
ABSTRACT

Title of dissertation: SYNTHESIS OF STRATEGIES FOR
NON-ZERO-SUM REPEATED GAMES

Tsz-Chiu Au, Doctor of Philosophy, 2008

Dissertation directed by: Professor Dana Nau
Department of Computer Science

There are numerous applications that involve two or more self-interested au-

tonomous agents that repeatedly interact with each other in order to achieve a goal or

maximize their utilities. This dissertation focuses on the problem of how to identify and

exploit useful structures in agents’ behavior for the construction of good strategies for

agents in multi-agent environments, particularly non-zero-sum repeated games.

This dissertation makes four contributions to the study of this problem. First, this

thesis describes a way to take a set of interaction traces produced by different pairs of

players in a two-player repeated game, and then find the best way to combine them into

a strategy. The strategy can then be incorporated into an existing agent, as an enhance-

ment of the agent’s original strategy. In cross-validated experiments involving 126 agents

for the Iterated Prisoner’s Dilemma, Iterated Chicken Game, and Iterated Battle of the

Sexes, my technique was able to make improvement to the performance of nearly all of

the agents. Second, this thesis investigates the issue of uncertainty about goals when a

goal-based agent situated in a nondeterministic environment. The results of this investiga-

tion include the necessary and sufficiency conditions for such guarantee, and an algorithm

for synthesizing a strategy from interaction traces that maximizes the probability of suc-

cess of an agent even when no strategy can assure the success of the agent. Third, this

thesis introduces a technique, Symbolic Noise Detection (SND), for detecting noise (i.e.,

mistakes or miscommunications) among agents in repeated games. The idea is that if we

can build a model of the other agent’s behavior, we can use this model to detect and cor-

rect actions that have been affected by noise. In the 20th Anniversary Iterated Prisoner’s

Dilemma competition, the SND agent placed third in the “noise” category, and was the

best performer among programs that had no “slave” programs feeding points to them.

Fourth, the thesis presents a generalization of SND that can be wrapped around any exist-

ing strategy. Finally, the thesis includes a general framework for synthesizing strategies

from experience for repeated games in both noisy and noisy-free environments.

SYNTHESIS OF STRATEGIES FOR NON-ZERO-SUM REPEATED
GAMES

by

Tsz-Chiu Au

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2008

Advisory Committee:
Professor Dana Nau, Chair/Advisor
Professor Atif Memon
Professor James Reggia
Professor P.S. Krishnaprasad
Professor Sarit Kraus
Professor V.S. Subrahmanian

c© Copyright by
Tsz-Chiu Au

2008

Acknowledgments

I would like to thank my advisor, my colleagues, and my friends for their continuous

support and encouragement during my years at UMD.

First and foremost, I have to thank my advisor, Prof. Dana Nau for his mentorship.

It is my fortune to have Dana to be my advisor in my life. I really appreciate his teachings

about how to be a more successful researcher. Apart from being my mentor, Dana is also

my good friend. The hallmark of Dana is his humor, which is a source of encouragement

and amusement to me and many others. His generous support had given me the peace of

mind that was much needed in my graduate study.

I learned tremendously from my colleagues and my teachers. In particular, I would

like to thank Sarit Kraus, Héctor Muñoz-Avila, and V.S. Subrahmanian. Special thanks

go to past and current members of the DSN research group, who shared their knowledge

and great passions for AI research with me throughout my research career at UMD.

People in the business office in the CS department, UMIACS and ISR are extremely

helpful and friendly. I want to express my gratitude to Fatima in the graduate office.

Without her friendly “nagging”, I am afraid I would have taken a much long time to finish

my degree. In addition, I am grateful to Felicia; it was always joyful to talk to her in

hallways. I would like to thank all system staffs for their technical supports.

My friends played a large part in my graduate study. Among many others, I owe my

gratuities to Waiyian Chong, Nick Frangiadakis, Annie Hui, and Shu-Hoi Pun for their

friendships and the sharing of joys. Their friendships are integrated parts of my life. Most

of all, I would like to thank my parents, my brother and my sister for their encouragement

ii

and patience.

University of Maryland, College Park is a superb place for study and research. How

joyful writing a paper would be in McKeldin Library with lots of hardworking students

overnight? I will definitely miss this beautiful campus and my couch in my office very

much in the future.

iii

Table of Contents

List of Tables vii

List of Figures ix

1 Introduction 1
1.1 Objective and Approach . 3
1.2 Contributions . 5
1.3 Outline of this Thesis . 8

2 Synthesis of Strategies from Interaction Traces 11
2.1 Introduction . 11
2.2 Basic Definitions . 13
2.3 Synthesis of Strategies from Interaction Traces 16

2.3.1 Reconstructing an Agent’s Strategy 16
2.3.2 Constructing New Strategies . 20
2.3.3 Finding the Best Composite Strategy 23
2.3.4 Using a Base Strategy . 31

2.4 Experimental Evaluation . 33
2.4.1 Experimental Design . 33
2.4.2 Experimental Results . 36

2.5 Comparisons with Other Work . 43
2.6 Summary . 45

3 Task-Completion Problems with Goal Uncertainty 48
3.1 Basic Definitions . 51

3.1.1 Agents and Environments . 52
3.1.2 Equivalences . 53
3.1.3 Agent-Environment Interaction 55

3.2 Task-Completion Problems . 55
3.2.1 Interaction-based Problem Formulations 56
3.2.2 Goal Uncertainty . 59
3.2.3 Simplifying the Problem Definitions 63

3.3 Strong Solvability . 65
3.4 p-Solvability and Optimal Solutions . 72
3.5 Solving Weakly Solvable Problems . 74
3.6 Experimental Results . 78
3.7 Related Work . 82
3.8 Summary . 83

iv

4 Noise Detection in the Iterated Prisoner’s Dilemma 85
4.1 Motivation and Approach . 88
4.2 Iterated Prisoner’s Dilemma with Noise 91
4.3 Strategies, Policies, and Hypothesized Policies 93

4.3.1 Discussion . 96
4.4 Derived Belief Strategy . 97

4.4.1 Discussion . 100
4.5 Learning Hypothesized Policies in Noisy Environments 102

4.5.1 Learning by Discounted Frequencies 102
4.5.2 Deficiencies of Discounted Frequencies in Noisy Environments . 105
4.5.3 Identifying Deterministic Rules Using Induction 106
4.5.4 Symbolic Noise Detection and Temporary Tolerance 109
4.5.5 Coping with Ignorance of the Other Player’s New Behavior . . . 110

4.6 The Move Generator in DBS . 112
4.6.1 Generalizing the Move Generator 115
4.6.2 An Analysis of the Move Generator 117

4.7 Competition Results . 121
4.7.1 Overall Average Scores . 123
4.7.2 DBS versus the Master-and-Slaves Strategies 124

4.7.2.1 Group Performance 125
4.7.2.2 Overall Average Scores versus Number of Slaves . . . 127
4.7.2.3 Percentages of Interactions 129
4.7.2.4 Distributions of Average Scores 130

4.7.3 A comparison between DBSz, TFT, and TFTT 135
4.8 Related Work . 135
4.9 Summary . 140

5 Symbolic Noise Filter 153
5.1 Introduction . 153
5.2 Our Hypothesis . 157
5.3 The Noisy ICG Tournament and The Noisy IBS Tournament 159
5.4 Naı̈ve Symbolic Noise Filter . 162
5.5 Tournament Setup . 167
5.6 Experimental Analysis of NSNF . 168

5.6.1 Basic Statistics . 168
5.6.1.1 Average scores . 168
5.6.1.2 Accuracy of correction 170
5.6.1.3 Accuracy of correction vs Average Scores 174

5.6.2 Explanations via Characteristics of Decisions Making Process . . 175
5.6.2.1 Average scores vs accuracy of correction 176
5.6.2.2 Average scores vs increases in average scores 179

5.6.3 Distribution of Decision Pairs 179
5.7 Discussions . 183
5.8 Summary . 183

v

6 A Framework for Building Strategies for Repeated Games 186
6.1 An Overview of the Framework . 186
6.2 Strategy Construction Graphs . 188

7 Conclusions and Future Work 192
7.1 Contributions . 192
7.2 Directions for Future Work . 200

7.2.1 New Functionality . 201
7.2.2 New Problems and Applications 204
7.2.3 Synthesis of Strategies for Repeated Games 206

7.3 Summary . 206

A List of Acronyms 207

B Glossary of Notation 209

Bibliography 216

vi

List of Tables

2.1 The payoff matrix of the Prisoner’s Dilemma. 34

2.2 The payoff matrix of the Chicken Game. 34

2.3 The payoff matrix of the Battle of the Sexes. 34

2.4 Among the original agents, how many of each type. 36

2.5 Average number of interaction traces collected during the training ses-
sions, before and after removing duplicate traces, and average number of
interaction traces in the composite strategies generated by the CIT algo-
rithm. 37

2.6 Average increases in score and rank of the MCA agents, relative to the
corresponding original agents. 41

2.7 Average scores of the best original agent, and the MCA agent whose base
strategy is that agent. 41

2.8 Average frequency of invocation of base strategies. 42

4.1 Scores of the best programs in Competition 2 (IPD with Noise). The table
shows each program’s average score for each run and its overall average
over all five runs. The competition included 165 programs, but we have
listed only the top 15. 86

4.2 A modified version of Table 4.1 in which we have averaged the scores of
each collection of programs that was either (i) a group of conspirators or
(ii) a collection of of variants of the same algorithm. The average score
for DBS is 402.1, which is higher than the average score of any other
program. The master of the best master-slave strategy, BWIN came in
14th with a score of 379.9. Only the top fifteen groups are listed. 126

4.3 Percentages of different interactions. “All but M&S” means all 105 pro-
grams that did not use master-and-slaves strategies, and “all” means all
165 programs in the competition. 131

5.1 The overall normalized average scores (the average of the normalized av-
erage scores of all strategies in Figure 5.3.) 170

5.2 Accuracy of Predictions and Corrections of NSNF. 172

vii

5.3 Distributions of different decision pairs. The IPD’s data are collected
from Category 2 of the 2005 IPD competition. “All but M&S” means
all 105 programs that did not use master-and-slaves strategies, and “all”
means all 165 programs in the competition. Note that the numbers for
IPD are not the number of decision pairs but interaction pairs. 181

5.4 Frequency of change of decision pairs. 182

5.5 The sum of the diagonal entries in Table 5.4. 183

viii

List of Figures

2.1 A composite strategy is synthesized from records of the interactions
among many existing agents. An agent using this strategy can poten-
tially outperform most of the agents from whom the interaction traces
were obtained. 13

2.2 The pseudocode of a composite strategy. 18

2.3 The pseudocode of the CIT algorithm. 26

2.4 The search space of the CIT algorithm. 28

2.5 Algorithm for a composite agent with a base strategy. 32

2.6 Overall average scores of the base agents and the MCA agents in the IPD.
The agents are displayed on the x axis in order of decreasing score of
the base agent. The error bars denote the 95% confidence intervals of the
overall average scores. 38

2.7 Overall average scores of the base agents and the MCA agents in the ICG. 38

2.8 Overall average scores of the base agents and the MCA agents in the IBS. 39

2.9 Increase in rank of each enhanced agent, relative to the corresponding
base agent. The x axis is as in Figure 2.6–2.8. 40

3.1 The state diagrams of two configurations with different goals. The double
circles are the goal states. This figure is adapted from Figure 4.19(a) on
page 124 in Russell and Norvig [57]. 60

3.2 The pseudocode of a composite agent function (also known as a compos-
ite strategy) for task-completion problems (with or without goal uncer-
tainty). 71

3.3 The Compatible Interaction Traces Search algorithm (CIT-search). 77

3.4 Success rates for composite agent functions constructed by running CIT-
search with a database that covers k of ē’s 64 configurations, for k =
1, . . . , 64. Each data point is an average of 250,000 runs. 81

4.1 An abstract representation of a class of strategies that generate moves
using a model of the other player. 99

ix

4.2 An outline of the DBS strategy. ShouldPromote first increases r+’s pro-
motion count, and then if r+’s promotion count exceeds the promotion
threshold, ShouldPromote returns true and resets r+’s promotion count.
Likewise, ShouldDemote first increases r−’s violation count, and then
if r−’s violation count exceeds the violation threshold, ShouldPromote
returns true and resets r−’s violation count. Rp in Line 17 is the proba-
bilistic rule set; Rprob

k+1 in Line 17 is calculated from Equation 4.2. 101

4.3 Learning speeds of the induction method and the discounted frequency
method when the other player always cooperates. The initial degree of
cooperation is zero, the discounted rate is 0.75, and the promotion thresh-
old is 3. 109

4.4 An example of the tree that we use to compute the maximum expected
scores. Each node denotes the interaction of an iteration. The top four
nodes constitute a path representing the current history τcurrent. The
length of τcurrent is l = 2, and the maximum depth N∗ is 2. There are
four edges emanating from each node S after the current node; each of
these edges corresponds to a possible interaction of the iteration after S.
The maximum expected scores (not shown) of the nodes with depth 2 are
set by an evaluation function f ; these values are then used to calculate the
maximum expected scores of the nodes with depth 1 by using the maxi-
mizing rule. Similarly, the maximum expected scores of the current node
is calculated using four maximum expected scores of the nodes with depth 1.144

4.5 The procedure for computing a recommended move for the current itera-
tion. In the competition, we set N∗ = 60, fCC = 3, fCD = 0, fDC = 5,
and fDD = 1. 145

4.6 The total number of changes of recommended policies generated by
MoveGen for each hypothesized policy as the search depth increases. . . . 146

4.7 The distribution of the periodicity of the cycle of recommended policies
versus the starting search depths. No periodicity means that there is no
obvious cycle of recommended policies in the sequences of recommended
policies generated starting from a given starting search depth. 147

4.8 The percentage of recommended policies returned by the MoveGen proce-
dure. The search depth is 100. Each recommended policy is represented
by four characters m1m2m3m4, which means that the recommended pol-
icy is {(C,C) → m1, (C,D) → m2, (D,C) → m3, (D,D) → m4}.
This table excluded the hypothesized policies with which the MoveGen
procedure returns a sequence of recommended policies that change as the
search depth increases. 148

x

4.9 The overall average scores of selected programs versus the number of
slaves removed from the tournament. 149

4.10 Density plots of the average scores of selected programs, overlapped with
dot plots of the average scores. The vertical lines mark the overall average
scores of the programs. 150

4.11 Density plots of the average scores of selected programs, overlapped with
dot plots of the average scores. The slave programs and the programs
submitted by the author, except DBSz and TFTIm, are excluded. 151

4.12 Average scores of the selected programs when played against DBSz and
the programs provided by the organizer of the competition. 152

5.1 Naı̈ve Symbolic Noise Filter (NSNF). 163

5.2 The pseudo-code of the Naive Symbolic Noise Filter. The function
invert(b′) returns C if b′ = D and returns D if b′ = C. 165

5.3 Normalized average scores. 169

5.4 Increases in normalized average scores due to NSNF versus normalized
average scores. Notice that 11 points are clustered at (0.7, 0.00). 171

5.5 Accuracy of correction versus normalized average scores 175

5.6 Increases in normalized average scores versus accuracy of correction . . . 176

5.7 Frequency of choosing defect versus normalized average scores. 177

5.8 Frequency of changes of the player’s own decisions versus normalized
average scores. 177

6.1 A framework for constructing strategies from data. 187

6.2 The bond nodes and the bond edges represents the strategy construction
graph of the CIT technique. Notice that the edge “generalize by MCA” is
a hyperedge. 189

6.3 The strategy construction graph of the CIT technique with symbolic noise
filter. 190

xi

Chapter 1

Introduction

There are numerous applications that involves two or more self-interested au-

tonomous agents that repeatedly interact with each other in order to complete a task or

maximize their utilities. Some notable applications are computer game playing, negotia-

tion of contracts, and foreign policy making. This dissertation focuses on the problem of

finding a good strategy for an agent in multi-agent environments, particularly non-zero-

sum repeated games, so as to maximize the utility of the agent.

Game theory has been widely used for studying interactions among self-interested

agents whose performance depends on how well they interact with each other. Classical

game theory studies the game-theoretic notion of an equilibrium strategy and various so-

lution concepts, based on the assumptions that agents are rational, actions are perfectly

executed, and observations have no error. While techniques and analysis in classical game

theory enjoyed great success in many interesting and important problems, their success is

limited when they are applied directly to more complicated settings in which the assump-

tions of rationality and perfect acting and sensing are severely derived. For example, the

empirical studies of repeated games have shown that agents seldom behaves according to

the subgame perfect equilibria of a game, casting doubt on the assumption of rational-

ity based on backward induction in repeated or extensive games. Thus, a key problem

in today’s game theory research is the disparity between the theoretical predictions of

1

agents’ behavior and the actual behavior of agents in tournaments or real-world situa-

tions. This disparity prompts us to rethink about the underlying assumptions of classical

game theory. This dissertation is set out to propose new techniques for decision making

in multi-agent environments when agents are irrational, mistakes can occur during the

execution of actions, and observations are imperfect.

To account for the inconsistency between game theory and empirical results, re-

searchers have proposed alternative models of economical reasoning called the bounded

rationality [58, 59, 56], removed the assumptions that agents have infinite computational

resources for decision making. However, most of these models focus on the computa-

tional limitation of the rationality, and do not take contextual information of a game into

account. Experiments conducted by Thomas C. Schelling in 1950s showed that agents

often depend on cultural or contextual information in their decision making, and this in-

formation is largely ignored in mathematical game theory. These results suggest that

mathematical analysis alone may not be sufficient to account for the behavior of agents

in a game. One way to get a more precise description of the agent’s behavior is based on

the observations of the behavior of the agents. This empirical approach assumes that we

have data about decisions made by the agents in a game in a given context or environment.

Then we can infer the behavior of the agents from the collected data. This is the approach

this dissertation pursuits.

We shall use the empirical approach to the studies of several non-zero-sum re-

peated games including the Iterated Prisoner’s Dilemma (IPD), the Iterated Chicken

Game (ICG), and the Iterated Battles of the Sexes (IBS). In particular, we aim to address

two problems in these games: errors in the interaction among agents and the unfamiliar-

2

ity with other agents’ irrational behavior. The first problem is about mistakes can occur

during the execution of actions and imperfect observations of agents—if errors can occur

during the interaction among agents, the agents may no longer be able to maintain coop-

eration with each other and the performance of the whole system decreases. The second

problem is about how to deal with irrational agents—agents that do not act according

to the Nash equilibrium or subgame perfect equilibrium. The techniques we proposed

in this dissertation performed pretty well in these games, according to our experiments.

Our hope is that these techniques can be extended for other kind of games or multi-agent

environments as well.

1.1 Objective and Approach

Broadly speaking, our research question is

How to identify and exploit useful structures in agents’ behavior for effective

decision making in non-zero-sum repeated games?

Repeated games are traditionally regarded as the “fruit flies” in the studies of multi-

agent systems and game theory. Despite the simplicity of the game structures and rules,

repeated games can still be considered as a complete multi-agent environment in which

agents have to repeatedly interact with each other in order to maximize their own utilities.

In fact, repeated games are so rich in the variety of strategies and solutions, and yet ex-

isting theoretical analysis of repeated games seems to unable to make perfect predictions

of the actual behavior of players in those games, making repeated games an interesting

subject. Therefore, we should limit the scope of our studies to repeated games. At various

3

points in this dissertation we shall discuss the possibility of extending the techniques we

developed for these games to other problems.

Among all repeated games we are interested in non-zero-sum repeated games in

which players does not always compete with each other. We choose to study non-zero-

sum games because many real-world situations are not strictly competitive, and there are

rooms for agents to cooperate with each other. To model these situations, non-zero-sum

games are more appropriate than zero-sum games. Furthermore, the behavior of agents

in non-zero-sum games is so different from the behavior of the agents in zero-sum games

such as Roshambo and chess, causing a huge difference in the design of strategies for

zero-sum games and non-zero-sum games. Due to these differences, non-zero-sum games

are technically interesting to AI researchers.

Our chief concern is decision making in non-zero-sum repeated games. More pre-

cisely, we concern with how to generate a good strategy for an agent to interact with other

agents. Our approach is to identify inherent structures in agent’s behavior and then ex-

ploit these structures for the creation of better strategies or the improvement of existing

strategies. As opposed to analytical approaches which tackles the problem from the first

principles (e.g., alpha-beta pruning for game-tree search and value iteration for MDPs),

our approach is based on empirical observations of structures of agents’ behavior. What

we found is that it is often more easy to discern the structure in the behavior of the agents

in non-zero-sum games than in zero-sum games—in zero-sum games players tend to hide

their intention by making their moves unpredictable, but in non-zero-sum games agents

are more eager to openly express their intention in their moves. Due to the availability

of easily discerned structures in agents’ behavior, we believe our approach can be more

4

effective than analytical approaches for non-zero-sum repeated games.

The difficult question, of course, is how to identify the structures in agents’ behavior

and then effectively exploit them. We consider two directions to address this question: (1)

manually identify any recurrent feature in the agents’ behavior from records of interac-

tions in previous games, and (2) automatically discover those features using an algorithm.

Either ways, the focus of the identification is to discover structures in agent’s behavior

that can be used for improving the performance of existing agents or creating new agents.

In this dissertation, we will show (1) how to exploit the clarity of behavior we observed

to deal with noise, and (2) how to automatically identify a set T of interactions from a

database of interaction traces, such that T can be used to form a new strategy and enhance

existing strategies.

1.2 Contributions

This dissertation revolves around the following two theses:

Thesis 1: Clarity of agents’ behavior can be used for detecting errors in the

interaction among agents.

Thesis 2: Records of Interactions among agents can be used to improve the

performance of existing agents, especially when the distribution of agents’

behavior is highly skewed.

Our investigation of these theses leads to several technical contributions to the stud-

ies of repeated games and multi-agent systems. The following are the key contributions.

5

1. Synthesis of Strategies from Interaction Traces

We devised a novel technique for combining records of interaction, produced by

many different agents in a two-player repeated game, into a strategy which is called

a composite strategy. Our algorithm, called the CIT algorithm, can synthesize the

best composite strategy from a database of interaction traces in polynomial time.

Our experimental results show that given a collection of agents, our technique can

produce composite strategies that does better than all of the given agents, except

the best agents, when combining the composite strategies with existing strategies.

2. Solvability of Task-Completion Problems with Goal Uncertainty

We introduce the notion of strong solvability and weak solvability for problems

in which a goal-based agent must interact with a nondeterministic environment in

order to achieve a goal, but the agent is uncertain about the goals. We state the nec-

essary and sufficient conditions of strong solvability in terms of interaction traces

by that an agent can successfully reach the goals, provide an algorithm to find an

optimal solution given the successful interaction traces for weakly solvable prob-

lems, and evaluate the algorithm empirically when the size of its inputs is small.

3. Symbolic Noise Detection

Accidents can cause great difficulty in cooperation with others. For example, in

the Iterated Prisoner’s Dilemma (IPD) with noise, actions chosen by the players

can be randomly changed by noise, and that can trigger a long sequence of mutual

defections between the players. Previous approaches for dealing with noise in the

IPD are based on forgiveness. Our approach, however, is based on the detection of

6

noise. We developed a technique called symbolic noise detection (SND) for noise

detection in the IPD with noise. The performance of SND is demonstrated in the

2005 IPD tournament.

4. Analysis of Symbolic Noise Filter

A symbolic noise filter (SNF) is a wrapper that can be placed around any existing

strategy in repeated games in order to endow the strategy with the capability of

noise detection and correction. We evaluated the performance of SNF in two re-

peated games, the Iterated Chicken game and the Iterated Battle of the Sexes, and

found that SNF is highly effective in these games. Our experimental analysis indi-

cated that SND will be more effective in any games in which strategies often show

a stable behavior.

5. A Framework for Experience-Based Strategy Construction for Repeated

Games

To construct a better strategy for a repeated game, one may want to examine the

historical records of previous games, in order to learn from the data. We con-

sider a learning process that involves the construction of several key data structures

from data, the transformation from one data structure to another, and eventually the

construction of strategies from the data structures. We proposed a framework that

describes this learning process whose data structures are opponent models, action-

value functions, and strategies.

Apart from the above technical contributions, this dissertation also includes two

scientific discoveries pertaining to the behavior of agents in the IPD, ICG, and IBS, and

7

perhaps non-zero-sum repeated games in general. First, we found that agents in those

games often display deterministic behavior during interaction, and therefore noise are

often detectable in those games. Second, we found that the distributions of interaction

traces are highly skewed in these games, and therefore only a small number of interaction

traces is needed in order to form a partial strategy that can be used to interact successfully

with the agents in the those games. We will discuss about these empirical properties of

agents’ behavior at the end of this dissertation.

1.3 Outline of this Thesis

The contents of the rest of this dissertation are as follows:

Chapter 2. Synthesis of Strategies from Interaction Traces

This chapter presents a technique called the CIT technique, for the synthesis of

strategies for repeated games. Starting from a set of interaction traces produced by

different pairs of players in a two-player repeated game, the CIT algorithm selects a

subset of interaction traces and combines them into a composite strategy. The CIT

algorithm is a polynomial-time algorithm that can generate the best such composite

strategy, which potentially outperforms most of the players who contributed the

interaction traces. This chapter also describes how to incorporate the composite

strategy into an existing agent, as an enhancement of the agent’s original strategy.

Chapter 3. Task-Completion Problems with Goal Uncertainty

This chapter provides a way to adapt the CIT technique presented in Chapter 2 to

any problem that involves an agent who must achieve a goal or complete a task

8

by interacting an environment that responds to the agent’s actions nondeterministi-

cally. First, we give the necessary and sufficient conditions under which an agent

can guarantee to accomplish the goal. For problems that no agent can guarantee to

successfully accomplish the goal, we provide an algorithm that takes a set of in-

teraction traces and generates a composite strategy with the highest probability of

success.

Chapter 4. Noise Detection in the Iterated Prisoner’s Dilemma

This chapter proposes the noise detection approach to cope with noise in the Noisy

Iterated Prisoner’s Dilemma, a version of the IPD in which actions or observations

can be randomly changed by accidental events. We describe the philosophy of

symbolic noise detection (SND) and the details of the DBS strategies that uses

SND for noise detection in the IPD. Then we present the performance of the DBS

strategies in the 2005 IPD tournament.

Chapter 5. Symbolic Noise Filter

This chapter introduces a wrapper that can be placed around any agent in 2 × 2

repeated games so as to filter the noise that may present in the observed actions

generated by the other player. The wrapper is called the symbolic noise filter (SNF)

and is a simplified version of the SND mechanism in DBS. We conducted exper-

iments to evaluate SNF, and empirically explained the performance of SNF in the

Iterated Chicken Game and the Iterated Battles of the Sexes.

Chapter 6. A Framework for Building Strategies for Repeated Games

9

This chapter describes a general framework for constructing strategies from data

in repeated games. This framework revolves around three key data structures for

opponent modeling and decision making in repeated games: opponent models,

action-value functions, and strategies. This framework elucidates the relationships

between these data structures, and suggests a number of ways by which data can be

turned into a strategy.

Chapter 7. Conclusions and Future Work

The last chapter reviews the contributions of this dissertation and proposes direc-

tions for future work.

In addition, Appendix A contains a list of acronyms that appears in this disserta-

tion. The list also contains the names of several well-known strategies for the IPD. In

Appendix B, there are tables describing mathematical notations that we define and use in

this dissertation.

10

Chapter 2

Synthesis of Strategies from Interaction Traces

In this section, we describe how to take a set of interaction traces produced by

different pairs of players in a two-player repeated game, and combine them into a com-

posite strategy. We provide an algorithm that, in polynomial time, can generate the best

such composite strategy. We describe how to incorporate the composite strategy into an

existing agent, as an enhancement of the agent’s original strategy.

We provide experimental results using interaction traces from 126 agents (most of

them written by students as class projects) for the Iterated Prisoner’s Dilemma, Iterated

Chicken Game, and Iterated Battle of the Sexes. We compared each agent with the en-

hanced version of that agent produced by our algorithm. The enhancements improved

the agents’ scores by about 5% in the IPD, 11% in the ICG, and 26% in the IBS, and

improved their rank by about 12% in the IPD, 38% in the ICG, and 33% in the IBS.

2.1 Introduction

To create new and better agents in multi-agent environments, we may want to ex-

amine the strategies of several existing agents, in order to combine their best skills. One

problem is that in general, we won’t know what those strategies are. Instead, we’ll only

have observations of the agents’ interactions with other agents. The question is how to

synthesize, from these observations, a new strategy that performs as well as possible.

11

In this paper we present techniques for taking interaction traces (i.e., records of

observed interactions) from many different pairs of agents in a 2-player iterated game, and

synthesizing from these traces a new strategy called a composite strategy (see Figure 2.1).

We also show how an existing agent can enhance its performance by combining its own

strategy with the composite strategy. Our contributions include the following:

• We give a formal definition of a composite strategy, and present necessary and

sufficient conditions under which a set of interaction traces from different agents

can be combined together to form a composite strategy.

• We provide a polynomial-time algorithm for synthesizing, from a given set of in-

teraction traces T , a composite strategy that is optimal, in the sense that it performs

at least as well as any other composite strategy that can be formed from T .

• We provide a way to enhance an existing agent’s performance by augmenting its

strategy with a composite strategy.

• We provide experimental results demonstrating our algorithm’s performance in the

Iterated Prisoner’s Dilemma (IPD), Iterated Chicken Game (ICG), and Iterated Bat-

tle of the Sexes (IBS), using interaction traces from 126 agents (117 written by stu-

dents as class projects, and 9 standard agents from the published literature). For

each agent, we compared its performance with the performance of our enhanced

version of that agent. On the average, the percentage improvements in score were

about 5% in the IPD, 10% in the ICG, and 25% in the IBS; and the percentage

improvements in rank were about 11% in the IPD, 38% in the ICG, and 33% in the

IBS.

12

1

5 2

4 3

Figure 2.1: A composite strategy is synthesized from records of the interactions among

many existing agents. An agent using this strategy can potentially outperform most of the

agents from whom the interaction traces were obtained.

Our results show that given a collection agents, it is possible to do better than most

of these agents, by combining some of the “best” behaviors (in terms of interaction traces)

exhibited by these agents in the past, as illustrated in Figure 2.1.

2.2 Basic Definitions

Consider a two-player finite repeated game, such as the IPD. At any time point t,

two agents λA and λB can choose actions a and b from finite sets of actions A and B,

respectively. Neither agent learns what the other’s action is until after choosing its own

action. Throughout this paper, we will look at games from λA’s point of view; i.e., λA is

“our agent” and λB is the opponent.

We call the pair (a, b) an interaction between λA and λB. An interaction trace be-

tween λA and λB is a sequence of interactions τ = 〈(a1, b1), (a2, b2), . . . (an, bn)〉, where

13

ai and bi are the actions of λA and λB, respectively.1 The length of τ is |τ | = n.

We assume interactions occur at a finite number of discrete time points t1, t2, . . . ,

tN , whereN is the total number of interactions.2 A history (or a history up to time tk) is an

interaction trace τ = 〈(a1, b1), (a2, b2), . . . (ak, bk)〉, where (1) ai and bi are the actions of

λA and λB at time ti, respectively, and (2) 0 ≤ k ≤ N . τ is a full history if |τ | = N . The

histories of λA’s and λB’s actions are τA = 〈a1, a2, . . . , an〉 and τB = 〈b1, b2, . . . , bn〉,

respectively.

We often deal with the prefix of a history in this chapter. Let τ be

a history 〈(a1, b1), (a2, b2), . . . (ak, bk)〉. The j’th prefix of τ is the subsequence

prefixj(τ) = 〈(a1, b1), (a2, b2), . . . (aj, bj)〉, whereas the j’th suffix of τ is suffixj(τ) =

〈(aj+1, bj+1), (aj+2, bj+2), . . . (ak, bk)〉.

An agent uses a strategy to determine what actions it should take in every time point.

There are two types of strategies: pure strategies and mixed strategies. LetH be the set of

all possible histories. A pure strategy is a function φ from historiesH into actions A, that

returns the next action to perform. A mixed strategy is a pair ψ = (Φ,∆Φ), where Φ is a

nonempty set of pure strategies and ∆Φ is a probability distribution over Φ. Each agent

λ has exactly one strategy, which can be either pure or mixed. We denote the strategy of

an agent λ by strategy(λ). A deterministic agent is one whose strategy is a pure strategy,

and a probabilistic agent is one whose strategy is a mixed strategy.

1This formalism can easily model environments where the actions are interleaved rather than occurring

simultaneously, by specifying that at odd time points λA’s action must always be a “null” action, and

similarly for λB at even time points.
2It is easy to modify our definitions and algorithms to handle games in which the number of interactions

can vary. But to simply our discussion, we’ll assume the number of interactions is constant.

14

An alternative definition of a mixed strategy is a mapping ψ′ from histories H to

the set PA of all probability distributions over the set A of actions. Thus, ψ′(τ) returns a

probability distribution ∆′
A such that ∆′

A(a) is the probability of choosing a ∈ A at the

situation s(τ). For clarity, we define ψ′(τ, a) = ∆′
A(a).

It is not hard to see that the two definitions of mixed strategies are mathematically

equivalent. 3 Given ψ = (Φ,∆Φ), we construct ψ′ as follows: for each τ ∈ T , let Φ′ ⊆ Φ

be the set of all pure strategies that can possibly generate τ (i.e., Φ′ = {τ : ∀k, φ′, (τ =

prefixk(τ
′)) ∧ (τ ′ ∈ H(φ′, ·)) ∧ (k ≥ 0) ∧ (φ′ ∈ Φ)}. Let Φ′

a be the set of pure strategies

in Φ′ that will output a ∈ A after generating τ (i.e., Φ′
a = {φ : (φ(τB) = a)∧ (φ ∈ Φ′)}).

Then, ∆′
A(a) =

P
φ∈Φ′

a
∆Φ(φ)P

φ∈Φ′ ∆Φ(φ)
. Conversely, given ψ′, we can construct ψ = (Φ,∆Φ)

where Φ is the set of all possible pure strategies and ∆Φ(φ) =
∏

τ∈H,a∈A{δ(τ, a)}, where

δ(τ, a) = ∆′
A(a) if τ can be generated by φ ∈ Φ and δ(τ, a) = 0 otherwise. However,

these conversions may not be computationally feasible because it could take too much

computational resources.

Suppose both our agent λA and the opponent λB are deterministic, and their pure

strategies are φA = strategy(λA) and φB = strategy(λB), respectively. When the deter-

ministic agents λA and λB interact, only one possible interaction trace can be generated,

namely the interaction trace trace(φA, φB) = τn, where τi is defined recursively as fol-

lows: τ0 = 〈〉, and τj+1 = τj ◦ 〈(φA(τj), φB(τj))〉 for i = 1, . . . , n. We assume λA’s

performance is measured by a utility function uA, which is a function from interaction

traces to non-negative real numbers. Thus, the reward for λA when its opponent is λB is

3More precisely, for each ψ there is a unique ψ′ that is equivalent to ψ, but for each mixed′ there are

one or more ψ that are equivalent to ψ′

15

uA(trace(φA, φB)).

Consider an agent λ that uses a mixed strategy ψ = (Φ,∆). We will call the pure

strategies in Φ the possible strategies for λ. In each game, λ will choose one strategy

φ ∈ Φ according to the probability distribution ∆, and its opponent will not know which

strategy was chosen. We call the chosen strategy λ’s actual strategy in this game.

Suppose the opponent λB’s strategy is a mixed strategy (ΦB,∆ΦB
). The overall

performance of our agent λA using a pure strategy φA in its interactions with λB is λA’s

expected utility, which is

EUA(λA, λB) =
∑

φB∈ΦB

{∆ΦB
(φB)× uA(trace(φA, φB))} .

2.3 Synthesis of Strategies from Interaction Traces

Section 2.3.1 presents an algorithm that can reconstruct the strategy of a single agent

λA, given a collection of interaction traces generated by λA. Section 2.3.2 shows how to

take a collection of traces that were generated by more than one agent, and construct a

new strategy called a composite strategy, that combines parts of the strategies of all of

those agents. Section 2.3.3 gives an algorithm to find the optimal one of these composite

strategies.

2.3.1 Reconstructing an Agent’s Strategy

Suppose we play a pure strategy φ against a mixed strategy ψ = (Φ,∆), where

Φ = {φ1, φ2, φ3}. Then the set of all possible interaction traces is

T = {trace(φ, φj) : j ∈ {1, 2, 3}}.

16

T contains enough information for us to construct a new strategy φT whose interaction

traces with ψ will be exactly the same as φ’s. Figure 2.2 gives the pseudocode for an

agent CA(T) that can generate and play the strategy λT . We will call CA(T) a composite

agent, and φT = strategy(CA(T)) a composite strategy. The strategy φT is partial, i.e., it

is only defined over some of the possible histories. However, as we will see in Theorem 1,

φT is ψ-total, i.e., it is defined over the set of all histories that are possible when playing it

against ψ. In other words, in any history τ of interactions between CA(T) and the agent

using ψ, CA(T) will always be able to determine what its next action a|τ |+1 should be.

To see how the CA agent works, suppose that the three interaction traces in T are

τ1 = 〈(C,C), (C,D), (D,C)〉,

τ2 = 〈(C,C), (C,C), (C,C)〉,

τ3 = 〈(C,D), (C,D), (D,C)〉.

Next, suppose we play CA(T) against an agent λ′ using ψ. Since λA’s first action is C in

all three traces, we have Ai = {C} at Line 5 of CA, so CA(T) returns a1 = C as its first

action. Suppose λ′’s first action is C. Then λ′ cannot be using the strategy that produced

τ3, so Line 11 of the agent removes τ3 from T ′1 , leaving τ1 and τ2 in T2. Hence in the next

interaction with λ′, CA(T) will choose a2 = C. Suppose λ′’s second action is b2 = D.

