A Customizable Simulator for Workstation Networks *

Mustafa Uysal, Anurag Acharya, Robert Bennett, Joel Saltz
Computer Science Department
University of Maryland, College Park, MD 20742
{uysal,acha,robertb,saltz}0cs.umnd.edu

Abstract

We present a customizable simulator called netsim for high-performance point-to-point work-
station networks that is accurate enough to be used for application-level performance analysis yet
is easy enough to customize for multiple architectures and software configurations. Customiza-
tion is accomplished without using any proprietary information, using only publicly available
hardware specifications and information that can be readily determined using a suite of test
programs. We customized netsim for two platforms: a 16-node IBM SP-2 with a multistage
network and a 10-node DEC Alpha Farm with an ATM switch. We show that netsim success-
fully models these two architectures with a 2-6% error on the SP-2 and a 10% error on the Alpha
Farm for most test cases. It achieves this accuracy at the cost of a 7-36 fold simulation slowdown
with respect to the SP-2 and a 3-8 fold slowdown with respect to the Alpha Farm. In addition,
we show that the cross-traffic congestion for today’s high-speed point-to-point networks has
little, if any, effect on application-level performance and that modeling end-point congestion is
sufficient for a reasonably accurate simulation.

1 Introduction

The performance of workstation clusters with high-performance interconnects has improved to the
point that they are gradually replacing the traditional tightly-coupled dedicated multicomputers
as the platform of choice for parallel computation. Most contemporary commercial and research
parallel platforms fall into this category (e.g. the IBM SP-2, the DEC Alpha Farm, the Berkeley
NOW [4], the Wisconsin COW [14], the CESDIS Beowulf [20]).

Unlike multicomputers, each processing node of a workstation cluster is a complete machine with
its own operating system, often with multiple users and significant 1/O resources. Analyzing the
performance of applications on such machines is significantly harder than doing so on the traditional
multicomputers. More so since access to hardware has to pass through many layers of system
software none of which can be looked at by a non-privileged user. We can testify first-hand about
the six months we spent trying to track down performance problems in a set of communication-
intensive programs with irregular communication patterns! [2].

A fast and reasonably accurate simulator would significantly simplify this task. However, build-
ing a simulator for the communication subsystem, let alone the entire machine is not feasible for
the average user. In addition to the enormous time and effort, a non-privileged user does not

*This research was supported by ARPA under contract No. #DABT63-94-C-0049, Caltech Subcontract #9503,
by NASA under contract No. NASA #NAS5-32337, USRA/CESDIS Subcontract #555541 and by grants from IBM
Corporation and Digital Equipment Corporation

! And about the large number of conditional compilation statements which were quite difficult to clean up later.

have access to detailed information about the hardware and the operating system. Furthermore,
whenever the application of interest is ported to a new platform, a new simulator would be needed.

We are led, then, to consider several questions. Is it possible to build a customizable simulator
for workstation networks which is accurate enough to be used for performance analysis yet is easy
enough to customize so that it is worth doing so even for a single application? Is it possible to
do so without using any proprietary information, that is, using information that is either publicly
available or can be determined using test programs? Would such a simulator be fast enough to be
practical?

There is some a priori reason to believe that at least some of these questions can be answered
in the affirmative. There is a convergence in design of both the interconnects used for worksta-
tion networks and the messaging software used on these networks. Modern workstation network
interconnects are designed using switching elements and point-to-point links with a regular, low-
dimension topology and aggressive cut-through routing and flow-control [11, 21]. Data rates are
high and the error rates are low. Communication is either packet-based, with an upper bound on
the packet size, or cell-based with a fixed packet size. Many network adapters provide outboard
buffering where the adapter buffers are large enough to function as retransmit and receive buffers.
DMA is almost universally supported for transfers between host memory and adapter buffer. Few
systems provide protocol processing on the adapter, leaving the protocol overheads to software [19].
On the messaging software side, standardization efforts has produced the Message Passing Inter-
face (MPI) standard which has been largely accepted by users and vendors [8]. While it is possible
that different vendors could implement the interface in completely different ways, the common
software interface and relatively similar networking hardware (as described above) indicates that
most implementations on workstation clusters can be expected to be not significantly dissimilar.

In this paper, we address these questions by describing our experience building and evaluating
netsim, a customizable network simulator for workstation networks. Netsim models point-to-
point dedicated links, network adapters with an outboard buffer and a DMA engine and buffered
communication software. The network is assumed to be lossless. Netsim models the connection
between any pair of hosts as a dedicated link and ignores congestion due to cross-traffic. It does,
however, model end-point congestion which occurs when several nodes try to communicate with a
single node. It has six hardware parameters, which specify the characteristics of the interconnect
and the adapter, and five software parameters which specify the characteristics of the memory and
the messaging software. The hardware parameters can be easily obtained from information made
public by the manufacturer; the software parameters can be determined by a small set of controlled
experiments on the selected platform.

We have customized netsim for two different platforms: the IBM SP-2 with the IBM High Per-
formance Switch, the i860-based communication adapter and IBM’s MPL message-passing library;
and a cluster of DEC Alpha 2100 4/275 four-processor workstations with the GIGAswitch/ATM
network, the ATMworks 750 adapter and the portable MPI-CH message-passing library from the
Argonne National Lab. We believe that these are important platforms and are currently in
use at a large number of sites worldwide. We would also like to point out that these two sys-
tems differ in many aspects — host architecture (uniprocessor/SMP), network architecture (mul-
tistage/crossbar, packet-based/cell-based), I/O peripherals bus (MCA/PCI) and communication
software (native/portable). If netsimis able to achieve reasonable performance for both platforms,
this would be evidence for its customizability.

