
ABSTRACT

Title of Dissertation: NONLINEAR COMPLEXITY OF

BOOLEAN PERMUTATIONS

Thomas Gordon Draper, Doctor of Philosophy, 2009

Dissertation directed by: Dr. Lawrence C. Washington

Department of Mathematics

We introduce the concept of nonlinear complexity, where the complexity of a

function is determined by the number of nonlinear building blocks required for

construction. We group functions by linear equivalence, and induce a complexity

hierarchy for the affine equivalent double cosets. We prove multiple invariants

of double cosets over the affine general linear group, and develop a specialized

double coset equivalence test. This is used to classify the 16! permutations over

4 bits into 302 equivalence classes, which have a maximal nonlinear depth of 6.

In addition, we present a new complexity class defined in terms of nonlinearity.



NONLINEAR COMPLEXITY OF BOOLEAN PERMUTATIONS

by

Thomas Gordon Draper

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2009

Advisory Committee:

Dr. Lawrence C. Washington, Chairman/Advisor
Dr. Jeffery Adams
Dr. John J. Benedetto
Dr. Kartik Prasanna
Dr. William Gasarch, Dean’s Representative



c© Copyright by

Thomas Gordon Draper

2009



DEDICATION

To Tyra, Thomas, Lillian, Elizabeth and most of all Susan, who made

it all possible.

ii



ACKNOWLEDGEMENTS

Thoughtful consideration revealed many who contributed to my dis-

sertation, in ways large and small.

My parents head the list. From my first memories, they saw my

affinity for mathematics and nurtured it. They challenged, inspired,

balanced and loved me. I realize more and more how important this

was.

My professors and teachers at BYU challenged me further and helped

me set a higher standard for myself, both in mathematics and in

life. Their greatest contribution to me was helping me to center on

God and then to build my life around Him. Interestingly, I realize

that much of this communication was made possible because of our

common love of mathematics and science.

My job has been one of the greatest experiences of my life. I would

never have imagined the satisfaction received from puzzle solving with

impact. Again and again I have found myself in the right place at the

iii



right time for the right opportunity. I consider myself very blessed

and wish everyone could do what they love for a living. In addition,

my bosses and coworkers have been extremely supportive of my dis-

sertation work, even when it increased their own burden. I am very

grateful for this and I know this is not the norm for the workplace.

I wish to personally thank Dr. Washington and Dr. Gasarch. They

were both extremely helpful in directing and focusing my research

efforts. I admire them both as researchers and teachers.

Finally, I wish to thank my children and especially my wife. I know

we sacrificed much of our time together and I hope it will be worth

it. We have a long and exciting road ahead to share together. I hope

Tyra, Thomas, Lillian and Elizabeth will each find and enjoy their

talents. I am excited to see their lives unfold.

I conclude with an overwhelming appreciation for the love of my life,

Susan. She encouraged me when I was tired. She strengthened me

when I was weak. She burdened herself to make things easier for

me. She loved me. I will always be in her debt. I adore her more

than anyone else on this earth. I am looking forward to our many

adventures yet to come.

iv



TABLE OF CONTENTS

List of Tables xi

List of Figures xiii

1 Introduction 1

1.1 The Difficulty with Difficulty . . . . . . . . . . . . . . . . . . . . . 1

1.2 Combinatorics and Complexity . . . . . . . . . . . . . . . . . . . 2

1.3 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Summary of Primary Results . . . . . . . . . . . . . . . . . . . . 4

1.5 Classification Strategy . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5.1 What Functions are Equivalent? . . . . . . . . . . . . . . . 5

1.5.2 How Do We Induce a Complexity Hierarchy? . . . . . . . . 6

1.5.3 What Can We Compute? . . . . . . . . . . . . . . . . . . . 7

2 Complexity Measures 8

2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 A Different View of Complexity . . . . . . . . . . . . . . . . . . . 8

2.3 Transposition Complexity Measure . . . . . . . . . . . . . . . . . 9

2.4 Gate Complexity Measure . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Reversible Gate Complexity Measure . . . . . . . . . . . . . . . . 12

v



2.6 Nonlinear Reversible Complexity Measure . . . . . . . . . . . . . 13

3 Reversible Circuits 15

3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Classical Circuit Diagrams . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Basic Reversible Gates . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 NOT Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.2 Controlled NOT Gate (CNOT) . . . . . . . . . . . . . . . 18

3.3.3 SWAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.4 Toffoli Gate . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.5 Example Permutation . . . . . . . . . . . . . . . . . . . . 21

3.3.6 Fredkin Gate . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Linear transformations on reversible circuits . . . . . . . . . . . . 23

3.5 Controlled Linear Transformations . . . . . . . . . . . . . . . . . 25

3.6 Affine Transformations . . . . . . . . . . . . . . . . . . . . . . . . 26

3.7 Scratch Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.7.1 3-bit AND . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Which Permutations Should Be Equivalent? 32

4.1 Results and Application . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 The Equivalence Choice . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Affine Equivalence of Toffoli and Fredkin Gates . . . . . . . . . . 35

4.5 Controlled Affine and Linear Permutations . . . . . . . . . . . . . 36

vi



5 Counting Equivalent Functions 37

5.1 Summary and Results . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Counting Fixed Points Under a Double Coset Action . . . . . . . 40

5.4 Counting Affine Equivalent Double Cosets in S2n . . . . . . . . . 42

5.4.1 Example: Affine equivalent 3-bit permutations . . . . . . . 42

5.4.2 Counting Affine Equivalent n-bit Permutations . . . . . . 45

5.5 Counting Affine Equivalent Double Cosets in A2n . . . . . . . . . 46

5.6 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Hamiltonian Cycles over GLn(2) 53

6.1 Results and Application . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.4 Borel Subgroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.5 Heuristic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.6 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7 Double Coset Representatives 63

7.1 Results and Application . . . . . . . . . . . . . . . . . . . . . . . 63

7.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.3 Basis Fixing Permutations . . . . . . . . . . . . . . . . . . . . . . 65

7.4 Basis Permuting Permutations . . . . . . . . . . . . . . . . . . . . 66

7.5 Minimal Basis Fixing Permutations . . . . . . . . . . . . . . . . . 68

7.6 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

vii



8 Multiple Rank Invariant 71

8.1 Results and Application . . . . . . . . . . . . . . . . . . . . . . . 71

8.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.3 The k-rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.4 The Invariance of the k-rank . . . . . . . . . . . . . . . . . . . . . 74

8.5 Multiple Rank Invariant . . . . . . . . . . . . . . . . . . . . . . . 75

8.6 Categorization of 3-bit Permutations by MRI . . . . . . . . . . . . 76

8.7 Categorization of 4-bit Permutations by MRI . . . . . . . . . . . . 77

8.8 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

9 Additional Invariants 79

9.1 Results and Application . . . . . . . . . . . . . . . . . . . . . . . 79

9.2 Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

9.3 Two-Way Permutations . . . . . . . . . . . . . . . . . . . . . . . . 80

9.4 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

10 Complexity Theory 84

10.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

10.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

10.3 Nonlinear Complexity Class . . . . . . . . . . . . . . . . . . . . . 86

10.4 Nonlinear Polynomial Complexity . . . . . . . . . . . . . . . . . . 91

10.5 Uniform and Non-Uniform Nonlinear Circuits . . . . . . . . . . . 93

10.6 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

11 Computation 96

11.1 Storage of Permutations . . . . . . . . . . . . . . . . . . . . . . . 96

11.1.1 Truth Table Form . . . . . . . . . . . . . . . . . . . . . . . 97

viii



11.1.2 Function Table Form . . . . . . . . . . . . . . . . . . . . . 98

11.1.3 Polynomial Form . . . . . . . . . . . . . . . . . . . . . . . 99

11.2 Quick double coset test . . . . . . . . . . . . . . . . . . . . . . . . 100

11.2.1 Composition via a Hamiltonian Path . . . . . . . . . . . . 100

11.2.2 Linearity Test . . . . . . . . . . . . . . . . . . . . . . . . . 101

11.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

12 Classification of 3-bit and 4-bit permutations 102

12.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

12.2 Permutations of Interest . . . . . . . . . . . . . . . . . . . . . . . 102

12.2.1 Modular Addition . . . . . . . . . . . . . . . . . . . . . . . 103

12.2.2 Modular Multiplication . . . . . . . . . . . . . . . . . . . . 103

12.2.3 Modular Affine . . . . . . . . . . . . . . . . . . . . . . . . 104

12.2.4 Modular Inverse . . . . . . . . . . . . . . . . . . . . . . . . 104

12.2.5 Modular Exponentiation . . . . . . . . . . . . . . . . . . . 105

12.2.6 Pseudo-Inverse over GF(2)n . . . . . . . . . . . . . . . . . 105

12.3 Complexity Class NLC(i, j) . . . . . . . . . . . . . . . . . . . . . . 106

12.4 3-bit Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . 106

12.4.1 NLC(3, 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

12.4.2 NLC(3, 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

12.4.3 NLC(3, 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

12.4.4 NLC(3, 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

12.4.5 No 3-bit Permutations are One-Way . . . . . . . . . . . . 110

12.5 4-bit Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . 110

12.6 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

ix



13 Case Studies 114

13.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

13.2 The Hiltgen function . . . . . . . . . . . . . . . . . . . . . . . . . 114

13.3 Zech Logarithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

13.4 Incrementing modulo 2n . . . . . . . . . . . . . . . . . . . . . . . 118

13.5 Multiplication by 2n−1 + 1 modulo 2n . . . . . . . . . . . . . . . . 119

13.6 Addition and Subtraction modulo 2n . . . . . . . . . . . . . . . . 120

14 Conclusion 122

A Source Code 123

x



LIST OF TABLES

3.1 Truth Table: NOT Gate . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Wire Program: NOT Gate . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Truth Table: Controlled NOT Gate . . . . . . . . . . . . . . . . . 18

3.4 Wire Program: CNOT Gate . . . . . . . . . . . . . . . . . . . . . 19

3.5 Wire Program: SWAP . . . . . . . . . . . . . . . . . . . . . . . . 19

3.6 Truth Table: SWAP . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.7 Wire Program: Toffoli Gate . . . . . . . . . . . . . . . . . . . . . 21

3.8 Truth Table: Toffoli Gate . . . . . . . . . . . . . . . . . . . . . . 21

3.9 Wire Program: f = (a2 ⊕ a0a1, a1 ⊕ 1, a2 ⊕ a0a1 ⊕ a0) . . . . . . . 22

3.10 Truth Table: f = (a2 ⊕ a0a1, a1 ⊕ 1, a2 ⊕ a0a1 ⊕ a0) . . . . . . . . 22

3.11 Truth Table: Fredkin Gate . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Number of Permutation Equivalence Classes . . . . . . . . . . . . 34

5.1 Cycle Sets of AGL(3,2) . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 MAGMA function for counting double cosets . . . . . . . . . . . . 45

5.3 Number of Affine Equivalent Permutations . . . . . . . . . . . . . 46

5.4 Number of Affine Equivalent Even Permutations . . . . . . . . . . 51

8.1 Multiple Rank Invariant of 3-bit Permutations . . . . . . . . . . . 77

8.2 Multiple Rank Invariant of 4-bit Permutations . . . . . . . . . . . 78

xi



9.1 Invariant Table for 4-bit Permutations . . . . . . . . . . . . . . . 83

10.1 Space Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 88

11.1 Truth Table: f = (a2 ⊕ a0a1, a1 ⊕ 1, a2 ⊕ a0a1 ⊕ a0) . . . . . . . . 97

11.2 Monomial Conversion Table . . . . . . . . . . . . . . . . . . . . . 99

12.1 NLC(3, 0) Permutations . . . . . . . . . . . . . . . . . . . . . . . . 107

12.2 NLC(3, 1) Permutations . . . . . . . . . . . . . . . . . . . . . . . . 108

12.3 NLC(3, 2) Permutations . . . . . . . . . . . . . . . . . . . . . . . . 109

12.4 NLC(3, 3) Permutations . . . . . . . . . . . . . . . . . . . . . . . . 109

12.5 Invariant Table for each 4-bit Permutations Depth . . . . . . . . . 112

12.6 Depth of Various 4-bit Permutations . . . . . . . . . . . . . . . . 113

xii



LIST OF FIGURES

3.1 Full Adder from XORs, ANDs and ORs . . . . . . . . . . . . . . . 16

3.2 Circuit Diagram: NOT Gate . . . . . . . . . . . . . . . . . . . . . 17

3.3 Circuit Diagram: Controlled NOT Gate . . . . . . . . . . . . . . 18

3.4 Circuit Diagram: SWAP . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Circuit Diagram: Toffoli Gate . . . . . . . . . . . . . . . . . . . . 20

3.6 Circuit Diagram: f = (a2 ⊕ a0a1, a1 ⊕ 1, a2 ⊕ a0a1 ⊕ a0) . . . . . . 21

3.7 Circuit Diagram: Fredkin Gate . . . . . . . . . . . . . . . . . . . 23

3.8 Circuit Diagram: Linear Matrix Example . . . . . . . . . . . . . . 24

3.9 Block matrix product acting on kets (A ∗B = BA) . . . . . . . . 25

3.10 Two equivalent block matrix actions . . . . . . . . . . . . . . . . 25

3.11 Fredkin gate as a controlled linear transformation . . . . . . . . . 26

3.12 Toffoli gate as a controlled linear transformation . . . . . . . . . . 26

3.13 Equivalent Affine Transformations . . . . . . . . . . . . . . . . . . 27

3.14 3-bit AND Using 3 Wires? . . . . . . . . . . . . . . . . . . . . . . 28

3.15 3-bit AND: Second Attempt . . . . . . . . . . . . . . . . . . . . . 28

3.16 3-bit AND: Third Attempt . . . . . . . . . . . . . . . . . . . . . . 29

3.17 3-bit AND: Third Attempt (Revisited) . . . . . . . . . . . . . . . 29

3.18 3-bit AND: Fourth Attempt . . . . . . . . . . . . . . . . . . . . . 29

3.19 3-bit AND: Fifth Attempt . . . . . . . . . . . . . . . . . . . . . . 30

xiii



3.20 3-bit AND: Final Attempt . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Equivalence of Fredkin and Toffoli gates . . . . . . . . . . . . . . 35

4.2 Affine Equivalent Controlled Transformations . . . . . . . . . . . 36

6.1 Extending the Active Cycle . . . . . . . . . . . . . . . . . . . . . 59

12.1 3-bit Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . 107

13.1 Zech Logarithm for x3 + x+ 1 . . . . . . . . . . . . . . . . . . . . 117

13.2 Zech Logarithm for x4 + x+ 1 . . . . . . . . . . . . . . . . . . . . 118

13.3 Incrementing modulo 8 . . . . . . . . . . . . . . . . . . . . . . . . 119

13.4 Incrementing modulo 16 . . . . . . . . . . . . . . . . . . . . . . . 119

xiv



Chapter 1

Introduction

1.1 The Difficulty with Difficulty

In 1996, James L. Massey delivered the IACR Distinguished Lecture at EU-

ROCRYPT ’96, entitled “The Difficulty with Difficulty” [Mas96]. This talk,

which served as an inspirational starting point for my own research, addressed

why measuring the complexity of Boolean functions is so difficult. This thesis

presents a new method for measuring complexity and develops tools that allow

us to examine a previously unknown structure: the minimal complexity of all

16! = 20, 922, 789, 888, 000 4-bit Boolean permutations.

In particular, we introduce the notion of nonlinear complexity. We will prove

that all permutations may be constructed using alternating rounds of linear and

simple nonlinear permutations. In other words, every n-bit permutation p is a

composition of the form

p = L0N1L1N2L2 · · ·NnLn,

where each Li is an n-bit linear function, and each Ni is a simple nonlinear

permutation selected from a small set. The nonlinear complexity of a permu-
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tation will be the minimum number of rounds of nonlinearity needed to build the

permutation.

To find the minimal nonlinearity of all 4-bit Boolean permutations, faster

double coset identification methods were needed. Special methods for working

with AGLn(2) double cosets were needed, since general double coset methods

would take months to compute the results given in this thesis.

Special Hamiltonian cycles accelerate the double coset equivalence test. Vari-

ous invariants are used to accelerate double coset identification. The mathemat-

ical theory behind each of these advances is developed in this thesis.

Using these new tools, we examine the nonlinear complexity of many common

3-bit and 4-bit permutations.

1.2 Combinatorics and Complexity

Let V = GF(2), the finite field over two elements. Given a Boolean function

f : V n → V , how difficult is f to compute? Typically, the difficulty of computing

f is associated with how many “building blocks” are needed to construct f . One

common set is the AND, OR and NOT gates. AND, OR and NOT are a universal

set. This means any Boolean function can be constructed from a finite number

of them. Such constructions are not unique, but there will be a minimal number

of gates needed to construct a function (There may also be multiple minimal

solutions).

Minimal solutions are found by exhaustively constructing all possible func-

tions and marking the minimal instances of a function by where they first occur.

This method is essentially a combinatorical search. Unfortunately, the number of

functions f : V n → V is 22n . Due to the doubly exponential growth, classifying

2



the 225
= 4, 294, 967, 296 5-bit to 1-bit functions is a challenge for current desktop

computers. If we could classify a billion billion functions (1018) per second, then

classifying all 227
= 2128 = 340282366920938463463374607431768211456 7-bit to

1-bit functions would take about 1013 years, which is a thousand times longer

than the current age of the universe (1.3× 1010 years).

In response to this massive explosion of complexity, researchers chose to focus

on certain equivalence classes of functions.

1.3 History

In 1951, researchers at the “Computational Laboratory of Harvard” exhaus-

tively classified the 402 classes under permutation and complementation of the

input variables of the 65, 536 four-variable Boolean functions [AtSotCL51]. After-

ward, mathematicians realized Polya theory could easily enumerate the number

of classes. This sparked a large amount of theoretical interest in counting the

number of Boolean functions in various manners [Lor64].

Studying methods for finding optimal or minimal representations for these

functions was largely ignored. This is likely due to the fact that look-up tables

work very efficiently for small functions.

Quantum computing has forced mathematicians to reconsider the foundations

of computer science with the added constraint of reversibility. In the reversible

context, it is more natural to study Boolean permutations (n-bit to n-bit invert-

ible functions) as opposed to the more commonly studied Boolean functions (n to

1 bit functions). Many foundational ideas that were thought to be settled have

been resurrected. Even lowly addition has once again become a hot topic. In the

search for efficient programs on a quantum computer, the exact calculation of

3



small permutations is important. Look-up tables are problematic on a quantum

computer since computation space is at a premium. Due to the difficulty of quan-

tum computation, we are willing to spend a great deal of classical computational

power to find an efficient quantum program.

This paper presents a new method for categorizing the complexity of a func-

tion in terms of the number of rounds of nonlinearity needed to achieve the func-

tion. Functions which differ from each other by a linear transformation will be

considered to have the same nonlinear complexity. A small set of simple nonlinear

permutations will be used to connect the linearly related equivalence classes. By

counting the minimal number of nonlinear transitions needed to create a function,

we can assign a partial ordering to the equivalence classes.

1.4 Summary of Primary Results

A new theory of complexity is introduced, based on nonlinearity. This new notion

of complexity proves useful in comparing the exact complexity of very small

functions, but also defines new complexity classes that fit nicely into the current

complexity framework of computer science.

We show how Boolean permutations can be separated into double coset equiv-

alence classes based affine transformations. We can then link the double cosets

via a special class of nonlinear functions. The nonlinear connections induce a

complexity hierarchy among Boolean Permutations.

Previous methods for finding the complexity of Boolean functions focused on

counting the minimal number of gates needed to realize a function from a given

universal set. The doubly exponential growth of Boolean functions has made

research beyond 3-bit Boolean permutations and 5-to-1 bit Boolean functions

4



impractical.

The central contribution of this paper is to count rounds of nonlinearity in-

stead of counting gates. By relaxing the restriction from the fine granularity of

gate count to a coarser measure, we can view the complexity structure present in

permutations previously too difficult to analyze.

Using the results of this paper, we will revisit the complexity of 3-bit permu-

tations in a new light and present a previously unknown complexity structure for

4-bit permutations.

1.5 Classification Strategy

1.5.1 What Functions are Equivalent?

Linear functions play an integral role in virtually every field of mathematics.

Why? Because we can solve, manipulate, invert, combine and expand them

in an understandable way that does not carry over very neatly into the realm

of nonlinear functions. We do not use linear functions because they are more

common than nonlinear functions. We use linear functions because they represent

the majority of problems that we know how to solve.

A linear function of a bit vector is a matrix where all of the entries are 0 and

1 and the resulting product is reduced modulo 2. This is the same as the ring of

matrices over the two-element finite field GF(2). Of special interest are the linear

functions that are invertible. These linear functions form the group GLn(2) and

will be referred to as linear permutations since they permute the 2n n-bit vectors.

Considering n-bit permutations in this light, linear permutations might be

considered the permutations with minimal complexity. They form a subgroup in
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which it is easy to multiply and invert. Their matrix form is much more compact

(n2 bits) than their associated permutation description (n2n bits). In fact, we

will want to slightly enlarge our definition of minimal complexity permutations

to include all n-bit affine permutations, since affine permutations also share the

same nice properties.

After deciding that affine permutations have minimal complexity, it is natural

to associate two nonlinear functions if they are equivalent under affine transfor-

mations. This equivalence divides S2n into disjoint double coset where AGLn(2)

acts on the inputs and outputs of a permutation.

It is interesting to note that the current best known bound between the com-

plexity of a function and its inverse is based on a sparse linear transformation

with a dense inverse [Hil93].

1.5.2 How Do We Induce a Complexity Hierarchy?

We obviously need a nonlinear permutation to add to our affine permutations, or

we will never be able to realize all permutations in S2n . There are two reasonable

choices here, and both will be considered.

First, the Toffoli and Fredkin gates are two different universal gates for re-

versible computation. We will prove that these gates are affine equivalent, and

thus they both induce the same complexity structure. This will be referred to as

the Toffoli basis or BT .

Second, controlled affine permutations are also universal for reversible com-

putation. Although this class of functions is not as simple as a single Toffoli

gate, controlled affine functions have a complexity roughly equivalent to the lin-

ear transformations between each nonlinear round. They are also easy to invert
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and cover a broader range of permutations faster. These gates will be referred to

as the controlled affine basis or BCA.

Once we have chosen which nonlinear basis we wish to use, we can induce

the related complexity tree. We start with affine permutations as our level zero

complexity (zero rounds of nonlinearity). Then all equivalence classes that can

be reached using one gate from our nonlinear basis become level one complexity

(one round of nonlinearity). Then the new equivalence classes that can be reached

from level one, become level two complexity and so on. We can then create a

graph illustrating how different permutations relate and the number of rounds

of nonlinearity needed to achieve a particular function gives a rough complexity

measure.

1.5.3 What Can We Compute?

Even though we have reduced the combinatorial complexity problem to a much

more algebraic problem, we still face formidable computational problems. The

equivalence classes themselves are double cosets, and there are currently no truly

satisfactory algorithms for double coset enumeration, equivalence or canonical

representation [Hol05].

Much of the paper develops the theory behind special methods for solving

affine double coset problems specifically over S2n . The nonlinear complexity

depth is computed for all 3 and 4 bit permutations.
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Chapter 2

Complexity Measures

2.1 Summary

This chapter recalls three different, but known, complexity measures. These

measures serve as a useful benchmark for assessing the advantages of the nonlinear

complexity measure. The complexity measures introduced are:

• Transposition Complexity Measure

• Gate Complexity Measure

• Reversible Gate Complexity Measure

2.2 A Different View of Complexity

In computer science, studies of complexity usually focus on an infinite class of

functions. For example, the complexity class P, contains decision problems that

can be computed in polynomial time, and NP, contains decision problems whose

answer can be verified in polynomial time. The open question of whether or not

P = NP is the most important question in computer science.
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However, we may be interested in a particular function and not an infinite

class. In designing a 64-bit adder, there will be optimal constructions given a set

of building blocks (e.g. logic gates, transistors, etc.). Knowing which complexity

class addition is in may provide a reasonable starting design, but finding an

optimal design is a much harder problem.

Let us now consider a number of measures for assessing the optimal construc-

tion of a function.

2.3 Transposition Complexity Measure

One simple complexity measure in which a complete theory can be easily devel-

oped is the transposition complexity measure. Recall that a permutation p on

N = {1, 2, . . . , n} is a bijective map from N to itself. One common representation

for permutations is:  1 2 . . . n

p(1) p(2) . . . p(n)


NOTE: Due to the computational nature of the permutations studied in this

paper, it will be more natural to consider “zero-based” permutations instead of

the more traditional “one-based” permutations used in most algebra texts. Thus,

permutations on n elements will be presented as:

 0 1 . . . n− 1

p(0) p(1) . . . p(n− 1)


Example 2.3.1. Consider the function p(x) = 3x + 3 mod 8. Evaluating the
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function for each x in {0, 1, 2, 3, 4, 5, 6, 7} yields: 0 1 2 3 4 5 6 7

3 6 1 4 7 2 5 0


Lemma 2.3.2. Every permutation can be written as a composition of disjoint

cycles.