Then τ2 is removed from T ′2 , and CA(T)’s next action is D. Hence that the composite

agent CA(T) ended up “replaying” the interaction trace τ1.

The following theorem provides a condition under which CA(T) will always gener-

ate the same action that λA would generate against an opponent λB using a mixed strategy

ψ:

17

Agent CA(T) /* a composite agent synthesized from T */

1. i := 1 ; Ti := T

2. Loop until the end of the game

3. If Ti = ∅, then exit with failure because T is insufficient

4. If Ti 6= ∅, then

5. Ai := {a : (∃ τ ∈ Ti) a is the i’th action of τA}

6. If |Ai| 6= 1, then exit with failure because T is incompatible

7. If |Ai| = 1, then let ai be the action in Ai

8. Output ai and receive the other agent’s action bi

9. T ′i := Ti

10. For each τ ∈ Ti,

11. If the i’th interaction in τ isn’t (ai, bi), remove τ from T ′i

12. Ti+1 := T ′i ; i := i+ 1

Figure 2.2: The pseudocode of a composite strategy.

18

Theorem 1 Let φA and ψ = (ΦB,∆ΦB
) be pure and mixed strategies, respectively. If

T = {trace(φA, φB) : φB ∈ ΦB}, then trace(CA(T), φB) = trace(φA, φB) for every

φB ∈ ΦB.

Proof. Without loss of generality, let φB ∈ ΦB be the actual strategy of λB, and let

τ = trace(φA, φB) be the interaction trace between φA and φB. Suppose there exists i

such that (ai, bi) at Line 8 of Figure 2.2 is not the i’th interaction (a′i, b
′
i) in τ , but, for

1 ≤ j < i, (aj, bj) is the j’th interaction in τ . First, all interaction traces in Ti have the

same prefix up to the (i − 1)’th iteration (any traces without this prefix were removed

at Line 11 on a previous iteration) and λA is a deterministic agent. Therefore all traces

in Ti (including τ) have the same i’th action a′i, and the composite agent will certainly

output a′i at the iteration i. Thus, ai = a′i. Second, φB will certainly output b′i at the

i’th interaction, given the action sequence a1, a2, . . . , ai−1 as its inputs; that is, bi = b′i.

Hence, a contradiction occurs. Therefore (ai, bi) at Line 8 of Figure 2.2 is always the i’th

interaction in τ , and trace(CA(T), φB) = τ . 2

The notion of composite agents establishes the fact that the process of interaction

trace generation is reversible: not only can agents generate interaction traces, but in ad-

dition, interaction traces can be used to construct agent strategies. This fact opens up

opportunities to create better strategies. For example, we can first record the interaction

traces generated by an agent, modify the set of interaction traces, and then synthesize a

new strategy. By carefully adding or replacing interaction traces in the set of recorded

interaction traces, the agent using the new strategy can outperform the original agent. In

this chapter, we propose one such modification scheme for producing better agents. The

19

key idea is that by mixing interaction traces of two or more agents together, the com-

posite strategy synthesized from these interaction traces often outperforms every agent

contributed the interaction traces. The reason why this method works is simple: when

different agents are good at dealing with different possible strategies of the opponent,

we can combine the good strategies together so that the composite strategy can be more

successful in dealing with the same opponent or similar opponents.

2.3.2 Constructing New Strategies

The previous section showed how to reconstruct a strategy of a single agent λA

against an agent λB, given λA’s interaction traces with λB. The same approach can be

used to construct new strategies from a collection of traces generated by more than one

agent, provided that two conditions, called compatibility and sufficiency, are satisfied.

To illustrate the notion of compatibility, consider two well-known strategies for the

IPD: Tit-For-Tat (TFT) and Tit-For-Two-Tats (TFTT). In the usual setting, the optimal

strategy against TFT is to cooperate in every iteration, and the optimal strategy against

TFTT is to defect and cooperate alternatively. For an IPD game of five iterations, these

can be represented by the following two interaction traces:

τ1 = 〈(C,C), (C,C), (C,C), (C,C), (C,C)〉,

τ2 = 〈(D,C), (C,C), (D,C), (C,C), (D,C)〉.

However, no pure strategy can generate both of these interaction traces, because in the

first interaction, no agent can choose both Cooperate and Defect simultaneously. Thus,

there is no single agent that can act optimally against both TFT and TFTT, and we say

20

that τ1 and τ2 are incompatible with each other. If we run CA({τ1, τ2}), it will return an

error message at Line 6 of Figure 2.2.

Now consider an agent that defects in the first iteration and then cooperates for

the rest of a game. When this agent plays against TFT, the interaction trace is τ3 =

〈(D,C), (C,D), (C,C), (C,C), (C,C)〉. Although this strategy is not optimal against

TFT, it is compatible with τ2: both τ2 and τ3 produce D for a1 and C for a2; and the

opponent’s response at the end of the 2nd interaction gives us enough information to

decide which of τ2 and τ3 to use thereafter. If the opponent’s second action b2 is C,

then we discard τ3 and continue with τ2, and if b2 is D, we discard τ2 and continue with

τ3. This is exactly what CA({τ2, τ3}) does when it plays against a mixed strategy that

includes TFT and TFTT.

We now formalize the concepts introduced in the above example, to provide neces-

sary and sufficient condition on T for the synthesis of a composite strategy.

Definition 1 The longest common prefix of two action sequences α = 〈a1, a2, . . . , an〉

and α′ = 〈a′1, a′2, . . . , a′n〉 is the longest action sequence lcp(α, α′) that’s a prefix of both

α and α′.

We now define a condition called compatibility, that (as we’ll see in Theorem 2) is neces-

sary for a set of interaction traces T to be used successfully by CA. The interaction traces

do not all need to be generated by the same agent.

Definition 2 Two interaction traces τ1 and τ2 are compatible if either (1) τA
1 = τA

2 , or

(2) |lcp(τA
1 , τ

A
2)| > |lcp(τB

1 , τ
B
2)|. Otherwise, τ1 and τ2 are incompatible.

21

Definition 3 A set T of interaction traces is compatible if and only if there is no incom-

patible pair of interaction traces in T .

Even if a set T of interaction traces is compatible, CA(T) will not always be able to

use them against the opponent λB using a mixed strategy ψ unless there is at least one

interaction trace for each of λB’s possible strategies. The following definition formalizes

this notion.

Definition 4 Let ψ = (ΦB,∆ΦB
) be a mixed strategy. A set T of interaction traces is

ψ-sufficient if and only if for every strategy φB ∈ ΦB, T contains an interaction trace

τ = 〈(a1, b1), . . . , (an, bn)〉 such that the action sequence 〈b1, . . . , bn〉 can be generated

by λ given 〈a1, . . . , an〉 as its inputs.

The following theorem shows that compatibility and ψ-sufficiency are necessary

and sufficient to guarantee that CA(T) will always be able to play an entire game against

ψ.

Theorem 2 The composite agent CA(T) will never exit with failure when it plays against

an opponent whose mixed strategy is ψ = (ΦB,∆ΦB
), if and only if T is compatible and

ψ-sufficient.

Proof. The “only if” part is trivial. For the “if” part, suppose T is compatible and ψ-

sufficient. Without loss of generality, let φ ∈ ΦB be the pure strategy that the opponent

chooses to use at the start of the game. By induction on i, we prove that CA(T) does not

exit with failure at the i’th iteration. More precisely, we prove (1) |Ai| = 1 at Line 6,

and (2) there exist τ ∈ Ti such that τ can be generated by φ (i.e., Ti 6= ∅ at Line 3), for

1 ≤ i ≤ n.

22

First, let us consider i = 1. For any two interaction traces τ1, τ2 ∈ T , the first

actions in τA
1 and τA

2 must be the same since T is compatible. Therefore, |A1| = 1. Since

T is ψ-sufficient and ΦB is nonempty, it follows that there is at least one interaction trace

τ ∈ T that can be generated by φ. Thus, T1 6= ∅.

Now consider i = k + 1. Suppose |Ak| = 1 and there exist τ ∈ Tk that can be

generated by φ. First, since all traces in Tk have the same prefix up to the (k − 1)’th

iteration and φ is a pure strategy, φ will return a unique bk at Line 8, which is the k’th

action of τ (otherwise τ is not generated by φ). In addition, by Definition 2, for any two

interaction traces τ1, τ2 ∈ Tk, the first k actions in τA
1 and τA

2 must be the same. Thus,

the k’th action of τA must be ak, the action generated at Line 8. Therefore, (ak, bk) is

the i’th interaction of τ , and τ will not be removed from T ′k at Line 11. Hence τ ∈ Tk+1

since Tk+1 = T ′k at Line 12. Second, |Ak+1| ≥ 1 because |Tk+1| ≥ 1. Third, at the start

of each iteration k + 1, all interaction traces in Tk+1 have the same prefix up to the k’th

iteration (any traces without this prefix were removed at Line 11 on a previous iteration).

By Definition 2, for any two interaction traces τ1, τ2 ∈ Tk+1, the first k + 1 actions in

τA
1 and τA

2 must be the same; and consequently |Ak+1| ≤ 1. Therefore, |Ak+1| = 1. By

induction, |Ai| = 1 and Ti 6= ∅, for 1 ≤ i ≤ n. 2

2.3.3 Finding the Best Composite Strategy

We now consider the problem of finding a strategy against a mixed strategy. It

is not difficult to show by reduction from 3SAT that the problem of finding an optimal

strategy—a strategy with the highest expected utility against a mixed strategy—is NP-

23

hard.

Theorem 3 The problem of finding a strategy with an expected utility of at least K

against a mixed strategy ψ = (Λ,∆) is NP-hard.

Proof. We show that 3SAT is polynomial time reducible to this problem. Let f be a

Boolean formula in conjunctive normal form with Boolean variables x1, x2, . . . , xn and

clauses C1, C2, . . .Cm. For each Ci, we construct an agent λi whose inputs are either

True or False, and whose output is always the same action, namely Nil. The strategy

φi = strategy(λi) is a constant function that always returns Nil. The number of interaction

is exactly N ; thus any agent interacting with λi will terminate after N interactions. The

utility of the interaction trace τ = 〈(vj,Nil)〉j=1..n is 1 if and only if the assignment of vj

to xj for j = 1 . . . n satisfies the clause Ci; otherwise uA(τ) is 0.

We argue that f is satisfiable if and only if there exists an agent whose expected util-

ity is at least 1 when it interacts with an opponent using a mixed strategy ψ = (ΦB,∆ΦB
),

where ΦB = {φ1, φ2, . . .φm} and ∆ΦB
is a uniform probability distribution over ΦB.

Clearly, if f is satisfiable by an assignment of vj to xj for j = 1 . . . n, we can construct

an agent λA with strategy φA that chooses vj in the j’th interaction. Then λA would have

an expected utility of 1 because uA(trace(φA, φi)) = 1 for any φi ∈ ΦB. If there exists

an agent λA whose expected utility is at least 1, then (1) uA(trace(φA, φi)) = 1 for all

φi ∈ ΦB since ∆ΦB
is a uniform probability distribution, and (2) λA’s sequence of action

is the same when interacts with any two strategies φi, φj ∈ ΦB, since both φi and φj

always return Nil, and λA, as a deterministic agent, cannot return two different actions at

the same interaction for φi and φj . Thus, the sequence of actions generated by λA would

24

satisfy every clause in f . 2

Therefore, instead of finding the optimal strategy, we find the best composite strat-

egy that can be synthesized from a given set of interaction traces, and then experimentally

show that the best composite strategy can perform pretty well in practice.

Let ψ = (ΦB,∆ΦB
) be a mixed strategy used by the opponent λB. Suppose we are

given a set TB of interaction traces that were played against λB; and suppose that for each

interaction trace τ ∈ TB, we know the utility uA(τ) for the agent that played against λB.

Let

T = {T ⊆ TB : T is compatible and ψ-sufficient};

and for each T ∈ T, let φT be the composite strategy constructed from T . Then the

optimal composite strategy problem is the problem of finding a composite strategy φT ∗

such that T ∗ ∈ T and EUA(φT ∗ , ψ) ≥ EUA(φT , ψ) for every T ∈ T. We say that φT ∗ is

(TB, ψ)-optimal.

Here is another formulation of the optimal composite strategy problem that’s equiv-

alent to the above formulation. Suppose we are given sets of interaction traces T1, . . . , Tm

from games against several different agents λ1, . . . , λm, and for each τi ∈ Ti we are

given the utility uA(τi) for the agent that played against λi. Furthermore, suppose we are

given numbers p1, . . . , pm such that pi is the probability that we’ll need to play against

λi. Now, consider the problem of finding a strategy with an optimal expected utility

against these agents. This is equivalent to an optimal composite strategy problem in

which TB = {T1 ∪ . . . ∪ Tm} and ψ = ({φ1, . . . , φm},∆), where φi = strategy(λi) and

∆(φi) = pi for each i.

25

Procedure CIT(k, {Ti}i=1,...,m, {pi}i=1,...,m)

1. If k > n, then /* n is the maximum number of interactions */

2. For i = 1 to m, choose any one trace, namely τi, in Ti

3. Return ({τi}i=1..m,
∑

i=1..m{pi × uA(τi)})

4. Else

5. Ai := {ak : 〈(aj , bj)〉j=1..n ∈ Ti}, for i := 1..m

6. Bi := {bk : 〈(aj , bj)〉j=1..n ∈ Ti}, for i := 1..m

7. A′ := A1 ∩A2 ∩ . . . ∩Am; B′ := B1 ∪B2 ∪ . . . ∪Bm

8. If A′ = ∅, then return (∅,−1) /* incompatibility detected */

9. If |Bi| 6= 1 for some i, then exit with failure.

10. For i := 1 to m

11. Partition Ti into T ab
i for each pair (a, b) ∈ A′ ×B′ such that

12. T ab
i := {τ ∈ Ti : the k’th interaction in τ is (a, b)}

13. For each (a, b) ∈ A′ ×B′

14. Tab := {T ab
i : 1 ≤ i ≤ m, T ab

i 6= ∅}

15. Pab := {pi : 1 ≤ i ≤ m, T ab
i ∈ T ab}

16. (T ab
∗ , Uab

∗) := CIT(k + 1,Tab,Pab) /* call CIT itself */

17. For each a ∈ A′

18. If Uab
∗ ≥ 0 for all b ∈ B′, then

19. T̂a :=
⋃

b∈B′{T ab
∗ }; Ûa :=

∑
b∈B′ Uab

∗

20. Else /* i.e., T ab
∗ is not a solution for some b ∈ B′ */

21. T̂a := ∅; Ûa := −1 /* i.e., no solution */

22. amax := arg maxa∈A′{Ûa}

23. Return (T̂amax , Ûamax)

Figure 2.3: The pseudocode of the CIT algorithm.
26

As an example, suppose we want to play the IPD against two agents λ1 = TFT

and λ2 = TFTT, who will be our opponents with probabilities p1 = 0.7 and p2 = 0.3,

respectively. Suppose we are given T1 = {τ1, τ2, τ3}, where

τ1 = 〈(C,C), (C,C), (D,C)〉; uA(τ1) = 11.0;

τ2 = 〈(D,C), (C,D), (C,C)〉; uA(τ2) = 8.0;

τ3 = 〈(D,C), (D,D), (D,D)〉; uA(τ3) = 7.0;

and T2 = {τ ′1, τ ′2, τ ′3}, where

τ ′1 = 〈(C,C), (C,C), (C,C)〉; uA(τ ′1) = 9.0;

τ ′2 = 〈(D,C), (C,C), (D,C)〉; uA(τ ′2) = 13.0;

τ ′3 = 〈(D,C), (D,C), (D,D)〉; uA(τ ′3) = 11.0.

We can map this into the optimal composite agent problem by letting ψ = (ΦB,∆ΦB
)

and TΦB
= T1 ∪ T2, where ΦB = {φ1, φ2}, ∆ΦB

(φ1) = 0.7, and ∆ΦB
(φ2) = 0.3.

There are nine subsets of T that contain one trace for each of λ1 and λ2 (and hence

are ψ-sufficient), namely {τj, τ ′k} for j = 1, 2, 3 and k = 1, 2, 3. Only two of these nine

sets are compatible: {τ2, τ ′2} and {τ3, τ ′3}. Of the two sets, {τ2, τ ′2} is the (ΦB, ψ)-optimal

one, because EUA(CA({τ2, τ ′2}), ψ) = 9.5 > 8.2 = EUA(CA({τ3, τ ′3}), ψ). Hence, our

(ΦB, ψ)-optimal strategy is to choose D and C in the first two iterations, and then choose

C (or D) in the third iteration if the opponent chooses D (or C) in the second iteration,

respectively.

Figure 2.3 shows an algorithm, CIT, that can be used to solve the above problem.

CIT is a recursive algorithm that works by analyzing interaction traces played against a

set of agents {λ1, . . . , λm}. Its inputs include, for each λi, a set of interaction traces Ti

and a probability pi that we’ll have λi as our opponent; and a number k that represents

27

S0

S1

S2

EU=9.5

S6

S3

S4

Incompatible !

S9

S10

S12

S13

S16

S17

S19

S20

S8 S11 S15 S18

S7 S14

EU=0.3x13=3.9 EU=0.7x8=5.6 EU=0.3x11=3.3 EU=0.7x7=4.9

EU=3.9 EU=5.6 EU=3.3 EU=4.9

EU=4.9EU=3.3EU=5.6EU=3.9

EU=3.9+5.6=9.5 EU=3.3+4.9=8.2

EU = max(9.5,8.2) = 9.5

S5

EU = max(9.5) = 9.5

{τ1, τ2, τ3}
0.7 {τ ′

1
, τ ′

2
, τ ′

3
}0.3

{τ1}
0.7 {τ ′

1
}0.3

{τ1}
0.7 {τ ′

1
}0.3

{τ1}
0.7 {τ ′

1
}0.3

{τ1}
0.7 {τ ′

1
}0.3

{τ2, τ3}
0.7 {τ ′

2
, τ ′

3
}0.3

{τ2, τ3}
0.7 {τ ′

2
, τ ′

3
}0.3

{τ2}
0.7 {τ ′

2
}0.3

{τ ′

2
}0.3

{τ ′

2
}0.3

{τ ′

2
}0.3

{τ2}
0.7

{τ2}
0.7

{τ2}
0.7

{τ3}
0.7 {τ ′

3
}0.3

{τ ′

3
}0.3

{τ ′

3
}0.3

{τ ′

3
}0.3

{τ3}
0.7

{τ3}
0.7

{τ3}
0.7

a=C

b=C

a=C

b=C

a=D

b=C

a=C a=D

b=C b=D

a=D

b=C

a=C

b=C

b=C b=D

a=D a=D

b=D b=D

k = 1

k = 2

k = 3

Figure 2.4: The search space of the CIT algorithm.

how many moves deep we have gone in our analysis of the interaction traces.

Example. We’ll now illustrate CIT’s operation on the same example that we discussed

earlier. In Figure 2.4, the node S0 represents the initial call to CIT. The two sets of traces

are T1 and T2 described earlier, and the superscripts on these traces are the probabilities

p1 = 0.7 and p2 = 0.3 described earlier.

Each path from S0 to the bottom of the tree is one of the interaction traces; and the

value k = 1 at S0 indicates that we’re currently looking at the first interaction in each

28

trace.

At the k’th interaction for each k, we need to consider both our possible moves and

the opponent’s possible moves. Although these moves are made simultaneously, we can

separate the computation into two sequential choices: for each value of k, the higher layer

of nodes corresponds to our possible moves, and the lower layer of nodes corresponds to

the opponent’s possible moves. In the higher layer, the expected utility of each node can

be computed by taking the maximum of the expected utilities of the child nodes; hence

we call these nodes max nodes. In the lower layer, the expected utility of each node can be

computed by adding the expected utilities of the child nodes; hence we call these nodes

sum nodes.4

In our example, the max node at k = 1 is S0, and the sum nodes at k = 1 are S1

and S5. The edges between the max node and the sum nodes correspond to our actions

that can lead from the max node to the sum nodes. For instance, if our action is C at S0,

the next sum node is S1; otherwise, the next sum node is S5. The edges between the sum

nodes at k = 1 and the max nodes at k = 2 corresponds to the actions that can be chosen

by the opponent. At k = 1, the opponent can only choose C, but at S7 at k = 2, the

opponent can choose either C or D, thus leading to two different max nodes S8 and S11.

A terminal node corresponds to the set of interaction traces that are consistent with the

actions on the path from S0 to the terminal node. The expected utility of a terminal node

is the sum of the probability of the set of interaction traces (denoted by the superscripts

in Figure 2.4) times the utility of any interaction trace in the set. For instance, at S10, the

4Mathematically, what we’re computing here is a weighted average; but each number has already been

multiplied by the appropriate weight, so we just need to add the numbers together.

29

expected utility is
∑

i=1..m{pi × UA(τi)} = 0.3 × 13 = 3.9. Notice that all interaction

traces in a set of interaction trace of a terminal node are the same; thus the algorithm

chooses any τi from Ti at Line 2 since they all have the same utility.

The CIT algorithm basically does a depth-first search on a tree as shown in Fig-

ure 2.4, and propagates the expected utilities of the terminal nodes to S0 together with

the compatible set of interaction traces that gives the expected utility. The expected util-

ity of a max node is the maximum of the expected utilities of its child nodes, whereas

the expected utility of a sum node is the sum of the expected utilities of its child nodes.

Notice that at each max node the CIT algorithm will check the compatibility of the set of

interaction traces of the node at Line 8. For example, at S4 the algorithm discovers that τ1

and τ ′1 are incompatible. Then a failure signal (the expected utility −1) is passed from S4

to the ancestor nodes. The max nodes and the sum nodes would then ignore the solution

with a failure signal, thus eliminate the incompatibility. This is one of the key difference

between the CIT algorithm and other search algorithms for game trees or MDPs—the CIT

algorithm directly operates with interaction traces and checks the incompatibility among

them as the search process proceeds.

Running time. To achieve efficient performance in CIT we have used some indexing

schemes that we will not describe here, due to lack of space. CIT’s running time is

O(nM), where n is the number of iterations and M =
∑m

i=1 |Ti|. In practice, the CIT

algorithm is very efficient—it can find the optimal solution from a database of 500, 000

interaction traces in less than 15 minutes on a computer with a 3.8GHz Pentium 4 CPU

and 2GB RAM.

30

Discussion. At first glance, CIT’s search space (see Figure 2.4) looks somewhat like a

game tree; but there are several important differences. First, our purpose is to compute an

agent’s entire strategy offline, rather than having the agent do an online game-tree search

at every move of a game. Second, we are not searching an entire game tree, but are just

searching through a set of interaction traces; hence the number of nodes in our tree is no

greater than the total number of interactions in the interaction traces. Third, game-tree

search always assumes, either explicitly or tacitly, a model of the opponent’s behavior.5

Rather than assuming any particular model of the opponent, we instead proceed from

observations of agents’ actual interactions.

2.3.4 Using a Base Strategy

Recall that CA(T)’s strategy is partial. In particular, although CA(T) will never

exit with failure when playing against ψ when T is compatible and ψ-sufficient, it might

do so if we play it against another opponent λ′B with a mixed strategy ψ′ = (Φ′
B,∆Φ′

B
) for

which T is not ψ′-sufficient. However, in iterated games such as the IPD, there is enough

overlap in the strategies of different agents that even if λ′B was not used to construct any

of the traces in T , T may still be ψ′-sufficient.

Even if T is not ψ′-sufficient, CA(T) may still be able to play against λ′B most of

5For example, minimax game-tree search assumes that the opponent will always use its dominant strat-

egy. In perfect-information games such as chess, this opponent model has worked so well that it is taken

more-or-less for granted. But in an imperfect-information variant of chess, it has been shown experimen-

tally [52] that this model is not the best one—instead, it is better to use a model that assumes the opponent

has very little idea of what its dominant strategy might be.

31

Agent MCA(TB,∆, λbase) /* a modified composite agent */

1. T ∗ := CIT(0, TB,∆) /* T ∗ is (TB, ψ)-optimal */

2. λA := CA(T ∗) /* λA is a composite strategy */

3. Loop until the end of the game

4. Get an action a from λA

5. If λA fails, then get an action a from λbase and λA := λbase

6. Output a and receive the other agent’s action b

7. Give b to λA as its input

Figure 2.5: Algorithm for a composite agent with a base strategy.

the time without exiting with failure. To handle cases where CA(T) does exit with failure,

we can modify the CA algorithm so that instead of exiting with failure, it instead uses the

output produced by a “base strategy” λbase, which may be TFT or any other strategy. We

call this modified algorithm the modified composite agent (MCA), and its pseudo-code

is shown in Figure 2.5. The strategy of modified composite agents is called the modified

composite strategy. A modified composite agent may be viewed in either of two ways:

• As a composite strategy that can use λbase when the composite strategy is insuffi-

cient.

• As an enhanced version of λbase, in which we modify λbase’s moves in cases where

the set of traces TB might yield a better move. From this viewpoint, TB is a case

base that is processed by the CIT algorithm so that cases can be selected quickly

when they are appropriate.

32

2.4 Experimental Evaluation

We evaluated our technique in three well-known games: the Iterated Prisoner’s

Dilemma (IPD), the Iterated Chicken Game (ICG), and the Iterated Battle of the Sexes

(IBS). The IPD and ICG are the iterated versions of the Prisoner’s Dilemma [3] and the

Game of Chicken [23], whose payoff matrices are shown in Figure 2.1 and Figure 2.2.

The IBS is the iterated version of the Battle of the Sexes [42], whose payoff matrix

is shown below. To allow arbitrary agents to play against each other without having to

take on different roles (hence different strategies), we needed to reformulate the IBS to

make the roles of Husband and Wife interchangeable. This was quite easy to do, as shown

in Figure 2.3: for the Wife we renamed Football to C and Opera to D; and for the Husband

we renamed Football to D and Opera to C.

2.4.1 Experimental Design

To obtain a large collection of agents for the games, we asked the students in several

advanced-level AI classes to contribute agents. We did not tell the students the exact

number of iterations in each game, but did tell them that it would be at least 50 (in all of

our experiments we used 200 iterations). The students contributed 43 IPD agents, 37 ICG

agents, and 37 IBS agents. For each game, we also contributed 9 more agents that used the

following well-known strategies: ALLC, ALLD, GRIM, NEG, PAVLOV, RAND, STFT,

TFT, and TFTT.6 This gave us a total of 52 IPD agents, 46 ICG agents, and 46 IBS agents.

6These are often used as standard strategies; e.g., they were used as standard entries in the 2005 IPD

tournament [33].

33

Table 2.1: The payoff matrix of the Prisoner’s Dilemma.

Player B

Prisoner’s Dilemma
Cooperate (C) Defect (D)

Cooperate (C) (3, 3) (0, 5)

Player A
Defect (D) (5, 0) (1, 1)

Table 2.2: The payoff matrix of the Chicken Game.

Player B

Chicken Game
Cooperate (C) Defect (D)

Cooperate (C) (4, 4) (3, 5)

Player A
Defect (D) (5, 3) (0, 0)

Table 2.3: The payoff matrix of the Battle of the Sexes.

Husband

Battle of the Sexes
D (was Football) C (was Opera)

C (was Football) (1, 2) (0, 0)

Wife
D (was Opera) (0, 0) (2, 1)

34

In the rest of this section, we’ll call these the original agents, to distinguish them from

the composite agents generated by our algorithms. In each game, each player’s utility is

the sum of that player’s payoff in each of the 200 iterations in an interaction trace.

For each agent λ, we wanted to find out how much improvement we could get by

replacing λ with a modified composite agent whose base strategy is λ. We investigated

this by doing a 5-fold cross-validation experiment that worked as follows.

For each of the three games (IPD, ICG, and IBS), we took our original set of agents

for the game, and randomly and evenly partitioned it into five subsets Λ1,Λ2,Λ3,Λ4,Λ5.

Then we repeated the following steps five times, once for each Λi:

1. For the test set Λtest, we chose Λi. For the training set Λtrain, we chose
⋃

j 6=i Λj .

2. We ran a 200-iteration tournament (the details are described below) among the

agents in Λtrain (with one modification, also described below), and let Ttrain be

the set of all interaction traces recorded in this tournament.

3. For each agent λ ∈ Λtrain, we played 100 tournaments, each 200 iterations long,

involving λ and all of the agents in Λtest. We calculated the agent’s average

score, which is equal to 1
100×|Λtest|

∑
1≤l≤100

∑
λk∈Λtest

{ the score of λ when it plays

against λk in the l’th tournament}.

4. Likewise, for each agent λ ∈ Λtrain, we played 100 tournaments, each 200 itera-

tions long, involving a modified composite agent λ′ = MCA(Ttrain,∆, λ) and all of

the agents in Λtest, where ∆ is a uniform probability distribution over Λtrain. Apart

from the average score of λ′, we also recorded the frequency with which λ′ used its

base strategy λ.

35

Table 2.4: Among the original agents, how many of each type.

IPD ICG IBS

Deterministic agents 34 22 17

Probabilistic agents 18 24 29

All of our tournaments were similar to Axelrod’s IPD tournaments [3] and the 2005 IPD

tournament [33]. Each participant played against every participant including itself (thus

a tournament among n agents consists of n2 iterated games).

One problem in Step 2 is that MCA’s input needs to come from deterministic agents,

but many of our students’ agents were probabilistic (see Table 2.4). We handled this

problem as follows. Each probabilistic agent λ used a random number generator for

which one can set a starting seed. By using ten different starting seeds, we created ten

determinized versions of λ; and we generated interaction traces using the determinized

agents rather than λ.

Note that we used the determinized agents only during training. The modified com-

posite agents generated from the training data are quite capable of being played against

probabilistic agents, so we played them against the probabilistic agents in our tests.

2.4.2 Experimental Results

Table 2.5 tells how many traces, on average, were collected for each type of game,

and how many traces were in the composite strategies generated by CIT.

In each experiment, we calculated 4 average scores for each agent (one for each test

36

Table 2.5: Average number of interaction traces collected during the training sessions,

before and after removing duplicate traces, and average number of interaction traces in

the composite strategies generated by the CIT algorithm.

IPD ICG IBS

Before removing duplicates 29466.0 44117.4 60470.5

After removing duplicates 7452.0 25391.5 29700.8

Composite strategies 171.2 209.6 245.6

sets that did not contain the agent) and 4 average scores for each MCA agent. We repeat

the above experiment 100 times using different partitions and random seeds. Figure 2.6–

2.8 show the agents’ overall average scores, each of which is an average of 400 average

scores. Since each average score is an average of 100 × |Λtest| scores, each data point

in the figures is computed from the scores of 40000 × n games, where n is the average

number of agents in the test sets. Hence in the IPD, each data point is computed from

the scores of approximately 415769.2 games, and in both the ICG and the IBS each data

point is computed from the scores of approximately 367826.1 games. The data file of the

experiments can be downloaded at http://www.cs.umd.edu/∼chiu/papers/

Au08synthesis data.tar.gz.

In each graph in Figure 2.6–2.8, the x axis shows the agents and the y axis shows

their scores. The lower line shows the performance of each original agent λ (the agents

are sorted in order of decreasing overall performance). The upper line shows the average

37

400

500

600

700

ve
ra
ge
 S
co
re
s Iterated Prisoner's Dilemma

200

300

400

1 6 11 16 21 26 31 36 41 46 51

O
ve
ra
ll
A
v

Rank

Modified Composite Agent
Base Agent

Figure 2.6: Overall average scores of the base agents and the MCA agents in the IPD.

The agents are displayed on the x axis in order of decreasing score of the base agent. The

error bars denote the 95% confidence intervals of the overall average scores.

700

800

900

1000

ve
ra
ge
 S
co
re
s Iterated Chicken Game

500

600

700

1 6 11 16 21 26 31 36 41 46

O
ve
ra
ll
A
v

Rank

Modified Composite Agent
Base Agent

Figure 2.7: Overall average scores of the base agents and the MCA agents in the ICG.

38

200

250

300

350

ve
ra
ge
 S
co
re
s Iterated Battle of the Sexes

50

100

150

1 6 11 16 21 26 31 36 41 46

O
ve
ra
ll
A
v

Rank

Modified Composite Agent
Base Agent

Figure 2.8: Overall average scores of the base agents and the MCA agents in the IBS.

performance of the corresponding MCA agents.

From the graphs, we note the following. In all three games, the average scores of

the MCA agents were as good or better than the corresponding base agent. In the IPD,

the differences in performance were usually small; and we believe this is because most

IPD agents have similar behaviors and therefore leave little room for improvement. In

the ICG and IBS, the differences were usually quite large. Finally, in all three games, the

MCA agents performed well even when their base agents performed poorly. For example,

in the IPD and the IBS, when we incorporated our composite strategy into the weakest of

the existing strategies, it more than doubled that strategy’s score.

Figure 2.9 shows the increase in rank of an agent after incorporating the composite

strategy into it, while all other agents did not incorporate the composite strategy. We can

see that the ranks of most agents increased after the modification. We conducted sign

tests to see whether the overall average scores of MCAagents are greater than that of the

original agents. The p-values of one-sided sign tests are less than 0.00001 in all games.

39

35

40

Rank v.s. Rank Increases

IPD
ICG

20

25

30

cr
ea
se
s

ICG
IBS

5

10

15
Ra

nk
 In

c

‐5

0

5

1 6 11 16 21 26 31 36 41 46 51

Rank

Figure 2.9: Increase in rank of each enhanced agent, relative to the corresponding base

agent. The x axis is as in Figure 2.6–2.8.

Therefore, the MCA agents are significantly better at the 99.9% level.

Table 2.6 shows the average improvement that each MCA agents provided relative

to the corresponding original agent. On the average, the percentage improvements in

score were about 5% in the IPD, 11% in the ICG, and 26% in the IBS; and the percentage

improvements in rank were about 12% in the IPD, 38% in the ICG, and 33% in the IBS.

Hence, the use of composite strategies greatly enhance the performance of most of the

agent.

Table 2.7 compares the average scores of the best agents, with and without the

composite strategy. We can see that the average scores are more or less the same. Thus,

the best strategies in the tournaments does not benefit from the use of composite strategies.

We believe the reason for that is that the best strategies have already had a decent set of

behavior that are similar to the interaction traces in the composite strategies.

Table 2.8 shows how frequently the MCA agents invoked their base agents. We can

40

Table 2.6: Average increases in score and rank of the MCA agents, relative to the corre-

sponding original agents.

IPD ICG IBS

Average MCA agent score 582.69 856.37 262.47

Average original agent score 553.62 774.38 208.73

Average difference in score 29.08 81.99 53.74

Average % difference in score 5.3% 10.6% 25.7%

Average increase in rank 6.0 17.4 15.2

Average % increase in rank 11.5% 37.8% 33.0%

Table 2.7: Average scores of the best original agent, and the MCA agent whose base

strategy is that agent.

IPD ICG IBS

MCA agents 477.23 729.47 232.61

Original agents 477.46 729.50 232.46

41

Table 2.8: Average frequency of invocation of base strategies.

IPD ICG IBS

Average percentage of games 15.4% 52.7% 54.4%

make the following observations.

• In more than 84% of the IPD games, the MCA agents did not need to use their

base strategies at all. In other words, the MCA agents’ composite strategies worked

successfully throughout those games, even though the games were played with op-

ponents other than the ones used to build the composite strategies. One possible the

reason for this high reusability of interaction traces is that the IPD is a well known

game and thus most of the original strategies are similar to certain well-known

strategies such as Tit-for-Tat.

• In the ICG and IBS, the MCA agents invoked their base strategies a little more than

half of the time. We think the reason for this is that there was more diversity among

the original strategies, perhaps because these games are not as well-known as IPD.

But even though the MCA agents used their composite strategies less frequently

than in the IPD, the composite strategies provided much more improvement, rela-

tive to the base strategy, than in the IPD. In other words, the places where MCA

was used its composite strategy provided a much bigger enhancement to the base

strategy’s performance.

42

2.5 Comparisons with Other Work

Reinforcement learning. One similarity between our approach and reinforcement learn-

ing is that our technique improves an agent’s performance by incorporating previous expe-

riences. But reinforcement learning agents usually use on-line learning (e.g., Q-learning

agents learn and improve their policy during acting), while our composite agent uses off-

line learning to produce a composite strategy that can then be incorporated into an agent.

A more important difference is that our technique does not require us to know the

set of all possible states of the other agents, as opposed to most existing work on POMDPs

or learning automata, in which the set of all possible states must be known beforehand

(e.g., [28] and [41]) In open environments such as IPD tournaments in which the oppo-

nents’ strategies are not known, it would be difficult, if not impossible, to identify all

possible states of the opponent’s strategy. Moreover, the Markovian assumption intrinsic

to a policy or automaton does not always hold because an agent’s decision can depend on

the entire history in a game. Our paper demonstrates that it is possible to perform well

in certain open environments such as the IPD without knowing the set of the opponents’

internal states. To the best of our knowledge, contemporary reinforcement learning tech-

niques are, unlike our techniques, not yet efficient enough to compete with strategies such

as TFT and Pavlov in the IPD. In future, we would like to run a much wider variety of

experiments to see whether our technique can be applicable in other open environments.

Modeling other agents. One approach for playing against a given opponent is to de-

velop an opponent model that predicts the opponent’s likely behavior [14, 22, 27]. This

model is then used to aid in developing strategies against that opponent. In contrast, we

43

focus on generating strategies directly from observations, without constructing an explicit

opponent model.

Case-based reasoning. Our technique has some similarities to Derivational Analogy [63]

and the reuse of macro actions/operators [34], in which records of a problem-solver’s de-

cisions or actions are used to solve new problems. Most work on derivational analogy and

macro actions focuses on problems in which there is no need to interact with the environ-

ment during problem solving. But there are some works on using derivational analogy

or macro actions in interactive environments [13, 43, 54]. In these domains, it would be

beneficial not to discard the observation sequences generated by the environments, since

the observation sequences capture important information that can be used to determine

whether an agent can utilize two different action sequences in the same problem (see

Definition 2). Our work pushes this idea further by showing how to construct a strategy

from interaction traces.

