¯

1

1− β
1
¯
≤ Jµ − J ′ + c

¯
1
¯
≤ Jµ − J

2

Proposition C.7 and Corollary C.2 hold also for stationary randomized policy

δ.

We have the following lemma,

Lemma C.10 Let J ∈ Rn and

c̄ = max
i∈{1,2,...,n}

((TJ)(i)− J(i))

c
¯

= min
i∈{1,2,...,n}

((TJ)(i)− J(i))

Let µ ∈ Υ be such that, ‖ TµJ − TJ ‖≤ ε, where ε ≥ 0 and ‖ · ‖ is the sup norm.

That is

max
i∈{1,2,...,n}

((TµJ)(i)− (TJ)(i)) ≤ ε

Then

Jµ(i)− J∗(i) ≤ β

1− β
(c̄− c

¯
) +

ε

1− β

for i ∈ {1, 2, . . . , n}. 2

282

Proof of Lemma C.10

Let

c̃ = max
i∈{1,2,...,n}

((TµJ)(i)− J(i))

Then from Proposition C.8 and Proposition C.7 we have for i ∈ {1, 2, . . . , n}

(TJ) (i) +
β

1− β
c
¯
≤ J∗(i)

and

Jµ(i) ≤ (TµJ) (i) +
β

1− β
c̃

Thus

Jµ(i)− J∗(i) ≤ (TµJ) (i)− (TJ) (i) +
β

1− β
(c̃− c

¯
)

Now

c̃ ≤ c̄+ ε

and

(TµJ) (i)− (TJ) (i) ≤ ε

From this the result follows.

2

We have the following proposition, which follows from Lemma C.2. But we

give an alternate proof here. Here ‖ · ‖ is the sup norm.

Proposition C.9 Consider an infinite horizon discounted cost problem with dis-

count factor β ∈ [0, 1). Let J ∈ Rn be such that ‖ J − J∗ ‖≤ ε. Let µ ∈ Υ be

a stationary deterministic policy such that ‖ TµJ − TJ ‖≤ ε. Here ε and ε are

283

non-negative scalars and J∗ is the optimal cost to go vector for the discounted cost

problem. Then

‖ Jµ − J∗ ‖≤ 2 β ε+ ε

1− β

where Jµ is ther cost to go vector for policy µ.

2

Proof of Proposition C.9

Now T and Tµ are contraction mappings under the sup norm ‖ · ‖, with

contraction coefficient β. Also TµJ
µ = Jµ and TJ∗ = J∗.

‖ Jµ − J∗ ‖ ≤ ‖ TµJµ − J∗ ‖

≤ ‖ TµJµ − TµJ ‖ + ‖ TµJ − J∗ ‖

≤ β ‖ Jµ − J ‖ + ‖ TJ − J∗ ‖ + ‖ TJ − TµJ ‖

≤ β ‖ Jµ − J∗ ‖ +β ‖ J∗ − J ‖ +β ‖ J − J∗ ‖ +ε

≤ β ‖ Jµ − J∗ ‖ +2 β ε+ ε

Hence

‖ Jµ − J∗ ‖≤ 2 β ε+ ε

1− β

2

Similar results also hold for stationary randomized policy δ ∈ Λ.

Let

ς = min
µ̃∈Υ, µ̃ not optimal

‖ J µ̃ − J∗ ‖

If not all stationary deterministic policies are optimal, then ς > 0 since there are

284

only a finite stationary deterministic policies. Hence in the proposition above for all

sufficiently small ε and ε, 2 β ε+ε
1−β < ς and hence Jµ = J∗.

In the remaining portion of this subsection ‖ · ‖ denotes the sup norm.

Let J ∈ Rn and ε ≥ 0 be such that ‖ TJ − J ‖≤ ε. Then it follows from

Proposition C.2, that ‖ J − J∗ ‖≤ ε
1−β , where β is the discount factor. Similarly

let δ be a stationary randomized policy and ‖ TδJ − J ‖≤ ε, where ε is a non-

negative scalar. Then again by Proposition C.2, we have ‖ Jδ − J ‖≤ ε
1−β . Hence

‖ Jδ − J∗ ‖≤ ε+ε
1−β .

In fact if TJ ≤ J and TδJ ≤ J , we have TJ ≤ TδJ ≤ J . ‖ TJ − J ‖≤ ε,

‖ TδJ − J ‖≤ ε and 0 ≤ ε ≤ ε. Hence

J − ε

1− β
1
¯
≤ J∗ ≤ J

and

J − ε

1− β
1
¯
≤ Jδ ≤ J

Thus

‖ J∗ − Jδ ‖≤ ε

1− β

Here 1
¯
∈ Rn is the vector with all components equal to one.

Now consider the approximate value iteration scheme for the discounted cost

problem. Starting with some J0 ∈ Rn we have

‖ Jk+1 − TJk ‖≤ ε

for all k ∈ N0. Here ε is a non-negative scalar. Then from Lemma C.1,

lim sup
k→∞

‖ Jk − J∗ ‖≤
ε

1− β

285

where J∗ is the optimal cost to go vector for the discounted cost problem.

Also we have the following proposition.

Proposition C.10 Let δ ∈ Λ be a stationary randomized policy and J ∈ Rn. Then

(I − βPδ)−1 (TδJ − J) + J = Jδ

2

Proof of Proposition C.10

TδJ − J = ḡδ + βPδJ − J

= ḡδ − (I − βPδ) J

Hence

(I − βPδ)−1 (TδJ − J) = (I − βPδ)−1 − J

= Jδ − J

2

Let

c̄ = max
i∈{1,2,...,n}

((TδJ)(i)− J(i))

c
¯

= min
i∈{1,2,...,n}

((TδJ)(i)− J(i))

Then by the above proposition we have

1

1− β
c
¯

1
¯
≤ Jδ − J ≤ 1

1− β
c̄ 1

¯

where 1
¯
∈ Rn is the vector with all components equal to one. Note that (I−βPδ)−1 =

∑∞
k=0 β

kP k
δ .

286

C.5.2 Approximate Policy Iteration Bounds For Discounted Cost

MDPs

As before, for J ∈ Rn

TµJ = ḡµ + βPµJ for µ ∈ Υ

TJ = min
µ∈Υ

TµJ

where the minimization is taken component wise. Here β is the discount factor. We

give the approximate policy iteration error bounds in the lemma below. For a proof

see [12].

Lemma C.11 Let {µk} be a sequence of stationary deterministic policies and {Jk}

be the corresponding sequence of approximate cost vectors satisfying

‖ Jk − Jµk ‖ ≤ ε for k = 0, 1, 2, . . .

‖ TJk − Tµk+1
Jk ‖ ≤ ε for k = 0, 1, 2, . . .

Then

lim sup
k→∞

‖ Jµk − J∗ ‖≤
ε+ 2 β ε

(1− β)2

2

Here J∗ is the optimal cost to go function for the discounted cost problem and

Jµk is the cost to go vector for policy µk.

287

C.6 Error Bounds For Average Cost Problem

We are considering a finite state finite action MDP with state space S =

{1, 2, . . . , n}. The control constraint sets are A(i) = {1, 2, . . . , |A(i)|} for state

i ∈ S. Here | · | represents the cardinality of the set. Let A = ∪i∈SA(i). pij(a) =

Pr [st+1 = j | st = i, ut = a] for i, j ∈ S, a ∈ A(i). Here st ∈ S is the state at

time t and ut is the action taken at time t from state st. gt ∈ R denotes the

immediate cost incurred at time t when action ut ∈ A(st) is taken from state st.

Let g(i, a) = E [gt | st = i, ut = a] for i ∈ S, a ∈ A(i). Let M denote the set of

admissible policies. See Chapter 1 for more on notations. Let Pν(· | i) denote the

probability measure for policy ν and starting state s0 = i. Let Eν(· | i) denote the

corresponding expectation. Here the state space Ω under consideration is the space

of infinite sequences (s0, u0, g0, s1, u1, g1, . . . , st, ut, gt, . . .) where st ∈ S, ut ∈ A and

gt ∈ R. For an admissible policy ν ∈ M, ϑ̄ν ∈ Rn denotes the average cost to go

vector. ϑ̄ν(i) denotes the expected average cost starting from state i ∈ S. i.e.

ϑ̄ν(i) = lim sup
k→∞

1

k

k−1∑
t=0

Eν [gt | s0 = i]

For stationary policies the limit exist (i.e. we can replace the lim sup with lim in the

above equation). We are interested in minimizing this expected average costs for all

initial states i ∈ S. It is known [12, 40] that there exists a stationary deterministic

policy (for example a Blackwell optimal policy) which is optimal.

Υ denotes the set of stationary deterministic policies. Λ denote the set of

stationary randomized policies. Refer Chapter 4 for more on stationary randomized

policies.

288

For µ ∈ Υ let the operator T̄µ : Rn → Rn be defined by

T̄µJ = ḡµ + PµJ for J ∈ Rn.

For i ∈ S, ḡµ(i) = g(i, µ(i)) is the expected immediate cost for taking action µ(i)

from state i. Pµ is the n × n transition probability matrix (a stochastic matrix)

corresponding to µ and is given by [Pµ]ij = pij(µ(i)) for i, j ∈ S.

For δ ∈ Λ define the operator T̄δ : Rn → Rn by

T̄δJ = ḡδ + PδJ for J ∈ Rn.

Here ḡδ is the expected immmediate cost vector for policy δ and Pδ is the transition

probability matrix for policy δ. i.e.

ḡδ(i) =
∑

a∈A(i)

[δ(i)]a g(i, a)

for i ∈ S and

[Pδ]ij =
∑

a∈A(i)

[δ(i)]a pij(a)

for i, j ∈ S. Here [δ(i)]a denotes the probability of taking action a from state i,

under policy δ.

Define the operator T̄ : Rn → Rn by

T̄ J = min
µ∈Υ

T̄µJ for J ∈ Rn

where the minimization is taken component wise., i.e.

(
T̄ J

)
(i) = min

a∈A(i)

g(i, a) +
n∑
j=1

pij(a) J(j)


for i ∈ S, J ∈ Rn.

289

The operators, T̄µ, T̄δ and T̄ are all monotone operators which are non-expansions

under the sup norm.

In the following 1
¯
∈ Rn denotes the vector with all components equal to one.

We have the following lemma which is a variant of the one in [10, page 325].

Lemma C.12 Let J ∈ Rn and scalar ε ≥ 0. Let µ ∈ Υ be such that T̄µJ ≤ T̄ J+ε1
¯

.

