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Abstract— We present a novel two transistor synapse (“2TS”) 
that exhibits spike timing dependent plasticity (“STDP”).  
Temporal coincidence of synthetic pre- and post- synaptic action 
potentials across the 2TS induces localized floating gate injection 
and tunneling that result in proportional Hebbian synaptic 
weight updates.  In the absence of correlated pre- and post- 
synaptic activity, no significant weight updates occur.  A 
compact implementation of the 2TS has been designed, 
simulated, and fabricated in a commercial 0.5 µm process.  
Suitable synthetic neural waveforms for symmetric STDP have 
been derived and circuit and network operation have been 
modeled and tested.  Simulations agree with theory and 
preliminary experimental results. 

I. INTRODUCTION 
In biology, spike-timing-dependent-plasticity (“STDP”) 

describes the potentiation or depression of synaptic 
connections between neurons according to the coincidence of 
pre- and post-synaptic action potentials.  It has been 
experimentally observed that when a pre-synaptic action 
potential is followed within some time (typically on the order 
of ms) by a post-synaptic action potential, the strength of the 
synaptic connection between the two neurons is increased in 
proportion to the coincidence of the firing times (or 
equivalently in inverse proportion to the time between firings).  
Conversely, it has been shown that when a pre-synaptic action 
potential follows within some time (typically on the order of 
ms) a post-synaptic action potential, then the strength of the 
synaptic connection between the two neurons is decreased in 
proportion to the coincidence of the firing times (in inverse 
proportion to the time between firings).  These rules which 
predict the potentiation and depression of synaptic weights 
and which together give rise to STDP are known as Hebbian 
learning.  The concepts are graphically illustrated in a plot of 
biological data shown in Figure 1, as adapted from [1] by [2].   

While the biological mechanisms of STDP have not been 
fully elucidated, they represent a ubiquitous and important 
mode of neural adaptation and learning.  Therefore, in order 
to begin to realize electronic analogues of rudimentary 
cortical functions, we must develop synaptic mechanisms that  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

incorporate STDP-like behavior.  Furthermore, in order to 
accurately synthesize even the simplest neural architectures, 
STDP synapses must be realized in ultra-compact form with 
very high integration density.  As a first step down that path, 
we have developed a two transistor synapse for implementing 
biologically realistic STDP.  Section II of this paper describes 
the two transistor synapse circuit and physical layout.  
Section III details the derivation and implementation of the 
neural waveforms used to induce STDP.  Section IV depicts 
simulation and experimental results, including examples of 
experimentally demonstrated Hebbian weight updates and a 
spike sorting application; and Section V concludes and 
briefly discusses future directions. 
 

II. TWO TRANSISTOR SYNAPSE 

A. Circuit  Design 
There are several reported single, [9], and two-transistor 

synapses, [4]-[8], some of which are programmable [3], [7], 
[8]. Further, there are reported STDP synapses that comprise 
many transistors [10], [11].  However, because the 2TS 
employs the same control signals to concurrently update 

Figure 1.  Biological spike timing dependent plasticity; figure from [1], [2].



synaptic weights and to pass information between pre- and 
post- synaptic nodes, as in biological systems, the 2TS is both 
simpler and smaller than any other integrated STDP 
realization.   

The two transistor synapse (“2TS”) comprises two PFET 
transistors with a floating gate node that is common to both.  
Figure 2 shows a circuit schematic of one 2TS configuration 
wherein the “pre”-synaptic signal is asserted at both PMOS 
sources, and the “post”-synaptic signal defines the potential of 
the drain of the programming transistor on the left.  The PFET 
on the right passes current generated by “pre”-synaptic spikes 
to the integration node, or soma, of the post-synaptic neuron 
(not shown).  The body of the programming transistor on the 
left is connected to the source, while the body of the right 
transistor is held at a fixed potential. 

 

!

!