Case-based reasoning techniques have been used to improve existing reinforcement

learning techniques [25, 65]. But so far case-based reasoning played a supporting role

only in these work. In contrast, our technique generates fully-functional agents out of

previous problem solving experiences, without the help of existing reinforcement learning

techniques.

The winner of the 2005 IPD tournament is based on some sort of case-based rea-

soning technique [40]. Similarly, the winning strategy of our ICG tournament is a combi-

nation of three different ways to deal with three different type of opponents. The success

of these strategies compels us to believe that one way to dominate monolithic strategies

44

such as Tit-for-Tat is to combine the winning strategies for different type of opponents

together.

One problem with the case-based reasoning strategies mentioned in the above para-

graph is that the ways they combine strategies together are quite ad hoc, and only manage

to consider a handful of possible opponents’ strategies. Our work shows a systematic

way to combine strategies that can be scaled up to handle a large number of different

opponent’s strategies.

2.6 Summary

The idea that an agent can improve its performance by observing interactions

among other agents is not new. What is new in this paper is how to do it without the

knowledge of the set of opponents’ internal states. In open environments such as IPD

tournaments, we know little about the opponents’ strategy, let alone the current state of

the opponents’ strategy. Hence methods that do not require us to know the opponents’

states can be quite valuable in such domains.

To avoid using the notion of states or belief states as in policies or automata, our ap-

proach directly selects and combines the records of the other agents’ interactions to form

a partial strategy called a composite strategy, which maximizes the expected utility with

respect to an estimated probability distribution of opponents that can possibly generate

those interactions, without knowing the states or other details of the strategies of these

opponents. The composite strategy can be used to decide how an agent should respond

to typical behaviors of opponents in an environment. Out of a set of 126 agents in three

45

iterated games (the IPD, ICG, and IBS), our technique significantly improved the agent’s

rank (compared to the other agents) by 12% in the IPD, 38% in the ICG, and 33% in the

IBS, after incorporating the partial strategy.

In future, we would like to address the following issues:

• In iterated games such as the IPD, ICG, and IBS, players frequently encounter the

game situations that have been seen before; hence combining the interaction traces

was sufficient to provide large increases in an agent’s performance. By itself, this

would not be suitable for large-scale non-zero-sum games such as chess, where

games among experts usually lead to situations that no player has ever seen before.

We would like to develop a way to combine our technique with game-tree search,

to see how much that extends the scope of the technique.

• Composite strategies in our experiments usually do not fail even if some agents in

the test sets are probabilistic. The reason is that agents in non-zero-games we con-

sidered exhibit relatively small number of different behaviors, such that the sizes of

the sizes of the composite strategies are large enough to cover most of these behav-

iors. However, in other domains agents may exhibit so many different behavior that

cannot be covered by a small number of interaction traces. In the future, we would

like to address this problem when we extend this technique to other domains.

• We’ve done preliminary tests on some nondeterministic partially-observable plan-

ning domains (e.g., transportation domains with unknown traffic patterns). Our

approach worked quite well in our tests, but we need to do larger cross-validated

experiments before reporting the results. In future, we intend to generalize our

46

method for domains that are more complicated than two-player repeated games.

• A significant limitation of our technique is that it requires an estimate of the prob-

ability with which we’ll encounter each of opponents we have observed. In the

future, we would like to study how to estimate the probability from a database of

interaction traces and modify our techniques to alleviate this requirement.

• Our current formalization cannot handle problems whose horizon is infinite. We

would like to see how to extend our algorithm to deal with interaction trace of

potentially infinite length.

• The CIT technique can be considered as a technique for transfer learning, the trans-

fer of learned knowledge from one situation to another situation (e.g., [6]). The idea

is that the composite strategy learned in one non-zero-sum games should enable the

system to learn more quickly how to play another non-zero-sum game. In future,

we would like to see how to transfer interaction traces recorded in one situation to

another in order to speed up the learning process.

47

Chapter 3

Task-Completion Problems with Goal Uncertainty

In Chapter 2, we presented the Combining Interaction Traces (CIT) technique for

synthesizing a strategy from a database of interaction traces. An interesting question is

whether this technique is applicable to domains other than repeated games. There is a

large class of problems in which an agent must perform a sequence of interactions with

an environment that responds non-deterministically to these actions, in order to achieve a

goal. The environment can be any environment with contingencies, including an opponent

in a game or a city with traffic lights and accidental events. In this chapter, we consider

the task of adapting the CIT technique to these problems.

It turns out that we cannot directly apply the CIT technique to all kind of problems

in which an agent has to interact with an environment. The issue is that some problems are

inherently unsolvable—there does not exist a strategy that can guarantee the success of an

agent in accomplishing the given task. For these problems, it is impossible to synthesize

a sure-win strategy, no matter how clever the strategy synthesis algorithm is.

The concept of unsolvable problems in agent-environment interaction resembles

impossibility theorems in distributed systems [29] and the concepts of observability and

controllability in control systems. In distributed systems, researchers know that some

problems (e.g., distributed consensus with one faulty process) are fundamentally unsolv-

able. Remedying these problems is far from trivial, because it requires a modification to

48

the fundamental assumptions of the distributed system model people have been used. In

control theory, controllability is about the possibility of steering a system to a particular

state by using an appropriate control signal—if a state is not controllable, no control sig-

nal can control the state. In short, it is impossible to design a controller to achieve certain

desired properties in a system. But our focus in this chapter is not the solvability of all

kinds of systems, but the solvability of problems in which an agent has to interact with

an environment in order to accomplish certain tasks. Repeated games such as the IPD, of

course, belongs to this class of problems.

We will study task-completion problems, in which an agent has to interact with an

environment in order to accomplish a goal set by a given task. There are many problems

in which an agent needs to complete a given task by interacting with a partially observable

and/or non-deterministic environment. In these problems, the challenge for the agent is to

explore an unknown world while solving the problem. However, not every environment is

safely explorable [57, page 125]; The exploration-exploitation dilemma [19, 20] implies

that it is not always possible for the agent to do this successfully (or optimally), because

during exploration the agent may reach a state in which it is no longer possible to complete

the task. The problem is compounded by the uncertainty about goals—the goals in the

problem can vary from one situation to another, and the agent is uncertain about the

goals it needs to achieve at the beginning of the interaction. Thus, the strategy synthesis

algorithm must take both the nondeterministic behavior of the environment and the goal

uncertainty into account when creating a new strategy for solving the problems.

First, we characterize problems that are unsolvable by using the compatibility of

interaction traces. We provide theorems giving conditions under which it is possible or

49

impossible to construct strongly successful strategies (i.e., strategies that are guaranteed

to be successful). For cases where no strongly successful agent is possible, we provide

mathematical results giving the probability that an agent can be successful. Second, we

present provably correct algorithms to analyze a database of interaction traces from previ-

ous problem-solving episodes, in order to construct a strongly successful strategies if one

exists, or construct a strategy that has the highest possible probability of success given

the interaction traces. These algorithms can be considered as the adaptations of the CIT

algorithm in Chapter 2 for task-completion problems. Finally, we provide theoretical and

experimental results demonstrating the algorithm’s performance.

To summarize, the contributions of this chapter are:

• We provide necessary and sufficient conditions (on an environment’s set of pos-

sible interaction traces) for there to exist an agent that can always successfully

accomplish a task. If a task-completion problem satisfies this condition, we say the

problem is strongly solvable.

• We provide an algorithm that takes a collection of interaction traces from previous

problem-solving episodes, and constructs an agent with the highest probability of

success among all combinations of the interaction traces.

• We present experimental results showing that even with a small number of interac-

tion traces, the agent constructed by our algorithm performs well.

50

3.1 Basic Definitions

Our definitions of agents and environments are based on Chapter 2 of [57]. An agent

interacts with an environment by performing actions in some finite set A and receiving

percepts in some finite set B. In repeated games, an environment is the opponent and

percepts are opponent’s actions.

We assume the interactions between an agent λ and an environment e occur at

discrete time points t1, t2, At each time ti, an agent performs an action ai ∈ A and

receives a percept bi ∈ B. An interaction trace of length N is a sequence of interactions

〈(a1, b1), (a2, b2), . . . , (aN , bN)〉. For simplicity, we also denote an interaction trace as a

pair τ = (α, β), where α = 〈a1, . . . , aN〉 is an action sequence, and β = 〈b1, b2, . . . , bN〉

is a percept sequence.1 Notice that the length of α and β must be equal. Let T ∗ be the set

of all interaction traces, i.e., T ∗ = {(α, β) : α ∈ A∗, β ∈ B∗, |α| = |β|}, where A∗ is the

set of all action sequences, and B∗ is the set of all percept sequences.

Let τ = (α, β). Then we let

actions(τ) =τA = α;

percepts(τ) =τB = β.

By extension, if T is a set of interaction traces, then we let

actions(T) ={τA : τ ∈ T };

percepts(T) ={τB : τ ∈ T }.

1Although we assume that ai and bi occur simultaneously, our formalism is general enough to model

environments where they are interleaved. This can be done by specifying that odd time points the actions

have no effect, and that at even time points the environment always returns a “null” percept.

51

Let µ be any sequence such as action sequences, percept sequences, or interaction

sequences. Then [µ]k denotes the k’th element in µ, prefixk(µ) be the k-prefix of µ, and

suffixk(µ) be the k-suffix of µ.

More precisely, we define a k-prefix and a k-suffix as follows: Let µ =

〈m1,m2, . . . ,mn〉, where mi can be either an action or a percept. Then prefixk(µ) =

〈m1, . . . ,mmin(k,n)〉 and suffixk(µ) = 〈mmin(k,n)+1, . . . ,mn〉. If µ is an inter-

action trace τ , then prefixk(τ) = (prefixk(τ
A), prefixk(τ

B)), and suffixk(τ) =

(suffixk(τ
A), suffixk(τ

B)).

3.1.1 Agents and Environments

We consider three types of environments: deterministic, nondeterministic, and

probabilistic:

• A deterministic environment is a function e : A∗ → B. If α is an action sequence

of length k, then e(α) is the percept returned by e at time tk+1.

• A nondeterministic environment is a function ē : T ∗ → 2B. If τ is an interaction

sequence of length k, then at time tk+1, ē may return any of the percepts in ē(τ).

• A probabilistic environment is a pair ê = (ē, δ), where ē is as defined above and

δ : T ∗ × B → [0, 1] is a function such that for every τ ∈ T ∗, the function δτ (b) =

δ(τ, b) is a probability distribution over B.

In Chapter 2, we distinguish agents from their strategies, in spite of the one-one

correspondence between an agent and the strategy the agent uses. But in the literature, an

52

agent is sometimes considered as an action function, which actually is the strategy of the

agent rather than the agent itself. In this chapter, action functions and strategies mean the

same thing.

A deterministic agent function φ is a function φ : B∗ → A; a nondeterministic

agent function is a function φ̄ : T ∗ → 2A; and a probabilistic agent function is a pair

φ̂ = (φ̄, δ), where δτ is a probability distribution over φ̄(τ).

A deterministic agent is an agent whose action function is deterministic; a nondeter-

ministic agent is an agent whose action function is nondeterministic; and a probabilistic

agent is an agent whose action function is probabilistic.

3.1.2 Equivalences

Mathematically, deterministic agent functions and deterministic environments are

pure strategies, whereas probabilistic agent functions and probabilistic environments are

mixed strategies. Nondeterministic agent functions is equivalent to a set of pure strategies,

so does nondeterministic environments.

To see why it is the case, consider a nondeterministic environment ē. One can

construct a set Eē of deterministic environments recursively by (1) E0 = {{〈〉 → b} :

b ∈ ē(〈〉)}, (2) for k ≥ 0, Ek+1 = {ek ∪ {α → b} : e ∈ Ek, α ∈ dom(e), a ∈ A, b ∈

ē((α◦〈a〉, e(α)))}, and (3) Eē = ∪k≥0Ek. We call each of the deterministic environments

in Eē a configuration of ē. When an agent interacts with ē, the agent can imagine that

it is interacting with one of the configuration in Eē, but it does not know which one

it is. We call this configuration the actual configuration. According to this viewpoint,

53

all the contingencies in a nondeterministic environment can be summarized by a single

contingency, which is about the ignorance about which configuration is the actual one.

That’s why we consider ē is equivalent to Eē. Every nondeterministic environment has an

equivalent set of deterministic environments. 2.

Let ê = (ē, δ) be a probabilistic environment, let Eē be as above, and let Eê = Eē.

Then there is a probability distribution ∆ê over Eē that is equivalent to ê in the sense that

δτ (b) =
∑
{∆ê(e) : e ∈ Eē, e(prefixj(τ

A)) = [τB]j+1, 0 ≤ j < k, e(τA) = b}. Then ê is

said to be equivalent to the mixed strategy (Eê,∆ê).

Similarly, every nondeterministic agent φ̄ has an equivalent set of deterministic

agents Λφ̄, and every probabilistic agent φ̂ = (φ̄, δ) has an probability distribution ∆φ̂

over the set Λφ̄ of deterministic agents such that ∆φ̂ is equivalent to δ. Thus, we write φ̄

and φ̂ as Λφ̄ and (Λφ̄,∆φ̂), respectively.

In Chapter 2, mixed strategies are denoted by ψ and sets of pure strategies are

denoted by Φ. But for clarity, we should use φ̂ and ê in place of ψ, while φ̄ and ē in place

of Φ.

The above equivalences will allow us to derive properties of nondeterministic or

probabilistic environments by referring to the equivalent sets of deterministic environ-

ments. For the rest of the paper, we assume agents and environments are deterministic

unless we state otherwise.
2However, not every set of deterministic environments E has an nondeterministic environment whose

equivalent set of deterministic environments is exactly E.

54

3.1.3 Agent-Environment Interaction

When a deterministic agent interacts with a deterministic environment e, there is

exactly one interaction trace (α, β) such that φ(prefixk(β)) = ak+1 and e(prefixk(α)) =

bk+1 for any k ≥ 0, where φ is the agent function. We denote this interaction trace by

trace(φ, e).

If we are given just an action sequence α generated by some agent function φ, we

write trace(α, e) = trace(φ, e). If we are given just a percept sequence β generated by e,

we write trace(φ, β) = trace(φ, e).

When an deterministic agent function φ interacts with a nondeterministic environ-

ment ē, the set of all possible interaction traces is denoted by

traces(φ, ē) = {trace(φ, e) : e ∈ Eē} .

Since a probabilistic environment ê is also a nondeterministic environment, we denote the

set of all possible interaction traces between a deterministic agent function φ and ê by

traces(φ, ê) =
{
trace(φ, e) : e ∈ Eê

}
.

3.2 Task-Completion Problems

Agent-based problems are often defined using states. For goal-based agents, the

objective is to reach a goal state by interacting with the environment. For example, in

classical planning problems, an agent must, by means of its actions, take the environment

to a state in some set S of goal states. Likewise, problems with extended goals require an

agent to take the environment through a sequence in some set S of sequences of states.

55

We generally call these problems task-completion problems.

One major drawback of the state-based problem formulation is that in some prob-

lems it is difficult, if not impossible, to define the set of states. For example, in repeated

games such as the IPD, a player usually does not know the internal states of the other

player. The state-based problem formulation may not be appropriate for these problems.

To avoid the reliance on the notion of states, we propose a new problem formulation

called the interaction-based problem formulation that uses interaction traces in place of

states. There is a large class of problems in which the success of an agent in solving a

problem depends solely on how it interacts with the environment. Thus, we can formulate

these problems based on how successful an interaction is, without referring the states of

the world. The interaction-based problem formulations is expressive enough to formulate

many kind of problems including nondeterministic or probabilistic planning problems.

3.2.1 Interaction-based Problem Formulations

In our interaction-based problem formulations, a state is replaced by the set of in-

teraction traces that can reach the state, and goals are defined by the condition over the

set of all possible interaction traces. More generally, a goal is a Boolean function over

the set of all possible histories. Let Tsuccess be the set of all possible histories that satisfies

the goal. We say the interaction traces in Tsuccess are successful. Mathematically, a goal

is equivalence to the membership function of Tsuccess. Thus, we can also use Tsuccess to

define a goal.

For task-completion problems, we put certain restriction of the set of successful

56

interaction traces:

Definition 5 A goal for task-completion problems is a set Tsuccess of interaction traces

such that for every τ ∈ Tsuccess, τ is finite and all extensions of τ are in Tsuccess (i.e.,

τ ◦ τ ′ ∈ Tsuccess for any τ ′ ∈ T ∗).

The condition that all extensions of successful interaction traces are successful is

specific to task-completion problems: this condition ensures that once an agent completes

a task, no further interaction with the environment could alter this accomplishment.

We define three versions of task-completion problems based on the types of the

environments:

• A deterministic task-completion problem is a 4-tuple P = (A,B, e, Tsuccess).

• A nondeterministic task-completion problem is a 4-tuple P̄ = (A,B, ē, Tsuccess).

• A probabilistic task-completion problem is a 4-tuple P̂ = (A,B, ê, Tsuccess).

In the above definitions,

• A is a finite set of actions;

• B is a finite set of percepts;

• Tsuccess is a goal;

• The environments e, ē, and ê are deterministic, nondeterministic, and probabilistic,

respectively; and

• e, ē, ê, and the membership of Tsuccess are computable functions.

57

Roughly speaking, the objective of these problems is to find a deterministic agent

function φ such that if an agent uses φ to interact with the environment, the interaction

trace between the agent and the environment is successful. But the objective are slightly

different in different versions of the problem.

In deterministic task-completion problems, it is sufficient to find an action sequence

α such that trace(φ, e) ∈ Tsuccess, without finding a deterministic agent function φ, since

all an agent needs to succeed is to generate α. We call α a solution of P .

In nondeterministic task-completion problems, the interaction between the agent

and the environment can vary from time to time. As discussed in Section 3.1.2, every

nondeterministic environment ē has an equivalent set Eē of deterministic environments,

each of them is called a configuration. For each configuration there is an action sequence

that can reach the goal. But unfortunately, the agent does not know which configuration

is the actual one, thus it does not know which action sequence is the right one.

Due to this problem, there are several ways to define the objectives for nondetermin-

istic task-completion problems. One objective is to require that the agent always succeeds

no matter which configuration is actual. More precisely, the objective is to find a deter-

ministic agent function φ such that if the agent uses φ to interact with ē, all interaction

traces generated by the agent are successful (i.e., traces(φ, ē) ⊆ Tsuccess). φ is called a

strong solution.

Not every nondeterministic task-completion problem has strong solutions. But if

strong solutions exist, we say the nondeterministic task-completion problem is strongly

solvable.

Strong solvability is a rather strong requirement. When there is no strong solution,

58

we would like to look for suboptimal solutions instead. A deterministic agent function φ is

a weak solution if at least one successful interaction trace can possibly be generated when

φ interacts with ē. More precisely, φ is a weak solution for P̄ if at least one interaction

trace generated by the agent is successful (i.e., traces(φ, ē) ∩ Tsuccess 6= ∅). P̄ is weakly

solvable if and only if a weak solution exists.

The concepts of strong solutions and weak solutions can be directly applied to prob-

abilistic task-completion problems. But the solvability of probabilistic task-completion

problems can be more fine-grained. The probability of success of an agent function φ in P̂

is the sum of the probabilities of the configurations that φ succeeds in it. Mathematically,

the probability of success of φ is

P (φ) =
∑ {

∆ê(e) : ∀e ∈ Eê such that trace(φ, e) ∈ Tsuccess

}
P̂ is p-solvable, where 0 ≤ p ≤ 1, iff there is an agent function φ that P (φ) ≥ p. An

optimal agent function φ∗ for P̂ is one for which there is no other agent function φ such

that P (φ) > P (φ∗). P̂ is strongly solvable iff P (φ∗) = 1; P̂ is unsolvable iff P (φ∗) = 0;

If P̂ is not unsolvable (i.e., 0 < P (φ∗)), P̂ is weakly solvable.

3.2.2 Goal Uncertainty

So far we assume the goal of a task-completion problem is fixed—the agent knows

ahead of time the set Tsuccess of successful interaction traces. But what if the agent is not

sure about which interaction traces are successful? If it is the case, the agent may face

the kind of dilemma as shown in Figure 3.1. In this figure, there are two deterministic

environments (configurations) that has different goals, and the behavior of the environ-

59

ments are depicted by the state diagrams. The states in the diagrams denote the percepts

generated by the environment, while the edges denote the actions the agent can choose.

Actions and percepts are not made simultaneously, but interleaved with each other. First

the environment generates a percept, and then the agent chooses an action. Depended on

the action the agent chooses, the environment will advance to the next states according to

the edges in the diagrams. The objective is to reach the goal states, which is denoted by

the double circles in the figure.

a1

b0 b1

a0

b2

b3

b4

b5

a2

a3

a4

a1

b0 b1

a0

b2

b3

a2

a3

a4
b5

b4

a5

a6

a6

a5

Configuration 1

Configuration 2

Figure 3.1: The state diagrams of two configurations with different goals. The double

circles are the goal states. This figure is adapted from Figure 4.19(a) on page 124 in

Russell and Norvig [57].

There are two possible goal states: b4 and b5. If the goal is b4, a successful interac-

60

tion trace is

〈τ1 = (Nil, b0), (a0,Nil), (Nil, b1), (a1,Nil), (Nil, b2), (a3,Nil), (Nil, b4)〉

If the goal is b5, a successful interaction trace is

〈τ2 = (Nil, b0), (a0,Nil), (Nil, b1), (a2,Nil), (Nil, b3), (a4,Nil), (Nil, b5)〉

But since the agent is uncertain about which goal state is the true one, the agent cannot

determine which action it should choose at the fourth interaction in order to reach the goal

states. This dilemma is caused by the uncertainty about the goal states.

In some problems, the success of an agent can depend on the configurations. Let us

consider the example in Section 2.3.2. In this example, there are two possible opponents:

TFT and TFTT. Thus, the environment has two different configurations: eTFT and eTFTT ,

and the probability of occurrence of eTFT is 0.7 while that of eTFTT is 0.3. Suppose we

define the notion of success in such a way that when playing against TFT, the success-

ful interaction trace has to be τ3 = 〈(C,C), (C,C), . . .〉, while the successful interac-

tion trace for playing against TFTT has to be τ4 = 〈(D,C), (C,C), (D,C), (C,C), . . .〉.

According to the analysis in Section 2.3.2, no agent can always succeed according this

criteria.

At first glance, one possible way to define goal uncertainty is to replace the goal

Tsuccess with a set of goals or a probability distributions of a set of goals. These definitions

implicitly assume that goals are independent of the random events in the environment.

However, this independence assumption is not always true—the goal can depend on the

environment. For example, suppose there are two possible configurations: e1 and e2.

When e1 is the actual configuration, the goals are both g1 and g2. When e2 is the actual

61

configuration, the goal is g1 only. Then the goal uncertainty in this example cannot be

modeled as a set of goals.

A natural way to express the associations between goals and the environment is to

consider task-completion problems with goal uncertainty as a set of task-completion prob-

lems without goal uncertainty, or a probability distribution over a set of task-completion

problems.

Definition 6 A nondeterministic task-completion problem with goal uncertainty is a set

of nondeterministic task-completion problems, all of them have the same set of actions

and percepts.

Definition 7 A probabilistic task-completion problem with goal uncertainty is a pair

(P gu,∆gu), where P gu is a set of probabilistic task-completion problems, all of them

have the same set of actions and percepts, and ∆gu is a probabilistic distribution over

P gu.

For example, let e1 and e2 be the deterministic environments in Figure 3.1. Let A =

{a0, a1, a2, a3, a4, a5, a6}, B = {b0, b1, b2, b3, b4, b5}, T 1
success = {τ1} and T 2

success = {τ2}.

Then the problem in Figure 3.1 can be defined as {P̄1, P̄2}, where P̄i = (A,B, ei, T i
success)

for i = 1 or 2. Similarly, the problem in Section 2.3.2 can be defined as a probability

distribution ∆ over {P̂3, P̂4}, where P̂3 = {{C,D}, {C,D}, ({eTFT},∆uniform), {τ3}},

P̂4 = {{C,D}, {C,D}, ({eTFTT},∆uniform), {τ4}}, ∆(P̂3) = 0.7, ∆(P̂4) = 0.3, and

∆uniform is a uniform probability distribution.

62

3.2.3 Simplifying the Problem Definitions

One way to simplify the problem definitions is to combine the nondeterministic

choices or the random variables in the problem definitions together to form a single non-

deterministic choice or random variable.

Let {(A,B, ēi, T i
success)}i=1..n be a nondeterministic task-completion problem with

goal uncertainty. Let E is the union of the equivalent sets of configurations of ēi (i.e.,

E =
⋃

i=1..n Eēi). If e is a common configuration of n nondeterministic environments,

there will be n copies of e in E, one for each nondeterministic environment containing

e. 3 We define Tsuccess as a mapping from E to T ∗, such that Tsuccess(e) = T i
success if

e is a configuration for ēi. We say Tsuccess(e) is the goal of the configuration e. The

nondeterministic task-completion problem with goal uncertainty can be defined as a 4-

tuple (A,B,E, Tsuccess). According to this definition, a nondeterministic task-completion

problem without goal uncertainty is a special case of nondeterministic task-completion

problem with goal uncertainty in which Tsuccess is a constant function.

Definition 8 A nondeterministic task-completion problem P̄ (with or without goal uncer-

tainty) is a 4-tuple (A,B,E, Tsuccess), where A is a set of actions, B is a set of percepts,

E is a set of configurations (i.e., deterministic environments), and Tsuccess is a mapping

from E to T ∗.

Similarly, let (P gu,∆gu) be a probabilistic task-completion problem with goal un-

certainty, where (1) P gu = {(A,B, êi, T i
success)}i=1..n, (2) ∆gu is a probability distribution

over P gu, and (3) êi = (ēi,∆i) for 1 ≤ i ≤ n. Then the problem can be defined as 5-tuple

3This implies that a configuration in E can have more than one set of successful interaction traces.

63

(A,B,E,∆, Tsuccess), where

• E is the union of the equivalent sets of configurations of ēi (i.e., E =
⋃

i=1..n Eēi);

• ∆ is a probability distribution over E, such that ∆(e) = ∆gu(P̂i) × ∆i(e) where

P̂i = (A,B, êi, T i
success) and e ∈ Eêi; and

• Tsuccess as a mapping from E to T ∗, such that Tsuccess(e) = T i
success if e is a config-

uration for êi.

According to this definition, a probabilistic task-completion problem without goal

uncertainty is a special case of probabilistic task-completion problem with goal uncer-

tainty in which Tsuccess is a constant function.

Definition 9 A probabilistic task-completion problem P̂ (with or without goal uncer-

tainty) is a 5-tuple (A,B,E,∆, Tsuccess), where A is a set of actions, B is a set of per-

cepts, E is a set of configurations (i.e., deterministic environments), ∆ is a probabilistic

distribution over E, and Tsuccess is a mapping from E to T ∗.

With the help of these simplified definitions, we can easily adapt the concept of

strong solutions and weak solutions for task-completion problems without goal uncer-

tainty to task-completion problems with goal uncertainty. A strong solution for a nonde-

terministic task-completion problem P̄ (with or without goal uncertainty) is a determin-

istic agent function φ whose interaction traces generated by interacting with the environ-

ment are always successful (i.e., trace(φ, e) ∈ Tsuccess(e) for all e ∈ E). A weak solution

for P̄ is φ such that some of the interaction traces of φ are successful (i.e., there exists

e ∈ E such that trace(φ, e) ∈ Tsuccess(e)). We say the agent using φ strongly succeeds

64

in P̄ if φ is a strong solution. Likewise, the agent weakly succeeds in P̄ if φ is a weak

solution.

The probability of success of an agent function φ in a probabilistic task-completion

problem P̂ is the sum of the probabilities of the configurations that φ succeeds in it:

P (φ) =
∑
{∆(e) : ∀e ∈ E such that trace(φ, e) ∈ Tsuccess(e)}

P̂ is p-solvable, where 0 ≤ p ≤ 1, iff there is an agent function φ that P (φ) ≥ p. An

optimal agent function φ∗ for P̂ is one for which there is no other agent function φ such

that P (φ) > P (φ∗). P̂ is strongly solvable iff P (φ∗) = 1; P̂ is unsolvable iff P (φ∗) = 0;

If P̂ is not unsolvable (i.e., 0 < P (φ∗)), P̂ is weakly solvable.

3.3 Strong Solvability

This section gives necessary and sufficient conditions for strong solvability of non-

deterministic task-completion problems. The conditions are also applicable to proba-

bilistic task-completion problems, since every probabilistic task-completion problem has

a nondeterministic task-completion problem whose strong solutions are the strong solu-

tions for the probabilistic task-completion problem.

First, we look at the case where a nondeterministic task-completion problem P̄ con-

tains exactly two configurations. For this case, Theorem 4 gives necessary and sufficient

conditions for strong solvability. If the conditions in Theorem 4 are not satisfied, every

agent for P̄ will inevitably face the kind of dilemma shown in Figure 3.1, hence will fail

in at least one of the configurations.

Definition 10 The longest common prefix of two (finite or infinite) sequences µ1 =

65

〈m1,m2, . . .〉 and µ2 = 〈m′
1,m

′
2, . . .〉 is lcp(µ1, µ2) = 〈m1,m2, . . . ,mk〉, where mi = m′

i

for 1 ≤ i ≤ k, and either (1) k = |s1|, (2) k = |s2|, or (3) mk+1 6= m′
k+1.

In other words, suppose k is the largest number such that prefixk(µ1) = prefixk(µ2).

Then the longest common prefix of µ1 and µ2 is

lcp(µ1, µ2) = prefixk(µ1) = prefixk(µ2).

If k < |µ1| and k < |µ2|, then [µ1]j = [µ2]j for 1 ≤ j ≤ k, and [µ1]j 6= [µ2]j for

k < j ≤ min(|µ1|, |µ2|).

Theorem 4 P̄ = 〈A,B,E, Tsuccess〉 where E = {e1, e2} is strongly solvable if and

only if either (1) A1 ∩ A2 6= ∅, where A1 = actions(Tsuccess(e1)) and A2 =

actions(Tsuccess(e2)), or (2) there exist action sequences α1 ∈ A1 and α2 ∈ A2 such

that |lcp(percepts(trace(α1, e1)), percepts(trace(α2, e2)))| < |lcp(α1, α2)|.

Proof. If A1 ∩ A2 is not an empty set, we can construct a strongly successful agent

function φ for P̄ by choosing any action sequence in A1 ∩ A2 and then construct-

ing φ which generates the chosen action sequence. Otherwise, suppose there exist

α1 ∈ A1 and α2 ∈ A2 such that |lcp(percepts(trace(α1, e1)), percepts(trace(α2, e2)))| <

|lcp(α1, α2)|. Then e1(α
′) 6= e2(α

′), where α′ = prefixk(lcp(α1, α2)) with k =

|lcp(percepts(trace(α1, e1)), percepts(trace(α2, e2)))|. Thus, we construct a strongly suc-

cessful agent function φ such that (1) φ generates α′ on or before tk+1, and (2) accord-

ing to the percept bk+1 at tk+1, it generates either suffixk+1(α1) (if bk+1 = e1(α
′)) or

suffixk+1(α2) (if bk+1 = e2(α
′)) after tk+1.

Conversely, suppose λ strongly succeeds in P . Let τ1 = (α1, β1) = trace(λ, e1) ∈

Tsuccess(e1) and τ2 = (α2, β2) = trace(λ, e2) ∈ Tsuccess(e2). If τ1 = τ2, then

66

α1 = α2 ∈ A1 ∩ A2. If τ1 6= τ2, without loss of generality we can assume

that k = |lcp(α1, α2)| ≤ |lcp(β1, β2)|. At tk+1, the agent chose a different ac-

tion for each environment. But prefixk(lcp(β1, β2)) is the same no matter which en-

vironment the agent is in. This contradicts the fact that since λ is deterministic,

λ(prefixk(lcp(β1, β2))) cannot map to two different actions. Therefore, |lcp(β1, β2)| =

|lcp(percepts(trace(α1, e1)), percepts(trace(α2, e2)))| < |lcp(α1, α2)|. 2

To extend necessary and sufficient conditions in Theorem 4 to nondeterministic

environments that involve more than two configurations, we first of all define several

relationships among interaction traces that resemble the conditions in Theorem 4.

Definition 11 Two interaction traces τ1 and τ2 are compatible if and only if either (1)

actions(τ1) is a prefix of actions(τ2), (2) actions(τ2) is a prefix of actions(τ1), or (3)

|lcp(τA
1 , τ

A
2)| > |lcp(τB

1 , τ
B
2)|.

Definition 12 A set T of interaction traces is compatible if and only if every pair of

interaction traces in T are compatible.

It is interesting to compare Definition 11 and Definition 12 with Definition 2 and

Definition 3: in Chapter 2, we assume all interaction traces are equal-length; thus an

interaction trace τ1 is a prefix of another interaction trace τ2 if and only if τ1 = τ2. But

here interaction traces can have different-length.

One may attempt to define the sufficiency of a set of interaction traces as in Defini-

tion 4 as follows:

Definition 13 A set T of interaction traces is E-sufficient if and only if for all e ∈ E there

exists τ ∈ T such that τ = trace(α, e) for some action sequence α.

67

But E-sufficiency, together with compatibility, does not guarantee the success of an

agent in task-completion problems, unless the interaction traces in T are successful. Thus,

we extend the definition of E-sufficiency to require that interaction traces are compatible,

E-sufficient, and successful.

Definition 14 A set T of interaction traces is P̄-successful if and only if (1) T is com-

patible and (2) for all e ∈ E there exists τ ∈ T such that τ ∈ Tsuccess(e).

If T is P̄-successful, there exists a bipartite matching between E and T , such that

for every configuration in E, the corresponding interaction trace according to the mapping

is successful in the configuration. The bipartite matching, called an EI-mapping (which

stands for an environment-interaction mapping) and denoted by ξ, is an surjection (i.e.,

onto) mapping from E to T . We modify Definition 14 based on EI-mappings as follows:

Definition 15 A set T of interaction traces is P̄-successful if and only if (1) T is com-

patible and (2) there exists an EI-mapping ξ such that ξ(e) ∈ Tsuccess(e) for all e ∈ E.

We now extend Theorem 4 to problems that involve more than two environments.

Theorem 5 A nondeterministic task-completion problem P̄ = 〈A,B,E, Tsuccess〉 is

strongly solvable if and only if there exists a P̄-successful set of interaction traces.

Proof. If P̄ is strongly solvable by an agent function φ, let T = {τi = trace(φ, ei) : ei ∈

E} be the set of successful interaction traces. Clearly, there is an EI-mapping ξ : E→ T

such that ξ(ei) = τi for ei ∈ E. The remaining question is whether T is compatible. If T

is not compatible, there exist e1, e2 ∈ E such that τ1 and τ2 are not compatible. But this

contradicts to the fact that φ is deterministic. Thus, T is E-compatible.

68

Conversely, if there exists a P̄-successful set T of interaction traces, we claim that

an agent using the deterministic agent function in Figure 3.2 with T as the input will

strongly succeed in P̄ . The agent function is called a composite agent function and is

denoted by CA(T). To see why CA(T) is a strong solution for P̄ , we need to check

whether trace(CA(T), e) ∈ Tsuccess(e) for all e ∈ E. In other words, we need to check

the composite agent function always terminates with success (Line 14) when interacting

with any configuration in E.

Without loss of generality, let e∗ ∈ E be the actual configuration. By induction

on i, we prove that CA(T) terminates with success when interacting with e∗. Since all

interaction traces in T are finite (because they are all successful), if CA(T) does not

exist with failure at Line 3 or Line 6 at the i’th iteration, then CA(T) will terminate with

success at Line 14. Thus, all we need is to prove by induction on i that CA(T) does not

exist with failure at the i’th iteration. More precisely, we prove (1) |Ai| = 1 at Line 6,

and (2) there exist τ ∈ Ti such that τ can be generated by e∗ (i.e., Ti 6= ∅ at Line 3), for

1 ≤ i ≤ n.

First, let us consider i = 1. For any two interaction traces τ1, τ2 ∈ T , the first

actions in τA
1 and τA

2 must be the same since T is compatible. Therefore, |A1| = 1. Since

T is E-sufficient and E is nonempty, it follows that there is at least one interaction trace

τ ∈ T that can be generated by e∗. Thus, T1 6= ∅.

Now consider i = k + 1. Suppose |Ak| = 1 and there exist τ ∈ Tk that can

be generated by e∗. First, since all traces in Tk have the same prefix up to the (k −

1)’th iteration and e∗ is a deterministic environment, e∗ will return a unique percept bk

at Line 8, which is the k’th action of τ (otherwise τ is not generated by φ). In addition,

69

by Definition 2, for any two interaction traces τ1, τ2 ∈ Tk, the first k actions in τA
1 and

τA
2 must be the same. Thus, the k’th action of τA must be ak, the action generated at

Line 8. Therefore, (ak, bk) is the i’th interaction of τ , and τ will not be removed from T ′k

at Line 11. Hence τ ∈ Tk+1 since Tk+1 = T ′k at Line 12. Second, |Ak+1| ≥ 1 because

|Tk+1| ≥ 1. Third, at the start of each iteration k+1, all interaction traces in Tk+1 have the

same prefix up to the k’th iteration (any traces without this prefix were removed at Line 11

on a previous iteration). By Definition 2, for any two interaction traces τ1, τ2 ∈ Tk+1, the

first k+1 actions in τA
1 and τA

2 must be the same; and consequently |Ak+1| ≤ 1. Therefore,

|Ak+1| = 1. By induction, |Ai| = 1 and Ti 6= ∅, for 1 ≤ i ≤ n. 2

The significance of Theorem 4 is that it implies that if we can find a set of mu-

tually compatible interaction sequences that relate to the set E of configurations by an

EI-mapping, then we know P̄ is strongly solvable without needing to know any infor-

mation about the structure of the environments in the configurations in E. Hence, we can

ignore a large part of the structures of the environments when we constructs an agent func-

tion against the environment. Theorem 4 also suggests that one way to decide whether P̄

is not strongly solvable is to find two configurations e1, e2 ∈ E such that no successful

interaction sequences of these environments are (e1, e2)-compatible.

