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CRITICAL THRESHOLDS IN 2D RESTRICTED
EULER-POISSON EQUATIONS*

HAILIANG LIUT AND EITAN TADMOR?

Abstract. We provide a complete description of the critical threshold phenomenon for the two-
dimensional localized Euler—Poisson equations, introduced by the authors in [Comm. Math. Phys.,
228 (2002), pp. 435-466]. Here, the questions of global regularity vs. finite-time breakdown for the
two-dimensional (2D) restricted Euler—Poisson solutions are classified in terms of precise explicit
formulae, describing a remarkable variety of critical threshold surfaces of initial configurations. In
particular, it is shown that the 2D critical thresholds depend on the relative sizes of three quantities:
the initial density, the initial divergence, and the initial spectral gap, that is, the difference between
the two eigenvalues of the 2 X 2 initial velocity gradient.
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1. Introduction and statement of main results. We are concerned with the
critical threshold phenomenon in multidimensional Euler-Poisson equations. In this

paper we consider a localized version of the following two-dimensional (2D) Euler—
Poisson equations:

(1.1) op+V-(pU)=0, z€R?® tecR",
(1.2) 0 (pU) +V - (pU @ U) = —kpV ¢,
(1.3) —Ap=p—c, z€R?

which are the usual statements of the conservation of mass, Newton’s second law,
and the Poisson equation defining, say, the electric field in terms of the charge. Here
k > 0 is a scaled physical constant, which signifies the property of the underlying
repulsive forcing (avoiding the case of an attractive force with k < 0), and ¢ denotes
the constant “background” state. The unknowns are the local density p = p(z,t), the
velocity field U = (u,v)(z,t), and the potential ¢ = ¢(x,t). It follows that, as long
as the solution remains smooth, the velocity U solves a forced transport equation

(1.4) U +U-VU=F, F=—kV¢,

with ¢ being governed by Poisson’s equation (1.3).

This hyperbolic-elliptic coupled system (1.1)—(1.3) describes the dynamic behav-
ior of many important physical flows, including charge transport [25], plasma with
collision [15], cosmological waves [3], and the expansion of cold ions [13]. Let us men-
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tion that the Euler—Poisson equations could also be realized as the semiclassical limit
of the Schrodinger—Poisson equation and are found in the “cross section” of Vlasov—
Poisson equations. These relations have been the subject of a considerable amount of
work in recent years, and we refer to [11, 7] and references therein for further details.

To put our study in the proper perspective we recall a few of the references
from the considerable amount of literature available on the behavior of the Euler—
Poisson and related problems. Let us mention the local existence in the small H*-
neighborhood of a steady state, e.g., [21, 26, 10]; the global existence of weak solutions
with geometrical symmetry [6]; the two-carrier types in one dimension [32]; and the
relaxation limit for the weak entropy solution (consult [24] for the isentropic case, and
[16] for the isothermal case). Recently, the global existence of time-dependent sheaths
with geometric symmetry was established in [14] by studying the Euler—Poisson system
(1.1)~(1.3) with ¢ = e~?, the so-called Boltzmann relation.

For the question of global behavior of strong solutions, however, the choice of the
initial data and/or damping forces is decisive. The nonexistence results in the case
of attractive forces, k < 0, have been obtained by Makino and Perthame [23], and for
repulsive forces by Perthame [27]. For research on the singularity formation in the
model with diffusion and relaxation, consult [33]. In all these cases, the finite lifespan
is due to a global condition of large enough initial (generalized) energy, staying outside
a critical threshold ball. Using the characteristic-based method, Engelberg [8] gave
local conditions for the finite-time loss of smoothness of solutions in Euler—Poisson
equations. Global existence due to damping relaxation and with nonzero background
can be found in [30, 31, 17]. For the model without damping relaxation the global
existence was obtained by Guo [12], assuming that the flow is irrotational. His result
applies to Ha-small neighborhoods of constant state.

When dealing with the questions of time regularity for Euler—Poisson equations
without damping, one encounters several limitations of the classical stability analysis.
Among other issues, we mention that

(i) stability analysis does not tell us how large perturbations can be before losing
stability—indeed, the smallness of the initial perturbation is essential to making the
energy method work (see, e.g., [12]);

(ii) the steady solution may be only conditionally stable due to the weak dissipa-
tion in the system, say, in the one-dimensional (1D) Euler—Poisson equations [9].

In order to address these difficulties, we advocated, in [9], a new notion of critical
threshold (CT), which describes the conditional stability of the 1D Euler—Poisson
equations, where the answer to the question of global vs. local existence depends on
whether the initial configuration crosses an intrinsic O(1) critical threshold. Little
or no attention has been paid to this remarkable phenomenon, and our goal is to
bridge the gap of previous studies on the behavior in Euler—Poisson solutions, a gap
between the regularity of Euler—Poisson solutions “in the small” and their finite-time
breakdown “in the large.” The CT in the 1D Euler—Poisson system was completely
characterized in terms of the relative size of the initial velocity slope and the initial
density. Moving to the multidimensional setup, one has first to identify the proper
quantities which govern the critical threshold phenomenon. In [19] we have shown
that these quantities depend in an essential manner on the eigenvalues of the gradient
velocity matrix, Vu. In order to trace the evolution of M := VU, we differentiate
(1.4), obtaining formally

(1.5) OM +U-VM+ M? = -k(VeV)p=kR[p—d,
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where R] ] is the 2 x 2 Risez matrix operator, defined as

RIf] =V @ VA~ [f] = ! {@%ﬂs)} .
|§‘ j.k=1,2

The above system is complemented by its coupling with the density p, which is gov-
erned by

(1.6) Op+U-Vp+ptrM = 0.

