
Software Engineering of Virtual Environments:Integration and InterconnectionDonald J. Welch Jr.dwelch@cs.umd.eduDepartment of Computer ScienceUniversity of Maryland � James M. Purtilo ypurtilo@cs.umd.eduInstitute for Advanced Computer Studies andDepartment of Computer ScienceUniversity of MarylandJuly 12, 1996ABSTRACTVirtual Environments(VEs) are proving to bevaluable resources in many �elds, and they are evenmore useful when they involve multiple users in dis-tributed environments. Many useful VEs were de-signed to be stand-alone applications, without con-sideration for integrating them into a distributedVE. Our approach to connecting VEs is to de�nean abstract model for the interconnection, use inte-gration tools to do as much of the work automat-ically as possible, and use a run-time environmentto support the interconnection. With our experi-ences to date, we are learning that certain classesof techniques are common to all solutions using thisapproach. We have summarized these in a set of re-quirements and are building a system that featuresthese techniques as �rst class objects. In the fu-ture you will be able to solve these interconnectionproblems cheaply, plus engineers of future VEs willhave some guidance on how they should organizetheir implementations so that interconnection withother VEs will be easier. In this paper we coin thephrase software engineering of virtual environments(SEVE) to describe the above activities.INTRODUCTIONVirtual Environments (which include virtual real-ity, simulation, and telepresence) are being applied�Lieutenant Colonel Welch is in the U.S. Army and isstudying at UMCP through the Army's advanced civil school-ing program.yThis research was funded by O�ce of Naval Researchcontract number N000149410320

successfully to many di�erent applications. As wefound with other computer applications, VEs areeven more powerful when they cooperate over net-works.Currently distributed multi-user VEs, can bebuilt from scratch or from existing VEs by manu-ally integrating them into a distributed VE. A sys-tem developed from the start as a distributed VEwill have many advantages, and there are a num-ber of software engineering tools to make this taskeasier. However, the cost of developing new codeis high even with software engineering support andmay not always provide low-enough cost products.There are real advantages to re-using existing code.However, due to the complexity of VEs the processof manually integrating legacy systems is laboriousand ripe with opportunities for error. The resultingsystem is still not guaranteed to be any easier tointegrate the next time.Many of the VEs currently in use were built with-out any consideration to integrating themwith othersystems into a distributed VE. Design decisions forstand-alone VEs were made to optimize that onesystem; as a result VEs can have very di�erent ar-chitectures.If distributed VEs are going to becomewidespread, then SEVE must make it easier to buildthem and reuse existing code. Universal standardsand interpreted languages may solve this problemonce and for all in the future, but there are too manyexisting systems to write them all o� just yet.Most of the research on building distributedmulti-user VEs concentrates on designing the dis-1



tributed VEs from scratch. The EM toolkit andDIVE environment are two of the best known sys-tems. They provide an environment for buildingthe entire VE to include interconnection.[WGS95][Gre94] Virtual Design is another complete VEsoftware engineering environment that also fo-cuses on using a wide array of input data andhardware.[AFM93] DoD's Distributed InteractiveSimulation (DIS) de�nes a standard for how VEsinteract, but not how to meet that standard. Thereare tools developed to help developers meet thatstandard, but not to retro-�t existing VEs.[Com94]BrickNet uses an interpreted language to facili-tate sharing object behaviors between VEs.[SSP+95]VRML is also an interpreted language that as of ver-sion 1.0 does not support connected VEs. There hasbeen little research on how to retro�t legacy systemsinto distributed VEs.[DPCS96]REQUIREMENTS FOR VE INTEGRA-TIONIn this section we lay out the functional require-ments for SEVE. The non-functional requirementshave been discussed elsewhere [DPCS96] and are be-yond the scope of this paper.We use a running example to illustrate the re-quirements for a SEVE environment. Our exampletakes two existing simulators and integrates theminto a distributed simulation to give the soldiers be-ing trained the challenge of �ghting a human oppo-nent, vice a simulated opponent. The �rst is a 
ightsimulator for an Apache attack helicopter. The sim-ulator has two users, a pilot and gunner and is astand-alone system. Most of the C code is devotedto simulating the 
ight dynamics of the Apache andcontrolling the displays in the simulator. The sec-ond simulator is a Bradley Infantry Fighting Vehiclesimulator (BIFV). It is designed to work with otherBIFV simulators so that crews can train in the sim-ulators as a group. The ground soldiers that ride inthe back have head mounted displays and can moveoutside the BIFV as they can in real life. The Adacode controls the shared virtual environment of theBIFVs as well as the virtual reality in the simulation.They each have their own events, data model, etc.The Apache has behaviors of interest to the BIFVsscattered throughout its code. This integration istedious and fraught with risk.

