Software Engineering of Virtual Environments:

Integration and Interconnection

Donald J. Welch Jr.
dwelch@cs.umd.edu
Department of Computer Science
University of Maryland *

James M. Purtilo T
purtilo@cs.umd.edu

Institute for Advanced Computer Studies and

Department of Computer Science
University of Maryland

July 12, 1996

ABSTRACT

Virtual Environments(VEs) are proving to be
valuable resources in many fields, and they are even
more useful when they involve multiple users in dis-
tributed environments. Many useful VEs were de-
signed to be stand-alone applications, without con-
sideration for integrating them into a distributed
VE. Our approach to connecting VEs is to define
an abstract model for the interconnection, use inte-
gration tools to do as much of the work automat-
ically as possible, and use a run-time environment
to support the interconnection. With our experi-
ences to date, we are learning that certain classes
of techniques are common to all solutions using this
approach. We have summarized these in a set of re-
quirements and are building a system that features
these techniques as first class objects. In the fu-
ture you will be able to solve these interconnection
problems cheaply, plus engineers of future VEs will
have some guidance on how they should organize
their implementations so that interconnection with
other VEs will be easier. In this paper we coin the
phrase software engineering of virtual environments
(SEVE) to describe the above activities.

INTRODUCTION

Virtual Environments (which include virtual real-
ity, simulation, and telepresence) are being applied

*Lieutenant Colonel Welch is in the U.S. Army and is
studying at UMCP through the Army’s advanced civil school-
ing program.

tThis research was funded by Office of Naval Research
contract number N000149410320

successfully to many different applications. As we
found with other computer applications, VEs are
even more powerful when they cooperate over net-
works.

Currently distributed multi-user VEs, can be
built from scratch or from existing VEs by manu-
ally integrating them into a distributed VE. A sys-
tem developed from the start as a distributed VE
will have many advantages, and there are a num-
ber of software engineering tools to make this task
easier. However, the cost of developing new code
is high even with software engineering support and
may not always provide low-enough cost products.
There are real advantages to re-using existing code.
However, due to the complexity of VEs the process
of manually integrating legacy systems is laborious
and ripe with opportunities for error. The resulting
system 1s still not guaranteed to be any easier to
integrate the next time.

Many of the VEs currently in use were built with-
out any consideration to integrating them with other
systems into a distributed VE. Design decisions for
stand-alone VEs were made to optimize that one
system; as a result VEs can have very different ar-
chitectures.

If distributed VEs going to
widespread, then SEVE must make it easier to build
them and reuse existing code. Universal standards
and interpreted languages may solve this problem
once and for all in the future, but there are too many
existing systems to write them all off just yet.

Most of the research on building distributed
multi-user VEs concentrates on designing the dis-

are become

tributed VEs from scratch. The EM toolkit and
DIVE environment are two of the best known sys-
tems. They provide an environment for building
the entire VE to include interconnection.[WGS95]
[Gre94] Virtual Design is another complete VE
software engineering environment that also fo-
cuses on using a wide array of input data and
hardware.[AFM93] DoD’s Distributed Interactive
Simulation (DIS) defines a standard for how VEs
interact, but not how to meet that standard. There
are tools developed to help developers meet that
standard, but not to retro-fit existing VEs.[Com94]
BrickNet uses an interpreted language to facili-
tate sharing object behaviors between VEs.[SSPT95]
VRML is also an interpreted language that as of ver-
sion 1.0 does not support connected VEs. There has
been little research on how to retrofit legacy systems

into distributed VEs.[DPCS96]

REQUIREMENTS FOR VE INTEGRA-
TION

In this section we lay out the functional require-
ments for SEVE. The non-functional requirements
have been discussed elsewhere [DPCS96] and are be-
yond the scope of this paper.

We use a running example to illustrate the re-
quirements for a SEVE environment. Our example
takes two existing simulators and integrates them
into a distributed simulation to give the soldiers be-
ing trained the challenge of fighting a human oppo-
nent, vice a simulated opponent. The first is a flight
simulator for an Apache attack helicopter. The sim-
ulator has two users, a pilot and gunner and is a
stand-alone system. Most of the C code 1s devoted
to simulating the flight dynamics of the Apache and
controlling the displays in the simulator. The sec-
ond simulator is a Bradley Infantry Fighting Vehicle
simulator (BIFV). It is designed to work with other
BIFV simulators so that crews can train in the sim-
ulators as a group. The ground soldiers that ride in
the back have head mounted displays and can move
outside the BIFV as they can in real life. The Ada
code controls the shared virtual environment of the
BIFVs as well as the virtual reality in the simulation.
They each have their own events, data model, etc.
The Apache has behaviors of interest to the BIFVs
scattered throughout its code. This integration is
tedious and fraught with risk.

