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Silicon carbide (SiC) and carbon nanotubes (CNTs) are two materials which

have promising potential in electronics. Due to its large bandgap and large thermal

conductivity, SiC is targeted as a potential material for use in high-power high-

temperature electronics. Carbon nanotubes are at the forefront of current research

in nanoelectronics, and field-effect nanotube transistors have already been developed

in research laboratories. The small dimensions of these materials suggests their

possible use in densely packed CNT-integrated circuits. Carbon nanotubes also

appear to have very large electron mobilities, and may have applications in high-

speed electronic devices.

In this work the properties of the electronic structure and electron transport in



silicon carbide and in semiconducting zig-zag carbon nanotubes are studied. For SiC,

a new method to calculate the bulk band structure is developed. The conduction

band minimum is found to lie at the L and M points in the Brillouin zones of

4H and 6H-SiC respectively. The quasi-2D band structure of hexagonal SiC is

also determined for a number of lattice orientations. Electron transport in SiC is

investigated in the bulk and at the SiC/oxide interface. The dependence of transport

on the lattice temperature, applied field, and crystal orientation is studied.

A methodology for semiclassical transport of electrons in semiconducting car-

bon nanotubes is also developed. Monte Carlo simulations predict large low-field

mobilities (0.4 − 13 x104cm2/V s) agreeing with experiments. The simulations also

predict high electron drift velocities (5X107cm/s) and negative differential resis-

tance.
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Chapter 1

Introduction

Over the past four decades, no other invention has had a greater impact on our

daily lives than the integrated circuit. So far this “microelectonics revolution” has

been largely powered by silicon. During this time silicon has, to a great extent,

continued to meet the need for smaller, faster, cheaper, more reliable, and diverse

electronic circuits. It is although unlikely that silicon will continue to play such an

encompassing role in microelectronics in the 21st century.

The material properties of silicon are not sufficient to meet todays technical

demands in high-power high-temperature electronics. Materials, such as silicon car-

bide, with a larger band gap, a larger thermal conductivity, and a larger breakdown

field, are now replacing silicon in these applications. The scaling limits of silicon

MOSFETs are also rapidly approaching. To continue to produce increasingly faster
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integrated circuits with progressively more computational power, researchers are

investigating many new materials. One structure that has received considerable at-

tention and shows significant promise is the carbon nanotube (CNT). This material

is smaller enough to produce chips with 500 times as many transistor as is currently

possible with silicon[1]. It is also likely that, for a given applied field, electrons

within a CNTs will move faster than in silicon.

1.1 SiC in High-Power High-Temperature Elec-

tronics

Silicon carbide (SiC) is known to form a large number of similar polytypes which,

except for the wurzite phase, exhibit a roughly linear bandgap variation[2, 3] as

a function of increasing hexagonal content. The most interesting polytypes are

hexagonal 4H-SiC and 6H-SiC since they have a very large bandgap and a high bulk

drift velocity. Many of the material properties of SiC are well suited for electronic

devices operating in the high-temperature, high-power regime. These are a large

bandgap, a large thermal conductivity and a large breakdown field[4, 5, 6, 7, 8].

Furthermore, SiO2 can be thermally grown on SiC, allowing for the production of

SiC-MOSFETs and the use of planar fabrication methods[9].

In Table 1.1 we show a comparison of these material properties with those of

Si. A large bandgap is useful in eliminating a number of breakdown mechanisms in

power MOSFETs. These include leakage currents induced by the build-up of free
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charges, and thermal runaway resulting from impact ionization processes. A large

thermal conductivity is useful in eliminating device breakdown due to the formation

of hot spots in the device. The large bandgap and large thermal conductivity of SiC

is therefore ideal for power MOSFETs. Devices are expected to have fast switching

speeds and low energy loss even at high temperatures. These properties offer a

potential advantage over Si

Currently, the bright potential of SiC is limited by the small electron mobilities

that are typically measured in the inversion layers of SiC MOSFETs [11, 12, 13, 14].

The likely cause is the large density of interface trap states that have been observed

at the oxide-semiconductor interface[15, 16, 17, 18]. Since this density depends on

the particular crystalline plane on which the oxide is grown, it may be possible to

improve the problematic small inversion layer mobilities in SiC MOSFETs by alter-

ing the crystalline orientation. Indeed experiments on (1120) oriented MOSFETs

do show large improvements in the channel mobility[13]. In this case the crystal ori-

entation was chosen to reduce the density of interface traps at the oxide interface,

but the use of different SiC crystal planes is also useful in non-conventional MOS-

FETs such as UMOS devices. Such devices are easily fabricated and have potential

applications in high-power electronics [19, 20].

1.2 Carbon Nanotubes in Electronics

Since the discovery[21] of carbon nanotubes (CNTs), interest in the potential ap-

plications of their electronic properties has continued to grow. These properties
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vary with each tube’s fundamental indices (n,m), which specify the diameter and

wrapping angle as a graphene sheet is seamlessly wrapped into a CNT. As n and m

vary, conduction ranges from metallic to semiconducting, with an inverse-diameter

dependent bandgap of ≤ 1eV[22]. Furthermore, it has been shown experimentally

that different types of CNTs may be seamlessly connected allowing contacts with

widely varying conduction properties to be made within the same material[23, 24].