Passing to the Lagrangian coordinates, that is, using the change of variables a@ —
z(a, t) with z(a,t) solving

d
dit; =U(x,t), z(a,0)=aq,
Euler—Poisson equations are recast into the coupled system
d
(1.7) %]\/l—i—M2 =kR[p — ],
d
1.8 — trM =0
(1.8) i :

with d/dt standing for the usual material derivative, 9, +U - V. It is the global forcing,
kR[p — c], which presents the main obstacle to studying the CT phenomenon of the
multidimensional Euler—Poisson setting.

In this work we focus on the restricted Euler—Poisson (REP) system introduced in
[19], which is obtained from (1.7) by restricting attention to the local isotropic trace,
g(p — ¢)Isxa, of the global coupling term kR[p — c|, namely,

d k

(19) %M+M2:§(p70)'12><27
d

(1.10) Tk + ptrM = 0.

We are concerned with the initial value REP problem (1.9), (1.10), subject to initial
data

(M’ P)(,O) = (M07p0)'

We note in passing that the REP system is to the full Euler—Poisson equations what
the restricted Euler model is to the full Euler equations; consult [29, 4, 1, 2, 5, 19]. The
existence of a critical threshold phenomenon associated with this 2D REP model with
zero background, ¢ = 0, was first identified by us [19]. The current paper provides
a precise description of the critical threshold for the 2D REP system (1.9), (1.10),
with both zero and nonzero background charges. In particular, we use the so-called
spectral dynamics lemma [19, Lemma 3.1] to obtain remarkable explicit formulae for
the critical threshold surfaces summarized in the main Theorems 1.1 and 1.2 below.

To state our main results, we introduce two quantities with which we characterize
the behavior of the velocity gradient tensor M. These are the trace, d := trM (and we
note that in case M coincides with VU, then d stands for the divergence, d = u, +vy),
and the nonlinear quantity I' := (trM)? — 4detM, which serves as an index for the
spectral gap. Indeed, if A\;,7 = 1,2, are the eigenvalues of M, then

M=l VT, A= gld+
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and hence T is nothing but the square of the spectral gap I' = (A2 — A;)2. We note
that when M coincides with VU, then I' = (u; — vy)? + 4uyv,, and the role of this
spectral gap was first identified in the context of the 2D Eikonal equation in [19,
Lemma 5.2].

We observe that if I' < 0, then the spectral gap is purely imaginary. Otherwise,
the spectral gap is real.

THEOREM 1.1 (2D REP with zero background). Consider the 2D repulsive REP
system (1.9)—(1.10), with k > 0 and with zero background ¢ = 0. The solution of the
2D REP remains smooth for all time if and only if the initial data (po, My) lies in
one of the following two regions, (po,do,To) € S1 U Sa:

(i) (po,do,T0) € 51,

B d>0 if p=0,
Sy .{(p7d7F)’FS0 and {darbitmry if p >0, }}

(ii) (po, do, To) € Sa,
Sw:ﬂm¢D’P>QF>Ov“M dzﬂﬁmk

where

2
g(p,T) :=sgn(T — 2kp) \/F —2kp +2kpln (f‘p)

THEOREM 1.2 (2D REP with nonzero background). Consider the 2D repulsive
REP system (1.9)—(1.10), with k > 0 and with nonzero background ¢ > 0. The solution
of the 2D REP remains smooth for all time if and only if the initial data (po, My) lies
in one of the following three regions, (po,dy, o) € S1 U S U Ss:

(i) (po,do,T0) € 51,

B d>0 if p=0,
Sp = {(p,dj‘)’FSO and {darbitmry if p> 0, }}

(H) (P07d07F0) € ‘927

B ko, Al < g1(p.T) if T <2k(p—c),
SQ,{(p,d,I‘)’O<F<2CP and {ngl(pvr) if T>2k(p—c),

where

91(p, 1) := | T — 2k

— /P2 =2k~ IT
c+/p%—2ck— '+ pln <p p ¢ )],

2c

(iii) (po,do,T'0) € S,

k
S3 :{(P7d7r) ’ F:%P27 dZQQ(p7F)a P>O}7

where

k 2c
gﬂm=gﬂthu;wﬁ=¢—%k+mf”+%mm<p)-
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Several remarks are in order.

1. The above results show that the global smooth solution is ensured if the initial
velocity gradient has complex eigenvalues, which applies, for example, for a class of
initial configurations with sufficiently large vorticity |uoy —voz| > 1. With other initial
configurations, however, the finite-time breakdown of solutions may, and actually
does, occur unless the initial divergence is above a critical threshold, expressed in
terms of the initial density and initial spectral gap. Hence, global regularity depends
on whether the initial configuration crosses an intrinsic O(1) critical threshold.