Then for i ∈ S,

min
j∈S

((
T̄ J

)
(j)− J(j)

)
≤ ϑ̄∗(i)

≤ ϑ̄µ(i)

≤ max
j∈S

((
T̄ J

)
(j)− J(j)

)
+ ε

where ϑ̄∗(i) is the optimal (minimal) average cost to go from state i. The bounds

hold regardless of whether ϑ̄∗(i) is independent of the initial state i.

2

Proof of Lemma C.12

T̄µJ ≤
(
T̄ J − J

)
+ J + ε 1

¯

T̄ 2
µJ ≤ T̄µJ + Pµ

(
T̄ J − J

)
+ ε 1

¯

≤
(
T̄ J − J

)
+ Pµ

(
T̄ J − J

)
+ J + 2ε 1

¯

Continuing similarly,

T̄Nµ J ≤
N−1∑
k=0

P k
µ

(
T̄ J − J

)
+ J +Nε 1

¯

for N = 1, 2, Hence

ϑ̄µ = lim
N→∞

1

N
T̄Nµ J ≤ P ∗µ

(
T̄ J − J

)
+ ε 1

¯

290

where the limit is taken component wise. Here

P ∗µ = lim
N→∞

1

N

N−1∑
k=0

P k
µ

which exists [12]. Hence

ϑ̄µ(i) ≤ max
j∈S

((
T̄ J

)
(j)− J(j)

)
+ ε

Let ν = (δ0, δ1, δ2, . . .) be any Markov randomized policy, where δk ∈ Λ,

We have for any δ ∈ Λ,

T̄δJ ≥
(
T̄ J − J

)
+ J

≥ min
j∈S

((
T̄ J

)
(j)− J(j)

)
1
¯

+ J (C.14)

We have for N ∈ N (here N is the set of positive integers)

T̄δNJ ≥ min
j∈S

((
T̄ J

)
(j)− J(j)

)
1
¯

+ J

Applying T̄δN−1
to both sides of the above inequality and using inequality C.14,

T̄δN−1
T̄δNJ ≥ T̄δN−1

J + min
j∈S

((
T̄ J

)
(j)− J(j)

)
1
¯

≥ J + 2 min
j∈S

((
T̄ J

)
(j)− J(j)

)
1
¯

Continuing similarly

T̄δ0T̄δ1 · · · T̄δNJ ≥ J + (N + 1) min
j∈S

((
T̄ J

)
(j)− J(j)

)
1
¯

Hence

1

N + 1

(
T̄δ0T̄δ1 · · · T̄δNJ

)
(i) ≥ min

j∈S

((
T̄ J

)
(j)− J(j)

)
+

J(i)

N + 1

291

Hence

lim sup
N→∞

1

N + 1

(
T̄δ0T̄δ1 · · · T̄δNJ

)
(i)

≥ lim inf
N→∞

1

N + 1

(
T̄δ0T̄δ1 · · · T̄δNJ

)
(i)

≥ min
j∈S

((
T̄ J

)
(j)− J(j)

)

Hence

ϑ̄ν(i) ≥ min
j∈S

((
T̄ J

)
(j)− J(j)

)
(C.15)

Since ν is an arbitrary Markov randomized policy

ϑ̄∗(i) ≥ min
j∈S

((
T̄ J

)
(j)− J(j)

)

Note that we need to focus only on Markov randomized policies, since given any

history dependent randomized policy and an initial state i ∈ S, there exists a Markov

randomized policy, such that both of them have the same additive cost starting from

initial state i (see Chapter 1 and also [40, Chapter 5, Theorem 5.5.3]).

Another way to look at this is that there exists a Blackwell optimal policy

µ∗ ∈ Υ (identify the policy µ∗ with ν in the above inequality C.15) such that

ϑ̄∗(i) = ϑ̄µ
∗
(i) ≥ min

j∈S

((
T̄ J

)
(j)− J(j)

)

2

The following corollary follows easily from the above lemma.

Corollary C.3 Let µ ∈ Υ and J ∈ Rn. Then for i ∈ {1, 2, . . . , n},

min
j∈S

((
T̄µJ

)
(j)− J(j)

)
≤ ϑ̄µ(i) ≤ max

j∈S

((
T̄µJ

)
(j)− J(j)

)
2

292

Similar results hold for δ ∈ Λ.

For a variant of the approximate policy iteration and corresponding error

bounds, for average cost MDP which is unichain and has a common recurrent state

see [12, 16].

293

Appendix D

Temporal Difference Schemes For Stochastic Shortest Path Problems

In this appendix we are interested in developing an approximate policy itera-

tion scheme for Stochastic Shortest Path (SSP) problems, where all the stationary

deterministic policies are proper. We use Temporal Difference (TD) Schemes [16]

for evaluating the (undiscounted) cost to go function for a proper policy.

For detailed notations and formulation of the (homogeneous) Stochastic Short-

est Path problem see Chapter 1 and Appendix C. We assume the state space to be

S = {0, 1, 2, . . . , n}, with 0 being the zero cost absorption (termination) state. Here

n is a positive integer. The state of the system at time t ∈ N0 is denoted by st which

is an element of S. N0 denotes the set of non-negative integers. The action taken at

time t is denoted by ut, where ut ∈ A(st). A(i) = {1, 2, . . . , |A(i)|} denotes the finite

control constraint set for i ∈ S, and |A(i)| denotes the cardinality of the constraint

set A(i). The immediate cost incurred at time t ∈ N0, while taking action ut from

state st is denoted by gt, with ut ∈ A(st). We assume that the expected immediate

costs have finite (hence bounded) second moments; i.e. E [g2
t | st = i, ut = a] < ∞

for i ∈ S, a ∈ A(i). We assume that A(0) = {1} and the immediate cost in-

curred while taking action 1 from state 0 is zero, with the system remaining in

state 0 with probability one. Since we assume all stationary deterministic policies

to be proper, we also have that all stationary (randomized) policies are proper. For

294

a general admissible policy ν ∈ M, the expected infinite horizon non-discounted

additive cost (or cost to go) starting from state i ∈ {1, 2, . . . , n}, is defined by

J̃ν(i) = lim supk→∞ Eν
[∑k−1

t=0 gt | s0 = i
]
. For the definition of the set of admissible

or feasible policies M, see Chapter 1 and Appendix C. Here Eν [· | s0 = i] denotes

the expectation under the probability distribution induced by policy ν, starting

from state i ∈ {1, 2, . . . , n} at time 0. Since we assume all stationary deterministic

policies to be proper, the limit exists instead of the lim sup in the definition of J̃ν(i).

In fact

J̃ν(i) = lim
k→∞

Eν

[
k−1∑
t=0

gt | s0 = i

]
= Eν

[∞∑
t=0

gt | s0 = i

]

for i ∈ {1, 2, . . . , n}. The optimal cost to go vector J̃∗ ∈ Rn, is given by J̃∗(i) =

infν∈M J̃ν(i).

Before we proceed we restate the notations related to the Stationary Ran-

domized Policies (see Chapter 4) with slight modifications for the setting of this

appendix.

D.1 Stationary Randomized Policies

Define for each positive integer k,

∆k ≡ {(p1, p2, . . . , pk) | pl ≥ 0,
k∑
l=1

pl = 1}

the k−1 dimensional unit simplex. A stationary randomized policy (or a stochastic

control kernel to be precise) for the SSP problem can be specified as

δ ∈ Λ

295

where

Λ ≡ ∆|A(1)| ×∆|A(2)| × · · · ×∆|A(n)|

Here |A(i)| denotes the cardinality of the control constraint set A(i) for state i ∈

{1, 2, . . . , n}. For each i ∈ {1, 2, . . . , n}

δ(i) ∈ ∆|A(i)| denotes

[δ(i)]a = Pr(ut = a | st = i), a ∈ A(i)

the probability of taking action a from state i ∈ {1, 2, . . . , n}. It is implicitly

assumed that the action taken from the terminal state 0, is the unique action 1

(note that A(0) = {1}) under which the system remains at state 0 incurring zero

cost.

For a particular stationary randomized policy δ ∈ Λ, we obtain a homogeneous

Markov Chain with state space S and transition probability defined as follows. For

states i ∈ {1, 2, . . . , n} and j ∈ S we have the transition probability given by

pδij =
∑

a∈A(i)

[δ(i)]a pij(a)

For i, j ∈ S, pij(a) is the probability that the next state is j, given that the current

state is i and the action taken from state i is a. Also, pδ00 = 1. The expected

immediate cost from state i ∈ {1, 2, . . . , n} is given by

ḡδ(i) =
∑

a∈A(i)

[δ(i)]a g(i, a),

where g(i, a) = E [gt | st = i, ut = a] is the expected immediate cost of taking action

a from state i. Let Pδ denote the n × n substochastic matrix given by [Pδ]ij = pδij

296

for i, j ∈ {1, 2, . . . , n}. Let ḡδ ∈ Rn be the expected immediate cost vector whose

ith component is ḡδ(i), for i ∈ {1, 2, . . . , n}.

For each stationary randomized policy δ ∈ Λ, the cost to go function for the

SSP problem is

J̃δ = (I − Pδ)−1 ḡδ =
∞∑
l=0

P l
δ ḡ

δ

where P l
δ is Pδ multiplied with itself l times, and P 0

δ = I, the n× n identity matrix.

Let

Q ≡ {(i, a) | i ∈ {1, 2, . . . , n}, a ∈ A(i)}.

We introduce the function h : (i, a, V) 7→ R as follows :

h(i, a, V) = g(i, a) +
n∑
j=1

pij(a)V (j)

for i ∈ {1, 2, . . . , n}, a ∈ A(i), V ∈ Rn. For each J ∈ Rn, let the operator

T̃δ : Rn → Rn be defined by

(
T̃δJ

)
(i) = ḡδ(i) +

n∑
j=1

pδij J(j)

=
∑

a∈A(i)

[δ(i)]a h(i, a, J).

Let ‖ · ‖ denote the sup-norm or `∞ norm defined by

‖J ‖= max
i∈{1,2,...,n}

|J(i)|

for J ∈ Rn. Then T̃δ is a monotone operator which is also a non-expansion with

respect to the sup-norm (see [12] and Appendix C). T̃δ is also an n-stage contraction

mapping under the sup-norm (see Appendix C). In fact, J̃δ is the unique fixed point

297

of the operator T̃δ. Thus for i ∈ {1, 2, . . . , n},

J̃δ(i) =
∑

a∈A(i)

[δ(i)]a

g(i, a) +
n∑
j=1

pij(a)J̃δ(j)


︸ ︷︷ ︸

Qδ(i,a)

.

It is easy to see from the definition that Qδ(i, a) is the expected total cost of taking

action a from state i at time t = 0, and from then on following the policy δ.