The difference between the composite agent function in Figure 3.2 and the compos-

ite agent in Figure 2.2 is that this procedure continues until the agent succeeds, while the

procedure in Figure 2.2 continues the end of the game. If the input T is compatible, the

procedure would never fail at Line 6. If T is E-compatible, the procedure would never

fail at Line 3. If T is P̄-successful, the procedure will terminate and succeed according

70

Agent CA(T) /* a composite agent synthesized from T */

1. i := 1 ; Ti := T

2. Loop until the agent succeeds

3. If Ti = ∅, then exit with failure because T is insufficient

4. If Ti 6= ∅, then

5. Ai := {a : (∃ τ ∈ Ti) a is the i’th action of τA}

6. If |Ai| 6= 1, then exit with failure because T is incompatible

7. If |Ai| = 1, then let ai be the action in Ai

8. Output ai and receive a percept bi

9. T ′i := Ti

10. For each τ ∈ Ti,

11. If the i’th interaction in τ isn’t (ai, bi), remove τ from T ′i

12. Ti+1 := T ′i ; i := i+ 1

13. End loop

14. Terminate with success

Figure 3.2: The pseudocode of a composite agent function (also known as a composite

strategy) for task-completion problems (with or without goal uncertainty).

71

to Theorem 4.

The running time of the procedure depends on the size of T . We assume every

interaction trace in T has a finite length. The number of iterations in the main loop of the

procedure is at most K = max{|τ | : τ ∈ T }. In each iteration, there is one enumeration

of Tk, which takes at most |T | computation. Each enumeration involves a look up of the

i’th entry of τ , which we assume they take a constant time. In summary, the running time

of the CIT-agent procedure in Figure 3.2 is O(K|T |), where K = max{|τ | : τ ∈ T }.

In practice, the efficiency of the procedure depends on the data structure (i.e., the prefix

tree) we used to store T .

3.4 p-Solvability and Optimal Solutions

If a task-completion problem is not strongly solvable, we opt for weak so-

lutions instead. Let us consider a probabilistic task-completion problem P̂ =

(A,B,E,∆, Tsuccess). The probability of success of an agent function φ in P̂ is

P (φ) =
∑
{∆(e) : ∀e ∈ E such that trace(φ, e) ∈ Tsuccess(e)} .

If P̂ is p-solvable, there is an agent function φ such that P (φ) ≥ p. If P̂ is not strongly

solvable, P̂ is not 1.0-solvable. But P̂ may still be weakly solvable. Our objective is to

find an optimal agent function φ∗ such that there is no other agent function φ such that

P (φ) > P (φ∗).

One might wonder whether a probabilistic agent function can do better than the best

deterministic agent function. The answer is no. For every probabilistic agent, there is a

deterministic agent function that has an equal or higher probability of success:

72

Theorem 6 For any probabilistic agent function φ̂, there exists a deterministic agent

function φ such that P (φ) ≥ P (φ̂) in any probabilistic task-completion problem P̂ =

(A,B,E,∆, Tsuccess).

Proof. Let φ̂ be (Λφ̂,∆φ̂), where Λφ̂ is the set of deterministic agent functions equivalent

to φ̂ and ∆φ̂ is the probability distribution over Λφ̂. Let φmax = arg max{P (φ) : φ ∈ Λφ̂}.

Then

P (φ̂) =
∑
φ∈Λφ̂

{
∆φ̂(φ)× P (φ)

}
≤

∑
φ∈Λφ̂

{
∆φ̂(φ)× P (φmax)

}
= P (φmax)×

∑
φ∈Λφ̂

{
∆φ̂(φ)

}
= P (φmax)

Thus, the probability of success of the deterministic agent function φmax is equal to or

larger than that of φ̂. 2

Theorem 6 means that at least one of the optimal agents for P̂ is deterministic.

Therefore, we want to find one of the optimal agents, it is sufficient to look at deterministic

agents.

Moreover, among all optimal deterministic agent functions, it is sufficient to con-

sider just composite agent functions, because every deterministic agent function has a

“companion” composite agent function that has the same behavior:

Theorem 7 For every deterministic agent function φ there is a composite agent function

φ′ = CA(T) for some set T of interaction traces such that φ(β) = φ′(β) for any percept

sequence β.

73

Proof. Without loss of generality, let ē be a nondeterministic environment. Let

T = {trace(φ, ei) : ei ∈ Eē} be the set of all possible interaction traces that can be gener-

ated by φ. T is compatible set of interaction traces because φ is deterministic. Therefore

the composite agent function φ′ = CA(T) would not produce any error message. More-

over, both φ′ and λ generate the same sequence of actions no matter which configuration

(among Eē) is actual. 2

In short, for any probabilistic task-completion problem there exists at least one

composite agent function that is optimal.

3.5 Solving Weakly Solvable Problems

The results in the last section, together with Theorem 5, suggest an algorithm to

construct an optimal composite agent function for a (strongly or weakly solvable) prob-

lem P̂ , given a set of interaction traces T . If T is exhaustive then the agent will have

the highest possible probability of success, but it may be close to this probability even

when T is not exhaustive. We call this algorithm the CIT-search algorithm, where CIT

stands for “Compatible Interaction Traces”. The major difference between CIT-search

and the CIT algorithm in Section 2 is that the CIT algorithm in Section 2 is not solving

task-completion problems, and if we translate the iterated games we studied in Section 2

into task-completion problems, the CIT algorithm will find the strongly solvable solu-

tions only. But the CIT-search algorithm we present in this section can also find weakly

solvable solutions.

In this section, we present how the CIT-search algorithm works, and an analysis of

74

the CIT-search algorithm. In next section, we present the experimental results to demon-

strate its performance.

An optimal deterministic agent function φ∗ for P̂ is one that has the maximum

probability of success. To see what this means, let Ωstrong ⊆ 2E be the set of all strongly

solvable sets of configurations. Here, a set E′ of environments is strongly solvable if the

subproblem (A,B,E′, Tsuccess) of P̂ is strongly solvable. Then φ∗ is strongly successful

on some set Emax ∈ Ωstrong such that
∑
{∆(e) : e ∈ Emax} ≥

∑
{∆(e) : e ∈ E′}

for every E′ ∈ Ωstrong. This analysis suggests a two-step procedure to construct φ∗: (1)

identify a set Emax ⊆ E that maximizes the weighted sum
∑
{∆(e) : e ∈ Emax} subject

to the constraint that (A,B,E′, Tsuccess) is still strongly solvable, and (2) find an agent

function that strongly succeeds on Emax.

The CIT-search algorithm handle these two steps at the same time. Suppose we

have a data base T of interaction traces, where each interaction trace is indexed by the

environment in which they are successful. Mathematically, let Ecase = {e1, e2, . . . , em} ⊆

E, and C = {T1, T2, . . . , Tm} be a collection of interaction traces, such that Ti ⊆ T is

a set of successful interaction traces for ei, for 1 ≤ i ≤ m. Then we can search for (1)

a subset E′ of Ecase and (2) a set T ′ = {τ1, τ2, . . . , τ|E′|} of interaction traces such that

τi ∈ Ti for each ei ∈ E′ and for any ei, ej ∈ E′, τi and τj are compatible. If we can

find E′ and {τ1, τ2, . . . , τ|E′|} that satisfy these conditions, then we can show that E′ is

strongly solvable, according to Theorem 5. Furthermore, the composite agent function

CA(T ′) will strongly succeed in the subproblem (A,B,E′, Tsuccess). If E′ maximizes∑
{∆(e) : e ∈ E′}, then the composite agent function is an optimal solution.

The CIT-search algorithm is a procedure that does a branch-and-bound search to

75

construct a CIT-agent whose success probability is p or greater. The procedure is called

CIT-search and the pseudo-code of the procedure is shown in Figure 3.3. The initial

inputs of CIT-search are as follows. Each Ti is a set of successful interaction traces for

a configuration ei whose probability is pi = ē. ξ, η, and η+ are for CIT-search’s internal

bookkeeping, and their initial values should be ξ = ∅, η = 0, and η+ = 1.

CIT-search automatically creates a composite agent function that has either (i) a

success probability of p or greater, or (ii) the highest probability of success (P (λ) = η∗)

among all combinations of the given interaction traces. Here is how it works: in this

procedure, E′ and T ′ are denoted by a EI-mapping ξ : E′ → T ′, such that ξ(ei) = τi for

each τi ∈ T ′ that succeeds in ei ∈ E′. CIT-search goes through the sets of interaction

traces C = {T1, T2, . . . , Tm} one by one. For each Tk, it looks for a successful interaction

trace τk ∈ Tk that is compatible with every interaction trace in range(ξ). If such an

interaction trace exists, CIT-search sets ξ(e) = τ . Otherwise, it skips Tk and considers the

next set of interaction trace Tk−1. Once it has looked at all sets of interaction traces in C,

it checks to see if CA(range(ξ)) can succeed with a probability η ≥ p, where η =
∑
{pi :

ei ∈ dom(ξ)}, and pi = ∆(ei). If the answer is yes, then CIT-search terminates and

returns the composite agent function CA(range(ξ)). Otherwise, it backtracks and searches

for another mutually compatible set of interaction traces. The procedure maintains the EI-

mapping ξ∗ with the highest probability η∗ that has seemed so far, and this can be used

with a upper-bound η+ of η to prune unpromising search branches.

The way the procedure constructs ξ guarantees that T ′ is a compatible set of in-

teraction traces. Moreover, when Ecase = E, Ti = Tsuccess(ei) for all ei ∈ Ecase, and

76

Global variables: ξ∗ := ∅; η∗ := 0 // the best EI-mapping

Procedure CIT-search({T1, ..., Tk}, {p1, ..., pk}, p, ξ, η, η+)

1. If η+ < η∗, then return CA(range(ξ∗)) // stop unpromising search

2. If k = 0 and η > η∗, then

3. ξ∗ := ξ; η∗ := η; If η ≥ p, then terminate and return CA(range(ξ)).

4. If k > 0, then

5. C ′ := {T1, ..., Tk−1}; P′ := {p1, ..., pk−1}

6. For each τ ∈ Tk

7. If τ is compatible with every τ ′ ∈ range(ξ), then

8. CIT-search(C ′,P′, p, ξ ∪ {(e→ τ)}, η + pk, η
+)

9. CIT-search({T1, ..., Tk}, {p1, ..., pk}, p, ξ, η, (η+ − pk))

Figure 3.3: The Compatible Interaction Traces Search algorithm (CIT-search).

p = 1, CIT-search will correctly return an optimal composite agent function, because it

exhaustively searches all possible EI-mappings. More generally, if we begin with a small

case base and gradually add additional cases, then the probability of success of the agent

returned by CIT-search will also increase and will approach the optimal probability:

Theorem 8 Let n = |Ecase| and mi = |Ti| for any ei ∈ Ecase. As n → |E| and mi →

|Tsuccess(ei)|, then P (CA(T ′))→ p∗, where p∗ is the probability of success for an optimal

solution, and CA(T ′) is the composite agent function returned by CIT-search with Ecase,

C, {p1, p2, . . . , pm}, and p = 1.0 as inputs.

The running time of CIT-search is O(lm+1), where l = max{|Ti| : Ti ∈ C} and

m = |C|. Thus, the running time depends on the size of the case base. Although the

CIT-search procedure (Figure 3.3) of this method is computationally intractable (because

77

E and Tsuccess can be infinite), we found that even if this procedure takes just a finite case

base of successful interaction traces for a finite number of environments as inputs, it would

still return an agent that performs reasonably well. In practice, we are likely to obtain

the successful interaction traces for some instances of the nondeterministic environments

though our past successful interaction with the environments. So we can construct such a

case base of successful interaction traces. Furthermore, the probability ∆ of environments

is available, for example, by multiplying the probabilities of the outcomes of the actions

(e.g., the domain description is written in a probabilistic STRIPS-style operators.)

If every ei has an equal probability and |Ti| = 1 for each ei, the problem of finding

the maximal set of compatible successful interaction traces is NP-hard (by reduction from

the maximum clique problem). On the other hand, the running time is mostly determined

by how easily the successful interaction traces can be combined together. In some prob-

lems, there are lots of successful interaction traces for every environment (hence both

|Tsuccess(ei)| and |Ti| is large), and in such cases it is relatively easy for CIT-search to find

a good solution (i.e., one whose success probability is greater than the input parameter p).

3.6 Experimental Results

Now we experimentally evaluate how good the solutions CIT-search produces from

a small number of interaction traces. Our test domain is a pizza delivery domain in which

a delivery person needs to deliver a pizza to a customer’s home within some time limit.

Traffic congestion may hamper his/her job, but the only way for him/her to know whether

a road is congested is by going onto that road.

78

We assume that the road map is a grid (e.g., like downtown Manhattan) of size

N × N , with N + 1 north-south roads and N + 1 east-west roads, each N blocks long.

The pizza shop and the customer’s home are at (0, 0) and (N,N), respectively. Each road

has a probability of 0.5 of being congested, and either all of it is congested or none of it is

congested. The delivery person only needs to go one block on a road to find out whether

it is congested, because it takes one time unit to traverse a block without congestion, and

5 time units with congestion. The actions are the directions the delivery person should go

at each junction, and the percepts are whether congestion has occurred on the block that

he/she has just traversed.

Note that there are 22(N+1) possible deterministic environments. The difficulty of

each of them depends partly on the amount of time available to the delivery person. With

10N time units or more, the problem is strongly solvable; but with less than 2N time units

it is unsolvable. For our experiments we used a time limit of 2N + 8Nd with 0 ≤ d < 1,

in order to focus on weakly solvable problems.

For each combination of N ∈ {4, 5, 6, 7, 8} and d ∈ {0.1, 0.3}, we did the follow-

ing steps 25 times:

We created 63 distinct configurations e1, . . . , e63 at random, each with congestion

on different sets of roads, with a 50% chance of congestion for each road. For each ei,

we created a set of successful interaction traces Ti as follows. First, we found a path τi

that went from (0, 0) and (N,N) as quickly as possible in ei. Then for each τi and each

j, we created the set of all paths that followed τi for the first j − 1 steps, chose a different

action step j, and followed the quickest path from the current location to (N,N). Out

of all of these paths, Ti contained the ones whose total time was within ei’s time limit.

79

Then we ran CIT-search with C0, . . . , C63, where Ck = {T1, . . . , Tk}. Note that C0 is

empty. Since CIT-search is NP-hard, we usually could not wait for CIT-search to find

the optimal agent: instead, we terminated it after 100, 000 recursive calls, and retrieve the

best composite agent function it had found during that time.

In the literature on case-based problem solving, the problem solver will often revert

to using a conventional search algorithm if it cannot solve the problem using just the case

base. To model this, for each agent λk we also created a modified agent λ′k that used a

base procedure if the replay of interaction traces failed. Our base procedure was a simple

one: it told the delivery person to move toward to destination randomly, as long as it did

not increase the distance between the delivery person and the destination.

We ran each of the agents λk and λ′k 1000 times on a simulator and recorded their

success rates. We did this for all combinations of N ∈ {4, 5, 6, 7, 8} and d ∈ {0.1, 0.3},

averaged the success rates, and graphed them as shown in Figure 3.4. Hence in Figure 3.4,

each data point is an average of 250,000 runs.

For the agents that use the base procedure, Figure 3.4 shows that the success rate

increases quickly with the number of configurations covered by CIT-search’s database of

interaction traces. It takes less than 16 configurations in order to attain a success rate

of 0.33, and after that point there is no improvement as the number of configurations

increases. We suspect the reason for convergence with a small number of environments

was because of the base procedure, which has a success rate of 0.17 even without any

help from the composite agent function.

For the agents that do not use the base procedure, the success rate also grows quickly

with the number of environments. The agent generated from k = 3 performs as well as the

80

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of configurations (k)

S
uc

ce
ss

fu
l R

at
e

With Base Procedure

Without Base Procedure

Figure 3.4: Success rates for composite agent functions constructed by running CIT-

search with a database that covers k of ē’s 64 configurations, for k = 1, . . . , 64. Each

data point is an average of 250,000 runs.

base procedure with k = 0, and the difference in performance decreases as k increases.

When all of the successful interaction traces are used without the base procedure, the

performance is 94% higher than the base procedure without the interaction traces.

Just as in machine learning techniques, there is a risk of overfitting of the data.

In fact, when d=0.1, we observed a small decrease of probability of success from 0.27

to 0.26 as the as the number of configurations increases from 23 to 64. However, we

do not observe the same tendency when d is large. Our hypothesis to this is that for

difficult problems, there is only a small number of successful interaction traces for each

environment. Therefore it is possible that the CIT agent may lead the delivery person

to some “remote” locations and then fail, and the base procedure cannot complete the

81

task starting from these locations. This also explains why we did not observe a decrease

of probability of success when problems are easy. In future, we will conduct a more

thorough study to investigate this issue.

3.7 Related Work

We know of no previous work on the use of case-based reasoning in stochastic

environments, especially when there is goal uncertainty. A rough analogy can be made

between each of ē’s configurations ei and a case in a traditional case-based reasoning

problem such as those in [39, 63]. But in a traditional case-based reasoning problem,

the domain is totally observable, hence one knows what the “new” problem is that needs

solving. In our case, all we have is a probability distribution over the domain’s possible

behaviors.

Our method is different from existing instance-based learning techniques (such as

the k-nearest neighber algorithms [44]), in that our agent classifies the environment during

execution, not before execution. Unlike the decision trees in decision tree learning, our

prefix tree generates actions during classification, and this influences the agent’s probabil-

ity of success—particularly if the environment is not safely explorable. This difficulty is

similar to the exploration-exploitation dilemma that occurs in reinforcement learning [30],

game playing [19], and real-time search algorithms [10]. But instead of using learning

and exploration techniques, we reuse previously successful interactions to guide the ex-

ploration.

82

3.8 Summary

We have described a new technique to construct an agent for interacting with non-

deterministic and stochastic environments with goal uncertainty. Our technique reuses

previous successful interactions to maximize the agent’s chance of success. Our contri-

butions are summarized below.

We formulate the problems using interaction traces instead of states of the world.

Based on this new interaction-based problem formulation of task-completion problems,

we have given necessary and sufficient conditions for there to exist an agent that can

always successfully accomplish a task. If there exists a set of mutually compatible suc-

cessful interaction traces for each configuration of an environment, then the problem is

strongly solvable, i.e., there exists an agent that is guaranteed to solve the problem. One

class of such agent is the composite agent function, which take the set of compatible

interaction traces to make decisions.

On problems that are not strongly solvable but where we have a database of suc-

cessful interaction traces, our CIT-search algorithm constructs a agent function having the

highest probability of success among all combinations of the interaction traces.

Even the database covers just a small number of configurations of an environment,

our experiments show that the agents produced by CIT-search can still perform well, and

that the reuse of successful interaction traces can improve the success rate of an existing

problem solving strategy.

In future, we would like to conduct more extensive experiments to find out the

relationship between successful interaction traces in the database and the quality of the

83

agent function produced by CIT-search. Moreover, we are interested to see how to speed

up the CIT-search algorithm.

84

Chapter 4

Noise Detection in the Iterated Prisoner’s Dilemma

The Iterated Prisoner’s Dilemma (IPD) has become well known as an abstract

model of a class of multi-agent environments in which agents accumulate payoffs that

depend on how successful they are in their repeated interactions with other agents. An

important variant of the IPD is the Noisy IPD, in which there is a small probability, called

the noise level, that accidents will occur. In other words, the noise level is the probability

of executing “cooperate” when “defect” was the intended move, or vice versa.

Accidents can cause difficulty in cooperation with others in real-life situations, and

the same is true in the Noisy IPD. Strategies that do quite well in the ordinary (non-noisy)

IPD may do quite badly in the Noisy IPD [5, 11, 12, 45, 46, 47]. For example, if two

players both use the well-known Tit-For-Tat (TFT) strategy, then an accidental defection

may cause a long series of defections by both players as each of them punishes the other

for defecting.

This chapter reports on a strategy called the Derived Belief Strategy (DBS), which

was the best-performing non-master-slave strategy in Category 2 (noisy environments) of

the 2005 Iterated Prisoner’s Dilemma competition (see Table 4.1).

Like most opponent-modeling techniques, DBS attempts to learn a model of the

other player’s strategy (i.e., the opponent model1) during the games. Our main innovation

1The term “opponent model” appears to be the most common term for a model of the other player, even

85

Table 4.1: Scores of the best programs in Competition 2 (IPD with Noise). The table

shows each program’s average score for each run and its overall average over all five

runs. The competition included 165 programs, but we have listed only the top 15.

Average Score

Rank Program Author Run1 Run2 Run3 Run4 Run5 Overall

1 BWIN P. Vytelingum 441.7 431.7 427.1 434.8 433.5 433.8

2 IMM01 J.W. Li 424.7 414.6 414.7 409.1 407.5 414.1

3 DBSz T.C. Au 411.7 405.0 406.5 407.7 409.2 408.0

4 DBSy T.C. Au 411.9 407.5 407.9 407.0 405.5 408.0

5 DBSpl T.C. Au 409.5 403.8 411.4 403.9 409.1 407.5

6 DBSx T.C. Au 401.9 410.5 407.7 408.4 404.4 406.6

7 DBSf T.C. Au 399.2 402.2 405.2 398.9 404.4 402.0

8 DBStft T.C. Au 398.4 394.3 402.1 406.7 407.3 401.8

9 DBSd T.C. Au 406.0 396.0 399.1 401.8 401.5 400.9

10 lowES-

TFT classic

M. Filzmoser 391.6 395.8 405.9 393.2 399.4 397.2

11 TFTIm T.C. Au 399.0 398.8 395.0 396.7 395.3 397.0

12 Mod P. Hingston 394.8 394.2 407.8 394.1 393.7 396.9

13 TFTIz T.C. Au 397.7 396.1 390.7 392.1 400.6 395.5

14 TFTIc T.C. Au 400.1 401.0 389.5 388.9 389.2 393.7

15 DBSe T.C. Au 396.9 386.8 396.7 394.5 393.7 393.7

86

involves how to reason about noise using the opponent model.

The key idea used in DBS is something that we call symbolic noise detection—

the use of the other player’s deterministic behavior to tell whether an action has been

affected by noise. More precisely, DBS builds a symbolic model of how the other player

behaves, and watches for any deviation from this model. If the other player’s next move

is inconsistent with its past behavior, this inconsistency can be due either to noise or to a

genuine change in its behavior; and DBS can often distinguish between these two cases by

waiting to see whether this inconsistency persists in the next few iterations of the game.2

Of the nine different version of DBS that we entered into the competition, all of

them placed in the top 15, and seven of them placed among top ten (see Table 4.1). Our

best version, DBSz, placed third; and the two players that placed higher were both masters

of master-and-slave teams.

DBS operates in a distinctly different way from the master-and-slaves strategy used

by several other entrants in the competition. Each participant in the competition was

allowed to submit up to 20 programs as contestants. Some participants took advantage

of this to submit collections of programs that worked together in a conspiracy in which

19 of their 20 programs (the “slaves”) worked to give as many points as possible to the

20th program (the “master”). DBS does not use a master-and-slaves strategy, nor does it

conspire with other programs in any other way. Nonetheless, DBS remained competitive

with the master-and-slaves strategies in the competition, and performed much better than

the master-and-slaves strategies if the score of each master is averaged with the scores

though this player is not necessarily an “opponent” (since the IPD is not zero-sum).
2An iteration has also been called a period or a round by some authors.

87

of its slaves. Furthermore, a more extensive analysis in Section 4.7.2 shows that if each

master-and-slaves team had been limited to 10 programs or less, DBS would have placed

first in the competition.

4.1 Motivation and Approach

The techniques used in DBS are motivated by a British army officer’s story that was

quoted in [4, page 40]:

I was having tea with A Company when we heard a lot of shouting and went

out to investigate. We found our men and the Germans standing on their

respective parapets. Suddenly a salvo arrived but did no damage. Naturally

both sides got down and our men started swearing at the Germans, when all

at once a brave German got onto his parapet and shouted out: “We are very

sorry about that; we hope no one was hurt. It is not our fault. It is that damned

Prussian artillery.” (Rutter 1934, 29)

Such an apology was an effective way of resolving the conflict and preventing a retalia-

tion because it told the British that the salvo was not the intention of the German infantry,

but instead was an unfortunate accident that the German infantry did not expect nor de-

sire. The reason why the apology was convincing was because it was consistent with the

German infantry’s past behavior. The British had was ample evidence to believe that the

German infantry wanted to keep the peace just as much as the British infantry did.

More generally, an important question for conflict prevention in noisy environments

is whether a misconduct is intentional or accidental. A deviation from the usual course

88

of action in a noisy environment can be explained in either way. If we form the wrong

belief about which explanation is correct, our response may potentially destroy our long-

term relationship with the other player. If we ground our belief on evidence accumulated

before and after the incident, we should be in a better position to identify the true cause

and prescribe an appropriate solution. To accomplish this, DBS uses the following key

techniques:

1. Learning about the other player’s strategy. DBS uses an induction technique to

identify a set of rules that model the other player’s recent behavior. The rules give

the probability that the player will cooperate under different situations. As DBS

learns these probabilities during the game, it identifies a set of deterministic rules

that have either 0 or 1 as the probability of cooperation.

2. Detecting noise. DBS uses the above rules to detect anomalies that may be due

either to noise or a genuine change in the other player’s behavior. If a move is

different from what the deterministic rules predict, this inconsistency triggers an

evidence collection process that will monitor the persistence of the inconsistency in

the next few iterations of the game. The purpose of the evidence-collection process

is to determine whether the violation is likely to be due to noise or to a change in

the other player’s policy. If the inconsistency does not persist, DBS asserts that

the derivation is due to noise; if the inconsistency persists, DBS assumes there is a

change in the other player’s behavior.

3. Temporarily tolerating possible misbehaviors by the other player. Until the

evidence-collection process finishes, DBS assumes that the other player’s behavior

89

is still as described by the deterministic rules. Once the evidence collection pro-

cess has finished, DBS decides whether to believe the other player’s behavior has

changed, and updates the deterministic rules accordingly.

Since DBS emphasizes the use of deterministic behaviors to distinguish noise from

the change of the other player’s behavior, it works well when the other player uses a

pure (i.e., deterministic) strategy or a strategy that makes decisions deterministically most

of the time. Fortunately, deterministic behaviors are abundant in the Iterated Prisoner’s

Dilemma. Many well-known strategies, such as TFT and GRIM, are pure strategies.

Some strategies such as Pavlov or Win-Stay, Lose-Shift strategy (WSLS) [35, 36, 37, 48]

are not pure strategies, but a large part of their behavior is still deterministic. The reason

for the prevalence of determinism is discussed by Axelrod in [3]: clarity of behavior is an

important ingredient of long-term cooperation. A strategy such as TFT benefits from its

clarity of behavior, because it allows other players to make credible predictions of TFT’s

responses to their actions. We believe the success of our strategy in the competition is

because this clarity of behavior also helps us to fend off noise.

The results of the competition show that the techniques used in DBS are indeed an

effective way to fend off noise and maintain cooperation in noisy environments. When

DBS defers judgment about whether the other player’s behavior has changed, the potential

cost is that DBS may not be able to respond to a genuine change of the other player’s

behavior as quickly as possible, thus losing a few points by not retaliating immediately.

But this delay is only temporary, and after it DBS will adapt to the new behavior. More

importantly, the techniques used in DBS greatly reduce the probability that noise will

90

cause it to end a cooperation and fall into a mutual-defect situation. Our experience has

been that it is hard to re-establish cooperation from a mutual-defection situation, so it is

better avoid getting into mutual defection situations in the first place. When compared

with the potential cost of ending an cooperation, the cost of temporarily tolerating some

defections is worthwhile.

Temporary tolerance also benefits us in another way. In the noisy Iterated Prisoner’s

Dilemma, there are two types of noise: one that affects the other player’s move, and the

other affects our move. While our method effectively handles the first type of noise, it is

the other player’s job to deal with the second type of noise. Some players such as TFT

are easily provoked by the second type of noise and retaliate immediately. Fortunately,

if the retaliation is not a permanent one, our method will treat the retaliation in the same

way as the first type of noise, thus minimizing its effect.

4.2 Iterated Prisoner’s Dilemma with Noise

In the Iterated Prisoner’s Dilemma, two players play a finite sequence of classical

prisoner’s dilemma games, whose payoff matrix is:

Player 2

Cooperate Defect

Cooperate (uCC , uCC) (uCD, uDC)

Player 1
Defect (uDC , uCD) (uDD, uDD)

where uDC > uCC > uDD > uCD and 2uCC > uDC + uCD. In the competition, uDC ,

uCC , uDD and uCD are 5, 3, 1 and 0, respectively.

91

At the beginning of the game, each player knows nothing about the other player

and does not know how many iterations it will play. In each iteration, each player chooses

either to cooperate (C) or defect (D), and their payoffs in that iteration are as shown in

the payoff matrix. We call this decision a move or an action. After both players choose

a move, they will each be informed of the other player’s move before the next iteration

begins.

If ak, bk ∈ {C,D} are the moves of Player 1 and Player 2 in iteration k, then we say

that (ak, bk) is the interaction of iteration k. If there are N iterations in a game, then the

total scores for Player 1 and Player 2 are
∑

1≤k≤N uakbk
and

∑
1≤k≤N ubkak

, respectively.

The Noisy Iterated Prisoner’s Dilemma is a variant of the Iterated Prisoner’s

Dilemma in which there is a small probability that a player’s moves will be mis-

implemented. The probability is called the noise level.3 In other words, the noise level

is the probability of executing C when D was the intended move, or vice versa. The

incorrect move is recorded as the player’s move, and determines the interaction of the it-

eration.4 Furthermore, neither player has any way of knowing whether the other player’s

move was executed correctly or incorrectly.5

For example, suppose Player 1 chooses C and Player 2 chooses D in iteration k,

and noise occurs and affects the Player 1’s move. Then the interaction of iteration k is

(D,D). However, since both players do not know that the Player 1’s move has been

3The noise level in the competition was 0.1.
4Hence, a mis-implementation is different from a misperception, which would not change the interaction

of the iteration. The competition included mis-implementations but no misperceptions.
5As far as we know, the definitions of “mis-implementation” used in the existing literature are ambigu-

ous about whether either of the players should know that an action has been mis-executed.

92

changed by noise, Player 1 and Player 2 perceive the interaction differently: for Player 1,

the interaction is (C,D), but for Player 2, the interaction is (D,D). As in real life, this

misunderstanding would become an obstacle in establishing and maintaining cooperation

between the players.

4.3 Strategies, Policies, and Hypothesized Policies

A history τ of length k is the sequence of interactions of all iterations up to

and including iteration k. We write τ = 〈(a1, b1), (a2, b2), . . . , (ak, bk)〉. Let H =

〈(C,C), (C,D), (D,C), (D,D)〉∗ be the set of all possible histories. A mixed strategy

is a ψ = (Φ,∆)

A strategy ψ : H → [0, 1] associates with each history τ a real number called the

degree of cooperation. ψ(τ) is the probability that ψ chooses to cooperate at iteration

k + 1, where k = |τ | is τ ’s length. The definition of a strategy in this chapter is in fact a

shorthand way of writing a mixed strategy ψ′ that maps histories into probability distri-

butions over A = {C,D}. ψ′ can be obtained from ψ by using the following equations:

ψ′(τ, C) = ψ(τ) and ψ′(τ,D) = 1− ψ(τ).

For examples, TFT can be considered as a function ψTFT , such that (1) ψTFT (τ) =

1.0 if k = 0 or ak = C (where k = |τ |), and (2) ψTFT (τ) = 0.0 otherwise; Tit-for-Two-

Tats (TFTT), which is like TFT except it defects only after it receives two consecutive

defections, can be considered as a function ψTFTT , such that (1) ψTFTT (τ) = 0.0 if

k ≥ 2 and ak−1 = ak = D, and (2) ψTFTT (τ) = 1.0 otherwise.

We can model a strategy as a policy. A condition Cond : H → {True,False} is a

93

mapping from histories to Boolean values. A history τ satisfies a condition Cond if and

only if Cond(τ) = True. A rule is a pair (Cond, p), which we will write as Cond → p,

where Cond is a condition and p is a degree of cooperation (a real number in [0, 1]). A

rule is deterministic if p is either 0.0 or 1.0; otherwise, the rule is probabilistic. A policy

schema C is a set of conditions such that each history in H satisfies exactly one of the

conditions in C. In this chapter, we define a policy to be a set of rules whose conditions

constitute a policy schema.

ψTFT can be modeled as a policy as follows: we define Conda,b to be a condition

about the interactions of the last iteration of a history, such that Conda,b(τ) = True if and

only if (1) k ≥ 1, ak = a and bk = b, (where k = |τ |), or (2) k = 0 and a = b = C. For

simplicity, we also write Conda,b as (a, b). The policy for ψTFT is πTFT = {(C,C) →

1.0, (C,D) → 1.0, (D,C) → 0.0, (D,D) → 0.0}. Notice that the policy schema for

πTFT is C = {(C,C), (C,D), (D,C), (D,D)}.

Given a policy π and a history τ , there is one and only one rule Cond→ p in π such

that Cond(τ) = True. We write p as π(τ). A policy π is complete for a strategy ψ if and

only if π(H) = ψ(H) for any τ ∈ H. In other words, a complete policy for a strategy

is one that completely models the strategy. For instance, πTFT is a complete policy for

ψTFT .

Some strategies are much more complicated than TFT—a large number of rules is

needed in order to completely model these strategies. If the number of iterations is small

and the strategy is complicated enough, it is difficult or impossible to obtain a complete

model of the other player’s strategy. Therefore, an agent should not aim at obtaining a

complete policy of the other player’s strategy; instead, all an agent can do is to learn an

94

approximation of the other player’s strategy during a game, using a small number of rules.

In order to distinguish this approximation from the complete policies for a strategy, we

call this approximation a hypothesized policy.

Given a policy schema C, an agent constructs a hypothesized policy π whose policy

schema is C. The degrees of cooperation of the rules in π are estimated by a learning

function, which computes the degrees of cooperation according to the current history.

Mathematically, a learning function is a mapping from C × H to [0, 1]. For example,

consider a learning function Lavg that computes the degrees of cooperation by averaging

the number of time the next action is C when a condition Condi holds in the current

history τ :

Lavg(Condi, τ) =
|{k : (0 ≤ k < |τ |) ∧ (Condi(prefixk(τ)) = True) ∧ ([τB]k+1 = C)}|

|{k : (0 ≤ k < |τ |) ∧ (Condi(prefixk(τ)) = True)}|

(4.1)

where τB is the sequence of actions of the agent we are trying to model, and [τB]k+1

is the (k + 1)’th action in the sequence. If the denominator of Lavg(Condi, τ) is zero,

Lavg(Condi, τ) = 0. Lavg is undefined if |τ | = 0.

Suppose the other player’s strategy is ψTFTT , the given policy schema

is C = {(C,C), (C,D), (D,C), (D,D)}, and the current history is τ =

{(C,C), (D,C), (C,C), (D,C), (D,C), (D,D), (C,D), (C,C)}. Then the hypothe-

sized policy is π = {(C,C) → 1.0, (C,D) → 1.0, (D,C) → 0.66, (D,D) → 0.0}.

Notice that the rule (D,C) → 0.66 does not accurately model ψTFTT ; this probabilis-

tic rule is just an approximation of what ψTFTT does when the condition (D,C) holds.

In fact, this approximation is inaccurate as long as the policy schema contains (D,C)—

95

there is no complete policy for ψTFTT whose policy schema contains (D,C). If we want

to model ψTFTT correctly, we need a different policy schema that allows us to specify

more complicated rules.

4.3.1 Discussion

When we use a hypothesized policy to model a strategy, the difference between

the hypothesized policy and the strategy is due to the choice of the policy schema and

the learning function. But we usually do not know how to choose a good policy schema

and a good learning function. In the literature, the difficulty is choosing a right model is

called model uncertainty, and the problem is called the problem of model selection. If we

consider the difference between the hypothesized policy and the strategy as an error, the

error is largely due to model uncertainty.

We interpret a hypothesized policy as a belief of what the other player will do in

the next few iterations in response to our next few moves. This belief does not necessar-

ily hold in the long run, since the other player can behave differently at different time in

a game. Even worse, there is no guarantee that this belief is true in the next few itera-

tions. Nonetheless, hypothesized policies constructed by an agent in certain non-zero-sum

games such as the IPD usually have a high degree of accuracy in predicting what the other

player will do.

This belief is subjective—it depends on the choice of the policy schema and the

learning function. We formally define this subjective viewpoint as follows. The hypoth-

esized policy space spanned by a policy schema C and a learning function L : C × H →

96

[0, 1] is a set of policies Π = {π(H) : τ ∈ H}, where π(τ) = {Cond → L(Cond, τ) :

Cond ∈ C}. Let τ be a history of a game in which the other player’s strategy is ψ. The set

of all possible hypothesized policies for ψ in this game is {π(τk) : τk ∈ prefixes(τ)} ⊆ Π,

where prefixes(τ) is the set of all prefixes of τ , and τk is the prefix of length k of τ . We

say π(τk) is the current hypothesized policy of ψ in the iteration k. A rule Cond → p in

π(τk) describes a particular behavior of the other player’s strategy in the iteration k. The

behavior is deterministic if p is either zero or one; otherwise, the behavior is random or

probabilistic. If π(τk) 6= π(τk+1), we say there is a change of the hypothesized policy

in the iteration k + 1, and the behaviors described by the rules in (π(τk) \ π(τk+1)) have

changed.