2. The critical threshold in the 1D Euler—Poisson equations depends on the
relative size of the initial velocity slope and the initial density; consult [9]. In contrast
to the 1D scenario, the critical threshold presented here depends on three initial
quantities: density po, divergence V - Up, and initial spectral gap I'o = (uos — voy)? +
4U0y’l}0$.

3. Theorem 1.1 tells us that the size of the initial subcritical range which gives
rise to the regular solution is decreasing as the initial ratio I'o/pp is increasing. In
particular, when this ratio is larger than 2k, then the initial divergence must stay
above a positive critical threshold to avoid the finite-time breakdown.

4. From Theorem 1.2 we see that the initial critical range which guarantees global
regularity shrinks as the initial ratio I'g/p3 is increasing in (—oo, %) Finite-time
breakdown must occur when this ratio is larger than %

5. The limit ¢ | 0 is a sort of singular limit, and hence one cannot recover
Theorem 1.1 simply by passing to the limit ¢ — 0 in Theorem 1.2. a

It is well known that a finite-time breakdown is a generic phenomenon for non-
linear hyperbolic convection equations, which is realized by the formation of shock
discontinuities. In the context of Euler—Poisson equations, however, there is a deli-
cate balance between the forcing mechanism (governed by a Poisson equation) and
the nonlinear focusing (governed by Newton’s second law), which supports a critical
threshold phenomenon.

In this paper we show how the persistence of the global features of the solutions for
REP hinges on a delicate balance between the nonlinear convection and the localized
forcing mechanism dictated by the Poisson equation. Here we use these restricted
models to demonstrate the ubiquity of critical thresholds in the solutions of some
of the equations of mathematical physics. This remarkable CT phenomenon has
been found in other contexts, such as the scalar convolution model for nonlinear
conservation laws [18], a nonlocal model in the nonlinear wave propagation [28], etc.
Let us mention in particular the recent study [20], which shows, in the 2D case, how
rotation enforces a CT phenomenon through which it prevents finite-time breakdown
of nonlinear convection. Let us point out that the approach taken in this paper
applies to the 3D case, leading to a closed 4 x 4 nonlinear system of ODEs governing
the time-dynamics of the 3D REP. Identifying the CT phenomenon for such a system,
however, is a formidable task which we hope to pursue in a future work.

In this paper we focus our attention on the restricted Euler—Poisson equations,
“restricted” in the sense of using the same recipe for localized forcing as in the re-
stricted Euler dynamics [29, 4, 1, 2, 5, 19]. We note in passing that the presence of
global forcing in the full 2D Euler—Poisson equation, where (p — ¢)Iox2 on the right-
hand side of (1.9) is restored to the full R[p — ¢] term, should allow for an additional
stabilizing effect. We conjecture, therefore, that the full 2D Euler—Poisson equations
admit a similar CT phenomenon, and in particular, that they admit global smooth so-
lutions for subcritical initial data. As remarked earlier, the main obstacle in handling
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this global case is the lack of an accurate description for the propagation of the Risez
transform. Finally, one should not expect the current pressureless model to provide
a faithful description of the model with pressure. The addition of a pressure term
provides yet an additional mechanism for mixing between different particle paths.

We now conclude this section by outlining the rest of the paper. In section 2 we
study the critical threshold for the REP with zero background. The key observation
is that the spectral gap is conserved along the particle path. With this property we
will be able to reduce the full dynamics on the 2D manifold parameterized by this
initial spectral gap. In section 3 we discuss the critical threshold for the REP with
nonzero background, where the CT arguments become considerably more involved.
We treat the different cases which are indexed by the initial spectral gap.

2. 2D REP with zero background. In this section we prove the existence of
the critical threshold of the 2D REP with zero background (¢ = 0)

d k

21 — M+ M? = =pI.

( ) dt + 2/) 2X25
d

2.2 — trM = 0.

(2.2) P et

This system with initial data (po, Mp) is well posed in the usual H*® Sobolev spaces for
a short time. The global regularity follows from the standard boot-strap argument,
once an a priori estimate on || M (+)|| L is obtained. First we show that, for the 2D REP
(2.1)—(2.2), the velocity gradient tensor is completely controlled by the divergence d
and the density p.

LEMMA 2.1. Let M be the solution of the 2D REP; then the boundedness of M
depends on the boundedness of trM and p; namely, there exists a constant, Const =
Constr, such that

I M (-, t)|| oeto,r) < Constr.||(trM, p)|| Leojo,1)-

Proof. For the 2D case the velocity gradient tensor is completely governed by
p = M11 — MQQ, q = M12 + M21, w = M12 — M21, and d = M11 + M22. From the
M equation (2.1),

d ( My Mg n M7y + Moy Mo dMi :ﬁpI
dt \ Ma1 M> dMs Moy Mo + M3, g

one can obtain

d
— d =10
dtp+p )

d
P )

d
aw—&—wd:O,

which, when combined with the mass equation

d
gives
(9, 4:w) = (Po> 90, w0)Pp ' p

This shows that |M;j|~ are bounded in terms of |d|z~ and |p|~ as asserted. ad
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This lemma tells us that to show the global regularity it suffices to control the

divergence d and the density p. Let A;,i = 1,2, be the eigenvalues of the velocity
gradient tensor; then d = A\; 4+ \g, and the continuity equation (1.10) reads

d
(23) %p + ,0(>\1 + /\2) =0.

