
ABSTRACT

Title of dissertation: CURVES AND THEIR APPLICATIONS TO
FACTORING POLYNOMIALS

Enver Ozdemir, Doctor of Philosophy, 2009

Dissertation directed by: Professor Lawrence C. Washington
Department of Mathematics

We present new methods for computing square roots and factorization of poly-

nomials over finite fields. We also describe a method for computing in the Jacobian

of a singular hyperelliptic curve.

There is a compact representation of an element in the Jacobian of a smooth

hyperelliptic curve over any field. This compact representation leads an efficient

method for computing in Jacobians which is called Cantor’s Algorithm. In one part

of the dissertation, we show that an extension of this compact representation and

Cantor’s Algorithm is possible for singular hyperelliptic curves. This extension lead

to the use of singular hyperelliptic curves for factorization of polynomials and com-

puting square roots in finite fields.

Our study shows that computing the square root of a number mod p is equiv-

alent to finding any of the particular group elements in the Jacobian of a certain

singular hyperelliptic curve. This is also true in the case of polynomial factoriza-

tions. Therefore the efficiency of our algorithms depends on only the efficiency of

the algorithms for computing in the Jacobian of a singular hyperelliptic curve. The

algorithms for computing in Jacobians of hyperelliptic curves are very fast especially

for small genus and this makes our algorithms especially computing square roots al-

gorithms competitive with the other well-known algorithms.

In this work we also investigate superelliptic curves for factorization of poly-

nomials.

CURVES AND THEIR APPLICATIONS TO FACTORING
POLYNOMIALS

by

Enver Ozdemir

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2009

Advisory Committee:
Dr. Lawrence C. Washington, Chair
Dr. William Gasarch
Dr. Kartik Prasanna
Dr. Niranjan Ramachandran
Dr. Harry Tamvakis

c© Copyright by
Enver Ozdemir

2009

Acknowledgments

First of all, I want to thank my advisor, Professor Larry Washington, for his

invaluable guidance during my graduate study at University of Maryland. I am

grateful for his willingness to help me with my research and his invaluable feedback

for paper drafts. It has been a really pleasure to work with such an extraordinary

advisor.

I would also like to thank my teachers at University of Maryland, Dr.Niranjan

Ramachandran and Dr.Tom Haines, for inspiring me during my mathematical study.

Prof.Prasanna, Prof.Tamvakis, and Prof.Gasarch deserve a special thanks as my

thesis committee members.

I also want to thank Dr.Ayse Berkman for supporting me to become as a

researcher in mathematics during my undergraduate study.

I would like to thank to my parents and my brother and sisters for their support

and encouragement during my study.

Lastly I want to thank my wife, Zehra, for her support throughout last six

years.

ii

Table of Contents

1 Background 1
1.1 Singular Curves . 1

1.1.1 The Riemann-Roch Theorem for Singular Curves 2
1.1.2 Picard Groups of Singular Curves 3

1.2 Polynomial Factorization Modulo p 7
1.2.1 Square Free Factorization (SFF) 8
1.2.2 Distinct Degree Factorization 9
1.2.3 Final Splitting . 9

1.2.3.1 Cantor-Zassenhaus Split 10
1.2.3.2 Berlekamp’s Algorithm 11

1.3 Computing Square Roots in Finite Fields 11
1.3.1 Shanks’ Algorithm . 12
1.3.2 Schoof’s Algorithm . 13

2 Computing in the Jacobian of a Singular Hyperelliptic Curve 16
2.1 Introduction . 16
2.2 Smooth Hyperelliptic Curves . 17

2.2.1 The Mumford Representation for Smooth Hyperelliptic Curves 18
2.2.2 Cantor’s Algorithm for Smooth Hyperelliptic Curves 19

2.3 Computing in Jacobians of Singular Hyperelliptic Curves 20
2.3.1 The Mumford Representation for Singular Hyperelliptic Curves 20
2.3.2 The Reduction Algorithm . 23

3 Computing Square Roots mod p 28
3.1 Introduction . 28
3.2 A New Algorithm for Computing Square Roots mod p 29

3.2.1 Algorithm 1 . 34
3.3 A Geometric Analogue of Shanks’ Algorithm 36

3.3.1 Algorithm 2 . 38
3.3.2 Algorithm 3 . 39

4 Factorization of Polynomials mod p 42
4.1 Introduction . 42
4.2 Computing in Jacobians of Nodal Curves 44

4.2.1 An Addition Algorithm . 49
4.3 An Algorithm for Polynomial Factorization in Finite Fields 51

5 Factorization of Polynomials mod p with Superelliptic Curves 54
5.1 Introduction . 54
5.2 Superelliptic Curves . 55
5.3 Polynomial Factorizations with Superelliptic Curves 56
5.4 Superelliptic Cubics . 60
5.5 Factorization with Superelliptic Cubics 64

iii

6 Examples 68
6.1 Examples: Computing Square Roots mod p 68
6.2 Polynomial Factorization mod p . 71

Bibliography 74

iv

Chapter 1

Background

1.1 Singular Curves

The methods that we offer for factorization of polynomials and computing

square roots in finite fields heavily depend on the representations of the elements

in Jacobians of singular curves and especially singular hyperelliptic curves. In this

section we present a brief summary about singular curves and their Picard groups.

More details about singular curves can be found in [16].

A curve over a field k is a reduced Noetherian connected scheme of dimension

1. A complete irreducible curve X is called hyperelliptic if there is a morphism

h : X → P1 of degree 2. The Jacobian, Jac(X), of a hyperelliptic curve X is

isomporhic to the identity component, Pico(X), of the group Pic(X) which is the

free abelian group of divisor(Cartier) classes of X modulo principal divisors. The

curves that we use in the following chapters will be over finite fields and to utilize

the equality Jac(X)=Pico(X), we always assume that a curve over a finite field Fq

has at least one Fq-point.

In 1982, Mumford [17] presented a method for compact representation of an

element in the Jacobian of a non-singular hyperelliptic curve. This representation

can be considered as a nice application of the Riemann-Roch theorem and the theory

of Weil divisors on non-singular curves. We describe the extension of this compact

1

representation for singular hyperelliptic curves in chapter 2. This extension is also

based on the Riemann-Roch theorem for singular hyperelliptic curves.

1.1.1 The Riemann-Roch Theorem for Singular Curves

Definition 1.1.1. Let X be an integral projective curve over a field k and D be a

Cartier divisor in the group Div(X) of the Cartier divisors of X. We define:

L(D) = {f ∈ k(X)∗ | div(f) +D ≥ 0 } ∪ {0}

l(D) = dimkL(D)

Theorem 1.1.2. The Riemann-Roch theorem (first form)

Let X be a complete integral projective curve over k and D be in Div(X). Then

l(D) ≥ degD + 1− g (1.1)

where g is the arithmetic genus of X.

Proof. See [21, Section 4.3] or [16, Corollary 7.3.23]

Let OX,P be the local ring at the point P ∈ X and ÕX,P be the integral closure

of OX,P in k(X) where k(X) is the function field of the curve X. Let P be in X.

Then

δP= dim
(
ÕX,P/OX,P

)
is called the degree of singularity at P and by theorem 1 in [18] δP < ∞. Let

cP = {f ∈ k(X)|fÕX,P ⊂ OX,P} be the conductor of ÕX,P into OX,P . Since

2

δP <∞, we have cP 6= 0 and we define deg(cP) = dim
(
ÕX,P/cP

)
.

Theorem 1.1.3. The Riemann-Roch theorem (definitive form)

Let K be a canonical divisor and D be a divisor in Div(X). Then

l(D)− l(K −D) = degD + 1− g (1.2)

if and only if deg(cP) = 2δP for all points P ∈ X. That is the equality holds if and

only if the curve X is Gorenstein.

Proof. See [21, Chapter 4] or [18].

The above theorem is the main ingredient to give sufficient conditions for a

certain divisor D in the Jacobian of a singular hyperelliptic curve to be a unique

representative of its class.

1.1.2 Picard Groups of Singular Curves

Let X be a singular curve over the field k. The curves that we use for com-

putational problems have singularities from self-intersection. As mentioned above,

the compact representations of the group elements of Pico(X) is the main ingredient

for our algorithms. We have sufficient tools to describe the Picard group of a non-

singular hyperelliptic curve and to describe the elements of it and we essentially use

the Picard group of a smooth curve to describe the Picard group of a singular curve.

In order to do this, we need to parametrize the singular curve X by a non-singular

3

curve X ′ and this operation is called resolution of singularities of X. More explicitly

the resolution of singularities means find a smooth curve X ′ such that there exists a

surjective proper morphism π : X ′ → X. Fortunately, for noetherian integral local

rings of dimension one the statements “integrally closed” and “regular” are equiva-

lent. Therefore, we use normalization for resolution of singularities of X. We now

describe this here:

Let {(Ui)} be an open affine cover of X, for each open subset Ui of X let

Ai = OX(Ui) and A′i be the integral closure of Ai in Frac(Ai). Then the injection

Ai → A′i induces a morphism πi: U
′
i → Ui for each i where U ′i =SpecA′i. The πi are

called normalization morphisms. Then gluing the normalizations πi: U
′
i → Ui we

get a finite surjective morphism π : X ′ → X which is the normalization of X.

Lemma 1.1.4. Let X and X ′ be the same as above. There is an exact sequence of

coherent sheaves on X,

0→ OX → π∗OX′ → S → 0 (1.3)

such that S is a skyscraper sheaf.

Proof. The normalization morphism π : X ′ → X of schemes is endowed with a sheaf

morphism f : OX → π∗OX′ . Let U=SpecA be an open affine subset of X and A′=

Spec(OX′(π−1(U))) be the integral closure of A in Frac(A). The restriction of f on

U is exactly the injection map i: A→ A′ which means f is locally injective hence f

is injective globally. Let S be the sheaf associated to presheaf cokerf which makes

the sequence (1.3) exact.

Let V=SpecB be an open affine subset of X not containing a singular point of

4

X. Then the integral closure of B in Frac(B) is again B so the restriction morphism

f on V is surjective. This implies that the support of the sheaf S contains only

the singular points of X which is finite. Hence, S is a skyscraper sheaf on X

and S(U)=
⊕
P∈U

(O′X,P
OX,P

)
=
⊕
P∈U
SP where O′X,P is the integral closure of OX,P in

Frac(OX,P). It is clear that the stalk SP = 0 if P is not a singular point.

Remark 1.1.5. Let P be a singular point of X, the integral closure of OX,P in its

fraction field is
⋂m
i=0OX′,Qi

where π−1(P) = {Q1, . . . , Qm}.

Definition 1.1.6. Let P be the same as above and π−1(P) = {Q1, . . . , Qm} where

π : X ′ → X is the normalization morphism. We say that P is an ordinary singular

point if for an open affine neighborhood U of P

OX(U) = {f ∈ OX′(π−1(U))|f(Q1) = · · · = f(Qm)} (1.4)

Lemma 1.1.7. Let X be a singular curve with only ordinary singular points and

π : X ′ → X is the normalization morphism. Then there exists a surjective homo-

morphism π∗ : Pic(X)→ Pic(X ′) such that the kernel of it consists of a number of

copies of Gm(k).

Proof. We just sketch the basic idea of the proof and for detailed proof, see [16,

Lemma 7.5.12]. Let P be an ordinary singular point of X such that U=SpecA is an

open affine neighborhood of P , π−1(P) = {Q1, . . . , Qn} and B = O′X(π−1(U)). By

lemma 1.1.4, we have a short exact sequence

0→ OX → π∗O′X → S → 0.

5

This complex locally around P is

0→ A→ B → B

A
→ 0.

Then the homomorphisms B∗ → (k∗)n, f 7→ (f(Q1), . . . , f(Qn)) and A∗ → k∗,

a 7→ a(P) induce an isomorphism:

ρ :
B∗

A∗
→ (k∗)n

∆(k∗)
' (k∗)n−1

where ∆ : k∗ 7→ (k∗)n is the diagonal homomorphism.

Let P ∈ X be a singular point such that π−1(P) = {Q1, . . . , Qn} and U be an

open neighborhood of P in X. Then define the open affine curve:

V=Spec{f ∈ OX′(π−1(U))|f(Q1) = · · · = f(Qn)}

As the singular point P varies in X, gluing the corresponding open affine curves

V , we get a curve Y in between X and X ′ such that the normalization morphism

π : X ′ → X factors through π1 : X ′ → Y and π2: Y→ X. We are going to use the

morphism π2 to get the structure of the Picard Group of X.

Lemma 1.1.8. By using the same notations as above, the morphism π2 : Y → X

induces a surjective homomorphism π∗2: Pic(X) →Pic(Y) whose kernel is unipotent

with dimension g(X)− g(Y) where g(X) is the arithmetic genus of X and g(Y) is

the arithmetic genus of Y .

Proof. By lemma 1.1.4 we have an exact sequence

0→ O∗X → π2∗O
∗
Y →

⊕
P

S∗P → 0

6

where SP =

(
O∗Y,P
O∗X,P

)
, which induces an exact cohomology sequence

0→ OX(X)∗ → OY (Y)∗ → S → Pic(X)→ Pic(Y)→ 0 (1.5)

Hence π∗2: Pic(X) →Pic(Y) is onto with kernel S and from [16, Lemma 7.5.12 and

Lemma 7.5.18] S is a unipotent group of dimension g(X)− g(Y).

1.2 Polynomial Factorization Modulo p

In this section, we briefly describe the well-known algorithms, Cantor-Zassenhaus

(C-Z) [7] and Berlekamp [4], for polynomial factorization modulo a prime number

p. We assume the field k = Z/pZ through the section. We also note that there is

no deterministic polynomial time algorithm to find the factors of polynomials in k.

The general strategy for polynomial factorization modulo p can be summarized as

follows:

Let F (x) be a monic polynomial in k[x].

Step 1: Square Free Factorization: Find square-free polynomials Fi(x), i =

1, . . . , n such that

F (x) = F1(x) · F2(x)2 · · · Fn(x)n (1.6)

and Fi(x) are coprime.

Step 2: Distinct Degree Factorization: For each Fi(x), find Fi,d(x) such that

Fi =
∏
Fi,d(x) and Fi,d is the product of irreducible factors of Fi(x) with degree d.

Step 3: Final Splitting: Find irreducible factors of each Fi,d(x).

7

The important step is the step of Final Splitting and the well-known methods

for this step are all probabilistic. We now give a brief description of an algorithm

for each step. More details can be found in [9, Chapter 3].