To evaluate the customized simulators, we used a suite of microbenchmarks representing com-
mon low-level network operations. Our results show that netsim is able to achieve reasonable
accuracy for both platforms. For the SP-2, netsim was successfully able to model the application-

level bandwidth across a seven orders of magnitude difference in message size. The error for most
message sizes was 2-6%, the maximum error being 12%. For the Alpha Farm, netsim was able to
model the application-level bandwidth within an error of 10% for message sizes up to 1 MB (for
message sizes larger than 1 MB, the performance of our MPI-CH installation drops sharply and
unexpectedly). This accuracy is achieved at the cost of a 7-36 fold slowdown for the SP-2 and a
3-8 fold slowdown for the Alpha Farm. To put this in context, Benveniste and Heidelberger [6]
report that a detailed sequential simulator takes 1 day on a workstation to simulate 1 second of
simulation time for a 128 node SP-2.

As an important aside, our experiments also show that for high-performance point-to-point
networks, modeling end-point congestion is sufficient for a reasonably accurate simulation and that
cross-traffic congestion contributes little, if any, to application-level performance.

Netsim has been developed as part of the HOW? project whose goals is to evaluate architectural
and OS policy alternatives for data-intensive tasks on workstation clusters. Netsim has been
integrated into a larger simulator, howsim. Howsim simulates I/O devices (storage and network)
and the corresponding OS software at a fairly low level and the processor at a fairly high level.
Howsim is currently operational and simulates the interconnect, network adapters, disk devices,
peripheral buses, disk controllers, the file system and the OS scheduler. In the immediate future,
we plan to use howsim for application-driven studies of I/O architectures for workstation clusters
and cluster-wide scheduling policies.

2 Description of netsim

Netsim models point-to-point interconnection links, network adapters with an outboard buffer and
a DMA engine, and buffered communication software. Figure 1 shows the configuration modeled
for a pair of nodes.

(7 (7
User buffer User buffer
peripherals network peripherals
System buffer 7 hus bus | N System buffer
Node memory Node memory
- J - J

Figure 1: netsim network model for a pair of nodes.

The network is assumed to be packet-switched and each node is assumed to be connected to
all its peers by dedicated point-to-point links. Network links are modeled by a simple latency-
bandwidth model. Time to transfer a packet of size L over the wire is assumed to be T'=a+ g x L
where o and § represent the wire latency and bandwidth, respectively. As a result, cross-traffic
congestion is not modeled but the effects of end-point congestion are included. We conducted a
series of experiments on various SP-2 and Alpha Farm configurations to verify the validity of this

2HOW stands for horde of workstations. With the help of the Berkeley NOW and the Wisconsin COW, we hope

to complete the rollcall of how now brown cow.

35 T T T T T T T T T T T T T 14 T T T T T T T T T T T T T
g g4
P " frs
0+ . B 2+ NS AT ~
Congested-Inter-Switch —+-- v [A
Idle-Network -et- A I
5| i 1 10 F \ 1
Congested-Network —+-- / A
A 4
a L A 1) L /]
g 20 & s 8 / L
< 7 < /
3 / 3 /
£ i 2 *
c 15 / Bl c 6 Bl
© 4 I /
o / o ¥
i /
10 - R 4t i R
';Q'/ ’/
/ F
5 V. 1 2F 1
af /
-~ A
g
" e
0 oo) 1 1 1 1 1 1 1 0 } ! T —, el 1 1 1 1 1 1 1
1 2 4 8 16 32 64 256 1024 4096 16384 65536 524288 4.1943e+06 1 2 4 8 16 32 64 256 1024 4096 16384 65536 524288 4.1943e+06
Message Length (bytes) Message Length (bytes)
(a) IBM SP-2 (b) DEC Alpha Farm

Figure 2: Effect of cross-traffic congestion.

assumption. In these experiments, two selected nodes exchange a sequence of messages and the
remaining nodes flood the network by repeatedly sending 8 MB messages to each other. Remaining
nodes also change their communication peers after every iteration in a round-robin fashion so as
to apply the maximum load on the interconnection network. On the SP-2, we considered two
cases based on the distance between the selected nodes — nodes attached to the same switching
element(intra-switch), nodes connected to different switches but within the same frame (inter-
switch). Results in Figure 2 show that for high-performance point-to-point networks cross-traffic
congestion contributes little to application-level performance. We obtained similar results from an
experiment which tried to measure the effect of congestion for nodes located in different switch
frames in a 128-node SP-2 configuration at NASA Ames. We did not detect any significant effect.

Network adapters are assumed to be bi-directional, dual-ported devices with an outboard buffer.
The DMA port of a network adapter is used to copy network packets between the processor and
the network adapter, and the network port is used for communicating with other network adapters.
The unit of transfer in either port is a packet. A packet consists of a packet header, containing
routing information, and a payload. Both ports can be simultaneously active, but only one packet
can be in transit on each port at any given time. The link between the adapter and the host
memory (used by DMA) is assumed to be characterized by bandwidth alone.

