
TIKHONOV REGULARIZATION AND TOTAL LEAST SQUARESGENE H. GOLUB�, PER CHRISTIAN HANSENy AND DIANNE P. O'LEARYzAbstract. Discretizations of inverse problems lead to systems of linear equations with a highlyill-conditioned coe�cient matrix, and in order to compute stable solutions to these systems it isnecessary to apply regularization methods. We show how Tikhonov's regularization method, whichin its original formulation involves a least squares problem, can be recast in a total least squaresformulation, suited for problems in which both the coe�cient matrix and the right-hand side areknown only approximately. We analyze the regularizing properties of this method and demonstrateby a numerical example that in certain cases with large perturbations, the new method is superiorto standard regularization methods.Key words. total least squares, discrete ill-posed problems, regularization, bidiagonalization.AMS(MOS) subject classi�cations. 65F20, 65F30.1. Introduction. In this paper we study a class of methods for producing anapproximate solution to a linear system of equations Ax � b where A is m � n withm � n. We assume that the elements of A and those of b are contaminated by somenoise. An appropriate statement of the problem in the case of noisy data is the totalleast squares (TLS) formulation [5], [6, x12.3], [16]:min~A;~b;x k(A ; b)� ( ~A ; ~b)kF subject to ~b = ~Ax :(1)In contrast, if the elements of A are exact and only b contains noise, then the corre-sponding formulation is the least squares (LS) problemminx kAx� bk2(2) Our focus in this work is on very ill-conditioned problems where the singularvalues of A decay gradually to zero. Such problems arise, for example, from thediscretization of ill-posed problems such as integral equations of the �rst kind. See,e.g., [2], [3], [7], [8], and [10] for examples and details.In these problems, the solutions to the two formulations in (1) and (2) can behopelessly contaminated by the noise in directions corresponding to small singularvalues of A or (A ; b). Because of this, it is necessary to compute a regularized solutionin which the e�ect of such noise is �ltered out. For least squares problems, the�ltering is often done by Tikhonov's regularization method where a damping is addedto each SVD component of the solution, thus e�ectively �ltering out the componentscorresponding to the small singular values. Alternatively, one can truncate the SVDexpansion of the solution, leaving out all the SVD components corresponding to thesmall singular values.For the total least squares problem, the truncation approach has already beenstudied by Fierro, Golub, Hansen, and O'Leary [4]. In the present work we focus on� Department of Computer Science, Stanford University, Stanford, CA 94305 (golub@sccm.stan-ford.edu).y Department of Mathematical Modelling, Technical University of Denmark, Building 321, DK-2800 Lyngby, Denmark (pch@imm.dtu.dk).z Department of Computer Science and Institute for Advanced Computer Studies, University ofMaryland, College Park, MD 20742 (oleary@cs.umd.edu). The work of this author was supportedby the National Science Foundation under Grant CCR 95-03126 and by a General Research BoardGrant from the O�ce of Graduate Studies and Research of the University of Maryland.1



the Tikhonov regularization approach for total least squares. We thus arrive at a newregularization method in which stabilization enters the formulation in a natural way,and that is able to produce regularized solutions with superior properties for certainproblems in which the perturbations are large.Our paper is organized as follows. In x2 we introduce the regularized TLS method,and we study its regularizing properties. Computational aspects are described in x3,and we conclude the paper with a numerical example in x4. A preliminary report onthis work appeared as [12].2. The Regularized TLS Method. Our regularization of the TLS problem isbased on Tikhonov regularization. For the linear least squares problem (2), a generalversion of Tikhonov's method takes the formmin � kAx� bk22 + � kLxk22 	 ;(3)where � is a positive constant chosen to control the size of the solution vector, andL is a matrix that de�nes a (semi)norm on the solution through which the \size" ismeasured [11]. Often, L represents the �rst or second derivative operator. If L isthe identity matrix, then the Tikhonov problem is said to be in standard form. Thesolution x� to (3) solves the problem(ATA+ �LTL)x = AT b:(4)As � increases, the (semi)norm kLxk2 of the solution vector decreases monotonicallywhile the residual kAx� bk2 increases monotonically.Tikhonov regularization has an important equivalent formulation asmin kAx� bk2 subject to kLxk2 � � ;(5)where � is a positive constant. Problem (5) is a least squares problem with a quadraticconstraint, and using the Lagrange multiplier formulationL(x; �) = kAx� bk22 + � �kLxk22 � �2� ;(6)it can be shown that if � � kxLSk2, where xLS is the least squares solution to (2),then the solution x� to (5) is identical to the solution x� to (3) for an appropriatelychosen �, and there is a monotonic relation between the parameters � and �.To carry this idea over to the TLS setting, we add an upper bound on the(semi)norm kLxk2 of the solution vector x in the TLS problem (1). The formulationof the regularized TLS (R-TLS) problem thus becomesmin k(A ; b)� ( ~A ; ~b)kF subject to ~b = ~Ax ; kLxk2 � � ;(7)and the corresponding Lagrange multiplier formulation isL̂( ~A; x; �) = k(A ; b)� ( ~A ; ~Ax)k2F + � (kLxk22 � �2) ;(8)where � is the Lagrange multiplier, zero if the inequality constraint is inactive. Thesolution �x� to this problem is di�erent from the solution xTLS to (1) whenever � isless than kLxTLSk2. The two solutions �x� and x� to the two regularized problems in(5) and (7) have a surprising relationship, explained by the following theorem.Theorem 2.1. The regularized TLS solution �x� to (7), with the inequality con-straint replaced by equality, is a solution to the problem(ATA+ �IIn + �LLTL)x = AT b(9) 2



where the parameters �I and �L are given by�I = � kb� Axk221 + kxk22(10) �L = � (1 + kxk22)(11)and where � is the Lagrange multiplier in (8). The two parameters are related by�L �2 = bT (b� Ax) + �I :(12)Moreover, the TLS residual satis�esk(A ; b) � ( ~A ; ~b)k2F = ��I :(13)Proof. De�ne ~r � b� ~b = b � ~Ax. We characterize the solution to (7) by settingthe partial derivatives of the Lagrangean L̂ (8) to zero. Di�erentiation with respectto the entries in ~A yields ~A �A� ~rxT = 0 ;and di�erentiation with respect to the entries in x yields� ~AT ~r + �LTLx = 0(14)or ( ~AT ~A+ �LTL)x = ~AT b :Since A = ~A� ~rxT and ~AT ~r = �LTLx, we see thatATA = ( ~AT � x~rT )( ~A� ~rxT )= ~AT ~A � �xxTLTL+ x~rT ~rxT � �LTLxxTand ~AT b = AT b+ x~rT b:Gathering terms, we arrive at (9), with�I = � �2 � k~rk22 kxk22 � ~rT b;�L = � (1 + kxk22) :To simplify the expression for �I , we �rst rewrite ~r as~r = b� ~Ax = b� (A + ~r xT )x = b� Ax� ~r xTxfrom which we obtain the relation~r (1 + kxk22) = b �Ax(15)and therefore (1 + kxk22)k~rk22 = (1 + kxk22)�1kb� Axk22. In (14), multiplication fromthe left by xT leads to � = xT ~AT ~rxTLTLx = bT ~r � k~rk22�2 :(16) 3



Inserting (15) and (16) into the above expresion for �I , we obtain (10). Equation (12)is proved by multiplying �L by �2 and inserting (15) and (16). Finally, to prove theexpression for the TLS residual, we use the relation(A ; b)� ( ~A ; ~b) = (A � ~A ; b� ~b) = (�~r xT ; ~r) = �~r� x�1�T :Taking the Frobenius norm and using (15) we obtain (13).Below, we discuss the implications of this theorem for both the standard-formcase L = In (the identity matrix) and the general-form case L 6= In, both of whichare important in applications.2.1. The Standard-Form Case. In the standard-form case, Eq. (9) simpli�esto (ATA + �ILIn)x = AT b(17)with �IL = �I + �L. The standard-form R-TLS solution �x� to (7) has the sameform as the standard-form Tikhonov solution x� to (5). The two solutions have thefollowing close relationship.Theorem 2.2. Let L = I and let ��n+1 denote the smallest singular value of(A ; b). Then for a given value of �, the solutions �x� and x� are related as follows:� solutions �IL� < kxLSk2 �x� = x� �IL > 0� = kxLSk2 �x� = x� = xLS �IL = 0kxLSk2 < � < kxTLSk2 �x� 6= x� = xLS 0 > �IL > ���2n+1� � kxTLSk2 �x� = xTLS; x� = xLS �IL = ���2n+1Proof. We need only determine the sign of �IL as a function of �, and for this weuse the fact that �IL and its corresponding x-value are a solution to the