The spectral dynamics lemma [19, Lemma 3.1] tells us that the velocity gradient
equation (1.9) yields

d 5 Kk
(2.4) 7 tAL =50
d 5 Kk

Following [19], we consider the difference of the last two equations, which gives for
n = )\2 — )\1

d
= A+ Ag) = 0.
dtn+77( 1+X2)=0

This, combined with the mass equation (2.3) and trM = A\; + g, yields

d
(77)0;» n_ml@) g2
dt \ p p

Set 3 := n¢(a)/p2(a) as a moving parameter with the initial position o € R?; one
then obtains a closed system for p and d:

(2.6) pr+pd=0, ":=—

&+ pp* _

/
(2.7) d+—3

kp.

The first is the mass equation; the second is a restatement of summing (2.4), (2.5),
d' + (d* +n?)/2 = kp with n? = Bp.

We shall study the dynamics of (p, d) parameterized by 8. It is easy to see that
if the initial eigenvalues are complex, then the eigenvalues remain complex as time
evolves. From

B=T0 my = (a(0) - M ()2,

we see that we need to distinguish between two cases, namely, 5 < 0, where the initial
spectral gap is complex, and 3 > 0, where the initial spectral gap is real.

2.1. Complex spectral gap. We first study the case § < 0 when the initial
eigenvalues are complex, i.e., Im();) # 0.

LEMMA 2.2. The solution of a 2D REP remains smooth for all time if eigenvalues
are initially complex. Moreover, there is a global invariant given by

d* — pp*

(2.8) ;

+ 2k1Inp = Const.
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Q=0

Y

i

FI1G. 2.1. Zero level set d' = 0. Complex spectral gap.

Proof. To obtain the desired global invariant we set q := d?; then from (2.6)—(2.7)
we deduce
dq d

% —2d% = —2k+ o+ L.
dp p p

Integration gives

4 Bp + 2k1Inp = Const,
p

which leads to (2.8). The boundedness of d follows at once, since for negative s,

2 < p—2k1 2 = 02
d _Ifr)1>aé<{00nstp knp—i—ﬁp} Ci

In particular, substitution of the lower bound d > —C into the mass equation
gives

p' < Cip,

which yields the desired upper bound for the density, p(-,t) < po(a)eC1t. |

Remark. More precise information about the large time behavior is available from
phase plane analysis. According to (2.7), the zero level set d’ = 0 is the hyperbola
Q = kp — (d* + Bp?)/2 = 0, with a right branch passing the critical point (0,0) and
a left branch located in the left half-plane, p < 0; see Figure 2.1.

The trajectory on the plane p < 0 does not affect the solution behavior in the
region p > 0 since p = 0 is an invariant set governed by

d? do

= d=—— —dt)= .
p=0, 2_)() 1+ dog

Note that (0,0) is the only critical point of the autonomous ODE system (2.6), (2.7)
on the right half phase plane, and that the vector field in {(p,d), @ < 0,d > 0} is
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d

Q=0

Y

FI1G. 2.2. Zero level set d = 0. Real spectral gap.

converging to the critical point (0,0). It follows that for global smoothness it suffices
to control the divergence d from below in the region {(p,d), @ < 0,d < 0,p > 0} and
to control the density from above in the region {(p,d), @ > 0}.

For the former case we have, recalling that g < 0,

d\’ 2
p 2p 2

and its integration along a particle path gives

d> <kt—|— do) p-
Po

This shows that the divergence d is bounded from below, and, in particular, it becomes
positive for large time since the density is positive. To the upper bound for p in the
region @ > 0, where d(t) > do(«), we substitute this estimate into the mass equation,
yielding

p' < —pdo(a).
This clearly gives the upper bound for the density p < po(a)e™9%*.

2.2. Real spectral gap. When 3 > 0, the initial spectral gap is real, and there
are two cases to be considered, as follows.

Subcase 1. [ = 0 when the eigenvalues are equal, i.e., A;(0) = A3(0). In this
case the zero level set d = 0 becomes a parabola passing through the only critical
point (0,0) (see Figure 2.2), and one can repeat arguments similar to our phase plane
analysis in the previous case of distinct real roots. Note that the global invariant (2.8)
becomes

d2
— +2kInp = Const.
p

Subcase 2. 3 > 0 when the eigenvalues are initially real.
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d
A
Q=0
Y V/
A
@)
P

3

B

Fic. 2.3. Critical points in the p-d plane. Real spectral gap.

LEMMA 2.3. If eigenvalues of VUy are real, then the solution of 2D REP remains
smooth for all time if and only if

where

g(p) == sgn (,0

A1(0) + A2(0) > g(po),

) oo

2k

3 >> F(p) = Bp—2knp.

Proof. The system (2.6)—(2.7) has two critical points on the phase plane: O(0,0)

and A(%, 0); see Fig

ure 2.3.