The simulator also models several software layers: (1) a synchronous messaging library layer
which copies data to and from system buffers, initiates sends and selects the appropriate message
for a receive call, (2) the flow-control layer that maintains buffers corresponding to different peers
and schedules message sends, and (3) the interaction layer that controls the interaction between
the messaging library and the adapter.

2.1 Customization

Netsim has six hardware parameters and five software parameters (see Table 1). The hardware
parameters can be easily obtained from information made public by the manufacturer; the software

parameters are to be determined using a suite of controlled experiments on the selected platform.

We have developed three programs, bcopy, send and recv, for determining the values of the
software parameters. The first of these is used to determine the in-memory copy bandwidth using
the beopy() function. Together with the packet size, the copy bandwidth is also used to compute
the packet copy cost parameter.

The send and recv programs are used to determine the other four parameters. We determined
the system buffer size as follows: (1) we ran send for increasing powers-of-two message sizes till
the point where the application-level bandwidth drops, (2) we use the message size just before this
happens as the system buffer size. This works because for messages smaller than system buffer size,
a send() operation returns after copying the message to the system buffer whereas for messages
larger than this size, some packets need to be transferred to the adapter, a significantly slower
operation.

The protocol processing costs for a message are assumed to fit a linear model with a fixed
component corresponding to the cost of entry into the messaging layer and a variable component
that depends on the number of packets. We determined OS send cost as follows: (1) we ran send for
all powers-of-two message sizes smaller than the packet size, (2) for each message size, we computed
the average time to return from the send() call, and (3) using these numbers, we computed the
average time to complete a send() call for messages smaller than the packet size. We used this
value as an estimate of the OS5 send cost. The OS recv cost was determined in a similar fashion.

We determined the packetization cost in the following way: (1) we ran send for all multiples
of the packet size that are less than the combined capacity of the system buffer and the adapter
buffer; (2) for each message size, the OS send cost is subtracted from the time to complete the
send operation and the remaining quantity is divided by the number of packets in the message; this
yields the overall per packet cost; finally (3) the in-memory copying cost per packet is subtracted
from the overall per packet cost to yield the packetization cost.

3 Evaluation

In order to evaluate netsim, we used a set of three network operations commonly used in distributed
and parallel applications as microbenchmarks. The first microbenchmark, point-to-point sends
a sequence of messages from a source to a sink and computes the average time spent at both ends
waiting for communication calls to complete. This is the simplest possible messaging benchmark
and provides the baseline numbers for other benchmarks. The second microbenchmark, exchange,
exchanges a sequence of message between a pair of nodes and computes the average round-trip time.
This benchmark provides a measure of the application-level bandwidth and latency. It is also is a
primitive building block of most collective communication operations. The final microbenchmark,
many-to-one, sends messages from multiple sources to a single sink. This corresponds to a client-
server scenario in distributed systems and a hotspot node in a parallel application. It also allows
us to measure the effect of end-point congestion as the incoming bandwidth of the sink node can
usually be saturated by one, at most two, source nodes.

We selected two systems for evaluating netsim’s modeling accuracy and simulation speed. The
first was a 16-processor IBM SP-2 with the High Performance Switch, the i860-based communication
adapter and IBM’s MPL message-passing library and the second was a cluster of ten DEC Alpha
2100 4/275 four-processor workstations with the GIGAswitch/ATM network, the ATMworks 750
adapter and the MPI-CH message-passing library from the Argonne National Lab.

For all our experiments, we varied the message size from 1 byte to 8 MB. For the many-to-one
benchmark, the number of source nodes was varied between 2 and 4. All experiments were repeated

Hardware Parameters

Wire latency

the latency between two network adapters.
We ignore the internal structure of the network and assume
that the latency is the same for all host-pairs.

Wire bandwidth

the bandwidth between two network adapters.
The bandwidth is assumed to be the same for all host-pairs.

DMA bandwidth

the bandwidth between the adapter buffer and host memory.

Packet size

the packet size can be a constant (for cell-based networks)
or variable with an upper bound (for packet-based networks).

Packet header size

the header size can be a constant or it can be variable with
a lower and upper bound.

Adapter buffer size

size of the outboard buffer.

Software Parameters

OS Send cost

fixed time spent in the messaging layer for every send call.

OS Recv cost

fixed time spent in the messaging layer for every receive call.
The recv cost is usually higher than the send cost as it includes
the cost of searching messages to match an incoming message
and the cost of interrupts from the network adapter.

Packetization cost

cost of allocating and managing the buffer space for each packet.
This cost is applied only till enough packets have been created
to fill the packet pipeline from/to processor.

Packet-copy cost

cost of an in-memory copy for each packet. This cost is paid when
the data is copied between the system and user buffers. This cost
is applied only for messages that fit into the system buffer.

Larger messages are assumed to be transferred directly to/from
the user buffer, a typical optimization commonly found in
high-performance communication software.

System buffer size

the system buffer is assumed to be pinned in memory.

Table 1: Parameters for netsim.