Qδ(i, a) = h(i, a, J̃δ) for (i, a) ∈ Q. Let J̃∗ ∈ Rn denote the optimal (minimal) cost

to go function for the SSP problem, also Q∗(i, a) = h(i, a, J̃∗) denotes the optimal

Q-values.

Note that for any J ∈ Rn and (proper) δ ∈ Λ, liml→∞ T̃
l
δJ = J̃δ. Here T̃ lδ is

the composition of the operator T̃δ with itself l times; i.e. T̃
(l+1)
δ J = T̃δ(T̃

l
δJ) for

J ∈ Rn and l ≥ 0. T̃ 0
δ is the identity operator, i.e. T̃ 0

δ J = J .

Note that the dynamic programming operator T̃ : Rn → Rn is given by

(T̃ J)(i) = min
a∈A(i)

h(i, a, J) for i ∈ {1, 2, . . . , n}

for J ∈ Rn. T̃ is a monotone operator which is a non-expansion under the sup-norm

(see Appendix C). T̃ is an n-stage contraction mapping under the sup-norm and J̃∗,

the optimal cost to go function for the SSP problem, is its unique fixed point. Note

that for any J ∈ Rn, liml→∞ T̃
lJ = J̃∗. Here T̃ l is the composition of the operator

T̃ with itself l times; i.e. T̃ (l+1)J = T̃ (T̃ lJ) for J ∈ Rn and l ≥ 0, also T̃ 0 is the

identity operator, i.e. T̃ 0J = J .

Let δ̃ be another stationary randomized policy (proper) such that

∑
a∈A(i)

[δ̃(i)]aQ
δ(i, a) ≤ J̃δ(i) for i ∈ {1, 2, . . . , n}.

298

Then it follows from the monotonicity property (see Appendix C) of the operator T̃δ̃

that J̃ δ̃ ≤ J̃δ. Let the scalars αi > 0, for i ∈ {1, 2, . . . , n}. It follows that any local

minimum of s(δ) ≡ ∑n
i=1 αiJ̃

δ(i) is also a global minimum of s(δ) in the domain Λ.

Let

Λε̄ ≡ {δ ∈ Λ | [δ(i)]a ≥ ε̄(i), i ∈ {1, 2, . . . , n}, a ∈ A(i)}.

where ε̄ ∈ Rn, with ε̄(i) ≥ 0 for i ∈ {1, 2, . . . , n}. Here ε̄(i) denotes the ith component

of ε̄. Let ε̃ ∈ Rn be the vector with

ε̃(i) =
1

|A(i)|
for i ∈ {1, 2, . . . , n}.

Then 0 ≤ ε̄ ≤ ε̃ implies that Λε̄ is non-empty, here 0 ∈ Rn is the vector with all

components equal to zero and the inequality is componentwise. Also, 0 ≤ ε̄ ≤ ε̂ ≤ ε̃

imply that Λε̂ ⊂ Λε̄.

For each positive integer k and scalar ε, where 0 ≤ ε ≤ 1
k
, define

∆ε
k ≡ {(p1, p2, . . . , pk) | pl ≥ ε,

k∑
l=1

pl = 1}.

We define the k extremal points of ∆ε
k (when 0 ≤ ε < 1

k
) as follows: the ith one is

defined as the probability vector (p1, p2, . . . , pk) with

pi = (1− (k − 1)ε)

pj = ε, when j 6= i

Note that when k > 1, pi > pj, j 6= i. Also Λ0 = Λ. A δ ∈ Λε̄ with 0 ≤ ε̄ < ε̃

is called an extremal policy of Λε̄ if δ(i) is an extremal point of ∆
ε̄(i)
|A(i)| for each

i ∈ {1, 2, . . . , n}. The strict inequality holds componentwise.

299

Observe that the extremal policies of Λ0 are precisely the stationary determin-

istic policies. Let Υ denote the set of stationary deterministic policies (or control

functions to be precise). We use the notation µ exclusively to denote stationary

deterministic policies; µ(i) ∈ A(i) for i ∈ {1, 2, . . . , n}. As mentioned earlier it is

implicitly assumed that the action taken from state 0 for any stationary determinis-

tic policy is the unique action in A(0), namely 1. Note that there is a natural one to

one correspondence between the elements of Υ and the extremal policies of Λε̄ when

0 ≤ ε̄ < ε̃. An extremal policy δ of Λε̄ corresponding to a stationary deterministic

policy µ ∈ Υ has the property that

[δ(i)]µ(i) > [δ(i)]a′ if a′ ∈ A(i), a′ 6= µ(i)

for i ∈ {1, 2, . . . , n}. Without loss of generality we will use µ ∈ Υ to denote ei-

ther the extremal policies of Λ0 or the corresponding control law, mapping the

states {1, 2, . . . , n} to the corresponding action in each state on which all the prob-

ability mass is concentrated. It will be clear from the context whether µ(i), i ∈

{1, 2, . . . , n}, denotes an extremal point of ∆0
|A(i)| or the corresponding control ac-

tion in A(i).

Just in this appendix, for any positive integer k and any w ∈ Rk, let ‖w ‖1

denote the `1 norm defined by
∑k
l=1 |wl|. Here wl is the lth component of w. We

define a metric d on the set Λ as follows. For any δ, δ̃ ∈ Λ, define

d(δ, δ̃) = max
i∈{1,2,...,n}

‖δ(i)− δ̃(i)‖1 .

It is easy to see that this is a metric and that Λ is a compact space under this metric.

300

Define

Interior(Λ) ≡
⋃

ε̄:0<ε̄≤ε̃
Λε̄.

Note that δ is an element of Interior(Λ) if and only if δ assigns positive probability to

each possible action from each state i ∈ {1, 2, . . . , n}. Such a δ is called a stationary

fully randomized policy. Also note that the components of Pδ and ḡδ are continuous

functions on the space Λ. Note that the cost to go function for policy δ ∈ Λ,

given by J̃δ = (I − Pδ)−1 ḡδ, is a continuous function on the space Λ. In fact, the

compactness of Λ implies that J̃δ is uniformly continuous on Λ. In particular, given

a scalar ε > 0, there exists a scalar ς > 0 (dependent on ε) such that ‖ J̃µ− J̃δ ‖< ε,

for each µ ∈ Υ and δ ∈ Λ with d(µ, δ) < ς.

A policy µ ∈ Υ is said to be a greedy policy for V ∈ Rn if

µ(i) = arg min
a∈A(i)

h(i, a, V) for i ∈ {1, 2, . . . , n}.

Note that for each i ∈ {1, 2, . . . , n} and a ∈ A(i), the function h(i, a, ·) is an

affine function on the space Rn. Note that for any µ ∈ Υ, the operator T̃µ is such

that (T̃µV)(i) = h(i, µ(i), V) for V ∈ Rn and i ∈ {1, 2, . . . , n}. We define for each

µ ∈ Υ, the “greedy region” for µ as

R̃µ ≡ {V ∈ Rn | µ is greedy for V }

It is easy to see that R̃µ is a polyhedron. Also note that R̃µ may be empty for

some µ and that Rn =
⋃
µ∈Υ R̃µ. Since a policy µ ∈ Υ is optimal if and only if

T̃µJ̃
µ = T̃ J̃µ (see [12]), a policy µ ∈ Υ is optimal if and only if J̃µ ∈ R̃µ. In fact,

such an optimal policy µ∗ ∈ Υ exists [11, 12].

301

D.2 Approximate Policy Iteration

For V ∈ Rn, let h̃(i, a, V) denote an approximation to h(i, a, V) for each

i ∈ {1, 2, . . . , n} and a ∈ A(i).

Lemma D.1 Let Ṽ be any fixed vector in Rn. Then there exist scalars ε > 0, ς > 0

dependent on Ṽ , such that if V is any vector in Rn with ‖ V − Ṽ ‖< ε and h̃ is

such that |h(i, a, V) − h̃(i, a, V)| < ς for all i ∈ {1, 2, . . . , n} and a ∈ A(i), then

the control policy µ̃ ∈ Υ obtained by setting µ̃(i) = arg mina∈A(i) h̃(i, a, V) for each

i ∈ {1, 2, . . . , n} is a greedy policy for the vector Ṽ .

2

The proof of the above lemma follows from the affine nature of h(i, a, ·) and

the finiteness of the number of states and actions. See also Chapter 4.

Corollary D.1 Consider an SSP problem. Fix a µ ∈ Υ. There exist scalars

ε > 0, ς > 0, such that if J is any vector in Rn with ‖ J − J̃µ ‖< ε and

|h̃(i, a, J)− h(i, a, J)| < ς for i ∈ {1, 2, . . . , n}, a ∈ A(i), then the control policy

µ̃ ∈ Υ obtained by setting µ̃(i) = arg mina∈A(i) h̃(i, a, J) for each i ∈ {1, 2, . . . , n} is

a greedy policy for the vector J̃µ. In fact, the ε and ς are applicable uniformly to all

µ ∈ Υ.

2

The proof of the above corollary follows from the fact that the cardinality of

Υ, namely |Υ|, is finite and from Lemma D.1.

302

Let

ρ̃n ≡ max
i∈{1,2,...,n}

max
µ∈Υ

Prµ [sn 6= 0 | s0 = i] .

Here Prµ [· | i] denotes the probability measure induced by stationary policy µ, given

the starting state s0 = i. See Appendix C for more on notations. See Appendix C

for the definition of ρ̃k for non-negative integer k. Note that 0 ≤ ρ̃n < 1 since we

assume all stationary deterministic policies to be proper.

Assume that a sequence of stationary deterministic policies {µk} and a cor-

responding sequence of approximate cost to go functions {Jk}, where Jk ∈ Rn,

satisfy

max
i∈{1,2,...,n}

|Jk(i)− J̃µk(i)| ≤ ε, k = 0, 1, 2, . . .

and

max
i∈{1,2,...,n}

|(T̃µk+1
Jk)(i)− (T̃ Jk)(i)| ≤ ε, k = 0, 1, 2, . . .

Then (see [12] and Appendix C)

lim sup
k→∞

max
i∈{1,2,...,n}

(
J̃µk(i)− J̃∗(i)

)
≤ n(1− ρ̃n + n)(ε+ 2ε)

(1− ρ̃n)2
.

With slight abuse of notation we define QJ(i, a) ≡ h(i, a, J) for J ∈ Rn, i ∈

{1, 2, . . . , n} and a ∈ A(i). Hence for δ ∈ Λ, Qδ(i, a) = QJ̃δ(i, a), (i, a) ∈ Q.