The coefficient matrix of the linearized system around (p*,d*) is

A simple calculation

(x5
k— Bp*

gives the eigenvalues of L,

d* £/ p*(Bp* — k).

_p*
—d*

Lp*,d") =

).

At

At (0,0), we have A\; = A2 = 0, and hence (0,0) is a nonhyperbolic critical point.
Another critical point, A(%,O), is a saddle since A\ o = i\/%k. We shall use the
above facts to construct the critical threshold via the phase plane analysis.

Assume that the
substitution into the

one can obtain

seperatrix enters (leaves) A along the line d = s(p — %) Upon
linearized system around A, i.e.,

_ 2k
F=78

2k

d d=—k
, (-3

s==+
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Thus, two seperatrices leave/enter A along the directions

0, = —arctg\/g and 0y = arctg\/g.

In the phase plane the zero level set d’ = 0 is an ellipse (see Figure 2.3),

2 _k>2_k2
d+6(p i) =5

Let v5(A) be the portion of the stable manifold of the system coming into A from
{d < 0}. In order to prove the existence of a critical threshold it suffices to show
that vs(A) can come only from O. Let B be the lowest point of the ellipse with
coordinates (%, —%), and let PB be a horizontal line intersecting with p = 0 at
(0, f%) According to the vector field inside the ellipse we see that the trajectory
vs(A) can come only from the area OPB by crossing the curve OB. Note that
the vector field on PB is going outside OPB and that p = 0 is invariant. Thus
all trajectories in the area OPB originate from O. Therefore v,(A) can originate
only from O (as ¢ — —o0) and becomes a portion of one unstable manifold of O.
By symmetry we can show that the unstable manifold of the system issued from A
entering {d > 0} will end through the portion {d > 0} at O.

Thus the critical curve g : R™ — R is the one defined as

{(p’ d)a d= g(p)} = ’YS(A)'

In order to have a precise formula for g we need to use the global invariant (2.8), i.e.,

d? — fp
p

+ 2k1In p = Const.

Thus all trajectories can be expressed as
d* = p[C(a) + F(p)];
with
dg
Cla) = o F(po), F(p) = Bp—2kInp.

Note that F(p) is a convex function and min,so F = F(%') = 2k[1 — In(3})]. Due
to the symmetry, the homoclinic connection is possible when the trajectory passes
(po,0) with py < 2—; and converging to (0,0) as t — $o0; i.e., the initial data must

satisfy 0 < pg < % and

2
Cla) < —F (2;) , e, % < F(py) - F (2;) .

The seperatrices passing through (%,O) correspond to C'(a) = —F(%). The stable
manifold v5(A4) can be written as d = g(p) for 0 < p < oo, where

=an(o-2) oo ()
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It remains to prove that the initial data satisfying dy < g(pp) always lead to finite-time
breakdown.

First, in the region {(p,d), d < —v/p(F(p) — F(%))}7 there must exist a finite
time 77 > 0 such that p(Ty) > %“ for py < % (take Th = 0 for po > %) since p’ > 0.

Therefore p(t) > p(T1) for t > T and

p’:—pdzp\/p (p(Tl)—F<2ﬂk>> for t>1Ty.

Integration over [T7,t] gives

> 2p(Th) 7
2= (t = T1)/p(T1) (F(p(T1)) = F(%))

Thus the solution must become unbounded before the time
2

VAT (F(p(Th) - F (%)

Second, we consider the trajectories in the region

{(p,d% p>%, |d<\/p(F(p)—F<2;)>}-

Note that at finite time the trajectory must enter the subregion {(p,d), d < 0}
through the left point (p*,0) identified as

t>1T.

p(t)

T +

d* =p[F(p) = F(p")], p=p*> 3

This, combined with the Riccati-type inequality

ensures the breakdown at finite time. This completes the confirmation of the curve
d = g(p) as a critical threshold. |
Proof of Theorem 1.1. It suffices to summarize the above cases, taking

Iy
B=—
P%
into account. Clearly the cases § < 0 and 8 = 0 correspond to the set

{(po, My), To <0}

For 8 > 0, i.e., 'y > 0, we rewrite the critical threshold as

- 3) 2 ()

2
=sgn(ly — 2kp0)\/1"0 — 2kpo + 2kpg In ( ,00>7
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where we have used the relation F(p) = Sp — 2k1n p and

T
F(po) = — — 2k1n po,
Po

2k 2kp(2)>
Fl—)=2k—-2kIn|{ —].
<5> ( Lo

This completes the proof of Theorem 1.1. 1]

3. 2D REP with nonzero background. This section is devoted to the study
of the REP with nonzero background ¢ > 0, for which the velocity gradient tensor
M = VU solves

d , Kk
(3.1) %M—'_M = §[p—c],
d
2 — trM = 0.
(3:2) g et 0

Again, using the spectral dynamics lemma presented in [19], the spectral dynamics of
M is governed by

k d
N+ N =2(p— f=—
1t A1 2(.0 c), a
k
)‘/2+>‘§ = 5(:0_0)7

pl + p(>\1 + )\2) =0.