Microbenchmark IBM SP-2 ‘ Alpha Farm ‘

native | simulator | native | simulator
exchange 0.99 | 31.78(32.1) | 3.96 | 31.78 (8.0
point-to-point 0.51 | 18.45(36.2) | 4.03 | 18.45 (4.
many-to-one (2 senders) | 3.0 | 42.99 (14.3) | 8.03 | 42.99 (
many-to-one (3 senders) | 6.16 | 54.79 (8.9) | 11.88 | 54.79 (
many-to-one (4 senders) | 10.23 | 72.94 (7.1) | 24.46 | 72.94 (

5.
4.
3.

Table 2: Comparison of native execution speed and simulation speed (in seconds). In the simulator
columns, the number in the parenthesis is the relative slowdown of netsim compared to the native
system.

500 times and the average value was taken as the measure to be computed. To avoid contamination
due to unrelated intermittent network activity, data points which differ more than 3 times the
standard deviation from the median are classified as outliers and eliminated. Standard deviation
was used as a measure of error in measurement. To avoid cold-start effects, if any, measurements
were taken only after running the experiment 100 times.

The simulation slowdown for the two platforms is shown in Table 2. The numbers in the columns
labeled SP-2 and the Alpha Farm are the total time for all nodes in each experiment. The results
indicate that netsim achieves its accuracy at the cost of a 7-36 fold slowdown for the SP-2 and a 3-8
fold slowdown for the Alpha Farm. To place this result in context, Benveniste and Heidelberger [6]
report that a detailed sequential simulator takes 1 day on a workstation to simulate 1 second of
simulation time for a 128 node SP-2 configuration.

3.1 Case Study - I (IBM SP-2)

The SP-2 network is constructed from 8-input-8-output switching elements which can forward
packets from any input port to any output port. These elements are organized as 4 x 4 bidirectional
switches and are grouped into 16-processor units called frames which contain 2 layers of bidirectional
switches. The bisection bandwidth of this network scales linearly with the number of processors.
In this study, we used a 16-node SP-2 running AIX 3.2.5. All the nodes in this machine are the
so-called thin nodes.

3.1.1 Customization

We obtained the hardware parameters for the IBM SP-2 from two articles in the IBM System
Journal vol 34, number 2— Stunkel et al’s report on the SP-2 network[21] and Snir et al’s description
of the messaging software [17].

Figure 3 shows the results of the send and recv programs and Figure 4 illustrates the memory
bandwidth characteristics of the SP-2. Note that the packetization and reassembly costs are quite
close to each other. For small messages, MPL makes two copies, one from user buffer to system
buffer (called the pipe input buffer), and the other from the system buffer to virtual switch interface
which contains the pinned pages for the DMA interface [17]. In order to obtain the costs of
packetization, we subtract the cost of two copies (2 ps) from the mean per packet overhead to
arrive at 3us. The system buffer size is determined from the send bandwidth profile as the point of

65 T T T T T T 10 T T T T T T T T
60 F /m\\ i
e e . //,,// 8t i
55 L Ty + b SP2 Reassembly —+--
£
50 4 w“'ﬂ
I~ ~ ¥
Q Q A
® s b 2 At
@ I + b
e 2 RSt
S S NS
E wf {1 & /
o - o 4
g SP2 Receive —+ g 4 b AL i
F F
35 B
30 B
2k i
25 -
20 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
1 2 4 8 16 32 64 128 0 2000 4000 6000 8000 10000 12000 14000 16000
Message Size (bytes) Message Size (bytes)
(a) Messaging Costs (b) Packetization (per packet)

Figure 3: Messaging send/recv and packetization costs for IBM SP-2

‘ Hardware Parameters ‘ Software Parameters ‘
Wire latency 1.3 s Packetization cost | 3 us
Wire bandwidth 40 MB/s OS Send cost 23 ps
DMA bandwidth 80 MB/s | OS Recv cost 55 ps
Packet size < 255 bytes | packet-copy cost 1 ps
Packet header size > 6 bytes | System buffer size | 8 KB
Adapter buffer size 4 KB

Table 3: Simulator Parameters for the IBM SP-2.

inflection where a significant bandwidth drop happens (see Figure 5(a) for corroboration). Values
of the netsim parameters for the SP-2 are shown in Table 3.

3.1.2 Evaluation

Results from point-to-point are presented in Figure 5. As can be seen from the graph, the
simulator is able to model the waiting time fairly accurately across a seven-orders-of-magnitude
increase in the message size. Similarly, the results for exchange show that the simulator is able to
model the application-level bandwidth with an error rate of 2-6% for almost all message sizes and
a maximum error of 12%. The results for exchange are shown in Figure 6.

The results for many-to-one are presented in Figures 7, 8 and 9. For the graphs showing sender
bandwidth, processors are sorted in the order of decreasing bandwidth, so that the processor with
the highest bandwidth in the experiment is labeled “processor 17, next highest as “processor 2” and
so on. This is done to eliminate the non-deterministic processor ordering effects (barrier completion
times, network scheduling, network state etc) due to which each processor can achieve significantly

18000

45 T T T T T T T T T

af g

35 B

30 Bl
SP2 Copy Time/Packet —+--

Time (microseconds)

Foop ~+-
0 1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Message Size (bytes)

Figure 4: Memory bandwidth of IBM RS6000/390 and per packet copy cost

different performance in different iterations of a sequence of experiments. “Processor 17, in this
case, is the fastest processor, “processor 2”7 is the next fastest and so on.