1.2.1 Square Free Factorization (SFF)

Although there are many algorithms for SFF, all of them are the variations of

the following method.

Let F = F1 · F 2
2 · · · F n

n be a polynomial such that the Fi are square-free and

coprime. Then

F ′ =
∑

0<i<n+1 F1 · · · F i−1
i−1 · i · F i−1

i · F ′i · F i+1
i+1 · · · F n

n

1. Compute D =gcd(F, F ′) which yields D = F2 · F 2
3 · · ·F n−1

n

2. Compute V = F/D which yields V = F1 · F2 · · ·Fn

3. Compute T =gcd (D,D′) which yields T = F3 · F 2
4 · · ·F n−2

n

4. Compute T0 = D/T which yields T0 = F2 · F3 · · ·Fn

5. Compute V/D0 which yields F1

6. Assign F = D and go to (1)

This is one of the necessary steps for C-Z and Berlekamp’s algorithms as well

as our algorithm that we present in chapter 4. The second step of polynomial fac-

torization is Distinct Degree Factorization. This step is necessary only for the C-Z

8

algorithm. Once we finish SFF step, Berlekamp and our algorithm can be used for

final splitting.

1.2.2 Distinct Degree Factorization

Let Fi(x) be a square-free factor of F (x) and Fi,d be a factor of Fi(x) such

that Fi,d is the product of irreducible factors of Fi(x) of degree d. Let T (x) be an

irreducible polynomial of degree d. Then K = k[x]/T (x) is a finite field with pd

elements. Hence any non-zero element of K satisfies the equation xp
d − x. This

means that T (x) is a factor of xp
d − x in k[x]. On the other hand each irreducible

factor of xp
d − x which is not a factor of xp

c − x for c < d has exactly degree d. By

using this idea we can easily find Fi,d by using the following method:

1. T1(x) = Fi(x)

2. Br+1(x) = Fi(x)/gcd(Tr(x), xp
r − x) for r = 2, . . . , d

3. Fi,d(x) =gcd(Fi(x), Bd(x))

1.2.3 Final Splitting

The C-Z algorithm can do Final Splitting in an efficient way, but in many

cases especially for a small prime number p, Berlekamp’s algorithm is much better

than the C-Z algorithm. As we mentioned above Berlekamp’s Algorithm can be

used right after Square Free Factorization.

9

1.2.3.1 Cantor-Zassenhaus Split

This algorithm is based on the following observation:

Theorem 1.2.1. Let Fi,d(x) be the same as above. Then for any polynomial G(x) ∈

k[x] we have

Fi,d(x) = gcd(Fi,d(x), G(x))·gcd(Fi,d(x), G(x)(pd−1)/2+1)·gcd((Fi,d(x), G(x)(pd−1)/2−1)

(1.7)

Proof. See [9, Proposition 3.4.5]

Cantor-Zassenhaus Algorithm: Let Fi,d(x) be the same as above and p

be an odd prime. This algorithm finds the irreducible factors of Fi,d(x).

1. Randomly select a monic polynomial G(x) ∈ k[x] of degree less than 2d.

2. Set H(x) = gcd(Fi,d(x), G(x)(pd−1)/2 − 1). If H(x) = 1 or H(x) = Fi,d(x) go

to (1) otherwise go to (3)

3. Find the factors of H(x) and Fi,d(x)/H(x) by using this algorithm

The probability that C-Z algorithm gives a non-trivial factor of Fi,d(x) in a

single trial is closed to 1/2 [9]. However, for Berlekamp’s algorithm, which we present

now, this probability is always less than 1/2.

10

1.2.3.2 Berlekamp’s Algorithm

Let Fi(x) be a reducible square-free polynomial in k[x]. This algorithm first

finds polynomials G(x) such that

G(x)p ≡ G(x) (mod Fi(x)) (1.8)

These polynomials form a subalgebra which is called the Berlekamp subalgebra. The

polynomials G(x) can be found after constructing a basis for Berlekamp subalgebra.

Then for each G(x) recursively compute gcd(G(x)−s, Fi(x)) for each s ∈ k until the

result is a non-trivial factor of Fi(x). The running time of Berlekamp’s algorithm

depends on p, but it is arguably the most accepted one in practice and it is being

used in some computer software like PARI/GP.

1.3 Computing Square Roots in Finite Fields

An important problem in computational number theory is the computation of

square roots mod p. Although there are some deterministic algorithms working in

some cases, Shanks-Tonelli’s [22] probabilistic algorithm is the most widely accepted

one in practice. There is also a deterministic algorithm for this problem by R. Schoof

[20] but it can only be used for computing square roots of small size numbers, since

its running time depends on the size of a number of which one wants to compute

square root. We use Schoof’s algorithm in one of our algorithms to compute a square

root of 3 modulo p. In this section we present a brief summary of these algorithms.

11

More details can be found in [9]. Our algorithms for this problem will be introduced

in chapter 3.

1.3.1 Shanks’ Algorithm

Let p be an odd prime number and Fp be a finite field with p elements. For

a given number a , we want to find x ∈ Fp such that x2 = a (mod p). Suppose we

know such an x exists in Fp, i.e.

(
a

p

)
=1. There is an easy method for some primes

to find x. For example for primes p ≡ 3 (mod 4) we can say that x ≡ a(p+1)/4 (mod

p) is a square root of a. Since

x2 ≡ a(p+1)/2 ≡ a(p−1)/2a ≡ 1 · a(mod p)

because

(
a

p

)
= 1 ≡ a(p−1)/2 (mod p).

For the half of the remaining primes, that is for p ≡ 5 (mod 8), there is also

a trivial method to find a square root of a in Fp. Because if we have p ≡ 5 (mod 8)

and a(p−1)/2 ≡ 1 mod (p) then a(p−1)/4 ≡ ±1 (mod p).

If a(p−1)/4 ≡ −1 (mod p) consider x ≡ 2a(22a)(p−5)/8 (mod p). Then

x2 ≡ 22a2(22)(p−5)/4a(p−5)/4 ≡ 2(p−1)/2aa(p−1)/4 mod (p).

Since a(p−1)/4 ≡ −1(mod p) and

(
2

p

)
= (−1)(p2−1)/8 = −1, we have x2 ≡ a (mod

p).

For the other case i.e. a(p−1)/4 ≡ 1 (mod p), similarly we can show that if x ≡

−2a(22a)(p−5)/8 (mod p) then x2 ≡ a (mod p).

For primes p ≡ 1 (mod 8), there is no deterministic polynomial time algorithm

to compute square roots mod p. Shanks’ algorithm is the only one used in practice

12

for these primes. We now describe this algorithm here.

The cyclic multiplicative group F∗p is of order p− 1 which is an even number.

Suppose H is the 2-Sylow subgroup of F∗p and z is a generator of H. Then if p−1 =

2ek where k is odd , the order of z is 2e. Let b = ak. Since a(p−1)/2 ≡ (ak)2e−1 ≡ 1

(mod p) , we conclude b ∈ H. Hence b ≡ zr(mod p) for a number r. Note that r is

even, since b2
e−1 ≡ 1 = zr2

e−1
(mod p) and this implies 2e divides r2e−1. Similarly

b−1 ≡ z2e−r ≡ zt (mod p) so t is also even. Then

x ≡ a(k+1)/2zt/2 (mod p) is a square root of a since

x2 ≡ ak+1zt ≡ akzt.a ≡ bb−1a ≡ a(mod p).

Now the important problem is how to find a generator z for the 2-Sylow sub-

group H of F∗p. One can show that for any v such that

(
v

p

)
= −1, z = vk is a

generator of H. Although there is no explicit way to find such a z for all primes , for

a random d ∈ Fp there is 1/2 chance that

(
d

p

)
= −1. This is the only probabilistic

part of this algorithm and the hardest part is to find t such that b−1 ≡ zt (mod

p). For detailed analysis of this algorithm see [9, Chapter 1]. The expected running

time of this algorithm O(ln4p).[9, Section 1.5].

1.3.2 Schoof’s Algorithm

Schoof’s Algorithm for the equation x2 − a ≡ 0 (mod p) gives a solution

deterministically but the running time of this algorithm depends on the size of a.

13

This makes Schoof’s Algorithm non-practical in practice for large numbers. We now

give a brief summary of this method.

Assume a ∈ Fp is a square. We may assume a < 0 since a ≡ a − p (mod p).

We can find an elliptic curve E with complex multiplication by Q(
√
a) and reduce

it mod p.[23] Actually it is not easy in practice to find such a curve for a except

for very small size a. This is the only part that makes running time this method

depend on |a|.

Now suppose we get an elliptic curve E with complex multiplication by Q(
√
a)

and reduce it mod p. Let

d = p+ 1−#E(Fp) = p+ 1− deg(φp − 1)

where #E(Fp) is the number of points on E over the field Fp and φp is the Frobenious

morphism. Consider the polynomial h(x) = x2−dx+ p and assume that α is a root

of h(x). Then we have

αα = p

α + α = d

Since the elliptic curve E has complex multiplication by Q(
√
a) , α and α ∈ Q(

√
a),

i.e. α = u+
√
av where 2u, 2v ∈ Z. Then

d = α + α = (u+
√
av) + (u−

√
av) = 2u and

p = αα = u2 − av2

We get d by computing #E(Fp). We can also compute an integer square root

of
u2 − p
a

in a relatively fast way.[9, Section 1.7] Since we have p = u2 − av2 then

14

(u
v

)2

≡ a (mod p).

We use Schoof’s Algorithm in one of our algorithms to compute square root

of −3 and −1. One can show that the elliptic curves E1 : y2 = x3− x and E2 : y2 =

x3 − 1 have complex multiplication by Q(
√
−1) and Q(

√
−3) respectively. Hence

for computing a square root of −1 or −3 mod p, we just need to know #E1(Fp) and

#E2(Fp).

15

Chapter 2

Computing in the Jacobian of a Singular Hyperelliptic Curve

2.1 Introduction

Cantor’s Algorithm[CAN] gives an efficient way for computing in the Jacobian

of a smooth hyperelliptic curve. This algorithm relies on the Mumford Represen-

tation[17] of the points in Jacobians. This compact representation of points in

Jacobians and Cantor’s algorithm make non-singular hyperelliptic curves suitable

for many applications in cryptography. In this chapter we show the extension of the

Mumford representation for singular hyperelliptic curves. The algorithms that we

present in the following chapters mainly depend on this extension. We also investi-

gate the behavior of Cantor’s algorithm for singular hyperelliptic curves.

The use of non-singular hyperelliptic curves, especially lower genus ones, mainly

depends on the hardness of the Discrete Logarithm Problem (DLP) on their Jaco-

bians in a finite field. The extension of Cantor’s Algorithm for singular hyperelliptic

curves raises the natural question: is DLP hard in the Jacobian of a singular hyper-

elliptic curve in a finite field? The question has an answer for genus 1. For higher

genus the answer is almost the same,[15] i.e. the DLP in the Jacobian of a singular

hyperelliptic curve is at most hard as the DLP in the multiplicative group of the

finite field.

We first describe the Mumford representation and Cantor’s algorithm for non-

16

singular hyperelliptic curves.

2.2 Smooth Hyperelliptic Curves

Let k be an algebraically closed field with characteristic different from 2. A

complete irreducible curveX is called hyperelliptic if there is a morphism h : X → P1

of degree 2. For our purposes we assume a non-singular affine hyperelliptic curve is

defined by an algebraic equation y2 = f(x) where f(x) is of degree 2g + 1 without

repeated roots in k. The coordinate ring k[X] of X is a Dedekind domain and it

is the algebraic closure of the polynomial ring k[x] in the function field k(X) of X.

This observation leads to a connection between the Jacobian of X and the ideal class

group of an imaginary quadratic field. Actually, Cantor’s algorithm is assumed to

be an analogue of the method of composition of binary quadratic forms in the ideal

class group of an imaginary quadratic field.

Consider the plane the curve Y ⊂ P2
k defined by the homogeneous form of

y2 = f(x). Then the curve X is the partial normalization of Y at the point at

infinity, since there is a singularity at the point at infinity of Y . Note that the

geometric genus of X is denoted by g.

The Jacobian, Jac(X), of X is defined as the group of (Weil) divisors of degree

zero modulo principal divisors. More details and proof of the statements here can

be found in [24, Chapter 13].

17

2.2.1 The Mumford Representation for Smooth Hyperelliptic Curves

Let Pi = (xi, yi) be a point on X. The map ω : X → X, ω(xi, yi) = (xi,−yi)

is called the hyperelliptic involution. Let D be a divisor class in Jac(X). Then

D can be written as
∑
i

ni([Pi]− [∞]).

Definition 2.2.1. Let D =
∑
i

ni([Pi]− [∞]) with Pi = (xi, yi) be a divisor class in

Jac(X). D is called a reduced divisor if it satisfies the following:

1. ni ≥ 0 for all i

2. if yi = 0 then ni = 0 or 1

3. if [Pi] with yi 6= 0 occurs in the sum, then [ω(Pi)] does not occur.

4.
∑
i

ni ≤ g.

There is a unique reduced divisor D for each divisor class in Jac(X) [24, Propo-

sition 13.6]. The representation
∑
i

ni([Pi] − [∞]) of a divisor class is not concrete

enough to perform group operations efficiently in Jac(X). The following represen-

tation, which is called the Mumford Representation of a reduced divisor, is a more

suitable representation for computational applications.

Theorem 2.2.2. Let D =
∑
i

ni([Pi]− [∞]) be a divisor class in Jac(X) with ni ≥ 0.

Then there exits a pair (U(x), V (x)) of polynomials corresponding to D satisfying

the following.

1. U(x) is monic

18

2. deg(V (x)) <deg(U(x)) =
∑
i

ni

3. V (x)2 − f(x) is divisible by U(x).

Proof. See [24, Theorem 13.7].

2.2.2 Cantor’s Algorithm for Smooth Hyperelliptic Curves

We can perform the group operation on the Jacobian of a non-singular hyper-

elliptic curve by using only polynomial arithmetic over the field k with the help of

above representation of divisor classes. This method is due to David Cantor. [6]

Cantor’s Algorithm: This algorithm takes two divisor classes D1 = [u1(x), v1(x)]

and D2 = [u2(x), v2(x)] on X and outputs the unique reduced divisor D such that

D = D1 +D2.