As in the zero background case, the difference n := Ao — A1 is proportional to the
density along the particle path in the sense that

@ = 770(06)’ a € R
p(t)  po(e)
Further manipulation gives a closed system
(3.3) p' = —pd,
) Fekp-a T g ginth
0

Once again the dynamics of (3.3), (3.4) is influenced by the choice of 3. We
proceed to discuss the solution behavior of (3.3), (3.4) by distinguishing two cases:

(1) for 8 < 0, the spectral gap is complex;

(2) for 8 > 0, the spectral gap is real.

3.1. Complex spectral gap. We first discuss the case 3 < 0, which corresponds
to the case in which the eigenvalues are initially complex.

LEMMA 3.1. Assume that the eigenvalues are initially complex with Im(X;(0)) #
0. Then the solution of (3.3), (3.4) remains smooth for all time. Moreover, there is
a global invariant in time, given by

Vip,d) = p~' [d® — Bp? + 2kpin (2%) + 20k:| .
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Q=0

/ ~
A
o
\/(
\

Fi1G. 3.1. Zero level set d = 0. Complex spectral gap with nonzero background.

Proof. A straightforward computation yields V = 0 along the 2D REP solutions,
which implies that the curves V' = Const are invariants of the flow. As before, for
negative 3’s we have

d* < max {C’onst.p —2kpln (%) — 2ck + 5/)2} < 0%,

and the bounds of d (and hence of p) follow. O
Remark. As before, more detailed information is available in this case by a phase
plane analysis. If the eigenvalues are initially complex, then one has 3 = n2/p3 < 0.
The zero level set d = (Q = 0 becomes a hyperbola; see Figure 3.1.
The intersection of its right branch with d = 0 is the rest point A = (p*,0) of the
system, where
. kK L k2 2ck
Pr=t e
B g B

The coefficient matrix of the linearization around (p*,0) is

* 0 —p*
L(pvo):(k_ﬁp* 6) )
Its eigenvalues satisfy
N = p*(Bp* — k) = —p* k2 — 2ckf < 0.

Hence such a critical point is a nonhyperbolic equilibrium. The nonlinear effect plays
essential roles in the solution behavior. In order to locate the possible critical thresh-
old, we first study the solution around (p*,0). Setting n = p — p*, we then have

(3.5) n' = —p*d —nd,

2
(3.6) d = +/k? — 2ckfn — % - é712.

2
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It is easy to see that the flow governed by the linear part stays on the ellipse

Vk2 — 2ckpn?® + p*d® = Const.

In order to capture the dynamics of the nonlinear system in the neighborhood of the
critical point (n,d) = (0,0), we employ the polar coordinates of the form

rcos
(k2 — 2ckB)1/4’
—rsin 6
N
Careful calculation with these polar coordinates yields that (3.5)—(3.6) can be recast
into the form

d:

r' = R(r,0),
(3.8) 0" = —Vp*(k* — 2ckp)"/* + O(r.0),

where

2 2
R(r.0) = r*sin 6 l k cos® 0 1’

P— + -
2V/p* V2 = 2ckf3

rcosf
o(r,0) = — k2 — 2ckBsin® 0 — Bp* cos® 0| .
0 = kQ—QCkﬁ[ ’ o)

When r is sufficiently small, 6’ is strictly negative. The pleasant implication of this
is that the orbits of system (3.5), (3.6) spiral monotonically in 6 around (p*,0). But
the even power of 72 does not indicate the stability property of the critical point.
Observe that if (n(t),d(t)) is a solution, so is (n(—t), —d(—t)). Such symmetry
implies that there is a center in the neighborhood of (p*,0).
In order to clarify the global behavior of the flow around such a center, we appeal
to the global invariant

Vip,d) = p! [dQ — Bp? + 2kpln (%) n 2ck} .

We claim that V' is positive definite, which serves as a (majorization of) Lyapunov
functional. To this end, we consider the function H(p) := —Bp* + 2kpIn (£) + 2¢k,
which is convex and takes its minimum at puin, satisfying

Pmin ﬁ
1 (7) =-1 7 Pmin-
. 2c + kp

Observe that, since 8 < 0, the function

hip):=1-— %p +1In (%)

is an increasing function in p > 0 and A(pmin) = 0, which, when combined with the
fact that h(p*) > 0, verifies that

0< pmin < p*,  p* =07k — k2 - 2ckp].
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Indeed, for p* we have

') = 1= o 10 (50) = VI= 2T - (14 VT 2015) 2 0,

Therefore H(p) is nonnegative since
H(pmin) = ﬁpfnin - 2k;pmin + 2ck = ﬁ(pmin - p*)(pmin - ﬁ*) 2> 0,

where p* = 7k + /k2 — 2ckf).
The invariant curves, V' = Const., represent, of course, the bounded periodic
orbits containing (p*,0).

3.2. Real spectral gap. We divide the region 8 € [0,00) into subregions de-
pending on the number of critical points on the phase plane, and then study the
solution behavior with 8 in each subregion. The solution behavior depends strongly
on the number of critical points and their stability property.

Let (p*,d*) be a critical point of the system; then the coefficient matrix of the
linearization around (p*,d*) reads

*7k\ —d* _p*
Its eigenvalues are given by
(3.9) A= —d* £ +\/p*(Bp* — k).