Even though netsim models the SP-2 software and memory latencies quite well, it slightly
underestimates the bandwidth for multiple senders before the network bandwidth saturates. This
effect is caused by the presence of shared buffers in each of the switching elements, which the
simulator does not model. Not modeling the switch buffers has the opposite effect on the reciever
bandwidth. Connections are established in netsim whenever a packet in the source adapter is ready
to transmit. After a connection is established, the simulated receiver adapter favors the receipt
of packets from the last connected adapter. In the SP-2 network, however, switch elements make
the decisions independently for each packet. As the network gets flooded, the switch buffers (and
the adapter buffer) contain packets not only from the currently transmitting node but also from
other nodes. As a result, the simulator overestimates the buffer availability resulting in a small
overestimate of reciever bandwidth.

3.2 Case Study - II (Alpha Farm)

The Alpha Farm used in the study consists of ten DEC Alpha 2100 4/275 four-processor SMP work-
stations connected by a Digital GIGAswitch/ATM. For messaging, we used MPI-CH, a portable

implementation of MPI from the Argonne National Labs [13]. The workstations run Digital Unix
V3.2D-1.

3.2.1 Customization

We obtained the hardware parameters for the GIGAswitch/ATM from [18] and from Digital’s
web site http://www.networks.digital.com:80/dr/gigaatm/descrip/gigaatm.ps. We used a
different switch latency (2us) than the 10us mentioned at the web site. With a 10 us latency
per packet, a 155 Mbit/s network can yield no more than 4 MB/s, far lower than the bandwidth
actually measured.

Figure 10 shows the results of send and recv programs, illustrating the costs of the messaging
layer. We determined from Figure 10(b) that the mean packetization cost is 3 us, send cost is 265

Bandwidth (MB/s)

Bandwidth (MB/s)

45

40+ 4
35 g
3 -
/ it
30 i |
25 SP2 rori F R
SIM H— g
20 R
15 i g
10 E
k1
51 |
A
A
bodode T)) I I I I 1 1 1
1 2 4 8 1632 64 256 1024 4096 16384 65536 524288 4.1943¢+06

Message Length (bytes)

(a) Sender Bandwidth

Bandwidth (MB/s)

35

30

25

20

15

10

F SP2 H—

SIM ’ T

e

L 'f"
A
e
o
et \

1 2 4 8 16 32 64

Il
1024 4096 16384 65536
Message Length (bytes)

(b) Receiver Bandwidth

256

Figure 5: point-to-point results for the SP-2

35
30 SP2 <—
SIM —+--
;
25 R
7
20 v 1
4
¥
/7
15 - g
#
0} ¥ .
,ﬂ;
5h ya .
/}l//
/"b'
R 4,—4/’1"/'\}/ I I I | I I I
1 2 4 8 16 32 64 256 1024 4096 16384 65536 524288 4.1943e+06
Message Length (bytes)

(a) Bandwidth Profile

Percent Difference

-10

20+

25

524288 4.1943e+06

15+

10 |-

SIM -—

2!
1 2 4 8 16 32 64 256
Message Length (bytes)

(b) Relative Error

Figure 6: exchange results for the SP-2

10

1024 4096 16384 65536

524288 4.1943e+06

Bandwidth (MB/s)

Bandwidth (MB/s)

50

45

40

35

30

25

20

15

10

50

45

40

35

30

25

20

15

10

35 T
I . }z B
30t {,»'31‘ J
L ¥
L 25 SP2 o } 1
SIM H— A %
L @ f
g 2 y, g
- SP2.Proc.l re— £ i
SIM.Proc.1 H— s
SP2.Proc.2 e El 15| * i
L SIM.Proc.2 m— J g I
¢
- 0} B .
A 1
5+ 2 |
- E + X
7
s
& il | I I I I I I I 0 b F T) 1 1 1 1 1 1 1
1 2 4 8 16 32 64 256 1024 4096 16384 65536 524283 4.1943e+06 1 2 4 8 16 32 64 256 1024 4096 16384 65536 524283 4.1943e+06
Message Length (bytes) Message Length (bytes)
(a) Sender-side (b) Reciever-side
Figure 7: many-to-one results for the SP-2, 2 senders.
35
I] e
30+ s |
L o
| 25 SP2 e— Fey f 1
SIM H— T
a * b H
3 20f 1
3 g
- SP2.Proc.l re— £
SIM.Proc.1 H— s
SP2.Proc.2 e 2 15 I 7
SIM.Proc.2 b g
SP2.Proc.3 Ha—
SIM.Proc.3 m— % -
R
r xewh 0} : .
L i gk Rt
5 |
L | L
& I I I I I I I 0 U 2 v‘“f ‘\ I I I I I I I
1 2 4 8 16 32 64 256 1024 4096 16384 65536 524283 4.1943e+06 1 2 4 8 16 32 64 256 1024 4096 16384 65536 524283 4.1943e+06

Message Length (bytes)

(a) Sender-side

Figure 8: many-to-one results for the

11

Message Length (bytes)

(b) Reciever-side

SP-2. 3 senders

Bandwidth (MB/s)

Time (microseconds)

50

45

40

35

30

25

10

350

340

330

320

310

300

290

280

270

260

I SP2.Proc.1
SIM.Proc.1
SP2.Proc.2
I SIM.Proc.2
SP2.Proc.3
SIM.Proc.3
SP2.Proc.4
SIM.Proc.4

o
i
=l
i
e
B

o
i

16 32

Il
64 256 1024 4096 16384 65536
Message Length (bytes)

(a) Sender-side

524288 4.1943e+06

Bandwidth (MB/s)

35

30

25

20

15

10

o,
ey

L SP2 o . ¥ i
SIM +H— L
- % AT A
¥
i f |
K
P
L K i
S
¥
L C A i
4
A
PR S I I I I I I I
1 2 4 8 16 32 64 256 1024 4096 16384 65536 524288 4.1943e+06

Message Length (bytes)

(b) Reciever-side

Figure 9: many-to-one results for the SP-2, 4 senders.