Maintain the Object Hierarchy/Groupings
When information is passed between VEs, the run-
time environment must keep track of the objects
that the information pertains to. In our example,
such an association might be between soldiers and
vehicles: when the squad is riding in a BIFV the
members move as the BIFV moves, and when they
dismount their locations must be tracked separately

from the BIFV.

Translate the Reference Frames In a VE there
may be multiple reference frames, e.g. object, ob-
server, or world. Applications may use entirely
different coordinate systems. There are numerous
world coordinate systems to choose from when using
geographic coordinates. In addition, coordinates are
commonly specified in meters or some other physical
measure. The translation must be invisible to the
individual VEs.

When the Apache launches a Hellfire missile, the
Apache tracks the missile’s flight using its own ref-
erence frame and coordinate system. To render the
missile the BIFV requires information in its world
reference frame. The BIFV simulator must not have
to know about the Apache’s reference frame and co-
ordinate system to render the missile.

Abstract the Communication VEs can have
varied communication requirements and the engi-
neer must be shielded from the implementation de-
tails. In most cases fast transmission time is key,
but sometimes reliable communication is required.
As an example, when a BIFV rotates its turret,
that change can be sent by a fast-unreliable mes-
sage. If the message is lost, then the next update
will bring the system to the correct state. However,
when the Apache joins the simulation, the passing
of initial states must be done reliably, but speed 1s
not as important. The type of message (light-weight
object, network pointer, heavy-weight or real-time
stream) as well as the recipients of the message
(multi-casting) must be accessible to the program-
mer as a simple abstraction. [BMZ95] [MZP*95]

If VEs are only to receive pertinent messages, the
run-time environment must have the logic to decide
which entities get which messages. In a simulation
such as this example, multi-casting is not critical,
but if there were a brigade’s worth of BIFVs instead
of a platoon the Apache would not have to know

about the turret direction of every BIFV, only those
within 10 kilometers of it. The multi-cast groups the
Apache must monitor change as the Apache moves
about the simulated battlefield. The logic to han-
dle these changes is best handled in the run-time
environment and not the existing code.

Provide Concurrency Control Objects that
are shared by multiple VEs must be protected to
insure consistency. When a Hellfire missile is ap-
proaching a BIFV that is taking evasive action,
without concurrency control the last action (maneu-
ver or hit) would be the resulting state in the system.
This is the opposite behavior from what we would
like.

The concurrency control must have fine enough
granularity to protect different aspects of an object
such as degrees of freedom. This allows cooperative
behavior to exist in the distributed system. When
the soldiers dismount in our scenario, two may push
on an obstacle at the same time. Concurrency con-
trol must insure that the obstacle reacts realistically.

Collision detection between objects from differ-
ent VEs must also be handled in the run-time envi-
ronment. Not only should the run-time be able to
stop two objects from occupying the same virtual
space, but it should also stop objects from passing
through each other due to unequal or inadequate
update rates. Rounds fired from the BIFV’s 20mm
cannon will cover large distances between updates.
The system cannot let the Apache avoid hits because
at ¢y the round was 15 meters short of the Apache
and at ¢; it was 15 meters beyond it.

Translate Behaviors The behaviors that objects
exhibit and constraints imposed on those objects
can be very complex. The behaviors and constraints
that are needed in a connected VE should not have
to be completely rewritten in that VE. The code to
simulate the behavior of the BIFVs smoke grenades
is very complex and would not previously exist in
the Apache simulator. Such characteristics as the
location, size and density are too complex to be
passed as a message, so the behavior will have to
be coded into the Apache simulator and just the
parameters passed during the simulation. Since the
two simulators use different programming languages
and graphics packages, translating the behavior is
not just cut and paste. The integration environ-

ment must give the software engineer as much help
as 1s possible with this task.

Direct translation of object methods such as
CORBA architectures provide is not always appro-
priate. In our smoke grenade example, the BIFVs
would need accurate (and computationally inten-
sive) simulation of the smoke screen for a good train-
ing environment. In the Apache simulation a much
rougher approximation would be appropriate, so as
to not take the cpu cycles needed for the flight dy-
namics.

Translate Data Distribution Models There
are multiple data distribution models that can be
used in distributed VEs. (replicated, centralized,
and distributed) The run-time environment must
make it possible for a VE to interact with other VEs
using the model with which it was designed. Mod-
ifying the VE to accept a mandated data distribu-
tion model requires too much programming, spread
throughout the application. In this example the
BIFV used a centralized database (because it was
designed to have multiple copies of BIFV simula-
tors) and the Apache had its own database. The
run-time environment provides interfaces that allow
the original VEs to interact with data as they were
originally designed while insuring that the databases
stay consistent.