1. d = gcd(u1, u2, v1 + v2) with polynomials h1, h2, h3 such that

d = h1u1 + h2u2 + h3(v1 + v2)

2. u =
u1u2

d2
and v ≡ h1u1v2 + h2u2v1 + h3(v1v2 + f)

d
(mod u)

repeat:

3. ũ =
v2 − f
u

and ṽ ≡ v (mod ũ)

4. u = ũ and v = ṽ

until deg (u) ≤ g

5. multiply u by a constant to make u monic.

Note that the Mumford Representation[17] and Cantor’s Algorithm[6] works for any

field of odd characteristic and genus.

19

2.3 Computing in Jacobians of Singular Hyperelliptic Curves

We show in this section that the above methods for smooth hyperelliptic curves

can be extended to singular hyperelliptic curves. The curve X : y2 = f(x) is singular

if f(x) has a multiple root (degf(x) is still 2g+1). The curve X ′ is the normalization

of X. The singular points of X are of the form (a, 0) where a is a root of f(x) with

multiplicity greater than 1. Note that the arithmetic genus of the curve is g. In the

remaining part of this section we prove the following statement: any divisor class D

in Jac(X) has a unique representative (u(x), v(x)) satisfying the following:

1. u(x) is a monic polynomial in k[x]

2. deg(v(x)) <deg(u(x)) ≤ g

3. v(x)2 − f(x) is divisible by u(x).

4. if u(x) and v(x) are multiples of (x− a) for a singular point (a, 0) then

f(x)− v(x)2

u(x)
is not a multiple of (x− a).

We also show that Cantor’s Algorithm works as the same way as in the non-singular

case.

2.3.1 The Mumford Representation for Singular Hyperelliptic Curves

Definition 2.3.1. Let X be a singular hyperelliptic curve defined by an algebraic

equation y2 = f(x) where f(x) is a polynomial of degree 2g+ 1. Let S be the set of

singular points of X and k[X] be the coordinate ring of X and k(X) be its function

field. We define

20

1. Pic(X)={ group of 1-cycles D =
∑

i niPi, Pi ∈ X−S modulo: D v 0 if D =

div(h(x)) for some h(x) in the function field k(X) of X, h(x) is continuous,

finite and nonzero at each point in S. }

2. Pic(X) ∼= CaCl(X) = the group of isomorphism classes of Cartier divisors

modulo linear equivalence.

3. Pic(X) is the group of all isomorphism classes of invertible (locally free of rank

1) OX-modules.

Remark 2.3.2. The three definitions of Pic(X) are equivalent. ([16, Proposition

7.1.18 and Corollary 7.1.19], [17, Section 3], [21, Chapter 11])

Definition 2.3.3. Jac(X) is the identity component Pico(X) of the algebraic group

Pic(X) [5, Chapter 8] which is the degree zero divisor classes of Pic(X).

Theorem 2.3.4. Let D be in Jac(X). Then D corresponds to a pair of polynomials

(U(x), V (x)) satisfying

1. V (x)2 − f = U(x)Ũ(x) for some polynomial Ũ(x).

2. U(x) is monic.

3. deg(V (x)) <deg(U(x)).

4. U(x) is not zero at singular points of X.

Remark 2.3.5. There is one point at infinity which is (0:1:0) and denoted by ∞.

Although this point is singular for the curve X : y2 = f(x) if deg(f(x)) ≥ 2,

21

we always assume that X is the partial normalization of the curve defined by the

homogeneous form of the curve y2 = f(x) at the point infinity.

Proof. Let D be in Pico(X). Then D =
∑

i ni(Qi) where Qi = (qi, ri) are non-

singular points of X. The divisor of the form (Qj) + ω(Qj) − 2(∞) is a divisor

of a function x − qj where again Qi = (qj, rj) are non-singular points of X. Now

by adding suitable multiples of the divisors (Qi) + ω(Qi) − 2(∞) to D, we may

assume D =
∑

i ni((Qi) − (∞)) where ni > 0, Qi and ω(Qi) are not in the sum

simultaneously. Then consider the function U(x) =
∏

i(x − qi)
ni . We may solve

the congruences W (x)2 = f(x) (mod (x− qi)ni) for each i as in [24, Theorem 13.5].

Then combining all solutions by using the Chinese Remainder Theorem we get a

polynomial Ṽ (x) such that V (x) ≡ Ṽ (x) (mod U(x)) is the polynomial satisfying

above properties.

Let D1 =
∑

j nj((Qj)− (∞)) and D2 =
∑

jmj((Qj)− (∞)) be two divisors in

Jac(X) where Qi, Qj are non-singular points of X. Define

gcd(D1, D2) =
∑

j min{nj,mj}((Qj)− (∞)).

Consider the polynomial y−V (x) which is a principal Cartier divisor of X. By [24,

Proposition 13.4] div(y − V (x))=
∑

imi((Qi) − (∞))+
∑

jmj((Pj) − (∞))) where

mi ≥ ni and Pi’s are different from Qj’s. Then we see that

D = gcd(div(U(x)), div(y − V (x))).

Definition 2.3.6. Let X be a hyperelliptic curve defined by the algebraic equation

y2 − f(x) where f(x) is a monic of odd degree polynomial. Let A = OX(X) and

HX be the set of pairs of polynomials (U(x), V (x)) in A satisfying

22

1. U(x) is a monic polynomial.

2. V (x)2 − f(x) is divisible by U(x).

3. deg(U(x)) > deg(V (x))

The pair (U(x), V (x)) in HX is called a singular if for some singular point (a, 0) of

X, (x− a) divides U(x), V (x), and
V (x)2 − f
U(x)

.

2.3.2 The Reduction Algorithm

The reduction algorithm is the key operation to get a unique representative of

a divisor class in a Jacobian. Let X be the same as above and (U(x), V (x)) be a

pair of polynomials in HX representing the divisor D in Jac(X). We do :

1. Ũ(x) =
V (x)2 − f(x)

U(x)

2. Ṽ (x) ≡ −V (x) (mod Ũ(x))

3. set U(x) = Ũ(x), V (x) = Ṽ (x)

4. Multiply U(x) by a constant to make U(x) monic.

Proposition 2.3.7. Let (U(x), V (x)) be a non-singular pair in HX and X be a

singular hyperelliptic curve defined by y2 = f(x). Suppose the reduction algorithm

on (U(x), V (x)) produces (Ũ(x), Ṽ (x)). Then the new pair (Ũ(x), Ṽ (x)) is also a

non-singular element of HX .

23

Proof. Suppose (a, 0) is a singular point of X. If (x− a) divides U(x), then (x− a)

divides V (x) since (x− a) divides f(x) and f(x)−V (x)2 is divisible by U(x). Then

(x − a) does not divide Ũ(x) =
V (x)2 − f(x)

U(x)
, since (U(x), V (x)) is non-singular.

Hence the new the pair (Ũ(x), Ṽ (x)) is non-singular.

Now suppose (x− a) does not divide U(x) but divides Ũ(x) =
V (x)2 − f(x)

U(x)
.

That means (x − a) is a factor of V (x). We know Ṽ (x) ≡ −V (x) (mod Ũ(x)), i.e.

Ṽ (x) = −V (x) + h(x)Ũ(x) for some polynomial h(x), so (x − a) is also a factor of

Ṽ (x). Now (x− a) divides both members of (Ũ(x), Ṽ (x)) but

˜̃
U(x) =

Ṽ (x)2 − f(x)

Ũ(x)
=

(−V (x) + h(x)Ũ(x))2 − f(x)

Ũ(x)

=
V (x)2 − 2V (x)h(x)Ũ(x) + h(x)2Ũ(x)2 − f(x)

Ũ(x)

=
V (x)2 − f(x)

Ũ(x)
+
−2V (x)h(x)Ũ(x) + h(x)2Ũ(x)2

Ũ(x)

=U(x)− 2V (x)h(x) + h(x)2Ũ(x)

is not divisible by (x−a). Hence the new pair (Ũ(x), Ṽ (x)) is also non-singular.

Lemma 2.3.8. Let D be a divisor in Jac(X) corresponding to the non-singular

pair (U(x), V (x)) in HX . Suppose that by applying the reduction algorithm we get

the pair (Ũ(x), Ṽ (x)). Then (Ũ(x), Ṽ (x)) also represents the same divisor class as

(U(x), V (x)).

24

Proof. We are using definition 1 for Pic(X), i.e. D =
∑

i niPi, and Pi’s are non-

singular points of X. By construction, U(x) does not have a factor (x− ai) for any

singular point (ai, 0) of X. Hence the pair (U(x), V (x)) is non-singular.

Let A = OX(X) = k[x, y]/(y2 − f). We have y2 − f = y2 − V 2 + UŨ =

(y+ V)(y− V) +UŨ = 0 in A. Then the ideal I = (U(x), y− V (X)) ⊃ (y2− f(x))

has the same support with D and it defines the zero dimensional subscheme D of

X.

First we show that any ideal I = (U(x), y−V (x)) of A such that (U(x), V (x)) is

non-singular inHX is an A-module of rank 1. For this, it is enough to show Im ∼= Am

for all maximal ideals of A. The isomorphism is clear when I 6⊆ m. Assume I ⊆ m

where m = (x − a, y − b) for some a, b ∈ A1
k and b 6= 0. We have I ⊆ m and

this implies b = V (a) , hence y + V (x) 6∈ m. Then y − V (x) =
U(x)Ũ(x)

y + V (x)
which

means Im = (U(x))m ∼= Am. Now suppose b = 0. Then (x − a) is a factor of U(x)

and V (x). Since the pair (U(x), V (x)) is non-singular, (x−a) does not divide Ũ(x).

Then the equality U(x) =
(y − V (x)(y + V (x)

Ũ(x)
implies that Im = (y−V (x))m ∼= Am.

Therefore the ideal (U(x), y − V (x)) is an invertible ideal of A.

Now consider the ideal J = (Ũ(x), y+V (x)). The ideal J corresponds to a non-

singular pair (Ũ(x),−V (x)) of HX . Therefore it is also an A-module of rank 1. We

have J = (Ũ(x), y+V (x)) = (Ũ(x), y−(−V (x)) = (Ũ(x), y−(−V (x)mod(Ũ(x))) =

(Ũ(x), y − Ṽ (x)). Note that J =

(
y + V (x)

U(x)

)
I. Hence I and J are isomorphic

invertible A-submodules of Frac(A) which means they represent the same class in

Pic(X)=CaCl(X).

25

Definition 2.3.9. Let (U(x), V (x)) be a non-singular element of HX and g be the

arithmetic genus of X. We call the pair (U(x), V (x)) reduced if degU(x) ≤ g.

Remark 2.3.10. Note that the arithmetic genus of X defined by y2 = f(x) where

degf(x) = 2g + 1 is g and its geometric genus is the arithmetic genus of the nor-

malization X ′ of X.

Theorem 2.3.11. Let D =
∑

i niQi be a divisor class in Jac(X) such that Qi are

non-singular points. Then there exists a unique reduced pair (Ũ(x), Ṽ (x)) represent-

ing the class of D.

Proof. Let (U(x), V (x)) be a non-singular representative of D such that deg(U(x))

is greater than the arithmetic genus g of X. Then we have degf(x) <2degU(x) and

degV (x)2 < 2degU(x). Since U(x)Ũ(x) = f(x) − V (x)2 and deg(f(x) − V (x)2) <

2degU(x), we get degŨ(x) <degU(x). This means that in each step of the reduction

algorithm the degree of the pair is decreasing. Therefore applying the reduction

algorithm finitely many times to (U(x), V (x)), we get a reduced non-singular pair

(Ũ(x), Ṽ (x)) in the same divisor class as D. As for uniqueness we need to use

the definitive form of the Riemann-Roch Theorem. Since we already know from

chapter 1 that the curve X is a Gorenstein curve, and the Riemann-Roch is similar

to the case where X is non-singular except that we use arithmetic genus instead of

geometric genus. Actually for smooth curves these two numbers are equal. For the

rest of the proof see [24, Proposition 13.6].

Cantor’s Algorithm Let D1 =
∑

i niPi and D2 =
∑

jmjQj be divisors in

Pico(X) corresponding to pairs (U1, V1) and (U2, V2) with Pi, Qj non-singular points.

26

1. Let d=gcd (U1, U2, V1 + V2) with polynomials h1, h2, h3 such that d = U1h1 +

U2h2 + (V1 + V2)h3.

2. Let V0 = (U1V2h1 + U2V1h2 + (V1V2 + f)h3/d.

3. Let U = U1U2/d
2 and V ≡ V0(mod U) with degV < deg U .

4. Multiply U by a constant to make it monic.

The pair (U, V) is the Mumford representation of the divisor class of D1 +D2.

Proof. See [24, Theorem 13.10]. The resulting pair (U, V) may not be reduced but

it is non-singular since U1, U2 are not divisible by (x − ai) for any singular points

(ai, 0) of X. We use the reduction algorithm to make (U, V) reduced.

27

Chapter 3

Computing Square Roots mod p

3.1 Introduction

As we mentioned in the first chapter that there is no known practical deter-

ministic algorithm to find a square root of a number modulo a prime number p.

We also mentioned that Shanks’ algorithm is the only one that used in practice. In

this section we present a new approach for computing square roots and a geometric

analogue of Shanks’ Algorithm. The efficiency of the new algorithm that we present

here depends on the efficiency of performing group operation on the Jacobian group

of a singular hyperelliptic curve of genus 1. A hyperelliptic curve with genus one

is called an elliptic curve. Since elliptic curves are the main tools for many crypto

systems, there have been very efficient methods offered for performing group op-

eration on the group of an elliptic curve. For elliptic curves, the Jacobian group

and the group of the points on the curve are isomorphic. The most efficient avail-

able algorithm for computing in groups of elliptic curves over finite fields involves

only addition and multiplication of numbers in finite fields.[8, Section 13] Since the

running time of our algorithm depends on only the running time of an addition

algorithm in the group of an elliptic curve, it is expected that our algorithm should

be asymptotically faster than Shanks’ algorithm.

28

3.2 A New Algorithm for Computing Square Roots mod p

Since we already have trivial methods for all primes except primes p ≡ 1 (mod

8), we assume all primes p ≡ 1(mod 8). Hence p − 1 = 2nm for some n ≥ 3 and

(m, 2) = 1.