—& I

DEC Send ~<—
DEC Receive —+--

4 8
Message Size (bytes)

(a) Messaging Costs

16 32

Time (microseconds)

10

0
0

S===)

DEC Packetization -o—
DEC Reassembly —+--

5000

10000 15000 20000 25000

Message Size (bytes)

(b) Packetization (per packet)

30000

Figure 10: Messaging send/recv and packetization costs for DEC Farm

12

35000

40000

‘ Hardware Parameters ‘ Software Parameters

Switch Latency 2us Packetization ovhd 3 us
Network Bandwidth | 155 Mbit/s | OS Send Overhead 265 ps
DMA Bandwidth 155 Mbit/s | OS Recv Overhead 335 ps

Packet Size 53 Bytes | packet copy ovhd 0.2 us
Packet Header 5 Bytes Processor Buffer 16 Kbytes
Adapter Buffer 16 Kbytes

Table 4: Simulator Parameter Customization for Alpha Farm.

us and recv cost is 335 us. Memory copy cost per packet for the Alpha 2100 4/275 was determined
to be 0.1 ps using bcopy (Figure 11). Simulation parameters for the Alpha Farm are presented in
Table 4.

35 T T T T T T T T T

30
Alpha Copy Time/Packet —+--

Time (microseconds)

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Message Size (bytes)

Figure 11: Memory bandwidth of Alpha 2100 4/275 and per packet copy cost

3.2.2 Evaluation

Results from point-to-point are reported in Figure 12. The agreement between the simulator
and the actual execution is not as good as that for the SP-2. Nevertheless for message sizes smaller
than 1 MB, the simulator is able to model the behavior with relatively small error. For message
sizes larger than 1 MB, the performance of MPI-CH drops sharply and unexpectedly — as can be
seen in the dip in the bandwidth curve at the right end of the graph. We believe that this is a
performance bug specific to MPI-CH on Alpha Farms and is not a property of MPI per se. Our
belief is based on the fact that on the SP-2, MPI-F (IBM’s native MPI) does not show this effect and
is able to achieve bandwidths close to those achieved by MPL. We expect that a vendor-supplied
MPI implementation on the Alpha Farm will not show such behavior and that results for such an
implementation would be in better agreement with the simulator.

The results for exchange show a similar pattern (see Figure 13). For message sizes less than

13

20 T T T T T T T T T T T T T 10 T T T T T T T T T T T T
18 i 1 9t e 1
16 Ky g LS g

SIM ~+-- AN Simulator —+-- /

14+ A g 7} F p

2| 1

Bandwidth (MB/s)
=
15}
T
£
i
1
i
L
Bandwidth (MB/s)
2
T
*
!

% /,«’/
,+"'* A
0 I Il IR, 1 1 1 1 1 1 1 0 } T— 7—1-“‘1"'* 1 1 1 1 1 1 1
1 2 4 8 16 32 64 256 1024 4096 16384 65536 524288 4.1943e+06 1 2 4 8 16 32 64 256 1024 4096 16384 65536 524288 4.1943e+06
Message Length (bytes) Message Length (bytes)

(a) Sender Bandwidth (b) Receiver Bandwidth

Figure 12: point-to-point results for Alpha Farm

512 KB, the simulator is able to model the Alpha Farm to within 10% error. For larger messages,
the MPI-CH performance bug causes the graphs for the simulator and the actual execution to
diverge.

Results for many-to-one are presented in Figures 14, 15 and 16. The numbers for the sender-
side bandwidth are sorted (as mentioned in the previous section). A curious effect to note is that
the bandwidth of a congested sender using MPI-CH increases. This is unexpected. As congestion
increases, achievable bandwidth should drop (which is, in fact, what happens for MPL on the SP-2
— see section 3.1). We speculate that this increase is due to source buffering for large messages.
This speculation is partially supported by the fact that for all three cases (2, 3 and 4 senders), the
bandwidth of the slowest node is close to the application-level bandwidth reported by exchange
and that the bandwidth reported by other processors grows with the number of senders. Netsim
is geared towards optimized libraries which do not make use of source buffering for large messages.
As a result, netsim does not capture the sender behavior as well as it does on the SP-2.