Proof. See [Jac74, 49]

Example 2.3.3. Decomposing the permutation 3x+3 mod 8 into cycles yields:

(0347)(1652)

A transposition is a permutation that swaps two elements and leaves all of

the other elements fixed. Essentially, it is the simplest non-trivial permutation.

Using the key fact that any cycle can be decomposed into a product of transpo-

sitions (e.g. (0347) = (47)(37)(07)), we arrive at another simple, yet powerful

result.

Lemma 2.3.4. Every permutation can be written as a composition of transposi-

tions. Furthermore, every m-cycle can be written as the composition of m − 1

transpositions.

Proof. See [Jac74, 49-50]

We can now define the transposition complexity, CT , of a permutation

to be the minimum number of transpositions whose composition realizes that

permutation.

Lemma 2.3.5. If p is a permutation on {0, 1, . . . , n − 1} then CT (p) = n − c,

where c is the number of disjoint cycles in p.
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Proof. See [Mas96]

Let us now consider the pros and cons of the transposition complexity mea-

sure.

• Pro: CT is easy to compute given a permutation.

• Pro: CT defines a partial ordering on the complexity measure of permuta-

tions.

• Con: Linear functions have high complexity. Linear and affine functions,

which are generally considered easy to compute, can obtain close to maximal

complexity.

• Con: A permutation and its inverse always have the same complexity. This

leads to the surprising result that there are no one-way permutations for

the transposition complexity measure. If we believe that there are one-

way permutations, then this complexity measure is not measuring the right

thing.

2.4 Gate Complexity Measure

This is probably the complexity measure that first comes to mind for most re-

searchers. First, choose a universal set of gates such as AND, OR and NOT,

or all possible 2-bit gates, or even just NAND gates. Then count the number

of gates necessary to compute a function. Functions are created by connecting

the gates in an acyclic network and then computing the output given a specific

input. The gate complexity of a given function with respect to a given set of

universal gates is the minimum number of gates needed to realize the function.
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Let us now consider how gate complexity stacks up against our criteria.

• Pro: Simple functions have simple constructions.

• Pro: Counting gates defines a partial ordering on the complexity measure

of functions.

• Con: Computing the measure seems to be very difficult. It appears that

exhaustively enumerating all possible functions from acyclic networks is the

only way to find the minimum function in general.

• Con: Functions that are closely related can have very different looking gate

structures. It is also difficult to know if functions are only one gate away

from each other without exhaustively checking.

Current state of the art: Exhaustively searching the 226
= 264 functions that

map 6 bits to 1 bit or the (24)! ≈ 244 permutations over 4 bits is prohibitive.

In a search of the literature, the author has found no indication that these cases

have been exhausted. However, in 1997, the coordinated efforts of DESCHALL

exhaustively searched the 256 DES keys in an RSA Security challenge. Thus,

either of these classifications could possibly be done by a large coordinated effort.

To date, it seems that only the minimum number of gates needed for all 3-bit

permutations and 5-bit to 1-bit functions have been computed.

2.5 Reversible Gate Complexity Measure

Since it appears that look-up tables can not be used very efficiently on a quantum

computer, there has been increased interest in finding the optimal gate construc-

tion of a function under the restrictions of reversibility.
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Unfortunately, the search for optimal gate implementations in the reversible

context faces many of the same challenges that plague the gate complexity mea-

sure [MDM07].

• Pro: Counting reversible gates defines a partial ordering on the complexity

measure of permutations.

• Pro: Has low complexity for simple functions. Since classical computation

can be efficiently simulated by a reversible computation, simple functions

will have simple reversible gate implementations.

• Con: Exhaustively enumerating all possible functions by applying new

gates again appears to be the only way to find the minimum function in

general.

2.6 Nonlinear Reversible Complexity Measure

Each of the previous complexity measures have been studied in depth, and will

not be treated further in this paper. However, each of these complexity measures

provides a useful measuring stick in evaluating new complexity measures. We

now present the basics of nonlinear complexity, and analyze its advantages.

Since linear functions are so simple, yet powerful, it is reasonable to suggest

that we consider two functions to be equivalent if a linear transformation on the

input and output of one makes it equal to the other. Using this basic notion of

equivalence, it is now natural to measure a function by the number of rounds of

nonlinearity necessary to achieve it.

Obviously, we must restrict the class of nonlinear connections, otherwise ev-

ery function is achievable in at most one round of nonlinearity – using itself!
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The class of nonlinear connections should have low complexity and have inverses

that are easy to compute. Inspired again by quantum computing, the most nat-

ural nonlinear function is the Toffoli gate. This gate is universal for reversible

computation.

• Pro: Since the complexity measure graph can be constructed from the

identity up, we get a partial ordering similar to the gate complexity mea-

sure. Except in this case, we are counting the number of nonlinear functions

needed.

• Pro: Simple functions have low complexity. Linear functions have com-

plexity zero, since they require no rounds of nonlinearity. Simple nonlinear

functions have implementations requiring few NAND gates. These can be

converted into reversible functions using few Toffoli gates. Since each Tof-

foli gate can be used as a round of nonlinearity, this sets an upper bound

on the number of rounds of nonlinearity a function needs.

• Pro: We are able to compute a complexity graph for 4-bit permutations.

This is currently not feasible for the gate complexity measure or reversible

gate complexity measure.

• Con: Similar to combinatorical complexity measures, this approach also

quickly runs out of steam due to the doubly exponential size of the space

we are exploring.

Possibly the most exciting result of the nonlinear complexity measure is that

we are able to use more powerful mathematics to analyze the problem of com-

plexity.
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Chapter 3

Reversible Circuits

3.1 Summary

This chapter introduces the basic gates of reversible computing and illustrates

how these gates may be composed. Three different methods for visualizing re-

versible circuits are introduced: circuit diagram, truth table and wire program.

The majority of the content can be found in the open literature. It is presented

here to provide the reader sufficient background to understand the material in

the later chapters.

3.2 Classical Circuit Diagrams

Classical circuits may be represented as diagrams connecting the inputs and out-

puts by a combination of wires connected by universal gates. There are certain

rules to building circuits, such as no closed loops, but these restrictions will not

be discussed in this paper.

Example 3.2.1. One very common building block of circuit design is the full

adder, which computes the sum and carry of two bits and an incoming carry bit.
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A common presentation is given in Figure 3.1.

Figure 3.1: Full Adder from XORs, ANDs and ORs

It is also useful to represent reversible circuits with diagrams. In [Ben73], Ben-

nett discusses the necessary conditions for reversible computing. For reversible

circuits, the conditions imply that

1. The number of wires is constant throughout the computation.

2. Every gate or action must be a permutation.

3. Wires may not be split or joined.

3.3 Basic Reversible Gates

The three most commonly used reversible gates are the NOT gate, the con-

trolled NOT gate or CNOT, and the Toffoli gate, also referred to as a controlled-

controlled-NOT gate, a doubly controlled NOT gate or simply CCNOT. As we

discuss reversible functions it is useful to view the functions in multiple forms,

the wire program, circuit diagram and truth table. We now present some basic

gates in each of the three forms.
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In the wire programs presented in this thesis, the binary operation ⊕= will

be used repeatedly. This notation is very useful in reversible computing since it

ensures that the end function is a permutation. Similar to a C program where

a+ = 2 means that the value of a is incremented by 2, 〈k〉⊕= f(a0, a1, . . . an)

means that the value of 〈k〉 is updated by XORing it with the value of f .

3.3.1 NOT Gate

The NOT gate is the simplest and acts on only one bit. The wire program for

the NOT gate acting on the kth bit is simply 〈k〉⊕= 1, In figure 3.2, the wire

〈0〉 is negated.

Figure 3.2: Circuit Diagram: NOT Gate

a0 �������� b0 = a0 ⊕ 1

Table 3.1: Truth Table: NOT Gate

Input (a0) Output (b0)

0 1

1 0

Given an n wire circuit, the NOT gate applied to various wires will generate

any bit translation (e.g. f(x) = x⊕ b where b ∈ Zn
2 ).
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Table 3.2: Wire Program: NOT Gate

Instruction 〈0〉

a0

〈0〉⊕= 1 a0 ⊕ 1

3.3.2 Controlled NOT Gate (CNOT)

The controlled NOT gate or CNOT adds the value of one wire to another. If 〈i〉

is the control and 〈j〉 is the target, then the wire program for the CNOT gate is

〈j〉⊕= 〈i〉. In figure 3.3, 〈0〉 is the control and 〈1〉 is the target.

Figure 3.3: Circuit Diagram: Controlled NOT Gate

a0 • b0 = a0

a1 �������� b1 = a1 ⊕ a0

Table 3.3: Truth Table: Controlled NOT Gate

a0a1 b0b1

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

Note that the control and target can be any wires. The CNOT gates on n

wires generate the linear group GLn(2). Combining CNOT and NOT gates will

generate the affine linear group AGLn(2).
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Table 3.4: Wire Program: CNOT Gate

Instruction 〈0〉 〈1〉

a0 a1

〈1〉⊕= 〈0〉 a0 a1 ⊕ a0

3.3.3 SWAP

Lemma 3.3.1. The value of two lines can be swapped using 3 CNOTs. (Referred

to as SWAP.)

Proof. If we wish to switch the values stored in 〈i〉 and 〈j〉, we can simply apply

the circuit in Figure 3.4.

Figure 3.4: Circuit Diagram: SWAP

a0 • �������� • b0 = a1

a1 �������� • �������� b1 = a0

We can trace the values on line 〈0〉 and line 〈1〉 through the following wire

program:

Table 3.5: Wire Program: SWAP

Instruction 〈0〉 〈1〉

a0 a1

〈1〉⊕= 〈0〉 a0 a1 ⊕ a0

〈0〉⊕= 〈1〉 a1 a1 ⊕ a0

〈1〉⊕= 〈0〉 a1 a0
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Table 3.6: Truth Table: SWAP

a0a1 b0b1

0 0 0 0

0 1 1 0

1 0 0 1

1 1 1 1

This is a well known trick from computer science when you wish to switch the

value of two variables and not use a temporary variable.

3.3.4 Toffoli Gate

The doubly controlled NOT gate, CCNOT or Toffoli gate adds the product of

two wires to another. If 〈i〉 and 〈j〉 are the controls and 〈k〉 is the target, then

the wire program for the CCNOT gate is 〈k〉⊕= 〈i〉〈j〉. In figure 3.5, 〈0〉 and 〈1〉

are the controls and 〈2〉 is the target.

Figure 3.5: Circuit Diagram: Toffoli Gate

a0 • b0 = a0

a1 • b1 = a1

a2 �������� b2 = a2 ⊕ a0a1

The Toffoli is probably the most well known universal reversible gate. Note

that both the NOT and CNOT gates can be derived from the Toffoli gate by

forcing certain control lines to be 1.
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Table 3.7: Wire Program: Toffoli Gate

Instruction 〈0〉 〈1〉 〈2〉

a0 a1 a2

〈2〉⊕= 〈0〉 · 〈1〉 a0 a1 a2 ⊕ a0a1

Table 3.8: Truth Table: Toffoli Gate

a0a1a2 b0b1b2

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 0

3.3.5 Example Permutation

Example 3.3.2. Consider the function f(a0, a1, a2) = (a2 ⊕ a0a1, a1 ⊕ 1, a2 ⊕

a0a1⊕ a0). The circuit diagram, wire program and truth table for f are in figure

??, and tables 3.9 and 3.10.

Figure 3.6: Circuit Diagram: f = (a2 ⊕ a0a1, a1 ⊕ 1, a2 ⊕ a0a1 ⊕ a0)

a0 • �������� b0 = a2 ⊕ a0a1

a1 �������� • b1 = a1 ⊕ 1
a2 �������� • b2 = a2 ⊕ a0a1 ⊕ a0
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Table 3.9: Wire Program: f = (a2 ⊕ a0a1, a1 ⊕ 1, a2 ⊕ a0a1 ⊕ a0)

Instruction 〈0〉 〈1〉 〈2〉

a0 a1 a2

〈1〉⊕= 1 a0 a1 ⊕ 1 a2

〈2〉⊕= 〈0〉〈1〉 a0 a1 ⊕ 1 a2 ⊕ a0a1 ⊕ a0

〈0〉⊕= 〈2〉 a2 ⊕ a0a1 a1 ⊕ 1 a2 ⊕ a0a1 ⊕ a0

Table 3.10: Truth Table: f = (a2 ⊕ a0a1, a1 ⊕ 1, a2 ⊕ a0a1 ⊕ a0)

a0a1a2 b0b1b2

0 0 0 0 1 0

0 0 1 1 1 1

0 1 0 0 0 0

0 1 1 1 0 1

1 0 0 0 1 1

1 0 1 1 1 0

1 1 0 1 0 0

1 1 1 0 0 1

3.3.6 Fredkin Gate

Another common universal gate for reversible computing is the Fredkin gate, or

controlled swap gate. While the Toffoli gate has two controls and one target, the

Fredkin gate has one control and two targets. If the control is 1, then the values

of the two targets are swapped. Again, if the control is 0, then no action takes

place.

Writing wire programs with the Fredkin gate is awkward since it updates the

value of two wires at once. For this reason, most wire programs will be written
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Figure 3.7: Circuit Diagram: Fredkin Gate

a0 • b0 = a0

a1

SWAP
b1 = a1 ⊕ a0a1 ⊕ a0a2

a2 b2 = a2 ⊕ a0a1 ⊕ a0a2

Table 3.11: Truth Table: Fredkin Gate

a0a1a2 b0b1b2

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 1 0

1 1 0 1 0 1

1 1 1 1 1 1

using Toffoli gates instead of Fredkin gates. Due to the linear equivalence between

Toffoli and Fredkin gates (that will be proven later), the necessary conversion is

fairly trivial.

3.4 Linear transformations on reversible circuits

Linear transformations are central to the equivalence relation that will be devel-

oped later. Not surprisingly, linear permutations can be constructed using only

a small subset of the gates presented so far.

Lemma 3.4.1. The CNOT gates on n wires generate GLn(2).
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Proof. Observe that the CNOT from 〈i〉 to 〈j〉 is the same as adding column i

to column j and the SWAP gate on 〈i〉 and 〈j〉 simply swaps columns i and j.

These elementary column operations can be used to reduce any invertible linear

transformation to the identity matrix. Thus, by simply reversing the echelon

reduction, any invertible linear transformation can be made from CNOTs.

Instead of representing a linear transformation as a series of controlled NOT

gates, we can represent the linear transformation as a single matrix action on a

group of wires. This can be done without hiding too much complexity since every

linear permutation may be constructed using O(n) CNOTs [KMS07].

As the binary state progresses from left to right, the binary state will be a

GF(2) column vector acted on by left multiplication of GF(2) matrices. Mirroring

the physics convention for quantum vectors, we will represent the column vectors

using the “ket” notation. (e.g. The column vector [1, 1, 0]T = |110〉.)

Example 3.4.2. Consider the vector |110〉 acted upon by the linear transfor-

mation
[

0 0 1
1 0 1
0 1 0

]
. The result will be the vector |110〉 multiplied on the left by the

matrix

[
0 0 1
1 0 1
0 1 0

]
|110〉 =

[
0 0 1
1 0 1
0 1 0

]
[1, 1, 0]T =

[
0 0 1
1 0 1
0 1 0

] [
1
1
0

]
=
[

0
1
1

]
= [0, 1, 1]T = |011〉 .

Figure 3.8: Circuit Diagram: Linear Matrix Example

a0 0 0 1
1 0 1
0 1 0

a2

|a0a1a2〉 = a1 a0 ⊕ a2 = |a2, a0 ⊕ a2, a1〉
a2 a1
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Remark 3.4.3. In order to maintain a consistent notation with established no-

tation, actions are applied to the input ket from left to right. When considering

linear actions applied to the ket, the matrix multiplication is applied on the left

of the column vector. Thus, to retain readability, we will use a notation similar

to the opposite ring or Rop notation when multiplying matrices in block form.

Thus we define A ∗B = BA for matrices A and B. Note that applying matrix A

and then B to ket |x〉 yields B(A |x〉) = (A ∗B) |x〉.

Figure 3.9: Block matrix product acting on kets (A ∗B = BA)

A B A ∗B=

It should also be noted that linear transformations can be enlarged to include

bit lines they do not affect. Of course, the opposite is also true. Bit lines that

are unaffected can be dropped out of the block matrix.

Figure 3.10: Two equivalent block matrix actions

1 0 0
0 a b
0 c d

a b
c d

=

3.5 Controlled Linear Transformations

Controlled linear transformations will operate in a wire diagram as anticipated.

If the controls are all 1 then the diagram will apply the linear transformation.
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Otherwise, no action is taken.

Example 3.5.1. We can express the Fredkin gate by controlling the matrix [ 0 1
1 0 ].

Figure 3.11: Fredkin gate as a controlled linear transformation

• •

0 1
1 0

=
SWAP

Example 3.5.2. Since a single control affine shift is equivalent to a linear trans-

formation, we can express the Toffoli gate as a controlled linear transformation.

Figure 3.12: Toffoli gate as a controlled linear transformation

• •

• = 1 1
0 1��������

3.6 Affine Transformations

An affine transformation is simply a linear transformation plus the addition of a

vector. Flipping the state of a wire in reversible circuits is typically represented

by placing a ⊕ on the wire. While this notation is a little strange, it also makes

sense. It is simply a controlled NOT without the control, and therefore just a

NOT gate.
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Example 3.6.1. We can express the affine transformation
[

0 0 1
1 0 0
0 1 1

]
+ |110〉 in two

different ways.

Figure 3.13: Equivalent Affine Transformations

0 0 1 1
1 0 0 1
0 1 1 0

0 0 1
1 0 0
0 1 1

��������
= ��������

Controlled affine transformations will also operate in exactly the same manner

as controlled linear transformations. If the controls are all 1, then the affine

transformation will be applied. Otherwise, no action is taken.

3.7 Scratch Space

Finally we consider scratch space, or additional computation space. For various

calculations, additional wires may be needed to store intermediate values or the

final calculation. In some cases, such additional wires are necessary, in other

cases, they simply speed up the computation. It should be noted that although

the Toffoli gate is universal, it is only universal given enough scratch space.

To illustrate how scratch space is used in reversible computation, we will

consider a simple problem: computing the AND of three wires.

3.7.1 3-bit AND

Suppose we wanted to construct the 3-bit AND from Toffoli, CNOT and NOT

gates. We will explore various ideas to show why two scratch bits are necessary
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and give motivation for the idea that works.

Since a permutation is a bijection, there do not exist functions f and g such

that figure 3.14 can have the output abc on the third wire (Two values must map

to one). Thus, we must utilize at least one additional wire to perform a reversible

computation for the 3-bit AND gate.

Figure 3.14: 3-bit AND Using 3 Wires?

a

?

f(a, b, c)

b g(a, b, c)

c abc

Now consider the circuit in figure 3.15.

Figure 3.15: 3-bit AND: Second Attempt

a • • a

b • �������� • b⊕ abc
c • c

0 �������� • �������� abc

Figure 3.15 has computed the value of the 3-bit AND abc, but one of the

wires has been modified. It is often preferable not to modify the input variables

in the event they are needed for other computations. This is corrected in the

implementation in figure 3.16.

Figure 3.16 now does seem to do the trick, but usually in reversible computing,

one wants to compute a value and have it XORed onto some set of bits. In this

case we are relying on the scratch bit to be initialized to zero for the 3-bit AND

to work. Figure 3.17 shows the circuit evaluated with an arbitrary scratch bit d.
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Figure 3.16: 3-bit AND: Third Attempt

a • • a

b • �������� • �������� b
c • c

0 �������� • �������� • abc

Figure 3.17: 3-bit AND: Third Attempt (Revisited)

a • • a

b • �������� • �������� b⊕ acd
c • c

d �������� • �������� • d⊕ acd⊕ abc

Computing the 3-bit AND and XORing its value on the fourth bit is a triply

controlled NOT. Upon further reflection, we realize that the CCCNOT, or triply

controlled NOT is an odd permutation on 4-bit wires. Since the NOT, CNOT

and CCNOT are all even permutations on 4-bit wires, we will need to add yet

another scratch bit to create a permutation equivalent to CCCNOT.

With 2 scratch bits, it doesn’t take long to find the construction in figure

3.18.

Figure 3.18: 3-bit AND: Fourth Attempt

a • a

b • b
c • c

0 �������� • ab
e �������� e⊕ abc
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Thus, in figure 3.18 all of the input values are preserved and the 3-bit AND is

XORed onto the target wire 〈e〉. The only problem is that one of our scratch bit

still contains some left over information. For classical computation, this doesn’t

seem like much of an issue. But for reversible computation, erasure means heat

dissipation. We would prefer to “uncompute” the scratch bit to return it to

its original value. Furthermore, if the reversible computation is to be used on a

quantum computer, it is necessary to return any scratch space used to its original

state or it will destroy the superposition of the computation. Thus, figure 3.19 is

still a better version of our 3-bit AND.

Figure 3.19: 3-bit AND: Fifth Attempt

a • • a

b • • b
c • c

0 �������� • �������� 0
e �������� e⊕ abc

Finally, there is one more surprising improvement that can be made. The

fourth scratch bit does not need to be initialized to zero for the computation to

work. For any value in d, figure 3.20 successfully computes the 3-bit AND of

a, b, c, XORs the value onto e and returns d to it original value.

This amazing trick is even more useful in quantum computation. Qubit wires

can be used as computation scratch space, even when we cannot observe their

contents.

30



Figure 3.20: 3-bit AND: Final Attempt

a • • a

b • • b
c • • c

d �������� • �������� • d
e �������� �������� e⊕ abc

3.8 Conclusion

Hopefully this small foray into reversible computation illustrates some of the

difficulty in exploring permutation constructions. One important observation

to make at this point is the relationship between scratch space and one-way

permutations.

Any reversible computation that does not use any scratch space, or a compu-

tation that “uncomputes” the scratch space that it does use, is easily reversible.

All of the gates can be run in the reverse order.

Thus for a permutation to be one-way, some circuit must exist which can

compute one direction of the permutation efficiently. Furthermore, this circuit

must leave “dirty” scratch space (not “uncomputed”), otherwise the inverse com-

putation can simply run the circuit backwards.
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Chapter 4

Which Permutations Should Be Equivalent?

4.1 Results and Application

The major results of this chapter are:

• Affine equivalence is a maximal equivalence relation in S2n .

• The two major universal reversible gates (Toffoli and Fredkin) are affine

equivalent.

• Singly-controlled linear and affine permutations are affine equivalent.

4.2 Background

In the early 1950’s, Aiken[AtSotCL51] and Moore[Moo52] exhaustively computed

the 402 equivalence classes of the 65536 four-variable Boolean functions (4-bit to

1-bit) under permutation and complementation of the input variables. Shortly

thereafter, mathematicians found combinatorical methods for counting that were

far superior to the exhaustive methods used by Aiken and Moore. This work
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aroused a lot of interest in using Polya theory to count equivalent Boolean func-

tions. References to much of this work can be found in [Lor64].

Permutations as well as functions may be classified by Polya theory. This

chapter explores various notions of equivalence, and why affine equivalence is

considered optimal.

4.3 The Equivalence Choice

Any group action on the input and output variables will define an equivalence.

Aiken and Moore’s original research stemmed from the question of how many

4-input, 1-output “cans” had to be designed to create all 4-bit nonlinear func-

tions. Since the input plugs could be arranged in any order, equivalence under

permutation of the inputs was one of the first equivalences studied. The following

is a list of some of the more natural and common choices.

1. Complementation of variables.

2. Permutation of variables.

3. Complementation and permutation of variables.

4. Linear transformation of variables.

5. Affine transformation of variables.

Table 4.1 is extracted from [Lor64]. It is helpful to see how the different

equivalence relations on inputs and outputs change the number of classes of per-

mutations. For most of the equivalence relations, no closed form solution to count

them is known. A lower bound is provided for the last four.
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Table 4.1: Number of Permutation Equivalence Classes

Equivalence n 1 2 3 4

None 2n! 2 24 40320 20922789888000

Complementation 2n!+(2n−1)22n−1!22n−1

22n 1 6 924 81738720000

Permutation > 2n!
(n!)2

2 7 1172 36325278240

Comp. & Perm. > 2n!
22n(n!)2

1 2 52 142090700

Linear > 2n!

22n2 2 2 10 52246

Affine > 2n!

22n2+2n
1 1 4 302

Note that the group of affine transformations contains all of the other listed

group actions as subgroups. One obvious question is whether or not there is a

larger subgroup than affine transformations suitable for larger equivalence classes.

Theorem 4.3.1 (O’Nan-Scott). Let Fq be the finite field with q elements and

F n
q the n-dimensional vector space over Fq. Let AGL(n, q), S(F n

q ) and A(F n
q ) be

the affine general linear group, symmetric group and alternating group acting on

F n
q respectively. Then AGL(n, q) ∩ A(F n

q ) is a maximal subgroup of A(F n
q ).