Doping of the tubes with donors and acceptors has been demonstrated,[25, 26]

while metallic tubes have shown the capacity for large current densities and large

thermal conductivities[27, 28]. These, and other, versatile electronic properties

offer great hope for CNT-based nanoelectronics. Already important steps have

been made. A variety of electronic devices operating at room temperature have

been produced including field-effect transistors,[29, 119, 120] rectifying diodes and

heterojunctions[121, 122, 123, 124, 125, 126, 127]. Recently logic circuits using both

p and n doped CNT-based FETs[29] have shown promising experimental results. It

is hoped that large arrays of nanotube transistors can be assembled into integrated

circuits with 500 times the transistor density as in conventional Si[1].

The mobility of long semiconducting SWCNTs has recently been measured

and values as large as 2x104cm2/V s [30] and 8x104cm2/V s [31], have been ob-

tained. Such large values indicate that these nanotubes may have applications in

high-mobility electronic devices. Carbon nanotubes may also find applications in

supplementing already existing Si technology.
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1.3 Motivation

The motivation of this dissertation is to study the electron transport properties of

two potentially new materials for electronics, silicon carbide and carbon nanotubes.

For SiC, the effects of the band structure, lattice temperature, and applied field

on electron transport are investigated. For CNTs, a methodology for semiclassical

transport is developed. This is used to understand and predict the properties of

electron transport in carbon nanotubes.

1.4 Outline

The outline of this dissertation is as follows. In the Introduction a discussion of the

general concepts of the Monte Carlo simulation of carrier transport is presented.

In Chapter 2, the band structure for a the 3C, 4H, and 6H polytypes of SiC

is determined by employing a new model potential approach to the empirical pseu-

dopotential method[32]. The results agree well with the available experimental data.

The conduction band minimum of 4H is found at the M point and the conduction

band minimum of 6H is found at the L point in the Brillouin zone. The exact

location of the 6H minimum has still not been determined experimentally, but ex-

periments do indicate that it lies along the M-L symmetry line.

In Chapter 3 the calculated bulk band structures are used within a full-band

Monte Carlo simulation of electron transport in bulk 6H-SiC. Electron-phonon cou-

pling constants are fit to experiments, and transport under high-field and high-

temperature conditions is studied. The saturation velocity of 6H-SiC is found to
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decrease linearly with increasing temperature, while it is determined that as many as

4 conduction bands and two band structure valleys contribute to electron transport

at high fields.

In Chapter 4 surface band structure calculations are performed for different

orientations of hexagonal SiC. The subband structure perpendicular to an oxide-

SiC interface is determined self-consistently with the confining transverse poten-

tial. Investigations have been performed in the range of weak/strong inversion and

high/low temperatures. The (0110), (1120), (0338), and (0001) surfaces are com-

pared for both 4H-SiC and 6H-SiC. Each orientation is characterized based on its

2-dimensional nature, its degree of anisotropy parallel to the oxide, and the spatial

extent of mobile electrons from the oxide-semiconductor interface.

In Chapter 5, a surface Monte Carlo simulation of electron transport in a

4H-SiC MOS inversion layer is presented. The self-consistent inversion layer calcu-

lations of Chapter 4 are employed. The low-field inversion layer mobility for the

(0001) orientation was found to increase linearly with increasing lattice tempera-

ture, in agreement with experiments. The simulated low-field mobility for (1120)

oriented 4H-SiC was much higher, due to a reduction in interface traps. In this case

the mobility decreased with increasing temperature. These trends have also been

observed in experiments on (1120) oriented 4H-SiC MOSFETs.

In Chapter 6, current flow, considering a semiclassical electron-electric field

interaction and electron scattering by acoustic and optical phonons, is studied in

semiconducting zig-zag carbon nanotubes[33, 34]. The π-electronic band structure

and the phonon spectrum of the nanotube are both calculated from graphene by the
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zone-folding method. Scattering rates are calculated using first order perturbation

theory and the deformation potential approximation, while the selection rules for

the electron-phonon interaction are developed based on the conservation of crystal

momentum. The steady state transport properties of electrons in small diameter

nanotubes are simulated using the Monte Carlo method. Results show negative

differential mobility, occurring at smaller threshold fields as the tube diameter in-

creases. The peak drift velocity is also found to depend on the tube diameter, and

reaches values as high as 5X107cm/s in the largest tube considered with a diameter

of ∼= 4.6nm.

Results show large low-field mobilities of approximately 0.4−13 x104cm2/V s,

which are consistent with experimental results[30, 31]. An analytical mobility model

is introduced which reproduces the Monte Carlo simulations over a wide range of

tube indices n. Such large mobility values indicate that these nanotubes may have

applications in high-mobility electronic devices. Furthermore, recent theoretical

results using the mobility model indicate that the transconductance of a silicon-

based MOSFET can be enhanced if a CNT is inserted into the channel [35].

We will begin by introducing the general concepts at the core of the Monte

Carlo method as applied to the simulation of carrier transport in semiconductors.

1.5 General Monte Carlo Method

The strength of the Monte Carlo method is the ability to accurately simulate phys-

ical phenomena using a very detailed computer simulation model. The method
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reproduces the stochastic nature of many physical systems through the skillful use

of random numbers. This method was first applied to electron transport in GaAs

in the late 1960s[36, 37], and has since became an important tool in the study

of carrier transport in semiconductors. In this section we will describe the gen-

eral concepts of the Monte Carlo Method for electron transport in semiconductors

(MCM)[38, 39, 40].