Maintain the Object Hierarchy/GroupingsWhen information is passed between VEs, the run-time environment must keep track of the objectsthat the information pertains to. In our example,such an association might be between soldiers andvehicles: when the squad is riding in a BIFV themembers move as the BIFV moves, and when theydismount their locations must be tracked separatelyfrom the BIFV.Translate the Reference Frames In a VE theremay be multiple reference frames, e.g. object, ob-server, or world. Applications may use entirelydi�erent coordinate systems. There are numerousworld coordinate systems to choose from when usinggeographic coordinates. In addition, coordinates arecommonly speci�ed in meters or some other physicalmeasure. The translation must be invisible to theindividual VEs.When the Apache launches a Hell�re missile, theApache tracks the missile's 
ight using its own ref-erence frame and coordinate system. To render themissile the BIFV requires information in its worldreference frame. The BIFV simulator must not haveto know about the Apache's reference frame and co-ordinate system to render the missile.Abstract the Communication VEs can havevaried communication requirements and the engi-neer must be shielded from the implementation de-tails. In most cases fast transmission time is key,but sometimes reliable communication is required.As an example, when a BIFV rotates its turret,that change can be sent by a fast-unreliable mes-sage. If the message is lost, then the next updatewill bring the system to the correct state. However,when the Apache joins the simulation, the passingof initial states must be done reliably, but speed isnot as important. The type of message (light-weightobject, network pointer, heavy-weight or real-timestream) as well as the recipients of the message(multi-casting) must be accessible to the program-mer as a simple abstraction. [BMZ95] [MZP+95]If VEs are only to receive pertinent messages, therun-time environment must have the logic to decidewhich entities get which messages. In a simulationsuch as this example, multi-casting is not critical,but if there were a brigade's worth of BIFVs insteadof a platoon the Apache would not have to know2



about the turret direction of every BIFV, only thosewithin 10 kilometers of it. The multi-cast groups theApache must monitor change as the Apache movesabout the simulated battle�eld. The logic to han-dle these changes is best handled in the run-timeenvironment and not the existing code.Provide Concurrency Control Objects thatare shared by multiple VEs must be protected toinsure consistency. When a Hell�re missile is ap-proaching a BIFV that is taking evasive action,without concurrency control the last action (maneu-ver or hit) would be the resulting state in the system.This is the opposite behavior from what we wouldlike.The concurrency control must have �ne enoughgranularity to protect di�erent aspects of an objectsuch as degrees of freedom. This allows cooperativebehavior to exist in the distributed system. Whenthe soldiers dismount in our scenario, two may pushon an obstacle at the same time. Concurrency con-trol must insure that the obstacle reacts realistically.Collision detection between objects from di�er-ent VEs must also be handled in the run-time envi-ronment. Not only should the run-time be able tostop two objects from occupying the same virtualspace, but it should also stop objects from passingthrough each other due to unequal or inadequateupdate rates. Rounds �red from the BIFV's 20mmcannon will cover large distances between updates.The system cannot let the Apache avoid hits becauseat t0 the round was 15 meters short of the Apacheand at t1 it was 15 meters beyond it.Translate Behaviors The behaviors that objectsexhibit and constraints imposed on those objectscan be very complex. The behaviors and constraintsthat are needed in a connected VE should not haveto be completely rewritten in that VE. The code tosimulate the behavior of the BIFVs smoke grenadesis very complex and would not previously exist inthe Apache simulator. Such characteristics as thelocation, size and density are too complex to bepassed as a message, so the behavior will have tobe coded into the Apache simulator and just theparameters passed during the simulation. Since thetwo simulators use di�erent programming languagesand graphics packages, translating the behavior isnot just cut and paste. The integration environ-