Proof. See [LPS87].

This proves that AGLn(2) is a maximal subgroup in A2n . Thus, adding any

nonlinear element of S2n to the affine group will generate all of A2n or S2n .

Although S2n contains other maximal subgroups, affine equivalence is the natural

choice if we wish linear functions to have low complexity.
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4.4 Affine Equivalence of Toffoli and Fredkin

Gates

As we start our journey of studying the complexity of functions using affine

equivalence, it is refreshing to see that the two universal gates for reversible

computing are in fact affine equivalent.

Lemma 4.4.1. The Toffoli gate and the Fredkin gate are affine equivalent.

Figure 4.1: Equivalence of Fredkin and Toffoli gates

• •

0 1
1 0

= 0 1
1 1

1 1
0 1

1 1
1 0

Proof. We need to show that when the top wire is 0, no action as taken by both

sides, and when the top wire is 1, the values in the bottom two lines are swapped.

When the top wire is 0, the controlled gate is not applied. Thus no action is

taken on the left, and the action on the right is

[ 0 1
1 1 ] ∗ [ 1 1

1 0 ] = [ 1 1
1 0 ] · [ 0 1

1 1 ] = [ 1 0
0 1 ] ,

which is the identity, and therefore takes no action.

In the case where the top wire is 1, the action on the right is

[ 0 1
1 1 ] ∗ [ 1 1

0 1 ] ∗ [ 1 1
1 0 ] = [ 1 1

1 0 ] · [ 1 1
0 1 ] · [ 0 1

1 1 ] = [ 0 1
1 0 ] ,

which is equivalent to a swap. Thus the Toffoli and Fredkin gates are affine

equivalent.
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4.5 Controlled Affine and Linear Permutations

Lemma 4.5.1. A singly controlled affine permutation is equivalent to a singly

controlled linear permutation composed with an affine permutation.

Proof. Separate the controlled affine function into the linear permutation and vec-

tor addition. The singly controlled vector addition is just the product of multiple

CNOTs. Any composition of CNOTs is a linear permutation. Thus, the singly

controlled affine permutation is equivalent to a controlled linear permutation and

a linear permutation.

Another way to consider the equivalence is: conditionally negating wire 〈i〉

by wire 〈j〉; which is the same as adding wire 〈i〉 to wire 〈j〉.

Example 4.5.2. Consider the following controlled affine permutation:

Figure 4.2: Affine Equivalent Controlled Transformations

• • •

0 1 1
1 0 1

= 0 1
1 0

�������� •
��������

Since the composition of CNOTs is simply a linear function, the controlled

affine permutation on the left is linear (and therefore affine) equivalent to the

controlled linear permutation on the right.

36



Chapter 5

Counting Equivalent Functions

5.1 Summary and Results

A method for counting affine equivalent double cosets in S2n is reviewed. This

result is then extended to show how we can enumerate the affine equivalent double

cosets in A2n .

5.2 Background

Polya theory is a very robust method for counting different types of objects,

subject to an equivalence relation. Let us first review the basic counting theorems

and how they are applied to counting the number of affine equivalent double

cosets.

Definition 5.2.1. Let f and g be n-bit permutations in S2n . Then f and g

are affine equivalent or f ≡ g if there exist a0 and a1, affine permutations in

AGLn(2) < S2n , such that f = a0ga1. This is equivalent to f and g belonging to

the same double coset of S2n where the action on the right and left is by AGLn(2)

Anytime we have a group acting on a set, the group action will divide the

37



set into disjoint orbits. The Cauchy-Frobenius Lemma, one of the most beautiful

results of combinatorical group theory, states that the number of orbits is equal

to the average number of fixed points by the group action.

We need to introduce some definitions before proceeding with the proof.

Definition 5.2.2. Let G be a group acting on the set X. Define Xg = {x ∈

X|g · x = x}. Xg is the set of fixed points under the action of G.

Definition 5.2.3. Let G be a group acting on the set X. Define the stabilizer

Gx = {g ∈ G|g · x = x}. Then Gx is the subgroup of G that fixes the point x.

Definition 5.2.4. Let G be a group acting on the set X. Define G(x) = {y ∈

X|∃g 3 g · x = y}. G(x) is the orbit of the element x.

Lemma 5.2.5. (Orbit-Stabilizer relation) Let G be a group acting on the set X.

Given x ∈ X, the length of the orbit G(x) is equal to the index of the stabilizer:

|G(x)| = |G/Gx|,

or equivalently,

|G(x)| · |Gx| = |G|.

Proof. Define a mapping φ : G(x) → G/Gx by gx 7→ gGx. Then using the

following relations:

g1x = g2x ⇐⇒ g−1
2 g1 ∈ Gx ⇐⇒ g1Gx = g2Gx,

we can see that φ is injective, onto, and well defined. Therefore, it is a bijection.

It follows immediately that

|G(x)| = |G/Gx|.
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We now have the machinery needed to prove the following.

Theorem 5.2.6 (Cauchy-Frobenius). Let G be a group acting on the set X. The

number of disjoint orbits is equal to the average number of fixed points.

|G//X| = 1

|G|
∑
g∈G

|Xg|,

where |G//X| denotes the number of G-orbits in X.

Proof. Define the function f : G×X → {0, 1} by

f(g, x) =

 1 if g · x = x

0 otherwise

Then by summing over x or g we get:∑
g∈G

|Xg| =
∑

g∈G,x∈X

f(g, x) =
∑
x∈X

|Gx|

Recall the Orbit-Stabilizer relation (we use it twice):

For all x ∈ X |Gx| · |G(x)| = |G|.

Any group action divides X = O1 ∪O2 ∪ · · · ∪ON into a disjoint union of orbits,

and it is exactly these orbits we wish to count. Consider the right hand sum over

a single orbit generated by y.∑
x∈Oy

|Gx| =
∑
x∈Oy

|Gy| = |Gy| · |G(y)| = |G|.

Thus, the sum of |Gx| over any orbit is |G|. Therefore,∑
g∈G

Xg =
∑
x∈X

|Gx| =
∑

x∈O1∪···∪ON

|Gx| =
N∑
i=1

|G| = N |G|

where N is the number of orbits.

It follows immediately that

|G//X| = N =
1

|G|
∑
g∈G

Xg.
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5.3 Counting Fixed Points Under a Double Coset

Action

Define φ : (AGLn(2) × AGLn(2)) × S2n → S2n by φ((a, b), p) = apb−1. In order

to count the number of equivalence classes we have, we need to figure out how

many permutations are fixed by the action of (a, b).

For any permutation we can define the cycle set α to be a tuple (α1, α2, α3, . . .)

where each αi indicates the number of i-cycles in the permutation. For any

permutation on N elements, ∑
i

iαi = N.

Lemma 5.3.1. If the action of (a, b) on the permutation p fixes p, then a and b

must have the same cycle set.

Proof. Suppose the action (a, b) fixes p. Then apb−1 = p or equivalently, apb−1p−1 =

1. Let Ck = (b0b1 . . . bk−1) be a k-cycle in b−1. Then pCkp
−1 = (p(b0)p(b1) . . . p(bk−1)).

This can be verified by checking that

pCkp
−1(p(bi)) = pCk(bi) = p(bi+1).

Since conjugating by p maps k-cycles to k-cycles for all k, conjugating by p will

take b to another permutation with the same cycle structure. Therefore a must

also have the same cycle structure since a is the inverse of pbp−1.

Lemma 5.3.2. Given two permutations a and b with the same cycle set (α1, α2, . . .),

the number of permutations fixed by the action (a, b) is

∏
k

αk!k
αk .
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Proof. Recall that when the action (a, b) fixes a permutation p, apb−1p−1 = 1. Let

Cb
k = (b0b1 . . . bk−1) be a k-cycle in b−1. Then pCb

kp
−1 = (p(b0)p(b1) . . . p(bk−1)).

Given another k-cycle in a, Ca
k , there are k different permutation maps p that

will conjugate Cb
k to become the inverse of Ca

k . This is simply due to the fact

that the permutation can be shifted in k possible ways, all of which are actually

the same permutation.

If we have αk k-cycles in b−1 to match with αk k-cycles in a, there are αk!

ways to choose the matching. With each matched pair we have shown that there

are k permutations with which we can conjugate Cb
k to become Ca

k . Thus there

are αk!k
αk ways to match all k-cycles.

Since the permutation acts on each cycle independently, the total number of

permutations fixed by the action (a, b) is the product over all k.

For counting the number of double cosets in general, we would examine the

cycle sets for the left and right action.

Theorem 5.3.3. Let H < S2n and let Hα = {h ∈ H|h has cycle set α}. Then

the number of HH double cosets of S2n is

1

|H|2
∑
α

|Hα|2
∏
k

αk!k
αk .

Proof. Recall the double coset group action of G = H × H on S2n , φ : (H ×

H) × S2n → S2n defined by φ((a, b), p) = apb−1. By Theorem 5.2.6, the number

of orbits (double cosets) is

|G//S2n| =
1

|G|
∑
g∈G

Xg

=
1

|H|2
∑

h1,h2∈H

X(h1,h2)
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By Lemma 5.3.1 the number of fixed points is zero unless h1 and h2 are in

the same cycle set. This reduces our equation to

1

|H|2
∑
α

∑
h1,h2∈Hα

X(h1,h2).

Applying Lemma 5.3.2, we get

1

|H|2
∑
α

∑
h1,h2∈Hα

∏
k

αk!k
αk .

Since the summand is independent of h1 and h2, we arrive at the desired result:

1

|H|2
∑
α

|Hα|2
∏
k

αk!k
αk .

5.4 Counting Affine Equivalent Double Cosets

in S2n

By theorem 5.3.3, the number of affine equivalent double cosets in
∑

is

1

|AGLn(2)|2
∑
α

|Hα|2
∏
k

αk!k
αk

where Hα is the number of elements in H with the cycle type α. Recall that all

the elements of any conjugacy class have the same cycle type. To compute |Hα|,

we will take the union of conjucacy classes in AGLn(2) with cycle type α.

5.4.1 Example: Affine equivalent 3-bit permutations

We will now use MAGMA[BCP97] to find the cycle sets for the affine general

linear group over GF(2).
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> Classes(AGL(3,2));

Conjugacy Classes

-----------------

[1] Order 1 Length 1

Rep Id($)

[2] Order 2 Length 7

Rep (1, 2)(3, 4)(5, 6)(7, 8)

[3] Order 2 Length 42

Rep (1, 5)(2, 6)

[4] Order 2 Length 42

Rep (1, 2)(3, 4)(5, 8)(6, 7)

[5] Order 3 Length 224

Rep (1, 7, 4)(2, 5, 8)

[6] Order 4 Length 84

Rep (1, 4, 3, 2)(5, 8, 7, 6)

[7] Order 4 Length 168

Rep (1, 6, 2, 5)(7, 8)

[8] Order 4 Length 168

Rep (1, 8, 2, 5)(3, 6, 4, 7)

[9] Order 6 Length 224

Rep (1, 5, 7, 8, 4, 2)(3, 6)

[10] Order 7 Length 192

Rep (1, 5, 2, 3, 4, 6, 8)

[11] Order 7 Length 192

Rep (1, 6, 3, 5, 8, 4, 2)

Note that some classes have the same cycle set, even though they are not

conjugate. These need to be grouped together in our counting. (i.e. conjugacy

classes 2 and 4 are not conjugate, but both have a (0, 4) cycle set.)
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Table 5.1: Cycle Sets of AGL(3,2)

Cycle Set Classes Total Count

(8) 1 1 12 · 8!18

(4, 2) 3 42 422 · 4!142!22

(0, 4) 2, 4 49 492 · 4!24

(2, 0, 2) 5 224 2242 · 2!122!32

(0, 0, 0, 2) 6, 8 252 2522 · 2!42

(2, 0, 1, 0, 1) 7 168 1682 · 2!121!211!41

(0, 1, 0, 0, 0, 1) 9 224 2242 · 1!211!61

(0, 0, 0, 0, 0, 0, 0, 1) 10, 11 384 3842 · 1!81

Thus, we calculate the number of affine equivalent 3-bit permutations by

summing the terms in table 5.1, and then dividing by |AGL(3, 2)|2 = 13442.

SUM = 12 · 8!18 + 422 · 4!142!22 + 492 · 4!24 + 2242 · 2!122!32 + 2522 · 2!42

+ 1682 · 2!121!211!41 + 2242 · 1!211!61 + 3842 · 1!81

= 7225344

Thus the total number of double cosets is

SUM

13442
=

7225344

13442
= 4.
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5.4.2 Counting Affine Equivalent n-bit Permutations

Table 5.2 provides a general MAGMA program to compute the number of affine

equivalent permutations for any n. The computation is mostly limited by the

difficulty of finding the conjugacy classes of AGLn(2).

Table 5.2: MAGMA function for counting double cosets

Count_AGL_double_cosets_in_Sym := function(n)

H:=AGL(n,2); // Permutation group in Sym(2^n)

ConjClass:=ConjugacyClasses(H);

CycleTypes:={}; // Union together similar cycle sets

for x in ConjClass do

CycleTypes:=CycleTypes join {CycleStructure(x[3])};

end for;

sum:=0; // Compute and add summands for each cycle type

for x in CycleTypes do

size:=0;

for y in ConjClass do

if (x eq CycleStructure(y[3]))

then size:=size+y[2]; end if;

end for;

summand:=size^2;

for y in x do

summand:=summand*Factorial(y[2])*(y[1]^y[2]);

end for;

sum:=sum+summand;

end for;

return sum/(#H)^2; // Divide by group order

end function;

Using the function in table 5.2, the author was able to compute the number

of affine equivalent double cosets for n ≤ 7. The total count grows doubly

exponentially, so only the values for n ≤ 5 are provided in table 5.4.
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Table 5.3: Number of Affine Equivalent Permutations

n Affine Equivalent Total Permutations (2n!)

2 1 24

3 4 40320

4 302 20922789888000

5 2569966041123963092 263130836933693530167218012160000000

5.5 Counting Affine Equivalent Double Cosets

in A2n

Since the Toffoli gate is an even permutation for all n > 3, the Toffoli gate

and AGLn(2) can only generate A2n . For this reason, it will be more natural to

examine the complexity structure of the double cosets in A2n and extend to S2n

via an odd permutation only when necessary.

Let G be a group acting on a set X by conjugation. Let CG(x) denote the

centralizer and xG the conjugacy class of an element x. We will consider both

S2n and A2n acting on A2n by conjugation. For any π ∈ A2n ,

|CS2n
(π)| · |πS2n | = n!

|CA2n
(π)| · |πA2n | = n!

2
.

Note that

CA2n
(π) = CS2n

(π) ∩ A2n < CS2n
(π).

We will see that either the centralizer or conjugacy class will be half-sized in A2n .

The following theorem details exactly what happens.
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Theorem 5.5.1. Let S2n and A2n both act on A2n by conjugation, and let π ∈

A2n. Then

|CA2n
(π)| =

 |CS2n
(π)| if π has only odd distinct cycles.

1
2
|CS2n

(π)| otherwise.

Proof. See [Sco87].

Corollary 5.5.2. Let S2n and A2n both act on A2n by conjugation, and let

π ∈ A2n. Then

|πA2n | =


1
2
|πS2n | if π has only odd distinct cycles.

|πS2n | otherwise.

Proof. The order of the centralizer times the orbit must be n!
2

. Thus if the

centralizer doesn’t change in A2n , the conjugacy class must split. Likewise, if the

conjugacy class doesn’t split in A2n , the centralizer must be half as large.

Since most permutations do not have a cycle type with only distinct odd

cycles, the conjugacy class for most permutations is the same between S2n and

A2n . However, the centralizer is now half as large for these permutations.

Let β represent the distinct odd cycles and α the rest. Let β1 and β2 represent

the two A2n conjugacy classes of cycle type β. Then the equation for theorem

5.3.3 reduces to

1

|AGLn(2)|2

(∑
α

|Hα|2 ·
1

2

∏
k

αk!k
αk +

∑
β,i=1,2

|Hβi |2
∏
k

βk!k
βk

)
.

The number of affine equivalent double cosets in A2n is close to half the

number in S2n due to the fact that most of the cycles types are not distinct odd

cycles.
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Lemma 5.5.3. If the distinct odd cycles β of AGLn(2) split evenly into the two

A2n conjugacy classes β1 and β2, then the number of affine equivalent double

cosets in A2n is exactly half the number in S2n. I.e. if for all distinct odd cycles

β

|HA2n

β1
| = |HA2n

β2
| = 1

2
|HS2n

β |

Then A2n contains half of the double cosets of S2n.

Proof. Since the summand result is already correct for cycle types α, that are

not odd and distinct, we need only consider the summands associated with the

odd distinct cycle types β.

∑
β,i=1,2

|Hβi |2
∏
k

βk!k
βk =

∑
β,i=1,2

|Hβ

2
|2
∏
k

βk!k
βk

=
1

4

∑
β,i=1,2

|Hβ|2
∏
k

βk!k
βk

=
1

4

(
2 ·
∑
β

|Hβ|2
∏
k

βk!k
βk

)

=
1

2

∑
β

|Hβ|2
∏
k

βk!k
βk .

Thus the contribution from both the odd distinct cycles β and the other cycles

α is half in both cases. Therefore the number of affine double cosets A2n will be

exactly half of S2n .

Elements of the same AGLn(2) conjugacy class, will obviously be in the same

A2n conjugacy class, thus if a A2n conjugacy class has a cycle type that is odd

and distinct, there is no guarantee that there will be a matching conjugacy class.

In order to test whether or not two permutations are in the same A2n conjugacy

class, we will use the following result.
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Lemma 5.5.4. Let p and q be permutations in S2n with the same odd distinct

cycle structure. Since p and q have the same cycle structure, there exists σ ∈ S2n

such that p = σqσ−1. If σ is odd, then p and q are in different A2n conjugacy

classes. If σ is even then p and q are in the same A2n conjugacy class.

Proof. Find σ such that p = σqσ−1. Such a σ is guaranteed to exist since p and

q have the same cycle structure.

Assume σ is an odd permutation. If p and q are in the same A2n conjugacy

class, then there exists an even permutation τ such that q = τpτ−1. Thus

p = σqσ−1

= στpτ−1σ−1

= (στ)p(στ)−1.

Therefore στ is an odd permutation in the centralizer of p, which is a contra-

diction, since the centralizer of p is contained in A2n .

Assume that σ is an even permutation. Since σ ∈ A2n , this implies that p

and q are in the same A2n conjugacy class.

Consider now the number of cycles in a permutation in S2n with odd distinct

cycles. Since the length of the cycles must sum to 2n, there must always be an

even number of distinct odd cycles. This leads us to a case that will pair two odd

distinct cycle AGLn(2) conjugacy classes.

Lemma 5.5.5. Let b be an affine permutation in AGLn(2), n > 2, with an odd

distinct cycle structure β. Let m be the number of cycles in β. If m ≡ 2 (mod 4),

then b and b−1 are in different A2n conjugacy classes.
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Proof. Consider the cycles in the permutation b. If every cycle is reversed, we

have permutation b−1. We will consider the parity of the permutation σ that

reverses every cycle by conjugation.

Let Ck = (b1b2 · · · bk) be a cycle of b. Define σ on Ck so that σ(bi) = bk−i+1.

Then

σCkσ
−1 = σ(b1b2 · · · bk)σ−1

= (σ(b1)σ(b2) · · · σ(bk))

= (bk · · · b2b1).

Since k is odd, the midpoint of the cycle stays fixed, and σ is thus composed of

k−1
2

transpositions.

Extending σ over all cycles, we see that σ is composed of 2n−m
2

transpositions.

Since m ≡ 2 (mod 4), 2n−m
2

is odd. Therefore σ is an odd permutation. By

lemma 5.5.4, b and b−1 must be in different A2n conjugacy classes.

Since the inversion action stays within AGLn(2), there must be an exact

pairing between the two A2n conjugacy classes within AGLn(2). Thus all distinct

odd cycle types with 2 (mod 4) cycles will split evenly in the A2n conjugacy

classes. Thus the only cycle types which can affect the sum are the distinct odd

cycle types with 0 (mod 4) cycles.

The case of n = 5 is the first instance where there exists a odd distinct cycle

type with 0 (mod 4) cycles. There are two conjugacy classes of size 15237120

with a (1, 3, 7, 21) cycle structure. A parity check between the two conjugacy

classes reveals that they differ by an even conjugation. Lemma 5.5.4 indicates

that the two conjugacy classes will be in the same A2n conjugacy class.

Let NS be the number of affine equivalent 5-bit permutations. Computing
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the number of affine equivalent 5-bit even permutations NA yields

NA =
Ns

2
+

152371202 · 3 · 7 · 21

2|AGLn(2)|2

= 1284983020561981548.

Is should be noted that we only added half of the summand since the other

half was already included in NS
2

. The correction factor turns out to only make a

difference of 2, since Ns
2

= 1284983020561981546.

In the cases where n = 4, 6, there are no odd distinct cycle types with 0

(mod 4) cycles. Thus, the number of affine equivalent even permutations is ex-

actly half for those two cases. For n = 7 there are 10 conjugacy classes with odd

distinct cycle type and 0 (mod 4) cycles.

Table 5.4: Number of Affine Equivalent Even Permutations

n Affine Equivalent in A2n

3 2

4 151

5 1284983020561981548

6 38115488450430370396302626146823126191571813695482842576562378932

The fact that there are 151 affine equivalent classes in A16 will be used in the

classification of 4-bit permutations.

5.6 Open problems

• Develop a general method for computing the conjugacy classes of AGLn(2).

51



A method was developed in [Hou06], but the results are incomplete. Hou’s

calculation indicated that the number of affine equivalent 5-bit permuta-

tions was 2569966041123938084 instead of 2569966041123963092. A verifi-

cation check by the author revealed that Hou was missing two conjugacy

classes found by MAGMA. While the canonical form (conjugacy class) of

linear matrices has been well studied, the problem is surprisingly not com-

pletely solved for finding the canonical form of affine transformations.

• Develop a general method for counting the affine equivalent double cosets in

A2n. Are there always half as many affine equivalent double cosets in A2n

when n is even (n > 2)?
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Chapter 6

Hamiltonian Cycles over GLn(2)

6.1 Results and Application

Identifying whether or not two functions are affine equivalent is critical to the

development of a nonlinear hierarchy. This basic computation, which is essentially

a double coset membership test, must be done many times, and thus requires a

very efficient implementation.

With permutations stored as bit vectors, CNOTs can be applied by simple

masking, shifting and XORing. These operations are much faster to implement

than generically composing a permutation and a linear function.

Since the double coset test requires exhausting over all bit matrices in GLn(2),

it is natural to ask whether a Hamiltonian cycle exists over GLn(2) where the

vertices are the invertible matrices and the edges correspond to adding one row

to another.

The major results of this chapter are:

• A proof that the subgroups of upper triangular matrices in GLn(2) have

Hamiltonian cycles.
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• A heuristic algorithm for generating Hamiltonian cycles over GLn(2)

• The algorithm found Hamiltonian cycles over GLn(2) for n = 2, 3, 4, 5.

The Hamiltonian cycles found are used to construct a highly efficient double

coset test.

6.2 Background

A graph contains a Hamiltonian cycle if there exists a sequence of connected

edges that pass through each vertex only once, returning to the the start vertex

at the end. The Knight’s Tour problem of finding a sequence of knight moves

that touch each square of the chess board once is a famous Hamiltonian cycle

problem. The Gray code is another famous example of a Hamiltonian cycle. In

general, determining whether or not a given graph has a Hamiltonian cycle is

NP-complete.

Given a group G and a generating set S, the Cayley graph Γ = Γ(G,S) is

constructed by assigning each element of G to a vertex, and then connecting two

vertices if their difference is in S. Since S is a generating set, Γ(G,S) must be

connected.

The following lemma and corollary will be used to construct Hamiltonian

cycles in this chapter.

Lemma 6.2.1. Let Γ(G,S) be the Cayley graph for a group G and generating

set S = {σ0, σ1, . . .}. Let f : Zn → {0, 1, 2, . . . |S| − 1} be a map such that

H = [σf(0)σf(1) · · ·σf(n−1)] is a Hamiltonian cycle on Γ. Then any cyclic rotation

of H is a Hamiltonian cycle on Γ, i.e. [σf(k)σf(k+1) · · ·σf(k+n−1)] is a Hamiltonian

cycle on Γ for all k ∈ Z.
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Proof. Since H = [σf(0)σf(1) · · ·σf(n−1)] is a Hamiltonian cycle, we may list the

elements of G in the following order.

σf(0)

σf(0)σf(1)

σf(0)σf(1)σf(2)

...

σf(0)σf(1)σf(2) · · ·σf(n−1) = e

If we now act on the elements of G by multiplying on the left by σ−1
f(0), we get

another ordering of the elements of the group G.

e

σf(1)

σf(1)σf(2)

...

σf(1)σf(2) · · ·σf(n−1)

Recall that H is a Hamiltonian cycle implies

e = σf(0)σf(1)σf(2) · · ·σf(n−1).