4.4 Derived Belief Strategy

In the ordinary Iterated Prisoner’s Dilemma (i.e., without any noise), if we know

the other player’s strategy and how many iterations in a game, we can compute an op-

timal strategy against the other player by trying every possible sequence of moves to

see which sequence yields the highest score, assuming we have sufficient computational

power. However, we are missing both pieces of information. So it is impossible for us to

compute an optimal strategy, even with sufficient computing resource. Therefore, we can

at most predict the other player’s moves based on the history of a game, subject to the fact

that the game may terminate any time.

Some strategies for the Iterated Prisoner’s Dilemma do not predict the other player’s

moves at all. For example, Tit-for-Tat and GRIM react deterministically to the other

97

player’s previous moves according to fixed sets of rules, no matter how the other player

actually plays. Many strategies adapt to the other player’s strategy over the course of the

game: for example, Pavlov [35] adjusts its degree of cooperation according to the history

of a game. However, these strategies do not take any prior information about the other

player’s strategy as an input; thus they are unable to make use of this important piece of

information even when it is available.

Let us consider a class of strategies that make use of a model of the other player’s

strategy to make decisions. Figure 4.1 shows an abstract representation of these strategies.

Initially, these strategies start out by assuming that the other player’s strategy is TFT or

some other strategy. In every iteration of the game, the model is updated according to the

current history (using UpdateModel). These strategies decide which move it should make

in each iteration using a move generator (GenerateMove), which depends on the current

model of the other player’s strategy of the iteration.

DBS belongs to this class of strategies. DBS maintains a model of the other player

in form of a hypothesized policy throughout a game, and makes decisions based on this

hypothesized policy. The key issue for DBS in this process is how to maintain a good

approximation of the other player’s strategy, despite that some actions in the history are

affected by noise. A good approximation will increase the quality of moves generated

by DBS, since the move generator in DBS depends on an accurate model of the other

player’s behavior.

The approach DBS uses to minimize the effect of noise on the hypothesized policy

has been discussed in Section 4.1: temporarily tolerate possible misbehavior by the other

98

Procedure StrategyUsingModelOfTheOtherPlayer()

π ← InitialModel() // the current model of the other player

τ ← 〈〉 // the current history

a← GenerateMove(π, τ) // the initial move

Loop until the end of the game

Output our move a and obtain the other player’s move b

τ := τ ◦ 〈(a, b)〉

π := UpdateModel(π, τ)

a := GenerateMove(π, τ)

End Loop

Figure 4.1: An abstract representation of a class of strategies that generate moves using a

model of the other player.

99

player, and then update the hypothesized policy only if DBS believes that the misbehavior

is due to a genuine change of behaviors. Figure 4.2 shows an outline of the implemen-

tation of this approach in DBS. As we can see, DBS does not maintain the hypothesized

policy explicitly; instead, DBS maintains three sets of rules: the default rule set (Rd), the

current rule set (Rc), and the probabilistic rule set (Rp). DBS combines these rule sets to

form a hypothesized policy for move generation. In addition, DBS maintains several aux-

iliary variables (promotion counts and violation counts) to facilitate the update of these

rule sets. We will explain every line in Figure 4.2 in detail in the next section.

4.4.1 Discussion

When using a policy to express the other player’s strategy, an important question is

how large a policy schema to use for the hypothesized policy. If the other player’s strat-

egy is complicated and the policy schema is too small, the policy schema won’t provide

enough detail to give useful predictions of the other player’s behavior. But if the policy

schema is too large, DBS will be unable to compute an accurate approximation of each

rule’s degree of cooperation, because the number of iterations in the game is too small for

learning all the rules precisely. After all, a large policy does not necessarily outperform

a small one when it is used to project the behavior of the other player in future; in fact,

it is worse if the policy schema is too large due to the first reason. For these reasons

we shall use a small policy schema. We found that a simple policy is sufficient for our

noise detection technique to work. In the competition, we used a policy schema of size 4:

{(C,C), (C,D), (D,C), (D,D)}. We have found this to be good enough for modeling a

100

Procedure DerivedBeliefStrategy()

1. Rd := πTFT // the default rule set

2. Rc := ∅ // the current rule set

3. a0 := C ; b0 := C ; τ := 〈(a0, b0)〉 ; π := Rd ; k := 1 ; v := 0

4. a1 := MoveGen(π, τ)

5. Loop until the end of the game

6. Output ak and obtain the other player’s move bk

7. r+ := ((ak−1, bk−1)→ bk)

8. r− := ((ak−1, bk−1)→ ({C,D} \ {bk}))

9. If r+, r− 6∈ Rc, then

10. If ShouldPromote(r+) = true, then insert r+ into Rc.

11. If r+ ∈ Rc, then set the violation count of r+ to zero

12. If r− ∈ Rc and ShouldDemote(r−) = true, then

13. Rd := Rc ∪Rd ; Rc := ∅ ; v := 0

14. If r− ∈ Rd, then v := v + 1

15. If v > RejectThreshold, or (r+ ∈ Rc and r− ∈ Rd), then

16. Rd := ∅ ; v := 0

17. Rp := {(Cond→ p′) ∈ Rprob
k+1 : Cond not appear in Rc or Rd}

18. π := Rc ∪Rd ∪Rp // construct a hypothesized policy

19. τ := τ ◦ 〈(ak, bk)〉; ak+1 := MoveGen(π, τ) ; k := k + 1

20. End Loop

Figure 4.2: An outline of the DBS strategy. ShouldPromote first increases r+’s promotion

count, and then if r+’s promotion count exceeds the promotion threshold, ShouldPromote

returns true and resets r+’s promotion count. Likewise, ShouldDemote first increases

r−’s violation count, and then if r−’s violation count exceeds the violation threshold,

ShouldPromote returns true and resets r−’s violation count. Rp in Line 17 is the proba-

bilistic rule set; Rprob
k+1 in Line 17 is calculated from Equation 4.2.

101

large number of strategies for the purpose of noise detection.

4.5 Learning Hypothesized Policies in Noisy Environments

We will describe how DBS learns and maintains a hypothesized policy for the other

player’s strategy in this section. Section 4.5.1 describes how DBS uses discounted fre-

quencies for each behavior to estimate the degree of cooperation of each rule in the hy-

pothesized policy. Section 4.5.2 explains why using discounted frequencies alone are not

sufficient for constructing an accurate model of the other player’s strategy in the presence

of noise, and how symbolic noise detection and temporary tolerance can help overcome

the difficulty in using discounted frequencies alone. Section 4.5.3 presents the induction

technique DBS uses to identify deterministic behaviors in the other player. Section 4.5.4

illustrates how DBS defers judgment about whether an anomaly is due to noise. Sec-

tion 4.5.5 discusses how DBS updates the hypothesized policy when it detects a change

of behavior.

4.5.1 Learning by Discounted Frequencies

In Section 4.3, we introduced the learning function Lavg, which estimate the proba-

bilities of cooperation by averaging the number of “firings” of rules in the current history.

Lavg does not distinguish early moves from recent moves. However, agents in the IPD

often changes its behavior—their behavior can change from time to time. It is essentially

true in noisy environments, since noise can trigger the change of the behavior. Thus,

early moves should be less useful in the estimation of cooperation than recent moves in

102

the current history.

We now describe a better learning function to estimate the degree of cooperation

of the rules in the hypothesized policy. The idea is to maintain a discounted frequency

for each behavior: instead of keeping an ordinary frequency count of how often the other

player cooperates under a condition in the past, DBS applies discount factors based on

how recent each occurrence of the behavior was.

Given a history τ = {(a1, b1), (a2, b2), . . . , (ak, bk)}, a real number α be-

tween 0 and 1 (called the discount factor), and an initial hypothesized policy π0 =

{Cond1 → p0
1,Cond2 → p0

2, . . . ,Condn → p0
n} whose policy schema is C =

{Cond1,Cond2, . . . ,Condn}, the probabilistic policy at iteration k + 1 is Rprob
k+1 =

{Cond1 → pk+1
1 ,Cond2 → pk+1

2 ,Condn → pk+1
n }, where pk+1

i is computed by the follow-

ing equation:

pk+1
i =

∑
0≤j≤k

(
αk−jgj

)∑
0≤j≤k (αk−jfj)

(4.2)

and where

gj =


p0

i if j = 0,

1 if 1 ≤ j ≤ k, Condi(τj−1) = True and bj = C,

0 otherwise;

fj =


p0

i if j = 0,

1 if 1 ≤ j ≤ k, Condi(τj−1) = True,

0 otherwise;

τj−1 =


∅ if j = 1,

〈(a1, b1), (a2, b2), . . . , (aj−1, bj−1)〉 otherwise.

103

In short, the current history τ has k + 1 possible prefixes, and fj is basically a Boolean

function indicating whether the prefix of τ up to the j − 1’th iteration satisfies Condi. gj

is a restricted version of fj .

When α = 1, pi is approximately equal to the frequency of the occurrence of

Condi → pi. When α is less than 1, pi becomes a weighted sum of the frequencies

that gives more weight to recent events than earlier ones. For our purposes, it is important

to use α < 1, because it may happen that the other player changes its behavior suddenly,

and therefore we should forget about its past behavior and adapt to its new behavior (for

instance, when GRIM is triggered). In the competition, we used α = 0.75.

An important question is how large a policy schema to use for the hypothesized

policy. If the policy schema is too small, the policy schema won’t provide enough detail

to give useful predictions of the other player’s behavior. But if the policy schema is too

large, DBS will be unable to compute an accurate approximation of each rule’s degree

of cooperation, because the number of iterations in the game will be too small. In the

competition, we used a policy schema of size 4: {(C,C), (C,D), (D,C), (D,D)}. We

have found this to be good enough for modeling a large number of strategies.

It is essential to have a good initial hypothesized strategy because at the beginning

of the game the history is not long enough for us to derive any meaningful informa-

tion about the other player’s strategy. Due to the past success of TFT, we believe many

strategies in the competition follows or mimics TFT. Thus, in the competition the ini-

tial hypothesized policy of DBS is πTFT = {(C,C) → 1.0, (C,D) → 1.0, (D,C) →

0.0, (D,D)→ 0.0}.

104

4.5.2 Deficiencies of Discounted Frequencies in Noisy Environments

It may appear that the probabilistic policy learned by the discounted-frequency

learning technique should be inherently capable of tolerating noise, because it takes many,

if not all, moves in the history into account: if the number of terms in the calculation of

the average or weighted average is large enough, the effect of noise should be small. How-

ever, there is a problem with this reasoning: it neglects the effect of multiple occurrences

of noise within a small time interval.

A mis-implementation that alters the move of one player would distort an estab-

lished pattern of behavior observed by the other player. The general effect of such distor-

tion to the Equation 4.2 is hard to tell—it varies with the value of the parameters and the

history. But if several distortions occur within a small time interval, the distortion may

be big enough to alter the probabilistic policy and hence change our decision about what

move to make. This change of decision may potentially destroy an established pattern of

mutual cooperation between the players.

At first glance, it might seem rare for several noise events to occur at nearly the

same time. But if the game is long enough, the probability of it happening can be quite

high. The probability of getting two noise events in two consecutive iterations out of a

sequence of i iterations can be computed recursively as Xi = p(p + qXi−2) + qXi−1,

providing that X0 = X1 = 0, where p is the probability of a noise event and q = 1 − p.

In the competition, the noise level was p = 0.1 and i = 200, which gives X200 = 0.84.

Similarly, the probabilities of getting three and four noises in consecutive iterations are

0.16 and 0.018, respectively.

105

In the 2005 competition, there were 165 players, and each player played each of the

other players five times. This means every player played 825 games. On average, there

were 693 games having two noises in two consecutive iterations, 132 games having three

noises in three consecutive iterations, and 15 games having four noises in four consecutive

iterations. Clearly, we did not want to ignore situations in which several noises occur

nearly at the same time.

Symbolic noise detection and temporary tolerance outlined in Section 4.1 provide a

way to reduce the amount of susceptibility to multiple occurrences of noise in a small time

interval. Deterministic rules enable DBS to detect anomalies in the observed behavior of

the other player. DBS temporarily ignores the anomalies which may or may not be due

to noise, until a better conclusion about the cause of the anomalies can be drawn. This

temporary tolerance prevents DBS from learning from the moves that may be affected

by noise, and hence protects the hypothesized policy from the influence of errors due

to noise. Since the amount of tolerance (and the accuracy of noise detection) can be

controlled by adjusting parameters in DBS, we can reduce the amount of susceptibility to

multiple occurrences of noise by increasing the amount of tolerance, at the expense of a

higher cost of noise detection—losing more points when a change of behavior occurs.

4.5.3 Identifying Deterministic Rules Using Induction

As we discussed in Section 4.1, deterministic behaviors are abundant in the Iter-

ated Prisoner’s Dilemma. Deterministic behaviors can be modeled by deterministic rules,

whereas random behavior would require probabilistic rules.

106

A nice feature about deterministic rules is that they have only two possible degrees

of cooperation: zero or one, as opposed to an infinite set of possible degrees of coopera-

tion of the probabilistic rules. Therefore, there should be ways to learn deterministic rules

that are much faster than the discounted frequency method described earlier. For example,

if we knew at the outset which rules were deterministic, it would take only one occurrence

to learn each of them: each time the condition of a deterministic rule was satisfied, we

could assign a degree of cooperation of 1 or 0 depending on whether the player’s move

was C or D.

The trick, of course, is to determine which rules are deterministic. We have devel-

oped an inductive-reasoning method to distinguish deterministic rules from probabilistic

rules during learning and to learn the correct degree of cooperation for the deterministic

rules.

In general, induction is the process of deriving general principles from particular

facts or instances. To learn deterministic rules, the idea of induction can be used as

follows. If a certain kind of behavior occurs repeatedly several times, and during this

period of time there is no other behavior that contradicts to this kind of behavior, then we

will hypothesize that the chance of the same kind of behavior occurring in the next few

iterations is pretty high, regardless of how the other player behaved in the remote past.

More precisely, let K ≥ 1 be a number which we will call the promotion thresh-

old. Let τ = 〈(a1, b1), (a2, b2), . . . , (ak, bk)〉 be the current history. For each condi-

tion Condj ∈ C, let Ij be the set of indexes such that for all i ∈ Ij , i < k and

Condj(〈(a1, b1), (a2, b2), . . . , (ai, bi)〉) = True. Let Îj be the set of the largest K indexes

in Ij . If |Ij| ≥ K and for all i ∈ Îj , bi+1 = C (i.e., the other player chose C when the

107

previous history up to the i’th iteration satisfies Condj), then we will hypothesize that the

other player will choose C whenever Condj is satisfied; hence we will use Condj → 1

as a deterministic rule. Likewise, if |Ij| ≥ K and for all i ∈ Îj , bi+1 = D, we will use

Condj → 0 as a deterministic rule. See Line 7 to Line 10 in Figure 4.2 for an outline of

the induction method we use in DBS.

The induction method can be faster at learning deterministic rules than the dis-

counted frequency method that regards a rule as deterministic when the degree of coop-

eration estimated by discounted frequencies is above or below certain thresholds. As can

be seen in Figure 4.3, the induction method takes only three iterations to infer the other

player’s moves correctly, whereas the discounted frequency technique takes six iterations

to obtain a 95% degree of cooperation, and it never becomes 100%.6 We may want to set

the threshold in the discounted frequency method to be less than 0.8 to make it faster than

the induction method. However, this will increase the chance of incorrectly identifying a

random behavior as deterministic.

A faster learning speed allows us to infer deterministic rules with a shorter history,

and hence increase the effectiveness of symbolic noise detection by having more deter-

ministic rules at any time, especially when a change of the other player’s behavior occurs.

The promotion threshold K controls the speed of the identification of deterministic rules.

The larger the value of K, the slower the speed of identification, but the less likely we

will mistakenly hypothesize that the other player’s behavior is deterministic.

6If we modify Equation 4.2 to discard the early interactions of a game, the degree of cooperation of a

probabilistic rule can attain 100%.

108

0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

D
eg

re
e

of
 C

oo
pe

ra
tio

n

Induction
Discount Frequency

Figure 4.3: Learning speeds of the induction method and the discounted frequency

method when the other player always cooperates. The initial degree of cooperation is

zero, the discounted rate is 0.75, and the promotion threshold is 3.

4.5.4 Symbolic Noise Detection and Temporary Tolerance

Once DBS has identified the set of deterministic rules, it can readily use them to de-

tect noise. As we said earlier, if the other player’s move violate a deterministic rule, it can

be caused either by noise or by a change in the other player’s behavior, and DBS uses an

evidence collection process to figure out which is the case. More precisely, once a deter-

ministic rule Condi → oi is violated (i.e., the history up to the previous iteration satisfies

Condi but the other player’s move in the current iteration is different from oi), DBS keeps

the violated rule but marks it as violated. Then DBS starts an evidence collection process

that in the implementation of our competition entries is a violation counting: for each vi-

olated probabilistic rule DBS maintains a counter called the violation count to record how

109

many violations of the rule have occurred (Line 12).7 In the subsequent iterations, DBS

increases the violation count by one every time a violation of the rule occurs. However, if

DBS encounters a positive example of the rule, DBS resets the violation count to zero and

unmark the rule (Line 11). If any violation count excesses a threshold called the violation

threshold, DBS concludes that the violation is not due to noise; it is due to a change of

the other player’s behavior. In this case, DBS invokes a special procedure (described in

Section 4.5.5) to handle this situation (Line 13).

This evidence collection process takes advantages of the fact that the pattern of

moves affected by noise is often quite different from the pattern of moves generated by

the new behavior after a change of behavior occurs. Therefore, it can often distinguish

noise from a change of behavior by observing moves in the next few iterations and gather

enough evidence.

As discussed in Section 4.5.2, we want to set a larger violation threshold in order to

avoid the drawback of the discount frequency method in dealing with several misinterpre-

tations caused by noise within a small time interval. However, if the threshold is too large,

it will slow down the speed of adaptation to changes in the other player’s behavior. In the

competition, we entered DBS several times with several different violation thresholds;

and in the one that performed the best, the violation threshold was 4.

4.5.5 Coping with Ignorance of the Other Player’s New Behavior

When the evidence collection process detects a change in the other player’s behav-

ior, DBS knows little about the other player’s new behavior. How DBS copes with this

7We believe that a better evidence collection process should be based on statistical hypothesis testing.

110

ignorance is critical to its success.

When DBS knows little about the other player’s new behavior when it detects a

change of the other player’s behavior, DBS temporarily uses the previous hypothesized

policy as the current hypothesized policy, until it deems that this substitution no longer

works. More precisely, DBS maintains two sets of deterministic rules: the current rule set

Rc and the default rule set Rd. Rc is the set of deterministic rules that is learned after the

change of behavior occurs, while Rd is the set of deterministic rules before the change of

behavior occurs. At the beginning of a game, Rd is πTFT and Rc is an empty set (Line 1

and Line 2). When DBS constructs a hypothesized policy π for move generation, it uses

every rule in Rc and Rd. In addition, for any missing rule (i.e., the rule those condition

are different from any rule’s condition in Rc or Rd), we regard it as a probabilistic rule

and approximate its degree of cooperation by Equation 4.2 (Line 17). These probabilistic

rules form the probabilistic rule set Rp ⊆ Rprob
k+1 .

While DBS can insert any newly found deterministic rule in Rc, it insert rules into

Rd only when the evidence collection process detects a change of the other player’s be-

havior. When it happens, DBS copies all the rules in Rc to Rd, and then set Rc to an

empty set (Line 13).

The default rule set is designed to be rejected: we maintain a violation count to

record the number of violations to any rule in Rd. Every time any rule in Rd is violated,

the violation count increased by 1 (Line 14). Once the violation count exceeds a rejection

threshold, we drop the default rule set entirely (set it to an empty set) and reset the viola-

tion count (Line 15 and Line 16). We also reject Rd whenever any rule in Rc contradicts

any rule in Rd (Line 15).

111

We preserve the rules in Rc mainly for sake of providing a smooth transition: we

don’t want to convert all deterministic rules to probabilistic rules at once, as it might

suddenly alter the course of our moves, since the move generator in DBS generates moves

according to the current hypothesized policy only. This sudden change in DBS’s behavior

can potentially disrupt the cooperative relationship with the other player. Furthermore,

some of the rules in Rc may still hold, and we don’t want to learn them from scratch.

Notice that symbolic noise detection and temporary tolerance makes use of the rules

inRc but not the rules inRd, although DBS makes use of the rules in bothRc andRd when

DBS decides the next move (Line 18). We do not use Rd for symbolic noise detection

and temporary tolerance because when DBS inserts rules into Rd, a change of the other

player’s behavior has already occurred—there is little reason to believe that anomalies

detected using the rules inRd are due to noise. Furthermore, we want to turn off symbolic

noise detection and temporary tolerance temporarily when a change of behavior occurs,

in order to identify a whole new set of deterministic rules from scratch.

4.6 The Move Generator in DBS

We devised a simple and reasonably effective move generator for DBS. As shown

in Figure 4.1, the move generator takes the current hypothesized policy π and the current

history τcurrent whose length is l = |τcurrent|, and then decides whether DBS should co-

operate in the current iteration. It is difficult to devise a good move generator, because our

move could lead to a change of the hypothesized policy and complicate our projection of

the long-term payoff. Perhaps, the move generator should take the other player’s model

112

of DBS into account [18]. However, we found that by making the assumption that hy-

pothesized policy will not change for the rest of the game, we can devise a simple move

generator that generates fairly good moves. The idea is that we compute the maximum

expected score we can possibly earn for the rest of the game, using a technique that com-

bines some ideas from both game-tree search and Markov Decision Processes (MDPs).

Then we choose the first move in the set of moves that leads to this maximum expected

score as our move for the current iteration.

To accomplish the above, we consider all possible histories whose prefix is τcurrent

as a tree. In this tree, each path starting from the root represents a possible history, which

is a sequence of past interactions in τcurrent plus a sequence of possible interactions in

future iterations. Each node on a path represents the interaction of an iteration of a history.

Figure 4.4 shows an example of such a tree. The root node of the tree represents the

interaction of the first iteration.

Let interaction(S) be the interaction represented by a node S. Let

〈S0, S1, . . . , Sk〉 be a sequence of nodes on the path from the root S0 to Sk.

We define the depth of Sk to be k − l, and the history of Sk be τ(Sk) =

〈interaction(S1), interaction(S2), . . . , interaction(Sk)〉. Si is called the current node if

the depth of Si is zero; the current node represents the interaction of the last iteration and

τ(Si) = τcurrent. As we do not know when the game will end, we assume it will go for

N∗ more iterations; thus each path in the tree has length of at most l +N∗.

Our objective is to compute a non-negative real number called the maximum ex-

pected score E(S) for each node S with a non-negative depth. Like a conventional

game tree search in computer chess or checkers, the maximum expected scores are de-

113

fined recursively: the maximum expected score of a node at depth i is determined by

the maximum expected scores of its children nodes at depth i + 1. The maximum ex-

pected score of a node S of depth N∗ is assumed to be the value computed by an

evaluation function f . This is a mapping from histories to non-negative real numbers,

such that E(S) = f(τ(S)). The maximum expected score of a node S of depth k,

where 0 ≤ k < N∗, is computed by the maximizing rule: suppose the four possi-

ble nodes after S are SCC , SCD, SDC , and SDD, and let p be the degree of cooper-

ation predicted by the current hypothesized policy π (i.e., p is the right-hand side of

a rule (Cond → p) in π such that τ(S) satisfies the condition Cond). Then E(S) =

max{EC(S), ED(S)}, where EC(S) = p(uCC +E(SCC))+(1−p)(uCD +E(SCD)) and

ED(S) = p(uDC + E(SDC)) + (1− p)(uDD + E(SDD)). Furthermore, we let move(S)

be the decision made by the maximizing rule at each node S, i.e., move(S) = C if

EC(S) ≥ ED(S) and move(S) = D otherwise. By applying this maximizing rule recur-

sively, we obtain the maximum expected score of every node with a non-negative depth.

The move that we choose for the current iteration is move(Si), where Si is the current

node.

The number of nodes in the tree increases exponentially withN∗. Thus, the tree can

be huge—there are over a billion nodes when N∗ ≥ 15. It is infeasible to compute the

maximum expected score for every node one by one. Fortunately, we can use dynamic

programming to speed up the computation. As an example, suppose the hypothesized

policy is π = {(C,C) → pCC , (C,D) → pCD, (D,C) → pDC , (D,D) → pDD}, and

suppose the evaluation function f returns a constant fo1o2 for any history that satisfies the

114

condition (o1, o2), where o1, o2 ∈ {C,D}. Then, given our assumption that the hypoth-

esized policy does not change, it is not hard to show by induction that all nodes whose

histories have the same length and satisfy the same condition have the same maximum

expected score. By using this property, we construct a table of size 4× (N∗+2) in which

each entry, denoted by Ek
o1o2

, stores the maximum expected score of the nodes whose his-

tories have length l+k and satisfy the condition (o1, o2), where o1, o2 ∈ {C,D}. We also

have another table of the same size to record the decisions the procedure makes; the entry

mk
o1o2

of this table is the decision being made at Ek
o1o2

. Initially, we set EN+1
CC = fCC ,

EN+1
CD = fCD, EN+1

DC = fDC , and EN+1
DD = fDD. Then the maximum expected scores in

the remaining entries can be computed by the following recursive equation:

Ek
o1o2

= max
{
po1o2(uCC + Ek+1

CC) + (1− po1o2)(uCD + Ek+1
CD),

po1o2(uDC + Ek+1
DC) + (1− po1o2)(uDD + Ek+1

DD)
}
, (4.3)

where o1, o2 ∈ {C,D}. Similarly, mk
o1o2

= C if (po1o2(uCC +Ek+1
CC)+ (1− po1o2)(uCD +

Ek+1
CD)) ≥ (po1o2(uDC + Ek+1

DC) + (1− po1o2)(uDD + Ek+1
DD) and mk

o1o2
= D otherwise.

The policy {(C,C) → m0
CC , (C,D) → m0

CD, (D,C) → m0
DC , (D,D) → m0

DD}

is called the recommended policy. If the interaction of the previous iteration is (o1, o2),

we pick m0
o1o2

as the recommended move for the current iteration. The pseudocode of this

dynamic programming algorithm is shown in Figure 4.5.

4.6.1 Generalizing the Move Generator

In general, the policy schema of the hypothesized policy can be different

from the simple policy schema that have been used throughout this chapter (i.e.,

115

{(C,C), (C,D), (D,C), (D,D)}). According to our experience, this simple policy

schema is good enough for move generation and noise detection in the IPD. In other

problems, however, the policy schema may not be expressive enough to describe the be-

havior of the opponents for move generation and noise detection. If we use a different

policy schema, the equation 4.3 is no longer applicable and we have to use a different set

of recursive equations.

In general, the problem can be viewed as a Markov Decision Process (MDP) in

which the other player constitutes a nondeterministic environment whose states are the

conditions in the policy schema and whose transition matrix has probabilities that are

equal to the degrees of cooperation of the rules in the hypothesized policy. Then the

recursive equations are similar to the ones in the value iteration for computing an optimal

policy for MDPs.

There are subtle differences between solving an MDP and generating a move for the

IPD. First, a policy in MDPs is different from a policy we defined here. A policy in MDPs

is a mapping from states to actions, while a policy we defined in this chapter is a mapping

from conditions to probabilities of cooperation. The difference is due to the fact that DBS

uses a policy to model an opponent’s behavior; DBS does not use a policy to represent a

strategy for itself to interact with other players. As discussed in Section 4.3, a policy for

agent modeling is just a hypothesized policy of the behavior of the other players. Since

we do not know exactly the set of states of the opponent, we replace the concepts of states

in MDPs by policy schemata, which is a set of conditions over histories. Furthermore,

since we do not know exactly what the opponent would do under each condition, we use

a probability distribution over the set of actions at the right-hand side of a rule in a policy.

116

These difference reflects the purpose of opponent modeling.

Second, the MoveGen procedure is different from value iteration for MDPs in a

number of ways. Value iteration computes the optimal solution for an infinite-horizon

MDP. But the horizon of a game of the IPD is finite, despite the fact that the players

do not know the length of a game, and this makes the games look like an infinite game

from the players’ viewpoint. Instead of using a discount factor, the MoveGen procedure

uses a fixed search depth and an evaluation function to estimate the expected utilities

at the terminal nodes. The use of fixed search depth and the evaluation function is the

remnants of game-tree search. We haven’t checked to see whether MoveGen is better

than value iteration in our context, thus we cannot conclude that MoveGen outperforms

value iteration with a discount factor. But the obvious benefit of the MoveGen procedure

is that the expected utilities are intuitive than the discounted expected utilities in value

iteration. Moreover, we believe that the results of the MoveGen procedure are similar to

value iteration with a large discount factor.

4.6.2 An Analysis of the Move Generator

The dynamic programming algorithm for move generation can virtually search as

deep as we want in the game tree. In the competition, the dynamic programming al-

gorithm stops exploring the game tree at the cut-off level N∗ = 60, and then uses the

evaluation function f as described in the caption of Figure 4.5 to estimate the expected

scores of the nodes at the cut-off level. Would there be any difference with the recom-

mended policies and the recommended moves if we increase the cut-off level and use

117

other evaluation functions? We conducted an experiment to investigate this issue, and the

result is presented in this section.

In the experiment, we generated a set of 625 hypothesized policies of the form

{(C,C) → uCC , (C,D) → uCD, (D,C) → uDC , (D,D) → uDD} where the degrees

of cooperation uCC , uCD, uDC , and uDD is one of these values: 0.00, 0.25, 0.5, 0.75,

and 1.0. For each hypothesized policy, we did the following: first, we varied the search

depth N∗ from 1 to 100, and computed a recommended policy for each search depth

using the MoveGen procedure in Figure 4.5. We labeled the recommended policies as

π1, π2, . . . , π100, where πi is generated with search depth i. Second, we compared πi

with πi+1 to see whether they are different. If there is a difference, we said there is a

change of recommended policy at search depth i. Finally, we counted how many changes

of recommended policy at search depth between 1 and k to see how often recommended

policies changed as we increased the search depth. We then plotted the results in a graph

in Figure 4.6. The graph contains a total of 625 lines, one for each hypothesized policy. As

can be seen, the recommended policies for most hypothesized policies did not change as

we increase the search depth. However, a small number of them changed at every search

depth. This phenomenon worries us, because it indicates that the MoveGen procedure is

unstable—its result is too sensitive to the choice of the search depth.

To see why this phenomenon occurs, we printed out a few sequences of the recom-

mended policies to see if there is any pattern. We found that in most cases the sequence

of recommended policies is just an alternation of two recommended policies as the search

depth increases. In a small number of cases, there is an alternation of three, four, or five

118

recommended policies. Then, we plotted another graph to look at the periodicity of the

cycles of the recommended policies in the sequences. First, for each hypothesized policy,

we varied the search depth to generate a sequence of 100 recommended policies. Sec-

ond, for each search depth i (called the starting search depth), we looked at a subset of

recommended policies generated with search depths between i and 100 in a sequence, to

see if the recommended policies repeat themselves periodically in this subset. Finally,

we calculated the percentage of sequences that exhibits a cycle of recommended policies

with a particular periodicity for each starting search depth, and plot the results in a graph

as shown in Figure 4.7.

As can be seen, over 90% of the sequences has a periodicity of 1 starting from

the starting search depth of 5; in other words, the recommended policies do not change

as the search depth increases. Around 8% of belief policies would cause the MoveGen

procedure to generate a sequence of recommended policies that alternates between two

different recommended policies. The group of horizontal lines at the bottom of Figure 4.7

corresponds to the sequences exhibits periodicities of 3, 4, or 5, or “no periodicity” (which

means that there is no observable pattern of changes of recommended policies in the

sequences). But their periodicity dropped to either 1 or 2 as the starting search depth

increases. Thus, increasing the search depth can help to stabilize the solutions returned

by the MoveGen procedure. But in about 10% of the situations, the MoveGen procedure

still returns alternating sequences of recommended policies as the search depth increases.

It is interesting to see what recommended policies the MoveGen procedure actually

returns. Table 4.8 shows the percentage of recommended policies returned by MoveGen

119

given the set of hypothesized policies in the experiments. Each recommended policy is

represented by four characters m1m2m3m4, which means that the recommended policy

is {(C,C) → m1, (C,D) → m2, (D,C) → m3, (D,D) → m4}. For example, CDDD

in the table refers to the recommended policy {(C,C) → C, (C,D) → D, (D,C) →

D, (D,D)→ D}. We did not take the sequence of recommended policies whose period-

icity is greater than 1 into account.

We can see that over 60% of recommended policies are ALLD (DDDD). Around

8% cooperates only when both our agent and the other player cooperate in the previous

round (CDDD). A slightly more generous strategy that cooperates when the interac-

tion of the previous round is (C,C) or (D,D) is equally common (8% of CDDC). In

only about 6% of hypothesized policies MoveGen recommends to cooperate no matter

what happened in the previous iterations (CCCC = ALLC). Tit-for-Tat (CDCD) is only

recommended in less than 1% for all hypothesized policies.

One caveat for interpreting the data in Table 4.8 is that the table does not show

how often a recommended policy is returned by MoveGen in the actual tournament; it

just tells us that if we choose a hypothesized policy randomly how often a recommended

policy will be used. Thus, the MoveGen procedure might return TFT (CDCD) or ALLC

(CCCC) more often than ALLD in a tournament, since the hypothesized policy for re-

turning ALLD does not occur frequently in the tournament.

120

4.7 Competition Results

The 2005 IPD Competition was actually a set of four competitions, each for a dif-

ferent version of the IPD. The one for the Noisy IPD was Category 2, which used a noise

level of 0.1.

Of the 165 programs entered into the competition, eight of them were provided by

the organizer of the competition. These programs included ALLC (always cooperates),

ALLD (always defects), GRIM (cooperates until the first defection of the other player,

and thereafter it always defects), NEG (cooperate (or defect) if the other player defects

(or cooperates) in the previous iteration), RAND (defects or cooperates with the 1/2 prob-

ability), STFT (suspicious TFT, which is like TFT except it defects in the first iteration)

TFT, and TFTT. All of these strategies are well known in the literature on IPD.

The remaining 157 programs were submitted by 36 different participants. Each

participant was allowed to submit up to 20 programs. We submitted the following 20:

• DBS. We entered nine different versions of DBS into the competition, each with

a different set of parameters or different implementation. The one that performed

best was DBSz, which makes use of the exact set of features we mentioned in this

chapter. Versions that have fewer features or additional features did not do as well.

• Learning of Opponent’s Strategy with Forgiveness (LSF). Like DBS, LSF is

a strategy that learns the other player’s strategy during the game. The difference

between LSF and DBS is that LSF does not make use of symbolic noise detection. It

uses the discount frequency (Equation 4.2) to learn the other player’s strategy, plus

a forgiveness strategy that decides when to cooperate if mutual defection occurs.

121

We entered one instance of LSF. It placed around the 30’th in three of the runs and

around 70’th in the other two runs. We believe the poor ranking of LSF is due to

the deficiency of using discount frequency alone as we discussed at the beginning

of Section 4.5.

• Tit-for-Tat Improved (TFTI). TFTI is a strategy based on a totally different phi-

losophy from DBS’s. It is not an opponent-modeling strategy, in the sense that it

does not model the other player’s behavior using a set of rules. Instead, it is a vari-

ant of TFT with a sophisticated forgiveness policy that aims at overcoming some

of the deficiencies of TFT in noisy environments. We entered ten instantiations of

TFTI in the competition, each with a different set of parameters or some differences

in the implementation. The best of these, TFTIm, did well in the competition (see

Table 4.1), but not as well as DBS.

Three of the other participants each entered the full complement of twenty pro-

grams: Wolfgang Kienreich, Jia-wei Li, and Perukrishnen Vytelingum. All three of

them appear to have adopted the master-and-slaves strategy that was first proposed by

Vytelingum’s team from the University of Southampton. A master-and-slaves strategy is

not a strategy for a single program, but instead for a team of collaborating programs. One

of the programs in such a team is the master, and the remaining programs are slaves. The

basic idea is that at the start of a run, the master and slaves would each make a series of

moves using a predefined protocol, in order to identify themselves to each other. From

then on, the master program would always play “defect” when playing with the slaves,

and the slave programs would always play “cooperate” when playing with the master, so

122

that the master would gain the highest possible payoff at each iteration. Furthermore, a

slave would always plays “defect” when playing with a program other than the master, in

order to try to minimize that player’s score.

Wolfgang Kienreich’s master program was CNGF (CosaNostra Godfather), and its

slaves were 19 copies of CNHM (CosaNostra Hitman). Jia-wei Li’s master program was

IMM01 (Intelligent Machine Master 01), and its slaves were IMS02, IMS03, . . . , IMS20

(Intelligent Machine Slave n, for n = 02, 03, . . . 20). Perukrishnen Vytelingum’s mas-

ter program was BWIN (S2Agent1 ZEUS), and its slaves were BLOS2, BLOS3, . . . ,

BLOS20 (like BWIN, these programs also had longer names based on the names of an-

cient Greek gods).

We do not know what strategies the other participants used in their programs.

4.7.1 Overall Average Scores

Category 2 (IPD with noise) consisted of five runs. Each run was a round-robin

tournament in which each program played with every program, including itself. Each

program participated in 166 games in each run (recall that there is one game in which

a player plays against itself, which counts as two games for that player). Each game

consisted of 200 iterations. A program’s score for a game is the sum of its payoffs over all

200 iterations (note that this sum will be at least 0 and at most 1000). The program’s total

score for an entire run is the sum of its scores over all 166 games. On the competition’s

website, there is a ranking for each of the five runs, each program is ranked according to

its total score for the run.

123

When a program P1 plays with a program P2 n times, the average score of P1 is the

sum of the total scores divided by n. For example, in the 2005 IPD tournament, every pair

of programs played five time, one for each run. Thus a program’s expected score against

another program P2 is the average of the scores the program received in the five games it

played with P2.