The MCM essentially solves the Boltzmann transport equation through a com-

puter simulation of the dynamics of carrier transport. It relies on a semiclassical

approach. Free carriers are treated as classical point-like particles, which in the

absence of scattering, drift in an external field �F according to Newton’s equation of

motion

h̄
d�k

dt
= e�F . (1.1)

For this approximation to be used, the length scale in the direction of �F must be

much larger than the size of the semiconductor unit cell in that direction. If this is

true, then the carrier energy spectrum is approximately continuous in the electron

wavevector, �k, and carriers can be described as point-like wavepackets.

Upon this classical picture, carrier scattering is included via quantum me-

chanics. Imperfections in the perfectly periodic lattice of the semiconductor, such

as impurities or phonons, are described as small perturbations on the carrier energy

spectrum. To first order this is described by “Fermi’s Golden Rule”

Γ(�k, �k′) =
2π

h̄
|H|2δ

(
ε(�k′) − ε(�k)

)
, (1.2)

where Γ(�k, �k′) is the rate at which a carrier scatters from an initial wavevector �k to a
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final wavevector �k′. Also included are H , the interaction energy between the carrier

and the scattering imperfection, and ε, the wavevector-dependent carrier energy.

Here the scattering events are considered as occurring instantaneously at a localized

point in space. It is typically desirable to sum equation (1.2) over all possible final

states in which case the rate, Γ(ε(k)) , depends on the electron energy.

For simulations which are both time and space-independent, the transport

properties of a collection of carriers can be found through the simulation of just one

carrier. This is the general ergodic case we will focus on here. At the beginning of

the Monte Carlo simulations of electron transport, the simulated electron is placed

at the conduction band minimum. The steady-state results are however independent

of the choice of initial state. The electron is then allowed to drift in the applied field

according to equation (1.1), for a specified drift time Td. This drift time is chosen so

that it is always much smaller than the inverse of the scattering rate. After the drift,

it is determined whether a scattering event will occur. To illustrate the method for

this determination consider the example when the electron has an energy ε(k) after

the drift and may now be scattered by n different independent mechanisms. A flat

random number r1 from 0 to 1 is generated. If

r1 < Td

n∑
m=1

Γm(ε), (1.3)

then a scattering events occurs. Otherwise the electron is allowed to drift again for

a time Td and the process repeats. In the case that equation (1.3) is satisfied, of the

n scattering mechanisms, the one which scatters the electron must be determined.

A second random number r2 is now generated. The event m′ which scatters the
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electron is then assigned by the relation

Sm′−1 < r2 ≤ Sm′ , (1.4)

where the partial sum S is defined according to

Sm′ =

∑m′
m=1 Γm(ε(k))∑n
m=1 Γm(ε(k))

. (1.5)

Once the scattering event is determined, the final electron state after scattering is

determined by stochastic methods. The particular method for this will depend on

the particular scattering event that scatters the electron. This is constrained by

requiring that the final state of the system, electron and scatterer, have the same

energy and crystal momentum as the initial state of the system.

The simulation continues through a series of drifts and scattering events, until

the convergence of the average electron velocity along the direction of the driving

field. This is the drift velocity ϑd. This velocity can be determined in a number of

ways. The first way is to find the drift velocity from the energy that the electron

gains from the field during all the drifts. Summing up the change in energy during

each and every drift, a result we will label as ∆E, the drift velocity can be determined

by

ϑd =
∆E

eFTT
. (1.6)

Here F is the driving electric field and TT is the total simulation time. Another

way to determine ϑd is to require that in the steady-state, the average total rate

at which the simulated electron gains energy is zero. This requires the average

rate that energy is gained from the field (eFϑd), be equal to the average rate that
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3C-SiC 4H-SiC 6H-SiC Si

Bandgap (eV ) 2.39 3.26 2.86 1.12

Bulk Electron Mobility (cm2/V s) 1000 600 300 1500

Saturation Velocity (107cm/s) 2 2 2 1

Breakdown Field (106V/cm) 2 3 3 1

Thermal Conductivity (W/Kcm) 4.9 4.9 4.9 1.5

Static Dielectric Constant 9.7 9.7 9.7 11.8

Table 1.1: Important physical properties of the SiC polytypes and Si[10]

energy is dissipated through scattering events (Psc). The drift velocity can then be

determined as

ϑd =
Psc

eF
. (1.7)

It is useful to determine the convergence of the MCM simulations by tracking the

convergence of the drift velocity calculated in a few different ways, such as in equa-

tions (1.6) and (1.7). When the drift velocity is accurately obtained, the results are

similar. To calculate the mobility, the drift velocity is divided by the electric field

F .
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Chapter 2

Bulk Band Structure Calculations for SiC

The harsh environment of the electronics for which SiC is proposed, make knowledge

of the bandstructure, especially near the conduction band minimum, important in

determining electronic device characteristics. When applicable, the empirical pseu-

dopotential method (EPM) is usually the method of choice for such work since it

is computationally efficient and easily interpreted when compared to other meth-

ods such as density functional theory (DFT).[42] When calculating semiconductor

properties which are influenced weakly by the deep core electronic states, such as

the bandstructure close to the bandgap, the method is often highly accurate.[43]

The weakness of the EPM is that it often relies heavily on the use of experimen-

tal data. Unfortunately, though useful for many diamond and zincblende phase

semiconductors, the EPM is not as successful for lattice types with larger unit cells
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since the number of form factor parameters that must be fit increases while the

experimental data available generally decreases. The approach in these cases is to

use the transferability of the pseudopotential and approximate the form factors by

using those of a similar material. An important example is the success of using the

same form factors for many direct band-gap materials that exist in both cubic and

wurzite phases.[44] Due to differences in the density and magnitude of the reciprocal

lattice vectors, the 3 diamond or 7 zincblende parameters are interpolated to obtain

the 10 or 19 parameters needed for homopolar or heteropolar wurzite, respectively.