Conjugating both sides by σf(0) yields

e = σf(1)σf(2) · · ·σf(n−1)σf(0).
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Moving the first term e to the end, now gives

σf(1)

σf(1)σf(2)

...

σf(1)σf(2) · · ·σf(n−1)

σf(1)σf(2) · · ·σf(n−1)σf(0).

This ordering is associated with the Hamiltonian cycle [σf(1)σf(2) · · ·σf(n−1)σf(0)].

Since a single circular shift will yield a new Hamiltonian cycle, any circular

shift will yield a new Hamiltonian cycle. Thus [σf(k)σf(k+1) · · ·σf(k+n−1)] is a

Hamiltonian cycle for any k.

Corollary 6.2.2. Let Γ(G,S) be the Cayley graph for a group G and generating

set S. Let G1 be a subgroup of G. If H is a Hamiltonian cycle over the vertices

in G1, then any rotation of H is a Hamiltonian cycle over G1.

Proof. Apply Lemma 6.2.1 the Cayley graph Γ(G1, S1) where S1 is the subset of

S used in H.

Corollary 6.2.3. Let Γ(G,S) be the Cayley graph for a group G and generating

set S. Let C1 be a left coset of G. If H is a Hamiltonian cycle over the vertices

in C1, then any rotation of H is a Hamiltonian cycle over C1.

Proof. Any Hamiltonian cycle over a coset will also be a Hamiltonian cycle over

the associated subgroup.

The Lovász Conjecture simply states that every finite connected Cayley

graph contains a Hamiltonian cycle. Many sub-cases of the the Lovász Conjecture
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have been proved. These cases mostly deal with special generating sets for the

symmetric group Sn. For a survey of these results see [CG96]. The author is not

aware of any results over GLn(2).

6.3 Existence

The computational effect of an AND, shift and XOR is the same as applying a

single CNOT gate, which is the same as the linear operation of adding one row

to another. This will be demonstrated in detail later. It is well known from

linear algebra that simple row operations will generate any matrix. Thus, the

computational speed-up relies on the solution of the following problem.

Problem 6.3.1. Starting from the identity matrix, is it possible to step through

all possible invertible matrices in GLn(2) using only a single row operation at

each step?

In other words, is there a Hamiltonian cycle over GLn(2) with the generating

set S = {σij}, where σij is the operation of adding row i to row j?

For n = 2, the problem turns out to be quite easy. Since σ2
ij = 1 for

all i, j, the only choice is to alternate between σ12 and σ21. It turns out that

[σ12, σ21, σ12, σ21, σ12, σ21], is a Hamiltonian cycle as follows:

[ 1 0
0 1 ] σ12−→ [ 1 0

1 1 ] σ21−→ [ 0 1
1 1 ] σ12−→ [ 0 1

1 0 ] σ21−→ [ 1 1
1 0 ] σ12−→ [ 1 1

0 1 ] σ21−→ [ 1 0
0 1 ]

Finding a solution for n = 3 turned out to be not so easy. Early attempts to

solve this problem found many near misses. Even though the ability to add any

row to any other row gives a lot of freedom, the extra freedom made searching

very difficult. Appealing to the Lovász conjecture, a solution should exist for any

generating set. Consider the following lemma.
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Lemma 6.3.2. Let G = GLn(2) and let σi be the row operation that adds row i

to row i + 1. For σn, the row operation will wrap around and add row n to row

1. Then S = {σi for i ∈ [1..n]} is a generating set for G.

Proof. Each σi = σi,i+1. Noting that σikσkjσikσkj = σij, one can build up any

σij.

Thus, in the case where n = 3, instead of considering S = {σ12, σ13, σ23, σ21, σ31, σ32},

the Lovász conjecture implies that a Hamiltonian cycle should exist using only

S = {σ1, σ2, σ3}.

Using the reduced generating set, the following 24 long sequence was found.

When the sequence is repeated 7 times, it generates all 168 matrices in AGL(3,2).

σ1σ2σ1σ2σ1σ2σ1σ3σ1σ2σ1σ2σ1σ2σ1σ3σ1σ2σ1σ2σ1σ3σ1σ2

The cases where n = 2, 3 are special in that they cannot be found using the

heuristic algorithm presented later.

6.4 Borel Subgroup

Removing one generator from S = {σi}, namely σn, leaves a set that generates

the lower triangular matrices, since the rows can only add down. This subgroup,

also known as the Borel group, is one generator away from GLn(2). Hamiltonian

cycles on cosets of this subgroup could be pieced together to form a Hamiltonian

cycle for GLn(2). This is how the heuristic algorithm to be presented later will

work.

Theorem 6.4.1. Let Bn be the lower triangular subgroup of GLn(2) and let

S = {σi for i ∈ [1..(n− 1)]}. Then the Cayley graph Γ(Bn, S) has a Hamiltonian

cycle.
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Figure 6.1: Extending the Active Cycle

ve
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Proof. For n = 3, one can verify that [σ1σ2σ1σ2σ1σ2σ1σ2] is a Hamiltonian cycle.

By induction, we assume that a Hamiltonian cycle exists for Bn. Identify Bn

with the subgroup of Bn+1 that is zero everywhere off the diagonal in the final

row. The cosets of Bn partition Bn+1. Each coset can be traversed using the

Hamiltonian cycle for Bn.

Note that σn commutes with all of the generators in Bn except for σn−1. The

following process may be used to generate a Hamiltonian cycle for all of Bn+1.

1. Start with the Hamiltonian cycle associated with the subgroup Bn. This

will be the first state of what will be referred to as the active cycle. Note

that all the cosets of Bn may also be traversed by the same transition order

as the Hamiltonian cycle for Bn. The goal is to connect each coset cycle to

the active cycle, eventually enlarging the active cycle to cover all of Bn+1.

2. Starting at the identity, e, follow the Hamiltonian path on the active cycle

and test each vertex by applying σn to see if σn transitions to a vertex not

on the active cycle.
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3. Let vg be the first vertex on the active cycle such that vg·σn is not on the

active cycle. Since S is a generating set, the only time this can fail is when

we have generated the entire Hamiltonian cycle. (Note: In the case where

transition away from the active cycle from the initial point e, one of the

incoming or outgoing edges to e must not be σn−1. Thus, the rest of the

argument will still apply.)

4. Since σn commutes with all of the generators for Bn except σn−1, the edge

transitioning into vg must be σn−1. See figure 6.1. Otherwise, commuta-

tivity would imply that we would have transitioned away from the active

cycle on the previous step.

5. Let σk be the edge transitioning out of vg on the active cycle. Then k 6= n,

since σn must be taking us to a new coset cycle. And k 6= n−1, since σ2
n−1 =

e, and the vertices are distinct on a Hamiltonian path. Thus σnσk = σkσn.

6. By corollary 6.2.3, there is a Hamiltonian cycle over the coset and by corol-

lary 6.2.2, we may rotate the cycle so that the last edge is σk.

7. Since the coset cycle is a Hamiltonian cycle, the product of all the tran-

sitions is the identity (return to the starting point). Thus, if we do not

complete the last transition, the product of all the previous transitions

must by σ−1
k which is simply σk since it has order 2.

8. Extend the active cycle to include the points on the coset cycle by branching

out from the active cycle at vg. Continue around the Hamiltonian cycle from

the coset, but stopping before applying the final transition σk. Return back

to the active cycle via σn. The total action is equivalent to σnσkσn which is
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equivalent to σk due to commutativity. Thus we return at exactly the next

vertex on the active cycle and can now complete the trip back to ve.

9. If the active cycle now covers all of Bn+1 stop. Otherwise, return to step 2

to extend the active cycle by another coset cycle.

6.5 Heuristic Algorithm

Although the evidence is clearly in favor of a Hamiltonian cycle existing for

GLn(2), the author was unable to find a solution. However, the following heuristic

algorithm was used to find Hamiltonian cycles over GLn(2) for n = 4, 5. In this

case note that σn = σn,1. The final σn adds the nth position to the first position.

The only difference between this algorithm and the algorithm for finding

Hamiltonian cycles over the Borel group is that we cannot prove that this al-

gorithm succeeds. It is possible to build an active cycle that cannot be extended,

but is also not the full Hamiltonian cycle.

1. Start with the Hamiltonian cycle associated with the Borel subgroup Bn.

2. Apply σn to each vertex vg. If σn transitions to a coset not contained in

the active cycle, and the incoming and outgoing transitions for vg are not

both σ1 and σn−1, then we have found a vertex from where we can extend

the active cycle. NOTE: Such a vertex may not exist. This is where the

algorithm could fail.

3. Let σk be the transition where k 6= 1, n− 1. If σk is an incoming transition,

then choose the vertex immediately preceding vg to be our branching point.
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4. In exactly the same manner as the previous algorithm, insert the new coset

cycle in the active cycle in the place of σk.

5. If the active cycle now covers all of GLn(2) stop. Otherwise, return to step

2 to extend the active cycle by another coset cycle.

6.6 Open Problems

• Prove that a Hamiltonian cycle exists over GLn(2) using only row addi-

tions. This could include all possible row additions, not just the reduced

set considered here.

• Find a “Gray Code” style algorithm for the Hamiltonian cycle. The current

method only finds a path whose description is essentially a long description

of what move to do at each step. For Gray Code, there is a function f(t)

which indicates which bit should be flipped at time t. The ideal answer

would be a simple function f(t) = (a, b) indicating the next step would be

to add row a to row b.
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Chapter 7

Double Coset Representatives

7.1 Results and Application

This chapter defines a Basis Fixing Permutation (BFP) as a permutation

that fixes the zero vector and each vector of weight one. Each double coset

contains at least one, and usually many BFPs. Additional reductions can be

applied to find a minimal BFP from a given BFP. Unfortunately, many double

cosets still contain multiple minimal BFPs.

This set of minimal BFPs is used to identify a given double coset. Once

found, minimal BFPs can quickly discover which class a given permutation is in.

Unfortunately, finding all the minimal BFPs is computationally intensive.

The major results of this chapter are:

• Every permutation is affine equivalent to a basis fixing permutation (BFP).

• Each coordinate polynomial of a BFP has a single linear term.

• Given a lexicographic ordering and a BFP, a minimal BFP can be quickly

computed.
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Affine equivalent representatives for each double coset are used to accelerate

the identification algorithms.

7.2 Background

Let us first recall some basic terms used with linear and affine transformations.

For the following definitions, let K be a field and the vi’s elements of a vector

space over K.

Definition 7.2.1. The linear span of m vectors v1, . . . , vm ∈ Kn is{
m∑
i=1

aivi

∣∣∣∣∣ ai ∈ K
}
.

Similarly, the affine span of m+ 1 vectors v0, . . . , vn ∈ Kn is{
m∑
i=0

aivi

∣∣∣∣∣
m∑
i=0

ai = 1, ai ∈ K

}
.

Definition 7.2.2. A set of m vectors v1, . . . , vm is linearly independent if

m∑
i=1

aivi = 0 =⇒ ∀i, ai = 0.

Similarly, a set of n+ 1 vectors v0, . . . , vn is affinely independent if

n∑
i=0

aivi = 0 and
n∑
i=0

ai = 0 =⇒ ∀i, ai = 0.

Definition 7.2.3. Given n, the affine basis vectors are e0 = ~0 and e1, . . . , en,

where each ei is a bit vector with zeros in every position except a 1 in the ith

position, for i in 0, 1, . . . , n.
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7.3 Basis Fixing Permutations

Definition 7.3.1. A Basis Fixing Permutation (BFP) is a function that

sends each affine basis vector to itself. Thus, f is basis fixing if f(~0) = ~0, f(~e1) =

~e1 . . . , f(~en) = ~en.

The first major reduction that can be made is realizing that every permutation

is affine equivalent to a BFP. This was proved by the author and subsequently

discovered to be in [Hou06].

Theorem 7.3.2. Every permutation in S2nis affine equivalent to a basis fixing

permutation.

Proof. Suppose there exists a set of n+1 affine independent vectors x0, x1, . . . , xn

such that p(x0), p(x1), . . . , p(xn) is also affine independent. Then there exist affine

maps a0, a1 such that for all i, a0(ei) = xi and a1(p(xi)) = ei. Thus a1pa0(ei) = ei

for all i and a1pa0 is therefore basis fixing. Thus the proof reduces to finding an

affine independent set that maps to an affine independent set via p.

We prove by induction that for every k in 0 ≤ k ≤ n there exists an affine

independent setXk such that p(Xk) is also affine independent. Clearly for k = 0, 1

any Xk and p(Xk) is affine independent. Assume that for k < n, Xk is affine

independent. Let 〈Xk〉af denote the affine span of a k+1 element setXk. Consider

the permutation p, restricted as follows:

p : V 2n \ 〈Xk〉af → V 2n \ p(Xk).

Since

|p(V 2n \ 〈Xk〉af )|+ |V 2n \ 〈p(Xk)〉af | = 2(2n− 2k) > 2n− (k+ 1) = |V 2n \ p(Xk)|,
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the intersection p(V 2n \ 〈Xk〉af )∩ (V 2n \ 〈p(Xk)〉af ) is non-empty, and thus there

exists an x not in the span 〈Xk〉af that maps to p(x) not in the span of 〈p(Xk)〉af .

Adding x to Xk, we create a new set Xk+1 = Xk∪x, such that Xk+1 and p(Xk+1)

are both affinely independent.

Using the final Xn constructed in this manner, we can now find maps a0 and

a1 so that a1pa0 is a basis fixing permutation.

Lemma 7.3.3. Let p be a BFP. Then each coordinate function pi of p has the

form

pi(x1, . . . , xn) = xi + fi(x1, . . . , xn)

where fi contains no constant or linear terms.

Proof. p(e0) = e0 = ~0 implies no coordinate function can contain a 1. Given

that all coordinate functions have no constant terms, p(ei) = ei indicates that

the linear term for each pi is xi.

7.4 Basis Permuting Permutations

One important subgroup of GLn(2) is the group of matrices with a single one in

each row and column. This subgroup is isomorphic to Sn acting on {1, 2, . . . , n}

via the injective map ψ : Sn → GLn(2) defined by the outer product sum

ψ(p) =
n∑
i=1

∣∣ep(i)〉 〈ei| .
Thus ψ(p) is the linear function that maps the basis vector |ei〉 to the basis vector∣∣ep(i)〉 for each i ∈ {1, 2, . . . , n}.

In AGLn(2), there is a subgroup isomorphic to Sn+1 acting on {0, 1, 2, . . . , n},

which allows e0 to be permuted with the basis vectors. We define this subgroup

via the injective map φ : Sn+1 → AGLn(2) defined by
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φ(q) =
n∑
i=1

(∣∣eq(i)〉 〈ei|+ ∣∣eq(0)

〉
〈ei|
)

+
∣∣eq(0)

〉
.

The preceding affine form is applied to a vector |v〉 by first multiplying by the

matrix component and then adding the vector component. Thus

φ(q) |v〉 =
n∑
i=1

(∣∣eq(i)〉 〈ei| |v〉+
∣∣eq(0)

〉
〈ei| |v〉

)
+
∣∣eq(0)

〉
.

Definition 7.4.1. A Basis Permuting Permutation (BPP) is a function

that sends each affine basis vector to another. Thus, p is basis permuting if for

all i in 0, 1, . . . , n, f(~ei) = ~ej for some j in 0, 1, . . . , n.

Lemma 7.4.2. All of the elements of φ(Sn+1) < AGLn(2) are basis permuting

permutations.

Proof. Given q ∈ Q, verifying that q(|ej〉) maps to
∣∣eq(j)〉 is sufficient to prove

that q is a BPP. Recall that

〈ei| |ej〉 =

 1 i = j 6= 0

0 otherwise.

When q is evaluated at e0 = ~0, only the affine component
∣∣eq(0)

〉
does not zero

out. The result q(|e0〉) =
∣∣eq(0)

〉
is as expected. Evaluating q at ej where j 6= 0

gives:
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q(|ej〉) =

[
n∑
i=1

(∣∣eq(i)〉 〈ei|+ ∣∣eq(0)

〉
〈ei|
)

+
∣∣eq(0)

〉]
(|ej〉)

=
n∑
i=1

(∣∣eq(i)〉 〈ei| |ej〉+
∣∣eq(0)

〉
〈ei| |ej〉

)
+
∣∣eq(0)

〉
=

∣∣eq(j)〉+
∣∣eq(0)

〉
+
∣∣eq(0)

〉
=

∣∣eq(j)〉 .

Thus, q permutes the affine basis vectors, and is therefore a BPP.

Lemma 7.4.3. Any basis fixing permutation conjugated by a basis permuting

permutation is a basis fixing permutation.

Proof. Let q be a BPP and p be a BFP. Then for i in {0, 1, . . . n}

q−1pq(|ej〉) = q−1p(
∣∣eq(j)〉)

= q−1(
∣∣eq(j)〉)

=
∣∣eq−1(q(j))

〉
= |ej〉 .

Since q−1pq fixes all affine basis vectors, q−1pq is a BFP.

7.5 Minimal Basis Fixing Permutations

Conjugating by the elements in Q < AGLn(2), we can construct many different

BFPs from a given BFP. Determining which BFP is minimal depends on the
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lexicographic order chosen. For Gröbner bases, grevlex is preferred, since it is

usually easier to compute an ideal with respect to that order.

Definition 7.5.1. The Graded Reverse Lexicographic or grevlex is a poly-

nomial ordering. The ordering of monomials is decided first by degree. If the

degree is the same, it decides ties by the degree of the variables in reverse order.

Example 7.5.2. Polynomials ordered by grevlex.

• x1x3 < x0x1x2 since the degree(x1x3) = 2 < 3 = degree(x0x1x2).

• x1x2 < x0x3 since the degrees are equal, but x0x3 has the higher numbered

variable (x3).

• x0x1x3x4 < x0x2x3x4 since the degrees are equal, but the second monomial

contains the highest variable not common to both (x2).

Definition 7.5.2. The Grevlex Permutation Order is an ordering of BFPs.

Compare two permutations p and q, by considering their coordinate functions

(p1, . . . , pn) and (q1, . . . , qn). In the first case where pi and qi differ, the order is

decided by the grevlex order between pi and qi.

For a given BFP p, there exists a minimal BFP q−1pq for q ∈ Q according to

the grevlex permutation order. Unfortunately, there can be many such minimal

BFPs in a given double coset. The true minimal BFP would be the minimum of

all such minimal BFPs.

For computational purposes, the author currently searches for all minimal

BFPs, and then identifies the minimum BFP from this set. This information is

stored in a table.

Algorithm for permutation identification:
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1. Compute BFP from permutation.

2. Compute minimal BFP from BFP.

3. Look up minimum BFP associated with minimal BFP in table.

Once the table is created, permutation identification is quite fast. Unfortu-

nately, constructing the table is computationally intensive.

7.6 Open Problems

• Find an efficient algorithm for computing the minimum BFP for a double

coset.

• How efficiently can the parity of a permutation be computed from a BFP?

• Given a basis fixing function F (x1, . . . , xn) = (x1 + f1, . . . , xn + fn), how

difficult is it to determine whether F is a permutation?

• How hard is it to count the quadratic permutations?
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Chapter 8

Multiple Rank Invariant

8.1 Results and Application

When comparing and categorizing permutations, the double coset test must be

performed many, many times. If two permutations can be distinguished via a

quick test, the double coset test is not needed.

This chapter develops a new rank invariant that can distinguish certain double

cosets. The invariant essentially measures how much of a permutation is linear,

quadratic, cubic, etc.

The major results of this chapter are:

• A proof that the multiple rank invariant is consistent with affine equivalent

double cosets.

• An efficient algorithm for computing the multiple rank invariant.

• A categorization of how many equivalence classes are of each type for n =

3, 4.

The multiple rank invariant is used extensively to speed up the computation

of the affine equivalence complexity tree.

71



8.2 Background

Every Boolean permutation can be decomposed into n coordinate functions (f1, . . . , fn).

Each coordinate function fi : GF(2)n → GF(2) can be expressed as a polynomial

over GF(x1, . . . , xn). Since the value for each xi is restricted to be exactly 0 or 1,

the relationship x2
i = xi holds for each xi. A polynomial will be called reduced if

no variable has degree greater than 1.

8.3 The k-rank

Consider the finite vector space over GF(2) where the independent vectors are

the 2n reduced monomials from GF(x1, . . . , xn), namely

1, {xi}ni=1, {xixj}ni,j=1,i 6=j, . . . x1x2 · · ·xn.

Then similarly to how the rank of a set of vectors is calculated, we can calcu-

late the rank of a set of polynomials.

Example 8.3.1. Consider the following sets of polynomials.

• The set {x1, x2, x1 + x2} has rank 2, since the third term is the sum of the

first two.

• The set {x1, x2, x1x2} has rank 3, since all three terms are linearly indepen-

dent.

This now leads to two important definitions.

Definition 8.3.1. The k-span of the variables X = {x1, . . . , xn}, is the linear

span of all monomials of degree k or less. We will denote the k-span by Xk.
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Definition 8.3.2. The k-rank of a set of polynomials P = {p1, . . . , pm} is

rank(P ) + rank(Xk)− rank(P ∪Xk). We will denote the k-rank by Rk(P ).

The k-rank essentially measures how much of the rank of P is due to polyno-

mials of degree k or less. For the k-rank of a permutation p = (f1, . . . , fn), the

set of polynomials will be the set of coordinate functions, i.e. P = {f1, . . . , fn}.

Example 8.3.3. Consider the following sets of polynomials.

• Let P1 = {x1, x2, x1x2}. Then R1(P1) = 2, since two of the terms can be

expressed by linear polynomials. R2(P1) = 3 since all polynomials can be

expressed by degree two or less polynomials.

• Let P2 = {x1 + x1x2, x2 + x1x2, x1x2}. Then R1(P2) = 2 and R2(P2) = 3.

This can be verified by calculation or recognizing that P2 was derived from

P1 by adding the last term to each of the first two. It can also be seen

by reducing by the monomial x1x2 and realizing that all of the remaining

terms are linear.

Example 8.3.4. Consider the following permutations.

• Let p1 = (x1, x2, x3 + x1x2). Then P1 = {x1, x2, x3 + x1x2}. As before,

R1(P1) = 2 and R2(P1) = 3.

• Let p2 = (x1 + x3 + x1x2, x2 + x1x3 + x1x2, x3 + x1x2). Then P1 = {x1 +

x3 +x1x2, x2 +x1x3 +x1x2, x3 +x1x2}. In this case R1(P1) = 1 since f1 +f3

is linear and R2(P1) = 3 since all of the coordinate functions are at most

quadratic.
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8.4 The Invariance of the k-rank

Lemma 8.4.1. All the coordinate functions of an n-bit permutation are linearly

independent.

Proof. Let p be a permutation, and let P = {f1, . . . , fn}. Suppose P was linearly

dependent. Then there would exist a non-zero linear combination L such that

L(f1, . . . , fn) = 0. Since L is a non-zero vector, it can be extended to an invertible

matrix M where L is the first row of M . Note that since M is invertible, M is

also a permutation.

Consider now the composition M ◦P . Since M and P are both permutations,

M ◦ P must also be a permutation. However, if we consider the first coordinate

function of M ◦ P it is L(f1, . . . , fn) = 0. Thus M ◦ P cannot be a permutation,

since every coordinate function of a permutation must be balanced.

Theorem 8.4.2. The k-rank of a permutation is invariant under the action of

AGLn(2) for all k ≥ 1.

Proof. Recall the definition of k-rank for a permutation p:

Rk(p) = rank(p) + rank(Xk)− rank(p ∪Xk)

We wish to show that Rk(a ◦ p ◦ b) = Rk(p) for all a, b ∈ AGLn(2). This can be

done in two parts. Note that a creates new coordinate functions by summing up

various coordinate functions and b substitutes affine combinations of variables in

place of the original variables.

First, consider the effect of a. By the previous lemma, ap must have full

rank so rank(ap) = rank(p). Also note that ap is the linear combination of the

coordinate functions of p with the possible addition of the affine vector 1, which
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is contained in Xk for all k. Thus rank(ap ∪Xk) = rank(p ∪Xk). Thus,

Rk(ap) = rank(ap) + rank(Xk)− rank(ap ∪Xk)

= rank(p) + rank(Xk)− rank(p ∪Xk) = Rk(p)

Now consider the effect of b. Appealing to the previous lemma again, rank(pb) =

rank(p). Thus we only need to verify that rank(pb ∪Xk) = rank(p ∪Xk).

Notice that the coordinate functions of pb are really the original coordinate

functions f1, . . . , fn evaluated at y1, . . . , yn where yi = bi(x1, . . . , xn).

Let Yk be the k-span of the yi. Then Yk ⊂ Xk since any polynomial of degree

k+ 1 is the sum of monomials of degree less than or equal to k+ 1. Since b is an

invertible affine function, we can write each xi as a affine function of y1, . . . , yn.

Thus, by the same argument Xk ⊂ Yk and therefore Xk = Yk. Thus,

rank(pb ∪Xk) = rank(p|Y ∪ Y k) = rank(p|X ∪Xk = rank(p ∪Xk).