Lagrangeanformulation (6) of the Tikhonov regularization problem (5). The Lagrange multiplier�for this problem is positive if � < kxLSk2, since the minimumvalue of the least squaresresidual can be decreased by relaxing the constraint, and is zero for � = kxLSk2. Themultiplier is negative for � > kxLSk2, meaning that we can decrease the residual normby allowing kxk2 to be less than �. If � = kxTLSk2 then � = ���2n+1, where ��n+1 isthe smallest singular value of (A ; b) (see [16, Theorem 2.7]), and therefore we have���2n+1 < � < 0 in the third case and � = ���2n+1 in the fourth.We conclude that as long as � � kxLSk2, which is normally the case in regu-larization problems since kxLSk2 is very large, then R-TLS produces solutions thatare identical to the Tikhonov solutions. In other words, replacing the least squaresresidual with the TLS residual in the Tikhonov formulation has no e�ect when L = Inand � � kxLSk2.We remark that since kxTLSk2 � kxLSk2 (see [16, Corollary 6.2]) there is usuallya nontrivial set of \large" values of � for which the multiplier �IL is negative. Thecorresponding R-TLS solutions �x� are distinctly di�erent from the Tikhonov solutions,and can be expected to be even more dominated by errors than the least squaressolution xLS.We illustrate Theorem 2.2 with an example: discretization of a Fredholm integralequation with the second derivative operator as kernel. The implementation is deriv2from [9], the size of the matrix A is 64 � 32, and both A and b are perturbed byGaussian noise with zero mean and standard deviation 10�5. We have ��2n+1 � 2:38 �4
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0.15Fig. 1. Regularized solutions to (3) for various values of the regularization parameter �; seeTable 1 for details. Table 1The solutions shown in Fig. 1.solution � solution norm symbolx� 10�5 0.289 solid linexLS 0 0.385 dashed linex� �12��2n+1 0.408 crossesxTLS ���2n+1 0.443 dotted linexexact { 0.288 circles10�9. Figure 1 shows the solutions listed in Table 1. We see that both xLS and xTLShave large oscillations (the oscillations of xTLS being larger than those of xLS), whilethe regularized LS solution x� corresponding to � = 10�5 is much smoother. Theregularized TLS solution, corresponding to � = �12��2n+1 = �1:19 � 10�9, has largeoscillations whose amplitude is between that of xTLS and xLS.We conclude that if we use Tikhonov regularization with L = I in order toreduce the norm of the solution below kxLSk2, then the regularized TLS formulationproduces the same solution as the regularized LS formulation. This is in contrastto the truncating approach, since we have shown in [4] that truncated TLS can besuperior to truncated LS.2.2. The General-Form Case. In many applications, it is necessary to choosea matrix L di�erent from the identity matrix; these issues are discussed, e.g., in [10,x4.3]. In this case, the R-TLS solution �x� is di�erent from the Tikhonov solutionwhenever the residual b�Ax is di�erent from zero, since both �I and �L are nonzero.FromTheorem 2.2 we notice that �L is always positive when � < kxTLSk2, becausethe Lagrange parameter � is positive for these values of �. On the other hand, �Iis always negative, and thus adds some de-regularization to the solution. Statisticalaspects of a negative regularization parameter in Tikhonov's method are discussedin [13].For a given �, there are usually several pairs of parameters �I and �L, and thusseveral solutions x, that satisfy relations (9){(11), but only one of these solves theoptimization problem (7). According to (13), this is the solution that corresponds tothe smallest value of j�Ij. The following relations hold.Theorem 2.3. For a given value of �, the solution �x� is related to the solutionto the total least squares problem as follows:5