Consider the following algorithm. Pick some µ0 ∈ Υ. The sequence {µk} of

stationary deterministic policies is generated as follows. Let {Jk}, with Jk ∈ Rn, be

a sequence of vectors generated in such a manner that

‖Jk − J̃µk ‖≤ εk, k = 0, 1, 2, . . .

303

Let QJk(i, a) ≡ h(i, a, Jk) for (i, a) ∈ Q. Let Q̃k(i, a), (i, a) ∈ Q be such that

|Q̃k(i, a)−QJk(i, a)| ≤ ςk, (i, a) ∈ Q.

We set

µk+1(i) = arg min
a∈A(i)

Q̃k(i, a) for i ∈ {1, 2, . . . , n}.

Note that

max
i∈{1,2,...,n}

|(T̃µk+1
Jk)(i)− (T̃ Jk)(i)| ≤ 2ςk.

Hence we have the following theorem.

Theorem D.1 Suppose ε = lim supk→∞ εk and ς = lim supk→∞ ςk. Then

lim sup
k→∞

‖ J̃µk − J̃∗ ‖ ≤ 2n(1− ρ̃n + n)(ς + ε)

(1− ρ̃n)2
. (D.1)

2

Here ‖ · ‖ is the sup-norm. We may choose Jk to be equal to J̃δk when

we approximate J̃µk with J̃δk for some δk close to µk (under the metric d defined

earlier). Note that if ς and ε are sufficiently small, then J̃µk = J̃∗ for all large k.

This happens when the right hand side of the inequality D.1, is less than

max
µ̃∈Υ, µ̃ not optimal

‖ J̃ µ̃ − J̃∗ ‖

Observe that by Corollary D.1, there exists ε > 0 and ς > 0 such that if

εk < ε and ςk < ς for all k = 0, 1, 2, . . ., then the µk’s obtained are same as the ones

obtained while doing policy iteration (see [12] and Chapter 1), and converges to the

optimal policy in a finite (≤ |Υ|) number of steps.

304

D.3 Off-Line Temporal Difference Method For A Proper Policy With

Lookup Table Representation

In this section we consider off-line temporal difference (TD) methods [16,

Chapter 5] for proper policies. We fix a proper stationary randomized policy δ ∈ Λ,

in general and try to compute the cost to go function J̃δ= (I − Pδ)−1ḡδ =
∑∞
k=0 P

k
δ ḡ

δ

using simulation. We assume that the immediate costs have finite variance as men-

tioned earlier. In this section, from henceforth we drop the subscript and superscript

δ associated with the policy.

We use a discrete variable t to index the simulated trajectories that are gener-

ated by the algorithm. Let Ft represent the history of the algorithm upto the point

at which the simulation of the tth trajectory is to commence and let Jt ∈ Rn be the

estimate of the cost to go vector available at that time.

Based on Ft, we choose the initial state it0 of the tth trajectory and the step sizes

γt(i), i = 1, . . . , n, that will be used for updating ‘J(i)’. We generate a trajectory of

states it0, i
t
1, . . . , i

t
Nt under the proper stationary policy (δ), where Nt is the first time

that the trajectory reaches state 0. In general Nt may be any stopping time [16]

(which may be taken without loss of generality to be less than or equal to the first

time that the trajectory reaches state 0). Note that E [Nt ≥ k | Ft] ≤ Kρk where

K and ρ are non-negative scalars, with 0 ≤ ρ < 1. We then update Jt by letting

Jt+1(i) = Jt(i) + γt(i)
Nt−1∑
m=0

ztm(i) dm,t (D.2)

305

where the temporal differences dm,t are defined by

dm,t = gm,t + Jt(i
t
m+1)− Jt(itm)

Here gm,t is the immediate cost incurred at the mth instant (or stage) in the tth

trajectory (when the action atm ∈ A(itm) is taken from the state itm under policy

δ). With slight abuse of notation, Jt(0) is assumed to be zero. The initial values

J1(i), ∀i ∈ {1, 2, . . . , n} may be arbitrary. ztm(i) are the eligibility coefficients which

are assumed to have the following properties.

Assumption D.1 For all m and t and i ∈ {1, 2, . . . , n} we have

a. ztm(i) ≥ 0.

b. zt−1(i) = 0.

c. ztm(i) ≤ ztm−1(i), if itm 6= i.

d. ztm(i) ≤ ztm−1(i) + 1, if itm = i.

e. ztm(i) is completely determined by Ft and it0, . . . , i
t
m.

2

Section D.3.1 discusses the choice of the eligibility coefficients. We allow the

possibility that no update of J(i) is carried out even if a trajectory visits state i.

However for J(i) to converge to the correct value, there should be enough trajectories

that lead to a non-trivial update of J(i). For this reason an additional assumption

is needed. To this effect we define

qt(i) = Pr
[
there exists m such that ztm(i) > 0 | Ft

]
306

Here ‘Pr’ denotes probability. Note that qt(i) is a function of the past history. We

define

T i = {t | qt(i) > 0}

which corresponds to the set of trajectories that have a chance of leading to a non-

zero update of J(i). Observe that whether t belongs to T i or not is only a function

of the past history Ft. We now introduce the following assumption.

Assumption D.2

a. For any fixed i and t, ztm(i) must be equal to 1, the first time that it becomes

positive.

b. There exists a deterministic constant κ > 0 such that qt(i) ≥ κ for all t ∈ T i

and all i.

c. γt(i) ≥ 0 for all t ∈ T i and γt(i) = 0 for t /∈ T i.

d.
∑
t∈T i γt(i) =∞, for all i.

e.
∑
t∈T i γ

2
t (i) <∞, for all i.

2

Section D.5 discusses some aspects of step size selection. Actually, since no

update of the ith component J(i) happens when t /∈ T i, whether γt(i) is zero or not

is irrelevant when t /∈ T i.

Proposition D.1 Consider the off-line temporal difference algorithm, as described

by equation D.2 and let Assumption D.1 and Assumption D.2 hold. Assume the

307

policy (δ) under consideration is proper. Then Jt(i) converges to J̃δ(i) for all i ∈

{1, 2, . . . , n} almost surely.

2

Though [16] gives the proof of the above proposition for the case when the

immediate cost depends only on the current state and subsequent state, the result

can easily be shown to hold for the case where the immediate costs are random with

finite variance (or finite second moments). We omit the details.

D.3.1 Choice Of Eligibility Coefficients

Suppose that a sample trajectory i0, i1, . . . has been generated. We suppress

the index of the tth trajectory, t for convenience. Let dm = gm+ J(im+1)−J(im), be

the temporal difference at the mth stage of the tth trajectory, gm being the immediate

cost at stage m. Similarly, let zm(i) be the eligibility coefficient in the update

J(i)← J(i) + γ
∞∑
m=0

zm(i) dm

Actually zm(i) dm = 0 for m ≥ N where N is the stopping time. γ is the step size.

Let us concentrate on a particular state i, and let m1,m2, . . .mM be the dif-

ferent times that the trajectory is at state i, with M being the total number of

such visits. We also use the convention that mM+1 =∞. In TD(λ) [16] a temporal

difference dm may lead to an update of J(i) only if i has already been visited by the

time m. For this reason, in all our examples we assume zm(i) = 0 for m < m1.

Let λ ∈ [0, 1]. We follow the notation 00 = 1. We have the following TD(λ)

methods.

308

a. If we let

zm(i) = λm−m1 , if m ≥ m1

we have the first visit TD(λ) method.

b. If we let

zm(i) =
∑

{j|mj≤m}
λm−mj

we have the every visit TD(λ) method.

c. Consider the choice

zm(i) = λm−mj , if mj ≤ m < mj+1 ∀j

This gives the restart variant of TD(λ). Note that for λ = 1, the restart

method coincides with the first visit method, whereas for λ = 0 it coincides

with the every visit method.

d. Let us define the stopping time as a random variable τ such that the event

{τ ≤ k} is completely determined by the history of our simulation upto and

including the point that the state ik is generated. Intuitively the decision

whether or not to stop at state ik must be made before generating subsequent

states in a simulated trajectory. Given a stopping time τ , we let

zm(i) = λm−m1 , for m1 ≤ m < τ,

and zm(i) = 0 for m ≥ τ .

Notice that Assumption D.1 is satisfied by the choices of TD(λ). For other

related variants of TD(λ) see [16].

309

D.4 On-Line Temporal Difference Method For A Proper Policy With

Lookup Table Representation

In this section we consider on-line temporal difference methods [16, Chapter 5]

for proper policies. We fix a proper stationary randomized policy δ ∈ Λ, in general

and try to compute the cost to go function J̃δ = (I − Pδ)−1ḡδ =
∑∞
k=0 P

k
δ ḡ

δ using

simulation. We assume that the immediate costs have finite variance as mentioned

earlier. In this section, from henceforth we drop the subscript and superscript δ

associated with the policy.

We again use a discrete variable t to index the simulated trajectories that are

generated by the algorithm. Let Ft represent the history of the algorithm upto the

point at which the simulation of the tth trajectory is to commence and let J0
t ∈ Rn be

the estimate of the cost to go vector available at the beginning of the tth trajectory.

The initial estimates J0
1 (i), ∀i ∈ {1, 2, . . . , n} may be arbitrary.

Based on Ft, we choose the initial state it0 of the tth trajectory and the step sizes

γt(i), i = 1, . . . , n, that will be used for updating ‘J(i)’. We generate a trajectory of

states it0, i
t
1, . . . , i

t
Nt under the proper stationary policy (δ), where Nt is the first time

that the trajectory reaches state 0. In general Nt may be any stopping time [16]

(which may be taken without loss of generality to be less than or equal to the first

time that the trajectory reaches state 0). Note that E [Nt ≥ k | Ft] ≤ Kρk where

K and ρ are non-negative scalars, with 0 ≤ ρ < 1.

Let J0
t,m ∈ Rn be the vector obtained after simulating m transitions of the tth

310

trajectory. The update equations are as follows.

J0
t,0(i) = J0

t (i), ∀i ∈ {1, 2, . . . , n}

d0
m,t = gm,t + J0

t,m(itm+1)− J0
t,m(itm)

J0
t,m+1(i) = J0

t,m(i) + γt(i) z
t
m(i) d0

m,t, ∀i ∈ {1, 2, . . . , n}

J0
t+1(i) = J0

t,Nt(i), ∀i ∈ {1, 2, . . . , n}


(D.3)

Note that gm,t is the immediate cost incurred at stage m of the tth trajectory while

taking action atm from state itm under the policy δ. The superscript 0 is used in

the above equations to indicate that we are dealing with the on-line algorithm. As

mentioned earlier Nt is the length of the tth trajectory. Note that the step sizes γt(i)

are held constant during each trajectory. We then have the following convergence

result [16]

Proposition D.2 Consider the on-line temporal difference algorithm, as described

in equations D.3 and let Assumption D.1 and Assumption D.2 hold. Furthermore

assume that the eligibility coefficients ztm(i) are bounded by a deterministic constant

C. Assume that the policy (δ) under consideration is proper. Then J0
t (i) converges

to J̃δ(i) for all i ∈ {1, 2, . . . , n} almost surely.