This implies,

Rk(pb) = rank(pb)+rank(Xk)−rank(pb∪Xk) = rank(p)+rank(Xk)−rank(p∪Xk) = Rk(p).

Since neither affine function a or b affects the rank, we can apply them in

either order and deduce that Rk(apb) = Rk(p).

Therefore the k-rank is invariant under affine equivalence.

8.5 Multiple Rank Invariant

Before defining the multiple rank invariant, it should be noted that no information

is gained using the n-rank invariant.
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Lemma 8.5.1. No n-bit permutation has a coordinate function with an x1x2 · · ·xn

term.

Proof. Considering the truth table of x1x2 · · ·xn for n > 1, it only takes a non-

zero value at one point, namely (1, 1, . . . , 1). Every other monomial is non-zero

at an even number of points. Since the coordinate function of a permutation

must be balanced, and therefore have an even number of 0’s and 1’s (for n > 1),

x1x2 · · ·xn cannot be contained in any coordinate function because it would make

the weight odd, and therefore not balanced.

Thus we only need to consider monomials of degree up to n−1 for permutation

coordinate functions.

Definition 8.5.1. The multiple rank invariant of an n-bit permutation is an

n−1 tuple of k invariant differences. I(p) = (R1(p), R2(p)−R1(p), . . . , Rn−1(p)−

Rn−2(p).

Example 8.5.2. Consider the following permutations.

• Let p1 = (x1, x2, x3 +x1x2). As computed earlier, R1(P1) = 2 and R2(P1) =

3. Thus the multiple rank invariant is the tuple (2, 1).

• Let p2 = (x1, x1 + x2, x3 + x1x2x4, x4 + x1x2). By inspection, R1(P2) = 2,

R2(P2) = 3 and R3(P2) = 4. Thus the multiple rank invariant is the tuple

(2, 1, 1).

8.6 Categorization of 3-bit Permutations by MRI

For the four 3-bit equivalence classes, the multiple rank invariant completely

distinguishes each class.
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Table 8.1: Multiple Rank Invariant of 3-bit Permutations

MRI # of classes Description

(3,0) 1 Affine

(2,1) 1 Toffoli

(1,2) 1

(0,3) 1

We will discover later that the multiple rank invariant also captures the rela-

tive complexity of all 3-bit permutations, ordering them in terms of those requir-

ing 0,1,2 or 3 Toffoli gates.

8.7 Categorization of 4-bit Permutations by MRI

As seen in Table 8.2, the multiple rank invariant separates many of the 302 4-bit

equivalence classes, but fails to distinguish among some of the most prevalent

permutation types.

When the complexity tree is developed later, we will see that the multiple rank

invariant has a rough correlation to the nonlinear complexity of a permutation.

8.8 Open Problems

For n ≤ 4 the multiple rank invariant is always the same for p and p−1, even

when they are in different double cosets. Is this true for all n?
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Table 8.2: Multiple Rank Invariant of 4-bit Permutations

MRI # of Classes Description

(4,0,0) 1 Affine

(3,1,0) 1 Toffoli

(3,0,1) 1 Triple controlled NOT

(2,2,0) 2

(2,1,1) 3

(2,0,2) 4

(1,3,0) 3

(1,2,1) 9

(1,1,2) 20

(1,0,3) 13

(0,3,1) 5

(0,2,2) 39

(0,1,3) 127

(0,0,4) 74
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Chapter 9

Additional Invariants

9.1 Results and Application

In addition to the multiple rank invariant, there are a handful of other minor

invariants that can be used to refine the double coset identification process. This

chapter presents a number of these invariants and their associated proofs.

The major results of this chapter are:

• The parity of a permutation is invariant under affine equivalence.

• Definition of a two-way permutation and its use as an invariant.

These additional invariants are used extensively to speed up computation of

the affine equivalence complexity tree.

9.2 Parity

The parity of a permutation is often a useful characteristic, and it will play a

central role in classifying the complexity of permutations.

79



Lemma 9.2.1. Any permutation that does not involve all of the bit wires is an

even permutation.

Proof. Let p be a permutation that does not involve a certain wire. Without loss

of generality, we can assume that the high bit is not involved in the permutation.

Then p can be decomposed into two disjoint cycle sets: those whose high bit is

0, and those whose high bit is 1. Furthermore, since the high bit is not involved

in p, the two cycle sets must have exactly the same structure. Thus the overall

permutation must be even.

Corollary 9.2.2. For n > 2, the parity of a permutation is invariant under

affine equivalence.

Proof. All affine permutations are generated by the NOT gate on any single bit,

and by CNOT gates between any two bits. When n > 2, there is at least one

bit that is not involved in the action of the NOT or the CNOT. Thus by Lemma

9.2.1, CNOT and NOT are both even permutations, and therefore any affine

permutation is an even permutation.

As proved earlier, there are an equal number of even and odd double cosets.

The parity test is independent of the multiple rank invariant, distinguishing some

permutations with identical MRIs.

9.3 Two-Way Permutations

A one-way permutation is a permutation which is easy to compute, but its inverse

is hard to compute. Proving the existence of one-way permutations has proven

extremely difficult, and is closely related to the question of P
?
= NP. We will not
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be solving this problem here, but rather introduce the notion of the opposite of

a one-way permutation.

Definition 9.3.1. A permutation p, is a two-way permutation, if there exist

a, b ∈ AGLn(2) such that apb = p−1.

Thus a two-way permutation is affine equivalent to its inverse. This implies

that if a method was found to compute p (respectively p−1) faster, that would

automatically yield a method for computing p−1 (respectively p) faster. Thus no

two-way permutation has a chance of being a one-way permutation.

Lemma 9.3.2. If p is a two-way permutation, then every permutation affine

equivalent to p is a two-way permutation.

Proof. Assume p is a two-way permutation. Then there exist a, b ∈ AGLn(2)

such that apb = p−1. Consider any other element in the affine double coset of p,

having the form gph. Then

(gph)−1 = h−1p−1g−1 = h−1apbg−1 = h−1ag−1(gph)h−1bg−1.

Thus the inverse of gph is affine equivalent to gph. Therefore gph is a two-way

permutation.

Thus if an affine equivalent double coset contains a two-way permutation,

then the entire double coset is made up of two-way permutations. This implies

that “two-way-ness” is invariant over the double coset. Now let us consider the

relationship between involutions and two-way permutations.

Lemma 9.3.3. If a permutation p affine equivalent to an involution, then p is a

two-way permutation.
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Proof. Suppose p is in a double coset containing an involution i. Then there exist

a, b ∈ AGLn(2) such that apb = i. Thus,

(apb)(apb) = i2 = 1

pbapba = 1

bapba = p−1.

Therefore, p is affine equivalent to p−1 and is therefore a two-way permutation.

It is unknown if the converse is true. Table 9.1 shows how the parity and

two-way invariants further refine permutation identification.

9.4 Open Problems

• Is every two-way permutation affine equivalent to an involution? For n ≤ 4

it is true.

• Are there other useful invariants?
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Table 9.1: Invariant Table for 4-bit Permutations

Two-way not Two-way

MRI Even Odd Even Odd

(4,0,0) 1

(3,1,0) 1

(3,0,1) 1

(2,2,0) 2

(2,1,1) 1 2

(2,0,2) 3 1

(1,3,0) 3

(1,2,1) 1 4 4

(1,1,2) 11 3 2 4

(1,0,3) 4 9

(0,3,1) 3 2

(0,2,2) 12 3 10 14

(0,1,3) 14 35 42 36

(0,0,4) 32 26 6 10
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Chapter 10

Complexity Theory

10.1 Results

The goal of this chapter is to illustrate the usefulness of determining the complex-

ity of a function by measuring the nonlinearity of a function. The major results

of this chapter are as follows:

• Definition of new complexity class based on nonlinearity of a computation.

• Proofs relating nonlinear complexity to AC and NC.

• Proofs relating the classical and nonlinear versions of P and P/poly.

10.2 Background

An excellent introduction to the complexity classes relevant to circuits is given in

[Vol99]. This section provides important complexity class definitions from that

book.

To determine a circuit class, we first choose a basis for constructing functions.

Let us consider two of the most common bases.
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Definition 10.2.1. B0 = {¬,∨2,∧2} is the standard bounded fan-in basis. B1 =

{¬, (∨n)n∈N, (∧n)n∈N} is the standard unbounded fan-in basis.

In B0 you can only take the AND or OR of two values, whereas in B1 you

may take the AND or OR of as many wires as you wish. The depth of a circuit

is the length of the longest path from the input bits to the output bits.

Definition 10.2.2. Let B be a basis and let s, d : N → N. We define the

following complexity classes:

1. SIZEB(s) is the class of all sets A ⊂ {0, 1}∗ for which there is a circuit

family C over basis B of size O(s) that accepts A as an input.

2. DEPTHB(d) is the class of all sets A ⊂ {0, 1}∗ for which there is a circuit

family C over basis B of depth O(d) that accepts A as an input.

3. SIZE-DEPTHB(s, d) is the class of all sets A ⊂ {0, 1}∗ for which there is a

circuit family C over basis B of size O(s) and depth O(d) that accepts A

as an input.

Two important complexity classes capture the notion of what circuits can be

parallelized efficiently: NC and AC.

Definition 10.2.3. For i ≥ 0, define

NCi = SIZE-DEPTHB0(n
O(1), (log n)i),

and let

NC =
⋃
i≥0

NCi.

Similarly, for i ≥ 0, define

ACi = SIZE-DEPTHB1(n
O(1), (log n)i),
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and let

AC =
⋃
i≥0

ACi.

Thus NC and AC both represent polynomial sized circuits with polylog depth.

The only difference is AC allows unbounded fan-in (using basis B1) as opposed

to bounded fan-in for NC (using basis B0). The following two results are well

known in complexity theory.

Theorem 10.2.4. For i ≥ 0,

NCi ⊆ ACi.

Corollary 10.2.5.

NC = AC.

For a proof of these results, see [Vol99].

10.3 Nonlinear Complexity Class

Similar to the notion of size and depth for classical circuits, we introduce the

notions of width and depth for nonlinear reversible circuits. We also need to

introduce the notion of a nonlinear basis. Recall that Tijk is a Toffoli gate with

control wires i, j acting on the target wire k. Also recall that (i, j, A) represents

the controlled affine permutation with i control wires dictating whether or not

the j × j affine transformation A is applied to the next j wires.

Definition 10.3.1. Let C be a reversible circuit acting on n wires. Then BT =

{Tijk where i, j, k ∈ [0, n)} is the Toffoli basis for C. BCA = {(i, j, A) where i ∈

[1, n− 1), j ∈ [1, n− i) and A ∈ AGLn(j)} is the controlled affine basis for C.
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The depth of a nonlinear circuit will be the number of times the nonlinear

basis had to be used. Note that multiple nonlinear basis gates could be used in

a single round as long as they were operating on independent wires.

Example 10.3.2. The 6-bit permutation computing T0,1,2 and T3,4,5 could be

done in one round of nonlinearity since the two Toffoli gates are acting on inde-

pendent sets of wires.

Definition 10.3.2. Let B be a nonlinear basis and let w, d : N→ N. We define

the following complexity classes:

1. WIDTHB(s) is the class of all functions f : {0, 1}∗ → {0, 1}∗ for which there

is a reversible circuit family C over basis B using O(w) wires that computes

f .

2. DEPTHB(s) is the class of all functions f : {0, 1}∗ → {0, 1}∗ for which there

is a reversible circuit family C over basis B using O(d) rounds of B that

computes f .

3. WIDTH-DEPTHB(s) is the class of all functions f : {0, 1}∗ → {0, 1}∗ for

which there is a reversible circuit family C over basis B using O(w) wires

and O(d) rounds of B that computes f .

In the same spirit in which NC and AC were defined, we now define the class

of nonlinear circuits with polynomial width and polylog depth.

Definition 10.3.3. For i ≥ 0, define

NLCi = WIDTH-DEPTHBCA(nO(1), (log n)i),
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and let

NLC =
⋃
i≥0

NLCi.

Note that NLC is defined using the controlled affine basis BCA. Another

complexity class similar in nature to NCi can be defined using the Toffoli basis

BT .

Although NLC may seem overpowered, given its ability to perform arbitrary

affine transformations between every nonlinear step, we will see that NLCi fits

nicely within the AC hierarchy.

Lemma 10.3.4.

ACi ⊆ NLCi.

Proof. Let C be a circuit in ACi with s(n) gates and d(n) depth. Since there are

only s(n) gates in the circuit, there are at most s(n) +n different wires to join in

a gate at any given time: n for the inputs and s(n) for the output of each gate.

Thus the maximal fan-in gate for the circuit has less than s(n) + n inputs.

Construct a nonlinear circuit of width w(n) = (s(n)+1)(s(n)+n). This space

will be allocated according to table 10.1.

Table 10.1: Space Requirements

Size Description

n Initial input

s(n)(s(n) + n) Wires to hold input for each of the s(n) gates.

s(n) Wires to hold output for each of the s(n) gates.
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To populate the circuit with gates, we will follow the flow of the original

circuit C. Let Gi be the set of gates computed at depth i in the circuit C. For

each gate g ∈ Gi, we construct it using the following steps.

1. Using CNOTs, copy the value of the inputs to g to the input staging area

allocated for g.

2. If g is an OR gate, negate all input wires.

3. Apply a multiple controlled NOT from the inputs of g to the output wire

allocated for g.

4. If g is an OR gate, negate the output wire.

Note that step 3 is the only nonlinear step. All CNOTs and negations are

affine functions, and can be computed in the linear round between each nonlinear

round.

Furthermore, since each g ∈ Gi only depends on values from earlier rounds,

all g ∈ Gi can be computed in the same nonlinear round. Thus the nonlinear

circuit will also have depth d(n).

Since C ∈ ACi, s(n) is polynomial. Thus w(n) = (s(n) + 1)(s(n) + n) is

also polynomial. Also, C ∈ ACi implies d(n) = O((log n)i). Therefore, ACi ⊆

NLCi.

Lemma 10.3.5.

NLCi ⊆ NCi+1.

Proof. Recall that

NLCi = WIDTH-DEPTHBCA(nO(1), (log n)i).
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This implies

NLCi =
⋃
k≥0

WIDTH-DEPTHBCA(nk, (log n)i).

We will prove that for each k,

WIDTH-DEPTHBCA(nk, (log n)i) ⊆ NCi+1.

The construction of NLCi by union will then imply that NLCi ⊆ NCi+1.

Let C be a nonlinear circuit in WIDTH-DEPTHBCA(nk, (log n)i). Then C

consists of O((log n)i) rounds of alternating linearity and nonlinearity on a width

of O(nk) wires. Let us consider the depth in NC terms of the linear and nonlinear

rounds separately.

In each linear round, an affine matrix acts on the O(nk) wires. Since each

output wire of the affine transformation, is essentially the parity of some subset

of the wires, and PARITY is in NC1 (polynomial gates, log depth), the affine

transformation can be computed with polynomial many gates and O(log(nk)) =

O(k log n) = O(log n) depth.

In each nonlinear round, multiple controlled affine transformations are ap-

plied. For each wire i compute the output value ai as if the affine transformation

it is associated with was applied. Similar to the reasoning above, this can be done

in O(log n) depth and polynomial gates. Also, for each i compute the control

value ci which is the AND of the control wires for the affine function associated

with i. The AND of O(nk) inputs can also be computed in O(log n) depth in NC.

Let ni be the original value of wire i with no transformation applied. The correct

output for wire i is then

(ni ∧ ¬ci) ∨ (ai ∧ ci).

Examination verifies that if all the controls are 1, the output of wire i will be ai,
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and otherwise ni. This final computation only requires depth 2, thus the total

depth for the nonlinear round is O(log n).

Since the nonlinear circuit has O((log n)i) linear and nonlinear rounds, and

each round has NC depthO(log n), the entire circuit will have NC depthO((log n)i)·

O(log n) = O((log n)i+1).

Since the entire circuit uses only polynomially many gates,

WIDTH-DEPTHBCA(nk, (log n)i) ⊆ NCi+1.

Furthermore, since this inclusion holds for all k,

NLCi ⊆ NCi+1.

Theorem 10.3.6.

NLC = AC = NC.

Proof. Combining the two previous lemmas, we get

NCi ⊆ ACi ⊆ NLCi ⊆ NCi+1 ⊆ ACi+1 ⊆ NLCi+1.

Since NC, AC and NLC are all infinite unions, this is sufficient to prove NLC=

AC= NC.

10.4 Nonlinear Polynomial Complexity

Consider now the complexity class with polynomial width and a polynomial num-

ber of nonlinear rounds.

Theorem 10.4.1.

WIDTH-DEPTHBCA(nO(1), nO(1)) = SIZEB1(n
O(1)).
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Proof. For each k, let C be a circuit class in SIZEB1(n
k). Convert every AND and

OR gate into NAND gates using NOT gates on the inputs and outputs as needed.

Let s(n) be the number of NAND gates necessary to compute C. Construct a

nonlinear circuit of width n + s(n). The first n wires will contain the function

input, and the last s(n) will be used to hold the output from each of the s(n)

NAND gates. Populate the circuit by computing the NAND gates in the same

order as for the circuit computation, storing each output in the s(n) available

positions. In the worst case, each NAND gate must be computed in a separate

nonlinear depth. Thus the depth of the nonlinear circuit is also O(nk). This

circuit conversion implies

SIZEB1(n
k) ⊆ WIDTH-DEPTHBCA(nk, nk).

Since this containment holds for any k,

SIZEB1(n
O(1)) ⊆ WIDTH-DEPTHBCA(nO(1), nO(1)).

Alternatively, for each k let C be a circuit class in WIDTH-DEPTHBCA(nk, nk).

Let us consider the number of gates required in terms of the linear and nonlinear

rounds separately.

In the linear rounds, we need to compute a matrix multiply followed by an

affine shift. This can be done in O((nk)2) = O(n2k) gates.

Similarly, in the nonlinear rounds, compute the potential affine output for

each bit ai for each wire i. This also requires O((nk)2) = O(n2k) gates. Also,

for each i compute the control value ci which is the AND of the control wires for

the affine function associated with i. Finally, let ni be the original value of wire

i with no transformation applied. The correct output for wire i is then

(ni ∧ ¬ci) ∨ (ai ∧ ci).
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Using O(n2k) gates for each of the O(nk) wires potentially requires O(n3k) gates.

Combining together all O(nk) rounds of nonlinearity, we require O(n3k) ·

O(nk) = O(n3k gates. Thus,

WIDTH-DEPTHBCA(nk, nk) ⊆ SIZEB1(n
4k).

Since this containment holds for any k,

WIDTH-DEPTHBCA(nO(1), nO(1)) ⊆ SIZEB1(n
O(1)).

Combining the two containments, we now conclude

WIDTH-DEPTHBCA(nO(1), nO(1)) = SIZEB1(n
O(1)).

10.5 Uniform and Non-Uniform Nonlinear Cir-

cuits

Theorem 10.4.1 states that any nonlinear circuit with polynomial width and depth

can be converted into a circuit with polynomial gates. We can therefore derive a

relation between nonlinear circuits and the complexity classes P and P/poly.

The difference between uniform and non-uniform polynomial circuits is subtle

yet important. For a circuit class to be uniform, all circuits must be described by a

finite algorithm, or finite set of instructions. Even though the circuit generated by

the algorithm may get larger and larger as n increases, the same finite description

is used to generate every circuit.

For non-uniform circuit classes, there is no blueprint. Each circuit may be

different. Even if each circuit is polynomially sized, the collective description of

the circuits must be infinite.
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Definition 10.5.1. Define the following classes:

• P is the class of uniform circuits that run in polynomial time.

• P/poly is the class of non-uniform circuits that run in polynomial time.

• nonlinearP is the class of uniform circuits with polynomial width and rounds

of nonlinearity,

• nonlinearP/poly is the class of non-uniform circuits with polynomial width

and rounds of nonlinearity,

Corollary 10.5.2.

nonlinearP = P and nonlinearP/poly = P/poly.

Proof. Using theorem 10.4.1 we can convert back and forth between polynomial

circuits and nonlinear circuits with polynomial width and rounds of nonlinearity.

Since the conversion description is finite, any uniformity will be preserved.

10.6 Open Problems

The results of this chapter show that measuring the complexity of a function or

algorithm via its nonlinearity captures most of the essence of “polynomialness”.

It is hoped that this point of view will be useful in developing new complexity

proofs.

As quantum computing was part of the inspiration for finding optimal re-

versible computation, it is interesting to consider what nonlinearity means in the

quantum computing context. For quantum computing, only the CNOT and arbi-

trary single unitary gates on qubits are needed for computation. It is unclear to
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the author what subset of this computation should be chosen to form the affine

equivalence.
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Chapter 11

Computation

Due to the doubly exponential nature of boolean permutations, extremely efficient

computational methods are needed to perform many of the calculations in this

paper. This chapter outlines a number of the more important methods used. To

describe any function f : V n → V n, n2n storage bits are required. Even though

n-bit permutations theoretically require only dlog2(2
n!)e ≈ n2n− 2n storage bits,

it is useful to store the permutations using all n2n bits, especially since there are

cases where we are unsure whether or not we have a permutation. Each of the

following algorithms will assume that all n2n bits are in a single multi-precision

integer.

Note that for n = 4, n2n = 64, and thus a 4-bit permutation may be stored

as a single word on a 64-bit machine. Thus the computation time increases

significantly when extending beyond 4-bit permutations.

11.1 Storage of Permutations

There are multiple ways to store bit permutations, and there are algorithmic

reasons for preferring each. In this section, we will discuss the three types used
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in this paper and how to convert between them.

11.1.1 Truth Table Form

We can always describe a permutation using its truth table. Recall the example

permutation considered earlier:

Table 11.1: Truth Table: f = (a2 ⊕ a0a1, a1 ⊕ 1, a2 ⊕ a0a1 ⊕ a0)

a0a1a2 b0b1b2

0 0 0 0 1 0

0 0 1 1 1 1

0 1 0 0 0 0

0 1 1 1 0 1

1 0 0 0 1 1

1 0 1 1 1 0

1 1 0 1 0 0

1 1 1 0 0 1

Given the values in a particular order, storing the inputs is unnecessary and

we only need to store the output of the permutation in the correct order. Since

the author works on a little endian architecture, it was easier to store the least

significant bits on the right. Thus the truth table is stored in the following order:

f(111)f(110)f(101)f(100)f(011)f(010)f(001)f(000).

Thus the permutation is stored as the binary word

w = 001100110011101000111 010︸︷︷︸
f(000)

.
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Extract the value f(i) shifting w by i ∗ n bits to the right and then masking

off the right n bits (or low n bits). Note that

(1 << n)− 1 = 2n − 1 = 1111111 · · · 12︸ ︷︷ ︸
n ones in binary

.

Thus to extract the value f(i) from the word w, we execute:

f(i) = ( w >> (i*n) ) & ((1<<n)-1)

11.1.2 Function Table Form

Another way to look at a permutation is essentially turning the truth on its side.

Each row is then the truth table of coordinate function. Again, due to little

endian-ness, we store the coordinate function of the least significant bit function

on the right, i.e. f2f1f0. Each bit function will also have its least significant bits

to the right. Thus for our example, each fi will be in the following order:

fi(111)fi(110)fi(101)fi(100)fi(011)fi(010)fi(001)fi(000).

The example permutation will be stored as follows:

w = 1001101000110011 01101010︸ ︷︷ ︸
f0

.

Obtain the truth table for the coordinate function fi shifting w by i ∗ 2n bits

to the right and then masking off the low 2n bits.

Thus to extract the value f(i) from the word w, we execute:

f_i = ( w >> ( i*(1<<n) ) ) & ( ( 1 << (1<<n) ) - 1 )
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11.1.3 Polynomial Form

Since any boolean function can be represented as a polynomial, we can also

specify each coordinate function by indicating which terms are present in the

polynomial.

Given i where 0 ≤ i < 2n, i can represent each possible monomial by consider-

ing the binary expansion. The kth bit of i indicates whether or not the monomial

contains xk in the product. In the special case where i = 0, the monomial is just

1. An example conversion is given in table 11.2.

Table 11.2: Monomial Conversion Table

Position Binary Monomial

0 0 0 0 1

1 0 0 1 a0

2 0 1 0 a1

3 0 1 1 a1a0

4 1 0 0 a2

5 1 0 1 a2a0

6 1 1 0 a2a1

7 1 1 1 a2a1a0

Recall that the example permutation has coordinate functions:

b0 = a2 ⊕ a0a1 ⊕ 1

b1 = a1

b2 = a2 ⊕ a0a1 ⊕ a0
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Thus, coordinate function b0 will have 1’s in the positions 0, 3, 4, and would

have binary form 00011001.

Again the polynomials will be stored with the least significant bit functions

on the right so the example permutation would be stored as:

0001101000000100 00011001︸ ︷︷ ︸
b0

.

Obtain the polynomial for the coordinate function fi shifting w by i ∗ 2n bits

to the right and then masking off the low 2n bits.