The overall average score of a program P1 in a tournament is the average of the

average scores of P1 against every programs in the tournament, including a copy of P1

itself. The overall average score of P1 is also the average of all scores P1 received in a

tournament. In the 2005 IPD tournament, a program’s overall average score is its average

over all games in all five runs, i.e., its total over all five runs divided by 830 = 5× 166.

The table in Table 4.1 shows the average scores in each of the five runs of the

top twenty-five programs when the programs are ranked by their overall average scores.

Of our nine different versions of DBS, all nine of them are among the top twenty-five

programs, and they dominate the top ten places. This phenomenon implies that DBS’s

performance is insensitive to the parameters in the programs and the implementation de-

tails of an individual program. The same phenomenon happens to TFTI—nine out of ten

programs using TFTI are ranked between the 11th place and the 25th place, and the last

one is at the 29th place.

4.7.2 DBS versus the Master-and-Slaves Strategies

We analyze the performance of DBS programs against the master-and-slaves strate-

gies in four different ways: (1) compare the performance of the DBS programs with the

124

performance of the entire master-and-slaves teams as a whole; (2) study the change of the

overall average scores as the number of slaves decreases; (3) analyze the percentages of

different kinds of interactions among programs; and (4) differentiate the distributions of

the average scores of DBSz and the master-and-slave programs using some exploratory

data analysis techniques.

4.7.2.1 Group Performance

Recall from Table 4.1: that DBSz placed third in the competition: it lost only to

BWIN and IMM01, the masters of two master-and-slaves strategies. DBS does not use a

master-and-slaves strategy, nor does it conspire with other programs in any other way—

but in contrast, BWIN’s and IMM01’s performance depended greatly on the points fed to

them by their slaves. In fact, if we average the score of each master with the scores of

its slaves, we get 379.9 for BWIN and 351.7 for IMM01, both of which are considerably

less than DBSz’s score of 408.

There are two kinds of programs in the competition that can be viewed as members

of a group, rather than as a single program. These include master-slave programs, and

variants on the same algorithm. Another way to view the performance of such groups of

programs is to average the performance of the members of the group, and that is what we

have done in Table 4.2. In this table, the best master-slave strategy is the one submitted

by Perukrishnen Vytelingum, which ranks only 14th. DBS, on the other hand, ranks first.

The poor group performance of the master-and-slaves teams implies that a master

can hardly recruit a large number of slaves that sacrifices for him in many realistic situa-

125

Table 4.2: A modified version of Table 4.1 in which we have averaged the scores of each

collection of programs that was either (i) a group of conspirators or (ii) a collection of

of variants of the same algorithm. The average score for DBS is 402.1, which is higher

than the average score of any other program. The master of the best master-slave strategy,

BWIN came in 14th with a score of 379.9. Only the top fifteen groups are listed.

Rank Program(s) Participant Overall Avg. Score

1 DBS* Tsz-Chiu Au 402.1

2 Mod Philip Hingston 396.9

3 TTFT Louis Clement 393.4

4 TFTI* Tsz-Chiu Au 392.9

5 *ESTFT * Michael Filzmoser 390.5

6 T4T David Fogel 390.0

7 TFTT Tit-for-Two-Tats 388.4

8 (no name) Bingzhong Wang 388.3

9 TFT Tit-for-Tat 388.2

10 SOMETHING Jan Humble 383.8

11 TTFT 1 Quan Zhou 383.6

12 LSF Tsz-Chiu Au 382.5

13 STFT Suspicious TFT 382.1

14 BWIN/BLOS* Perukrishnen Vytelingum 379.9

15 RANB Muhammad Ahmad 379.3

126

tions, because there is a strong incentive for slaves to betray their master as they can do

much better by themselves.

One might argue that the master can recruit more slaves if the master promises

to distribute some of his payoffs to the slaves. However, the possibility of this “private”

distributions of payoffs destroys the incentive for agents to form a master-and-slaves team.

The average score of a team of 20 agents in which each team members use DBS or any one

of top 20 non-master-and-slaves programs (i.e., without collusion) is much higher than the

average score a team of 20 agents using the master-slave strategies in this competition.

Thus, the team may be better off not to collude but to use any top 20 non-master-and-

slaves programs (e.g., DBS), and then distribute their payoffs later (no matter the payoffs

is evenly distributed, or the master would get more than the slaves).

4.7.2.2 Overall Average Scores versus Number of Slaves

To see the effect of the presence of slaves in the tournament, we want to study the

change of the overall average scores of the programs when the number of slaves varies.

Unfortunately we cannot rerun the tournament since the organizer of the tournaments does

not release the programs in the tournament to the public. But there is a trick to get around

this problem. The organizer provided data files containing the records of the histories of

every game in the tournament. From the data files, we can compute the scores of every

games in the tournament. Our approach is to recompute the overall average scores of

the programs while ignoring the games that involved the slave programs, as if the slave

programs did not participate in the tournament. By virtually removing slaves from the

127

tournament one by one, we can determine the effects of the slaves on the overall average

scores of other programs, including their own masters.

Each of the three master-and-slaves teams in the tournament has 19 slaves. We ran-

domly selected k slaves from each teams, and then recompute the overall average scores of

the remaining programs while ignoring the scores of the games that involves these slaves,

for 0 ≤ k ≤ 19. To minimize the biases due to the selection of the slaves, we repeated

the above process 20 times with randomly chosen sets of slaves for each k. The averages

of the 20 overall average scores of selected programs are shown in Figure 4.9. Due to the

space limitation, we cannot show the overall average scores of all 165 − k programs in

one graph. Thus, we only selectively plotted the overall average scores some programs

that performed well in the tournament in Figure 4.9. These programs are BWIN, IMM01,

CNGF, DBSz, lowEsTFT classic, TFTIm, Mod, TTFT, and mediumESTFT classic. The

error bars of the data points in the figure indicate the maximums and the minimums of the

overall average scores in the 20 repetitions.

We can see from Figure 4.9 that the overall average scores of the non-master-

slave programs including DBSz, lowEsTFT classic, TFTIm, Mod, TTFT, and medi-

umESTFT classic increases super-linearly as the number of slaves decreases. This clearly

indicates the destructive effects of the presence of slaves in the tournament. The non-

master-slave programs could have done much better without the defections intention-

ally made by slaves. For instance, the overall average scores of DBSz could increase

by approximately 19% if there were no slave in the tournament. Let x be the average

scores of DBSz when playing with any slave. Then we get x = 258.3 by the equation

128

408 = 165−3×19
165

× 487 + 3×19
165
× x. Since the average scores of a program is at most 200

when playing with ALLD in a game of 200 interactions, we can see that slaves almost

always defected with they played with non-master-slave programs such as DBSz.

As opposed to the intuition that the master programs would perform worse in the

absence of slaves, the overall average scores of the master programs also increases as the

number of slaves decreases. But the rate of increases is not as high as that of the non-

master-slave programs. This paradox is due to the fact that the slaves defected when they

played with the masters of another teams. Since the slaves of other teams outnumbered

the slaves of its own team, a master would perform better if no slave is allowed in the

tournament.

The rate of increases in the overall average scores of the masters is slower than

the rate of increases of non-master-slave programs, and eventually the overall average

scores of non-master-slave programs surpassed the masters’ scores. DBSz’s scores can

potentially surpass BWIN’s when the number of slaves is reduced by 9, but almost always

surpass BWIN’s when the number of slaves is reduced by 11. Thus, it is safe to say that if

the size of the master-and-slaves team was restricted to at most 10 in the tournament (i.e.,

no participant can submit more than 10 programs), then DBSz would have placed first in

the tournament.

4.7.2.3 Percentages of Interactions

The reason for the poor performance of master programs with few or no slaves is

that the master-and-slaves strategies did not cooperate the other players as much as they

129

did amongst themselves. In particular, Table 4.3 gives the percentages of each of the four

possible interactions when any program from one group plays with any program from

another group. Note that:

• When BWIN and IMM01 play with their slaves, about 64% and 47% of the interac-

tions are (D,C), but when non-master-and-slaves strategies play with each other,

only 19% of the interactions are (D,C).

• When the slave programs play with non-master-and-slaves programs, over 60% of

interactions are (D,D), but when non-master-and-slaves programs play with other

non-master-and-slaves programs, only 31% of the interactions are (D,D).

• The master-and-slaves strategies decrease the overall percentage of (C,C) from

31% to 13%, and increase the overall percentage of (D,D) from 31% to 55%.

4.7.2.4 Distributions of Average Scores

All analysis we conducted so far focus on the overall average scores of a program,

which, as defined in Section 4.7.1, is a summary of all average scores against every pro-

gram in a tournament. In order to get a more clearer picture of the performance of a

program in the tournament, we have to look at individual average scores that constitute

the overall average scores. The problem is that there are large amount of average scores,

and we need a way to succinctly present the data in a meaningful way. Our solution is to

display the average scores in both density plots and dot plots, both of them are types of

130

Table 4.3: Percentages of different interactions. “All but M&S” means all 105 programs

that did not use master-and-slaves strategies, and “all” means all 165 programs in the

competition.

Player 1 Player 2 (C,C) (C,D) (D,C) (D,D)

BWIN BWIN’s slaves 12% 5% 64% 20%

IMM01 IMM01’s slaves 10% 6% 47% 38%

CNGF CNGF’s slaves 2% 10% 10% 77%

BWIN’s slaves all but M&S 5% 9% 24% 62%

IMM01’s slaves all but M&S 7% 9% 23% 61%

CNGF’s slaves all but M&S 4% 8% 24% 64%

TFT all but M&S 33% 20% 20% 27%

DBSz all but M&S 54% 15% 13% 19%

TFTT all but M&S 55% 20% 11% 14%

TFT all 23% 19% 16% 42%

DBSz all 36% 14% 11% 39%

TFTT all 38% 21% 10% 31%

all but M&S all but M&S 31% 19% 19% 31%

all all 13% 16% 16% 55%

131

graphically display widely used in exploratory data analysis for visualizing the distribu-

tions of numbers.

Figure 4.10 contains seven density plots (the curved lines) overlapped with seven

dot plots (the data points) for DBSz, the three master programs, and three slave programs.

In the tournament, each program plays against 166 different programs (including a copy of

itself), thus has 166 average scores. Since the number of iterations in a game is about 200,

the average scores are between 0 and 1000. But none of the average scores is below 200 or

above 900. The density plots, as shown as the lines in the graph, outlined the distribution

of the average scores of a program against all other programs in the tournament. To draw

a density plot for a program, say DBSz, for each average score x we counted how many

average scores, out of the 166 average scores of DBSz, fall in the range of [x− 2, x+ 2],

and then normalized the counts and plotted the normalized counts. The normalization is

needed because the scale in the y-axis is not important—the density plots are intended to

show the shape of the distribution rather than the frequency of the numbers. For example,

there are two peaks in the density plot of DBSz, and this shows that most of the average

scores are around either 260 or 530.

To see why there are two peaks in the density plot of DBSz, we used dot plots to

identify which program DBSz plays with when DBSz obtained the average scores. We

partitioned the set of all programs in the tournament into six groups: DBS* (all versions

of DBS strategies), TFTI* (all versions of TFTI strategies), BWIN and its slaves, IMM01

and its slaves, CNGF and its slaves, and the remaining programs. For each group, we

plotted the average scores on top of the density plot. As can be seen in Figure 4.10, the

132

DBSz’s average score when played with the slave programs are around x = 260, while

the average scores played with many non-master-slave programs are around x = 530.

This shows that the peak at around 260 is due to the slave programs which defected most

of the time, and the peak at around 530 is due to the cooperation between DBSz and

non-master-slave programs. It is interesting to see that there is a small peak at the around

580, which is mainly due to the cooperation among different versions of DBS programs

but also some non-master-slave programs. Clearly, if both agents use symbolic noise

detection, the degree of cooperation can be even higher in noisy environments. From the

density plot and the dot plot of DBSz, we can see that the overall average scores of DBSz

(the vertical line at x = 408) is roughly the midpoint between the two peaks.

The density plot of BWIN is very different from the density plot of DBSz in that

the peak at around x = 530 is missing; alternatively, we can say that the peak is more

spread out than the peak for DBSz. From the density plot, we can see how the slaves of

BWIN work: when BWIN played with its slaves, the average scores were often more than

600. This is possible only if BWIN defected most of the time while the slaves cooperated.

BWIN can also exploit some of the non-master-slave problem (i.e., some dots beyond

x = 600). In general, most of the DBS programs tried to cooperate with BWIN. Despite

that BWIN also suffers from the slaves of other master-and-slaves team as well, the overall

average scores (the vertical line at x = 433) is still much higher than DBSz’s, mainly due

to its slaves.

IMM01’s density plot is similar to the one for BWIN, but IMM01’s second peak

seems to be non-existence. This is why BWIN outperforms IMM01. DBS programs

cannot cooperate with IMM01 as well as with BWIN. CNGF cannot even cooperate with

133

its slaves. BLOS10 is a slave of BWIN. We can see that most of the DBS programs cannot

cooperate with BLOS10. Compared with IMS02 (a slave of IMM01), BLOS10 is more

successful in cooperating with its teammates.

The graphical analysis of Figure 4.10 shows that slaves did greatly affect the tour-

nament. But what if the slaves did not exist? We drew another graph in which the average

scores of the slave programs are removed. In addition, the average scores of DBS pro-

grams and TFTI programs, except DBSz and TFTIm, are removed too, such that collusion

among programs submitted by the author, if exists at all, would have no effect. The result

is shown in Figure 4.11.

When there is no slave, all master programs did not do well. Thus, the top programs

among all 91 programs did not include the master programs. We selected the following

six top programs and drew the density plots and dot plots in Figure 4.11: DBSz, low-

ESTFT classic, TFTIm, Mod, TTFT, and mediumESTFT classic.

The peak at x = 260 in the density plot for DBSz disappears when there is no slave.

The remaining peak is the one at x = 530. This peak is mainly to due to the cooperation

of DBSz with non-master-and-slaves programs. The peaks for other programs are more

spread out. More importantly, the peaks are spread to the left side of the graph. This

is why the overall average score of DBSz’s is higher: the cooperation between DBSz

and other programs is more stable in noisy environments. Moreover, this stability can be

achieved by DBSz alone—the other players did not use symbolic noise detection.

134

4.7.3 A comparison between DBSz, TFT, and TFTT

Next, we consider how DBSz performs against TFT and TFTT. Table 4.3 shows

that when playing with another cooperative player, TFT cooperates ((C,C) in the table)

33% of the time, DBSz does so 54% of the time, and TFTT does so 55% of the time.

Furthermore, when playing with a player who defects, TFT defects ((D,D) in the table)

27% of the time, DBSz does so 19% of the time, and TFTT does so 14% of the time. From

this, one might think that DBSz’s behavior is somewhere between TFT’s and TFTT’s.

But on the other hand, when playing with a player who defects, DBSz cooperates

((C,D) in the table) only 15% of the time, which is a lower percentage than for TFT

and TFTT (both 20%). Since cooperating with a defector generates no payoff, this makes

TFT and TFTT perform worse than DBSz overall. DBSz’s average score was 408 and it

ranked 3rd, but TFTT’s and TFT’s average scores were 388.4 and 388.2 and they ranked

30th and 33rd.

Figure 4.12 shows the average scores DBSz got when played against TFT, TFTT,

and other programs provided by the organizer of the competition. We can see that TFT

did not perform as well as DBSz and TFTT. In fact, TFT performed better when it played

against DBSz rather than TFT itself in noisy environments.

4.8 Related Work

Early studies of the effect of noise in the Iterated Prisoner’s Dilemma focused on

how TFT, a highly successful strategy in noise-free environments, would do in the pres-

ence of noise. TFT is known to be vulnerable to noise; for instance, if two players use

135

TFT at the same time, noise would trigger long sequences of mutual defections [45]. A

number of people confirmed the negative effects of noise to TFT [45, 11, 46, 5, 47, 12].

Axelrod found that TFT was still the best decision rule in the rerun of his first tournament

with a one percent chance of misperception [3, page 183], but TFT finished sixth out of

21 in the rerun of Axelrod’s second tournament with a 10 percent chance of mispercep-

tion [24]. In Competition 2 of the 2005 IPD competition, the noise level was 0.1, and

TFT’s overall average score placed it 33rd out of 165.

The oldest approach to remedy TFT’s deficiency in dealing with noise is to be more

forgiving in the face of defections. A number of studies found that more forgiveness

promotes cooperation in noisy environments [12, 46]. For instance, Tit-For-Two-Tats

(TFTT), a strategy submitted by John Maynard Smith to Axelrod’s second tournament,

retaliates only when it receives two defections in two previous iterations. TFTT can tol-

erate isolated instances of defections caused by noise and is more readily to avoid long

sequences of mutual defections caused by noise. However, TFTT is susceptible to ex-

ploitation of its generosity and was beaten in Axelrod’s second tournament by TESTER,

a strategy that may defect every other move. In Competition 2 of the 2005 IPD Com-

petition, TFTT ranked 30—a slightly better ranking than TFT’s. In contrast to TFTT,

DBS can tolerate not only an isolated defection but also a sequence of defections caused

by noise, and at the same time DBS monitors the other player’s behavior and retaliates

when exploitation behavior is detected (i.e., when the exploitation causes a change of

the hypothesized policy, which initially is TFT). Furthermore, the retaliation caused by

exploitation continues until the other player shows a high degree of remorse (i.e., cooper-

ations when DBS defects) that changes the hypothesized policy to one with which DBS

136

favors cooperations instead of defections.

[45] proposed to mix TFT with ALLC to form a new strategy which is now called

Generous Tit-For-Tat (GTFT) [49]. Like TFTT, GTFT avoids an infinite echo of defec-

tions by cooperating when it receives a defection in certain iterations. The difference is

that GTFT forgives randomly: for each defection GTFT receives it randomly choose to

cooperate with a small probability (say 10%) and defect otherwise. DBS, however, does

not make use of forgiveness explicitly as in GTFT; its decisions are based entirely on the

hypothesized policy that it learned. But temporary tolerance can be deemed as a form

of forgiveness, since DBS does not retaliate immediately when a defection occurs in a

mutual cooperation situation. This form of forgiveness is carefully planned and there is

no randomness in it.

Another way to improve TFT in noisy environments is to use contrition: unilaterally

cooperate after making mistakes. One strategy that makes use of contrition is Contrite

TFT (CTFT) [61, 16, 64], which does not defect when it knows that noise has occurred

and affected its previous action. However, this is less useful in the Noisy IPD since a

program does not know whether its action is affected by noise or not. DBS does not make

use of contrition, though the effect of temporary tolerance resembles contrition.

A family of strategies called “Pavlovian” strategies, or simply called Pavlov, was

found to be more successful than TFT in noisy environments [35, 36, 37, 48]. The sim-

plest form of Pavlov is called Win-Stay, Lose-Shift [48], because it cooperates only after

mutual cooperation or mutual defection, an idea similar to Simpleton [55]. When an ac-

cidental defection occurs, Pavlov can resume mutual cooperation in a smaller number of

iterations than TFT [35, 36]. Pavlov learns by conditioned response through rewards and

137

punishments; it adjusts its probability of cooperation according to the previous interac-

tion. Like Pavlov, DBS learns from its past experience and makes decisions accordingly.

DBS, however, has an intermediate step between learning from experience and decision

making: it maintains a model of the other player’s behavior, and uses this model to reason

about noise. Although there are probabilistic rules in the hypothesized policy, there is no

randomness in its decision making process.

For readers who are interested, there are several surveys on the Iterated Prisoner’s

Dilemma with noise [5, 32, 50, 38].

The use of opponent modeling is common in games of imperfect information such

as Poker [15, 7, 8, 9, 21, 14] and RoShamBo [27]. One entry in Axelrod’s original IPD

tournament used opponent modeling, but it was not successful. There have been many

works on learning the opponent’s strategy in the non-noisy IPD [26, 31, 53]. By assuming

the opponent’s next move depends only on the interactions of the last few iterations, these

works model the opponent’s strategy as probabilistic finite automata, and then use various

learning methods to learn the probabilities in the automata. For example, [31] proposed

an adaptive agent called an opponent modeling agent (OMA) of order n, which maintains

a summary of the moves made up to n previous iterations. Like DBS, OMA learns the

probabilities of cooperations of the other player in different situations using an updating

rule similar to the Equation 4.2, and generates a move based on the opponent model by

searching a tree similar to that shown in Figure 4.4. The opponent model in [26] also

has a similar construct. The main way they differ from DBS is how they learn the other

player’s strategy, but there are several other differences: for example, the tree they used

has a maximum depth of 4, whereas ours has a depth of 60.

138

The agents of both [31] and [26] learned the other player’s strategy by exploration—

deliberately making moves in order to probe the other player’s strategy. The use of explo-

ration for learning opponent’s behaviors was studied by [19], who developed a lookahead-

based exploration strategy to balance between exploration and exploitation and avoid

making risky moves during exploration. [31] and [26] used a different exploration strat-

egy than [19]; [31] introduced noise to 1% of their agent’s moves (they call this method

the trembling hand), whereas the agent in [26] makes decisions at random when it uses

the opponent’s model and finds a missing value in the model. Both of their agents used a

random opponent model at the beginning of a game.

DBS does not make deliberate moves to attempt to explore the other player’s strat-

egy, because we believe that this is a high-risk, low-payoff business in IPD. We believe it

incurs a high risk because many programs in the competition are adaptive; our defections

made in exploration may affect our long-term relationship with them. We believe it has a

low payoff because the length of a game is usually too short for us to learn any non-trivial

strategy completely. Moreover, the other player may alter its behavior at the middle of a

game, and therefore it is difficult for any learning method to converge. It is essentially

true in noisy IPD, since noise can provoke the other player (e.g., GRIM). Furthermore,

our objective is to cooperate with the other players, not to exploit their weakness in order

to beat them. So as long as the opponent cooperates with us there is no need to bother

with their other behaviors. For these reasons, DBS does not aim at learning the other

player’s strategy completely; instead, it learns the other player’s recent behavior, which is

subject to change. In contrast to the OMA strategy described earlier in this section, most

of our DBS programs cooperated with each other in the competition.

139

Our decision-making algorithm combines elements of both minimax game tree

search and the value iteration algorithm for Markov Decision Processes. In contrast to

[18], we do not model the other player’s model of our strategy; we assume that the hy-

pothesized policy does not change for the rest of the game. Obviously this assumption

is not valid, because our decisions can affect the decisions of the other players in the

future. Nonetheless, we found that the moves returned by our algorithm are fairly good

responses. For example, if the other player behaves like TFT, the move returned by our

algorithm is to cooperate regardless of the previous interactions; if the other player does

not behave like TFT, our algorithm is likely to return defection, a good move in many

situations.

To the best of our knowledge, ours is the first work on using opponent models in

the IPD to detect errors in the execution of another agent’s actions.

4.9 Summary

For conflict prevention in noisy environments, a critical problem is to distinguish

between situations where another player has misbehaved intentionally and situations

where the misbehavior was accidental. That is the problem that DBS was formulated

to deal with. DBS’s impressive performance in the 2005 Iterated Prisoner’s Dilemma

competition occurred because DBS was better able to maintain cooperation in spite of

noise than any other program in the competition.

To distinguish between intentional and unintentional misbehaviors, DBS uses a

combination of symbolic noise detection plus temporary tolerance: if an action of the

140

other player is inconsistent with the player’s past behavior, we continue as if the player’s

behavior has not changed, until we gather sufficient evidence to see whether the inconsis-

tency was caused by noise or by a genuine change in the other player’s behavior.

Since clarity of behavior is an important ingredient of long-term cooperation in the

IPD, most IPD programs have behavior that follows clear deterministic patterns. The

clarity of these patterns made it possible for DBS to construct policies that were good

approximations of the other players’ strategies, and to use these policies to fend off noise.

We believe that clarity of behavior is also likely to be important in other multi-agent

environments in which agents have to cooperate with each other. Thus it seems plausible

that techniques similar to those used in DBS may be useful in those domains.

In the future, we are interested in studying the following issues:

• The evidence collection process takes time, and the delay may invite exploitation.

For example, the policy of temporary tolerance in DBS may be exploited by a “hyp-

ocrite” strategy that behaves like TFT most of the time but occasionally defects even

though DBS did not defect in the previous iteration. DBS cannot distinguish this

kind of intentional defection from noise, even though DBS has built-in mechanism

to monitor exploitation. We are interested to seeing how to avoid this kind of ex-

ploitation.

• In multi-agent environments where agents can communicate with each other, the

agents might be able to detect noise by using a predefined communication protocol.

However, we believe there is no protocol that is guaranteed to tell which action has

been affected by noise, as long as the agents cannot completely trust each other. It

141

would be interesting to compare these alternative approaches with symbolic noise

detection to see how symbolic noise detection could enhance these methods or vice

versa.

• The type of noise in the competition assumes that no agent know whether an exe-

cution of an action has been affected by noise or not. Perhaps there are situations in

which some agents may be able to obtain partial information about the occurrence

of noise. For example, some agents may obtain a plan of the malicious third party

by counter-espionage. We are interested to see how to utilize these information into

symbolic noise detection.

• Symbolic noise detection is not designed for noise-free environments. That is why

DBS did not work as well in Competition 1 (where there was no noise) as it did in

Competition 2. 8 We believe if we have turned off the noise detection mechanism by

setting the violation thresholds to zero, the DBS programs would have performed

better in Competition 1. Thus, if we want a DBS program to be able to work well in

both noisy and noise-free environments, we need a way to detect whether there is

noise in the environment, so that DBS can turn off the noise detection mechanism

when there is no noise. In general, the questions are (1) how to estimate the level of

noise in the environment, and (2) how symbolic noise detection should be adjusted

for different noise level.

• It would be interesting to put DBS in an evolutionary environment to see whether

8we submitted the same set of programs in both Competition 1 and Competition 2. Although DBS did

not win in Competition 1, the best DBS program consistently ranked top 10 among 192 programs.

142

it can survive after a number of generations. Is it evolutionarily stable?

143

.

First Iteration
(Root Node)

Previous Iteration
(Current Node)

Depth 0

Depth 1

Depth 2

Figure 4.4: An example of the tree that we use to compute the maximum expected scores.

Each node denotes the interaction of an iteration. The top four nodes constitute a path

representing the current history τcurrent. The length of τcurrent is l = 2, and the maximum

depth N∗ is 2. There are four edges emanating from each node S after the current node;

each of these edges corresponds to a possible interaction of the iteration after S. The

maximum expected scores (not shown) of the nodes with depth 2 are set by an evaluation

function f ; these values are then used to calculate the maximum expected scores of the

nodes with depth 1 by using the maximizing rule. Similarly, the maximum expected

scores of the current node is calculated using four maximum expected scores of the nodes

with depth 1.

144

Procedure MoveGen(π, τ)

〈pCC , pCD, pDC , pDD〉 := π

{(a1, b1), (a2, b2), . . . , (ak, bk)} := τ

(a0, b0) := (C,C) ; (a, b) := (ak, bk)

〈EN∗+1
CC , EN∗+1

CD , EN∗+1
DC , EN∗+1

DD 〉 := 〈fCC , fCD, fDC , fDD〉

For k = N∗ down to 0

For each (o1, o2) in {(C,C), (C,D), (D,C), (D,D)}

F k
o1o2

:= po1o2(uCC + Ek+1
CC) + (1− po1o2)(uCD + Ek+1

CD)

Gk
o1o2

:= po1o2(uDC + Ek+1
DC) + (1− po1o2)(uDD + Ek+1

DD)

Ek
o1o2

:= max(F k
o1o2

, Gk
o1o2

)

If F k
o1o2
≥ Gk

o1o2
, then mk

o1o2
:= C

If F k
o1o2

< Gk
o1o2

, then mk
o1o2

:= D

End For

End For

Return m0
ab

Figure 4.5: The procedure for computing a recommended move for the current iteration.

In the competition, we set N∗ = 60, fCC = 3, fCD = 0, fDC = 5, and fDD = 1.

145

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Search Depth

T
ot

al
 N

um
be

r
of

 C
ha

ng
es

 o
f R

ec
om

m
en

de
d

P
ol

ic
ie

s

Student Version of MATLAB

Figure 4.6: The total number of changes of recommended policies generated by MoveGen

for each hypothesized policy as the search depth increases.

146

10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Starting Search Depth

P
er

ce
nt

ag
e

of
 R

ec
om

m
en

de
d

P
ol

ic
ie

s

Periodicity 1

Periodicity 2

No periodicity

Periodicity 3, 4 and 5

Student Version of MATLAB

Figure 4.7: The distribution of the periodicity of the cycle of recommended policies ver-

sus the starting search depths. No periodicity means that there is no obvious cycle of

recommended policies in the sequences of recommended policies generated starting from

a given starting search depth.

147

Recommended Policy Percentage

DDDD 61.16%

CDDD 7.52%

DCDD 0.00%

CCDD 0.64%

DDCD 0.16%

CDCD 0.96%

DCCD 0.00%

CCCD 0.64%

DDDC 3.68%

CDDC 7.52%

DCDC 0.00%

CCDC 1.28%

DDCC 0.64%

CDCC 2.24%

DCCC 0.00%

CCCC 5.76%

Figure 4.8: The percentage of recommended policies returned by the MoveGen procedure.

The search depth is 100. Each recommended policy is represented by four characters

m1m2m3m4, which means that the recommended policy is {(C,C) → m1, (C,D) →

m2, (D,C) → m3, (D,D) → m4}. This table excluded the hypothesized policies with

which the MoveGen procedure returns a sequence of recommended policies that change

as the search depth increases.
148

0 2 4 6 8 10 12 14 16 18

380

400

420

440

460

480

500

Number of Slaves Removed (k)

O
ve

ra
ll

A
ve

ra
ge

 S
co

re
s

BWIN (P. Vytelingum)
IMM01 (J.−W. Li)
CNGF (W. Kienreich)
DBSz (T.−C. Au)
lowEsTFT_classic (M. Filzmoser)
TFTIm (T.−C. Au)
Mod (P. Hingston)
TTFT (L. Clement)
mediumESTFT_classic (M. Filzmoser)

Figure 4.9: The overall average scores of selected programs versus the number of slaves

removed from the tournament.

149

200 300 400 500 600 700 800

CNHM

IMS02

BLOS10

CNGF

IMM01

BWIN

DBSz

 Average Scores (x)

i

DBS*
TFTI*
Other programs
BWIN, BLOS*
IMM01, IMS*
CNGF, CNHM*

Figure 4.10: Density plots of the average scores of selected programs, overlapped with

dot plots of the average scores. The vertical lines mark the overall average scores of the

programs.

150

200 300 400 500 600 700

mediumESTFT_classic

TTFT

Mod

TFTIm

lowESTFT_classic

DBSz

Average Scores (x)

DBS*
TFTI*
Other programs
BWIN, BLOS*
IMM01, IMS*
CNGF, CNHM*

Figure 4.11: Density plots of the average scores of selected programs, overlapped with

dot plots of the average scores. The slave programs and the programs submitted by the

author, except DBSz and TFTIm, are excluded.

151

0 100 200 300 400 500 600 700 800

NEG

ALLD

ALLC

RAND

GRIM

STFT

TFTT

TFT

DBSz

Average Scores of Player 1 against Player 2

P
la

ye
r

2

RAND

GRIM

TFTT

TFT
DBSz

Player 1

Figure 4.12: Average scores of the selected programs when played against DBSz and the

programs provided by the organizer of the competition.

152

Chapter 5

Symbolic Noise Filter

Symbolic noise detection (SND) has been shown to be highly effective in the Noisy

Iterated Prisoner’s Dilemma, in which an action can accidentally be changed into a dif-

ferent action. This chapter evaluates this technique in two other 2 × 2 repeated games:

the Noisy Iterated Chicken Game (ICG) and the Noisy Iterated Battle of the Sexes (IBS).

We present a generalization of SND that can be wrapped around any existing strat-

egy. To test its performance, we organized ICG and IBS tournaments in which we so-

licited several dozen strategies from different authors, and we tested these strategies with

and without our SND wrapper. In our tests, SND identified and corrected noise with 71%

accuracy in the ICG, and 59% accuracy in the IBS. We believe the reason why SND was

less effective in the ICG was because of a tendency for IBS strategies to change more

frequently from one pattern of interactions to another, causing SND to make a higher

number of wrong corrections. This leads us to believe that SND will be more effective in

any game in which strategies often show a stable behavior.

5.1 Introduction

The performance of multiagent systems often depends on the robustness of inter-

action among agents. But errors can occur during the interaction, and that could break

the premises the agents make about their interaction. This problem is compounded by

153

the fact the agents are self-interested and do not completely trust each other; agents can

no longer trust each other because of the mistakes that the other agents make, albeit the

mistakes are not intentional but accidental. How to cope with such mistakes is a critical

factor in the maintenance of cooperation among agents.

Our previous work on the study of this issue focus on a famous normal-form game

called the Iterated Prisoner’s Dilemma (IPD), which is well known as an abstract model

for studying cooperative behavior between two self-interested parties. We studied an

important variant of the IPD is the Noisy IPD, in which there is a small probability, called

the noise level, that accidents will occur [45]. Strategies that do quite well in the ordinary

(non-noisy) IPD may do quite badly in the Noisy IPD [5, 11, 12, 45, 46, 47]. For example,

if two players both use the well-known Tit-For-Tat (TFT) strategy, then an accidental

defection may cause a long series of defections by both players as each of them punishes

the other for his non-intentional defecting.

In Chapter 4, we have shown that a technique called symbolic noise detection (SND)

has been shown to be quite effective in coping with noise in the Noisy IPD [2, 1]. The

basic idea is to use a deterministic model of the other player to identify actions affected

by noise during a game. In Category 2 of the 20th Anniversary IPD competition,1 seven

out of nine programs using symbolic noise detection are among the top ten. They lost

only to a group of programs that work in a conspiracy to push one program to the top by

giving as many points as possible to this program while sacrificing the performance of the

1The results of the competition can be found on the competition’s homepage at http://www.

prisoners-dilemma.com.

154

rest.2

It is natural to ask how helpful SND can be in other kind of games, and whether

there are particular kinds of games in which it is especially helpful. Studying SND is

important since to the best of our knowledge there is no other general procedure that can

handle noise efficiently in such games. This chapter addresses these questions by studying

SND in the noisy, repeated version of two other 2×2 games: the Game of Chicken [23, 60]

and the Battle of the Sexes [42]. The Chicken Game models the situations in which two

self-interested parties compete for a resource, but if neither of them concedes, both of

them could get none of the resource. A typical example of this type of game is one that

two people drive head-to-head towards each other at a very high speed, so that the first

driver who swerves is the loser. The Battle of the Sexes models the situations in which two

parties need to coordinate with each other to accomplish a task, but they favor different

actions. For example, a husband and a wife prefer to go to a football game and an opera,

respectively. However, if they go to different places, both of them would not be happy.

We choose these games because they model many interesting real-life social situ-

ations in which dilemma occurs. Solutions to these games have practical implications.

Moreover, both the Chicken Game and the Battle of the Sexes relates to IPD by an appro-

priate scaling of the payoff matrix [17]. Thus, these games facilitate our studies of how

well SND works as the parameters of the payoff matrix changes.

2The other two programs in the top nine used a very different strategy called the master-and-slaves

strategy. The rules of the competition allowed each participant to submit up to 20 programs, and some par-

ticipants submitted 20 programs that operated conspirators in which 19 programs (the “slaves”) sacrificed

their own performance in order to feed as many points as possible to the 20th program (the “master”).

155

Our approach for evaluating SND was to organize tournaments similar to the past

IPD tournaments. We organized two tournaments called the the Noisy Iterated Chicken

Game (ICG) and the Noisy Iterated Battle of the Sexes (IBS), and asked students of an

AI class to participate. We also devised a wrapper that can be placed on each of the

students’ programs. The function of the wrapper is to correct any observed action that

is regarded to be affected by noise according to the principle of SND. Then we put the

wrapper around students’ programs and repeated the tournaments. Our objective was to

compare the performance of the strategies (i.e., student’s programs) before and after using

the wrapper. In particular, we conducted experiments to study the relationships of three

variables: (1) the average score of a strategy, (2) the difference of the average scores of

a strategy before and after using the wrapper, and (3) the accuracy of correction made by

the wrapper.

The main points of this chapter are:

• We provide a general procedure called the Naı̈ve Symbolic Noise Filter (NSNF) that

can be placed around any existing strategy.

• In our competitions, NSNF was highly accurate in predicting the other player’s next

moves—96% and 93% of predictions are correct in ICG and IBS, respectively. Not

all of these predictions would prompt NSNF to make corrections; NSNF corrects

an observed action only when the corresponding prediction is different from the

observed action. NSNF also did a decent job in correcting actions affected by

noise—out of all corrections made by NSNF, 71% and 59% of them successfully

rectified actions that have actually affected by noise in ICG and IBS, respectively.

156

• In both ICG and IBS, NSNF increased the scores of most programs, and the average

increase was higher in ICG than in IBS. One reason for this is that NSNF often has

a higher accuracy of noise correction in ICG.

• If we look at each strategy individually, the accuracy in correction does not strongly

correlate with the increases in average scores of the strategies due to the use of

NSNF. Some strategies, especially those in IBS, actually performed worse with

NSNF than without it.

• In both games, strong players and weak players behave quite differently—strong

players are more exploitive and they choose defect frequently during a game. How-

ever, in ICG this exploitive behavior causes the other player to exhibit a more clear

behavior, but in IBS this does not. We explain this phenomenon via certain charac-

teristics of decision making process of the strategies and the structure of the payoff

matrix.

5.2 Our Hypothesis

Symbolic noise detection is a principle for identifying which the other player’s ac-

tions has been affected by noise, using a deterministic model of the other player’s behavior

learnt from the current game history. This idea can be summarized as follows.

• Build a deterministic model of how the other player behaves.

• Watch for any deviation from the deterministic behavior predicted by the model.