In this part we work with some particular singular hyperelliptic curves over

a finite field k = Fp. The curves that we use here have only nice singularities, i.e.

nodes. The general form of a nodal curve in this section is y2 = x(x− a1)
2 . . . (x−

an)2 for distinct ai’s. We show in a moment that the Jacobian group of a nodal

curve is isomorphic to the group Gm1 ⊕· · ·⊕Gmn where Gmi
is a cyclic subgroup of

F∗p2 of order p− 1 or p+ 1. The main idea of the proof comes from the observation

of constructing nodal curves from non-singular curves. For this, consider the curve

P1
k over a field k. It has Pico(P1

k) = 0, i.e. every divisor of degree zero is a divisor of

a function. Let ai, bi for i = 1, . . . , n be n pairs of points on P1
k. We identify each ai

with the corresponding bi for i = 1, . . . , n. Then we obtain a singular hyperelliptic

curve X with only nodes. Note that the normalization X ′ of X is just P1. We

can perform group operations on Jac(X) in many different ways[17, section 3.5] or

[21, Chapter IV]. However we are going to use the Mumford Representation and

Cantor’s Algorithm for the group operation as we described in previous chapter.

We begin with the easiest case. Let A and B be two different points on P1.

We denote by X the curve obtained from P1 by identifying A with B. The canonical

map π : P1 → X is the normalization morphism of X. By lemma 1.1.4, that induces

an exact sequence

29

0→ OX(X)→ OX′(X ′)→ SA → 0

where the last map OX′(X ′)→ SA is given by evaluation of a function f ∈ OX′(X ′)

at A minus evaluation of it at B. That shows that the regular functions on X are

exactly the functions on P1 that have the same value at A and B. This short exact

sequence induces a long exact cohomology sequence

0→ Ho(X,O∗X)→ Ho(P1, O∗P1)→ S∗A → Pic(X)→ Pic(P1)→ 0.

Since we have Pico(P1) = 0, Pico(X) ' S∗A. By lemma 1.1.4, we get SA =

(O′X,A
OX,A

)
where O′X,A is the integral closure of OX,A which is equal to OP1,A ∩ OP1,B. The

curve X is analytically isomorphic to the curve y2 = x(x− a)2, which is a singular

hyperelliptic curve of arithmetic genus 1, which is an elliptic curve. The normaliza-

tion morphism π : P1 → X maps two identified points A′ and B′ in P1 to the point

(a, 0) on X.

We are going to investigate the structure of the Jacobian of a hyperelliptic

curve over a finite field. From now on, the ground field k is a finite field with charac-

teristic p different from 2. The Pic(X) of the singular elliptic curveX : y2 = x(x−a)2

with a 6= 0 is S∗P =

(
O∗′X,P
O∗X,P

)
where P = (a, 0) ∈ X and O′X,P is the integral closure

of OX,P .

Theorem 3.2.1. Let X be the same as above, i.e. it is a singular hyperelliptic curve

defined by an algebraic equation y2 = x(x − a)2, a 6= 0, over a field k = Fq with

q = pn points. Then Jac(X) is isomporhic to the cyclic multiplicative group F ∗q if

a is square in Fq and isomorphic to a subgroup of F∗q2 of order q + 1 if a is not a

square in Fq.

30

Proof. See [24, Theorem 2.30].

Lemma 3.2.2. Let E : y2 = x(x+ a)2 with a 6= 0 be a singular elliptic curve over a

field Fp. Then any non-principal divisor class in Jac(E) has a unique representative

in HE of the form [(x+ a)2, t(x+ a)] for some t ∈ Fp.

Proof. Let A = {[(x + a)2, i(x + a)]
∣∣ i ∈ Fp and i2 6= −a if

√
−a exists in Fp } be

a subset of HE. The reduced form of Di = [(x+ a)2, i(x+ a)] is [(x− i2), i(i2 + a)]

so Di 6= Dj for i 6= j in Fp which means the inclusion map g : A →Jac(E) is

injective. Note that Di is a non-singular element of HE unless i is a square root

of −a in Fp. Now suppose −a is not a square in Fp. Then by theorem 3.2.1,

#Jac(E) = p+ 1 = #
(
A∪ {[1, 0]}

)
. Similarly, #Jac(E) = p− 1 = #

(
A∪ {[1, 0]}

)
if a is a square in Fp. Therefore, the map g is one-to-one and onto.

Lemma 3.2.3. Let E : y2 = x(x+a)2 be the same as above and a be a square ∈ F∗p.

Then the reduced non-singular pair [x − a, 2a
√
a] of HE corresponds to a divisor

class D ∈ Jac(E) such that D is of order 4. Similarly the divisor class D2 ∈ Jac(E)

corresponding to

[
x− a

3
,

4a

3

√
a

3

]
is of order 3.

Proof. Let t ∈ Fp and P = [(x + a)2, t(x + a)] be an element of HE. P is a non-

singular element of HE unless t is a square root of −a. By lemma 3.2.2 any divisor

class in Jac(E) has a unique representative in HE of the form [(x + a)2, t(x + a)]

for some t ∈ Fp. Now we use Cantor’s Algorithm as described above to compute 2P .

1. Let say u1 = (x+ a)2, u2 = u1, v1 = t(x+ a), v2 = v1.

31

2. gcd(u1, u2, v1 + v2)= gcd((x+ a)2, (x+ a)2, 2t(x+ a)) = (x+ a)

3. h1 = 0, h2 = 0, h3 = 1/(2t)

4. v0 =
(h1u1v2 + h2u2v1 + h3(v1v2 + f))

(x+ a)
=

(x(x+ a) + t2(x+ a))

(2t)

5. ũ =
u1u2

(x+ a)2
= (x+ a)2

6. v ≡ v0(mod ũ) v = rem(x(x+ a) + t2(x+ a), 2t(x+ a)2) = (rem(x+ t2, 2t(x+

a)))(x+ a) =

(
t2 − a

2t

)
(x+ a)

7. u = ũ and v =

(
t2 − a

2t

)
(x+ a) and 2P = [u, v]

Now P is of order 4⇔ 2P is of oder 2⇔ v = 0⇔ t2 − a
2t

= 0⇔ t2 = a i.e. P

is of order 4⇔ P = [x− a, 2a
√
a] or P = [x+ a,−2a

√
a] and similarly

1. P is of order 3 ⇔ 2P = −P

2. 2P =

[
(x+ a)2,

(
t2 − a

2t

)
(x+ a)

]
= [(x+ a)2,−t(x+ a)] = −P

3.

(
t2 − a

2t

)
(x+ a) = −t(x+ a)

4. −t =
t2 − a

2t
i.e. 3t2 = a .

Hence P is of order 3 if and only if t =
√
a/3 which implies P =

[
x− a

3
,

4a

3

√
a

3

]
Since E is an elliptic curve, we can also use standard point addition formula for

elliptic curves to prove the lemma. In this case we may represent each divisor class

D in Jac(E) by a non-singular point P = (x, y) on E and use point addition method

as described in [24, section 2.2]. In a similar way as above one can show that P is

of order 4 iff either P = (a, 2a
√
a) or P = (a,−2a

√
a).

32

Although it is already known that 3 is not a square for primes p ≡ 2 (mod 3),

we show this as a corollary of the previous lemma.

Corollary 3.2.4. 3 is a quadratic non-residue in Fp where p ≡ 2 (mod 3) (by default

p ≡ 1 (mod 8)).

Proof. Assume p ≡ 2 (mod 3) and a is a square mod p which implies −a is also a

square. Then the order of singular the elliptic curve E : y2 = x(x + a)2 is p− 1. If

3 is a square in Fp, by lemma 3.2.3 we must have a point of order 3. Hence 3 must

divide p− 1 but p− 1 ≡ 1 (mod 3).

We now know 3 is a quadratic non-residue for primes p ≡ 2 (mod 3). Hence

Shanks’s algorithm finds the square root of a number deterministically for primes

p ≡ 2 (mod 3). From now on we may also assume all primes p ≡ 1 (mod 3). Note

that we already have p ≡ 1 (mod 8).

Proposition 3.2.5. Let p ≡ 1 (mod 8) be a prime number and E : y2 = x(x + a)2

be a singular elliptic curve over a field Fp where a is a square mod p. Then the

probability that a random point D ∈ E is of order divisible by 4 is at least 3/4 and

if we also assume p ≡ 1 (mod 24) then the probability that a random point D ∈ E

is of order divisible by 4 or 3 is at least 11/12.

Proof. Since a is a square in Fp, the group Jac(E) is cyclic of order p − 1 where

p − 1 = 2n3ms for some non-negative integer n ≥ 3,m ≥ 0 and (s, 6) = 1. Hence

33

Jac(E) ' Z/3mZ⊕ Z/2nZ⊕ Z/tZ. Then the probability of the order of D being a

multiple of 4 is (2n − 2)/2n. For the second part i.e. assuming m ≥ 1, note that

Jac(E) has Z/24Z as a quotient. So the chance of a random divisor D has order

divisible by 4 or 3 is at least 22/24.

The first algorithm that we see below first searches a point of order divisible

by 4. We can say that the chance for a random prime p ≡ 1 mod(8) and a random

divisor class D in Jac(E) is of order divisible by 4 is 5/6, since

∞∑
i=3

1

2i−2

(
2i − 2

2i

)
=
∞∑
i=3

1

2i−2

(
1− 2

2i

)

=
∞∑
i=3

1

2i−2
− 8

4i
= 1− 8(1/43 + 1/44 + 1/45 + . . .)

= 1− 1/6 = 5/6

3.2.1 Algorithm 1

Algorithm 1 for Computing Square Roots:

Input: a number a and an odd prime number p such that a is a quadratic residue

mod p and p− 1 = 4em = 2e1m1 and (m, 4) 6= 4, (2,m1) = 1 with e > 1, e1 > 2 .

Output:
√
a mod p.

Let E : y2 = x(x+a)2 be a singular elliptic curve over Fp. Note that Jac(E)is cyclic

of order p− 1. Let P∞ be the identity element and P2 = (0, 0) be the point of order

2 in Jac(E). We do

repeat :

1. pick a random point P = (x, y) on E.

34

2. Compute Q = mP .

until Q is not P∞ or P2 in E.

repeat :

3. Q1 = 2iQ for i = 0, . . . , e1 − 1.

4. Compute Q = Q1 = (z, w)

until z = a

5. compute w/2a which gives
√
a mod p

It is easy to show that, steps 2 and 3 of the algorithm 1 requires at most 2lgp

steps consisting of doubling and addition in the group Jac(E). If we use projective

coordinates each doubling or addition costs approximately 12lgp steps [8, Chapter

13]. Overall the expected running time for computing
√
a mod p is O(lg2p).

If the point Q in the step 2 is not P∞ or P2, then its order must be a multiple

of 4. That means a power of Q of the form 2i must be a point of order 4. Hence, if

we must get z = a in the second part of the algorithm if the order of Q is a multiple

of 4 by lemma 3.2.3. Therefore we reach the point Q = (a,∓2a
√
a). The first

part of algorithm 1 searches a point of order multiple of 4 on E. The probability

that a random point P on E is of order divisible by 4 for a random prime p is 5/6

by proposition 3.2.5. For a fixed prime p such that p − 1 = 2nm1, (m1, 2) = 1,

the chance is (2n − 2)/2n. Therefore, in practice, we will find such a point P very

quickly. For example the probability that one can find such a P after 4 steps is more

than 99/100. We may modify the algorithm by searching for a point P of order a

35

multiple of not just 4 but also 3. This increases the chance of success at the first

part to at least 11/12 for a point P . However in this case we also need to know
√

3

which can be computed by Schoof’s algorithm. Although we will have the same the

asymptotic running time, Schoof’s algorithm increases the heuristic running time.

3.3 A Geometric Analogue of Shanks’ Algorithm

Now we are going to use nodal curves with larger arithmetic genus to describe

a method to compute square roots. This method will be a geometric interpretation

of Shanks’ method. Now pick 2 pairs of points ai, bi ∈ P1 and identify each ai

with bi. We get a nodal curve X with only two ordinary singularities such that the

canonical map π : X ′ = P1 → X is the normalization morphism of X. Using similar

notations as above, we have an exact sequence

0→ OX(X)→ OX′(X ′)→
⊕
ai

Sai
→ 0

This short exact sequence induces a long cohomology sequence so that we have

Pic(X) ' S∗a1
⊕ S∗a2

. Now consider the nodal curve H : y2 = x(x− a)2(x− b)2 over

a field Fp for non-zero distinct a and b. The curve H is analytically isomorphic to

the curve X. Let π : P1 → H be the normalization morphism such that π−1(p1) =

{a1, b1} and π−1(p2) = {a2, b2}, where p1 = (a, 0) , p2 = (b, 0). Now as in the case

of singular elliptic curve we have

Theorem 3.3.1. Let H be the singular hyperelliptic curve defined by y2 = x(x −

a)2(x − b)2 with a, b 6= 0 over a field k = Fq with q = pn points. Then Jac(H) is

isomorphic to the group Ga ⊕Gb such that Ga (or Gb) ' F∗q if a (or b) is a square

36

and Ga (or Gb) isomorphic to a subgroup of F∗q2 of order q + 1 if a (or b) is not a

square in Fq.

Proof. Let p1 = (a, 0), p2 = (b, 0) be the singular points on H. The discussion above

shows that Jac(H) ' S∗p1 ⊕ S
∗
p2

where Spi
=

(
O′H,pi

OH,pi

)
and O′H,pi

is the integral

closure of OH,pi
. From theorem 3.2.1, S∗p1(or S∗p2) is isomorphic to F∗q if a (or b) is a

square and a subgroup of F∗q2 of order q + 1 if a (or b) is not a square in Fq.

Proposition 3.3.2. Let H be a hyperelliptic curve defined by y2 = (x)(x2 − a)2

over a field Fq and a be a square in Fq. Then for any t 6=
√
a ∈ F∗q, D = [(x2 −

a)2, t(x2 − a)] ∈ Jac(H) is the sum of D1 = [(x −
√
a)2,m(x −

√
a)] and D2 =

[(x+
√
a)2,−m(x+

√
a)] for some m ∈ F∗q.

Proof. We need to check first if [(x2 − a)2, t(x2 − a)] is non-singular in HH , i.e.

whether t2 =
√
a. Now assume it is non-singular in HH and let D1 = (U1, V1) =

[(x −
√
a)2,m(x −

√
a)], and D2 = (U2, V2) = [(x +

√
a)2,−m(x +

√
a)]. We use

Cantor’s Algorithm to find D1 +D2.

1. gcd(U1, U2, V1 + V2(= −2m
√
a)) = 1 and h1 = 0, h2 = 0 and h3 =

1

−2m
√
a

.