Provide Time Mapping If VEs are to cooper-
ate they must be on a similar time scale, however
some VEs use flying, or teleporting for long move-
ments. If these techniques are not appropriate for all
the VEs in the system, then the run-time environ-
ment will have to handle the reconciliation. When
ground soldiers fly in their VE, that would not look
realistic to the Apache crew. The run-time environ-
ment must present a realistic portrayal of the sol-
dier’s movement and keep the soldiers from getting
ahead of the rest of the simulation. The run-time
environment will also have to handle time-stamps,
to support predictive behavior and concurrency con-
trol.

Provide Event Mapping Each VE in the dis-
tributed VE has its own event set. Some of those
events will correlate with events in other entities,
and must be shared throughout the system. The
run-time environment must provide a translation

Clnterconnecti on Language)

Interface Tools

)/. \\

Coercion Coercion .
Modules Run-Time Environment Modules .

Figure 1: SEVE Architecture

and broadcast service for those events.

As VEs are integrated, some events from a stand-
alone VE may no longer exist in the distributed VE.
The run-time environment must automatically gen-
erate these events for the system. If the Apache
simulation had a simulated Scout helicopter that
helped guide it to the targets, the Scout would no
longer provide accurate information unless it was
reprogrammed to actually know where the BIFVs
were. The messages that the Apache is expecting
from the Scout must be taken care of by the run-
time environment.

Finally the run-time environment must ensure
the correct ordering of events when that is critical.
The above example using round impact events and
maneuver events is one example.

TOOL SUPPORT FOR SEVE

We are currently working to provide tool support
for SEVE including a methodology, interconnection
language, integration toolkit and run-time environ-
ment to support developing distributed VEs from
existing VEs. Our solution is based on the Polylith
software bus interconnection abstraction, a number
of packagers and an interconnection language that
allows the software engineer to describe VE interac-
tion in abstract terms.

Interconnection Language (IL) This is where
the interaction of the VEs is defined in a high-level
manner. Using the interconnection language we ex-
press the geometry of the distributed simulation.
This includes the communication paths and types
of messages that the BIFVs and Apache will ex-
change. In addition we define the rules for trans-
lating between reference frames and coordinate sys-
tems. We use this language to define the objects
that will be shared by the VEs. This includes rules
on modifying the objects, translating their behaviors

and how they are stored. To illustrate, the concept
that the turret is part of the object hierarchy of a
BIFV, while the infantry are grouped with the BIFV
only while riding in the back is expressed in the IL.
Shared events are also delineated here along with
time mapping and any ordering constraints. By ex-
pressing how the VEs interact in an abstract form
and by applying automatic techniques we allow the
software engineer to focus more on making the dis-
tributed VE realistic and effective; less on just get-
ting it to work.

Software Bus The software bus provides an in-
terconnection abstract run-time environment that
shields the VE from the communication and data
coercion details. Network communication and lan-
guage coercion code is left out of the BIFV and
Apache simulations, it all exists in the bus. The
VEs are modified to interface with the bus through
stubs and not each other. The bus allows multiple
types of communication, multi-casting and dynamic
reconfiguration. The bus contains the logic to con-
trol multi-cast group membership and it also han-
dles message and synchronization. This abstraction
that has proved so effective for general program in-
terconnection also makes VE interconnection much
easier.[Pur94]

Object Base The object base is part of the soft-
ware bus and therefore the run-time environment.
It is used to keep track of the object hierarchies and
groupings of objects so that each entity in the sys-
tem can deal with its own groupings. It also handles
concurrency control for the objects down to the at-
tributes level. It presents each VE in the system
with the data distribution model that it was origi-
nally designed to use.

The Apache in our example expects all informa-
tion to be available in its database. When a BIFV
moves 1t sends that information to its centralized
database only, the bus takes that information and
updates the Apache database. Each VE still in-
teracts with the data the way 1t was originally de-
signed. The performance advantages of the various
data models might be lost with this arrangement,
but the goal is to allow the VEs to cooperate by
re-using as much code as possible.

Packagers The packagers are used to help set up
the interface environment for the programmer. The
packager uses the interconnection language to gen-
erate source code stubs that make it easier for the
software engineer to connect to the bus. A packager
also creates data coercion modules to translate data
between reference frames, and data formats so that
they can be used directly by each entity in the VE.
In our running example once we define the transla-
tions between the reference frames the packager sets
up the coercion module for the run-time environ-
ment. No translation code is added to the original
VEs. The behavior packager sets up the framework
for translating the smoke grenade behavior to the

Apache VE.