 

 

 

In theory, the operation of the 2TS circuit is relatively 
straightforward.  PRE and POST synaptic waveforms are 
asserted at the corresponding labeled nodes.  If PRE occurs 
first, but POST occurs within some prescribed time of PRE, 
then PRE and POST will overlap resulting in a large transient 
difference in the source-drain voltage of the programming 
transistor causing hot electron injection to decrease the stored 
voltage on the floating gate and thereby increase the synaptic 
weight.  On the other hand, when POST occurs first, but PRE 
occurs within some prescribed time of POST, then PRE and 
POST will overlap at a high voltage causing Fowler-Nordheim 
tunneling to increase the stored voltage on the floating gate 
and thereby decrease the synaptic weight. (See Appendix A). 

In practice, circuit operation is more intricate.  We rely on 
an implicit injection threshold to avoid significant positive 
weight updates in the absence of PRE/POST overlap.  This 
operating assumption follows from the characteristic 
exponential relationship between the injection current and 
programming transistor source to drain voltage, which we 
shall discuss in greater detail in Section IV.  Likewise, we rely 
on the fact that when the drain of the programming transistor 
is held low, a transient PRE overvoltage that is also coupled to 
the body of the programming transistor will not generate 
significant negative weight updates.  Preliminary experimental 
results indicate that holding the drain voltage on the 
programming transistor several volts below the programming 
threshold voltage reduces the field across the oxide 
sufficiently to adequately suppress tunneling.  As we shall 
discuss in Section IV, STDP PRE and POST waveforms may 
be biphasic symmetric, similar to the as in the sketched 

waveforms in Figure 2, or alternately may be a combination of 
uniphasic and biphasic signals. 

B. Physical Layout 
There are many factors in the physical realization which 

will impact the layout of the 2TS.  Among the most significant 
of these are the gate length of the programming transistor, 
which can mitigate short-channel effects, and the doping 
density of the source and drain regions, which impact local 
field strength and carrier transport.  However, while such 
considerations are important for optimization of the structure 
and function, for a proof-of-principle implementation, we 
have fabricated a simple symmetric 2TS in a commercial 3-
metal, 2-poly, 0.5 µm process, as shown in Figure 3.  Each of 
the six terminals of this 2TS is connected to a separate pad for 
testing.   

 

 

 

 

 

 

 

 

The non-optimized proof-of-principle layout has a fairly 
large footprint at just under 400 µm2.  However, we estimate 
that a minimum-sized variant of the 2TS satisfying design 
rules in a commercial 90 nm process consumes less than 6 
µm2 of real estate; we have submitted a 90 nm 2TS for 
fabrication.  Allowing both PFETs to share the same well 
would reduce the minimum dimensions even further; our 
model simulations and experimental characterizations of 
tunneling behavior in fabricated devices suggest that it may be 
possible to place both transistors of the 2TS in the same well 
without significantly compromising operation.  With modern 
lithographic techniques extending integrated circuit 
technologies deep into the nanometer regime, a sub-
micrometer 2TS is technically feasible.  

III. NEURAL WAVEFORMS 
There are an infinite number of potential waveforms that 

will yield positive and negative Hebbian weight updates when 
asserted across the 2TS, see, e.g., [3].  However, the subset 
that can accomplish bidirectional Hebbian learning according 
to biologically realistic STDP rules is considerably smaller.  In 
our work, we have developed and investigated two such 
classes of waveforms: (1) a uniphasic PRE signal and a 
biphasic POST signal; and (2) paired, mirror-symmetric 
biphasic PRE and POST signals.  Integrated circuit 
architectures for implementing these types of signals have 
been previously reported, see, e.g. [11].  Below we describe 
how these two classes of waveforms yield STDP in the 2TS.  
We begin by describing the weight update mechanisms, which 
impose certain design constraints and features on suitable 
waveforms. 

Figure 3.  Physical layout of a 2TS in a commercial  0.5 m process. Figure 2.   2TS with labeled nodes and illustrative input waveforms. 