2

The assumption that ztm(i) is bounded is satisfied whenever we are dealing

with the first visit or the restart variant of TD(λ), because ztm(i) is bounded above

by 1. Also if λ < 1, it is easily seen that under every visit TD(λ) method we have

ztm(i) ≤ 1
(1−λ)

and our assumption is again satisfied.

311

Though [16] gives the proof of the above proposition for the case when the

immediate cost depends only on the current state and subsequent state, the result

can easily be shown to hold for the case where the immediate costs are random with

finite variance (or finite second moments). We omit the details.

Notice that it may be inferred from the proof of the above proposition [16,

Chapter 5, Section 5.3.6] that

max
i∈{1,2,...,n}

max
m∈{0,1,2,...,Nt}

|J0
t,m(i)− J̃δ(i)| t→∞−→ 0

almost surely under the assumptions in Proposition D.2. We however omit the

details of the proof of this inference.

D.5 A Remark On Step Size Selection

To ensure Assumptions D.2 (d)-(e), we might need to know whether t ∈ T i or

not which may be non trivial. Please refer [16] for details.

An alternative is as follows [16]. Let for each i ∈ {1, 2, . . . , n}, {γ̃k(i)} be a

deterministic non-negative sequence such that
∑∞
k=1 γ̃k(i) =∞,

∑∞
k=1(γ̃k(i))

2 <∞

for all i ∈ {1, 2, . . . , n}. Now choose γt(i) = γ̃k+1(i) if there have been exactly k

past trajectories during which ‘J(i)’ was updated; that is there have been exactly k

past trajectories during which the eligibility coefficient ‘z(i)’ became positive. This

step size rule does satisfy Assumptions D.2 (d)-(e). We may prove this fact using

an argument exactly along the lines of [16, page 218]. We omit the details.

We need to assume that the eligibility coefficient ‘z(i)’ becomes positive for

an infinite number of trajectories, i.e. ‘J(i)’ is updated an infinite number of times.

312

This assumption is natural and is clearly necessary in order to prove convergence.

D.6 Convergence For Discounted Cost Problems

See Chapter 1 and Chapter 4 for a discussion on discounted cost problems.

For a fixed stationary randomized policy δ ∈ Λ we are interested in obtaining the

infinite horizon discounted cost to go vector Jδ ∈ Rn given by

Jδ = (I − βPδ)−1 ḡδ =
∞∑
k=0

(βkP k
δ) ḡδ

using temporal difference methods, where β ∈ [0, 1) is the discount factor. Here

the state space is {1, 2, . . . , n}. For the state i, A(i) = {1, 2, . . . , |A(i)|} denotes

the control constraint set for state i. Here |A(i)| denotes the cardinality of the set

A(i). Pδ is the n× n transition probability matrix (a stochastic matrix) under the

stationary randomized policy δ. i.e.

[Pδ]ij =
∑

a∈A(i)

[δ(i)]a pij(a)

for i, j ∈ {1, 2, . . . , n}. [δ(i)]a is the probability of taking action a from state i under

policy δ. pij(a) is the probability that the next state is j given current state is i and

action taken is a ∈ A(i). Also

ḡδ(i) =
∑

a∈A(i)

[δ(i)]a g(i, a)

is the expected immediate cost from state i under policy δ. Here g(i, a) is the

expected immediate cost of taking action a from state i. We assume this immediate

costs to have finite variance.

313

The first method for temporal difference scheme is to consider the equivalent

Stochastic Shortest Path Problem (see Appendix C and [16]) and use the results of

TD learning for the SSP as discussed in the previous sections.

In a second alternative [16, Section 5.3.7] we only simulate trajectories for

a finite number Nt of time steps, which is tantamount to setting the eligibility

coefficients ‘ztm(i)’ to zero for m ≥ Nt. In general we may take Nt to be a stopping

time.

The main differences that arise in the discounted cost case are as follows. First

the discount factor β enters in the definition

dm = gm + βJ(im+1)− J(im)

of the temporal difference. In the above definition of temporal difference we have

suppressed the index of the tth trajectory t, for convenience. To be more precise

dm,t = gm,t + β Jt(i
t
m+1)− Jt(itm)

for the off-line scheme and

d0
m,t = gm,t + β J0

t,m(itm+1)− J0
t,m(itm)

for the on-line scheme. gm,t is the immediate cost incurred at stage m of the tth

trajectory when action atm ∈ A(itm) is taken from state itm under policy δ.

A second difference is that we replace Assumption D.1 (c) with

ztm(i) ≤ β ztm−1(i), if itm 6= i

Note that for the TD(λ) scheme considered in Subsection D.3.1, if we replace λ by

βλ in the definition of the eligibility coefficients (for the discounted cost case), this

314

assumption is satisfied by them. Furthermore we impose the condition that

Pr (Nt ≥ k | Ft) ≤ Kρk ∀k ≥ 0, t ≥ 1

where K and ρ are non-negative constants with ρ < 1.

Then it may be shown [16, Section 5.3.7] that results similar to Proposition D.1

and Proposition D.2 corresponding to off-line and on-line schemes exists for the

discounted cost case.

D.7 TD For Learning

Here we are interested in learning the optimal cost to go function and optimal

stationary policy for the “all stationary deterministic policies proper” SSP prob-

lem. Neither the transition probabilities nor the distribution of the immmediate

costs are known. We use TD schemes for evaluating the cost to go function and

estimate Q-values using small step stochastic approximation, employing stationary

fully randomized policies which are ‘near’ to stationary deterministic policies, for

exploration.

Assumption D.3

a. For each state action pair (i, a) ∈ Q, let the pre-determined scalar non-negative

step sizes γk(i, a) be such that

∞∑
k=1

γk(i, a) =∞;
∞∑
k=1

(γk(i, a))2 <∞

b. The immmediate costs have finite second moments, i.e.

E
[
g2
t | st = i, ut = a

]
<∞, ∀(i, a) ∈ Q

315

Here gt is the immediate cost (random) of taking action ut = a from state

st = i.

2

Fix a policy, δ ∈ Interior(Λ). We would like to estimate J̃δ ∈ Rn, the cost to

go function for policy δ, for the SSP problem. We would also like to estimate the Q

values, namely

Qδ(i, a) = QJ̃δ(i, a) = g(i, a) +
n∑
j=1

pij(a) J̃δ(j), ∀(i, a) ∈ Q

We use the off-line temporal difference scheme to estimate J̃δ in the following algo-

rithm.

Algorithm D.1

Input : Stationary Randomized Policy δ ∈ Interior(Λ).

Output : Estimate J̃(i) of J̃δ(i) for i ∈ {1, 2, . . . , n} and estimates Q̃(i, a) of

Qδ(i, a) = g(i, a) +
∑n
j=1 pij(a) J̃δ(j), for (i, a) ∈ Q.

t : index of trajectory; t ∈ {1, 2, . . .}.

m : index of stage within each trajectory; m ∈ {0, 1, 2, . . .}.

ñ : number of trajectories simulated, a positive integer.

Nt : stopping time for tth trajectory.

itm : state at mth stage of tth trajectory.

atm : action taken at mth stage of the tth trajectory, from state itm under policy δ.

316

ztm(i) : eligibility coefficients.

γt(i) : step sizes for off-line TD scheme.

gm,t : immediate cost incurred at stage m of tth trajectory, when action atm is taken

from state itm.

dm,t : temporal difference at stage m of tth trajectory.

Qt,m(i, a) : estimate of Qδ(i, a) at stage m of tth trajectory.

Jt(i) : estimate of J̃δ(i) at the start of tth trajectory.

τ tm(i, a) : number of times action ‘a’ has been taken from state ‘i’, by the time

(including stage m) stage m is reached in the tth trajectory.

1.

t = 1

τ 1
−1(i, a) = 0 ∀(i, a) ∈ Q

The initial values

Q1,0(i, a) arbitrary ∀(i, a) ∈ Q

J1(i) arbitrary ∀i ∈ {1, 2, . . . , n}

2. zdt(i) = 0, ∀i ∈ {1, 2, . . . , n}.

3. For m = 0 to Nt − 1, do

τ tm(itm, a
t
m) = τ tm−1(itm, a

t
m) + 1

317

τ tm(i, a) = τ tm−1(i, a), ∀(i, a) 6= (itm, a
t
m), (i, a) ∈ Q

Qt,m+1(itm, a
t
m) =

(
1− γτ tm(itm,a

t
m)(i

t
m, a

t
m)
)
Qt,m(itm, a

t
m)

+ γτ tm(itm,a
t
m)(i

t
m, a

t
m)
(
gm,t + Jt(i

t
m+1)

)
(D.4)

Qt,m+1(i, a) = Qt,m(i, a), ∀(i, a) 6= (itm, a
t
m), (i, a) ∈ Q

dm,t = gm,t + Jt(i
t
m+1)− Jt(itm)

zdt(i) = zdt(i) + ztm(i) dm,t, ∀i ∈ {1, 2, . . . , n}

4.

Jt+1(i) = Jt(i) + γt(i) zdt(i) ∀i ∈ {1, 2, . . . , n}

Qt+1,0(i, a) = Qt,Nt(i, a) ∀(i, a) ∈ Q

τ t+1
−1 (i, a) = τ tNt−1(i, a) ∀(i, a) ∈ Q

5. t = t+ 1.

6. go to step 2, if t ≤ ñ; else go to step 7.

7. Return

Q̃(i, a) = Qt,0(i, a) ∀(i, a) ∈ Q

J̃(i) = Jt(i) ∀i ∈ {1, 2, . . . , n}

2

Note that ‘Jt(0)’ is defined as zero. We assume Assumption D.1, Assump-

tion D.2 and Assumption D.3 to hold.

318

All that is required of the non-negative step size parameters γk(i, a) is that

they satisy the standard asssumptions

∞∑
k=1

γk(i, a) =∞;
∞∑
k=1

(γk(i, a))2 <∞

for each (i, a) ∈ Q almost surely, and may be allowed to depend on the past history,

i.e. if the kth time that action ‘a’ is taken from state ‘i’, is at the mth stage of the

tth trajectory (note that itm = i, atm = a in this case), then

γτ tm(i,a)(i, a) = γk(i, a)

can depend on the past history until the mth stage of the tth trajectory (after the

decision to take action atm is made) but before the action atm is taken at the mth

stage of the tth trajectory.