We now discuss subcases distinguished by the number and type of critical points
as (8 changes.

e 3 = 0. Here the zero level set d = @ = 0 is a parabola, d*> = 2k(p — ¢),
intersecting with d = 0 at (p*,d*) = (¢,0). From (3.9) we see that at this
point the eigenvalues of L are A = 4++v/cki, a pure imaginary number, and the
critical point (¢,0) is nonhyperbolic. The stability property of this critical
point has tg be determined by taking into account the nonlinear effect.

e 0 < B < 55. The zero level set () = 0 is an ellipse, located on the right

half-plane p > 0. There are two critical points (p*, d*) = (p*,0) with

k k2 2ke
R Ry
P=s \p 3

The associated eigenvalues of L are

M) = 2o /I —2ckBi,  A(p3) = £/ ps /R — 2ekB.

Therefore (p},0) is a center of the linearized system, and (p3,0) is a saddle;
see Figure 3.2.
Possible bifurcation as 8 changes from 0 to % may be responsible for the
complicated solution structure in this regime.
e 3= 2% The zero level set @ =0, i.e.,

2
erf) o

k

degenerates to a single point (p*,d") = (3,

zero eigenvalues.

0), the only critical point with
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d

Q=0
= / Py

Fic. 3.2. Critical points in the p-d plane. Real spectral gap with nonzero background.

o 3> % In this case

1

©="3

) E\? Bk
d+ﬁ(p ﬁ) + 2kc 51_25 ke < 0.
There is no critical point at all in the finite phase plane.
The solution behavior distinguished by the above cases is given in the following
lemmata.
LEMMA 3.2. If A1(0) = X2(0), then the solution of (3.3), (3.4) remains smooth
for all time, indicated by the global invariant

d? + 2ck
(3.10) a2k + 2kInp = Const.
p

Proof. The assumption amounts to 8 = 0. As discussed above, (c,0) is the only
critical point and the center of the linearized system. In order to find the global
invariant we set R(t) := k(p — ¢)? + cd?. Along the trajectory % = U(z,t),

(3.11) %R(t) = 2k(p — c)p + 2cdd = —d[k(p — ¢)? + R(t)].

From the mass equation it follows that

which, when inserted into the relation (3.11), gives

dR  k(p—¢)? R
P + —.
dp P p

Integration gives

R kc?
— 4+ e + 2ckInp — kp = Const,
PP

which leads us to the global invariant as asserted in (3.10). This global invariant is
compact and ensures that both divergence d and the density p remain bounded as
time evolves. ]
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We leave the case 0 < 8 < 2% for later and study the critical case 8 = 2%

LEMMA 3.3. If A2(0) — A (0) = /£ po, then the solution of (3.3), (3.4) always
develops finite-time breakdown unless the initial data lies within the set
d*>+2ck k }

{(p,d) € RT x RY, — %p—l-Zklnp: 2k In(2¢)

Proof. The given assumption is equivalent to the case 8 = % In this case the

divergence always decreases except at the critical point (2¢,0) since

d*>  k(p—2c)?
=2 P
2 4c =0

In order to clarify the solution behavior, we proceed to obtain the global invariant.
Setting ¢ := d?, one then has

dg _ 2dd" q+ Bp* —2k(p —c)
dp ¢/ P '

Solving this equation, we obtain
2ck
q_ Bp —2klnp — il + Const.
P P

Therefore we come up with a global invariant

d? + 2ck
(3.12) ek Bp + 2k1Inp = Const.
p

The only trajectory converging to the critical point is realized by a half-trajectory
converging to (2¢,0) from the first quadrant. For all other trajectories not passing
the critical point (2¢,0), the rate d’ is strictly negative. The divergence will become
negative at finite time even if it is initially positive, which, when combined with the
Riccati-type inequality d’ < —d?/2, confirms the finite-time breakdown. 0

We now look at the case g > %

LEMMA 3.4. Assume that the eigenvalues are initially real and |A2(0) — A1(0)] >

2 po(). Then the solution of (3.3), (3.4) always develops finite-time breakdown.
Proof. The given assumption is nothing but the inequality § > £ Note that
there is no critical point in the finite phase plane; actually @) remains negative for all

time. The solution must develop breakdown in finite time. In fact from

, & B E\? ke k
w08

we find that

, : ke k
<_ = —_— _—— .
<=5 with 6= (0-5 ) >0

This ensures that d must become negative beyond a finite time Ty, say, Ty > max{%, 0}.
The d— equation (3.13) also gives
d2

dl S 7?7
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whose integration over [Tp, t] leads to

d(Tp)
A T N T

Hence the solution must break down at a finite time before Ty — ﬁ. 0

Finally we conclude this subsection by discussing the delicate case 0 < 8 < 2&
Set

* * 2ck 2ck
Glp..0) = Blp ) ~ 2hin (£ ) - 25 4 228
p pp

with p* = B~k 4+ \/k? — 2ck3] being the p-coordinate of the intersection point of
the trajectory with the p-axis.