157

• If a deviation occurs, check to see if the inconsistency persists in the next few

iterations:

1. If the inconsistency does not persist, assume the deviation is due to noise.

2. If the inconsistency persists, assume there is a change in the behavior.

The clarity of behavior in IPD has already been discussed by Axelrod in his analysis of

TFT [3]. In Chapter 4, it was argued that clarity of behavior is an important ingredient of

long-term cooperation, and therefore most IPD agents exhibit deterministic behavior in

tournaments. Thus, SND is effective in IPD because deterministic behavior is abundant

in the IPD. However, if we use SND in other kind of games, the intention for cooperation

may no longer be abundant; perhaps, cooperation may even be a undesirable behavior

in other games. Therefore, an interesting question is to see in what kind of games SND

would be effective.

In general, players in any zero-sum game tend to have little clarity in their behavior.

For instance, in a game called RoShamBo [27], the objective is to predict the opponent’s

decision, and therefore players tried hard to conceal their thought patterns. Likewise, it

is often hard for chess players to predict the opponent’s next move with a high degree

of certainty that is large enough for SND to be effective. In some non-zero-sum games,

however, deterministic behaviors is more plentiful. It would be beneficial if we have a way

to predict the amount of clarity in the player’s behavior by just looking at the structure of

a game. But this feat is currently out of our reach.

To summarize, our hypothesis is

158

Hypothesis 1 Symbolic noise detection will be effective in non-zero-sum games in which

strategies often exhibit deterministic behavior.

We will evaluate this hypothesis by using the Noisy ICG and the Noisy IBS tournaments. 3

5.3 The Noisy ICG Tournament and The Noisy IBS Tournament

Our tournaments are similar to the Axelrod’s IPD tournaments and the 2005 IPD

tournament, except that the payoff matrices are the following ones:

Chicken Game’s Player 2

Payoff Matrix Cooperate Defect

Cooperate (4, 4) (3, 5)

Player 1
Defect (5, 3) (0, 0)

Battle of the Sexes’ Husband

Payoff Matrix Football Opera

Football (1, 2) (0, 0)

Wife
Opera (0, 0) (2, 1)

In order to allow a program to play the roles of both husband and wife in the IBS, we will

use the following modified payoff matrix in the IBS:

3A similar but weaker hypothesis is “Symbolic Noise detection will be effective in non-zero-sum games

where there are rewards for deterministic behavior.” This hypothesis is weaker because there can be games

in which deterministic behavior is not rewarded but still abundant.

159

Battle of the Sexes’ Player 2

Modified Payoff Matrix Defect Cooperate

Cooperate (1, 2) (0, 0)

Player 1
Defect (0, 0) (2, 1)

At first glance, the modified Battle of the Sexes’ payoff matrix seemed to be different

from the usual one. In fact, the difference is just the labels in the matrices; we can

obtain the modified payoff matrix by labeling Wife as Player 1, Husband as Player 2,

Wife’s Football as Cooperate, Wife’s Opera as Defect, Husband’s Football as Defect,

and Husband’s Opera as Cooperate. According to the modified payoff matrix, Defect is

always more favorable than Cooperate for both Player 1 and Player 2. In order for the

players to coordinate with each other, the players has to choose different actions in the

modified payoff matrix.

A game consists of a finite sequence of iterations. In each iteration, two players,

namely Player 1 and Player 2, play an ordinary Chicken Game or the Battle of the Sexes.

At the beginning of a game, each player knows nothing about the other player, and does

not know how many iterations he will play. In each iteration, each player chooses a move,

which is either cooperate (C) or defect (D). A move is also called an action. After both

players choose a move, noise may occur and alter the moves—changing ‘Cooperate’ to

‘Defect’, or ‘Defect’ to ‘Cooperate’. If noise occurs and changes a move, the other player

would see the altered move, not the move originally chosen by the player.

To distinguish the moves chosen by the players from the moves eventually seen

by the other players, we call the former the decisions and the latter the physical actions.

160

Suppose the decisions of Player 1 and Player 2 in an iteration are a and b, respectively.

Then the decision pair of this iteration is a pair of decisions (a, b), and the interaction

pair is a pair of physical actions (a′, b′), where, (1) a′ = {C,D} \ a if a has been affected

by noise, or a′ = a if otherwise, and (2) b′ = {C,D} \ b if b has been affected by noise,

or b′ = b if otherwise.

Noise has the following characteristics.

• The noise level, the probability that noise occurs and affects a move, is 10%. Each

action has an equal probability of being affected by noise, and the occurrences of

noise are independent of each other.

• If Player 1 chooses cooperate but noise changes his action to defect, then (1)

Player 2 sees that Player 1’s action is defect, and does not know that Player 1

originally chooses cooperate; and (2) Player 1 also does not know that his action

has been affected by noise—after Player 1 chooses cooperate there is no way for

Player 1 to tell whether his action has been affected by noise. In short, Player 1

knows a and b′, and Player 2 knows a′ and b; Player 1 does not know a′ and b, and

Player 2 does not know a and b′.

• The payoff of an iteration is determined by the interaction pair (a′, b′), not the de-

cision pair (a, b). But this payoff is not announced to the players, and the players

cannot compute the payoff since Player 1 does not know a′ and Player 2 does not

know b′.

The score of a player in a game is the sum of the payoff he accumulated in all the iterations

of the game.

161

5.4 Naı̈ve Symbolic Noise Filter

Our next step is to supplement the collected strategies with symbolic noise detec-

tion. Our approach is to develop a procedure called Symbolic Noise Filter (SNF) that can

be placed around any existing strategy to filter the input (the observed action of the other

player) to a strategy using SND. The benefit of this approach is that SNF, once imple-

mented, is readily applicable to all strategies. On the other hand, this is helpful to our

study because the noise filter of all strategies are the same, and it is easier to compare

their performance than the custom-made noise filters.

Our study will use a simplified version of SND called Naı̈ve Symbolic Noise Detec-

tion (NSND), which is like SND but does not defer judgment about whether a derivation is

due to noise or not—it immediately regards a derivation is due to noise when a derivation

is detected. This is different from the full-strength SND proposed in Chapter 4, which

utilizes the information before and after a derivation to improve the accuracy of noise

detection. The benefit of NSND over the full-strength version of SND is that its imple-

mentation is much simpler than SND’s—there is no need to remember when derivation

occurs and adjust the underlying move generator when a change of behavior is detected.

Of course, the drawback is that the accuracy of NSND can be lower than SND’s. But this

deficiency is outweighed by its simplicity, which is important for our wrapper-approach

to SND.

SNF based on NSND is called Naı̈ve Symbolic Noise Filter (NSNF). Figure 5.1

illustrates the architecture of NSNF, and Figure 5.2 outlines the pseudo-code of our im-

plementation of NSNF. Before we discuss the NSNF procedure, let us give the definitions

162

Strategy

Naive Symbolic
Noise FilterOpponent

Model

isDerivation?

Yes = Enable
No = Disable

Correction
Observed

Action
Generated

Action

Predicted Action

Figure 5.1: Naı̈ve Symbolic Noise Filter (NSNF).

of various terms. A history τ of length k is a sequence of action pairs of all iterations up

to and including iteration k. We write τ = 〈(a1, b1), (a2, b2), . . . , (ak, bk)〉. A strategy is a

mapping ψ : H → {C,D}, whereH = 〈(C,C), (C,D), (D,C), (D,D)〉∗ is the set of all

possible histories. A condition Cond : H → {True,False} is a mapping from histories

to Boolean values. For any action a and b, we define Conda,b to be a condition such that

Conda,b(τ) = True if and only if either (1) k ≥ 1, ak = a and bk = b, (where k = |τ |), or

(2) k = 0 and a = b = C. In other words, Conda,b(τ) is true when the last action pair of τ

is (a, b). A deterministic rule is Cond→ b, where Cond is a condition and b is an action.

The NSNF procedure in Figure 5.2 has two input parameters: a strategy ψ and a

positive integer promotion threshold. The strategy ψ takes a history as its input and

generate an action a. The promotion threshold is to control the likelihood of picking up

a deterministic behavior. Increasing the promotion threshold reduces the chance that the

function isDerivation mistakes a random behavior as a deterministic behavior, but ignores

certain genuine deterministic behavior. In our tournaments, the promotion threshold is 3.

The procedure has two variables about the current game histories: the recorded his-

163

tory τrecorded and the filtered history τfiltered. The recorded history τrecorded is a sequence

of action pairs, each of them is the decision a of the strategy ψ and the other player’s phys-

ical action b′ in an iteration. The filtered history τfiltered is like τrecorded, except that the

other player’s physical actions in τfiltered have been “corrected” if the procedure decides

that the physical actions have been affected by noise. The history seem by the strategy ψ

is τfiltered rather than τrecorded (Line 4 in Figure 5.2).

This implementation of NSNF is simpler than the implementation of the Derived

Belief Strategy (DBS) in Chapter 4, because it does not explicitly maintain the opponent

model (i.e., the hypothesized policy in DBS) but deduces the deterministic rules on de-

mand. The procedure simply searches backward on the current recorded history to locate

a deterministic rule Condaj ,b′j
→ bnext, where (aj, b

′
j) is the second to the last action pair

of the current recorded history (Line 13 to Line 23). If NSNF finds such a rule, NSNF

will make a prediction based on bnext. If b′j+1, the last observed physical action of the

other player, is the same as bnext, no derivation is observed; otherwise, NSNF observes

a derivation and regards b′j+1 has been affected by noise. Then it corrects b′j+1 using the

invert function, which returns C if b′j+1 = D and returns D if b′j+1 = C.

As an example, suppose both Player 1 (P1) and Player 2 (P2) uses a strategy called

Tit-For-Tat (TFT), which starts with Cooperate and then repeats the other player’s action

in the previous iteration. If both P1 and P2 do not use the Naı̈ve Symbolic Noise Filter, a

possible history can be:

Iteration: 1 2 3 4 5 6 7 8 9 10

Physical Actions of P1: C C C D C D C D D D

164

Naı̈veSymbolicNoiseFilter(ψ,promotion threshold)

1. τrecorded := ∅ // the recorded history

2. τfiltered := ∅ // the filtered history

3. Loop until the end of the game

4. a := ψ(τfiltered) // ψ is the base strategy

5. Output a and get the other player’s physical action b′

6. τrecorded := τrecorded ◦ 〈(a, b′)〉

7. If isDerivation(τrecorded) = True, then

8. τfiltered := τfiltered ◦ 〈(a, invert(b′))〉

9. Else

10. τfiltered := τrecorded ◦ 〈(a, b′)〉

Function isDerivation(τrecorded)

11. Let τrecorded be 〈(a1, b
′
1), (a2, b

′
2), . . . , (ak+1, b

′
k+1)〉

12. Cond := Condak,b′k
; count := 0

13. For j = k − 1 DownTo 1

14. If Cond(aj , b
′
j) = True, then

15. If count = 0, then

16. bnext := b′j+1 ; count := count+ 1

17. Else

18. If b′j+1 = bnext, then

19. count := count+ 1

20. If count ≥ promotion threshold, then

21. If bnext = b′k+1, return False, else return True

22. Else

23. Return False

Figure 5.2: The pseudo-code of the Naive Symbolic Noise Filter. The function invert(b′)

returns C if b′ = D and returns D if b′ = C.

165

Physical Actions of P2: C C C C D C D D D D

Here, the underlined characters refer to the physical actions that have been affected by

noise. We can see that in the fourth iteration, the decision of P1 was originally C, but was

changed to D due to noise. Then this triggered the retaliation of P2 and started a long

sequence of mutual defection between the two players. The situation worsened when

noise occurred again in the eighth iteration.

But if Player 2 uses Naı̈ve Symbolic Noise Filter, the above history would become:

Iteration: 1 2 3 4 5 6 7 8 9 10

Physical Actions of P1: C C C D C C C C D C

Physical Actions of P2: C C C C C C C D C C

At the end of the third iteration, NSNF can readily identify the deterministic rule

CondC,C → C, because the rule is true in the first three iterations and we set

promotion threshold = 2. In the fourth iteration, NSNF saw a derivation from the

rule, causing P2 to correctly consider D in the fourth iteration as being affected by noise.

Therefore, P2 did not retaliate in the fifth iteration. In the ninth iteration, P1 retaliates for

the defection it observes in the eighth iteration since P1 does not use NSNF. But P2 did

not defect in the tenth iteration, because the deterministic rule CondC,C → C had held

repeatedly since the fifth iteration.

In this example, NSNF prevented mutual defection in two different occasions, help-

ing both players to maintain cooperation. Furthermore, NSNF can be effective even if

only one player is using it.

166

5.5 Tournament Setup

We have asked students of an advanced-level AI class to participate in two tourna-

ments: the Noisy ICG tournament and the Noisy IBS tournament. There are 37 students

in the class, and all of them have submitted programs to both tournaments. We told stu-

dents that the noise level is 10% and the number of iterations of each game is at least

50. Thus, students do not know the exact number of iterations, which is 300. The ICG

tournament is held first. Before the IBS tournament, students were informed about the

ranking of their programs in the ICG tournament. This information should not affect the

IBS tournaments since the tournaments are different. In each tournament, students were

given approximately 2 weeks to complete their programs.

First, we conducted experiments by repeating the ICG tournament (without NSNF)

1000 times as follows. Let ΛICG be the set of all programs for ICG. For any pair λi, λj ∈

ΛICG of programs, λi has a chance to play with λj in a tournament. Notice that λj can

be λi itself. The average score of λi is the average of the scores of λi in the 37000 ICG

games in which λi participated. We also collected statistics about λi such as the number

of defection, etc.

Second, for each λi ∈ ΛICG, we augmented λi with NSNF and denote the aug-

mented program by λ̂i. Then for each λj ∈ ΛICG, we set λ̂i to be Player 1 and play

against λj for 1000 times. Notice that λj can be λi itself (but without NSNF). The aver-

age score of λ̂i is the average of the scores of λi in the 37000 ICG games in which Player 1

is λ̂i. We also collected statistics about λ̂i and its NSNF such as the average number of

iterations in which NSNF correctly predicted the occurrence of noise in a game, etc.

167

The IBS tournaments were also conducted in the same way.

5.6 Experimental Analysis of NSNF

Our analysis is divided into three sections. The first section presents some basic

statistics about the tournaments. Our focus is on three variables: (1) the average scores,

(2) the increases in average scores due to NSNF, and (3) the accuracy of correction of

NSNF. The second section tries to explain the relationships of these variables by measur-

ing the frequency of change of decisions and the frequency of defects made by strategies.

The third section compares the distribution of decision pairs in ICG and IBS.

5.6.1 Basic Statistics

In this chapter, average scores are normalized—a normalized average score is equal

to the average score divided by the maximum possible scores of a game (1500 in ICG and

600 in IBS). This allows us to put data from different tournaments in the same graph.

5.6.1.1 Average scores

Figure 5.3 shows the normalized average scores of the strategies, with and without

using NSNF, in ICG and IBS. The normalized average scores are ordered according to the

ranks of the strategies in the original (without NSNF) tournaments. This shows that the

differences of the normalized average scores of the best strategy and the worst strategy

are small: 0.144 for ICG and 0.262 for IBS. Therefore, a small change in the average

score would have a decisive effect to the rank of a strategy. On average, an increase of

168

0.69

0.71

0.73

0.75

0.77

0.79

0.81

0.83

0.85

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
Ranks of the Programs in the Noisy ICG Tournament

N
or

m
al

iz
ed

 A
ve

ra
ge

 S
co

re
s Without NSNF

With NSNF

0.30

0.35

0.40

0.45

0.50

0.55

0.60

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
Ranks of the Programs in the Noisy IBS Tournament

N
or

m
al

iz
ed

 A
ve

ra
ge

 S
co

re
s Without NSNF

With NSNF

Figure 5.3: Normalized average scores.

0.0039 and 0.0071 in the normalized average score can change the rank of a program in

ICG and IBS, respectively.

Table 5.1 presents the overall normalized average scores, the averages of the nor-

malized scores of all strategies in a tournament. This result shows that NSNF does in-

crease the overall normalized average scores of both ICG and IBS, and the increase for

ICG is larger than the increase for IBS.

We computed the the increase in normalized average scores of a strategy due to

169

Table 5.1: The overall normalized average scores (the average of the normalized average

scores of all strategies in Figure 5.3.)

Without NSNF With NSNF Difference

ICG 0.7407 0.7475 0.0068

IBS 0.4834 0.4869 0.0035

NSNF by subtracting the normalized average score of a strategy without NSNF from the

normalized average score of a strategy with NSNF, using the data in Figure 5.3. Then we

present how the increases in normalized average scores relates to the normalized average

scores in Figure 5.4. The relationship for ICG is quite different from the relationship for

IBS. In ICG, there is no obvious relationship between the increases in normalized average

scores and the normalized average. However, in IBS, the increases in normalized average

scores decrease as the normalized average scores increase. In addition, some strategies do

not have an increase but a decrease in the normalized average scores. This is essentially

true for strategies in IBS, especially those that originally have a high average score.

5.6.1.2 Accuracy of correction

We measured various statistics about the accuracy of NSNF, and the results is sum-

marized in Table 5.2. In this table, a true positive is referred to a situation in which NSNF

correctly predicts that an action is affected by noise. A true negative is a situation in

which NSNF correctly predicts that an action is not affected by noise. False positives

and false negatives are situations in which NSNF make wrong predictions (noise occurs

170

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Normalized Average Scores

In
cr

ea
se

s
in

 N
or

m
al

iz
ed

 A
ve

ra
ge

S

co
re

s

ICG
IBS

Figure 5.4: Increases in normalized average scores due to NSNF versus normalized aver-

age scores. Notice that 11 points are clustered at (0.7, 0.00).

and noise does not occur, respectively). The accuracy of prediction, which is equal to

(n+
t + n−t)/np, is a measure of the likelihood that NSNF makes correct prediction. This

is different from the accuracy of correction, which is equal to n+
t /(n

+
t + n+

f) and is a

measure of the likelihood that NSNF makes correct prediction about the occurrence of

noise. The effective number of correction is equal to n+
t − n+

f .

Let us discuss the accuracy of NSNF in ICG first. In each iteration, NSNF predicts

the next move of the other player by searching backward to see whether a deterministic

behavior pertaining to the current condition of the current iteration can be picked up.

Thus, a prediction is made only if an appropriate deterministic behavior is found. In ICG,

NSNF were able to pick up deterministic behavior and made predictions in 188.86 out of

300 iterations; this is an interesting result, because this shows that there is a significant

amount of deterministic behavior in ICG (and in IBS too).

Our statistics showed that most of these 188.86 predictions were correct—the ac-

171

Table 5.2: Accuracy of Predictions and Corrections of NSNF.

ICG IBS

Avg. no. of actions affected by noise 30.00 30.01

Avg. no. of predictions made (np) 188.86 172.86

Avg. no. of derivations detected 25.43 27.14

Avg. no. of corrections made 25.43 27.14

Avg. no. of false negatives (n−f) 0.82 1.23

Avg. no. of false positives (n+
f) 7.36 11.08

Avg. no. of true negatives (n−t) 162.61 144.49

Avg. no. of true positives (n+
t) 18.06 16.06

Accuracy of predictions 95.67% 92.88%

Accuracy of corrections 71.04% 59.19%

Effective no. of correction 10.70 4.98

172

curacy of prediction is as high as 95.67%. Only 4.33% of these predictions were false

positives (predicting there is noise when there is no noise) and false negatives (predicting

there is no noise when there is noise). This indicates that the deterministic model of the

other player’s behavior has a high predictive power indeed.

Nonetheless, the usefulness of these deterministic behaviors depends on whether

they can be used to detect noise. Thus, our concern is how often NSNF corrects actions

that have actually affected by noise. On average, out of 25.43 corrections made by NSNF,

18.06 of them were correct (i.e., they are true positives). Therefore, the accuracy of

corrections is 71.04%. This is a decent accuracy; at least, it shows that NSNF were not

making random correction: if we compare our result to the accuracy of a random noise

filter, which randomly select 25 actions out of 300 observed actions and correct them and

hence only about 2.5 of these corrections are correct (i.e., the accuracy is only 10%), the

accuracy of NSNF is much higher.

On the other hand, NSNF made about 28.96% wrong corrections, changing about

7.36 actions when they should have not been changed. The result of these wrong cor-

rections is similar to the introduction of noise into the observed actions (though the in-

troduction is not random). According to this view, the effective number of correction is

10.70.

In IBS, NSNF’s prediction is also highly accurate: it is as high as 92.88%. However,

the number of true positives among these predictions is slight smaller than that in ICG,

resulting in an 59.19% accuracy of correction. The effective number of correction is 4.98

only, which is less than half of the effective number of correction in ICG.

NSNF can be considered as a noise filtering device, causing a 10.70/300 = 3.57%

173

reduction of the noise level. We define the effective noise level for the other player’s

actions (not the player’s own actions) to be the reduced noise level due to the use of

NSNF. For example, the effective noise level in the ICG is 10%− 3.57% = 6.43%, while

the effective noise the level in IBS is 10%−1.66% = 8.34%. In IBS, NSNF’s predictions

are also moderately accurate: the accuracy of correction is 59.19%. But due to wrong

predictions, the effective noise level is dropped by 1.66% only. This means that NSNF in

IBS is less than half as effective as NSNF in ICG in the reduction of noise level.

One fact that has not been shown in Figure 5.2 is that NSNF makes almost the same

number of corrections for every strategies. In ICG, the average number of corrections for

a strategy is between 24 and 27; in IBS, the average number of corrections is between

25 and 30. This suggests we can rely on the accuracy of correction as a performance

indicator of NSNF. 4

5.6.1.3 Accuracy of correction vs Average Scores

Figure 5.5 presents how the average scores relate to the accuracy of correction. Sur-

prisingly, a positive linear correlation is observed in ICG, but a negative linear correlation

is observed in IBS (after excluding a few outliners due to some weak strategies in IBS).

4In the terminology of Information Retrieval, the accuracy of correction is equivalent to precision, and

the number of correct correction is equivalent to recall. A good information retrieval system should have

both high precision and high recall. Thus, we cannot measure the performance of an information retrieval

system by precision (or recall) alone; it is necessary to strike a balance between precision and recall. But for

NSNF, high precision implies high recall since the number of correction is roughly a constant. Therefore,

we can use the accuracy of correction as a performance indicator of NSNF.

174

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Normalized Average Scores

A
cc

ur
ac

y
of

 C
or

re
ct

io
n

ICG
IBS

Figure 5.5: Accuracy of correction versus normalized average scores

Moreover, most strategies in ICG have a higher accuracy than all of the strategies in IBS.

But how the accuracy of correction relates to the increases in average scores? In

Figure 5.6, we found no obvious relationship between these two variables. Even worse,

around half of the strategies in IBS do not have an increase in their average scores no

matter what their accuracy of correction are. But one thing we observe in both ICG

and IBS is that none of the strategies with a low accuracy of correction (when compared

to other strategies in the same tournament) has a higher-than-average increase in their

normalized average scores. This is why the slopes of the lines in Figures 5.6 are positive.

5.6.2 Explanations via Characteristics of Decisions Making Process

This section offers explanations on (1) the relationship between the average scores

and the accuracy of correction, and (2) the relationship between the average scores and

the increases in average scores. From these, we can deduce the relationship between the

175

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

40% 50% 60% 70% 80%

Accuracy of Correction

In
cr

ea
se

s
in

 N
or

m
al

iz
ed

 A
ve

ra
ge

S

co
re

s

ICG
IBS

Figure 5.6: Increases in normalized average scores versus accuracy of correction

accuracy of correction and the increases in average scores.

Our explanations are based on two variables concerning decisions made by players:

(1) the frequency of choosing defect (Figure 5.7), and (2) the frequency of change of the

player’s own decisions—from cooperate to defect, or vice versa—between two consecu-

tive iterations (Figure 5.8).

5.6.2.1 Average scores vs accuracy of correction

We observe that the accuracy of correction increases with average scores in ICG in

Figure 5.5. At the same time, we observe that the frequency of choosing defect increases

with average scores in Figure 5.7. We believe this is not a coincidence; in fact, we can see

that they are naturally linked together by looking at the structure of the Chicken Game’s

payoff matrix—if a player chooses defect, the other player is much better off choosing

cooperate (and earning 3 points) rather than defect in order to avoid mutual defection that

176

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Normalized Average Scores

Fr
eq

ue
nc

y
of

 C
ho

os
in

g
D

ef
ec

t ICG
IBS

Figure 5.7: Frequency of choosing defect versus normalized average scores.

-10%

0%

10%

20%

30%

40%

50%

60%

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Normalized Average Scores

Fr
eq

ue
nc

y
of

 C
ha

ng
e

of
 th

e
P

la
ye

r's
 o

w
n

D
ec

is
io

ns

ICG
IBS

Figure 5.8: Frequency of changes of the player’s own decisions versus normalized average

scores.

177

gives 0 point; but if a player chooses cooperate, the choice of the other player would make

little difference to the other player’s payoff (4 points for choosing cooperate, and 5 points

for choosing defect). Thus, if a player manages to choose defect frequently, the other

player’s behavior would become more deterministic, because he often chooses cooperate.

The linear correlation in both Figure 5.5 and Figure 5.7 seems to strongly support our

explanation.

We also observe a gentle decrease in the accuracy of correction as the average scores

increase in IBS in Figure 5.5. At the same time, we observe that the frequency of choosing

defect increases with the average scores in IBS in Figure 5.7. These figures suggest that

strategies that defects frequently have a slight lower accuracy of correction than those

that cooperate frequently. Our explanation for this is based on the following observations.

First, the cost of mutual defection is small according to the payoff matrix—the player

loses 1 point only if he chooses defect instead of cooperate in response to defect. This

cost is much lower than the cost in ICG, which is 3 points. Hence, the other players in

IBS are more willing to choose defect in response to defect. See the caption of Table 5.4

for evidence of this point. Second, weak players (who have low average scores) tend to be

those who want to play fairly—having the same cumulative payoff as the other player’s.

By contrast, strong players (who have high average scores) tend to be exploitive—they

often defect. Data in Figure 5.7 and Figure 5.8 seem to support this description of the

characters of strong and weak players. When playing with strong players, weak players

would often change their decisions frequently (as they are willing to defect in response

to defect) as they struggle for fairness, causing a lower accuracy of the strong players’

prediction of their behavior. But from a weak players’ viewpoint, the strong player’s

178

behavior is very clear.

5.6.2.2 Average scores vs increases in average scores

In Figure 5.4, we observe that there is no obvious relationship between the average

scores and the increases of average scores due to NSNF in ICG, but a negative correla-

tion is observed in IBS. A common feature of the data for ICG and the data for IBS in

Figure 5.4 is that strong players often have a lower increase in average scores than other

players. One reason for this is that strong players defect frequently according to Fig-

ure 5.7. More importantly, they defect no matter which move the other player chooses.

Thus, strong players are less sensitive to noise because they often choose detect no matter

what. Therefore, noise would cause less damage to these players than those that change

their decisions frequently. NSNF would be less beneficial to strong players, as strong

players do not behave much differently even after the correction of noise. On the other

hand, some weak players rely on the establishment of certain interaction patterns with the

other player. This process is prone to noise, and thus NSNF can help these players a lot.

5.6.3 Distribution of Decision Pairs

We would like to further investigate the general effect of NSNF in different kind of

games by looking at the distribution of different decision pairs as shown in Table 5.3.

Traditionally, researchers use Nash equilibrium and its extensions to study repeated

games; for example, they use Folk Theorems and their variants to answer questions per-

taining repeated games [51]. These theorems, however, do not offer any prediction about

179

the distribution of strategies in a tournament. Many interesting phenomena have been

observed in simulations, but cannot yet be explained completely by contemporary theo-

ries. A famous example is the emergence of cooperation in IPD [3]: about 31% of the

interaction pairs in the Category 2 of 2005 IPD competition are (C,C) when there is no

master-and-slaves strategy (Table 5.3). The similar emergence of cooperation was ob-

served in our ICG tournaments—the most-frequent decision pairs turns out to be (C,C),

rather than the two pure Nash equilibria of the Chicken Game ((C,D) and (D,C)). In

IBS, however, the interaction pairs of strategies are often in two pure Nash equilibria of

the Battle of the Sexes ((C,D) and (D,C)). But (D,D) is also a high-frequent decision

pairs in IBS. We call (C,C) in ICG and (D,D) in IBS the emergent decision pairs, since

they have a high frequency of occurrence, but they are not the pure Nash equilibria of the

corresponding one-shot games.

NSNF affects the distribution of decisions pairs. In ICG, NSNF leads to a 5.75%

increase of (D,C), most of them are converted from (C,C). In IBS, NSNF causes an

3.22% increase of (C,D), most of them are converted from (D,D). A striking similarity

of these effects is that there is a decrease in the frequency of the emergent decision pairs—

(C,C) in ICG and (D,D) in IBS. In future, we are interested to study whether this also

occurs in the Noisy IPD and other kind of games as well.

We also look at the pattern of how often one decision pair changes to another in

consecutive iterations. The numbers in Table 5.4 are computed by dividing the average

number of the consecutive iterations that one decision pair change to another by 299, the

total number of consecutive iterations in a game. Thus, the sum of all 16 numbers in a

180

Table 5.3: Distributions of different decision pairs. The IPD’s data are collected from

Category 2 of the 2005 IPD competition. “All but M&S” means all 105 programs that

did not use master-and-slaves strategies, and “all” means all 165 programs in the compe-

tition. Note that the numbers for IPD are not the number of decision pairs but interaction

pairs.

ICG (C,C) (C,D) (D,C) (D,D)

Without NSNF 38.26% 29.84% 29.83% 2.06%

With NSNF 33.35% 28.87% 35.58% 2.20%

Difference -4.90% -0.97% 5.75% 0.14%

IBS (C,C) (C,D) (D,C) (D,D)

Without NSNF 5.06% 35.91% 35.94% 23.09%

With NSNF 4.94% 39.13% 35.06% 20.87%

Difference -0.11% 3.22% -0.88% -2.22%

IPD (C,C) (C,D) (D,C) (D,D)

all 13% 16% 16% 55%

all but M&S 31% 19% 19% 31%

181

Table 5.4: Frequency of change of decision pairs.

To To
From From

30.89% 3.56% 3.56% 0.26% 26.45% 3.22% 3.44% 0.24%
3.47% 25.48% 0.18% 0.70% 3.13% 24.87% 0.19% 0.68%
3.47% 0.18% 25.48% 0.70% 3.37% 0.18% 31.12% 0.91%
0.46% 0.63% 0.63% 0.33% 0.42% 0.61% 0.87% 0.31%

To To
From From

0.56% 1.17% 1.17% 2.15% 0.60% 1.46% 1.02% 1.87%
1.52% 29.75% 0.39% 4.26% 1.64% 33.63% 0.39% 3.47%
1.52% 0.39% 29.77% 4.26% 1.43% 0.41% 29.14% 4.07%
1.46% 4.67% 4.67% 12.28% 1.27% 3.71% 4.57% 11.33%

(D,C)
(D,D)

(C,C)

(C,C)
(C,D)
(D,C)
(D,D)

(C,C)
(C,D)

(D,C)

(C,C) (C,D) (D,C) (D,D)

ICG without NSNF

IBS without NSNF

ICG with NSNF

(C,C) (C,D) (D,C) (D,D)(D,D)(C,D)

(D,C)
(D,D)

(C,C)
(C,D)

(C,C)

(D,C) (D,D)

(C,D)
(D,C)
(D,D)

IBS with NSNF

(C,C) (C,D)

matrix is equal to 100%. Notice that the other players in IBS are much more willing to

choose defect in response to defects; there is a 12.9% = (0.39 + 4.26)/(1.52 + 0.39 +

29.77 + 4.26) of chance of choosing defect when the previous decision pair is (D,C), as

opposed to 2.97% = (0.18 + 0.70)/(3.47 + 0.18 + 25.48 + 0.70) of chance in ICG.

From Table 5.4, we see that there is a large number of changes to and from the

emergent decision pairs in both tournaments. More precisely, in ICG, most changes of

decision pairs starts from (C,C) or ends at (C,C), whereas in IBS, most changes of

decision pairs starts from (D,D) or ends at (D,D). Perhaps this has something to do with

the underlying mechanism that causes the emergence of these decision pairs. However,

the flow in and out of these decision pairs drop after we augmented strategies with NSNF.

Table 5.5 shows how often strategies remain in the same decision pairs in consecu-

tive iterations. First, strategies in ICG more often remain in the same decision pair than

strategies in IBS. Perhaps this explains why the accuracy of correction is higher in ICG

than in IBS (Figure 5.5). Second, strategies in both ICG and IBS are more likely to remain

in the same decision pairs after using NSNF. This stabilizing effect may have caused the

182

Table 5.5: The sum of the diagonal entries in Table 5.4.

Without NSNF With NSNF Difference

ICG 82.18% 82.75% 0.57%

IBS 72.36% 74.71% 2.35%

increases in the overall average scores as shown in Table 5.1.

5.7 Discussions

Strategies using SND were very successful in the 2005 IPD competition. We believe

SND is more effective in the IPD than in the ICG or the IBS. The reasons are

• In the IPD, the clarity of behavior are further enforced by the fact that agents antic-

ipate strategies similar to TFT are common in the population. Since defection can

often get retaliation, agents often remain cooperative and do not defect.

• However, good strategies in the ICG and the IBS tend to be less sensitive to noise,

because they try to defect as often as possible. Therefore, noise correction may not

be able to change the behavior of these strategies.

5.8 Summary

The robustness of interactions is an important issue in multi-agent systems, but

mistakes due to noise can interfere with the interactions among agents and decrease the

performance of the agents. Symbolic noise detection (SND) is a general method for

183

handling noise efficiently in games like the Noisy IPD. The purpose of this chapter has

been to investigate what kinds of features of a game may cause SND to work well or work

poorly.

For our investigation, we have evaluated SND in two other games: the Noisy It-

erated Chicken Game (ICG) and the Noisy Iterated Battle of the Sexes (IBS), using a

simplified version of SND called Naı̈ve Symbolic Noise Filter (NSNF). We found that

NSNF was highly accurate in predicting the other player’s next moves (96% and 93% of

predictions were correct in ICG and IBS, respectively) and did a decent job in correct-

ing actions affected by noise (71% and 59% of corrections were correct in ICG and IBS,

respectively).

Moreover, the overall average scores (the average of the scores of all strategies)

increase after using NSNF in both ICG and IBS. Also, the increase in ICG is larger than

in IBS. Since most strategies in ICG have a higher accuracy of noise correction than

strategies in IBS, this seems to support our hypothesis that symbolic noise detection will

be more effective in games in which strategies often exhibit deterministic behavior.

However, if we look at each strategy individually, the results are mixed: the accu-

racy of noise correction does not strongly correlate with the increases in average scores.

Some strategies, especially those in IBS, perform worse than before after using NSNF.

To explain these results, we have explored the relationships between (1) the av-

erage scores, (2) the increases of average scores due to NSNF, and (3) the accuracy of

noise correction of NSNF. We found that strong players and weak players behave quite

differently—strong players are more exploitive, having a clear behavior of choosing de-

fect. While this is true for both games, this exploitive behavior has different effect to

184

the clarity of the other players’ behavior in different games. In ICG this causes the other

player to exhibit a more clear behavior, but in IBS this does not. We have offered expla-

nations to this phenomenon via the observed characteristics of decision making process

of the strategies and the structure of the payoff matrix.

185

Chapter 6

A Framework for Building Strategies for Repeated Games

In previous sections, we discussed many techniques to synthesize strategies for re-

peated games in noisy and noise-free environments. To sum up, we present a general

framework for constructing strategies from data in repeated games. This framework re-

volves around three key data structures for opponent modeling and decision making in

repeated games: opponent models, action-value functions, and strategies. In this frame-

work, the task of constructing strategies from data can be considered as a process of the

construction of data structures from data and then the transformation of one data struc-

ture to another. The result of the process is a fully functional strategy that be used to

interact with other agents in the environments. Furthermore, if the construction algorithm

and the transformation algorithm do not have errors (i.e., it generates data structures that

is exactly the corresponding mathematical objects), then the strategies generated by the

process are optimal.

6.1 An Overview of the Framework

The diagram in Figure 6.1 is an outline of the framework. According to this frame-

work, data are recorded in previous games and stored in a data portfolio, which is ba-

sically a collection of objects. Each object in a data portfolio is designated by a type

which describes what the object is about. For example, the type of an interaction trace is

186

“interaction trace”.

Opponent

Models

Action-Value

Functions

Counter-

Strategies

transform transform

transform

generalize generalize generalizecombine combine combine

Data

Portfolios

construct construct

construct

modify

record

modifymodify

Previous

Games

Figure 6.1: A framework for constructing strategies from data.

Construction algorithms, denoted by the “construct” edges in the diagram, use data

in a data portfolio to construct a data structure such as an opponent model or a counter-

strategy. Each construction algorithm has several preconditions that specify what types

of data that must present in the data portfolio in order to use the construction algorithm.

For example, the CIT algorithm we presented in Section 2 is a construction algorithm that

takes a set of interaction traces and some other information and construct a composite

strategy. Then the presence of interaction traces in the data portfolio, among other things,

must be a precondition of the CIT algorithm.

Transformation algorithms are any algorithms that take some data structures in our

187

framework and create another data structure. The edges among data structures in the dia-

gram denote transformation algorithms. The preconditions of an transformation algorithm

specify what data structures it takes as an input. For example, a transformation algorithm

can take an opponent model and compute the corresponding action-value function by dy-

namic programming such as value iteration. This dynamic programming algorithm is

denoted by a “transform” edge from opponent models to action-value functions in the

diagram, and its precondition is that the opponent model must be a policy or a finite state

automaton.

Some transformation algorithms take two or more data structures and produce a new

data structure. If all input data structures are the same kind, we say these transformation

algorithms are combining algorithms, and are denoted by the “combine” edges in the

diagram. One such combining algorithm is about combining several opponent models

together by averaging the opponent’s moves predicted by the opponent models.