Since Assumption D.1 and Assumption D.2 hold, each state i ∈ {1, 2, . . . , n}

is visited infinitely often if Algorithm D.1 is run for an infinite number of trajec-

tories. By Proposition D.1, we have Jt(i)
t→∞−→ J̃δ(i) for i ∈ {1, 2, . . . , n}. Since

δ ∈ Interior(Λ), each state action pair (i, a) ∈ Q is taken infinitely often also. Stan-

dard results from stochastic approximation theory [16] can be used to show that

under Assumption D.3, we have Qt,0(i, a)
t→∞−→ Qδ(i, a) for (i, a) ∈ Q.

Now we turn to on-line TD schemes for estimating the cost to go function.

Fix a policy δ ∈ Interior(Λ). We use on-line TD scheme to estimate J̃δ, the cost to

go function for the SSP problem for policy δ. We would also like to estimate the Q

values, namely

Qδ(i, a) = QJ̃δ(i, a) = g(i, a) +
n∑
j=1

pij(a) J̃δ(j), ∀(i, a) ∈ Q

319

We assume that Assumption D.1, Assumption D.2 and Assumption D.3 hold.

Algorithm D.2

Input : Stationary Randomized Policy δ ∈ Interior(Λ).

Output : Estimate J̃(i) of J̃δ(i) for i ∈ {1, 2, . . . , n} and estimates Q̃(i, a) of

Qδ(i, a) = g(i, a) +
∑n
j=1 pij(a) J̃δ(j), for (i, a) ∈ Q.

t : index of trajectory; t ∈ {1, 2, . . .}.

m : index of stage within each trajectory; m ∈ {0, 1, 2, . . .}.

ñ : number of trajectories simulated, a positive integer.

Nt : stopping time for tth trajectory.

itm : state at mth stage of tth trajectory.

atm : action taken at mth stage of the tth trajectory, from state itm under policy δ.

ztm(i) : eligibility coefficients.

γt(i) : step sizes for on-line TD scheme.

gm,t : immediate cost incurred at stage m of tth trajectory, when action atm is taken

from state itm.

d0
m,t : temporal difference at stage m of tth trajectory.

Qt,m(i, a) : estimate of Qδ(i, a) at stage m of tth trajectory.

J0
t (i) : estimate of J̃δ(i) at the start of tth trajectory.

320

J0
t,m(i) : estimate of J̃δ(i) at the mth stage of the tth trajectory.

τ tm(i, a) : number of times action ‘a’ has been taken from state ‘i’, by the time

(including stage m) stage m is reached in the tth trajectory.

1.

t = 1

τ 1
−1(i, a) = 0 ∀(i, a) ∈ Q

The initial values

Q1,0(i, a) arbitrary ∀(i, a) ∈ Q

J0
1 (i) arbitrary ∀i ∈ {1, 2, . . . , n}

2. J0
t,0(i) = J0

t (i), ∀i ∈ {1, 2, . . . , n}.

3. For m = 0 to Nt − 1, do

τ tm(itm, a
t
m) = τ tm−1(itm, a

t
m) + 1

τ tm(i, a) = τ tm−1(i, a), ∀(i, a) 6= (itm, a
t
m), (i, a) ∈ Q

d0
m,t = gm,t + J0

t,m(itm+1)− J0
t,m(itm)

J0
t,m+1(i) = J0

t,m(i) + γt(i) z
t
m(i) d0

m,t, ∀i ∈ {1, 2, . . . , n}

Qt,m+1(itm, a
t
m) =

(
1− γτ tm(itm,a

t
m)(i

t
m, a

t
m)
)
Qt,m(itm, a

t
m)

+ γτ tm(itm,a
t
m)(i

t
m, a

t
m)
(
gm,t + J0

t,m+1(itm+1)
)

(D.5)

Qt,m+1(i, a) = Qt,m(i, a), ∀(i, a) 6= (itm, a
t
m), (i, a) ∈ Q

4.

J0
t+1(i) = J0

t,Nt(i) ∀i ∈ {1, 2, . . . , n}

321

Qt+1,0(i, a) = Qt,Nt(i, a) ∀(i, a) ∈ Q

τ t+1
−1 (i, a) = τ tNt−1(i, a) ∀(i, a) ∈ Q

5. t = t+ 1.

6. go to step 2, if t ≤ ñ; else go to step 7.

7. Return

Q̃(i, a) = Qt,0(i, a) ∀(i, a) ∈ Q

J̃(i) = J0
t (i) ∀i ∈ {1, 2, . . . , n}

2

The superscript ‘0’ is used to indicate that we are dealing with on-line TD

algorithm. The comment following the Algorithm D.1 on the nature of γk(i, a) is

valid in the Algorithm D.2 also. Note that in equation D.5, we could have used

J0
t (itm+1) or J0

t,m(itm+1) instead of J0
t,m+1(itm+1). Note also that ‘J0

t (0)’ and ‘J0
t,m(0)’

are defined as zero.

Because of Assumption D.1 and Assumption D.2, each state i ∈ {1, 2, . . . , n} is

visited infinitely often if Algorithm D.2 is run for an infinite number of trajectories.

By Proposition D.2 we have that J0
t (i)

t→∞−→ J̃δ(i) for i ∈ {1, 2, . . . , n}. Since δ ∈

Interior(Λ), each state action pair (i, a) ∈ Q is taken infinitely often also. Standard

results from stochastic approximation theory [16] can be used to show that under

Assumption D.3 we have Qt,0(i, a)
t→∞−→ Qδ(i, a) for (i, a) ∈ Q.

Consider the following algorithm.

322

Algorithm D.3 Let ε̄k be a sequence of positive vectors in Rn such that 0 < ε̄k < ε̃,

where the inequality is componentwise. Here ε̃(i) = 1
|A(i)| , for i ∈ {1, 2, . . . , n}.

1. Set k = 0.

2. Select an arbitrary stationary randomized policy µ0 ∈ Υ.

3. Choose the stationary randomized extremal policy δk ∈ Λε̄k associated with

µk and run Algorithm D.1 (or alternatively Algorithm D.2) for large random

number ñk of trajectories, till the cost to go vector “nearly” converges to J̃δk

and the Q values “nearly” converge to Qδk(i, a) = g(i, a) +
∑n
j=1 pij(a) J̃δk , for

(i, a) ∈ Q.

Let J̃k ∈ Rn be the estimate of the cost to go vector, and Q̃k(i, a), ∀(i, a) ∈ Q,

be the estimates of the Q values obtained at the end of Algorithm D.1 (or

alternatively Algorithm D.2)

Let

ςk = max
(i,a)∈Q

|Qδk(i, a)− Q̃k(i, a)|

4. Set k = k + 1, and update the policy µk, where

µk(i) = arg min
a∈A(i)

Q̃k−1(i, a), ∀i ∈ {1, 2, . . . , n}

5. Go to step 3.

2

Note that we stick with either Algorithm D.1 or Algorithm D.2 in step 3,

throughout the execution of Algorithm D.3.

323

The number of trajectories simulated namely ñk, inside the invocation of the

Algorithm D.1 (or alternatively Algorithm D.2) in step 3 of Algorithm D.3 may

be decided inside the respective algorithm (Algorithm D.1 or alternatively Algo-

rithm D.2) for sufficiently “close” convergence of the cost to go estimate and Q

value estimate.

Though the initial estimates of the cost to go vector and Q values in Algo-

rithm D.1 (or alternatively Algorithm D.2) may be arbitrary when called in step 3

(of Algorithm D.3), we may set it to the final estimates in the previous iteration of

Algorithm D.3 (i.e. J̃k−1 and Q̃k−1(·, ·)).

We have the following theorem.

Theorem D.2 Consider Algorithm D.3 on an SSP problem where all stationary

deterministic policies are proper. Assume that Assumption D.1, Assumption D.2

and Assumption D.3 hold.

1. Given any scalar ε > 0, there exists an ε̄ ∈ Rn with 0 < ε̄ < ε̃ and a number

ς > 0, such that if

lim sup
k→∞

ε̄k(i) < ε̄(i), ∀i ∈ {1, 2, . . . , n}

and

lim sup
k→∞

ςk < ς

then lim supk→∞ ‖ J̃µk − J̃∗ ‖< ε and lim supk→∞ ‖ J̃δk − J̃∗ ‖< ε.

2. Given any scalar ε > 0, there exists a number ς > 0 and a positive vector

ε̄ ∈ Rn, with 0 < ε̄ < ε̃, such that, if ε̄k < ε̄ and ςk < ς for all k, then J̃µk

324

converges to J̃∗ in a finite number of steps (≤ |Υ|) and ‖ J̃δk − J̃µk ‖< ε for

all k.

3. In particular if lim supk→∞ ε̄k(i) = 0, ∀i ∈ {1, 2, . . . , n} and lim supk→∞ ςk =

0, then ‖ J̃µk − J̃∗ ‖k→∞−→ 0 and ‖ J̃δk − J̃∗ ‖k→∞−→ 0.

2

Here J̃∗ is the optimal cost to go vector for the SSP problem and ‖ · ‖ is the

sup-norm.

Proof of Theorem D.2

Note that J̃δ is a uniformly continuous function on Λ (see Section D.1). Also

in view of Theorem D.1 (as well as the comments following it), the conclusions of

Theorem D.2 hold.

2

Note that in Algorithm D.3, instead of using an extremal policy δk ∈ Λε̄k

to approximate the µk, we could have chosen any δk ∈ Interior(Λ), such that

[δk(i)]µk(i) ≥ (1 − (|A(i)| − 1)ε̄k(i)), ∀i ∈ {1, 2, . . . , n}; for instance δk could be

made to depend on the estimated Q values in the previous step, namely Q̃k−1(·, ·),

assigning for each state i ∈ {1, 2, . . . , n}, smaller probabilities to actions with larger

Q values.

Consider the following algorithm for estimating Q values, when we are given

a fixed vector J ∈ Rn as the one step terminal cost. That is we are interested in

estimating QJ(i, a) = g(i, a) +
∑n
j=1 pij(a)J(j) for (i, a) ∈ Q. We assume Assump-

325

tion D.3 to hold.

Algorithm D.4

Input : One step terminal cost J ∈ Rn and Stationary Randomized Policy δ ∈

Interior(Λ).