A. Weight Updates:  Injection and Tunneling 
Synaptic weight updates are accomplished by balanced hot 

electron injection and Fowler-Nordheim tunneling.  Hot 
electron injection in MOSFETs is a function of transistor 
source- and gate- drain voltages, and has been empirically 
shown to obey the following relationship [12]: 
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where !, ", and # are experimentally derived process 
dependent constants, Is is the source-drain current flowing 
through the transistor, and Vgd and Vsd are the voltages across 
the gate-drain and source-drain regions, respectively.  For a 
relatively constant gate voltage, the exponential dependence of 
the injection current on the source and drain voltages, allows 
us to determine a threshold voltage below which no significant 
(< 1% of max.) injection occurs. 

Similarly, Fowler-Nordheim tunneling in MOSFETs 
exhibits an exponential dependence on the voltage across the 
oxide barrier that is given by [12]: 
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where Itun0 is a pre-exponential current, Vf is a process-
dependent constant, and Vox is the voltage across the oxide 
barrier.  For our semi-empirical modeling, we have computed 
Vox, to first order, as representing a weighted average of 
source, body and drain voltages.  This simplification discounts 
localized potential differences and barrier reduction to some 
degree, although experimental data suggests that it is a 
reasonable approximation in test devices.     

B. Waveform Derivation 
We constructed waveforms to accomplish STDP on 

biologically realistic timescales subject to the physical 
constraints imposed by the learning mechanisms described 
above.  The first class of candidate waveforms we considered 
comprised pairs of uniphasic PRE and biphasic POST signals, 
one set of which is illustrated in the top trace of Figure 4.  
Simulations performed with this class of waveforms using 
extracted tunneling and injection process parameters 
demonstrated the desired updates, as illustrated in the bottom 
trace of Figure 4, where correlated tunneling and injection are 
precisely balanced over a period with no net change in weight.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, the asymmetry and long-time constants of these 
waveforms did not pose an ideal solution, and so we 
developed a second class of candidate waveforms comprising 
mirror-symmetric, biphasic PRE and POST signals.  Since 
tunneling and injection are both exponential functions, a 
variant of the exponential STDP curve itself was used as a 
starting point for the PRE signal.  Then, in order to produce 
the desired Hebbian updates – that is, to balance the positive 
and negative increments for correlated PRE and POST signals, 
strengthening synaptic connections when PRE precedes POST 
and weakening them when PRE follows POST – the POST 
signal was taken as the mirror-symmetric, biphasic version of 
the PRE signal.  This was confirmed by linear analysis; the 
PRE and POST signals shown in Figure 5 yield the 
biologically realistic STDP curve shown in Figure 6. 

In Figure 6, each point in the STDP curve represents the 
integration of the injection and tunneling contributions at a 
single instant in time as the PRE and POST waveforms are 
convolved past one another.  For this simulation, both 
mechanisms were assumed to contribute currents and 
corresponding weight updates that increase exponentially 
beyond the relevant threshold voltage (source-drain voltage 
for injection and oxide voltage for tunneling).  For simplicity, 
the exponential coefficients were taken to be the same for 
injection and tunneling although they differ in actual circuits.  
Likewise, tunneling and injection thresholds for these 
simulations were selected to balance the positive and negative 
weight updates and represent theoretical, rather than 
experimentally derived, estimates.  We are presently 
investigating more realistic empirical models for injection and 
tunneling.  
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Figure 5.  Ideal discrete PRE and POST synaptic spike waveforms.  

Figure 4. Top: Asymmetric PRE (blue) and POST (red) signals; 
Bottom: Resulting voltage on floating node represents weight update. 

Figure 6.  Simulated STDP as a function of biphasic mirror-image 
input waveforms.  Computed weight update is shown in red.



IV. PERFORMANCE 

A. Experimental Hebbian Learning 
We have begun to experimentally characterize the 

performance of the 2TS using floating gate test structures that 
contain equivalent, but differently sized, transistors to the 2TS.  
Leaving all unused connections on these test structures (one 
poly control capacitor, one MOSCAP, and one NMOS 
follower) floating, see Appendix B, we asserted the biphasic 
waveforms as shown in Fig. 2 repeatedly at 100 Hz with PRE 
occurring at a small, fixed (~20 degrees) phase shift ahead of 
POST.  Over 20 s, with an applied peak-to-peak voltage of 
approximately 10V, we observed the spiking output of the 
signal at the integration node shown in Figure 7, illustrating a 
small, but significant weight increment over time; we have 
highlighted the increment with a red trend line that follows the 
increase.  Thus we see positive Hebbian learning using the 
biphasic PRE and POST inputs.   