For progressively larger unit cell phases, as in the polytypes of SiC, the number of

form factors increases such that the zincblende form factors alone cannot provide

the detail of the Fourier transform of the pseudopotential required.

The EPM has been successfully applied to the 3C zincblende phase of SiC[45,

46, 47] where there are at least 5 reliable experimental band energies[48, 49] to fit the

7 form factors needed. These studies did not however include a fitting to experimen-

tal effective masses which is important in determining transport properties. This is

included as a nonlocal correction in this work. For 4H and 6H SiC roughly 30 form

factors are needed while there is only one reliable experimental band energy[2] for

each material. Due to the lack of experimental data, these form factors have, to our

knowledge, never been characterized and published till now. We overcome the diffi-

culty in fitting the form factors of 4H and 6H by using a model potential to represent

the empirical pseudopotential. The use of a model potential is highly advantageous

when working with large unit cells since the full potential can be calculated and

fit to optical data using a limited number of parameters. By extending the nonlo-
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cal Heine and Abarenkov model potential,[50] including the nonlocal screening of

Animalu,[51, 52] for use in covalent and partially ionic semiconductors, and refitting

one parameter, we found a model empirical pseudopotential that could accurately

reproduce the experimental band energies of Si, SiC, and diamond around the band

gap region. The limited number of fitting parameters in SiC , commensurate with

the amount of experimental data available for the hexagonal polytypes, is the result

of the use of transferable Si and C potentials. A local model potential is used for

convenience which directly produces fitted form factors that can be used within the

EPM. A nonlocal correction with one additional parameter is then added to fine

tune the bandstructure, and is used to fit the effective masses of 3C and 4H. The

correction is not used for 6H since the local potential alone gives good results for

the effective masses.

2.1 HA Model Potential

By adding nonlocal screening to the Heine and Abarenkov potential, Heine and

Animalu (HA) developed a model atomic potential which successfully predicted the

long-wavelength form factors for many metals.[51, 52] The unscreened core potential

was represented as a sum of angular-momentum-dependent square wells extending

over a nonlocal core of radius R within which valence electrons interact with the

core electrons. This radius turns out to be quite large, roughly 60-70% of the

atomic radius in Si and C. The well depths, Al, were each independently fit to the

experimental energy levels of the corresponding free ions . Taking into account their
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energy dependence, the metallic values were then obtained by extrapolating from

the free ion energy to the corresponding equivalent energy relative to the Fermi level

of the metal. An approximation to the metal values was thus obtained by fitting

to atomic spectroscopic data. For simplicity, the square wells of the metallic core

potential were then considered to be energy independent with the same radius, R,

used for each.

The atomic potential is in general a sum over all l

V a
HA =

l=∞∑
l=0

m=l∑
m=−l

Vl|lm >< lm|. (2.1)

The relevant members of the sum will only involve the l values of the unexcited

valence and core electrons. HA argued that higher harmonics would produce pseu-

dowavefunction nodes within the core. Such structure in the pseudowavefunction

would be incompatible with the concepts of the pseudopotential method. Although

others have questioned the theoretical significance of this approximation and have

improved the model to eliminate it,[53] we retain it since it renders the model in

a convenient form for fitting to experimental data. For Si and C, we will therefore

not need to include members of the sum for l > 1. Based on the Phillips-Kleinman

cancellation theorem,[54] these unnecessary angular-momentum components of the

potential should all be roughly the same size. They can therefore all be removed

from the sum by removing the l = 2 component as an average. The l = 2 well then

forms the local potential. The final form of the Fourier transform of the atomic po-

tential, indicating the wavevector and model parameter dependence of the various
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terms, is

V a
HA(�q) =

B(q;A2, R, Z)

εm(q)
+
∑
l<2

[
I(q;Al −A2, R)

εm(q)
+ F (�k, �G;Al − A2, R)

]
, (2.2)

where the lattice and electron wavevectors are �q and �k, respectively. The local, or

�k independent, bare potential B is constructed from a local approximation to the

l = 2 square well, the potential due to the net core charge Z, and correlation and

orthogonality hole corrections. F is the nonlocal bare core potential involving square

wells of depth ∆Al = Al − A2 for each angular momentum considered. Hence, as

previously discussed, only wells that differ in depth from A2 will enter this term.

The terms in Eq. (2.2) are given in greater detail in Appendix A.

HA screened the bare potentials by using Sham’s[55] modification of the Hartree

dielectric function appropriate for metals, εm, and included the screening of the non-

local potentials through the term I. The “on Fermi sphere approximation” was used

to take out the �k dependence in F when appropriate. This involved setting k = kf ,

the Fermi wavevector, and letting

|�k + �q| =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
kf q ≤ 2kf

q − 2kf q > 2kf .

(2.3)

This also takes care of the angular dependence of �k since it enters F through the

angle between �k and �k + �q which becomes

θ�k,�k+�q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 q ≤ 2kf

π q > 2kf .

(2.4)

The “on Fermi sphere approximation” is used to construct a local atomic

pseudopotential using simple average values for the electron energy and momentum.
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These average values are used to obtain an average potential that no longer depends

on the electron energy and wavevector.

2.2 Si and C Model Potentials

The Si and C local atomic potentials that will be used in SiC are constructed by

fitting the HA model to the band energies of homopolar diamond-phase Si and C.