Thus to extract the polynomial bi from the word w, we execute:

p_i = ( w >> ( i*(1<<n) ) ) & ( ( 1 << (1<<n) ) - 1 )

11.2 Quick double coset test

Recall that two permutations p and q are affine equivalent if there exist affine

functions a0 and a1 such that p = a0qa1. Thus testing two permutations for

equivalence is an instance of the Double-Coset Membership (DCM) problem.

Generic methods for solving DCM proved too slow for our application, so a DCM

test specifically for affine equivalence was developed.

11.2.1 Composition via a Hamiltonian Path

Note that p = a0qa1 implies a−1
0 = qa1p

−1 or simply that qa1p
−1 is an affine

function. Computing two successive permutation compositions is quite demand-

ing, especially if we have to exhaust over all values for a1. We will try to avoid

calculating full compositions by computing qa1 for successive values of a1 using

a gray-code type ordering, and then testing qa1p
−1 for linearity.
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Using the Hamiltonian cycles developed in Chapter 6, we can successively

step through the values qa1 for all a1 ∈ AGLn(2). Each step on the Hamiltonian

cycle is a CNOT, which can be implemented using a mask, shift and XOR. Each

qa1 is then composed with p−1 and tested for linearity.

11.2.2 Linearity Test

Given a permutation, how difficult is it to determine whether or not the permu-

tation is an affine permutation? Since most of the linear tests are expected to

fail, the strategy used for the double coset test tries to find failures quickly.

Instead of computing the entire composition of qa1p
−1, we can compute only 4

values of the truth table, and verify that they satisfy the expected affine relation.

Example 11.2.1. Suppose t was an affine 3-bit permutation. Then

t(000) + t(001) + t(100) + t(101) = 000.

Essentially, any affine relation that held before t was applied must also hold after

t was applied.

For 4-bit permutations, this test discovers 12/13 of nonlinear permutations.

(There are 13 possibilities for the fourth value, of which only one satisfies the affine

relation.) This fast failure allows us to avoid computing an entire permutation

composition most of the time.

11.3 Conclusion

The specialized double coset membership test allows the entire 4-bit permutation

space to be explored in a matter of hours, as opposed to early implementations

which had an expected runtime of months.
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Chapter 12

Classification of 3-bit and 4-bit Permutations

12.1 Summary

The machinery developed in the preceding chapters now gives us the opportunity

to examine the nonlinear complexity of various permutations. We will first define

some common permutations, and then compute their nonlinear complexity. The

assortment of problems chosen aims to provide some insight into what problems

are more difficult to compute.

12.2 Permutations of Interest

An n-bit permutation permutes 2n elements. Some permutations are naturally

defined on sets whose size is not exactly a power of two. We are still interested in

the complexity of these permutations. In this initial classification of the nonlinear

complexity, we will consider permutations to be fixed in the positions which they

do not specify.

To save space, we will describe the bit permutations using integers instead

of binary. I.e. 6 = 1102. Thus, 3-bit permutations will permute the set
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{0, 1, 2, . . . , 7} and 4-bit permutations will permute the set {0, 1, 2, . . . , 15}.

12.2.1 Modular Addition

Given a positive integer m where 2n−1 < m ≤ 2n and an integer a where 0 ≤ b <

m, define an n-bit permutation π by

π(x) =

 x+ b mod m if x < m

x otherwise

Such a permutation will be referred to as the permutation x+ b mod m.

Although we will consider π to be constant for values of x ≥ m, it may be

advantageous to allow some permutation of the upper values in finding a per-

mutation with minimal complexity. For simplicity, this paper will only consider

permutations with fixed values outside of the modular range.

Example 12.2.1. The 3-bit permutation x+ 2 mod 6.

x 0 1 2 3 4 5 6 7

x+ 2 mod 6 2 3 4 5 0 1 6 7

12.2.2 Modular Multiplication

Given a positive integer m where 2n−1 < m ≤ 2n and an integer a where

gcd(a,m) = 1, define an n-bit permutation π by

π(x) =

 ax mod m if x < m

x otherwise

Such a permutation will be referred to as the permutation ax mod m.
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Example 12.2.2. The 3-bit permutation 2x mod 5.

x 0 1 2 3 4 5 6 7

2x mod 5 0 2 4 1 3 5 6 7

12.2.3 Modular Affine

Given a positive integer m where 2n−1 < m ≤ 2n and integers a, b where

gcd(a,m) = 1 and 0 ≤ b < m, define an n-bit permutation π by

π(x) =

 ax+ b mod m if x < m

x otherwise

Such a permutation will be referred to as the permutation ax+ b mod m.

Example 12.2.3. The 4-bit permutation 5x+ 6 mod 11.

e 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5x+ 6 mod 11 6 0 5 10 4 9 3 8 2 7 1 11 12 13 14 15

12.2.4 Modular Inverse

Given a positive integer m where 2n−1 < m ≤ 2n, define a n-bit permutation π

by

π(x) =

 x−1 mod m if x < m, (x,m) = 1

x otherwise

Thus is x is invertible modulo m, π(x) = x−1, otherwise x is fixed. Such a

permutation will be referred to as x−1 mod m.

Example 12.2.4. The 3-bit permutation x−1 mod 7.

x 0 1 2 3 4 5 6 7

x−1 mod 7 0 1 4 5 2 3 6 7
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12.2.5 Modular Exponentiation

Given a prime p where 2n−1 < p ≤ 2n and a primitive root a, define an n-bit

permutation π by

π(x) =

 ax mod p if 0 < x < p

x otherwise

Such a permutation will be referred to as ax mod p.

Example 12.2.5. The 3-bit permutation 2x mod 5.

x 0 1 2 3 4 5 6 7

2x mod 5 0 2 4 3 1 5 6 7

12.2.6 Pseudo-Inverse over GF(2)n

Let f(x) ∈ GF(x) be a primitive polynomial of degree n. Then GF(x)/f(x)

is isomorphic to GF(2n). Since f is primitive, powers of x generate all 2n − 1

nonzero elements of GF(2n). The pseudo-inverse is the map α 7→ α2n−2, which

maps each nonzero element to its inverse and maps 0 to itself.

π(α) = α2n−2

Each element of the finite field will be expressed as a binary integer as follows:

α = an−1x
n−1 + · · ·+ a1a+ a0 = (an−1 · · · a1a0)2.

Such a permutation will be referred to as x−1 mod f .

Example 12.2.6. The 3-bit permutation α−1 mod x3 + x+ 1.

α 0 1 2 3 4 5 6 7

α−1 0 1 5 7 6 3 4 2
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12.3 Complexity Class NLC(i, j)

The complexity trees used in this chapter were generated using the Toffoli gate

as the nonlinear transition. In the 4-bit case, where the Toffoli gate can only

generate even permutations, a triply controlled NOT or CCCNOT was allowed

for the final nonlinear round instead. We will use the following definition in this

chapter.

Definition 12.3.1. The complexity class NLC(i, j) = WIDTH-DEPTHB(i, j),

where the nonlinear basis B is a Toffoli gate and a Ci−1-NOT (A NOT gate with

i − 1 controls). Additionally, the Ci−1-NOT gate is only allowed in the final

nonlinear round.

Thus NLC(i, j) includes all permutations that can be computed in width less

than or equal to i, with at most j nonlinear rounds (as restricted in definition).

The theory of the preceding chapters was used to compute the results in the

following sections.

12.4 3-bit Permutations

Since all 2-bit permutations are affine functions, 3-bit permutations are the first

nontrivial case to examine. 3-bit permutations are also unique due to the fact

that the Tofolli gate is an odd permutation, and therefore generates all of S23

with AGL3(2).

As established earlier, there are four affine equivalence classes of the 8! =

40320 3-bit permutations. Using the Toffoli gate as our nonlinear transition, we

can generate a canonical representative for each of the three nonlinear classes
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(Figure 12.1). We will consider which permutations fall into each complexity

level.

Figure 12.1: 3-bit Permutations

NLC(3, 1) NLC(3, 2) NLC(3, 3)

•
•
��������

• •
• ��������
�������� •

• • ��������
• �������� •
�������� • •

12.4.1 NLC(3, 0)

The simplest 3-bit permutations are the affine permutations or those requiring

zero rounds of nonlinearity. NLC(3, 0) contains 1344 permutations. Table 12.1

provides some example permutations.

Table 12.1: NLC(3, 0) Permutations

Permutation Parameters

ax mod 7 a = 2, 4

5x mod 8

x−1 mod 7

12.4.2 NLC(3, 1)

This is the simplest possible nonlinear complexity class, since all 2-bit permuta-

tions are affine. This class contains 7∗1344 = 9408 3-bit permutations. Obviously
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this class includes the Toffoli and Fredkin gates, as well as the permutations in

table 12.2.

Table 12.2: NLC(3, 1) Permutations

Permutation Parameters

x+ 1 mod 8

ax mod 7 a = 3, 5, 6

ax mod 8 a = 3, 7

x−1 mod 5

12.4.3 NLC(3, 2)

NLC(3, 2) is the only nonlinear class of even 3-bit permutations. It is also the

largest class containing 14 ∗ 1344 = 18816 which is almost half of the 3-bit per-

mutations. Example permutations are provided in table 12.3.
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Table 12.3: NLC(3, 2) Permutations

Permutation Parameters

x+ 1 mod 5

x+ 1 mod 7

4x mod 5

5x mod 6

2x mod 5

ax mod 7 a=3,5

12.4.4 NLC(3, 3)

NLC(3, 3) contains the 3-bit permutations with maximal nonlinear complexity

and has 8 ∗ 1344 = 10752 members. Example permutations are provided in table

12.4.

Table 12.4: NLC(3, 3) Permutations

Permutation Parameters

x+ 1 mod 6

ax mod 5 a = 2, 3

3x mod 5

α−1 mod x3 + x+ 1
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12.4.5 No 3-bit Permutations are One-Way

It should be noted that every 3-bit permutation class contains an involution.

Therefore, by lemma 9.3.3, all 3-bit permutations are two-way permutations.

Thus no 3-bit permutation can be a one-way permutation.

12.5 4-bit Permutations

4 bit permutations contain the first examples of permutations which are not two-

way. These classes are of particular interest in the study of one-way permutations,

since the inverse of a permutation must be in a different double coset if there is

any chance of computing f faster than f−1.

Table 12.5 shows how the invariants sort the 302 equivalence classes at each

depth. The table indicates that the Multiple Rank Invariant corresponds loosely

with the nonlinear depth. Also it is interesting to note that two-way permutations

are represented at every complexity depth.

Table 12.6 illustrates some examples of various simple permutations in each

of the seven nonlinear complexity classes for 4-bit permutations.

12.6 Open Problems

• There is one unique class of 4-bit permutations with depth 6. Is any per-

mutation we are familiar with in this class?

• For 4-bit permutations, involutions occur at every nonlinear complexity

depth. Does this happen in general?
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• Does one of the permutation classes that is not two-way have an imple-

mentation with additional scratch space that has provably fewer rounds of

nonlinearity than its inverse?
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Table 12.5: Invariant Table for each 4-bit Permutations Depth

Two-way not Two-way

Depth MRI Even Odd Even Odd

NLC(4, 0) (4,0,0) 1

NLC(4, 1) (3,1,0) 1

(3,0,1) 1

NLC(4, 2) (2,2,0) 2

(2,1,1) 1 2

NLC(4, 3) (2,0,2) 2 1

(1,3,0) 3

(1,2,1) 1 4 4

(1,1,2) 3 1 2 4

NLC(4, 4) (2,0,2) 1

(1,1,2) 7 2

(1,0,3) 3 9

(0,3,1) 3 2

(0,2,2) 7 2 8 14

(0,1,3) 3 12 14 26

NLC(4, 5) (1,1,2) 1

(1,0,3) 1

(0,2,2) 5 1 2

(0,1,3) 11 23 28 10

(0,0,4) 31 26 6 10

NLC(4, 6) (0,0,4) 1
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Table 12.6: Depth of Various 4-bit Permutations

Depth Permutation Parameters

NLC(4, 0) ax mod 15 a = 2, 4, 8

9x mod 16

NLC(4, 1) ax mod 15 a = 7, 11, 13, 14

ax mod 16 a = 5, 13

NLC(4, 2) x+ 1 mod 16

−x mod 11

ax mod 16 a = 3, 7, 11, 15

NLC(4, 3) x−1 mod 11

5x mod 12

NLC(4, 4) x+ 1 mod n n = 9, 15

−x mod 9

ax mod 10 a = 3, 7, 9

ax mod 11 a = 2, 3, 4, 5, 6, 7, 8, 9

ax mod 12 a = 7, 11

ax mod 13 a = 5, 8

ax mod 14 a = 9, 11, 13

ax mod 13 a = 6, 7

NLC(4, 5) x+ 1 mod n n = 10, 11, 12, 13, 14

x−1 mod 13

ax mod 9 a = 2, 4, 5, 7

ax mod 13 a = 2, 3, 4, 6, 7, 9, 10, 11, 12

ax mod 14 a = 3, 5

α−1 mod x4 + x+ 1

ax mod 11 a = 2, 6, 7, 8

ax mod 13 a = 2, 11

NLC(4, 6) Nothing found
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Chapter 13

Case Studies

13.1 Summary

Using the tools developed for classifying and identifying Boolean permutations,

we now focus on the study of particular permutations as follows.

• Hiltgen’s asymmetric permutation.

• Zech logarithms: 1 + ωe = ωZ(e) where ω ∈ GF(2n).

• Increment: x+ 1 (mod 2n).

• Multiplication: (2n−1 + 1)x (mod 2n).

• Addition and Subtraction.

13.2 The Hiltgen function

In 1990, the first ever computationally asymmetric permutation for the gate

complexity measure was found [HG92]. The permutation f(x1, x2, x3, x4) =
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(y1, y2, y3, y4) is defined as follows:

y1 = x1 ⊕ x3

y2 = x2 ⊕ x4(x1 ⊕ x2)

y3 = x3 ⊕ x4(x1 ⊕ x2)

y4 = x4.

Likewise, the inverse permutation f−1(y1, y2, y3, y4) = (x1, x2, x3, x4) is defined

as follows:

x1 = y1 ⊕ y3 ⊕ y4(y1 ⊕ y2 ⊕ y3)

x2 = y2 ⊕ y4(y1 ⊕ y2 ⊕ y3)

x3 = y3 ⊕ y4(y1 ⊕ y2 ⊕ y3)

x4 = y4.

By exhaustively enumerating all possible constructions of f and f−1, Hiltgen

discovered that f could be constructed using only 5 gates, while f−1 required at

least 6 gates. Thus, the permutation f is computationally asymmetrical according

to the gate complexity measure.

Examination of the Hiltgen permutation reveals that it is affine equivalent to

the Toffoli gate. Thus the complexity difference between f and f−1 is solely due

to the affine component. It is also interesting to note the Hiltgen permutation has

very low nonlinear complexity (just one Toffoli gate). This was likely necessary

to ensure that all possible constructions could be exhausted.
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13.3 Zech Logarithm

In computations over finite fields, field multiplication can be optimized at the

expense of field addition. The Zech logarithm is used to compute field addition

when multiplication has been optimized using powers of a primitive root [Jun93].

Typically, the Zech logarithm values are precomputed and stored in a table.

Definition 13.3.1. The Zech logarithm Z(e) of ωe is the discrete logarithm

of 1 + ωe.

1 + ωe = ωZ(e)

By definition, Z(0) =∞ and Z(∞) = 0.

This can be used to compute the sum of two primitive root powers as follows:

ωa + ωb = ωa(1 + ωb−a) = ωaωZ(b−a) = ωa+Z(b−a).

Since the discrete log ranges from 0 to 2n − 2, we will use the value 2n − 1 as

a placeholder for infinity.

Example 13.3.2. Let ω be a primitive root of the polynomial x3 + x+ 1. Then

the Zech logarithm will define the following 3-bit permutation. Be aware that

7 =∞ in the permutation.

e 0 1 2 3 4 5 6 7

Z(e) 7 3 6 1 5 4 2 0

Computation reveals that the permutation is affine equivalent to the nonlinear

permutation of depth 2. Figure 13.1 illustrates a circuit for Z(a0 +a1 ·2+a2 ·22).

Notice that the dashed box contains the only nonlinear part of the permuta-

tion.
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Figure 13.1: Zech Logarithm for x3 + x+ 1

a0 �������� • �������� • • �������� ��������
a1 • �������� • �������� • ��������
a2 • �������� • • �������� ��������

_ _ _ _�
�
�
�
�

�
�
�
�
�

_ _ _ _

If we consider the other primitive degree 3 polynomial x3 + x2 + 1, then the

Zech logarithm will now define the following different 3-bit permutation.

e 0 1 2 3 4 5 6 7

Z(e) 7 5 3 2 6 1 4 0

The Zech logarithm for x3 + x2 + 1 also has nonlinear depth 2. Thus, the two

Zech logarithms are affine equivalent, since there is only one 3-bit equivalence

class with nonlinear depth 2.

Example 13.3.3. Consider now the Zech logarithm associated with the degree

4 primitive polynomial x4 + x+ 1. It has the following truth table (15 =∞):

e 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Z(e) 15 4 8 14 1 10 13 9 2 7 5 12 11 6 3 0

Identification by computation reveals the Zech logarithm for x4 + x+ 1 has a

nonlinear depth of 5. The Zech logarithm for x4 + x3 + 1 has the truth table:

e 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Z(e) 15 12 9 4 3 10 8 13 6 2 5 14 1 7 11 0

Computation then reveals that the two Zech logarithms are again affine equiv-
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Figure 13.2: Zech Logarithm for x4 + x+ 1

x0 �������� �������� • • �������� • • �������� • • �������� • • �������� • • • • ��������
x1 • �������� • �������� • �������� • • �������� • �������� • • �������� • �������� • • • �������� �������� • •
x1 • �������� �������� • �������� • • �������� �������� • • �������� �������� • • �������� �������� • �������� • • �������� �������� �������� ��������
x4 • �������� • �������� �������� • �������� �������� • �������� �������� • �������� �������� �������� �������� • •

alent. In fact,

Zx4+x3+1(e) = Zx4+x+1(e),

where x̄ is the permutation which complements all variables. It is unknown if all

the Zech logarithms associated with primitive polynomials are affine equivalent,

but it is true for n ≤ 4.

13.4 Incrementing modulo 2n

One of the simplest nonlinear permutations we can examine is the simple act of

adding 1. Let us first consider the 3-bit case.

x 0 1 2 3 4 5 6 7

I(x) 1 2 3 4 5 6 7 0

A computational check reveals that I(x) = x+ 1 (mod 8) requires 1 round of

nonlinearity and is thus affine equivalent to the single Toffoli gate. Figure 13.3

illustrates a circuit for I(x) = I(x0 + 2 · x1 + 22 · x2).

Consider now the incrementation function on 4 bits, I(x) = x+1 (mod 16). A

computational check reveals that I(x) is an odd permutation requiring two rounds

of nonlinearity. Thus it must use one Toffoli gate and one triple controlled NOT

gate. Figure 13.4 illustrates a circuit for I(x) = I(x0 + 2 · x1 + 22 · x2 + 23 · x3).
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Figure 13.3: Incrementing modulo 8

x0 • • �������� x0 + 1
x1 • �������� x1 + x0

x1 �������� x2 + x0x1 + 1

Figure 13.4: Incrementing modulo 16

x0 • • • �������� x0 + 1
x1 • • �������� x1 + x0

x2 • �������� x2 + x0x1

x3 �������� x2 + x0x1

13.5 Multiplication by 2n−1 + 1 modulo 2n

In exploring affine functions modulo various moduli, it was discovered that the

permutation (2n−1 + 1)x (mod 2n) always appeared to be linear. Upon further

investigation, the following theorem was proved.

Theorem 13.5.1. (2n−1 + 1)x (mod 2n) is a linear n-bit permutation. Further-

more, it is generated by adding the low bit to the high bit.

Proof. We will consider the two cases where x is an even and odd number. First,

suppose x = 2k is even. Then the multiplication fixes 2k.

(2n−1 + 1)2k ≡ k2n + 2k ≡ 2k (mod 2n)

Suppose now that x = 2k + 1 is odd. Then

(2n−1 + 1)(2k + 1) ≡ k2n + 2n−1 + 2k + 1 ≡ 2n−1 + 2k + 1 (mod 2n).

Adding 2n−1 is the same as toggling the high bit of 2k + 1.
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Since odd and even numbers can be distinguished by their low bit, we can

combine both cases into the single case of using a single controlled NOT from the

low bit to the high bit. Thus,

(2n−1+1)x ≡ (2n−1+1)(x0+2x1+· · ·+2n−1xn−1) ≡ (x0+2x1+· · ·+2n−1(x0⊕xn−1)),

and therefore (2n−1 + 1)x (mod 2n) is a linear function.

13.6 Addition and Subtraction modulo 2n

Addition and subtraction are two of the most common and most useful functions.

Despite their apparent simplicity, a great deal of literature and research has shown

many surprising ways to improve the computation of addition (i.e. carry-look

ahead adders, carry-save adders, constant depth adders).

We will consider addition and subtraction using Two’s complement which

is the most common implementation on computers. Two’s complement allows

the same circuitry to add signed or unsigned numbers.

Example 13.6.1. Suppose we were working with 8-bit numbers and wanted to

find the two’s complement of 40 = 001010002.

001010002 Original value of 40

110101112 Complement

110110002 Add one

The final value 110110002 equals −40 in two’s complement. Note that

001010002 + 110110002 = 000000002,

ignoring the overflow carry bit.

120



The following theorem proves that addition and subtraction are in the same

affine equivalence class. Any improvement to one automatically translates into

an improvement for the other. Thus addition and subtraction will always have

the same nonlinear complexity.

Theorem 13.6.2. For any positive integer n, 2’s complement addition and sub-

traction modulo 2n are affine equivalent.

Proof. Recall that in 2’s complement, −a = a + 1, where a is a with every bit

complemented. Equivalently, a = −a− 1.

Consider the permutations +,− : GF(2)2n → GF(2)2n where for all a, b ∈

GF(2)n,

+(a, b) 7→ (a, a+ b mod 2n) and − (a, b) 7→ (a, a− b mod 2n).

Define A1, A2 ∈ AGLn(2) where A1 complements the first n bits and A2 comple-

ments all 2n bits. Consider the action of A2 ◦ (+) ◦ A1.

A2 ◦+ ◦ A1(a, b) = A2 ◦+(a, b)

= A2(a, a+ b)

= A2(a,−a− 1 + b)

= A2(a, a− b)

= (a, a− b)

= −(a, b)

Since A1 and A2 are affine permutations, + and − are in the same double

coset and are therefore affine equivalent.
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Chapter 14

Conclusion

The tools and theory developed in this thesis provide a new method for assessing

the complexity of boolean permutations via nonlinearity. Given the universal

nature of reversible computation, this implies the complexity of all classical com-

putations can be measured according to their nonlinearity.

The fact that the amount of nonlinearity in a permutation is highly correlated

with its complexity should not come as a surprise. Mathematicians are constantly

developing the linear theory of a field and then gently extending out into the realm

of nonlinearity.

It is hoped that the notion of nonlinearity as complexity will prove fruitful in

both the study of complexity theory as well as in the study of optimal functions

and algorithm theory.