2. V0 = (U1V2h1+U2V1h2+(V1V2+f)h3)/d = (−m2(x2−a)+x(x2−a)2)/(−2m
√
a).

3. U = (x2 − a)2 and V ≡ V0 ≡
m

2
√
a

(x2 − a) mod ((x2 − a)2).

Hence for m = (2
√
a)t we have D1 +D2 ' [(x2 − a)2, t(x2 − a)] ' D.

Corollary 3.3.3. Let H be the same as above and p ≡ 3(mod 4). Suppose a is a

square in Fq. Let D be a divisor in Jac(H) corresponding to a non-singular pair

37

[(x2 − a)2, (x2 − a)]. Then (q − 1)D corresponds to [(x+
√
a)2, r(x+

√
a)] for some

r ∈ Fq if
√
a is a square in Fq otherwise [(x−

√
a)2,m(x−

√
a)] for some m ∈ Fq .

Proof. Since p ≡ 3 (mod 4) ,

(√
a

p

)
= −

(
−
√
a

p

)
. Hence the order of Jac(H) is

(p − 1)(p + 1). Suppose
√
a is a square mod p. Let p1 = (

√
a, 0), p2 = (−

√
a, 0)

be the singular points of H. We know Pico(H) ∼=
O′H,p1
OH,p1

⊕
O′H,p2
OH,p2

. Let D1 =

((x−
√
a)2, 2

√
a(x−

√
a) and D2 = ((x+

√
a)2, 2

√
a(x+

√
a) be divisors in Jac(H).

We have D1 ∈
O′H,p1
OH,p1

and D2 ∈
O′H,p2
OH,p2

, so the order of D1 divides p − 1 and the

order of D2 divides p + 1. Then by Proposition 3.3.2, D = D1 + D2. Therefore

(p− 1)D = (p− 1)D1 + (p− 1)D2 = (p− 1)D2 = ((x +
√
a)2, r(x +

√
a)) for some

r ∈ Fq. Note that any multiple of D2 is of the form ((x+
√
a)2, l(x+

√
a)) for some

l ∈ Fp.

3.3.1 Algorithm 2

input: A square number a in Fp.

output:
√
a ∈ Fp.

Let H : y2 = x(x2 − a)2 be a singular hyperelliptic curve over Fp and p ≡ 3

(mod 4).

1. pick a random D = [(x2 − a)2, t(x2 − a)] ∈Jac(H) for some t ∈ F ∗p .

2. compute (p− 1)D.

38

By previous corollary, the output at step 2 is [(x−
√
a)2, n(x−

√
a)] for some

n ∈ F∗p hence the algorithm returns a
√
a ∈ Fp. This method can be considered a

geometric analogue of the well-known trivial method that we described in the first

chapter.

3.3.2 Algorithm 3

Proposition 3.3.4. Let p ≡ 1 (mod 8) be a prime number and H : y2 = x(x −

(b+
√
a)2)(x−(b−

√
a))2 = x(x2−2bx+b2−a)2 be a singular hyperelliptic curve over

a field Fp. Assume a is a square. If b2−a is not a square in Fp we can find a square

root of a mod p by computing (p−1)D = (p−1)[(x2−2bx+b2−a)2, (x2−2bx+b2−a)]

in Jac(H).

Proof. Since b2 − a is quadratic non-residue mod p and a is a square,

(
b−
√
a

p

)
=

−
(
b+
√
a

p

)
. WLOG we may assume b−

√
a is a square mod p. Then #Jac(H) =

(p−1)(p+1). We know D = [(x2−2bx+b2−a)2, (x2−2bx+b2−a)] = D1+D2 for some

D1 = [(x− (b−
√
a))2, t1(x− (b−

√
a))] and D2 = [(x− (b+

√
a))2, t2(x− (b+

√
a))].

D1 has order dividing p − 1 and D2 has order dividing p + 1. Hence (p − 1)D =

(p − 1)D1 + (p − 1)D2 = (p − 1)D2 = [(x − (b +
√
a))2, r(x − (b +

√
a))] for some

r ∈ Fp.

Let us assume a is a square mod p. Now pick a random number b ∈ Fp

and consider the hyperelliptic curve H : y2 = x(x − (b +
√
a))2(x − (b −

√
a))2 =

x(x2 − 2bx + b2 − a)2 over a field Fp and p ≡ 1 (mod 8). The probability that

b2 − a is a quadratic non-residue mod p is 1/2. In this case for a random point

39

D = [(x2 − 2bx + b2 − a)2, t(x2 − 2bx + b2 − a)] in Jac(H), (p − 1)D is equal to

[(x− (b∓
√
a))2, r(x− (b∓

√
a))] for some r ∈ Fp. Suppose b2−a is a square mod p.

We now explain in this case we may still find
√
a. We can easily determine the order

of Jac(H) which is either (p − 1)2 or (p + 1)2. We have three points in Jac(H) of

order 2. They are P0 = [x, 0], P1 = [(x− (b−
√
a))2, 0] and P2 = [(x− (b+

√
a))2, 0].

The probability that D is of even order is at least 3/4. Now assume D is of even

order and #Jac(H) = 2em such that e > 0 and (m, 2) = 1. Then (2imD) is of

order 2 for some i = 0, . . . , e − 1 and the chance that it is either P1 or P2 is 2/3.

Since, as explained above, we already have 1/2 chance to reach
√
a by computing

the (p− 1)th power of D, overall we have at least
1

2
+

1

2
· 3

4
· 2

3
=

3

4
chance to find

a square root of a mod p by using a single divisor class D ∈ Jac(H). We have just

justified the following algorithm.

Algorithm 3:

Input: A square number a mod p where p ≡ 1 (mod 8)

Output: A square root of a mod p

1. Pick a random number b mod p and let H : y2 = x(x2 − 2bx+ b2 − a)2

2. Compute (p−1)D in Jac(H) where D = [(x2−2bx+b2−a)2, (x2−2bx+b2−a)]

3. if (p−1)D is of the form [(x−(b±
√
a))2, t1(x−(b±

√
a))] return

√
a otherwise

i.e. [1, 0] go to step 4

4. Determine e such that p− 1 = 2ev with (v, 2) = 1

5. Compute D̃ = vD

40

6. if D̃ = [1, 0] go to step 1 otherwise do

repeat:

7.
˜̃
D = 2sD̃ for e = 0, . . . , e− 1

8. Compute D̃ =
˜̃
D

until: D̃ = [h(x), 0]

9. if h(x) = x go to step (1) otherwise return
√
a

Since addition of the points in Jac(H) requires polynomial gcd, the expected

running time of algorithm 3 is not better than algorithm 1. Although this can

be considered a geometric analogue of Shanks-Tonelli’s algorithm, we have greater

chance to find
√
a mod p in a single trial. Actually, as we showed, the probability

that the algorithm returns a square root in a single trial is 3/4. The asymptotic

running time of this algorithm is the same as Shanks-Tonelli’s algorithm which is

O(lg3p).

41

Chapter 4

Factorization of Polynomials mod p

4.1 Introduction

We described the Mumford Representation and Cantor’s Algorithm for singu-

lar hyperelliptic curves in the second chapter. The efficiency of Cantor’s Algorithm

makes hyperelliptic curves suitable for many applications. There are many crypto

systems whose key ingredient is a hyperelliptic curve. In this chapter we investigate

another application of hyperelliptic curves especially singular hyperelliptic curves.

This application is factorization of polynomials over finite fields. The methods,

which we describe in this chapter, for polynomial factorization can also be used

with non-singular hyperelliptic curves. However we will see that in this case one

needs to know the order of their Jacobians and at least one non-trivial element of

them, which requires tedious work for especially higher genus. On the contrary we

have many trivial tools to determine the order of a singular hyperelliptic curve’s

Jacobian and a point in it. We describe them later in this chapter.

One of the main ideas that we use for factorization of polynomials can be

illustrated as follows. Let f(x) be a monic square-free polynomial of degree 3 with

coefficients in a field k. Consider the non-singular hyperelliptic(elliptic) curve X

of arithmetic genus 1 defined by the algebraic equation y2 = f(x). The Jacobian,

Jac(X), of the elliptic curve X is the same group as the group of the points on the

42

elliptic curve. Namely each point (x, y) on the curve represents a unique divisor

class in Jac(X). Suppose the group Jac(X) has even order. This means there exists

a point (a, b) of order 2, i.e. b = 0 and (x−a) is a factor of f(x). Hence the problem

of factoring f(x) is reduced to determining an element of order 2 in Jac(X). Assume

a point P = (x, y) is of even order on the curve and #Jac(X) = 2m(2n + 1) for

m 6= 0, n ∈ Z. Then the 2i(2n + 1)th power of P gives us a point of order 2 for

some 0 ≤ i < m. If Jac(X) is of odd order, we conclude that f(x) is an irreducible

polynomial in k[x]. We extend this idea to use for factorization of polynomials of

any degree.

We described the well-known algorithms for polynomial factorization mod p

in chapter 1. We now generalize the ideas of the previous section to find a factor of

a polynomial over a finite field k = Fp with p elements where p is a prime number.

Consider a square-free polynomial f(x) of degree n in k[x]. We know that the poly-

nomial f(x) is irreducible if and only if f(x) divides xp
n − x and is coprime to the

polynomial xp
n/q − x for each prime q divides n [9, Proposition 3.4.4]. Hence, the

primality test for f(x) can be done in a reasonable amount of time, so we assume

f(x) is not an irreducible polynomial throughout this chapter.

In the previous chapter we used nodal curves with at most two singular points

for computing square roots. Now we are going to use nodal curves with any number

of singularities for factorization of polynomials. The Jacobian of such a curve is

always a direct sum of cyclic subgroups of the multiplicative group of a field which

is a finite extension of k.

43

4.2 Computing in Jacobians of Nodal Curves

Let k = Fp be a finite field with p elements. In this section we investigate

group operation and the representation of group elements of the Jacobian of a nodal

curve of the form y2 = xf(x)2 for a square-free polynomial f(x) ∈ k[x].

Proposition 4.2.1. Let f(x) be a reducible square-free polynomial of degree n in

k[x] and q1(x), q2(x) be non-constant polynomials in k[x] such that q1(x)q2(x) divides

f(x) and (q1(x),q2(x))=1. Let H : y2 = xf 2(x) be a singular hyperelliptic curve

over k. Suppose the divisor class Dq ∈Jac(H) corresponds to the non-singular pair

[q2
1(x)q2

2(x), t(x)q1(x)q2(x)] in HH for some polynomial t(x) ∈ k[x]. Then

Dq = [q2
1(x)q2

2(x), t(x)q1(x)q2(x)] = [q2
1(x), h̃1(x)q1(x)]+[q2

2(x), h̃2(x)q2(x)] = Di1+Di2

for some polynomials h̃1(x), h̃2(x) in k[x].

Proof. Consider divisor classes Di1 = [u1, v1] = [q2
1, t(x)q1(x)q2(x)] and Di2 =

[u2, v2] = [q2
2, t(x)q1(x)q2(x)]. Although we may have deg(ui) ≤ deg(vi), we can

see that the invertible OH-modules I = (ui, y − vi) and J = (ui, y − (vi(mod ui)))

are the same for i = 0, 1. Hence [ui, vi(mod ui)] represents the same divisor class

as [ui, vi] for i = 0, 1. Since the pair [q2
1(x)q2

2(x), t(x)q1(x)q2(x)] is non-singular in

HH , [q1(x)2, t(x)q1(x)q2(x)] and [q2(x)2, t(x)q1(x)q2(x)] are also non-singular. Now

we compute Di1 +Di2 by using Cantor’s Algorithm

1. gcd(q2
1, q

2
2, t(x)q1(x)q2(x) + t(x)q1(x)q2(x)) = gcd(q2

1, q
2
2) = 1

2. (r1(x)q1(x)2 + r2(x)q2(x)2 + r3(x)(2t(x)q1(x)q2(x)) = 1 for some polynomials

44

r1(x), r2(x) and r3(x) = 0

3. Then u = q2
1q

2
2 and

4. v = r1q
2
1tq1q2+r2q

2
2tq1q2+(r3)(t

2q2
1q

2
2+xf 2) = tq1q2(r1q

2
1+r2q

2
2) = t(x)q1(x)q2(x)

5. hence Di1 +Di2 = [u, v] = Dq

Corollary 4.2.2. Let f(x) = f1(x) . . . fm(x) and f1(x), . . . , fm(x) be the irreducible

factors of f(x). Let H : y2 = xf(x)2 be a singular hyperelliptic curve and D be the

divisor class in Jac(H) corresponding to the non-singular pair [f(x)2, h(x)f(x)] for

some polynomial h(x) ∈ k[x] such that deg(h(x)) <deg(f(x)). Then,

D = [f(x)2, g(x)f(x)] = [f 2
1 (x), h1(x)f1(x)]+· · ·+[f 2

m(x), hm(x)fm(x)] = D1+· · ·+Dm

for some polynomials hj(x) with deg(hj(x)) <deg(fj(x)) for j = 0, . . . ,m.

Proof. By using the above proposition with induction on m, we get the result.

Lemma 4.2.3. Let f(x) ∈ k[x] be a reducible square-free polynomial such that

f1(x) ∈ k[x] is an irreducible factor of it. Let H : y2 = xf 2(x) be a hyperelliptic

curve over k. Assume deg(f1(x)) = d1 and F is the set of the divisor classes in

Jac(H) corresponding to the non-singular pairs of the form [f1(x)2, t(x)f1(x)] such

that t(x) ∈ k[x] with deg(t(x)) < d1. Then F is a subgroup of Jac(H) and the order

of any element of it divides either pd1 − 1 or pd1 + 1.

45

Proof. Any pair of the form [f1(x)2, t(x)f1(x)] is non-singular iff gcd(x−t(x)2, f1(x)) =

1. We claim that for any two divisor classes D1 = [f1(x)2, t1(x)f1(x)] and D2 =

[f1(x)2, t2(x)f1(x)] where f1(x) is an irreducible factor of f(x), D1 + D2 is either

[f1(x)2, t3(x)f1(x)] in F or [1,0]. By applying Cantor’s Algorithm on D1 and D2, we

have

1. g(x)=gcd(f(x)2
1, f(x)2

1, (t1(x)+ t2(x))f1(x)) = f1(x) ·gcd(f1(x), t1(x)+ t2(x))=

f1(x) or f1(x)2, since f1(x) is an irreducible polynomial.