First a number of changes are made to the HA potential in order convert it into

a suitable form to represent the empirical pseudopotential of semiconductors. The

metallic dielectric function in equation (2) must be replaced by one appropriate for

semiconductors. For this we use the result of Penn[56]

ε(q;Eg) = 1 +

[
h̄ωp

Eg

]2 [
1 − Eg

4EF

]
[
1 + EF

Eg

(
q

EF

)2√
1 − Eg

4EF

]2 , (2.5)

where EF is the Fermi energy, ωp the plasma frequency, and Eg is a band gap

parameter determined by[57] the q → 0 limit

Eg =
h̄ωp√
ε(0) − 1

. (2.6)

The model potential must be adjusted at high q where the empirical pseu-

dopotential is truncated. For semiconductors it has been shown that the potential

may be suitably cut off at 3kf , yet damping should not interfere with the potential

for lattice vectors less than 2kf .[58] We therefore damp the potential according to

V a(�k, �q) = V a
HA(�k, �q)e−αΘ(X)X , (2.7)
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where X(q) =
(

q
2.2kf

− 1
)

and

Θ(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 X ≥ 0

0 X < 0 .

(2.8)

The damping factor α is adjusted so that the potential damps to zero for q >

3kf , and the step function ensures that all truncation occurs after q = 2.2kf , and

therefore well after 2kf . Since the fitting parameter will be used to vary the potential

in this region, this simple damping term is chosen so that no new fitting parameters

are introduced. It also represents the diminishing importance of EPM form factors

for q > 2kf , which is roughly q2 > 12 in reciprocal lattice vector units. For Si and

diamond, the only form factor from the damped region occurs at q2 = 16. Since this

form factor is found not to improve the fit to experimental data in EPM studies of

Si,[59] we do not include it. For diamond, however, it is needed.[61]

We also use the “on Fermi sphere” approximation to treat F locally as

F = F (q;Al − A2, R). (2.9)

Only the square wells which differ significantly from the l = 2 well will be considered

in order to limit the number of parameters in the model. These are the repulsive

l = 0 well for Si and the attractive l = 1 well for C. This attractive well in C

originates from the lack of core p states.

Following EPM theory[43], the crystal pseudopotential, Vp, can be represented

as a sum over all reciprocal lattice vectors �G

Vp(�r) =
∑
�G

V ( �G)ei �G·�r, (2.10)
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where

V ( �G) =
∑
α

Sα( �G)V a
α ( �G), (2.11)

with the sum over each atomic species α present. For the diamond phase potential,

there is only one species present, but we will keep the potential in a general form

applicable to SiC as well. The structure factor is

Sα( �G) =
1

nα

∑
�τα

e−i �G·�τα , (2.12)

where nα is the total number of atoms of species α in the unit cell and the sum is over

the corresponding basis vectors, �τα, of these atoms. The atomic potential in Fourier

space, represented in (7), is evaluated from the real space atomic pseudopotential

according to

V a
α ( �G) =

1

Ωα

∫
Ωα

V a
α (�r)e−i �G·�rd3r, (2.13)

where Ωα is the atomic volume and V a
α is the atomic pseudopotential of species

α. For diamond(AN ) or zinc-blende(ANB8−N ) phases, the Fourier transform of the

pseudopotential is represented in terms of symmetric(V S) and antisymmetric(V A)

parts

V ( �G) = V S( �G)cos( �G · �τ ) + iV A( �G)sin( �G · �τ), (2.14)

where

V S( �G) =
VA( �G) + VB( �G)

2

V A( �G) =
VA( �G) − VB( �G)

2
. (2.15)
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For crystalline Si and C, the diamond-phase potential is then only the symmetric

term

V (�r) =
∑
�G

V (G)cos( �G · �τ)ei �G·�r. (2.16)

With the exception of the C core radius RC, which was chosen 4% less, the HA

results were used for the first approximation of the model parameters. One fitting

parameter, A2, was then increased by 21% for C and decreased by less than 2%

in Si, to fit to experiment. This parameter adjusts not only the local well but

the nonlocal wells, treated locally here by the “on Fermi sphere approximation”,

since ∆Al = Al − A2. The refitting of A2 can be interpreted as accounting for the

difficulty in extrapolating the well depths from the free ion values to obtain those for

the corresponding metal, in particular the choice of the free ion equivalent energy in

the metal. Also, since A2 should be one of the more energy-dependent parameters,

its adjustment may account for the use of energy independent model parameters

and a local approximation to the potential.

To calculate the bandstructure, we use a plane wave basis including all plane

waves satisfying (�k + �G)2 ≤ 21. This criteria is found to give convergence in dia-

mond and zinc-blende semiconductor structures.[60] Convergence of the fitted band

energies is found within .02 eV for Si and diamond using 125 plane waves for each

material. The model potential and corresponding bandstructure of Si and diamond,

are shown in Fig. 2.1- 2.4, while the model parameters used are given in Table 2.5.

For Si, the model potential agrees closely with EPM form factors and subsequently

agrees well with the experimental band energies in Table 2.2. There is less agree-
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ment between the model potential and the EPM form factors for diamond, but the

bandstructures[61] and band energies in Table 2.5 are similar. Close to the bandgap,

the agreement with experiment is good. Several aspects of both the model and EPM

diamond bandstructure[61], such as the lowest conduction bands around Γ and L,

and the width of the valence bands, don’t agree with experimental data.[61, 63, 64]

This is most likely due to ignoring the strong nonlocality of the C potential. Since

the motivation here is to obtain a local C potential that can be transferred into the

SiC polytypes and is accurate around the bandgap, the potential is adequate.