Event Mapping Tool This is a software tool that
automatically generates the software modules that
implement the interaction defined in the IL between
existing VEs. The event interaction between the
modules is described in the IL. The software engi-
neer then uses the event mapping tool to create co-
ercion modules that combined with the software bus
and VE code make up the execution environment.
[CP95] For example, the change location event in
the Apache simulation will map to the BIFV update
display event.

Methodology The methodology includes the way
to approach the analysis of legacy VEs prior to writ-
ing the IL modules, as well as the decisions of what
to incorporate in the IL modules. We do not expect
the methodology to be finalized until the rest of the
system is complete and we have more experience in-
tegrating VEs.

CONCLUSIONS

We have performed some preliminary experi-
ments connecting 3D and 2D virtual reality walk-
throughs over the Internet and have been successful.
To do this we have used a packager in conjunction
with the Polylith software bus to connect the VEs.
Our experience shows that modern software engi-
neering techniques are a great help in integrating
VEs. We were able to isolate all the interconnec-
tion to a single module that was easy to modify as
we prototyped designs and then again as we added
more users. The programming language used in the
VEs was transparent, as the bus took care of any
necessary data representation translations. Finally,

changing the location of the executable code was
trivial requiring no changes to the source code as
the project evolved from multiple workstations in
one department to VEs at two campuses communi-
cating across the Internet.

If distributed VEs are going to be available for
widespread use, then the cost of developing them
will have to come down. Not all distributed multi-
user VEs can be built from scratch, some will have to
be built by reusing software. Re-using VE software
can benefit from software engineering environments
developed specifically for this purpose. A software
bus abstraction combined with packaging technol-
ogy and an abstract model can make the integration
of existing VEs easier and therefore less costly.

References

[AFM93] Peter Astheimer, Wolfgang Felger, and
Stefan Muller. Virtual Design: A generic
VR, System for Industrial Applications.
Computers and Graphics, 17(6):671-677,
November/December 1993.

[BMZ95] Donald P. Brutzman, Micheal Macedonia,
and Micheal Zyda. Internetwork Infras-
tructure Requirements for Virtual Envi-
ronments. In Proceedings, VRML Sym-
postum, San Diego, CA, December 13-15

1995.

[Bro95] Wolfgang Broll. Interacting in Distributed
Collaborative Virtual Environments. In
Proceedings of the IEEFE Virtual Reality
Annual International Symposium, pages

148-155, Research Triangle Park, NC,
March 11-15 1995.

[Com94] DIS Steering Committee. The dis vision,
a map to the future of distributed simula-

tion, May 1994. Version 1.

Chen Chen and James Purtilo. Event
Adaptation for Integrating Distributed
Applications. In Proceedings of the
Conference on Software Engineering and
Knowledge Engineering, June 1995.

[CPY5]

[DPCS96]James W. Duff, James Purtilo, Michael
Capps, and David Stotts. Software en-
gineering of distributed simulation envi-

[Gre94]

[Gre96]

ronments. In Proceedings of the Con-
ference on Configurable Distributed Sys-
tems, pages 202-209, Annapolis, Mary-
land, May 6-8 1996. IEEE Computer So-
ciety Technical Committee on Distributed
Processing.

Mark Green. Environment Manager.
Technical report, Department of Comput-
ing Science, University of Alberta, Febru-
ary 1994.

Mark Green. Shared Virtual Envi-
ronments: The Implications for Tool
Builders. Computers and Graphics,
20(2):185-189, March/April 1996.

[MZPT95]Michael R. Macedonia, Michael J. Zyda,

[Pur94]

[SSP+95]

[Vin95]

[WGS95]

David R. Pratt, Donald P. Brutzman, and
Paul T. Barham. Exploiting reality with
multicast groups: A network architecture
for large-scale virtual environments. In
Proceedings of the IEEE Virtual Reality
Annual International Symposium, pages
2-10, Research Triangle Park, NC, March
11-15 1995.

James M. Purtilo. The POLYLITH Soft-
ware Bus. ACM Transactions on Pro-
gramming Languages, 16:151-174, Jan-
uary 1994.

Gurminder Singh, Luis Serra, Willie Png,
Audrey Wong, and Hern Ng. Brick-
Net: Sharing Object Behavoirs on the
Net. In Proceedings of the IEEE Virtual
Reality Annual International Symposium,
pages 19-25, Research Triangle Park, NC,
March 11-15 1995.

John Vince. Virtual Reality Systems.
Addison-Wesley, Wokingham, FEngland,
1995.

Qunjie Wang, Mark Green, and Chris
Shaw. EM - An Environment Manager
For Building Networked Virtual Environ-
ments. In Proceedings of the IEEE Virtual
Reality Annual International Symposium,
pages 11-18, Research Triangle Park, NC,
March 11-15 1995.