2. if g(x) = f1(x)2 then u(x) = 1 otherwise u(x) = f1(x)2.

3. if u(x) = f1(x)2, then v(x) = t3(x)f1(x) for some polynomial t3(x) ∈ k[x] of

degree less than d1, since (v(x)2 − xf(x)) is a multiple of u(x).

4. Therefore D1 +D2 = [f1(x)2, t3(x)f1(x)] ∈ F or [1, 0]

This shows that F is a subgroup of Jac(H).

Now we show that any element of F divides either pd1−1 or pd1 +1. The roots

of f1(x) are in Fpd1 . Suppose f1(x) = (x − α1) . . . (x − αd1) in Fpd1 [x] and consider

the curve H over Fpd1 . Then the set Fαi
consisting of reduced divisors of the form

[(x − αi)2, β(x − αi)] for β ∈ Fpd1 is a subgroup of Jac(HF
pd1

), since fαi
= x − αi

is an irreducible factor of f(x) in Fpd1 [x]. The reduced pair [(x− αi)2, β(x− αr)] is

non-singular iff β 6= √αi. Hence the order of subgroup Fαi
of Jac(HF

pd1
) is pd1 − 1

if
√
αi exists in Fpd1 and pd1 + 1 otherwise. By proposition 4.2.1, [f1(x)2, t(x)f1(x)]

in Jac(HF
pd1

) is a sum of divisors of the form Di = [(x − αi)2, βi(x − αi)] for some

βi ∈ Fpd1 . Then consider

46

(pd1 − 1)[f1(x)2, t(x)f1(x)] = (pd1 − 1)
(
Di + · · ·+Dd1

)
=

(pd1 − 1)
(

[(x− αi)2, βi(x− αi)] + · · ·+ [(x− αd1)2, βd1(x− αd1)]
)
.

Since the the pair [f1(x)2, t(x)f1(x)] corresponds to a divisor class in Jac(HFp), then

(pd1 − 1)[f(x)2, g(x)f(x)] is in Jac(HFp). Suppose only some Di disappear in this

operation. Then by Cantor’s Algorithm, the result must be of the form [f̃1(x)2, h1(x)]

where f̃1(x) is a non-trivial factor of f1(x) and h(x) is a polynomial. Since f1(x)

is an irreducible polynomial in Fp[x], it is impossible that only some Di disappear.

That means either all Di’s disappear or none. Hence the order of each Dj divides

either pd1 + 1 or pd1 − 1. Therefore the order of [f1(x)2, t(x)f1(x)] divides either

pd1 + 1 or pd1 − 1.

Proposition 4.2.4. Let f(x) be a square-free reducible polynomial of degree n in

k[x] and H : y2 = xf(x)2 be a singular hyperelliptic curve over k. Suppose the

divisor class D in Jac(H) corresponds to the non-singular pair [f(x)2, h(x)f(x)] for

some polynomial h(x) ∈ k[x] such that deg(h(x)) <deg(f(x)). Then the (pi ± 1)

power of D for i = 1, . . . , d̃ gives either a factor of f(x) or the pair [1, 0] where

d̃ =max{dj =degree of a irreducible factor of f(x)}.

Proof. Suppose the irreducible factors of f(x) are f1(x), . . . , fm(x) with deg(fj(x)) =

dj for j = 0, . . . ,m. By proposition 4.2.1, we have

D = [f(x)2, h(x)f(x)] = [f 2
1 (x), h1f1(x)]+ · · ·+[f 2

m(x), hm(x)fm(x)] = D1 + · · ·+Dm

for some polynomials hj(x) with deg(hj(x)) <deg(fj(x)) for j = 0, . . . ,m. From

47

lemma 4.2.3, the order of Dj divides either pdj + 1 or pdj − 1. Hence the (pi ± 1)th

power of D for some i = 1, . . . , d̃ =max{dj} annihilates either some of Dj’s or or all

of Dj’s .

We now show that if the rth of power of D for some r ∈ Z annihilates only

some of Dj’s, we get a non-trivial factor of f(x). Now

rDj = r · [f 2
j (x), hj(x)fj(x)] = [f 2

j (x), h̃j(x)fj(x)]

for some polynomial h̃j(x) with deg(h̃j(x)) <deg(fj(x)), since by lemma 4.2.3, the

set of the divisor classes in Jac(H) corresponding to the non-singular pairs of the

form [fj(x)2, t(x)fj(x)] is a subgroup of Jac(H). We also see that if fl(x) and fs(x)

are relatively prime factors of f(x),

[f 2
l (x), hl(x)fl(x)] + [f 2

s (x), hs(x)fs(x)] = [f 2
l (x)f 2

s (x), hls(x)fl(x)fs(x)]

for some polynomial hls(x) with deghls <degfl(x)+degfs(x).

Now suppose rD = r · (D1 + · · · + Dj · · · + Dm) annihilates {Djs1
, . . . , Djsr

}

but do not annihilate {Dj1 , . . . , Djb}. Then

r ·D = r ·
(

[f 2
1 (x), h1f1(x)] + · · ·+ [f 2

m(x), hm(x)fm(x)]
)

=
(

[f 2
j1

(x), h̃j1fj1(x)] + · · ·+ · · ·+ [f 2
jb

(x), h̃jb(x)fjb(x)]
)

= [f 2
j1

(x) . . . f 2
jb

(x), h(x)] = D̃ for some polynomial h(x). The first component of D̃

is a square of non-trivial factor of f(x).

48

4.2.1 An Addition Algorithm

Let f(x) be a square-free reducible polynomial with degree n in k[x], H and

D be the same as above. In order to find a factor of f(x), proposition 4.2.4 suggests

that we need to compute some certain powers of D. To compute a power of D, we

perform the addition operation for divisors of the form [f 2, gf]. We can do this by

using the standard methods, i.e. Cantor’s Algorithm with the Reduction algorithm.

However the following addition algorithm shows that we do need to use the reduction

algorithm for addition operation of these kinds of divisors.

Addition Algorithm:

input: Divisor classes Di = [f 2, gif] in Jac(H) for some polynomials gi of degree

less than n for i = 1, 2 where H is the curve defined by y2 = xf(x)2.

output: The algorithm returns Ds = Di +Dj = [f 2, gif] + [f 2, gjf] or a non-trivial

factor of f(x).

We do

1. gcd(f, gi + gj) = r(x). If r(x) 6= 1, r(x) is a factor of f(x) otherwise do

2. find hi, hj such that hif + hj(gi + gj) = 1

3. u = f 2 and gs ≡ (fhigi + hj(gigj + x))(modf) with deg(gs) < n

4. v = gsf and Ds = [u, v].

Proof. Now we justify the addition algorithm by applying Cantor’s Algorithm to

Di +Dj

49

1. gcd(f 2, f 2, gif + gjf) = f(x)·gcd(f, f, gi + gj)

= f(x)·gcd(f, gi+gj) = f(x)·r(x) with hi, hj such that hif+hj(gi+gj) = r(x)

2. If r(x) 6= 1, r(x) is a factor of f(x) otherwise do

3. u1 =
f 2f 2

f 2
= f 2 and

v0 =
(hif

3gi + hj(gigjf
2 + xf 2))

f
= hif

2gi + (hj)(gigjf + xf)

4. v1 ≡ v0 mod(f 2) ≡ hif
2gi + hj(gigjf + xf)(modu1 = f 2)

=
(

(fhigi + hj(gigj + x))(modf)
)
f =

(
gs

)
f with deg(gs) < n

5. Di +Dj = [u1, v1] = [u, v] = Ds

The above algorithm is basically an application of the fact that any a power of

D = [f 2, gf] is again of the form [f 2, gif] for some polynomial gi(x). This is the

reason that we do need to the use reduction algorithm while computing a power of D.

In the real time implementation performing addition for the divisors of the

form [f 2(x), g(x)f(x)] by using the addition algorithm is at least twice as fast in

some situations because we are not using the reduction algorithm. However, if

deg(f(x)) is large, using the reduction algorithm makes Cantor’s Algorithm more

efficient.

50

4.3 An Algorithm for Polynomial Factorization in Finite Fields

Now we are going to use above ingredients to construct a method for polyno-

mial factorization over finite fields. Note that we have

D = [f(x)2, h(x)f(x)] = [f 2
1 (x), h1f1(x)]+ · · ·+[f 2

m(x), hm(x)fm(x)] = D1 + · · ·+Dm

where fj(x) are irreducible factors of f(x) and hj(x) are polynomials in k[x] with

deg(hj(x)) <deg(fj(x)) for j = 1, . . . ,m. In order to find a factor of f(x), we need

to compute (pi±1)D for i = 0, . . . , d̃ where d̃ =max{degfj(x)}. Then by proposition

4.2.4, we get either a factor of f(x) or [1, 0]. Suppose (ps ± 1)D = [1, 0] for some

s = 0, . . . , d̃. This occurs with the probability 1/2m where m is the number of

factors of f(x) since it means that orders of all Dj’s divide (ps ± 1). Hence this is

very unlikely if f(x) has more than 3 factors. However, even in this case we have

still a big chance to find a factor of f(x).

Now let us assume that (pd1 − 1)D = [1, 0] and pd1 − 1 = 2e1k1 for some

integer e1 > 0 and odd integer k1. If the order of D is even, (2jk1)D gives us an

element of order 2 in Jac(H) for some j = 0, . . . , e1 − 1. The detailed analysis of

the representation of 2-torsion points shows that the elements of order 2 in Jac(H)

must be of the form [x, 0], [f 2
j (x), 0], [xf 2

j (x), 0] for some non-trivial factors fj(x)

of f(x). Hence (2jk1)D gives either a factor of f(x) or [x, 0]. The probability that

order of D is even and its (2jk1)
th power gives a factor of f(x) is (2m− 2)/2m where

m is the number of factors of f(x). We have just verified the following algorithm :

51

Factorization Algorithm :

input: A square free polynomial f(x) in k[x] with deg(f(x)) = n, where k = Fp.

output: A non-trivial factor of f(x) in k[x].

Let H be the hyperelliptic curve defined by y2 = xf 2(x) over k[x]. The algorithm

stops once it finds a non-trivial factor of f(x).

1. pick a random polynomial g(x) in k[x] such that deg(g(x)) < n.

2. compute r(x)=gcd(g(x), f(x)), if r(x) 6= 1 stop since r(x) is a factor of f(x),

otherwise

3. if D = [f 2(x), g(x)f(x)] is singular we have gcd(x − g2(x), f 2(x)) = h(x) 6= 1

and h(x) is a non-trivial factor of f(x). In this case return h(x) and stop.

Otherwise do

4. compute (pi ± 1)D by using above addition algorithm for i = 0, . . . , n

(pi ± 1)D gives either a factor of f(x) or [1, 0]. If it gives a factor of f(x),

stop. Otherwise, assume (pi ± 1)D = [1, 0] for some i = 0, . . . , n and do

5. compute m and e such that pi ± 1 = 2em with (m, 2) = 1 and e > 0.

6. compute Q = mD. If Q = [1, 0] go to step 1 otherwise do

repeat :

7. Q1 = 2jQ for j = 0, . . . e− 1

8. Q = Q1 = [u, v]

until v = 0

52

9. if u 6= x stop since in this case u(x) is a multiple of non-trivial factor of f(x),

otherwise go to step 1

We need to do at most 2d̃lgp steps of addition in the steps 4, 5 and 6 where

d̃ is maximum of the degrees of irreducible factors of f(x). Performing addition of

divisors requires approximately O(n2) bit operations. Overall the time taken to find

a factor of f(x) depends on cube of n and logp. Hence, Factorization Algorithm

has almost the same asymptotic running time as the algorithm for Distinct Degree

Factorization [9, 3.4.3] which is one of the necessary step for Cantor-Zassenhaus

algorithm. On the other hand the well-known Berlekamp Algorithm has running

time proportional to p [9, Algorithm 3.4.10]. We see from above discussion that

the Algorithm 3 finds a non-trivial factor of f(x) in a single trial with probability

at least close to 7/8. However, Cantor-Zassenhaus algorithm finds a a non-trivial

factor in a single trial with probability at most 1/2 and in the case of Berlekamp

algorithm, the probability is less than 1/2 [9, Section 3]. We give examples in the

last chapter to illustrate the above algorithms.

53

Chapter 5

Factorization of Polynomials mod p with Superelliptic Curves

5.1 Introduction

As we saw in the previous chapter, the idea of using hyperelliptic curves for

factorization of polynomials and for computing square roots in finite fields provides

very efficient methods for both problems. In this chapter, we investigate superelliptic

curves for an answer to the natural question: How does the method for polynomial

factorization work if one uses other curves instead of hyperelliptic curves?

The efficiency of the method in the previous chapter depends on the meth-

ods for computing in the Jacobian of a singular hyperelliptic curve. This is also

true for the methods using superelliptic curves. Fortunately, there have been effi-

cient methods obtained for computing in the divisor class group of a superelliptic

curve.[1,11,12,13,14] The main idea of these methods come from computation algo-

rithms in ideal class groups in number fields since the coordinate ring of the curve

over the base field k is a Dedekind domain over k[x] and its ideal class group is

isomorphic to k-rational points of the Jacobian of the curve. From this, one can

represent a divisor class in the Jacobian by the basis elements of the corresponding

module over the ring k[x].[1] The investigation of this representation shows that the

n-torsion subgroup of the Jacobian of the curve yn = f(x) contains divisors classes

whose representations consist of non-trivial factors of f(x). This observation is one

54

of the main ideas of the work in this chapter.

5.2 Superelliptic Curves

A superelliptic curve C over a field k is an algebraic curve with only one point

at infinity and defined by an algebraic equation of the form yn = f(x) where f(x) is

a monic polynomial without repeated roots and n is coprime to deg(f(x)) and chark.

The most efficient known algorithm takes O(g2) bit operations for an addition of

divisors where g is the genus of the curve.[11]

The efficient methods for computations in the Jacobians of superelliptic curves

are essentially analogous to the methods for computations in ideal class groups in

number fields. The analogy is essentially based on the fact that the ideal class group

of the coordinate ring k[C] in the function field k(C) is isomorphic to the k-rational

points of the Jacobian of the curve.