2.3 SiC Model Potential

For SiC, it is desirable to use modifications of the homopolar diamond-phase Si and

C potentials. By using such transferable potentials, a close approximation to the

SiC potential may be obtained which can be further fit to experimental data by

slightly adjusting a limited number of parameters. This is useful since band-energy

data is limited for the hexagonal polytypes. For heteropolar materials the model

potential must first be amended to incorporate the effects of charge transfer and

screening once dissimilar nearest neighbors are introduced.

The partial ionic nature of bonds, resulting from charge transfer, is important

in the determination of the bandstructure of heteropolar materials. This can readily

be seen in the ionic gaps in the bandstructure of polar zincblende semiconductors.

Charge transfer, fit to experimental band energies of many semiconductors in model

calculations, has been shown[66] to approximately agree with the Phillips ionicity[67]
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of these materials. This involved using a screened charge transfer that was added

directly to the core charge of the individual atoms. These good results suggest a

means of estimating and including charge transfer in the HA model. However, since

the effects resulting from the bonding of C atoms to much larger Si atoms in SiC,

are not accounted for in the Phillips ionicity, we cannot use it to estimate the charge

exchange. An ionicity scale[68] based on the charge density asymmetry in the bonds

can account for these size-effects. Considering the transferred charge in the valence

difference, the asymmetry coefficient can be estimated as

gSiC 	 1 − (ZC − ∆Z ′)
4

=
∆Z ′

4
, (2.17)

allowing calculation of the charge transfer ∆Z ′. To obtain the screened charge

transfer ∆Z, ∆Z ′ must be adjusted by the average value of the inverse dielectric

constant

∆Z 	 4gSiC

εSiC

	 1. (2.18)

To include these effects in the model, a charge of −∆Z is added to the net core

charge of C and a charge of +∆Z is added to the net core charge of Si. Since the

core charge potential is contained in the local bare potential, the transferred charge

will alter the potential according to

B(q;Z ± ∆Z) = B(q;Z) ∓ 8π∆Z

Ωq2
cos(qR), (2.19)

where Ω is the unit cell volume.

We also alter the homopolar potentials by screening each atom equivalently

with the Penn dielectric function of SiC and by adding a nonlocal correction to the

22



C potential. This correction, FNL
C , enters the potential through FC according to

FC = F L

C
(q;AC1 − AC2, RC) + FNL

C
(�k, �q;ANL

C1
, RC). (2.20)

ANL
C1 is the nonlocal l = 1 well depth which is used to fine tune the bandstructures,

fitting the SiC effective masses, once the best fit local potential is obtained.

Once the homopolar potentials are renormalized with respect to the SiC unit

cell volume ΩSiC, we attain the effective atomic potentials transferable into SiC

V Si

eff
=

[
BSi(q;ASi2, RSiZ + ∆Z) + ISi(q;ASi0 − ASi2, RSi)

εSiC(q)

+ FL
Si(q;ASi0 −ASi2, RSi)

] ΩSi

ΩSiC

e−αSiΘ(XSi)XSi. (2.21)

and

V C

eff =

[
BC(q;AC2, Z − ∆Z,RC) + IC(q;AC1 − AC2, RC)

εSiC(q)

+ F L

C
(q;AC1 −AC2, RC) + FNL

C
(�k, �q;ANL

C1
, RC)

] ΩC

ΩSiC

e−αCΘ(XC)XC . (2.22)

The symmetric and antisymmetric potentials are then

V
S
A(�q) =

[V Si
eff

(�q) ± V C
eff

(�q)]

2
. (2.23)

These can then be used along with the structure factor, with basis vector �τ , to attain

the full potential of 3C-SiC

V3C(�r,�k) =
∑
�G

[
V S(�k, �G)cos( �G · �τ) + iV A(�k, �G)sin( �G · �τ)

]
ei �G·�r. (2.24)

For other polytypes considered an effective 3C-SiC potential is used and the

basis atoms are placed in the perfect tetrahedron.[69] Deviations from these “ideal”
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positions has been discovered[70], but is ignored here in light of the error involved in

treating the potentials locally. Since the lattice spacing and the density of reciprocal

lattice vectors differ from 3C, the model potential is evaluated at wave vectors and

reciprocal lattice vectors represented in units of the corresponding 3C vectors. For

a given polytype nH-SiC, this involves scaling by the ratio of lattice constants anH

a3C
.

The form of the potential for the hexagonal polytypes considered is

VnH(�r,�k) =
∑
�G

Fn( �G)
[
V S(�k′, �G′)cos(

Gzu

n
) + iV A(�k′, �G′) sin (

Gzu

n
)
]
ei �G·�r, (2.25)

where �k′( �G′) = anH

a3C

�k( �G) and u =
(

a2H

c2H

)2
, the wurzite value. For 4H

F4( �G) =

⎡
⎣1 + 2cos( �G · �τ4H) + e−

iGz
2

4

⎤
⎦ (2.26)

and for 6H

F6( �G) =

⎡
⎣1 + 2cos( �G · �τ6H) + e−

2iGz
3 (1 + 2e

iGz
4 cos( �G · �τ6H − Gz

12
))

6

⎤
⎦ , (2.27)

with �τnH = (1
3
, 1

3
, 1

n
) in 3C direct lattice vector units.