LEMMA 3.5. Assume that the real eigenvalues satisfy 0 < |A2(0) — A1(0)] <
V£ po(a). Then for any B € (0,4) the solutions of (3.3), (3.4) remain smooth for
all time if and only if

IA1(0) + A2(0)] < V poG(po, p3,B0) for po < p5

and

A1(0) + A2(0) = V poG(po, p3.B0)  for po > p3.

Proof. The assumption tells us that § < % In this case there are two critical
points in the phase plane, A = (p7,0) and B = (p3,0); see Figure 3.2. B is a saddle
whose two manifolds pass, enclosing the critical point A, which is a center of the
linearized system. Let Wy(B) denote the stable manifold coming from the region
{(p,d),p < p5,d < 0}, and W, (B) the unstable manifold entering into {(p,d),p <
p3,d > 0} To prove the results stated in the theorem it suffices to show that for any
B € (0, 2C) such that W, (B) N W(B) is not empty, there exists a saddle connection
(homoclinic orbit).

This follows from the continuity argument supported by the following facts:

(1) Both W, (B) and W(B) pass through the segment O A, with flow going down-
ward since d’ < 0 and p’ = 0 on OA; see Figure 3.2

The level curve d’ = 0 is an ellipse with upper vortex P located at (%, 0). Let
P, denote the intersection of the tangent line of the ellipse ) = 0 through P with
the axis p = 0. The vector field inside the ellipse shows that W, (B) must escape
the ellipse from the curve PA. Note that the trajectories on PP; and AP enter into
the region PAOP;, and the axis p = 0 is an invariant set. These facts ensure that
W.(B) must enter the region d < 0 through OA. Similarly we can show that W(B)
for p < p3 must enter the reglon d > 0 through OA.

(2) As 3 increases in (0, 42), the point W, (B) N OA moves to the right, and the
point Ws(B) N OA moves to the left.

We prove the claim for W,,(B)NOA, and the case for W(B)NO A follows similarly.
The claim follows from the following two observations:

(i) The slope of the unstable manifold W.,(B, 3) at (p3,0) is 9,d|,=ps = A_(p3, 3),
and the eigenvalue A_(p3, 8) is increasing in 8. Indeed,

De3B) P — s
B m_(pz,m{’” : 20’““\#;@_20%}”
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(ii) Wy (B, 1) does not intersect with W, (B, 2) for 81 # (2. As previously, we
can find the global invariant of the system

2¢ck
& =p [ﬂp— 2kInp — il +Const} ,
p
from which the left branch of the unstable manifold of B can be explicitly expressed

as
2ck  2ck "
d= p[ﬁ(p—pg)—len(p*)——I— *}, 0<p<p;y.

P2 P P2

A careful calculation gives

9d _ p A
%—@(P—Pz)<07

which ensures the claim (ii).
(3) Let p, () be the p-coordinate of the point Wy, (B, 5) N OA, and ps(F) be the
p-coordinate of the point Wy (B, 5) N OA. We claim

lim pu(B) < lim py(8).

5—’§—

B

In fact, from the expression of seperatrices

4> = pG(p, p5,3), p<p*
we find that the p-coordinates of points W, /,(B) N OA satisfy

G(p,p3,8) = 0.
Note that

—(p=p1)(p—p3), 95 =~ PP

dp p
Thus we have for 0 < p < pJ

dp % p2
—_— 775 P — * —
= %g = (py —p) > 0.

This confirms the above assertion.

Combining the above observations, we conclude that there exists a Gy € (0, 2%)
for which a saddle connection exists. It remains to show that, as 8 changes in the
region (0, 2), the above saddle connection is preserved. Observe that if (p(t), d(t))
is a solution, so is (p(—t), —d(—t)). Such symmetry prevents the occurrence of the
possible bifurcation when 3 changes.

Using the nonlinear terms in the equation and the vector field, we can show for
the initial data outside the closed curve—saddle connection—that the solution always
develops finite-time breakdown; details are omitted. 1]

Proof of Theorem 1.2. Summarizing the results stated in the above lemmata, we
see that the case 8 < 0 and 8 = 0 corresponds to the set

— dO > 0 if pPo = 0,
51 = {(po’dO’FO) ’ To<0 and { dy arbitrary if pg > 0,
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since Tg = Bp3. The case 0 < 3 < 2% corresponds to 0 < Iy < Q%pg, and the

divergence is required to satisfy the critical threshold condition

‘d0| S \/ POG(POaP;ﬂ)a 0< pPo < P;,

and do = /poG (po, p3, 3) for po > p3. Using Ty = Bpj and

X _ 2ck 2¢po
ps =Bk + k2 —2ckf] = = )
k2 = k? =2ckB py —\ [p2 — 21,

one has

2ck 2ck
p0G(pos 95,3) = po [mpo—p;)—%ln (”0) ck }

3 pPo P
2 2clo
2 PO — A\ Po— Tk
—T, |1 ¢ — 2kpyIn 5 b
po — p% 20]5‘0 C
20F0

2 2clg
2cI PO — AP0~ T
=T — 2ck — 2ky/ p? — CkO—Qk:poln 5 L
C

which leads to the critical threshold described by the set So. The set S3 can be
determined in a similar manner. 0
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