ment must give the software engineer as much helpas is possible with this task.Direct translation of object methods such asCORBA architectures provide is not always appro-priate. In our smoke grenade example, the BIFVswould need accurate (and computationally inten-sive) simulation of the smoke screen for a good train-ing environment. In the Apache simulation a muchrougher approximation would be appropriate, so asto not take the cpu cycles needed for the 
ight dy-namics.Translate Data Distribution Models Thereare multiple data distribution models that can beused in distributed VEs. (replicated, centralized,and distributed) The run-time environment mustmake it possible for a VE to interact with other VEsusing the model with which it was designed. Mod-ifying the VE to accept a mandated data distribu-tion model requires too much programming, spreadthroughout the application. In this example theBIFV used a centralized database (because it wasdesigned to have multiple copies of BIFV simula-tors) and the Apache had its own database. Therun-time environment provides interfaces that allowthe original VEs to interact with data as they wereoriginally designed while insuring that the databasesstay consistent.Provide Time Mapping If VEs are to cooper-ate they must be on a similar time scale, howeversome VEs use flying, or teleporting for long move-ments. If these techniques are not appropriate for allthe VEs in the system, then the run-time environ-ment will have to handle the reconciliation. Whenground soldiers fly in their VE, that would not lookrealistic to the Apache crew. The run-time environ-ment must present a realistic portrayal of the sol-dier's movement and keep the soldiers from gettingahead of the rest of the simulation. The run-timeenvironment will also have to handle time-stamps,to support predictive behavior and concurrency con-trol.Provide Event Mapping Each VE in the dis-tributed VE has its own event set. Some of thoseevents will correlate with events in other entities,and must be shared throughout the system. Therun-time environment must provide a translation3



Interconnection Language

VE VESoftware Bus

Interface Tools

Run-Time Environment

Stubs and

Modules
Coercion

Stubs and

Modules
CoercionFigure 1: SEVE Architectureand broadcast service for those events.As VEs are integrated, some events from a stand-alone VE may no longer exist in the distributed VE.The run-time environment must automatically gen-erate these events for the system. If the Apachesimulation had a simulated Scout helicopter thathelped guide it to the targets, the Scout would nolonger provide accurate information unless it wasreprogrammed to actually know where the BIFVswere. The messages that the Apache is expectingfrom the Scout must be taken care of by the run-time environment.Finally the run-time environment must ensurethe correct ordering of events when that is critical.The above example using round impact events andmaneuver events is one example.TOOL SUPPORT FOR SEVEWe are currently working to provide tool supportfor SEVE including a methodology, interconnectionlanguage, integration toolkit and run-time environ-ment to support developing distributed VEs fromexisting VEs. Our solution is based on the Polylithsoftware bus interconnection abstraction, a numberof packagers and an interconnection language thatallows the software engineer to describe VE interac-tion in abstract terms.Interconnection Language (IL) This is wherethe interaction of the VEs is de�ned in a high-levelmanner. Using the interconnection language we ex-press the geometry of the distributed simulation.This includes the communication paths and typesof messages that the BIFVs and Apache will ex-change. In addition we de�ne the rules for trans-lating between reference frames and coordinate sys-tems. We use this language to de�ne the objectsthat will be shared by the VEs. This includes ruleson modifying the objects, translating their behaviors

and how they are stored. To illustrate, the conceptthat the turret is part of the object hierarchy of aBIFV, while the infantry are grouped with the BIFVonly while riding in the back is expressed in the IL.Shared events are also delineated here along withtime mapping and any ordering constraints. By ex-pressing how the VEs interact in an abstract formand by applying automatic techniques we allow thesoftware engineer to focus more on making the dis-tributed VE realistic and e�ective; less on just get-ting it to work.Software Bus The software bus provides an in-terconnection abstract run-time environment thatshields the VE from the communication and datacoercion details. Network communication and lan-guage coercion code is left out of the BIFV andApache simulations, it all exists in the bus. TheVEs are modi�ed to interface with the bus throughstubs and not each other. The bus allows multipletypes of communication, multi-casting and dynamicrecon�guration. The bus contains the logic to con-trol multi-cast group membership and it also han-dles message and synchronization. This abstractionthat has proved so e�ective for general program in-terconnection also makes VE interconnection mucheasier.[Pur94]Object Base The object base is part of the soft-ware bus and therefore the run-time environment.It is used to keep track of the object hierarchies andgroupings of objects so that each entity in the sys-tem can deal with its own groupings. It also handlesconcurrency control for the objects down to the at-tributes level. It presents each VE in the systemwith the data distribution model that it was origi-nally designed to use.The Apache in our example expects all informa-tion to be available in its database. When a BIFVmoves it sends that information to its centralizeddatabase only, the bus takes that information andupdates the Apache database. Each VE still in-teracts with the data the way it was originally de-signed. The performance advantages of the variousdata models might be lost with this arrangement,but the goal is to allow the VEs to cooperate byre-using as much code as possible.4