For each of the SiC polytypes, the local model potential is used to produce

form factors for G2 < 16 in 3C reciprocal lattice vector units. This is accomplished

by retaining all of the Si and C parameters in the model potentials as a first approx-

imation and then varying A2 of C slightly to fit to the band energies. In this way the

large number of EPM form factors needed are obtained by adjustment of one model

parameter only. To fit the effective masses the addition of the nonlocal correction

to the C A1 well is needed in 3C and 4H, such a correction was not needed for 6H.

As for Si and diamond, a plane wave basis is used that includes the contribution of

all plane waves satisfying (�k+ �G)2 ≤ 21 for 3C, and by analogy (�k+ �G)2( a3C

anH
)2 ≤ 21
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for the hexagonal polytypes. These criteria are met with 125, 270, and 390 plane

waves for 3C, 4H, and 6H respectively. Convergence is found to within .02 eV for

the fitted band energies and effective masses.

Both the local and nonlocal fitting parameters adjust the core potential of the

C atoms in SiC. This choice is made since the simplifications used in the model

potential are expected to be less reliable for C. As previously discussed, this is

evident from the diamond model bandstructure and is a consequence of the lack

of l = 1 core states that produce a strong attractive well in the C core, allowing

the valence electrons to occupy the core with greater ease. Except for the nonlocal

correction, the dependence of the core potential on electron wavevector and energy

is ignored in the model. The more the valence electrons test out the core, the less

valid these approximations should be. Hence, it is the core potential of C that is

adjusted in accordance with experimental data.

2.4 Results for SiC

In this section we discuss the results for the polytypes of SiC. The unit cell of each

polytype is shown in Fig. 2.5. By varying AC2 by less than 3% from the fitted

value for carbon and adding a charge transfer of ∆Z = 1, we obtained good fits to

experimental band energies of 3C, 4H, and 6H SiC using the local model potential.

Nonlocal corrections were needed in 3C and 4H to fit the effective masses, along

with a slight adjustment of the local parameter in 4H to retain the fitted band gap.

The parameters used are shown in Table 2.5 and comparisons of the band energies
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and effective masses with other methods and with experiment is given in Table 2.5

for 3C and in Table 2.5 for the hexagonal polytypes.

For 3C-SiC the local band structure in Fig. 2.6 and the calculated band energies

agree well with EPM results[45, 46, 47] and experimental data.[48, 49] A band gap

of 2.3eV at the X point is found. The effect of charge transfer is clearly shown in

Fig. 2.10. The asymmetric potential agrees well with the EPM form factors once

charge transfer is added. An exact fit of the tail of the potential is not expected

since we have used V A
12 . The addition of charge transfer also changes the symmetrical

potential, decreasing the q2 point where the potential passes through zero and raising

the maximum.

The transverse effective mass(X-W ) calculated from the local 3C bandstruc-

ture, agrees well with experiment,[71] but the longitudinal effective mass(X-Γ) is

somewhat higher. This is brought into agreement by adjusting the nonlocal correc-

tion and attaining a nonlocal bandstructure which, as seen if Fig. 2.6, is very similar

to the local results. The valence bands are noticeably altered by the nonlocal term,

especially along theK-X symmetry line, while except at the L point, the conduction

bands appear relatively unaltered. The slight adjustment of the conduction bands

by the nonlocal correction is enough to fit to the experimental effective masses. The

improvement in the fit is given in Table 2.5. Agreement with experiment is slightly

worse at the conduction band L point once the nonlocal term is included, but this

is overshadowed by the benefits of improving the effective masses.

In 4H, the local potential was fit to the experimental bandgap[2] with an AC2

closer to the C value. A conduction band minimum or 3.20eV was found at the
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M point of Fig. 2.7, agreeing with experiment. As obtained by other methods,[72]

the splitting between the first two conduction bands at M was found to be about

0.1eV. Greater anisotropy is found in the effective masses than for 3C, with a large

mass found along M-Γ, while smaller yet clearly distinct masses are found in the

transverse directions. As seen in Table 2.5, it is expected from experiment that

the bands should be flatter along M-K and much steeper along M-Γ. The other

transverse mass in the M-L direction agrees reasonably with experiment.

The experimental values ofm⊥ andm‖ in Table 2.5 were obtained by experiments[73]

in which variations in the effective mass, as determined for magnetic fields in

the plane perpendicular to the c direction, where not resolved. These “in-plane

invariant”[42] effective masses were approximated from the model bandstructure for

comparison. As with the longitudinal and transverse masses relative to M-Γ, it

is desirable to bring these masses in closer agreement with experiment using the

nonlocal correction. As in 3C, this altered the conduction bands in Fig. 2.8 only

slightly, but the curvature of the bands is altered quite significantly along the M-Γ

line in Fig. 2.11. Also, the degeneracy of the first two conduction bands at L is

lifted. The nonlocal results were able to attain good agreement with the M-Γ and

M-L results, but didn’t improve the M-K effective mass much. Better agreement

for m⊥ and m‖ are also attained. To retain the correct bandgap, the local parameter

AC2 was readjusted slightly in the nonlocal potential.

For 6H, the band gap was fit without varying AC2 appreciably from the C value.