Further advances in theory may make it possible to classify all 5-bit per-

mutations. In addition, the computational methods for computing the optimal

nonlinear complexity may lead to the discovery of a 4-bit or 5-bit permutation

that is “mildly one-way”, that is requiring one more round of nonlinearity for p−1

than for p.
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Appendix A

Appendix A: Source Code

#!/usr/bin/env python

# _size4.pyx

import random as rand # Avoid conflict with stdlib.h

ctypedef unsigned long long ulong
ctypedef unsigned int uint

cdef extern from "Python.h":
void* PyMem_Malloc(int)
void PyMem_Free(void* p)

cdef extern from "stdlib.h":
int random()
ctypedef long size_t
void* malloc(size_t size)
void free(void* ptr)

from size import rbin, bin

#############################################################
# BitStatic class
#############################################################

cdef class Size4:
cdef public uint n, nn, N
cdef public ulong one, m_identity, p_identity
cdef public ulong m_mask, r_mask, c_mask, p_mask, p_base
cdef ulong* x_mask
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def __init__(self, uint n=4):
cdef ulong i,j
cdef ulong id, one

one = 1
self.n = n
self.nn = n*n
self.N = 1ull << n

# Define the Identity matrix
id = 0
for i in range(n):

id ^= (1ull << (n+1)*i)
self.m_identity = id

# Define the Identity permutation
id = 0
for i in range( 1 << n ):

id = id ^ ((i*1ull) << (n*i))
self.p_identity = id

# The matrix mask is n*n bits set to 1111..1
self.m_mask = (1ull << n*n) - 1
# The row mask is the low n bits set to 111..1
self.r_mask = (1ull << n) - 1
# The column mask is n 1’s spaced n bits apart
id = 0
for i in range(n):

id ^= (1ull << (i*n))
self.c_mask = id

# The permutation mask is 2**n 1’s
self.p_mask = 2*((1ull << (self.N*self.n-1)) - 1) + 1
self.p_base = self.p_mask // max(self.r_mask, 1)

# x_mask[i] is the locations of monomials with no x_i.
self.x_mask = <ulong*> malloc(sizeof(ulong)*self.n)
for i in range(self.n):

self.x_mask[i] = (self.p_mask // ((1 << (1<<(i+1)))-1) ) \
* ((1 << (1<<(i)))-1)

def x_test(cls):
for i in range(cls.n):

print rbin(cls.x_mask[i],64)
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def p_id(cls):
’’’
Mysterious bug
p_id() != p_identity
’’’
return int(cls.p_identity)

def p_mk(cls):
return int(cls.p_mask)

################################################################
# Print methods
################################################################
def str_v(cls, v):

’’’Binary form of permutation
>>> print Size(3).str_v(0)
000
>>> print Size(3).str_v(6)
011
’’’
return rbin(v, cls.n)

def str_m(cls, m):
’’’Binary form of matrix
>>> print Size(3).str_m(0421)
100
010
001
>>> print Size(3).str_m(0153)
110
101
100
’’’
s = ’’
for i in xrange(cls.n):

t = (m >> cls.n*i) & cls.r_mask
s += rbin(t, cls.n) + ’\n’

s = s[:-1]
return s

def str_a(cls, a):
’’’Binary form of affine matrix
>>> print Size(3).str_a(07421)
100
010
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001
111
>>> print Size(3).str_a(04153)
110
101
100
001
’’’
s = ’’
for i in xrange(cls.n + 1):

t = (a >> cls.n*i) & cls.r_mask
s += rbin(t, cls.n) + ’\n’

s = s[:-1]
return s

def str_p(cls, p):
’’’Binary form of permutation
>>> s = Size(3)
>>> print s.str_p(s.p_identity)
0 1 2 3 4 5 6 7
>>> print s.str_p(067452301)
1 0 3 2 5 4 7 6
’’’
s = str(p & cls.r_mask)
for i in xrange(1, cls.N):

s += ’ ’+str((p >> (i*cls.n)) & cls.r_mask)
return s

def str_t(cls, p):
’’’Binary form of permutation
>>> s = Size(3)
>>> print s.str_t(s.p_identity),
000
001
010
011
100
101
110
111
>>> print s.str_t(067452301),
001
000
011
010
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101
100
111
110
’’’
s = ’’
for i in xrange(cls.N):

s += bin((p >> (i*cls.n)) & cls.r_mask, cls.n)+’\n’
return s

################################################################
# Conversion methods
################################################################
’’’
NOTE: Finite Functions acting on [0,1,...,2**n-1]
0 1 2
3 4 5 ==> 8 7 6 5 4 3 2 1 0
6 7 8

Functions are named as follows
_ReturnType_InputTypes_FunctionDescription
Possible types are:
m matrix
v vector
r row vector
c column vector
a affine
b bit
p permutation
? controlled affine (condition off of most significant bits)
’’’

cpdef ulong r_c(cls, ulong c):
’’’Converts column vector to row vector
>>> s = Size(3)
>>> print s.str_v(s.r_c(s.c_mask))
111
’’’
c ^= c >> (2*cls.n-2)
c ^= (c & (cls.r_mask << cls.n)) >> (cls.n - 1)
c &= cls.r_mask
return c

cpdef ulong c_r(cls, ulong r):
’’’Converts row vector to column vector
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>>> s = Size(3)
>>> print s.str_v(s.r_c(s.c_r(s.r_mask)))
111
’’’
r ^= (r >> 1) << cls.n
r ^= (r >> 2) << 2*cls.n
r &= cls.c_mask
return r

cpdef ulong p_v(cls, ulong v):
’’’Returns permutation equal to adding vector v.
>>> s = Size(3)
>>> print s.str_p(s.p_v(1))
1 0 3 2 5 4 7 6
’’’
return cls.p_identity ^ (v * cls.p_base)

cpdef ulong p_m(cls, ulong m):
’’’Returns permutation equal to matrix multiplication by m.
>>> print Size(3).str_p(Size(3).p_m(0153))
0 3 5 6 1 2 4 7
’’’
cdef uint i
cdef ulong p
p = 0
for i in range(cls.N):

p ^= cls.r_rm_mul(i, m) << (i * cls.n)
return p

cpdef ulong p_a(cls, ulong a):
’’’Permutation equal to affine matrix multiplication by a.
>>> print Size(3).str_p(Size(3).p_a(04153))
4 7 1 2 5 6 0 3
’’’
cdef ulong p, i
p = 0
for i in range(cls.N):

p ^= cls.r_ra_mul(i, a) << (i * cls.n)
return p

cpdef ulong a_v(cls, ulong v):
’’’Returns affine matrix equal to adding vector v.
>>> print Size(3).str_a(Size(3).a_v(6))
100
010
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001
011
’’’
return cls.m_identity ^ (v << cls.nn)

cpdef ulong m_v(cls, ulong v):
’’’Return matrix with char polynomial associated with v.
>>> print Size(3).str_m(Size(3).m_v(3))
010
001
110
’’’
cdef ulong m
m = cls.m_identity << 1
m ^= ( v << (cls.n - 1) * cls.n ) & cls.m_mask
return m

def a_m(cls, m):
return m

# TODO: Tensor two permutations together

################################################################
# Coercion methods
################################################################
cpdef ulong v_p(cls, ulong p):

’’’Returns zero shift of permutation.
Coerce - Inverts p_v
>>> s = Size(3)
>>> print s.str_v(s.v_p(s.p_identity))
000
’’’
return p & cls.r_mask

cpdef ulong m_p(cls, ulong p):
’’’Matrix function of permutation basis.
Coerce - Inverts p_m
>>> s = Size(3)
>>> print s.str_m(s.m_p(s.p_identity))
100
010
001
’’’
cdef uint i
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m = 0
for i in range(cls.n):

m ^= (p >> ( (1 << i) * cls.n) & cls.r_mask) \
<< (i * cls.n)

return m

cpdef ulong a_p(cls, ulong p):
’’’Returns affine function of permutation basis.
Coerce - Inverts p_a
>>> s = Size(3)
>>> print s.str_a(s.a_p(s.p_identity))
100
010
001
000
>>> print s.str_a(s.a_p(067452301))
100
010
001
100
’’’
cdef uint i
cdef ulong v, a
a = 0
v = p & cls.r_mask
for i in range(cls.n):

a ^= (v ^ (p >> ( (1 << i) * cls.n) & cls.r_mask)) \
<< (i * cls.n)

return a ^ (v << cls.nn)

cpdef ulong v_a(cls, ulong a):
’’’Returns affine shift.
Coerce - Inverts a_v
>>> s = Size(3)
>>> print s.str_v(s.v_a(07421))
111
’’’
return (a >> cls.nn) & cls.r_mask

cpdef ulong m_a(cls, ulong a):
’’’Returns zero shift of permutation.
Coerce - Inverts convert.a_m
>>> s = Size(3)
>>> print s.str_m(s.m_a(07421))
100
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010
001
’’’
return a & cls.m_mask

################################################################
# Get and set methods
################################################################

cpdef ulong r_pi_get(cls, ulong p, uint index):
’’’Returns the value p(i) from the permutation p.
>>> s = Size(3)
>>> print s.str_v(s.r_pi_get(s.p_identity, 4))
001
’’’
return (p >> cls.n*index) & cls.r_mask

cpdef ulong b_vi_get(cls, ulong v, uint index):
’’’
Candidate static method.
’’’
return (v >> index) & 1

cpdef ulong b_mij_get(cls, ulong m, uint i, uint j):
’’’Returns the (i,j) entry of the matrix m.
>>> s = Size(3)
>>> print s.b_mij_get(s.m_identity,0,0)
1
>>> print s.b_mij_get(s.m_identity,1,0)
0
’’’
return (m >> (i*cls.n +j)) & 1

’’’
_b_ci_get
_r_mi_get
_c_mi_get
_vib_set
’’’

################################################################
# Matrix methods
################################################################

cpdef ulong r_rm_mul(cls, ulong r, ulong m):
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’’’Row vector times matrix
>>> s = Size(3)
>>> print s.str_v(s.r_rm_mul(1, 0421))
100
>>> print s.str_v(s.r_rm_mul(7, 0437))
000
>>> print s.str_v(s.r_rm_mul(7, 0467))
101
’’’
cdef ulong v
v = cls.c_r(r)
m &= v * cls.r_mask
return cls.r_m_xor_cols(m)

cpdef ulong r_ra_mul(cls, ulong r, ulong a):
’’’Row vector times affine matrix
>>> s = Size(3)
>>> print s.str_v(s.r_ra_mul(1, 03421))
010
>>> print s.str_v(s.r_ra_mul(7, 05437))
101
>>> print s.str_v(s.r_ra_mul(7, 01467))
001
’’’
cdef ulong v,m
v = cls.c_r(r)
m = a & (v * cls.r_mask)
return cls.r_m_xor_cols(m) ^ (a >> cls.nn)

cpdef ulong r_mr_mul(cls, ulong m, ulong r):
’’’Matrix vector times row
>>> s = Size(3)
>>> print s.str_v(s.r_mr_mul(0421, 1))
100
>>> print s.str_v(s.r_mr_mul(0665, 7))
000
>>> print s.str_v(s.r_mr_mul(0467, 7))
101
’’’
cdef ulong v
m &= r * cls.c_mask
v = cls.c_m_xor_rows(m)
return cls.r_c(v)

cpdef ulong r_ar_mul(cls, ulong a, ulong r):
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’’’Affine matrix times row vecto
First multiply by matrix and then add affine component
>>> print Size(3).str_v(Size(3).r_ar_mul(04421, 1))
101
>>> print Size(3).str_v(Size(3).r_ar_mul(07566, 1))
110
’’’
cdef ulong m, v
m = a & (r * cls.c_mask) & cls.m_mask
v = cls.c_m_xor_rows(m)
return cls.r_c(v) ^ (a >> cls.nn)

cpdef ulong m_mm_mul(cls, ulong m1, ulong m2):
’’’Matrix multiplication
>>> s = Size(3)
>>> print s.str_m(s.m_mm_mul(0421, 0421))
100
010
001

>>> print s.str_m(s.m_mm_mul(311, 311))
101
010
001
’’’
cdef uint i
cdef ulong f,r,t
t = cls.m_m_transpose(m2)
r = cls.c_m_xor_rows(m1 & t)
for i in range(1, cls.n):

f = cls.m_mi_upshift_rows(m1, i)
f = cls.c_m_xor_rows(f & t)
f = cls.m_mi_upshift_rows(f, cls.n - i)
r ^= f << (cls.n - i)

r = cls.m_m_ishift_rows(r)
return r

cpdef ulong a_aa_mul(cls, ulong a1, ulong a2):
’’’Affine Matrix multiplication
>>> print Size(3).str_a(Size(3).a_aa_mul(0421, 0421))
100
010
001
000
>>> print Size(3).str_a(Size(3).a_aa_mul(07467, 07467))
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101
010
001
010
’’’
cdef ulong m,v
m = cls.m_mm_mul(a1 & cls.m_mask, a2 & cls.m_mask)
v = cls.r_ra_mul((a1 >> cls.nn) & cls.r_mask, a2)
return m ^ (v << cls.nn)

cpdef ulong m_m_inv(cls, ulong m):
’’’Assuming the matrix is invertible. Returns the inverse.
>>> s = Size(3)
>>> print s.str_m(s.m_m_inv(0421))
100
010
001
>>> print s.str_m(s.m_m_inv(143))
010
001
111
>>> print s.str_m(s.m_m_inv(0124))
001
010
100
>>> print Size(2).str_m(Size(2).m_m_inv(6))
01
10
’’’
cdef ulong m1,m2,sval,oval,val
cdef uint i,j
m1 = m
m2 = cls.m_identity
for i in range(cls.n):

for j in range(i, cls.n): # pivot a 1 to (i,i) position
if cls.b_mij_get(m1, j, i) == 1:

break
m1 = cls.m_mij_swap_rows(m1, i, j)
m2 = cls.m_mij_swap_rows(m2, i, j)
val = (m1 >> i) & cls.c_mask # which rows added
val ^= 1ull << i*cls.n # zero out pivot position
sval = val * ((m1 >> i*cls.n) & cls.r_mask)
oval = val * ((m2 >> i*cls.n) & cls.r_mask)
m1 ^= sval
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m2 ^= oval
return m2

cpdef ulong a_a_inv(cls, ulong a):
’’’Affine inverse. Assume multiplication on right.
>>> Size(3).a_a_inv(07567)
1003
’’’
cdef ulong m,v
m = cls.m_m_inv(a & cls.m_mask)
v = cls.r_rm_mul(a >> cls.nn, m)
return m ^ (v << cls.nn)

cpdef ulong m_m_transpose(cls, ulong m):
’’’Transpose of Bit Matrix
>>> Size(3).m_m_transpose(0421)
273
>>> Size(3).m_m_transpose(0153)
143
’’’
cdef ulong f
cdef uint i
f = 0
for i in range(cls.n):

t = cls.c_mask & (m >> i)
f ^= cls.r_c(t) << (cls.n * i)

return f

def m_random(cls):
’’’Returns a random invertible bit matrix
>>> s = Size(3); m=s.m_random();
>>> s.m_mm_mul(m, s.m_m_inv(m)) == s.identity
True
’’’
while True:

n = rand.randrange(1<<cls.nn)
if cls.is_inv_a(n):

return n

def a_random(cls):
’’’Returns a random invertible affine bit matrix
>>> s = Size(3); a=s.a_random();
>>> s.a_aa_mul(a, s.a_a_inv(a)) == s.identity
True
’’’
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while True:
n = rand.randrange(1<<cls.nn)
if cls.is_inv_a(n):

return n ^ (rand.randrange(cls.N) << cls.nn)

################################################################
# Generator methods
################################################################

"""
def density2(cls):

’’’Generate all weight 2 words.
>>> for i in Size(4).density2(): print Size(4).str_v(i)
1100
1010
1001
0110
0101
0011
’’’
m = 3
for i in xrange(cls.n-1):

current = (m << i)
yield current
for j in xrange(i+1, cls.n-1):

current ^= m << j
yield current

return

def density3(cls):
’’’Generate all weight 2 words.
>>> for i in Size(5).density3(): print Size(5).str_v(i)
11100
11010
11001
10110
10101
10011
01110
01101
01011
00111
’’’
m = 7
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for i in xrange(cls.n-2):
last = (m << i)
current = last
yield current
for j in xrange(i+1, cls.n-2):

for k in xrange(j+1, cls.n-1):
current ^= 3 << k
yield current

last ^= 5 << j
current = last
yield current

return
"""

################################################################
# Helper methods
################################################################

cpdef ulong r_m_xor_cols(cls, ulong m):
’’’XOR the values in each column to form a row vector.
>>> s = Size(3)
>>> s.r_m_xor_cols(s.m_identity) == s.r_mask
True
’’’
cdef uint i
for i in range(1, cls.n):

m ^= (m >> (cls.n * i) ) & cls.r_mask
m &= cls.r_mask
return m

cpdef ulong c_m_xor_rows(cls, ulong m):
’’’XOR the values in each row to form a column vector.
>>> s = Size(3)
>>> s.c_m_xor_rows(s.m_identity) == s.c_mask
True
’’’
cdef uint i
for i in range(1, cls.n):

m ^= (m >> i) & cls.c_mask
m &= cls.c_mask
return m

cpdef ulong m_mij_swap_rows(cls, ulong m, uint i, uint j):
’’’
>>> Size(3).m_mij_swap_rows(0421, 0, 2)
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84
’’’
cdef ulong val
val = (m >> cls.n*i) ^ (m >> cls.n*j)
val &= cls.r_mask
m ^= val << cls.n*i
m ^= val << cls.n*j
return m

cpdef ulong m_mi_upshift_rows(cls, ulong m, int i):
’’’ Circular shift of rows upward
>>> Size(3).m_mi_upshift_rows(0421, 1)
98
’’’
return (m>>cls.n*i)^((m<<(cls.n*(cls.n-i)))&cls.m_mask)

cpdef ulong m_m_ishift_rows(cls, ulong m):
’’’ Circular shift ith row by i
>>> Size(3).m_m_ishift_rows(0421)
161
’’’
cdef uint i
cdef ulong f
f = m & cls.r_mask
for i in range(1, cls.n):

val = (m >> cls.n*i) & cls.r_mask
val = cls.r_r_circ_shift(val, i)
f ^= val << cls.n*i

return f

cpdef ulong r_r_circ_shift(cls, ulong r, uint i):
return ((r>>(cls.n-i)&cls.r_mask)^(r<<(i)))&cls.r_mask

cpdef ulong m_rr_outer_product(cls, ulong r1, ulong r2):
’’’ Outer product
>>> s = Size(3)
>>> print s.str_m(s.m_rr_outer_product(05, 07))
111
000
111
’’’
r1 = cls.c_r(r1)
return r1 * r2
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’’’
m_m_canonical form
b_vv_dotproduct
’’’

################################################################
# Permutation methods
################################################################

cpdef ulong p_p_inv(cls, ulong p):
’’’Assuming the function is a permutation. Returns inverse.
>>> print Size(3).str_p(Size(3).p_p_inv(024710536))
3 4 7 1 6 2 0 5
’’’
cdef ulong i
cdef ulong f
f = 0
for i in range(cls.N):

f ^= i << ( ( (p >> i*cls.n) & cls.r_mask ) * cls.n )
return f

cpdef ulong p_p_reverse(cls, ulong p):
’’’Reverses permuation as a list
>>> print Size(3).str_p(Size(3).p_p_reverse(024710536))
2 4 7 1 0 5 3 6
’’’
cdef uint i
cdef ulong f
f = 0
for i in range(cls.N):

f ^= ((p>>i*cls.n)&cls.r_mask)<<(cls.N-i-1)*cls.n
return f

cpdef ulong p_pp_mul(cls, ulong p0, ulong p1):
’’’Composition function.
>>> print Size(3).str_p(Size(3).p_pp_mul(024710536,024710536))
4 0 7 6 3 2 1 5
>>> print Size(3).str_p(Size(3).p_pp_mul(024710536,053610742))
3 0 6 2 4 5 1 7
’’’
cdef uint i
cdef ulong f, p0i, p1j
f = 0
for i in range(cls.N):
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p0i = (p0 >> i*cls.n) & cls.r_mask
p1j = (p1 >> p0i*cls.n) & cls.r_mask
f ^= p1j << cls.n*i

return f

cpdef ulong p_pa_mul(cls, ulong p, ulong a):
’’’Composition function.
>>> s = Size(3)
>>> print s.str_p(s.p_pa_mul(053610742,07124))
5 6 0 7 3 4 1 2
’’’
cdef uint i
cdef ulong f, pi
f = 0
for i in range(cls.N):

pi = (p >> i*cls.n) & cls.r_mask
f ^= cls.r_ra_mul(pi, a) << cls.n*i

return f

cpdef ulong p_ap_mul(cls, ulong a, ulong p):
’’’Composition function. (Slower than reversed composition)
>>> s = Size(3)
>>> print s.str_p(s.p_ap_mul(07124,053610742))
5 0 6 4 3 7 1 2
’’’
pa = cls.p_a(a)
return cls.p_pp_mul(pa,p)

cpdef ulong p_p_fixBasis(cls, ulong p):
cdef ulong a
while not cls.is_inv_a(cls.a_p(p)):

p = cls.p_ap_mul(cls.a_random(), p)
a = cls.a_a_inv(cls.a_p(p))
p = cls.p_pa_mul(p,a)
return p

cpdef uint is_a_pp_mul(cls, ulong p, ulong q):
cdef ulong v000,v001,v010,v100,v101,v110,v111
cdef ulong t
v000 = (q >> (cls.n * (p&cls.r_mask)))
v001 = (q >> (cls.n * ((p >> cls.n) & cls.r_mask)))
v010 = (q >> (cls.n * ((p >> 2*cls.n) & cls.r_mask)))
v011 = (q >> (cls.n * ((p >> 3*cls.n) & cls.r_mask)))
if ((v000 ^ v001 ^ v010 ^ v011) & cls.r_mask) != 0:

return 0
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v100 = (q >> (cls.n * ((p >> 4*cls.n) & cls.r_mask)))
v101 = (q >> (cls.n * ((p >> 5*cls.n) & cls.r_mask)))
if ((v000 ^ v001 ^ v100 ^ v101) & cls.r_mask) != 0:

return 0
v110 = (q >> (cls.n * ((p >> 6*cls.n) & cls.r_mask)))
if ((v000 ^ v010 ^ v100 ^ v110) & cls.r_mask) != 0:

return 0
v111 = (q >> (cls.n * ((p >> 7*cls.n) & cls.r_mask)))
if ((v000 ^ v001 ^ v110 ^ v111) & cls.r_mask) != 0:

return 0
t = cls.p_pp_mul(p,q)
if cls.is_a_p(t) == 1: # Just test the darn thing then!

return t
else:

return 0

cpdef uint is_inv_a(cls, ulong a):
’’’Determines whether affine transformation is invertible.
>>> Size(3).is_inv_a(02743)
False
>>> Size(3).is_inv_a(07764)
True
’’’
ai = cls.a_a_inv(a)
return cls.a_aa_mul(a,ai) == cls.m_identity

cpdef int cmp_p(cls, ulong p0, ulong p1):
’’’Compare using lexicographic value
Examples:
>>> Size(2).cmp_p(0xe4,0xd9)
True
’’’
cdef uint i
cdef ulong val0, val1
for i in range(cls.N):

val0 = cls.r_pi_get(p0, i)
val1 = cls.r_pi_get(p1, i)
if val0 == val1:

continue
else:

return val0 < val1
return 0

cpdef ulong p_random_s(cls):

141



cdef ulong p
cdef ulong i,j
p = cls.p_identity
for i in range(cls.N):

j = rand.randrange(i,cls.N)
p = cls.p_pij_swap(p,i,j)

return p

cpdef ulong p_random(cls):
cdef ulong p
cdef ulong i,j
p = cls.p_identity
for i in range(cls.N):

j = (random() % (cls.N - i)) + i
p = cls.p_pij_swap(p,i,j)

return p

cpdef ulong p_pij_swap(cls, ulong p, uint i, uint j):
cdef ulong val
val = cls.r_pi_get(p,i) ^ cls.r_pi_get(p,j)
p ^= val << cls.n*i
p ^= val << cls.n*j
return p

cpdef ulong p_p_next(cls, ulong p):
cdef uint i,j
cdef ulong pi,pj

i = cls.N - 1
pj = cls.r_pi_get(p,i)

while True:
i = i -1
if i < 0:

return 0
pi = cls.r_pi_get(p, i)
if pi < pj:

break
pj = pi

j = cls.N
while cls.r_pi_get(p, j-1) <= pi:

j = j - 1

p = cls.p_pij_swap(p,i,j-1)
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i = i + 1
j = cls.N -1

while i<j:
p = cls.p_pij_swap(p,i,j)
i += 1
j -= 1

return p

cpdef ulong p_p_not(cls, ulong p, ulong target):
’’’NOT Gate
>>> s = Size(3); p = s.p_identity
>>> print s.str_p(s.p_p_cnot(p,0))
1 0 3 2 5 4 7 6
’’’
return p ^ (cls.p_base << target)

cpdef ulong p_p_cnot(cls, ulong p, ulong source, ulong target):
’’’Control NOT
>>> s = Size(3); p = s.p_identity
>>> print s.str_p(s.p_p_cnot(p,0,1))
0 3 2 1 4 7 6 5
’’’
cdef ulong d
d = (p & (cls.p_base << source)) >> source
return p ^ (d << target)

cpdef ulong p_p_ccnot(cls, ulong p, ulong source1, \
ulong source2, ulong target):

’’’Double control NOT
>>> s = Size(3); p = s.p_identity
>>> print s.str_p(s.p_p_ccnot(p,0,1,2))
0 3 2 1 4 7 6 5
’’’
cdef ulong d
d = (p & (cls.p_base << source1)) >> source1
d &= (p & (cls.p_base << source2)) >> source2
return p ^ (d << target)

cpdef ulong p_p_cccnot(cls, ulong p, ulong source1, \
ulong source2, ulong source3, ulong target):

’’’Triple control NOT
>>> s = Size(4); p = s.p_identity
>>> print s.str_p(s.p_p_cccnot(p,0,1,2,3))
’’’
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cdef ulong d
d = (p & (cls.p_base << source1)) >> source1
d &= (p & (cls.p_base << source2)) >> source2
d &= (p & (cls.p_base << source3)) >> source3
return p ^ (d << target)

def Test3(cls, p):
L = []
L.append(cls.p_identity)
L.append(cls.p_p_ccnot(L[0],0,1,2))
L.append(cls.p_p_ccnot(L[1],0,2,1))
L.append(cls.p_p_ccnot(L[2],1,2,0))

for i in range(4):
if cls.DC(p,L[i]):

return i
return ’Fail’

def Test4(cls,p):
if cls.b_p_parity(p) == 0:

return ’Even: ’+str(cls.Test4Even(p))
else:

return ’Odd: ’+str(cls.Test4Odd(p))

def order(cls, p):
’’’Find order of permutation
>>> s=Size(3); s.order(s.p_identity) == 1
True
>>> s.order(057136420)
7
’’’
d = p
i = 1
while True:

if d == cls.p_identity:
return i

d = cls.p_pp_mul(d,p)
i += 1
if i > 999:

return None

################################################################
# Rank Algorithms
################################################################
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cpdef uint b_p_parity(cls, ulong p):
’’’Return the parity of the permutation.
>>> s = Size(4); p = s.p_identity
>>> s.b_p_parity(p)
0
>>> p = s.p_random(); s.b_p_parity(s.p_pp_mul(p,p))
0
>>> print Size(3).b_p_parity(067543210) # Toffoli Gate
1
’’’
cdef uint a,c,i,j
a = 0; c = 0
for j in range(cls.N):

if (a>>j)&1 == 0:
c ^= 1
i = j
while True:

a ^= 1<<i
i = cls.r_pi_get(p,i)
if i == j:

break
return c # (cls.N-c)%2

cpdef uint n_p_lowbit(cls, ulong p):
cdef uint n
n = 0
if (p & 0xffffffff) == 0:

n += 32
p = p >> 32

if (p & 0xffff) == 0:
n += 16
p = p >> 16

if (p & 0xff) == 0:
n += 8
p = p >> 8

if (p & 0xf) == 0:
n += 4
p = p >> 4

if (p & 0x3) == 0:
n += 2
p = p >> 2

if (p & 0x1) == 0:
n += 1

return n
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cpdef uint is_a_p(cls, ulong p):
’’’Determines whether a permutation is an affine function.
>>> print Size(3).is_a_p(Size(3).p_identity)
True
>>> print Size(3).is_a_p(067543210) # Toffoli Gate
False
>>> print Size(3).is_a_p(067452301) # NOT Gate on lsb
True
’’’
cdef uint i
cdef ulong a,v
a = 0
v = p & cls.r_mask
for i in range(cls.n):

a ^= (v ^ (p >> ( (1 << i) * cls.n) & cls.r_mask)) \
<< (i * cls.n)

a ^= (v << cls.nn)
for i in range(cls.N):

if cls.r_ra_mul(i,a)!=((p>>(i*cls.n))&cls.r_mask):
return 0

return 1

cpdef uint is_a_p4(cls, ulong p):
’’’Determines whether a permutation is an affine function.
>>> print Size(4).is_a_p(Size(4).p_identity)
True
>>> print Size(3).is_a_p(067543210) # Toffoli Gate
False
>>> print Size(3).is_a_p(067452301) # NOT Gate on lsb
True
’’’
p ^= ( p & 0xf)*0x1111111111111111ull
p ^= ((p >> 4) & 0xf)*0x1010101010101010ull
p ^= ((p >> 8) & 0xf)*0x1100110011001100ull
if (p & 0xffff) != 0:

return 0
p ^= ((p >> 16) & 0xf)*0x1111000011110000ull
if (p & 0xffffffff) != 0:

return 0
p ^= ((p >> 32) & 0xf)*0x1111111100000000ull
return (p == 0)

cpdef uint is_t_p(cls, ulong p):
’’’Determines whether a permutation is a.e. to Toffoli.