Some transformation algorithms can take several different data structures or a data

portfolio as an input. These algorithms will be represented by hyperedges in the diagram.

6.2 Strategy Construction Graphs

Our objective is to construct a counter-strategy such that our agent can use the

strategy to interact with the opponent. According to our framework, there are more than

one way to achieve this objective. Generally speaking, every path from the root node (i.e.,

the “Previous Games” node) to the terminal node (i.e., the “Counter-Strategies” node)

in the diagram in Figure 6.1 represents a possible way to construct a counter-strategy

188

from data that are gathered from previous games. Thus, we call such a path a strategy

construction path. If the diagram has hyperedges, a strategy can be constructed according

to a strategy construction graphs from the root node to the terminal node. For example,

the CIT technique can be represented by the strategy construction graph in Figure 6.2.

The CIT technique basically takes a set of interaction traces recorded previous games, and

then construct a composite strategy which is a partial strategy. The composite strategy is

then “generalized” to a total strategy by augmenting it with a base strategy. This is exactly

what the strategy construction path represents in Figure 6.2.

Opponent

Models

Action-Value

Functions
Strategies

transform transform

transform

generalize generalizecombine combine combine

Data

Portfolios

construct

construct

modify
modifymodify

Previous

Games

record interaction traces

and base strategies

construct by the CIT algorithm

generalize by MCA

Figure 6.2: The bond nodes and the bond edges represents the strategy construction graph

of the CIT technique. Notice that the edge “generalize by MCA” is a hyperedge.

The symbolic noise filter can be considered as a modification to an existing strat-

189

egy. Figure 6.3 shows how to modify a strategy constructed by the CIT technique with

symbolic noise filter.

Opponent

Models

Action-Value

Functions
Strategies

transform transform

transform

generalize generalizecombine combine combine

Data

Portfolios

construct

construct

modify by SNF
modifymodify

Previous

Games

record interaction traces

and base strategies

construct by the CIT algorithm

generalize by MCA

Figure 6.3: The strategy construction graph of the CIT technique with symbolic noise

filter.

The strategy construction process can involve a number of data structures such as

opponent models and the action-value functions. Each data structure corresponds a math-

ematical object that has certain desirable properties. More precisely, an opponent model

ψ̂ corresponds to the true behavior of the opponent (i.e., its mixed strategy ψ); an action-

value function ν̂ corresponds to the function ν that returns the maximum long-term ex-

pected utility of choosing an action at every decision node in a game; a counter-strategy

φ̂ corresponds to an optimal strategy φ against the opponent.

190

The idea is that if the construction and transformation algorithms produce data

structures that are exactly the same as the corresponding mathematical objects, then the

counter-strategy produced by the strategy construction process (according to a strategy

construction graph) is always the optimal strategy against the opponent. However, it is

difficult to build data structures that are the same as the mathematical objects, due to the

fact that data in the data portfolio is incomplete and algorithms are imperfect. Anyway,

the goal of the construction and transformation algorithms is to produce a close approxi-

mation to the mathematical objects.

Notice that this framework does not tell us which strategy construction graph is

the best. We have to conduct cross-validation experiments in order to determine which

strategy construction graph is the best.

191

Chapter 7

Conclusions and Future Work

The central theme of this dissertation is to study how to identify and exploit struc-

tures in agents’ behavior in non-zero-sum repeated games for effective decision making.

In our course of study, we discussed some useful structures in agents’ behavior in these

games, and proposed several techniques to identify and exploit those structures. This

chapter summarizes the accomplishments and proposes new directions for future work.

7.1 Contributions

The five main contributions of this thesis are:

1. Synthesis of Strategies from Interaction Traces

Chapter 2 presented a novel technique for combining interaction traces, which are

produced by many different agents in a two-player repeated game, into a composite

strategy. The technique is called the CIT technique.

The idea is stemmed from the observation that given a set T of interaction traces

generated the interaction between an agent λ and a set Λ of agents, it is possible

to “reconstruct” λ from T by synthesizing a new agent λ′ whose behavior is ex-

actly the same as λ when interacting with the agents in Λ. It turns out that the

same reconstruction procedure can be used to mix the interaction traces generated

by several different agents together, to form a composite strategy whose behavior is

192

a mixture of the behavior of the agents. Chapter 2 gives (1) the necessary and suffi-

cient conditions under which a set of interaction traces can be combined together to

form a composite strategy, and (2) an algorithm that, in polynomial time, generates

the best such composite strategy from a database of interaction traces.

One interesting feature of the CIT technique is that it does not rely on the knowl-

edge of the set of opponents’ internal states. In open environments such as the IPD

tournaments, it is impossible to know the set of all internal states of the opponent.

The CIT technique can avoid using the notion of states or belief states by directly

using the interaction traces to synthesize a strategy. It shows that it is possible to

maximize the expected utility of the composite strategy, with respect to an esti-

mated probability distribution of opponents, without using the notion of policies or

automata.

The results in our experiments show that given a collection of agents our technique

can produce a strategy that does better than all of the given agents, except the best

agents, by combining the “best” behaviors (in terms of interaction traces) exhibited

by the given agents. The use of composite strategies significantly improved the

agent’s rank (compared to the other agents) by 12% in the IPD, 38% in the ICG,

and 33% in the IBS.

2. Solvability of Task-Completion Problems with Goal Uncertainty

Chapter 3 focused on task-completion problems in which a goal-based agent must

interact with a nondeterministic environment in order to achieve a goal, but the

agent is uncertain about the goals. These problems, however, are not always solv-

193

able; in other words, some task-completion problems (with or without goal un-

certainty) have no strategy that can guarantee an agent to achieve the goals. To

distinguish unsolvable problems from those that are solvable, we introduced the

notion of strong solvability and weak solvability, and stated the necessary and suf-

ficient conditions for a problem to be strongly solvable (i.e., there exists agents that

can always succeed).

The CIT algorithm in Chapter 2 can only be used to find a solution for strongly solv-

able problems. But the CIT algorithm is not applicable to weakly solvable prob-

lems, since it cannot find a compatible set of interaction traces for every possible

configuration of the environment. Therefore we devised the CIT-search algorithm,

which takes a database of successful interaction traces for each configuration of the

nondeterministic environments, and then produces a composite agent function that

has the highest probability of success among all combinations of the interaction

traces.

The CIT-search algorithm can produce an optimal solution for weakly solvable

problems if the interaction trace database is large enough. But even if there are

only few interaction traces in the database, our experiments showed that composite

agent functions produced by CIT-search can still perform well—composite agent

functions, when incorporated in an existing problem solving strategy, can improve

the success rate of the strategy.

3. Symbolic Noise Detection

Chapter 4 introduced an approach for coping with noise in 2 × 2 repeated games,

194

and evaluated the approach in the Noisy Iterated Prisoner’s Dilemma. The ap-

proach, called symbolic noise defection (SND), is radically different from previous

approaches which are mostly based on the principle of forgiveness. SND is more

effective than previous approaches because SND is more accurate in identifying

situations in which forgiveness (i.e., temporary tolerance) are needed.

To test the performance of our noise detection approach, we wrote several pro-

grams, called DBS, to participate in the 2005 Iterated Prisoner’s Dilemma compe-

tition. The idea behind DBS is that in order to distinguish between intentional and

unintentional misbehaviors, DBS uses a combination of symbolic noise detection

plus temporary tolerance: if an action of the other player is inconsistent with the

player’s past behavior, we continue as if the player’s behavior has not changed, until

we gather sufficient evidence to see whether the inconsistency was caused by noise

or by a genuine change in the other player’s behavior.

The performance of DBS in the competition was quite impressive: seven of nine

DBS strategies were placed top-ten, and were only lost to strategies that have slave

programs to feed points to them. According to our analysis of the data provided by

the organizer of the tournament, our best DBS strategy would have placed first in

the tournament if the size of each master-and-slaves team had been limited to less

than 10.

The effectiveness of SND is due to a nice property of agent’s behavior in the Iterated

Prisoner’s Dilemma: there are clear and simple patterns in the moves made by IPD

agents, and therefore DBS can easily construct deterministic models of the other

195

player’s behavior, and then use the models to fend off noise. This phenomenon is

due to the fact that clarity of behavior is an important ingredient of long-term co-

operation in the IPD, and therefore agents are encouraged to play deterministically

most of the time.

It is well-known that accidents can cause great difficulty in cooperation with others.

To our knowledge, there are few general techniques that can effectively handle

errors in interaction among agents (triggered by noise or malicious third parties) in

multi-agent environments. The performance of SND shows the potentials of SND

as a general technique for coping with noise.

4. Analysis of Symbolic Noise Filter

Chapter 5 experimentally evaluated the performance of SND in games other than

the IPD. The approach is to take out the SND mechanism in DBS and formulate it

as a wrapper that can be placed around any existing strategy in 2×2 repeated games,

in order to endow the strategy with the capability of noise detection and correction.

The wrapper is called symbolic noise filter (SNF) and it performs two functions:

identify actions that has been affected by noise in the inputs of the underlying agent

(noise detection), and then correct those actions before feeding the actions to the

underlying agent (noise correction).

The evaluation of SNF was conducted in two repeated games: the Iterated Chicken

game and the Iterated Battle of the Sexes. The results is that SNF was highly

effective in these games. More precisely, NSNF was highly accurate in predicting

the other player’s next moves (96% and 93% of predictions were correct in ICG

196

and IBS, respectively) and did a decent job in correcting actions affected by noise

(71% and 59% of corrections were correct in ICG and IBS, respectively).

Further experimental analysis focused on the relationships of (1) the average scores

of the programs, (2) the increases in average scores due to the use of SNF, and

(3) the accuracy of correction of SNF. The relationships can be explained by mea-

suring the frequency of change of decisions and the frequency of defects made by

the programs. The analysis showed that strong players and weak players behave

differently—strong players are more exploitive, having a clear behavior of choos-

ing defect. In conclusion, the effectiveness of SNF depends on (1) whether the

behavior of the other programs is predictable, and (2) how the underlying agent

responds to the defections made by the other players. We discuss how the payoff

matrix affects the decision making process of the agents, which in turn affects the

effectiveness of noise detection and correction.

5. A Framework for Experience-Based Strategy Construction for Repeated

Games

Chapter 6 proposes a general framework for construction of strategies from data

for repeated games. The framework models the learning process that involves the

construction of several key data structures from data, the transformation of one

data structure to another, and eventually the construction of strategies from the

data structures. The data structures in this framework are opponent models, action-

value functions, and strategies. We discussed how the CIT technique and the noise

detection technique fit in this framework.

197

Apart from the above technical contributions, this dissertation also includes two

scientific discoveries pertaining to the behavior of agents in the IPD, ICG, and IBS. The

good performance of our techniques is due to the effective exploitation of these empir-

ical properties pertaining to the behavior of the agents. We predict that these empirical

properties of agents’ behavior are also valid in other non-zero-sum repeated games as

well.

1. Deterministic behavior is abundant.

The abundance of deterministic behavior in the IPD is not a news: Axelrod has

already said that clarity of behavior is an important ingredient of long-term cooper-

ation [3]. But what is new here is that deterministic behavior can also be abundant

in other non-zero-sum repeated games as well (e.g., the ICG and the IBS), and the

exhibition of agents’ deterministic behavior are not necessarily motivated by the

incentives for cooperation; the deterministic behavior can be due to other reasons

such as the incentives for making threats, as demonstrated by top ICG and IBS

agents who often dominate other players by unambiguously choosing defections.

This is why noise are often detectable by symbolic noise detection in these games.

2. Distributions of interaction traces are highly skewed.

It is unsurprising to observe certain recurrent structures in agents’ behavior in re-

peated games. But what’s surprising is that in the repeated games we considered

the interaction traces generated by agents playing against each other often belongs

to a very small group of interaction traces. In short, the distributions of interaction

traces in those games are highly skewed. That is why composite strategies con-

198

taining only about 200 interaction traces can interact successfully with the agents

in those games without resorting to the base agents most of the time, despite that

there are 4200 = 2.58 × 10120 possible ways of interaction in a game that lasts 200

iteration. In general, we believe distributions of interaction traces in non-zero-sum

repeated games are more skewed than zero-sum repeated games.

A counter-argument against the above statements is that it is possible for one to

create agents that do not have these properties. For example, one can submit a strategy

which returns moves randomly in the IPD tournament. Clearly this strategy does not

exhibit clarity of behavior and the interaction traces produced by it are very diverse. The

problem with this argument is that many agents would not use such strategies since they

do not perform well in the IPD, ICG, or IBS, and hence, such strategies are unlikely to

occur in these games.

Although in most circumstances the above empirical properties can be easily ob-

served in the IPD, ICG, and IBS, these properties can disappear under certain conditions.

For example, in one particular experiment we told students who participated in our tour-

naments that the best agent for the Noisy IPD is one that exploits the clarity of behavior

of other agents. Also, we encouraged students to study the best agents and find ways to

beat them. The result was that many agents submitted by the students have little or no

clarity of behavior. But in the 2005 IPD tournament and several other IPD tournaments

we held very few agents behave ambiguously. The results of the experiments indicates

that whether agents would exhibit clarity of behavior or diversified behaviors depends on

the set-up of the tournament and the conditions under which the tournaments is run. But

199

despite of the exceptional cases, the empirical properties we mentioned here are generally

true.

My conviction is that there are laws governing the behavior of agents in non-zero-

sum repeated games. But these laws, like physical laws in the nature, are not absolute

true but close approximations to the reality whose truth is always out of reach. Hence,

no matter how I formulate the laws about the agents’ behavior there are exceptional cases

in which these laws fail. But progress can be made by refining existing laws so as to

take those exceptional cases into account. For example, we currently don’t know any

non-zero-sum repeated game whose distribution of interaction traces is not skewed but

uniform. But if one of these games is discovered in the future, our statement about the

distribution of interaction traces should be refined.

But from an engineering standpoint simple laws that are close approximations to

the reality is often good enough. That is why mechanical engineers still prefer Newtonian

mechanics to Einstein’s mechanics, even though Einstein’s mechanics is a more accurate

description of force in the nature. Hence, SND might still be useful in many non-zero-

sum repeated games, despite that there may be better theories about agents’ behavior in

those games.

7.2 Directions for Future Work

At the end of each chapter, there is a discussion about extensions and future work

of the techniques in that chapter. Here we summarize the main points of these discussions

and provide a broader view about the synthesis of strategies in repeated games. The future

200

work can be categorized into the following subcategories:

1. Adding new functionality to the existing techniques

2. Adapting the existing techniques to other problems or applications; and

3. Using the general framework for the synthesis of strategies from data in repeated

games.

7.2.1 New Functionality

The CIT algorithm requires an estimate of the probability with which we’ll en-

counter each of opponents we have observed. In fact, this requirement may be unnec-

essary because the database of interaction traces contains lots of information about the

distribution of opponents’ strategy. In the future, we would like to study how to estimate

the probability from a given set of interaction traces and modify the CIT techniques to

alleviate this requirement.

Unlike reinforcement learning and POMDPs, our formalization for the CIT tech-

nique cannot handle problems whose horizon is infinite. The reason for this shortcoming

is that we deliberately use interaction traces in place of states, and all interaction traces in

the composite strategies are finite. But without the notion of states it is hard to extend the

solutions of the CIT technique to problems with infinite horizon. In the future, we would

like to see how to extend the CIT algorithm to deal with interaction trace of potentially

infinite length (e.g., interaction traces with loops).

Currently, the CIT technique relies on a base strategy to deal with situations in

which composite strategies fail due to the lack of interaction traces. But in more com-

201

plicated problems we usually do not have enough interaction traces to deal with all con-

tingencies in the problems. It is essentially true for the CIT search algorithm, which is

designed for task-completion problems in which agents has to complete a task despite goal

uncertainty, because these problems are more complicated than repeated games. Thus in

the future, we want to develop a better technique to deal with the issues of the lack of in-

teraction traces. One direction is to use some sorts of generalizations schemes similar to

neural networks as an generic nonlinear function approximator for state-action mappings

in TD-Gammon [62].

The CIT-search algorithm in Chapter 3 is an algorithm for finding composite agent

functions for weakly solvable task completion problems. We cannot use the CIT algo-

rithm in Chapter 2 for these problems because the CIT algorithm can only be used for

solving strongly solvable problems. But unlike the CIT algorithm, CIT-search is a brute-

force search algorithm and thus is quite inefficient when the size of interaction trace

database is large. In the future, we would like to develop a more efficient algorithm

for weakly solvable problems.

The major criticism of the symbolic noise detection technique is that if opponents

defect occasionally, SND cannot distinguish these intentional defections from defections

triggered by noise. Thus, the policy of temporary tolerance in DBS may be exploited by

a “hypocrite” strategy that behaves like TFT most of the time but occasionally defects

even though DBS did not defect in the previous iteration. But fortunately according to

our experience very few agents use hypocrite strategies. Perhaps the scarcity of hypocrite

strategies is due to the fact that the benefit of occasional defections may not outweigh

the risk of triggering mutual defections: occasional defections can earn very little points,

202

but the hypocrite strategy could lose many points if there are strategies in the tournament

that cannot tolerate occasional defections. However, we do believe that as long as the

frequency of occasional defections does not exceed certain levels hypocrite strategies can

still benefit from occasional defection without causing mutual defections. We are inter-

ested to determine the level of occasional defections the agents in the IPD tournaments

can tolerate, and modify DBS to deal with intentional defections.

Another criticism of the SND technique is that in reality there is no way to deter-

mine the correct noise level. In most situations, an agent doesn’t even know whether noise

exists or not. The use of SND when there is noise can actually decrease the performance

of an agent. One way to deal with this problem is to include a mechanism in SND for

the estimation of the noise level in the environment, and then use this estimation to adjust

the parameters in SND or turn off SND when there is no noise. Then such “adaptive”

SND can be used in both noisy and noise-free environments. The questions, of course,

are (1) how to estimate the level of noise in the environment, and (2) how to tune the

parameters in symbolic noise detection for different noise level. These are the issues we

need to address in the development of adaptive SND.

In our studies of noise in repeated games, the assumption is that agents do not

know whether an action has been affected by noise. While this assumption holds in many

domains, there are situations in which some agents can acquire partial information about

the occurrence of noise. For example, agents may obtain a plan of a malicious third party

by counter-espionage. In the future, we are interested in study how SND can utilize these

information to improve the accuracy of noise detection.

203

7.2.2 New Problems and Applications

The CIT technique, in its current form, is not suitable for large-scale zero-sum

games such as chess, since games among experts in zero-sum games usually lead to sit-

uations that no player has ever seen before. Thus, the CIT technique is not effective

in zero-sum games since the number of interaction traces is usually too small to provide

large increases in an agent’s performance. We would like to develop a way to combine the

CIT technique with game-tree search, to see how to use the knowledge in the interaction

traces for game-tree search in zero-sum games.

The fact that composite strategies in our experiments do not fail in about half of the

games even if some agents in the test sets are probabilistic is a surprising result. In spite of

the contingencies due to the use of random number generators, the opponents’ behavior

tends to vary very little. This is why the number of interaction traces in the composite

strategies is large enough to cover most of the contingencies in the probabilistic agents.

But in other domains agents may exhibit so many different behavior that a small com-

posite strategy is not sufficient to deal with all possible agent’s behavior. But fortunately

in some nondeterministic environments contingencies are more or less predictable and

can be properly modeled (unlike zero-sum games in which the opponents’ moves are less

predictable). In the future, we would like to extend the CIT technique to nondeterministic

environments in which there are lots of contingencies.

The CIT technique can be considered as a case-based reasoning technique in which

a case is an interaction trace. But problems can occur when an interaction trace is

“adapted” to other problems, since interaction traces recorded for one game may not be

204

directly used in other games. Therefore, some sort of case adaption of interaction traces is

needed when using the CIT technique for knowledge transfer or case-based reasoning. In

the future, we would like to see how to adapt interaction traces recorded in one situation

to other situations.

The success of the noise detection technique for the IPD depends on a number of

factors that are unique to the 2 × 2 repeated games. For example, it relies on the fact

that there are only two possible actions such that it can correct an noise-affected action

by flipping it to the other action. But the action space in many real-world applications is

usually very large, and the task of noise correction is not simple. Hence, it is necessary to

develop techniques for error correction in conjunction with noise detection.

An interesting question is whether the DBS strategy is evolutionarily stable. Ap-

parently it is not, because once every agent in the population uses DBS, the hypocrite

strategies, which acts like TFT most of the time but intentionally choose defections in a

small number of iterations, can outperform DBS. However, it is questionable that hyp-

ocrite strategies can dominate the population, since the performance of hypocrite strate-

gies when playing with each other is poorer than the performance of DBS. Thus, it would

be interesting to see what kind of strategies is evolutionary stable in the noisy IPD. We be-

lieve a small modification to DBS can make it more stable in evolutionary environments.

In multi-agent environments where agents can communicate with each other, agents

might be able to detect noise and avoid conflicts by using a predefined communication

protocol. Hence, communications can be an alternative solutions to cope with noise in

noisy environments. However, we believe that as long as the agents cannot completely

trust each other there is no protocol that is guaranteed to tell which action has been af-

205

fected by noise. It would be interesting to compare SND with these alternative approaches

for coping noise, and study how to combine these approaches.

7.2.3 Synthesis of Strategies for Repeated Games

Chapter 6 described a framework for the synthesis of strategies for repeated games.

In this framework, we introduced the concept of strategy construction paths, which shows

the way how data gathered from previous games or tournaments can be turned into a

strategy via the approximations and transformations of data structures such as opponent

models, action-value functions, and strategies. In the future, we would like to conduct

experiments to see which construction path is the best for different repeated games.

7.3 Summary

This dissertation contributes techniques for coping with noise in non-zero-sum

games and combining interaction traces for creating new and better agents. These tech-

niques demonstrate some possible ways to identify and exploit useful structures in agents’

behavior for effective decision making in non-zero-sum repeated games.

The issue of noise and the ignorance about the behavior of other agents in environ-

ments are major problems in many other problems as well. We hope that the success of

our techniques in simple games like repeated games can shed light on the same issues in

other domains such as the creation of robots for interacting people or other robots in the

real world.

206

Appendix A

List of Acronyms

The acronyms that appear in this thesis:

CA: Composite Agent

CIT: Combining Interaction Traces

IBS: Iterated Battle of the Sexes

ICG: Iterated Chicken Game

IPD: Iterated Prisoner’s Dilemma

MCA: Modified Composite Agent

MDP: Markov Decision Process

The acronyms of the strategies for the Iterated Prisoner’s Dilemma in the literature.

ALLC: Always Cooperate

ALLD: Always Defect

BWIN: The master program submitted by the University of Southampton in the 2005

IPD tournament.

DBS: Derived Belief Strategy

207

DBSz: Derived Belief Strategy (version z)

GRIM: Grim trigger / the grim strategy

IMM01: The master program submitted by Jia-wei Li

LSF: Learning of Opponent’s Strategy with Forgiveness

NEG: Negation strategy

PAVLOV: Pavlov strategy

STFT: Suscpicious TFT

TFT: Tit-for-Tat

TFTI: Tit-for-Tat Improved

TFTT: Tit-for-Two-Tat

WSLS: Win-Stay, Lose-Shift

208

Appendix B

Glossary of Notation

Basic Mathematics
R The set of real numbers

R≥0 The set of non-negative real numbers

R+ The set of positive real numbers

dom(f) The domain of a function f

range(f) The range of a function f

a := b Assign b to a

P or ∆ or δ A probability distribution

P (a) or ∆(a) or δ(a) The probability of the event a under P or ∆

PS or ∆S A probability distribution over the set S

PS The set of all probability distributions over the set S

209

Sequences

α = 〈a1, a2, . . . , an〉 A sequence

〈〉 An empty sequence

[α]k The k’th element in the sequence α

prefixk(α) The k’th prefix of the sequence α (including the k’th ele-

ment)

suffixk(α) The k’th suffix of the sequence α (excluding the k’th ele-

ment)

τ1 ◦ τ2 The concatenation of τ1 and τ2

lcp(α1, α2) The longest common prefix of two sequences α1 and α2

Nil A “nil” element

Agents

A The set of actions (for our agent)

B The set of opponent’s actions or the set of percepts

λ An agent

λA Our agent (for which we have to construct a strategy)

λB The opponent

Λ A set of agents.

210

Strategies

φ A pure strategy.

φA The pure strategy of our agent.

φB The pure strategy of the opponent.

Φ A set of pure strategies.

ΦA The set of all possible pure strategies for our agent.

ΦB The set of all possible pure strategies for the opponent.

ψ A mixed strategy.

strategy(λ) The (pure or mixed) strategy of the agent λ

Interaction Traces / Histories
N The length of a repeated game (i.e., the number of normal-

form games in a repeated game)

τ An interaction trace or a history

τA or actions(τ) The sequence of our agent’s actions in τ

τB or percepts(τ) The sequence of the opponent’s actions in τ

|τ | The length of τ

prefixk(τ) The k’th prefix of τ

suffixk(τ) The k’th suffix of τ

T A set of interaction traces

H The set of all possible histories in a repeated games

s(τ) The situation led by a history from the initial state

211

Interaction
trace(φ1, φ2) The interaction trace generated by two deterministic

agents using pure strategies φ1 and φ2

H(λ, ·) The set of all possible histories generated by the agent λ

as our agent

H(·, λ) The set of all possible histories generated by the agent λ

as the opponent

H(φ, ·) The set of all possible histories generated by the pure

strategy φ as our agent

H(·, φ) The set of all possible histories generated by the pure

strategy φ as the opponent

Utilities
u A utility function

uA(τ) The utility for our agent when the history is τ

uB(τ) The utility for the opponent when the history is τ

EU Expected Utility

EUA(λA, λB) The expected utility of our agent λA when interacts with

the opponent λB

EUB(λA, λB) The expected utility of the opponent λB when interacts

with our agent λA

212

Policies
Cond A condition (a mapping from histories to Boolean values)

Cond→ p A rule in a policy

r A rule

R A set of rules

C A policy schema

π A policy

Π A set of policies

Environments, Percepts, and Task-Completion Problems

e A deterministic environment

ē A nondeterministic environment

ê A probabilistic environment

φ A deterministic agent function (i.e., a pure strategy)

φ̄ A nondeterministic agent function

φ̂ A probabilistic agent function (i.e., a mixed strategy)

E A set of deterministic environments

Eē The set of configurations (i.e., deterministic environ-

ments) that is equivalent to ē

(Eê,∆ê) The set of configurations, together with the probability

distribution over Eê, that is equivalent to ê

213

Environments, Percepts, and Task-Completion Problems

P A deterministic task-completion problem (without goal

uncertainty)

P̄ A nondeterministic task-completion problem (with or

without goal uncertainty)

P̂ A probabilistic task-completion problem (with or without

goal uncertainty)

α = 〈a1, a2, . . . , an〉 A sequence of actions

β = 〈b1, b2, . . . , bn〉 A sequence of percepts

actions(T) The set of all action sequences of the interaction traces in

the set T

percepts(T) The set of all percept sequences of the interaction traces

in the set T

trace(φ, e) The interaction trace generated by the deterministic agent

function φ interacting with the deterministic environment

e

trace(α, e) The interaction trace generated by feeding the action se-

quence α into the deterministic environment e

trace(φ, β) The interaction trace generated by feeding the percept se-

quence β into the deterministic agent function φ

214

Environments, Percepts, and Task-Completion Problems

traces(φ, ē) the set of all possible interaction traces when φ interacts

with ē

traces(φ, ê) the set of all possible interaction traces when φ interacts

with ê

ξ An environment-interaction mapping (EI-mapping)

Opponent Models and Action-Value Functions

φ̂ An opponent model of a pure strategy.

ψ̂ An opponent model of a mixed strategy.

ν An action-value function

ν̂ An action-value model

215

Bibliography

[1] T.-C. Au and D. Nau. Accident or intention: That is the question (in the noisy it-
erated prisoner’s dilemma). In Proceedings of the International Joint Conferenceon
Autonomous Agents and Multi Agent Systems (AAMAS), pages 561–568, 2006.

[2] T.-C. Au and D. Nau. Is it accidental or intentional? a symbolic approach to the
noisy iterated prisoner’s dilemma. In The Iterated Prisoners’ Dilemma: 20 Years
on, pages 231–262. World Scientific, 2007.

[3] R. Axelrod. The Evolution of Cooperation. Basic Books, 1984.

[4] R. Axelrod. The Complexity of Cooperation: Agent-Based Models of Competition
and Collaboration. Princeton University Press, 1997.

[5] R. Axelrod and D. Dion. The further evolution of cooperation. Science,
242(4884):1385–1390, 1988.

[6] B. Banerjee and P. Stone. General game learning using knowledge transfer. In
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),
2007.

[7] L. Barone and L. While. Evolving adaptive play for simplified poker. In Proceedings
of IEE International Conference on Computational Intelligence (ICEC-98), pages
108–113, 1998.

[8] L. Barone and L. While. An adaptive learning model for simplified poker using evo-
lutionary algorithms. In Proceedings of the Congreess of Evolutionary Computation
(GECCO-1999), pages 153–160, 1999.

[9] L. Barone and L. While. Adaptive learning for poker. In Proceedings of the Genetic
and Evolutionary Computation Conference, pages 566–573, 2000.

[10] A. G. Barto, S. J. Bradtke, and S. P. Singh. Learning to act using real-time dynamic
programming. Artificial Intelligence, 72(1–2):81–138, 1995.

[11] J. Bendor. In good times and bad: Reciprocity in an uncertain world. American
Journal of Politicial Science, 31(3):531–558, 1987.

[12] J. Bendor, R. M. Kramer, and S. Stout. When in doubt... cooperation in a noisy
prisoner’s dilemma. The Journal of Conflict Resolution, 35(4):691–719, 1991.

[13] S. Bhansali and M. T. Harandi. Synthesis of UNIX programs using derivational
analogy. Machine Learning, 10:7–55, 1993.

[14] D. Billings, N. Burch, A. Davidson, R. Holte, J. Schaeffer, T. Schauenberg, and
D. Szafron. Approximating game-theoretic optimal strategies for full-scale poker. In
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),
pages 661–668, 2003.

216

[15] D. Billings, D. Papp, J. Schaeffer, and D. Szafron. Opponent modeling in poker.
In Proceedings of the National Conference on Artificial Intelligence (AAAI), pages
493–499, 1998.

[16] R. Boyd. Mistakes allow evolutionary stability in the repeated prisoner’s dilemma
game. Journal of Theoretical Biology, 136:47–56, 1989.

[17] B. Carlsson and K. I. Jönsson. Differences between the iterated prisoner’s dilemma
and the chicken game under noisy conditions. In Proc. of the 2002 ACM symposium
on Applied computing, pages 42–48, 2002.

[18] D. Carmel and S. Markovitch. The M* algorithms: Incorporating opponent models
into adversary search. Technical Report CIS9402, Computer Science Department
Technion, 1994.

[19] D. Carmel and S. Markovitch. How to explore your opponent’s strategy (almost)
optimally. In Proceedings of the Third International Conference on Multi-Agent
Systems, pages 64–71, 1998.

[20] D. Carmel and S. Markovitch. Exploration strategies for model-based learning in
multiagent systems. Autonomous Agents and Multi-agent Systems, 2:147–172, 1999.

[21] A. Davidson, D. Billings, J. Schaeffer, and D. Szafron. Improved opponent mod-
eling in poker. In Proceedings of the 2000 International Conference on Artificial
Intelligence (ICAI’2000), pages 1467–1473, 2000.

[22] J. Denzinger and J. Hamdan. Improving modeling of other agents using ten-
tative stereotypes and compactification of observations. In Proceedings of the
IEEE/WIC/ACM International Conference on Intelligent Agent Technology, pages
106–112, 2004.

[23] M. Deutsch. The Resolution of Conflict: Constructive and Destructive Processes.
Yale University Press, 1973.

[24] C. Donninger. Paradoxical Effects of Social Behavior, chapter Is it always efficient
to be nice?, pages 123–134. Heidelberg: Physica Verlag, 1986.

[25] C. Drummond. Accelerating reinforcement learning by composing solutions of au-
tomatically identified subtasks. Journal of Artificial Intelligence Research (JAIR),
16:59–104, 2002.

[26] D. W. Dyer. Opponent modelling and strategy evolution in the iterated prisoner’s
dilemma. Master’s thesis, School of Computer Science and Software Engineering,
The University of Western Australia, 2004.

[27] D. Egnor. Iocaine powder explained. ICGA Journal, 23(1):33–35, 2000.

[28] E. Even-Dar, S. M. Kakade, and Y. Mansour. Reinforcement learning in POMDPs
without resets. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), 2005.

217

[29] M. J. Fischer and N. A. Lynch. Impossibility of distributed consensus with one
faulty. Journal of the ACM, 32(2):374–382, 1985.

[30] J. C. Gittins. Multi-Armed Bandit Allocation Indices. John Wiley & Sons Inc, 1989.

[31] P. Hingston and G. Kendall. Learning versus evolution in iterated prisoner’s
dilemma. In Proceedings of the Congress on Evolutionary Computation (CEC’04),
2004.

[32] R. Hoffmann. Twenty years on: The evolution of cooperation revisited. Journal of
Artificial Societies and Social Simulation, 3(2), 2000.

[33] G. Kendall, X. Yao, and S. Y. Chong. The Iterated Prisoner’s Dilemma: 20 Years
On. World Scientific, 2007.

[34] R. E. Korf. Macro-operators: A weak method for learning. Artificial Intelligence,
26(1):35–77, 1985.

[35] D. Kraines and V. Kraines. Pavlov and the prisoner’s dilemma. Theory and Decision,
26:47–79, 1989.

[36] D. Kraines and V. Kraines. Learning to cooperate with pavlov an adaptive strategy
for the iterated prisoner’s dilemma with noise. Theory and Decision, 35:107–150,
1993.

[37] D. Kraines and V. Kraines. Evolution of learning among pavlov strategies in a
competitive environment with noise. The Journal of Conflict Resolution, 39(3):439–
466, 1995.

[38] S. T. Kuhn. Prisoner’s dilemma. http://karmak.org/archive/2002/11/
Prisoner’sDilemma.html Stanford Encyclopedia of Philosophy, 2001.

[39] D. B. Leake. Case-Based Reasoning: Experiences, Lessons, and Future Directions.
AAAI Press, 1996.

[40] J. Li. How to design a strategy to win an IPD tournament. In G. Kendall, X. Yao, and
S. Y. Chong, editors, The Iterated Prisoner’s Dilemma: 20 Years On, pages 89–104.
World Scientific, 2007.

[41] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling. Learning policies for partially
observable environments: Scaling up. In Proceedings of the International Confer-
ence on Machine Learning (ICML), pages 362–370, 1995.

[42] R. D. Luce and H. Raiffa. Games and Decisions: Introduction and Critical Survey.
Wiley, 1957.

[43] A. McGovern and R. S. Sutton. Macro-actions in reinforcement learning: An em-
pirical analysis. Technical Report 98-70, University of Massachusetts, Amherst,
1998.

218

[44] T. M. Mitchell. Machine Learning. McGraw Hill, 1997.

[45] P. Molander. The optimal level of generosity in a selfish, uncertain environment.
The Journal of Conflict Resolution, 29(4):611–618, 1985.

[46] U. Mueller. Optimal retaliation for optimal cooperation. The Journal of Conflict
Resolution, 31(4):692–724, 1987.

[47] M. Nowak and K. Sigmund. The evolution of stochastic strategies in the prisoner’s
dilemma. Acta Applicandae Mathematicae, 20:247–265, 1990.

[48] M. Nowak and K. Sigmund. A strategy of win-stay, lose-shift that outperforms
tit-for-tat in the prisoner’s dilemma game. Nature, 364:56–58, 1993.

[49] M. A. Nowak and K. Sigmund. Tit for tat in heterogeneous populations. Nature,
355:250–253, 1992.

[50] C. O’Riordan. Iterated prisoner’s dilemma: A review. Technical Report NUIG-
IT-260601, Department of Information Technology, National University of Ireland,
Galway, 2001.

[51] M. J. Osborne and A. Rubinstein. A Course in Game Theory. The MIT Press, 1994.

[52] A. Parker, D. Nau, and V. Subrahmanian. Overconfidence or paranoia? search in
imperfect-information games. submitted to AAAI, 2006.

[53] R. Powers and Y. Shoham. Learning against opponents with bounded memory. In
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),
2005.

[54] D. Precup, R. S. Sutton, and S. Singh. Theoretical results on reinforcement learning
with temporally abstract options. In ECML, pages 382–393, 1998.

[55] A. Rapoport and A. M. Chammah. Prisoner’s dilemma. University of Michigan
Press, 1965.

[56] A. Rubinstein. Modeling Bounded Rationality. The MIT Press, 1998.

[57] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach (Second Edi-
tion). Prentice Hall, 2003.

[58] H. A. Simon. A behavioral model of rational choice. The Quarterly Journal of
Economics, 69(99–118):1, 1955.

[59] H. A. Simon. Decision Making and Problem Solving. National Academy Press,
1986.

[60] J. M. Smith. Evolution and the Theory of Games. Cambridge University Press,
1982.

219

[61] R. Sugden. The economics of rights, co-operation and welfare. Blackwell, 1986.

[62] G. Tesauro. Temporal difference learning and td-gammon. Communications of the
ACM, 38(3), 1995.

[63] M. M. Veloso and J. G. Carbonell. Derivational analogy in prodigy: Automating
case acquisition, storage, and utilization. Machine Learning, 10(3):249–278, 1993.

[64] J. Wu and R. Axelrod. How to cope with noise in the iterated prisoner’s dilemma.
Journal of Conflict Resolution, 39:183–189, 1995.

[65] D. Zeng and K. Sycara. Using case-based reasoning as a reinforcement learning
framework for optimization with changing criteria. In ICTAI, 1995.

220