The analogy of Hermite Normal Form in number fields gives that a divisor

class in the Jacobian has a k[x]-module representative with a basis of the form

[a1,1(x), a2,2(x)y+a2,1(x), . . . , an,n(x)yn−1 + · · ·+an,1(x)], where ai,j(x) ∈ k[x]

and deg aj,i <deg ai,i for 1 ≤ i < j ≤ n with ai+1,i+1(x)|ai,i(x) [11], [9]. This

representation geometrically says that for any divisor class D there is a unique

effective divisor E with degE ≤ g such that D ∼ E − m(∞). From now on we

represent a divisor class D ∈ Jac(C) as a k[x]-module (or an ideal of k[C]) with a

basis of this kind.

55

Let I = [a1,1(x), a2,2(x)y + a2,1(x), . . . , an,n(x)yn−1 + . . . an,1(x)] be a k(x)-

module representing a divisor class D. Then deg D=deg I =deg(
∏n

1 ai,i(x)). We

say that I is a reduced representative of D if it has the minimal degree in the divisor

class D. Thus any divisor class D is uniquely represented by a reduced ideal I of

the above form.[11, Proposition 4].

The following algorithm gives the reduced representative for a divisor class

D1 +D2 (i.e. I1 · I2)[11]

1. Find a representative for the multiplication I = I1I2.

2. Find a representative for the inverse class I−1 of I.

3. Find an element α in I−1 such that it has a minimal norm in I−1.

4. I3 = (α)/I−1 is the reduced ideal in the class of I.

5.3 Polynomial Factorizations with Superelliptic Curves

Now we are going to use the same idea as described in chapter 3 to investigate

the use of superelliptic curves for factorization of polynomials in finite fields. We

first present the relation between the representative of a divisor class and the factors

of a polynomial f(x) for the superelliptic curve C : yn = f(x).

Lemma 5.3.1. Let C : yn = f(x) be a superelliptic curve over a field k. Suppose

d=deg f(x) and n ≥ 3. Then the curve C has geometric genus g = (d−1)(n−1)/2.

56

Proof. The curve C is an n-fold cover of the projective line and there is only one

point at infinity, denoted by∞. Hence there are d+ 1 ramified points on C and the

final result is from Hurwitz’s Theorem.

Since the affine superelliptic curve C is non-singular, the coordinate ring k[C]

is a Dedekind domain which is also the integral closure of k[x] in the function field

k[C]. We also note that if ζn is a primitive nth root of unity, the automorphisms

σin : (x, y)→ (x, ζ iny) of the curve C correspond to the elements of the Galois group

G of k(C) over k(x).

LetD =
∑

jmj(Pj) be a divisor class in Jac(C) represented by the k[x]-module

I = [a1,1(x), a2,2(x)y+a2,1(x), . . . , an,n(x)yn−1 + · · ·+an,1(x)]. The first term a1,1(x)

determines the first coordinates and multiplicities of the finite points Pj’s in the

support of D. That is, if a1,1(x) =
∏

(x− cj)mj then the point Pj = (cj, bj) is in the

support of D with multiplicity mj. The elements ai,i(x) for i > 1 describe the first

coordinates of the points Pj’s whose ith Galois conjugates P
σi

n
j are in the support

of I. For example if a2,2(x) =
∏

(x − cr)mr then P
σ2

n
r = (cr, ζ

2
nbr) is in the support

of D with multiplicity mr.

Theorem 5.3.2. Let C : yn = f(x) be a superelliptic curve over the field k and

I = [a1,1(x), a2,2(x)y + a2,1(x), . . . , an,n(x)yn−1 + · · ·+ an,1(x)] be a k[x]-module cor-

responding to a divisor class D in Jac(C). If a1,1(x) is a factor of f(x), then the

order of the divisor class D divides n in Jac(C).

Proof. Let (x−ai) be a factor of f(x). Then div(x−ai) = n(Pi)−n(∞) where (Pi)

is the divisor class of the point Pi = (ai, 0). Thus the order of the divisor class of

57

(Pi)−(∞) divides n. Since a1,1 is a factor of f(x), each (Pk) in the sum D =
∑

k(Pk)

is of order dividing n. Hence D is of order dividing n. We note that each (Pk) has

multiplicity one since a1,1(x) can not have a multiple root.

Now consider the square-free reducible polynomial f(x) over a finite field k.

Let n be a prime number so that the curve defined by C : yn = f(x) is a superelliptic

curve. Suppose #Jac(C)(k)=nem, (n,m)= 1, and D ∈ Jac(C). If the order of D is

divisible by n then (nim)th power of D must pass through an n-torsion of Jac(C) for

some i = 0, . . . , e. The above theorem says that the divisor classes represented by

I = [a1,1(x), a2,2(x)y + a2,1(x), . . . , an,n(x)yn−1 + · · · + an,1(x)] with a1,1(x) a factor

of f(x) are of order n. Hence the (nim)th power of D may be in I and in this case

the first coordinate of I gives us a non-trivial factor of f(x).

The above discussion suggests the following factorization algorithm for a square-

free reducible polynomial f(x) over a finite field Fq.

Factorization Algorithm:

1. Construct a superelliptic curve C by using the polynomial f(x) so that a

certain torsion subgroup of Jac(C), say S, contains divisor classes whose co-

ordinates consist of factors of f(x).

2. Find the order of Jac(C).

3. Select a random element D in Jac(C).

4. Determine if some power of D is in the subgroup S.

58

The idea of the above factorization algorithm is the same as the idea described

in chapter 3. The efficiency of the constructed algorithm depends on:

1. The ratio of the number divisor classes in S whose coordinates consist of

factors of f(x) to the number of elements in S.

2. The efficiency of point counting in Jac(C).

3. The efficiency of finding an element in Jac(C).

4. The efficiency of computing in Jac(C).

Consider a square-free reducible polynomial f(x) that we want to find the

factors of. In most cases we consider either non-singular type yn = (xi +a0)f(x) for

i = 1 or 2, or singular type yn = xf(x)n to find a non-trivial factor of f(x). If we

consider the non-singular type, the first criterion about efficiency of the factorization

algorithm suggests that n should be as small as possible, since from the previous

theorem the subgroup that we are interested in is the subgroup of n-torsion of the

Jacobian which is isomorphic to
⊕2g

i=1 Z/nZ where g is the arithmetic genus of a

curve. Considering the second and third criteria, the reasonable choice should be

singular curves. The fourth one also recommends that the integer n should be as

small as possible.

The factorization algorithm was investigated for n = 2 in chapter 3. Now

based on the above discussion, the next choice should the superelliptic curves with

n = 3 which are called superelliptic cubics.

59

5.4 Superelliptic Cubics

Let C : yn = f(x) be a superelliptic curve over a field k. Since the group of k-

rational points of Jac(C) is isomorphic to the group of isomorphism classes invertible

OC(C) = k[C]-modules, we first describe the OC(C)-module representation of a

divisor class in the Jacobian of a superelliptic cubic.

Proposition 5.4.1. Let C : yn = f(x) be a superelliptic curve over a field k. If the

support of a divisor class D does not contain a pair of Galois conjugate points, then

D can be represented by an ideal of the form (u, y − v) satisfying

1. u(x) is a monic polynomial

2. deg(v) <deg(u)

3. u(x) divides f(x)− v(x)n

Proof. The idea comes from the Mumford Representation for the divisors in the

Jacobians of hyperelliptic curves[17]. Let D =
∑
ni(Pi) with Pi = (ai, bi) on C.

Consider the polynomial u(x) =
∏

i(x − ai)
ni . Then if we solve the congruences

w(x)n ∼= f(x) (mod (x− ai)ni) for all i with w(ai) = bi as in [24, Section 13.2] and

combine them by using Chinese Remainder Theorem, we get the polynomial v(x)

satisfying the above conditions.

Remark 5.4.2. Consider the polynomial (x−a) and its divisor class div((x−a))=

P + P σn + · · ·+ P σn−1
n − n(∞) where σin ∈ Gal(k(C)/k(x)). We can add a suitable

multiple of such a divisor class to any random divisor class. Therefore we can say

60

that any divisor class D =
∑
mi(Pi) has a representative D̃ having at most n − 1

conjugate pairs of a point,

The above theorem essentially says that a nice compact representation for

a divisor class is possible if the divisor class has a representative without a pair

of Galois conjugate points. This nice condition is satisfied by all divisor classes

if n = 2, i.e. if the curve is hyperelliptic. As for n = 3 the majority of divisor

classes has a representative without a pair of conjugate points [3]. As n gets larger,

the fraction of divisor classes having nice representatives decreases. This compact

representation provides some efficiency for computations in Jacobians.

Now consider the coordinate ring of the superelliptic cubic C : y3 = f(x) over

the field k. We use k[x]-module representations of the ideals of k[C] for computations

in Jac(C), as in [11] or [2]. Note that any ideal class has a unique minimal degree

k[x]-module representative of the form, called canonical form, I = [s, s′(y+ u), y2 +

wy + v] satisfying

1. s′|s

2. u3 ≡ −f(mod s/s′)

3. v ≡ w2 (mod s′)

4. v − uw + u2 ≡ 0 (mod s/s′)

5. uv − uw2 ≡ f − vw (mod s). [2, Section 4] or [19]

The canonical basis for an ideal is called minimal canonical basis, if it also satisfies

61

1. s and s′ are monic,

2. deg(s′u) <deg(s),

3. deg(v) <deg(s) and deg(w) <deg(s′).

The degree of a divisor is deg(ss′). There exits a unique minimal canonical basis for

any divisor class. For more details see [2, Section 4]

Let I1 and I2 be reduced representatives of divisor classes in Jac(C). The first

step for the addition algorithm is to find a representative for I1 · I2. This can be

done by using the following algorithm[2, Section 7]. Note that there is a misprint

in step 9 in Bauer’s paper [2].

Algorithm 1: Input Ii = [si, s
′
i(y + u), y2 + wiy + vi] for i = 1, 2

1. Compute d, r1 such that d=gcd(s1/s
′
1, s2/s

′
2)=r1s1/s

′
1 + r2s2/s

′
2.

2. d1=gcd(d, u1 − u2)/gcd(d, f)

3. S = s1s2d1/d, S ′ = s′1s
′
2d/d1 and u = u1 − (u1 − u2)(r1s1/(s

′
1d))

4. Compute d2=gcd(d1, 3u
2)=3r2u

2 + r4d1

5. U ′ = u− r3(u3 + f)/d2

6. U ≡ U ′(mod S/S ′) such that degU <degS/S ′

7. Compute 1=gcd(s1, s
′
1s
′
2, s
′
1(u1 +w2), s2, s

′
2(u2 +w1), v1 + v2 +w1w2) = a1s1 +

a2s
′
1s
′
2 + a3s

′
1(u1 + w2) + a4s2 + a5s

′
2(u2 + w1) + a6(v1 + v2 + w1w2) for some

a1, . . . , a6 in k

62

8. V ′ = a1s1v2 +a2s
′
1s
′
2u1u2 +a3s

′
1(u1v2 +f)+a4s2v1 +a5s

′
2(u2v1 +f)+a6(v1v2 +

w1f + w2f)

9. W ′ = a1s1w2 + a2s
′
1s
′
2(u1 +u2) + a3s

′
1(u1w2 + v2) + a4s2w1 + a5s

′
2(u2w1 + v1) +

a6(w1v2 + v1w2 + f)

10. W = W ′ + qS ′ such that degW <degS ′

11. V ≡ V ′ + qS ′U(mod S) such that degV <degS

Output: I = I1 · I2 = [S, S ′(U + y), y2 +Wy + V]

As we mentioned above, in most cases there would be no Galois conjugate

pairs in the support of a divisor class, therefore S ′ = 1 in most cases. If this is the

case, we change the steps after Step 6 in Algorithm 1 to:

(7) W = 0 and V ≡ −U2 (mod S)

Output: I = I1 · I2 = [S, S ′(U + y), y2 +Wy + V]

There are also some algorithms for addition operation in Jac(C) which only

use the compact representations, (u, y − v), of divisors classes in Jac(C). Although

asymptotically each addition operation has the same running time for hyperelliptic

curves and superelliptic curves, there is a big difference in real time implementation.

The difference comes from especially the reduction operation after ideal multiplica-

tion.

63

5.5 Factorization with Superelliptic Cubics

Now we compare hyperelliptic and superelliptic cubics in terms of polynomial

factorizations in finite fields. From now on we assume k = Fq is a finite field with

q = pe elements.

Let f(x) be a square-free polynomial in k[x] such that gcd(deg(f(x),3)=1, and

C : y3 = f(x) be a superelliptic curve over k. If fi(x) is a non-trivial factor of f(x)

then by Theorem 5.3.2 the divisor class Di = [fi(x), 1, 0, 0, 0] is of order 3 in Jac(C).

Note that a divisor corresponding to a k[x]-module of the form [fi(x), 1, 0, 0, 0] is a

reduced divisor. Now, if a divisor class D̃ is of order a multiple of 3, a certain power

of it might be in the divisor class Di. Hence a factor of f(x) would be found. Unlike

divisors in the Jacobians of hyperelliptic curves, some divisor classes of order 3 do

not contain a factor of f(x).

Example: Let f(x) = x4 + 6x2 + 12 and C : y3 = f(x) be a superelliptic

curve over F13. The divisor class D = 2(P)− 2(∞) where P = (0, 4) is represented

by the ideal I = [x2, y+ 9, y2 + 10]. By using above addition algorithm we can show

that D+D = [x2 + 6, y+ 9, y2 + 10] = −D, hence D is of order 3 in Jac(C) and the

corresponding ideal of it does not have any factor of f(x).

The above discussion shows that based on the first condition about efficiency of

the factorization algorithm, hyperelliptic curves have advantages over superelliptic

cubics. This is because all ideal representations of 2-torsion points of the Jacobian

of a hyperelliptic curve are in the same format. In terms of the second and the third

criteria in section 2, there is no difference between using a hyperelliptic curve or su-

64

perelliptic cubics if we are allowed to use singular curves for both cases. Hence the

remaining part is to compare hyperelliptic curves and superelliptic cubics in terms

of efficiency of computations in Jacobians. As we noted above, the asymptotic run-

ning time of computation in Jacobians is the same for hyperelliptic and superelliptic

curves but real running time is not the same. To compare these two kinds of curves

in terms of computations in Jacobians we first state a factorization algorithm with

non-singular superelliptic curves.

Algorithm 2: Input: f(x), which is a square-free reducible polynomial in

k[x].