146



’’’
cdef uint i
cdef ulong t,q
i = cls.n_p_signature(p)
if i == 11:

return 1
else:

return 0

cpdef uint is_t3_p(cls, ulong p):
’’’Determines whether a permutation is a.e. to Toffoli.
’’’
cdef uint i
cdef ulong t,q
i = cls.n_p_signature(p)
if i == 3:

return 1
else:

return 0

cpdef uint n_p_rank(cls, ulong p):
’’’Determines rank of the four vector truth tables.
’’’
cdef uint rank, n, a, b
rank = 0
while p != 0:

n = cls.n_p_lowbit(p)
b = n & 0x3
a = n - b
p ^= ((p>>b)&0x1111111111111111ull)*((p>>a)&0xf)
rank += 1

return rank

cpdef ulong p_p_reduce_affine(cls, ulong p):
p ^= ( p & 0xf)*0x1111111111111111ull
p ^= ((p >> 4) & 0xf)*0x1010101010101010ull
p ^= ((p >> 8) & 0xf)*0x1100110011001100ull
p ^= ((p >> 16) & 0xf)*0x1111000011110000ull
p ^= ((p >> 32) & 0xf)*0x1111111100000000ull
return p

cpdef ulong p_p_reduce_quadratic(cls, ulong p):
p ^= ((p >> 3*4) & 0xf)*0x1000100010001000ull
p ^= ((p >> 5*4) & 0xf)*0x1010000010100000ull
p ^= ((p >> 6*4) & 0xf)*0x1100000011000000ull
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p ^= ((p >> 9*4) & 0xf)*0x1010101000000000ull
p ^= ((p >> 10*4) & 0xf)*0x1100110000000000ull
p ^= ((p >> 12*4) & 0xf)*0x1111000000000000ull
return p

cpdef ulong p_p_reduce_cubic(cls, ulong p):
p ^= ((p >> 7*4) & 0xf)*0x1000000010000000ull
p ^= ((p >> 11*4) & 0xf)*0x1000100000000000ull
p ^= ((p >> 13*4) & 0xf)*0x1010000000000000ull
p ^= ((p >> 14*4) & 0xf)*0x1100000000000000ull
return p

def rank_signature(cls, ulong p):
cdef uint prev, next
sig = [ cls.b_p_parity(p) ]
prev = cls.n_p_rank(p)
p = cls.p_p_reduce_affine(p)
next = cls.n_p_rank(p)
sig.append(prev - next)
prev = next
p = cls.p_p_reduce_quadratic(p)
next = cls.n_p_rank(p)
sig.append(prev - next)
prev = next
p = cls.p_p_reduce_cubic(p)
next = cls.n_p_rank(p)
sig.append(prev - next)
prev = next
return sig

cpdef uint n_p_signature(cls, ulong p):
cdef uint prev, next, sig
p = cls.p_p_reduce_affine(p)
sig = 4 - cls.n_p_rank(p)
p = cls.p_p_reduce_quadratic(p)
sig ^= (4 - sig - cls.n_p_rank(p)) << 3
return sig

cpdef uint n_p_signature2(cls, ulong p):
cdef uint sig
sig = cls.n_p_signature(p)
sig ^= cls.DC(p,cls.p_p_inv(p)) << 6
sig ^= cls.b_p_parity(p) << 7
return sig
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def L_p_signature(cls, ulong p):
’’’Signature List (Linear, Quadratic, Parity,

CommutatorSize, involution, order3, order4)
’’’
cdef uint sig
sig = cls.n_p_signature(p)
L = []
L.append(sig&0x7)
L.append(sig>>3)
L.append(cls.b_p_parity(p))
L.append(len(cls.S_p_affineCommutator(p)))
L.append(cls.DC(p,cls.p_p_inv(p)))
’’’Order does not appear to be working
L.append(cls.b_p_AE_Order3(p))
L.append(cls.b_p_AE_Order4(p))
L.append(cls.b_p_AE_Order5(p))
L.append(cls.b_p_AE_Order6(p))
L.append(cls.b_p_AE_Order7(p))
L.append(cls.b_p_AE_Order8(p))
L.append(cls.b_p_AE_Order9(p))
L.append(cls.b_p_AE_Order16(p))
’’’
return L

################################################################
# Double Coset
################################################################

cpdef uint equivDC(cls, ulong a, ulong b):
cdef uint h
cdef ulong t
for h in range(1<<(cls.nn+cls.n)):

if cls.is_inv_a(h):
t = cls.p_pa_mul(a,h)
t = cls.p_pp_mul(t,b)
if cls.is_a_p_fastfail(t):

return 1
return 0

cpdef linear(cls):
cdef ulong h
H = set()
for h in (1<<cls.nn):

if cls.is_inv_a(h):
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H.add(h)
return H

###############################################################
# Build up a coset test
###############################################################

cpdef uint DC(cls, ulong p, ulong q):
cdef ulong* coset
cdef ulong* qlist
cdef ulong t
cdef uint i,j
coset = <ulong*> malloc(sizeof(ulong)*20160)
qlist = <ulong*> malloc(sizeof(ulong)*16)
p = cls.p_p_inv(p)
coset[0] = p
p = cls.p_p_4bit_linear(p, coset+1)
for j in range(16):

qlist[j] = cls.p_ap_mul(cls.a_v(j),q)
for i in range(20160):

for j in range(16):
#if cls.is_a_pp_mul(coset[i],qlist[j]) != 0:
if cls.is_a_p4(cls.p_pp_mul(coset[i],qlist[j]))!=0:

free(coset)
free(qlist)
return 1

free(coset)
free(qlist)
return 0

cpdef ulong a_pp_DC(cls, ulong p, ulong q):
cdef ulong* coset
cdef ulong* qlist
cdef ulong t, a, pi
cdef uint i,j
coset = <ulong*> malloc(sizeof(ulong)*20160)
qlist = <ulong*> malloc(sizeof(ulong)*16)

pi = cls.p_p_inv(p) # pi = p^-1
coset[0] = pi
cls.p_p_4bit_linear(pi, coset+1)
for j in range(16):

qlist[j] = cls.p_ap_mul(cls.a_v(j),q)
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for i in range(20160):
for j in range(16):

if cls.is_a_p4(cls.p_pp_mul(coset[i],qlist[j]))!=0:
t = cls.p_pp_mul(coset[i],qlist[j])
a = cls.a_a_inv(cls.a_p(t)) << 32
#a = cls.a_p(cls.p_p_inv(t)) << 32
#a = cls.a_p(t) << 32
t = cls.p_pp_mul(p,t)
t = cls.p_pp_mul(t,cls.p_p_inv(q))
free(coset)
free(qlist)
return a ^ cls.a_p(t)

free(coset)
free(qlist)
return 0

cpdef uint DC_Toff(cls, ulong p, ulong q):
’’’ Tests if p and q affinely differ by a Toffoli.
There exists a,b,c such that apbqc=T
’’’
cdef ulong* coset
cdef ulong* qlist
cdef ulong t
cdef uint i,j
coset = <ulong*> malloc(sizeof(ulong)*20160)
qlist = <ulong*> malloc(sizeof(ulong)*16)
p = cls.p_p_inv(p)
coset[0] = p
p = cls.p_p_4bit_linear(p, coset+1)
for j in range(16):

qlist[j] = cls.p_ap_mul(cls.a_v(j),q)
for i in range(20160):

for j in range(16):
if cls.is_t_p(cls.p_pp_mul(coset[i],qlist[j]))!=0:

free(coset)
free(qlist)
return 1

free(coset)
free(qlist)
return 0

cpdef uint DC_T3(cls, ulong p, ulong q):
’’’ Tests if p and q affinely differ by a CCCNOT.
There exists a,b,c such that apbqc=T^3
’’’
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cdef ulong* coset
cdef ulong* qlist
cdef ulong t
cdef uint i,j
coset = <ulong*> malloc(sizeof(ulong)*20160)
qlist = <ulong*> malloc(sizeof(ulong)*16)
p = cls.p_p_inv(p)
coset[0] = p
p = cls.p_p_4bit_linear(p, coset+1)
for j in range(16):

qlist[j] = cls.p_ap_mul(cls.a_v(j),q)
for i in range(20160):

for j in range(16):
if cls.is_t3_p(cls.p_pp_mul(coset[i],qlist[j]))!=0:

free(coset)
free(qlist)
return 1

free(coset)
free(qlist)
return 0

#cpdef uint b_p_AE_Involution(cls, ulong p):
def b_p_AE_Involution(cls, p):

’’’ Tests if p is Affine Equivalent to an involution.
There exists a,b such that apb=i where i^2=1.
’’’
cdef ulong* coset
cdef ulong* qlist
cdef ulong t
cdef uint i,j
coset = <ulong*> malloc(sizeof(ulong)*20160)
qlist = <ulong*> malloc(sizeof(ulong)*16)
coset[0] = p
cls.p_p_4bit_linear(p, coset+1)
for j in range(16):

qlist[j] = cls.p_ap_mul(cls.a_v(j),p)
for i in range(20160):

for j in range(16):
t = cls.p_pp_mul(coset[i],qlist[j])
if cls.is_a_p4(t) != 0:

t = cls.p_p_inv(t)
t = cls.p_pp_mul(p,t)
if cls.p_pp_mul(t,t) == cls.p_identity:

free(coset)
free(qlist)
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return 1
free(coset)
free(qlist)
return 0

# Hamiltonian cycle
cdef inline ulong a_aij_cnot(cls, ulong a, uint i, uint j):

return a ^ (((a>>i) & cls.p_base) << j)

cdef ulong p_p_01(cls, ulong p, ulong* coset):
p ^= ((p >> 1) & cls.p_base); coset[0] = p # CNOT(1,0)
p ^= ((p & cls.p_base) << 1); coset[1] = p # CNOT(0,1)
p ^= ((p >> 1) & cls.p_base); coset[2] = p # CNOT(1,0)
p ^= ((p & cls.p_base) << 1); coset[3] = p # CNOT(0,1)
p ^= ((p >> 1) & cls.p_base); coset[4] = p # CNOT(1,0)
return p

cdef ulong p_p_10(cls, ulong p, ulong* coset):
p ^= ((p & cls.p_base) << 1); coset[0] = p # CNOT(0,1)
p ^= ((p >> 1) & cls.p_base); coset[1] = p # CNOT(1,0)
p ^= ((p & cls.p_base) << 1); coset[2] = p # CNOT(0,1)
p ^= ((p >> 1) & cls.p_base); coset[3] = p # CNOT(1,0)
p ^= ((p & cls.p_base) << 1); coset[4] = p # CNOT(0,1)
return p

cdef ulong p_p_20(cls, ulong p, ulong* coset):
cdef ulong mask
mask = cls.p_base << 2
p = cls.p_p_10(p,coset)
p ^= ((p & mask) >> 1); coset[5] = p # CNOT(2,1)
p = cls.p_p_10(p,coset+6)
p ^= ((p & mask) >> 2); coset[11] = p # CNOT(2,0)
p = cls.p_p_10(p,coset+12)
p ^= ((p & mask) >> 1); coset[17] = p # CNOT(2,1)
p = cls.p_p_10(p,coset+18)
return p

cdef ulong p_p_21(cls, ulong p, ulong* coset):
cdef ulong mask
mask = cls.p_base << 2
p = cls.p_p_01(p,coset)
p ^= ((p & mask) >> 2); coset[5] = p # CNOT(2,0)
p = cls.p_p_01(p,coset+6)
p ^= ((p & mask) >> 1); coset[11] = p # CNOT(2,1)
p = cls.p_p_01(p,coset+12)
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p ^= ((p & mask) >> 2); coset[17] = p # CNOT(2,0)
p = cls.p_p_01(p,coset+18)
return p

cdef ulong p_p_0212(cls, ulong p, ulong* coset):
cdef uint i,j
for i in range(7):

j = ((i>>2)^i)&1 # produces pattern 0101101
if j==0:

p = cls.p_p_20(p,coset+i*24)
else:

p = cls.p_p_21(p,coset+i*24)
if i<6:

p = cls.a_aij_cnot(p,j,2); coset[(i+1)*24-1] = p
return p

cdef ulong p_p_30(cls, ulong p, ulong* coset):
p = cls.p_p_0212(p,coset)
p = cls.a_aij_cnot(p,3,2); coset[168-1] = p
p = cls.p_p_0212(p,coset+168)
p = cls.a_aij_cnot(p,3,1); coset[2*168-1] = p
p = cls.p_p_0212(p,coset+2*168)
p = cls.a_aij_cnot(p,3,2); coset[3*168-1] = p
p = cls.p_p_0212(p,coset+3*168)
p = cls.a_aij_cnot(p,3,0); coset[4*168-1] = p
p = cls.p_p_0212(p,coset+4*168)
p = cls.a_aij_cnot(p,3,2); coset[5*168-1] = p
p = cls.p_p_0212(p,coset+5*168)
p = cls.a_aij_cnot(p,3,1); coset[6*168-1] = p
p = cls.p_p_0212(p,coset+6*168)
p = cls.a_aij_cnot(p,3,2); coset[7*168-1] = p
p = cls.p_p_0212(p,coset+7*168)
return p

cdef ulong p_p_31(cls, ulong p, ulong* coset):
p = cls.p_p_0212(p,coset)
p = cls.a_aij_cnot(p,3,2); coset[168-1] = p
p = cls.p_p_0212(p,coset+168)
p = cls.a_aij_cnot(p,3,0); coset[2*168-1] = p
p = cls.p_p_0212(p,coset+2*168)
p = cls.a_aij_cnot(p,3,2); coset[3*168-1] = p
p = cls.p_p_0212(p,coset+3*168)
p = cls.a_aij_cnot(p,3,1); coset[4*168-1] = p
p = cls.p_p_0212(p,coset+4*168)
p = cls.a_aij_cnot(p,3,2); coset[5*168-1] = p

154



p = cls.p_p_0212(p,coset+5*168)
p = cls.a_aij_cnot(p,3,0); coset[6*168-1] = p
p = cls.p_p_0212(p,coset+6*168)
p = cls.a_aij_cnot(p,3,2); coset[7*168-1] = p
p = cls.p_p_0212(p,coset+7*168)
return p

cdef ulong p_p_4bit_linear(cls, ulong p, ulong* coset):
p = cls.p_p_30(p,coset)
p = cls.a_aij_cnot(p,0,3); coset[1*1344-1] = p
p = cls.p_p_31(p,coset+1344)
p = cls.a_aij_cnot(p,2,3); coset[2*1344-1] = p
p = cls.p_p_31(p,coset+2*1344)
p = cls.a_aij_cnot(p,0,3); coset[3*1344-1] = p
p = cls.p_p_30(p,coset+3*1344)
p = cls.a_aij_cnot(p,1,3); coset[4*1344-1] = p
p = cls.p_p_31(p,coset+4*1344)
p = cls.a_aij_cnot(p,2,3); coset[5*1344-1] = p
p = cls.p_p_31(p,coset+5*1344)
p = cls.a_aij_cnot(p,0,3); coset[6*1344-1] = p
p = cls.p_p_30(p,coset+6*1344)
p = cls.a_aij_cnot(p,1,3); coset[7*1344-1] = p
p = cls.p_p_31(p,coset+7*1344)
p = cls.a_aij_cnot(p,0,3); coset[8*1344-1] = p
p = cls.p_p_31(p,coset+8*1344)
p = cls.a_aij_cnot(p,2,3); coset[9*1344-1] = p
p = cls.p_p_30(p,coset+9*1344)
p = cls.a_aij_cnot(p,1,3); coset[10*1344-1] = p
p = cls.p_p_31(p,coset+10*1344)
p = cls.a_aij_cnot(p,0,3); coset[11*1344-1] = p
p = cls.p_p_31(p,coset+11*1344)
p = cls.a_aij_cnot(p,2,3); coset[12*1344-1] = p
p = cls.p_p_30(p,coset+12*1344)
p = cls.a_aij_cnot(p,0,3); coset[13*1344-1] = p
p = cls.p_p_30(p,coset+13*1344)
p = cls.a_aij_cnot(p,3,2) # One wasted step.
p = cls.a_aij_cnot(p,2,3); coset[14*1344-1] = p
p = cls.p_p_30(p,coset+14*1344)
return p

###############################################################
# Set Manipulators
###############################################################

cdef ulong* A_S(cls, S):
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cdef ulong* A
cdef uint i,n
n = len(S)
A = <ulong*> malloc(sizeof(ulong)*n)
i = 0
for x in S:

A[i] = x
i += 1

return A

cdef S_An(cls, ulong* A, uint n):
cdef uint i
S = set()
for i in range(n):

S.add(A[i])
return S

cdef ulong* A_An_inv(cls, ulong* A, uint n):
cdef uint i
for i in range(n):

A[i] = cls.p_p_inv(A[i])
return A

cdef ulong* A_p_leftAffineCoset(cls, ulong p):
cdef ulong* coset
cdef uint i,j
coset = <ulong*> malloc(sizeof(ulong)*20160*16)
coset[0] = p
p = cls.p_p_4bit_linear(p, coset+1)
for i in range(16):

for j in range(20160):
coset[20160*i+j] = coset[j] ^ (cls.p_base * i)

return coset

def S_p_leftAffineCoset(cls, ulong p):
cdef ulong* coset
coset = cls.A_p_leftAffineCoset(p)
return cls.S_An(coset,322560)

cdef ulong* A_p_leftLinearCoset(cls, ulong p):
cdef ulong* coset
cdef uint i,j
coset = <ulong*> malloc(sizeof(ulong)*20160)
coset[0] = p
p = cls.p_p_4bit_linear(p, coset+1)
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return coset

def S_p_leftLinearCoset(cls, ulong p):
cdef ulong* coset
coset = cls.A_p_leftAffineCoset(p)
return cls.S_An(coset,20160)

cdef ulong* A_p_affineCommutator(cls, ulong p):
cdef ulong* S
cdef ulong* C
cdef uint i, count
S = <ulong*> malloc(sizeof(ulong)*20160*16)
C = <ulong*> malloc(sizeof(ulong)*20160*16+1)
S = cls.A_p_leftAffineCoset(p) # pH
p = cls.p_p_inv(p)
count = 1
for i in range(322560):

if cls.is_a_pp_mul(S[i],p) != 0: # pHp^-1
C[count] = cls.p_pp_mul(S[i],p)
count += 1

C[0] = count - 1
return C

def S_p_affineCommutator(cls, ulong p):
cdef ulong* S
cdef uint n
S = cls.A_p_affineCommutator(p)
return cls.S_An(S+1,S[0])

cdef ulong* A_p_linearCommutator(cls, ulong p):
cdef ulong* S
cdef ulong* C
cdef uint i, count
S = <ulong*> malloc(sizeof(ulong)*20160)
C = <ulong*> malloc(sizeof(ulong)*20160+1)
S = cls.A_p_leftLinearCoset(p) # pH
p = cls.p_p_inv(p)
count = 1
for i in range(20160):

if cls.is_a_pp_mul(S[i],p) != 0: # pHp^-1
if cls.v_p(cls.p_pp_mul(S[i],p)) == 0:

C[count] = cls.p_pp_mul(S[i],p)
count += 1

C[0] = count - 1
return C
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def S_p_linearCommutator(cls, ulong p):
cdef ulong* S
cdef uint n
S = cls.A_p_linearCommutator(p)
return cls.S_An(S+1,S[0])

def S_p_affineTransversal(cls, ulong p):
cdef ulong t
H = cls.S_p_affineCommutator(p)
G = cls.S_p_leftAffineCoset(cls.p_identity)
for h in H:

G.remove(h)
H.remove(cls.p_identity) # t*id will be removed by pop()
T = set([ cls.p_identity ])
while len(G) > 0:

t = G.pop()
for h in H:

G.remove(cls.p_pp_mul(t,h))
T.add(t)

return T

def S_p_linearTransversalToff(cls):
’’’Affine shift commute through a Toffoli gate into linear.
Thus, the transversal can be only linear functions.
’’’
cdef ulong t,p
p = 0xbedcfa9836547210 # Toffoli

H = cls.S_p_linearCommutator(p)
G = cls.S_p_leftLinearCoset(cls.p_identity)
for h in H:

G.remove(h)
H.remove(cls.p_identity) # t*id will be removed by pop()
T = set([ cls.p_identity ])
while len(G) > 0:

t = G.pop()
for h in H:

G.remove(cls.p_pp_mul(t,h))
T.add(t)

return T

def is_pS_DC(cls, ulong p, S):
cdef ulong s
cdef uint sig
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sig = cls.n_p_signature(p)
for s in S:

if cls.n_p_signature(s) != sig:
continue

if cls.DC(p,s) != 0:
return 1

return 0

def p_pS_DC(cls, ulong p, S):
cdef ulong s
cdef uint sig
sig = cls.n_p_signature(p)
for s in S:

if cls.n_p_signature(s) != sig:
continue

if cls.DC(p,s) != 0:
return s

return 0

cdef ulong is_pAn_DC(cls, ulong p, ulong* A, uint n):
cdef ulong* coset
cdef ulong t
cdef uint i,j,k
coset = <ulong*> malloc(sizeof(ulong)*20160)
p = cls.p_p_inv(p)
coset[0] = p
p = cls.p_p_4bit_linear(p, coset+1)
for i in range(20160):

for j in range(16):
t = coset[i] ^ (cls.p_base * j)
for k in range(n):

if cls.is_a_pp_mul(t,A[k]) != 0:
free(coset)
return 1

free(coset)
return 0

’’’
Is Basis Fixing
Is Normal (zero fixing)
Is involution
Cycle Index Polynomial
Conjugation
Random
Hilbert polynomial
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One and two variable
’’’

if __name__ == ’__main__’:
import doctest, sys
doctest.testmod(sys.modules[__name__])
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