Packagers The packagers are used to help set upthe interface environment for the programmer. Thepackager uses the interconnection language to gen-erate source code stubs that make it easier for thesoftware engineer to connect to the bus. A packageralso creates data coercion modules to translate databetween reference frames, and data formats so thatthey can be used directly by each entity in the VE.In our running example once we de�ne the transla-tions between the reference frames the packager setsup the coercion module for the run-time environ-ment. No translation code is added to the originalVEs. The behavior packager sets up the frameworkfor translating the smoke grenade behavior to theApache VE.EventMapping Tool This is a software tool thatautomatically generates the software modules thatimplement the interaction de�ned in the IL betweenexisting VEs. The event interaction between themodules is described in the IL. The software engi-neer then uses the event mapping tool to create co-ercion modules that combined with the software busand VE code make up the execution environment.[CP95] For example, the change location event inthe Apache simulation will map to the BIFV updatedisplay event.Methodology The methodology includes the wayto approach the analysis of legacy VEs prior to writ-ing the IL modules, as well as the decisions of whatto incorporate in the IL modules. We do not expectthe methodology to be �nalized until the rest of thesystem is complete and we have more experience in-tegrating VEs.CONCLUSIONSWe have performed some preliminary experi-ments connecting 3D and 2D virtual reality walk-throughs over the Internet and have been successful.To do this we have used a packager in conjunctionwith the Polylith software bus to connect the VEs.Our experience shows that modern software engi-neering techniques are a great help in integratingVEs. We were able to isolate all the interconnec-tion to a single module that was easy to modify aswe prototyped designs and then again as we addedmore users. The programming language used in theVEs was transparent, as the bus took care of anynecessary data representation translations. Finally,

changing the location of the executable code wastrivial requiring no changes to the source code asthe project evolved from multiple workstations inone department to VEs at two campuses communi-cating across the Internet.If distributed VEs are going to be available forwidespread use, then the cost of developing themwill have to come down. Not all distributed multi-user VEs can be built from scratch, some will have tobe built by reusing software. Re-using VE softwarecan bene�t from software engineering environmentsdeveloped speci�cally for this purpose. A softwarebus abstraction combined with packaging technol-ogy and an abstract model can make the integrationof existing VEs easier and therefore less costly.References[AFM93] Peter Astheimer, Wolfgang Felger, andStefan M�uller. Virtual Design: A genericVR System for Industrial Applications.Computers and Graphics, 17(6):671{677,November/December 1993.[BMZ95] Donald P. Brutzman, Micheal Macedonia,and Micheal Zyda. Internetwork Infras-tructure Requirements for Virtual Envi-ronments. In Proceedings, VRML Sym-posium, San Diego, CA, December 13-151995.[Bro95] WolfgangBroll. Interacting in DistributedCollaborative Virtual Environments. InProceedings of the IEEE Virtual RealityAnnual International Symposium, pages148{155, Research Triangle Park, NC,March 11-15 1995.[Com94] DIS Steering Committee. The dis vision,a map to the future of distributed simula-tion, May 1994. Version 1.[CP95] Chen Chen and James Purtilo. EventAdaptation for Integrating DistributedApplications. In Proceedings of theConference on Software Engineering andKnowledge Engineering, June 1995.[DPCS96]James W. Du�, James Purtilo, MichaelCapps, and David Stotts. Software en-gineering of distributed simulation envi-5



ronments. In Proceedings of the Con-ference on Con�gurable Distributed Sys-tems, pages 202{209, Annapolis, Mary-land, May 6-8 1996. IEEE Computer So-ciety Technical Committee on DistributedProcessing.[Gre94] Mark Green. Environment Manager.Technical report, Department of Comput-ing Science, University of Alberta, Febru-ary 1994.[Gre96] Mark Green. Shared Virtual Envi-ronments: The Implications for ToolBuilders. Computers and Graphics,20(2):185{189, March/April 1996.[MZP+95]Michael R. Macedonia, Michael J. Zyda,David R. Pratt, Donald P. Brutzman, andPaul T. Barham. Exploiting reality withmulticast groups: A network architecturefor large-scale virtual environments. InProceedings of the IEEE Virtual RealityAnnual International Symposium, pages2{10, Research Triangle Park, NC, March11-15 1995.[Pur94] James M. Purtilo. The POLYLITH Soft-ware Bus. ACM Transactions on Pro-gramming Languages, 16:151{174, Jan-uary 1994.[SSP+95] Gurminder Singh, Luis Serra, Willie Png,Audrey Wong, and Hern Ng. Brick-Net: Sharing Object Behavoirs on theNet. In Proceedings of the IEEE VirtualReality Annual International Symposium,pages 19{25, Research Triangle Park, NC,March 11-15 1995.[Vin95] John Vince. Virtual Reality Systems.Addison-Wesley, Wokingham, England,1995.[WGS95] Qunjie Wang, Mark Green, and ChrisShaw. EM - An Environment ManagerFor Building Networked Virtual Environ-ments. In Proceedings of the IEEE VirtualReality Annual International Symposium,pages 11{18, Research Triangle Park, NC,March 11-15 1995. 6