1. Pick a random number a ∈ k

2. (Depends on deg(f(x))) construct either the curve C : yn = (x + f(a)n−1 −

a)f(x) or the curve C : yn = (x2 +f(a)n−1−a)f(x) where n is a prime number

3. Find the order of Jac(C)=nem, (n,m) = 1

4. Find D̃ = mD where D = [x− a, (y − f(a)), y2 − f(a)2, . . . , yn−1 − f(a)n−1]

5. if D̃ = [1, y, y2, . . . yn−1] go to step 1 otherwise compute Pi = niD̃ for i =

0, . . . , e

6. If none of a1,1(x) divides f(x) where Pi = [a1,1(x), . . . , an,ny
n−1 + · · ·+ an,1] go

to step 1 otherwise a1,1(x) is a factor of f(x).

We now give an example to illustrate the above algorithm by using superelliptic

cubics.

65

Example 5.5.1. Consider the polynomial f(x) = x4 + x3 + 4x2 + 2x + 4 over the

field F5.

Step 1: We start with a = 0 and construct the curve C : y3 = (x + f(0)2)f(x) =

(x+ 16)f(x) = x5 + 2x4 + x2 + x+ 4

Step 2: We compute Jac(C) = 360 = 32(40)

Step 3: D = [x, y− 4, y2− 42] and D̃ = 40D = [x4, y+ 2x3 + 4x2 + 3x+ 1, y2 + 4 +

3x2 + 2x3 + 4x] which is not the identity element of Jac(C), hence the order of D is

divisible by 3

Step 4: gcd(x4, f(x)) = 1 , then we compute 3D̃ = [x3 + x2 + 2x + 2, y, y2] and

gcd(x3 + x2 + 2x+ 2, f(x)) = x2 + 2

In order to compare the running time of the algorithms with hyperelliptic

curves, we use exactly the same method with n = 2.

Step 1: We again start with a = 0 and construct the curve H : y2 = (x +

f(0))f(x) = (x+ 4)f(x)

Step 2: We compute Jac(H)=20=225

Step 3: D = [x, y−4] and D̃ = 5D = [x2 +x+ 2, 0] and x2 +x+ 2 must be a factor

of f(x).

The real time for implementation of Algorithm 2 with superelliptic curves

shows that the algorithm 2 works much slower than the same algorithm with hy-

perelliptic curves because of the running time of addition operation for superelliptic

curves. The experiments that we conducted over finite fields with characteristic very

66

small prime numbers p shows that the algorithm with hyperelliptic curves finds a

factor of a polynomial at least 40 times faster than the algorithm with superelliptic

cubics does.

The most efficient factorization algorithm in chapter 3 uses singular hyperel-

liptic curves. A similar idea can be extended for using singular superelliptic curves.

In this case we construct a singular superelliptic curve C : y3 = xf(x)3. In this way,

we cancel the step that we count the number of points on Jacobian since Jac(C)

is of isomorphic to
⊕g

i Gm where g is the arithmetic genus of C . Unfortunately,

the algorithm will also be less efficient because of computations in the Jacobians of

superelliptic curves.

67

Chapter 6

Examples

In this chapter we give examples to illustrate the algorithms described in

former chapter.

6.1 Examples: Computing Square Roots mod p

Example 6.1.1. Let p = 1049219 and a = 123451 in k = Fp. Since p ≡ 3 (mod 4)

we use Algorithm 2 in section 3.3.1.

1. Consider the singular hyperelliptic curve H : y2 = x(x2 − 123451)2 over k.

Take D = [(x2 − 123451)2, (x2 − 123451)] in Jac(H).

2. To find
√
a mod p it is enough to compute (p− 1)D in Jac(H).

3. (p− 1)D = [x2 + 930173x+ 697558, 110955x+ 972129]

4. Now compute gcd(x2 + 930173x+ 697558, x2 − 123451) = 1.

Hence we conclude that a = 123451 is not a square mod 1049219.

Example 6.1.2. Let p = 31476587 and a = 5711954. Once again p ≡ 3 (mod 4)

and we use Algorithm 2 in section 3.3.1

68

1. Let H : y2 = x(x2 − 5711954)2 and D = [(x2 − 5711954)2, (x2 − 5711954)].

Then

2. (p− 1)D = [x2 + 15616214x+ 5711954, 11540220 + 2096153x]

3. gcd(5788728x+ 21357467, x2− 5171954) = x+ 7808107 which means 7808107

is
√

5711954 mod 31476587

Actually it is not necessary to use gcd if we know a = 5711954 is a square mod

p since we know that (p − 1)D = [(x ±
√
a)2, t(x ±

√
a)] for some t then we have

11540220 + 2096153x = t(x +
√
a) this implies 11540220/2096153 ≡ 7808107 (mod

31476587) is a square root of a modulo p.

Example 6.1.3. Let p = 35019169 and a = 610623. Since p ≡ 1 (mod 8) we

use Algorithm 1 in section 3.2.1. Let E be the elliptic curve defined by y2 =

x(x+ 610623)2

1. Pick a random number b and consider the point P = (b2, b(b + 1)) = [(x +

610623)2, b(x+ 610623)] on the curve E. Let’s pick b = 1 so P = (1, 610624)

2. Find e and odd number m such that p − 1 = 35019168 = 2em in this case

e = 5 and m = 1094349

3. Compute Q = mP = (23855786, 13003707). That means the order of P is

even

4. Compute Q1 = 2Q = (13947345, 32162710). The first coordinate is not a so

set Q = Q1

69

5. Compute Q1 = 2Q = (610623, 20530334) = (a, 2a
√
a)

6. Compute 20530334/(2 · 610623) = 16014346 which is equal to
√

610623

Example 6.1.4. Let p and a be the same as above. In this case we are going to

use Algorithm 3 in section 3.3.2 to compute
√
a mod p.

1. Pick a random b and we pick b = 1.

2. Let H : y2 = x(x2 − 2bx + b2 − a)2 = x(x2 − 2x − 610622)2 be a singular

hyperelliptic curve. Let D = [(x2− 2x− 610622)2, x2− 2x− 610622] ∈ Jac(H)

3. Compute (p − 1)D. We get (p − 1)D = [x2 + 35019167x + 1, 17204273x +

17204273] which is not of the form [(x− (b±
√
a)2, i(x− (b±

√
a)]. Hence we

have (p+ 1)D = [1, 0].

4. Compute e and odd number m such that p + 1 = 35019168 = 2em. In this

case e = 1 and m = 17509585

5. Compute mD = [x, 0]. For b = 1 we did not get
√
a (mod p). We repeat this

operation by replacing b = 2.

6. In this case we (p−1)D = [x2 +2990473x+29648842, 21384677x+4346851] =

[(19004821 + x)2, 21384677(19004821 + x)]

7. x+ 19004821 = x− (b±
√
a) hence

√
a = 19004823 ≡ −16014346 mod (p)

70

6.2 Polynomial Factorization mod p

The following example illustrates the factorization method described in chapter

4.

Example 6.2.1. Let f(x) = 3655 + 3827x+ 3224x2 + 6323x3 + 3085x4 + 3702x5 +

411x6 + 1234x7 + 191x8 + 104x9 + 26x10 + 23x11 + x12 and let the field k = F571.

Now consider the singular hyperelliptic curve H : y2 = xf 2. We use the addition

algorithm described in chapter 4 for divisor classes in the Jacobian of a singular

hyperelliptic curve.

Step 1: We select g(x) = 1 hence the divisor class D = [f 2, f].

Step 2: Compute (571i± 1)D until we get a factor of f(x) or [1, 0] for i = 1, . . . , 12

.

(571−1)D = [f 2, (534x11 +186x10 +355x9 +412x8 +323x7 +559x6 +264x5 +181x4 +

496x3 + 534x2 + 535x+ 384)f]

(571 + 1)D = [f 2, (334x11 + 509x10 + 294x9 + 431x8 + 365x7 + 508x6 + 378x5 +

528x4 + 374x3 + 372x2 + 500x+ 562)f]

(5712 − 1)D = [f 2, (242x11 + 42x10 + 116x9 + 259x8 + 283x7 + 411x6 + 238x5 +

570x4 + 317x3 + 556x2 + 542x+ 184)f]

(5712 + 1)D = [f 2, (142x11 + 126x10 + 360x9 + 342x8 + 500x7 + 35x6 + 541x5 +

460x4 + 92x3 + 242x2 + 492x+ 418)f]

71

(5713 − 1)D = [f 2, (x11 + 287x10 + 290x9 + 71x8 + 350x7 + 46x6 + 76x5 + 234x4 +

539x3 + 74x2 + 314x+ 388)f]

(5713 + 1)D = [f 2, (200x11 + 23x10 + 91x9 + 439x8 + 432x7 + 346x6 + 191x5 +

328x4 + 336x3 + 235x2 + 463x+ 491)f]

(5714−1)D = [(x4 +22x3 +11x+17)2, (247x3 +39x2 +48x+3)(x4 +22x3 +11x+17)]

The last part of Step 2 shows that f1(x) = x4 + 22x3 + 11x + 17 is a fac-

tor of f(x). Now we apply the same method for the remaining factor h(x) =

x8 + x7 + 4x6 + 5x5 + 53x4 + 7x3 + 134x2 + 86x + 215 of f(x). We first define the

singular hyperelliptic curve C : y2 = xh2.

Step 3: We select D̃ = [h2, h] by choosing g(x) = 1 again.

Step 4: Compute (571i± 1)D̃ until we get a factor of h(x) or [1, 0] for i = 1, . . . , 8.

These computations yield that (5714 − 1)D̃ = [1, 0]. Now we check if the order of

D is even by looking 6643920855th power of D̃, since 5714 − 1 = 24(6643920855).

Step 5: D′ = 6643920855D̃ = [x8 + 209x7 + 508x6 + 83x5 + 211x4 + 102x3 +

101x2 + 5x+ 81, 428 + 335x+ 46x6 + 322x2 + 8x4 + 77x3 + 103x7 + 309x5].

This shows that the order of D is even.

72

Step 6: Compute 2jD′ until the result is 2-torsion of Jac(C) for j = 1, . . . 4.

2D′ = [x8 + 187x7 + 504x6 + 445x5 + 524x4 + 405x3 + 129x2 + 438x + 418, 50 +

547x+ 386x6 + 346x2 + 190x4 + 453x3 + 272x7 + 194x5]

4D′ = [x8 + 493x7 + 393x6 + 202x5 + 531x4 + 216x3 + 85x2 + 521x + 25, 294 +

297x+ 355x2 + 427x4 + 113x7 + 121x3 + 311x6 + 344x5]

8D′ = [x8 + 2x7 + 3x6 + 2x5 + 87x4 + 86x3 + 86x2 + 136, 0]

then gcd(x8 +2x7 +3x6 +2x5 +87x4 +86x3 +86x2 +136, h(x)) = x4 +x3 +x2 +43 is a

factor of f(x). Therefore the factors are f1 = x4 +x3 +x2 +43, f2 = x4 +3x2 +2x+5

and f3 = x4 + 22x3 + 11x+ 17.

These computations show that Jac(H) = G1⊕G2⊕G3 where each Gi is a cyclic

group. The elements of each Gi is represented by a pair of the form [fi(x)2, ti(x)fi(x)]

where ti(x) is a polynomial of degree less than 4. We see in step 2 that G1 and G2

are of order 5714 − 1 and G3 is of order 5714 + 1 and this explains why we get a

factor in Step 2.

73

Bibliography

[1] G.W. Anderson, Abeliants and their application to elementary construction of
Jacobians, Advances in Mathematics 172, 169-205, 2002.

[2] M.L. Bauer, The Arithmetic of Certain Cubic Function Fields, Math.Comp,
(73)(2003), 387-413.

[3] A. Basiri, A. Enge, J-H. Faugere, N. Gurel, The Arithmetic of Jacobian Groups
of Superelliptic Curves, Math.Comp, (74)2004, 389-410.

[4] E. Berlekamp, Factoring polynomials over large finite fields, Math. Comp. 24
(1970), 713-735.

[5] S. Bosch, W. Lutkebohmert, M. Raynaud, Neron Models, Springer-Verlag,
1990.

[6] D. G. Cantor, Computing in the Jacobian of a hyperelliptic curve, Math. Comp.
48 (1987), 95-101.

[7] D. Cantor and H. Zassenhaus, A new algorithm for factoring polynomials over
finite fields, Math. Comp., 36 (1981), 587-592.

[8] H. Cohen, G. Frey, Handbook of Elliptic and Hyperelliptic Curve Cryptography,
Chapman & Hall/CRC 2005.

[9] H. Cohen, A Course in Computational Algebraic Number Theory, Springer-
Verlag, 2000.

[10] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry.
Springer-Verlag, 2004

[11] S.D. Galbraith, S.M. Paulus, N.P. Smart, Arithmetic on Superelliptic Curves,
Math.Comp, (71)2000, 393-405.

[12] F. Hess, Zur Divisorenklassengruppenberechnung in globalen Funktionenkor-
pern, Ph.D. thesis, Technische Universitat Berlin, 1999,

[13] K. Khuri-Makdisi, Linear algebra algorithms for divisors on an algebraic curve.
Math. Comp. 73 (2004), no. 245, 333–357

74

[14] K. Khuri-Makdisi, Asymptotically fast group operations on Jacobians of general
curves. Math. Comp. 76 (2007), no. 260, 2213–2239

[15] D. R. Kohel, Constructive and destructive facets of torus-based cryptography,
pre-print, available at http://echidna.maths.usyd.edu.au/ kohel/index.html

[16] Q. Liu, Algebraic Geometry and Arithmetic Curves, Oxford Science Publica-
tions, 2002.

[17] D. Mumford, Tata Lectures on Theta II, Birkhauser, 1982.

[18] M. Rosenlicht, Equivalence relations on algebraic curves, Ann. of Math. 56,
169-191 (1952).

[19] R. Scheidler, Ideal arithmetic and infrastructure in purely cubic function fields,
J. Theor. Nombres Bordeaux 13 (2002), 609-631.

[20] R. Schoof, Elliptic curves over finite fields and the computation of square roots
mod p, Math. Comp. 43(1985), 483-494.

[21] J. P. Serre, Algebraic Groups and Class Fields,Springer-Verlag, 1997.

[22] D. Shanks, Class number, a theory of factorization, and genera, Proc. Symp in
Pure Maths. 20, AMS, Providence, R.I., 1971, pp. 415-440.

[23] J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves,
Springer-Verlag, 1992.

[24] L. C. Washington, Elliptic Curves: Number Theory and Cryptography, 2nd
edition. Chapman & Hall/CRC 2008

75