4 Related Work

Many analytical models have been developed for analyzing network interconnects [1, 3, 9, 16]. Even
though it is more convenient to use analytical models for the analysis, it is very difficult to obtain
accurate models for complex systems. Analytical models are usually complemented with simulation
for the missing accuracy. We resort to simulation in our work, because modeling a full workstation
cluster, including network and I/O subsystems and their associated software is a daunting task.
Other simulation models for network interconnects have been built at various levels of detail,
accuracy and speed [5, 6, 15]. All these simulators are specific to a single architecture and perform
detailed hardware simulation. Netsim differs from these simulators in that it is a high-level simulator
and that it models both the hardware and the software. Furthermore, it is customizable with a
small number of parameters that can be easily determined by simple tests and from hardware

14

Bandwidth (MB/s)

Bandwidth (MB/s)

T 80 T
P SIM o—
,’+‘
9 4
> i 60 i
o
40 1
i i
,’/ ® 20 P 4
I o
DEC ~— 7 S 8 4
SIM -+~ [,’ g . N
§ a 0 A -
/’,> g o b . 2 % °
y - 8 a
4 s
o 20 F i
40 4
i) 60 g
\
I - I I 80 L1 I I I
1024 4096 16384 65536 524288 4.1943e+06 1 2 4 8 16 32 64 256 1024 4096 16384 65536 524288 4.1943e+06
Message Length (bytes)

0
1 2 4 8 16 32 64 256
Message Length (bytes)
(b) Relative Error

(a) Bandwidth Profile

Figure 13: exchange results for Alpha Farm

20 10
181 9 < 1
16 8t DEC +— S 7
SIM - /
14 + 7+ A o T
* P
12+ DEC.Proc.1 <— Q 6 R
SIM.Proc.1 —+-- g *
DEC.Proc.2 -8-- < /
< / X
10 - SIM.Proc.2 -x £ 5k / 4
E /
g /oy
8 3 4+ g
£
6 3t E
4| 1 2 7 1
//// 4
A
2 1 1t 7 R
Y | T e i | | |
1024 4096 16384 65536 524288 4.1943e+06 1 2 4 8 16 32 64 256 1024 4096 16384 65536 524288 4.1943e+06
Message Length (bytes)

1 2 4 8 16 32 64 256
Message Length (bytes)
(b) Receiver-side

(a) Sender-side

Figure 14: many-to-one results for the Alpha Farm, 2 senders.

15

Bandwidth (MB/s)

10

DEC +—
SIM —+--

TR, s

4.1943e+06

0
1 2 4 8 16 32 64

256 10:

24 4096 16384 65536

Message Length (bytes)

(b) Receiver-side

Figure 15: many-to-one results for the Alpha Farm, 3 senders.

20
h
18 I]
16 fa 4
£\
14t [ERYe E
=)
‘k\ L
2} DEC.Proc.1 ~— ‘m 1 @
SIM.Proc.1 —+-- N g
DEC.Proc.2 -8-- <
10 - SIM.Proc.2 -x %
3
he}
c
8F T 8
.f
61 ﬁ X)
; % X % % X X
4k i
21 i
[- o I I I 1 1
1 2 4 8 16 32 64 256 1024 4096 16384 65536 524288 4.1943e+06
Message Length (bytes)
(a) Sender-side
20
h
8+ i
i
16 |
14+
2 12t DEC.Proc.1 <—
g SIM.Proc.1 —+--
< DEC.Proc.2 -8--
=
E: 10 SIM.Proc.2 -x
3
he}
S 8 DEC.Proc.4 -o--
] SIM.Proc.4 -+-
6
4
2
2. 2. '
1 2 4 8 16 32 64 256 1024 4096 16384 65536 524288 4.1943e+06
Message Length (bytes)

(a) Sender Side

Bandwidth (MB/s)

524288

10
9F ¥ i
8| DEC -+— T R
SIM —+--
A i
7k _—
/ N 4
I ¥
6 1
/ X
5+ ; P g
4+ ’// i
#
3h 1
i
2 F g
/// 4
#
1 / p |
P
/"F &
PRI, R L L
1 2 4 8 16 32 64 256 1024 4096 16384 65536 524288 4.1943e+06
Message Length (bytes)

(b) Receiver Side

Figure 16: many-to-one results for the Alpha Farm, 4 senders.

16

specifications.

Customizable simulators are not a new idea. Customizable simulators, such as Proteous [10]
and Tango [7] have been built previously. The difference between Proteous and netsim is that
the former is an execution-driven simulator for k-ary hypercubes that can be customized by pro-
gramming the architecture in the simulator whereas netsim is built for point-to-point high-speed
workstation networks and can be easily customized by setting a small set of parameters. Tango
simulates shared memory multiprocessors.

Fast and accurate network simulators are a desirable commodity and various techniques have
been proposed to speed up complex simulations, such as parallel and distributed simulation [6, 12].
Literature in this area has been focused on techniques for parallelization and synchronization of
simulation events on large parallel machines, achieving reasonable speedups for most of the cases.
At this point, we do not consider using a parallel simulation infrastructure for netsim.

5 Conclusions

In this paper we described netsim, a customizable simulator for modern packet-switched worksta-
tion networks that is accurate enough to be used for application level performance analysis yet is
easy enough to customize for multiple architectures and software configurations. Netsim can be
rapidly customized, even by application programmers. Customizing netsim for a new platform
requires the user to determine the values for six hardware and five software parameters. The hard-
ware parameters can be obtained from information made publicly available by the vendor and the
software parameters can be determined by running a small number of test programs.