Output : Estimate Q̃(i, a) of QJ(i, a) = g(i, a) +
∑n
j=1 pij(a)J(j), for

(i, a) ∈ Q.

t : index of trajectory; t ∈ {1, 2, . . .}.

m : index of stage within each trajectory; m ∈ {0, 1, 2, . . .}.

n̂ : number of trajectories simulated, a positive integer.

Nt : stopping time for tth trajectory.

itm : state at mth stage of tth trajectory.

atm : action taken at mth stage of the tth trajectory, from state itm under policy δ.

gm,t : immediate cost incurred at stage m of tth trajectory, when action atm is taken

from state itm.

Qt,m(i, a) : estimate of QJ(i, a) at stage m of tth trajectory.

τ tm(i, a) : number of times action ‘a’ has been taken from state ‘i’, by the time

(including stage m) stage m is reached in the tth trajectory.

326

1.

t = 1

τ 1
−1(i, a) = 0 ∀(i, a) ∈ Q

The initial values

Q1,0(i, a) arbitrary ∀(i, a) ∈ Q

2. For m = 0 to Nt − 1, do

τ tm(itm, a
t
m) = τ tm−1(itm, a

t
m) + 1

τ tm(i, a) = τ tm−1(i, a), ∀(i, a) 6= (itm, a
t
m), (i, a) ∈ Q

Qt,m+1(itm, a
t
m) =

(
1− γτ tm(itm,a

t
m)(i

t
m, a

t
m)
)
Qt,m(itm, a

t
m)

+ γτ tm(itm,a
t
m)(i

t
m, a

t
m)
(
gm,t + J(itm+1)

)
(D.6)

Qt,m+1(i, a) = Qt,m(i, a), ∀(i, a) 6= (itm, a
t
m), (i, a) ∈ Q

3.

Qt+1,0(i, a) = Qt,Nt(i, a) ∀(i, a) ∈ Q

τ t+1
−1 (i, a) = τ tNt−1(i, a) ∀(i, a) ∈ Q

4. t = t+ 1.

5. go to step 2, if t ≤ n̂; else go to step 6.

6. Return

Q̃(i, a) = Qt,0(i, a) ∀(i, a) ∈ Q 2

327

Note that ‘J(0)’ is defined as zero. Now each starting state of the tth trajectory

it0 ∈ {1, 2, . . . , n} may be chosen based on the past history until that time.

We impose the condition that each state in {1, 2, . . . , n} is visited infinitely

often (i.e. actions are taken from every state in {1, 2, . . . , n} infinitely often) if an

infinite number of trajectories are generated in Algorithm D.4. Since δ ∈ Interior(Λ),

each state action pair (i, a) ∈ Q will be taken infinitely often too.

For example we might choose a probability distribution (concentrated on a

subset of {1, 2, . . . , n}) on the initial state of each trajectory that is identical and

independent of the past. Also the stopping time Nt may be taken to be the first time

the tth trajectory reaches state ‘0’. We assume that there is a positive probability

of reaching any state from the starting states under policy δ ∈ Interior(Λ).

The comments following Algorithm D.1 on the nature of γk(i, a) are also valid

for Algorithm D.4.

Since each state action pair (i, a) ∈ Q is taken infinitely often, standard re-

sults from stochastic approximation theory [16] can be used to show that under

Assumption D.3 we have Qt,0(i, a)
t→∞−→ QJ(i, a) for (i, a) ∈ Q.

Consider the following algorithm.

Algorithm D.5 Let ε̄k be a sequence of positive vectors in Rn such that 0 < ε̄k < ε̃,

where the inequality is componentwise. Here ε̃(i) = 1
|A(i)| , for i ∈ {1, 2, . . . , n}.

1. Set k = 0.

2. Select an arbitrary stationary deterministic policy µ0 ∈ Υ.

328

3. With policy µk run the off-line TD algorithm in Section D.3 (or alternatively

the on-line TD algorithm in Section D.4) for a sufficiently large random num-

ber of trajectories, say ñk, till the cost to go estimates “nearly converges” to

the actual cost to go vector J̃µk . Let J̃k be the estimate obtained at the end of

this TD scheme.

4. Choose the stationary randomized extremal policy δk ∈ Λε̄k associated with

policy µk. Run the Algorithm D.4 with one step terminal cost J̃k using policy

δk for a sufficiently large random number of trajectories, say n̂k till the Q values

“nearly converges” to QJ̃k(i, a) = g(i, a) +
∑n
j=1 pij(a) J̃k(j), ∀(i, a) ∈ Q. Let

Q̃k(i, a), ∀(i, a) ∈ Q be the estimate of the Q values obtained at the end of

Algorithm D.4.

Let

ςk = max

{
max

i∈{1,2,...,n}
|
(
J̃k(i)− J̃µk(i)

)
|, max

(i,a)∈Q
|Q̃k(i, a)−QJ̃k(i, a)|

}

5. Set k = k + 1 and update the policy µk, where

µk(i) = arg min
a∈A(i)

Q̃k−1(i, a), ∀i ∈ {1, 2, . . . , n}

6. Go to step 3.

2

Note that we stick with either the off-line TD scheme or the on-line TD scheme

in step 3, throughout the execution of Algorithm D.5.

329

The number of trajectories simulated, namely ñk, inside the invocation of the

TD scheme in step 3, of Algorithm D.5 may be decided inside the TD scheme for

sufficiently “close convergence” of the cost to go estimate. Similarly the number

of trajectories simulated, namely n̂k, inside the invocation of Algorithm D.4, in

step 4 of Algorithm D.5 may be decided inside Algorithm D.4 for sufficiently “close

convergence” of the Q values.

Though the initial estimate of the cost to go vector when calling the TD scheme

in step 3 of Algorithm D.5 may be arbitrary, we may set it to the final estimate

obtained in the previous iteration (i.e. J̃k−1).

Similarly the initial estimates of the Q values when calling Algorithm D.4 in

step 4 of Algorithm D.5 may be arbitrary, but can be set to the final estimates

obtained in the previous iteration (i.e. Q̃k−1(·, ·)).

We have the following theorem which is similar in spirit to Theorem D.2.

Theorem D.3 Consider Algorithm D.5 on an SSP problem where all stationary

deterministic policies are proper. Assume that Assumption D.1, Assumption D.2

and Assumption D.3 hold.

1. Given any scalar ε > 0, there exists an ε̄ ∈ Rn with 0 < ε̄ < ε̃ and a number

ς > 0, such that if

lim sup
k→∞

ε̄k(i) < ε̄(i), ∀i ∈ {1, 2, . . . , n}

and

lim sup
k→∞

ςk < ς

then lim supk→∞ ‖ J̃µk − J̃∗ ‖< ε and lim supk→∞ ‖ J̃δk − J̃∗ ‖< ε.

330

2. There exists a scalar ς > 0 such that if ςk < ς for all k, then J̃µk converges to

J̃∗ in a finite number of steps (≤ |Υ|). Furthermore given any scalar ε > 0,

there exists a positive vector ε̄ ∈ Rn, with 0 < ε̄ < ε̃, such that, if ε̄k < ε̄, then

‖ J̃δk − J̃µk ‖< ε for all k.

3. In particular if lim supk→∞ ε̄k(i) = 0, ∀i ∈ {1, 2, . . . , n} and lim supk→∞ ςk =

0, then ‖ J̃µk − J̃∗ ‖k→∞−→ 0 and ‖ J̃δk − J̃∗ ‖k→∞−→ 0.

2

Here J̃∗ is the optimal cost to go vector for the SSP problem and ‖ · ‖ is the

sup-norm.

The comments about the choice of δk following Theorem D.2 applies for the

choice of δk in Algorithm D.5 too.

With the equivalent SSP formulation of discounted cost problem, we can solve

the discounted cost optimal cost problem using the above algorithms.

We may also solve the infinite horizon discounted cost problem with discount

factor β (0 ≤ β < 1), directly, with slight variants of Algorithm D.1, Algorithm D.2,

Algorithm D.3, Algorithm D.4 and Algorithm D.5.

See Section D.6 for the variant of the TD schemes for discounted cost problems,

where we try to estimate for a policy δ ∈ Λ, the discounted cost to go vector

Jδ = (I − βPδ)−1ḡδ. Here Pδ is the stochastic transition matrix corresponding to

policy δ, and ḡδ is the immediate cost vector corresponding to policy δ. Note the

variations in the requirements of the eligibility coefficients mentioned in Section D.6.

331

In the offline-line TD scheme (Section D.3) we have the modified temporal difference

dm,t = gm,t + β Jt(i
t
m+1)− Jt(itm)

whereas in the on-line TD scheme (Section D.4) we have the modified temporal

difference

d0
m,t = gm,t + β J0

t,m(itm+1)− J0
t,m(itm)

In the variant of Algorithm D.1 and Algorithm D.2 we try to estimate the

discounted cost to go vector Jδ and the corresponding Q values given by Qδ(i, a) =

g(i, a) + β
∑n
j=1 pij(a) Jδ(j).

Correspondingly we make the following modifications in Algorithm D.1. First

we modify

dm,t = gm,t + β Jt(i
t
m+1)− Jt(itm)

Also in equation D.4 we make the following modification,

Qt,m+1(itm, a
t
m) =

(
1− γτ tm(itm,a

t
m)(i

t
m, a

t
m)
)
Qt,m(itm, a

t
m)

+ γτ tm(itm,a
t
m)(i

t
m, a

t
m)
(
gm,t + β Jt(i

t
m+1)

)

Similarly we make the following modifications in Algorithm D.2. First we

modify,

d0
m,t = gm,t + β J0

t,m(itm+1)− J0
t,m(itm)

Also in equation D.5 we make the following modification,

Qt,m+1(itm, a
t
m) =

(
1− γτ tm(itm,a

t
m)(i

t
m, a

t
m)
)
Qt,m(itm, a

t
m)

+ γτ tm(itm,a
t
m)(i

t
m, a

t
m)
(
gm,t + β J0

t,m+1(itm+1)
)

332

In the variant of Algorithm D.3, in step 3 we try to estimate the discounted cost

to go vector Jδk and the Q values given by Qδk(i, a) = g(i, a) + β
∑n
j=1 pij(a) Jδ(j)

for (i, a) ∈ Q.

In the variant of Algorithm D.4 we try to estimate

QJ(i, a) = g(i, a) + β
n∑
j=1

pij(a)J(j)

Correspondingly in equation D.6 in Algorithm D.4 we make the following modifica-

tion,

Qt,m+1(itm, a
t
m) =

(
1− γτ tm(itm,a

t
m)(i

t
m, a

t
m)
)
Qt,m(itm, a

t
m)

+ γτ tm(itm,a
t
m)(i

t
m, a

t
m)
(
gm,t + β J(itm+1)

)

Similarly in the variant of Algorithm D.5, in step 3, we get J̃k, the estimate

of the discounted cost to go vector Jµk , for policy µk. In step 4 we try to estimate

QJ̃k(i, a) = g(i, a) + β
∑n
j=1 pij(a)J̃k(j) by calling the variant of Algorithm D.4.