When we amplified the PRE and POST signals slightly, to 
approximately 13 volts peak-to-peak, and asserted them across 
the 2TS at 10 Hz, with POST preceding PRE by a similar 
phase shift over 50s, we measured the spiking output of the 
signal at the integration node shown in Figure 8.  This data 
reflects a small, but significant weight decrement over time, 
consistent with negative Hebbian learning.  Thus we have 
shown proof-of-principle Hebbian learning using the derived 
biphasic waveforms.  We are presently characterizing the 
performance of fabricated 0.5 µm 2TS structures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Unsupervised Spike Sorting 
As we briefly discussed in the introduction, STDP is 

ubiquitous in nature.  One particularly interesting engineering 
application that leverages this technology is unsupervised 
template matching.  More specifically, it is possible to employ 
a network of 2TS to register and learn correlations between 
extracted features of, e.g., neural spikes, in real-time.  
Previously reported architectures for extracting salient features 
of neural action potentials and mapping them to biphasic spike 
trains exist [13].  Building upon this work and classical neural 
network theory we have begun to evaluate the performance of 
2TS networks for unsupervised spike sorting. 

V. CONCLUSION 
We have presented a novel two transistor synapse that 

exhibits spike timing dependent plasticity in response to 
biphasic neural waveforms.  We intend to continue this work 
by fully characterizing the fabricated 2TS circuits, and by 
further investigating the performance of the 2TS in neural 
network applications such as unsupervised spike sorting. 
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APPENDIX A 
 

In the case where the PRE synaptic spike occurs first and 
the POST synaptic spike occurs within some prescribed time 
of PRE, as denoted in the illustrative schematic Fig. 9a, the 
large difference in source-drain voltage results in a strong 
channel current and impact ionization.  The vertical field at the 
drain causes some of these hot electrons to be injected onto the 
floating gate, see Fig. 9b, thereby decreasing the voltage on 
the gate and increasing the synaptic weight.  

 

 

 

 

 

 

 

 

 

In the converse situation, when POST occurs first, but 
PRE occurs within some prescribed time of POST, as 
illustrated in the schematic Fig. 10a, then PRE and POST will 
overlap at a high voltage causing Fowler-Nordheim tunneling, 
see Fig. 10b, to increase the stored voltage on the floating gate 
and thereby decrease the synaptic weight. 

 

 

 

 

 

 

 

 

As noted in the body of the text, the brief description and 
illustrations above do not completely describe the hot electron 
injection and F-N tunneling weight update mechanisms, nor 
do they fully depict the field induced carrier transport that 
actually occurs in fabricated devices.  Instead, they represent a 
high level schematic of the basic operation of the 2TS, and 
illustrate how it is possible to generate STDP using this 
architecture.  We are presently in the process of refining more 
realistic carrier transport models to further enhance the design 
and performance of our fabricated devices. 
 
 
 
 
 
 

APPENDIX B 
 
A circuit schematic of the test structure we characterized is 
shown below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Transistors and capacitors which are crossed out (by the red 
x’s) were left floating.  We are presently characterizing the 
fabricated 0.5 µm 2TS. 
 

PRE POST 

Figure 9:  Left, 9a: PRE is applied to source and body of PFET; POST 
is asserted at PFET drain.  Right, 9b: Cartoon of hot electron injection. 

POST PRE 

Figure 10:  Left, 10a: PRE is applied to source and body of PFET; 
POST is asserted at PFET drain.  Right, 9b: Cartoon of F-N tunneling. 

2TS 

Figure 11:  Floating gate test structure characterized.  Red X’s indicate 
devices left unconnected, or floating. 