We presented two customization case studies: a 16-node SP-2 with a multistage switch and
a 10-node four processor Alpha workstation farm having a cross-bar ATM switch. We evaluated
the customized versions of netsim using a suite of low-level network microbenchmarks commonly
used for building higher levels of networking software. Our results suggest that netsimis accurate
enough for application-level performance analysis, successfully modeling the two test platforms
with a 2-6% and a 10% error rate, respectively, for most test cases. We also show that it is of
practical use, with a 7-36 fold slowdown for SP-2 simulations and a 3-8 fold slowdown for Alpha
farm simulations.

As an important side result, we showed that for high-performance point-to-point networks,
modeling end-point congestion is sufficient for a reasonably accurate simulation and that cross-
traflic congestion contributes little, if any, to application-level performance.

Acknowledgments

We would like to thank Alan Sussman for his comments on a previous version of this paper and
Jeff Hollingsworth for useful discussions on this and related research.

References

[1] Gheith A. Abandah and Edward S. Davidson. Modeling the Communication Performance of
the IBM SP2. In In Proceedings of 10th International Parallel Processing Symposium, pages
246-257, April 1996.

17

[2] Anurag Acharya, Mustafa Uysal, Robert Bennett, Assaf Mendelson, Michael Beynon, Jeff
Hollingsworth, Joel Saltz, and Alan Sussman. Tuning the Performance of I/O-Intensive Parallel
Applications. In Proceedings of the 4th IOPADS, pages 15-27, Philadelphia, PA, May 1996.

[3] Anant Agarwal. Limits on Interconnection Performance. IEEE Transactions on Parallel and
Distributed Systems, 2(4):398-412, October 1991.

[4] T.E. Anderson, D.E. Culler, and D.A. Patterson. The Berkeley Networks of Workstations
(NOW) project. In Digest of Papers, COMPCON’95. Technologies for the Information Super-
highway, pages 322—6, March 1995.

[5] C. Benveniste and Y. Hsu. Performance Evaluation of Central Queue Arbitration Policies
for the Vulcan Parallel System. In Proceedings of the 1994 Summer Computer Simulation
Conference, 1994.

[6] Caroline Benveniste and Philip Heidelberger. Parallel Simulation of the IBM SP2 Intercon-
nection Network. Research Report RC 20161, IBM, August 1995.

[7] H. Davis, S.R.Goldshmidt, and J. Hennessy. Multiprocessor Simulation and Tracing Using
Tango. In Proceedings of ICPP, August 1991.

[8] J.J. Dongarra, S.W. Otto, M. Snir, and D. Walker. A message passing standard for MPP and
workstations. Communications of the ACM, 39(7):84-90, July 1996.

[9] D. Culler et. al. LogP: Towards a Realistic Model of Parallel Computation. In Proceedings of
ACM Symposium on Principles and Practice of Parallel Programming, pages 154-164, Febru-
ary 1993.

[10] E. A. Brewer et. al. PROTEOUS: A High-Performance Parallel-Architecture Simulator. Tech-
nical Report MIT/LCS/TR-516, MIT, September 1991.

11] Nanette J. Boden et. al. Myrinet - A Gigabit/second Local-Area Network. [FEFE MiCTO,
g
I ebruary 1995.

[12] Q. Yu et. al. Time-driven Parallel Simulation of Multistage Interconnection Networks. In
Distributed Simulation, pages 191-196, 1989.

[13] William Gropp et. al. A High-Performance, Portable Implementation of the MPI Message
Passing Interface Standard. http://www.mcs.anl.gov/mpi/index.html, 1995.

[14] Mark Hill. The Wisconsin COW. http://www.cs.wisc.edu/ wwt/cow.html, Feb 1995.

[15] C. P. Kruskal and M. Snir. The Performance of Multistage Interconnection Networks for
Multiprocessors. IFEFE Transactions on Computers, C-32:1091-1098, December 1983.

[16] R.W.Hockney. Performance Parameters and Benchmarking of Supercomputers. Parallel Com-
puting, 17:1,111-1,130, 1991.

[17] Marc Snir, Peter Hochschild, D. D. Frye, and K.J. Gildea. The Communication Software and
Parallel Environment of the IBM SP-2. IBM Systems Journal, 34(2), 1995.

[18] Robert J. Souza, P.G. Krishnakumar, Cuneyt M. Ozveren, Robert J. Simcoe, Barry A. Spinney,
Robert E. Thomas, and Robert J. Walsh. GIGAswitch System: A High-performance Packet-
switching Platform. Digital Technical Journal, 6(1):9-22, 1994.

18

[19] Peter A. Steenkiste. A Systematic Approach to Host Interface Design for High-Speed Networks.
IEFE Computer, pages 47-57, March 1994.

[20] T. Sterling, D.J. Becker, J.E. Dorband, D. Savarese, U.A. Ranawake, and C.V. Packer. Be-
owulf: a parallel workstation for scientific workstation. In Proceedings of the 2/th Internationa
Conference on Parallel Processing, pages 1/11-14, August 1995.

[21] Craig B. Stunkel, Dennis G. Shea, Bulent Abali, Mark Atkins, Carl A. Bender, Don G. Grice,
Peter H. Hochschild, Douglas J. Joseph, Ben J. Nathanson, Richart A. Swetz, Robert F. Stucke,
Michael Tsao, and Philip R. Varker. The SP2 High-Performance Switch. IBM Systems Journal,
34(2):185-204, 1995.

19