� solution �I �L� < kLxTLSk2 �x� 6= xTLS �I < 0 @�I=@� > 0 �L > 0� � kLxTLSk2 �x� = xTLS �I = ���2n+1 �L = 0Proof. For � < kLxTLSk2, the inequality constraint is active and the Lagrangemultiplier � is positive, since relaxing the constraint decreases the residual. Thus�L is positive. The residual (13) is monotonically decreasing as � increases, sinceoptimal solutions for smaller values of � are candidate solutions for larger �s, so �I ismonotonically increasing.For � = kLxTLSk2, the Lagrange multiplier is zero, and the solution becomes theunconstrained minimizer xTLS. The value ���2n+1 follows from [5, Theorem 4.1]. Theconstraint is never again active for larger �, so the solution remains unchanged.We note that if the matrix �IIn + �LLTL is positive de�nite, then the R-TLSsolution corresponds to a Tikhonov solution for which the expression � kLxk2 in (3)is replaced with the norm (�Ikxk22 + �LkLxk22)1=2. If �IIn + �LLTL is inde�nite ornegative de�nite then there is no equivalent interpretation.3. Computational Aspects. To compute the R-TLS solutions for L 6= In, wehave found it most convenient to avoid explicit use of �; instead we use �L as thefree parameter, �xing its value and then computing the value of �I that satis�es (10)and is smallest in absolute value. The corresponding value of � can then easily becomputed from the relation (12).We now discuss how to solve (9) e�ciently for many values of �I and �L. First,we note that the equation is equivalent to the augmented system0@ Im 0 A0 Ip �1=2L LAT �1=2L LT ��IIn1A0@ rsx1A = 0@ b001A ;(18)and our algorithm is based on this formulation.We assume that the matrix L is a banded matrix, which is often the case whenL represents a derivative operator. The key to e�ciency is then to reduce A ton� n bidiagonal form B by means of orthogonal transformations: HTAK = B. Theorthogonal right-transformations should also be applied to L, and simultaneously weshould apply orthogonal transformations to L from the left in order to maintain itsbanded form. It is convenient to use sequences of Givens transformations to form J , Hand K, since this gives us the most freedom to retain the banded form of C = JTLK.Once B and C have been computed, we can recast the augmented system in (18)in the following form0@ In 0 B0 Ip �1=2L CBT �1=2L CT ��IIn1A0@HT rJT sKTx1A = 0@HT b00 1A :(19)Since �I changes more frequently than �L in our approach, we will now use Givensrotations to annihilate �1=2L C using B by means of Elden's algorithm [1, Section 5.3.4],which can be represented as� B�1=2L C � = G� B̂0 � = �G11 G12G21 G22�� B̂0 � :6



When we insert this G into the augmented system (19), it becomes0@ In 0 B̂0 Ip 0B̂T 0 ��IIn1A0@ r̂̂sKTx1A = 0@GT11HT bGT12HT b0 1A :The middle block row is now decoupled, and we obtain� In B̂B̂T ��IIn�� r̂KTx� = �GT11HT b0 � :Finally, we apply a symmetric perfect shu�e reorderingn+ 1; 1; n+ 2; 2; n+ 3; 3; : : : ; n; 2nto the rows and columns of the above matrix, to obtain a symmetric, tridiagonal,inde�nite matrix of size 2n� 2n:0BBBBB@��I b̂11b̂11 1 b̂12b̂12 ��I b̂22b̂22 1 . . .. . . . . .1CCCCCAand we can solve this permuted system by a general tridiagonal solver.4. Numerical Results. In this section we present a numerical example thatdemonstrates the usefulness of the R-TLS method. Our computations are carried outin Matlab using the Regularization Tools package [9].It is a generally accepted fact that for small noise levels, we should not expect theordinary TLS solution to di�er much from the ordinary least squares solution; see [14].The same observation is made in [4] for the T-TLS solution, and the numerical resultspresented below also support this observation for the R-TLS method. We emphasizethat the precise meaning of \small" depends on the particular problem.The test problem we have chosen to illustrate the R-TLS algorithm is a discretiza-tion by means of Gauss-Laguerre quadrature of the inverse Laplace transformZ 10 exp(�s t) f(t) dt = 12 � 1s + 1=2 ; 0 � sf(t) = 1� exp(�t=2)originating from [17] and implemented in the function ilaplace(n,2) in [9]. The matrixL approximates the �rst derivative operator. The dimensions are m = n = 16, thematrix A and the exact solution x� are scaled such that kAkF = kAx�k2 = 1, andthe perturbed right-hand side is then generated asb = (A + �kEk�1F E)x� + �kek�12 e;where the elements of the perturbations E and e are from a normal distribution withzero mean and unit standard deviation. 7
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Fig. 2. Plots of the relative errors in the Tikhonov solutions (dashed lines) and R-TLS solutions(solid lines) versus �L for four values of the noise level.
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