As an aside, see [16, Section 6.3] for TD(λ) schemes with linear function ap-

proximation (instead of lookup table schemes) to approximate the cost to go function

for SSP problems for a fixed stationary policy.

333

Bibliography

[1] Abounadi J., Bertsekas D. and Borkar V. S., Learning Algorithms for Markov
Decision Processes with Average Cost, SIAM Journal of Control and Optimiza-
tion, Vol. 40, No. 3, (2001), 681-698.

[2] Abounadi J., Bertsekas D. and Borkar V. S., Stochastic Aprroximation for
Nonexpansive Maps: Application to Q-Learning Algorithms, SIAM Journal of
Control and Optimization, Vol. 41, No. 1, (2002), 1-22.

[3] Apostol T. M., Mathematical Analysis, Addison-Wesley/Narosa, 1974.

[4] Arapostathis A., Borkar V. S., Fernández Gaucherand E., Ghosh M. K. and
Marcus S. I., Discrete-Time Controlled Markov Processes with Average Cost
Criterion: A Survey, SIAM Journal of Control and Optimization, Vol. 31, No.
2, March (1993), 282-344.

[5] Åström K. J., Optimal Control of Markov Processes with Incomplete State
Information, Journal of Mathematical Analysis and Applications, 10, (1965),
174-205.

[6] Åström K. J., Optimal Control of Markov Processes with Incomplete State
Information. II. The Convexity of the Lossfunction, Journal of Mathematical
Analysis and Applications, 26, (1969), 403-406.

[7] Barto A. G., Bradtke S. J. and Singh S. P., Learning to Act using Real-Time
Dynamic Programming, Artificial Intelligence, 72, (1995), 81-138.

[8] Benveniste A., Metivier M. and Priouret P., Adaptive Algorithms and Stochas-
tic Approximations, Springer-Verlag, 1990.

[9] Bertsekas D. P., Convergence of Discretization Procedures in Dynamic Pro-
gramming, IEEE Transactions on Automatic Control, 20, (1975), 415-419.

[10] Bertsekas D. P., Dynamic Programming : Deterministic and Stochastic Models,
Prentice-Hall, Englewood Cliffs, NJ, 1987.

[11] Bertsekas D. P., Dynamic Programming and Optimal Control Vol. 1, Third
Edition, Athena Scientific, 2005.

[12] Bertsekas D. P., Dynamic Programming and Optimal Control Vol. 2, Third
Edition, Athena Scientific, 2007.

334

[13] Bertsekas D. P. and Castanon D. A., Adaptive Aggregation Methods for Infinite
Horizon Dynamic Programming,IEEE Transactions on Automatic Control, Vol.
34, No. 6, June (1989), 589-598.

[14] Bertsekas D. P. and Shreve S. E., Stochastic Optimal Control : The Discrete-
Time Case, Academic Press, 1978.

[15] Bertsekas D. P. and Tsitsiklis J. N., Parallel and Distributed Computation :
Numerical Methods, Prentice Hall, Englewood Cliffs, NJ, 1989.

[16] Bertsekas D. P. and Tsitsiklis J. N., Neuro-Dynamic Programming, Athena
Scientific, Belmont, Massachusetts, 1996.

[17] Borkar V. S., Stochastic Approximation with Two Time Scales, Systems and
Control Letters, 29, (1997), 291-294.

[18] Chrisman L., Reinforcement Learning with Perceptual Aliasing: The Predic-
tive Distinctions Approach, Procceedings of the Tenth National Conference on
Artificial Intelligence (AAAI Press), San Jose, CA, July 12-16 (1992), 183-188.

[19] Dayan P., The Convergence of TD(λ) for General λ, Machine Learning, 8,
(1992), 341-362.

[20] Dayan P. and Sejnowski T. J., TD(λ) Converges with Probability 1, Machine
Learning, 14, (1994), 295-301.

[21] Durrett R., Probability : Theory and Examples, Duxbury Press, 3rd edition,
2005.

[22] Fernandez Gaucherand E., Arapostathis A. and Marcus S. I., Analysis of an
Adaptive Control Scheme for a Partially Observable Controlled Markov Chain,
IEEE Transactions on Automatic Control, Vol. 38, No. 6, June (1993), 987-993.

[23] Hernández-Lerma O., Adaptive Markov Control Processes. Springer-Verlag,
New-York, 1989.

[24] Hernández-Lerma O. and Marcus S. I., Discretization Procedures for Adaptive
Markov Control Processes, Journal of Mathematical Analysis and Applications,
Vol. 137, No. 2,(1989), 485-514.

[25] Horn R. A. and Johnson,. R., Matrix Analysis, Cambridge University Press,
1985.

335

[26] Jaakkola T., Jordan M. I. and Singh S. P., On the Convergence of Stochastic
Iterative Dynamic Programming Algorithms, Neural Computation, 6, (1994),
1185-1201.

[27] Jaakkola T., Singh S. P. and Jordan M. I., Reinforcement Learning Algorithm
for Partially Observable Markov Decision Problem, Advances in Neural Infor-
mation Processing Systems, 7 (NIPS), (1995), 345-352.

[28] Kaelbling L. P., Littman M. L. and Cassandra A. R., Planning and Acting in
Partially Observable Stochastic Domains, Artificial Intelligence, 101, (1998),
99-134.

[29] Konda V. R. and Borkar V. S., Actor-Critic-Type Learning Algorithms for
Markov Decision Processes, SIAM Journal of Control and Optimization, Vol.
38, No. 1, (1999), 94-123.

[30] Konda V. R. and Tsitsiklis J. N., On Actor-Critic Algorithms, SIAM Journal
of Control and Optimization, Vol. 42, No. 4, (2003), 1143-1166.

[31] Littman M. L., Algorithms for Sequential Decision Making, Ph.D. Dissertation,
Department of Computer Science, Brown University, Providence, RI (1996).

[32] Loch J. and Singh S., Using Eligibility Traces to Find the Best Memoryless
Policy in Partially Observable Markov Decision Processes, Proceedings of the
Fifteenth International Conference on Machine Learning (ICML), (1998), 323-
331.

[33] Lovejoy W. S., On the Convexity of Policy Regions in Partially Observed Sys-
tems, Technical Note, Operations Research, Vol. 35, No. 4, July-August (1987),
619-621.

[34] Lovejoy W. S., An Approximate Algorithm, with Bounds, for Composite State
Partially Observed Markov Decision Processes, Proceedings of the 29th IEEE
Conference on Decision Control, Honolulu, Hawaii, December (1990), 1344-
1348.

[35] Lovejoy W. S., A Survey of Algorithms for Partially Observed Markov Decision
Processes, Annals of Operations Research, 28,(1991), 47-66.

[36] Lovejoy W. S., Computationally Feasible Bounds for Partially Observed Markov
Decision Processes, Operations Research, Vol. 39, No. 1, Jan-Feb (1991), 162-
175.

336

[37] Luenberger D. G., Optimization by Vector Space Methods, Wiley Interscience,
1969.

[38] Mahadevan S., Average Reward Reinforcement Learning: Foundations, Algo-
rithms, and Empirical Results, Machine Learning 22, (1996), 159-195.

[39] Monahan G. E., A Survey of Partially Observable Markov Decision Processes:
Theory, Models, and Algorithms, Management Science, Vol. 28, No. 1, January
(1982), 1-16.

[40] Puterman M. L., Markov Decision Processes : Discrete Stochastic Dynamic
Programming, John Wiley and Sons Inc, 2005.

[41] Royden H. L., Real Analysis, Third Edition, Macmillan Publishing Company,
1988.

[42] Rummery G. A., Problem Solving with Reinforcement Learning, Ph.D. Disser-
tation, Cambridge University Engineering Department, Cambridge, England,
July (1995).

[43] Seneta E., Non-negative Matrices and Markov Chains, Springer Verlag, 1981.

[44] Singh S. P., Learning to Solve Markovian Decision Processes, Ph.D. Disserta-
tion, Department of Computer Science, University of Massachusetts, Amherst,
MA (1994).

[45] Singh S. P., Jaakkola T. and Jordan M. I., Learning Without State-Estimation
in Partially Observable Markovian Decision Processes, Machine Learning:
Proceedings of the Eleventh International Conference on Machine Learning
(ICML), (1994), 284-292.

[46] Singh S. P. and Yee R. C., An Upper Bound on the Loss from Approximate
Optimal-Value Functions, Machine Learning, 16, (1994), 227-233.

[47] Smallwood R. D. and Sondik E. J., The Optimal Control of Partially Observable
Markov Processes over a Finite Horizon, Operations Research, Vol. 21, (1973),
1071-1088.

[48] Sondik E. J., The Optimal Control of Partially Observable Markov Processes,
Ph.D. Dissertation, Department of Electrical Engineering, Stanford University,
Stanford, CA (1971).

337

[49] Sondik E. J., The Optimal Control of Partially Observable Markov Processes
over the Infinite Horizon: Discounted Costs, Operations Research, Vol. 26, No.
2, March-April (1978), 282-304.

[50] Sutton R., Learning to Predict by the Methods of Temporal Differences, Ma-
chine Learning, 3, (1988), 9-44.

[51] Tsitsiklis J. N., Asynchronous Stochastic Approximation and Q-Learning, Ma-
chine Learning, 16, (1994), 185-202.

[52] Tsitsiklis J. N., On the Convergence of Optimistic Policy Iteration, Journal of
Machine Learning Research, 3, (2002), 59-72.

[53] Tsitsiklis J. N. and Van Roy B., Feature-Based Methods for Large Scale Dy-
namic Programming, Machine Learning, 22,(1996), 59-94.

[54] Tsitsiklis J. N. and Van Roy B., An Analysis of Temporal Difference Learning
with Function Approximation, IEEE Transactions on Automatic Control, Vol.
42, No. 5, May (1997), 674-690.

[55] Tsitsiklis J. N. and Van Roy B., Average Cost Temporal Difference Learning,
Automatica, 35, (1999), 1799-1808.

[56] Tsitsiklis J. N. and Van Roy B., On Average Versus Discounted Reward Tem-
poral Difference Learning, Machine Learning, 49, (2002), 179-191.

[57] Watkins J. C. H. and Dayan P., Q-Learning, Machine Learning, 8, (1992),
279-292.

338