The conduction band minimum, found at the L point, was fit to the experimental

value of 3.0eV.[2] In DFT bandstructures[72, 74] and other studies,[3] the minimum
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is usually found closer to the M point along M-L, but as found in this work, the

lowest conduction band is extremely flat along M-L as seen in Fig. 2.12, varying

by less than 0.1eV. The minimum has been found to be along M-L in experiment,

but since its exact position is still uncertain,[75] our results are consistent. As in

the DFT studies, we find the minimum to be essentially doubly degenerate with

the splitting of the first and second conduction bands to be less than 0.01eV, while

the third conduction band at L is found to be approximately 1.5eV higher than

the minimum. The effective masses at the conduction band minimum parallel and

transverse to the L-A direction are consistent with the DFT work. When compared

to experiment though, m⊥ is fitted well, whereas m‖ is found to be much lower than

experiment. This may result from band filling complications in the experiments due

to the flat bandstructure along M-L. The longitudinal and transverse components

of the effective mass have still not been determined experimentally for 6H, but since

the results of the local model potential are consistent with DFT results and what is

known experimentally, we see no need for including a nonlocal correction for 6H at

this time.

Since bandstructures accurate close to the bandgap are desired, it is useful

to examine the density of states in this region. As found experimentally[77] and

theoretically,[78] the major differences between the density of states of the individual

SiC polytypes calculated with the model bandstructure is in the conduction bands.

The results are compared with results from density functional theory (DFT) in

Fig. 2.13, with the bandgaps of the latter adjusted to match experimental results.

Both results show not only an increasing bandgap, but an increase in the steepness
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of the rise in the density of states at the conduction band edge with increasing

hexagonality. This is also found in experimentally,[77] as shown in Fig. 2.14, where

we have combined the Si L2,3 and C K soft x-ray absorption density of states. As

in other work[78] and experiment,[77] the valence band density of states was found

to be very similar for the different polytypes. In Tables 2.5 and 2.5, the EPM

form factors corresponding to the model potential for 4H and 6H are given. To

our knowledge these represent the first published form factors for these materials.

They can be used within the EPM to reproduce the local model bandstructure of

these polytypes. If it is desired to include the nonlocal correction for 4H, the set of

appropriate form factors for the local potential are to be used.

2.5 Chapter Summary

We found that by including the appropriate screening and charge transfer, and then

refitting, the HA potential could be effectively modified for use as a semi-empirical

pseudopotential for semiconductors. A SiC local model potential was developed

using Si and C potentials that were each successfully fitted to the homopolar ex-

perimental band energies around the band gap region. This potential could then be

fitted with one local and one nonlocal parameter to obtain the bandstructure for

3C and 4H SiC. The nonlocal parameter is included as a means to fit the effective

masses. For 6H, only the local parameter was needed since the local potential was

found to be consistent with experiment. Agreement with experimental band ener-

gies and most effective masses is found to be good. The large number of EPM form
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factors needed for 4H and 6H are obtained from the local potential and can be used

to reproduce the local bandstructures, while the nonlocal term can be included to

obtain the fitted effective masses. This represents an enormous reduction in the

empirical fitting parameters needed since roughly 30 EPM form factors are needed

for 4H and 6H-SiC.

It is likely that the local approach could be applied to SiC polytypes with even

larger unit cells than 6H using the variation in bandgap with hexagonality[2, 3] in

cases where experimental band gaps are undetermined. When effective mass data

is available, then the nonlocal correction may be included. It is also expected that

a similar approach could be applied to other materials for which the HA model

potential represents a reasonable approximation to the atomic core potentials in

the solid. Another possible application is the use for defects which retain the bulk

bonding characteristics such as low energy stacking faults.
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ASi0 ASi2 RSi AC1 ANL
C1 AC2 RC ∆Z Eg α

Si 2.08 2.40* 2.00 0 4.8 4.44

C 4.48 0 3.94* 1.44 0 13.6 5.75

SiC parameters that differ from the Si and C parameters above.

3C - - - - .3* 4.06* - 1 9.1 -

4H - - - - .4* 3.97a*/3.90b* - 1 9.1 -

6H - - - - 0 3.93* - 1 9.1 -

Table 2.1: SiC Model parameters. (Atomic units are used here and the fitting

parameters are indicated with (*). Here a is for the local potential and b is for the

nonlocal potential.)
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Energy Model EPMb Exp.a

Egap 1.10 0.87 1.12

Γ1v-Γ25′v -12.52 -12.60 -12.56

Γ15c-Γ25′v 3.56 3.34 3.35

Γ2c-Γ25′v 4.04 4.37 4.16

L1c-Γ25′v 2.09 2.09 2.05

L3c-Γ25′v 4.16 3.88 3.91

L1v-Γ25′v -7.24 -7.33 -6.82

L3v-Γ25′v -1.22 -1.26 -1.22

L2v-Γ25′v -10.17 -10.18 -9.34

X4v-Γ25′v -2.94 -3.02 -2.90

Table 2.2: Energy levels of Si. (Energies here are in eV. Here a is from reference

[62] and b is from [60].)
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Energy Model EPMa Exp.

Egap 5.50 5.46 5.51b

Γ1v-Γ25′v -28.47 -29 −21.00c

Γ15c-Γ25′v 7.12 6.96 6c/7d

Γ2c-Γ25′v 10.66 19 15.35c

L1v-Γ25′v -15.85 -16 −12.83c

Table 2.3: Energy gaps of diamond. (Energies here are in eV, while a is from

reference [61], b is from [63], c is from [64], and d is from [65].)
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Model(local) Model(nonlocal) EPM Expt.

X1c-Γ15v 2.30 2.30 2.35c, 2.42d, 2.39e 2.39a

X3c-X1c 2.90 2.74 3.03c, 2.5d 3.10b

Γ1c-Γ15v 5.73 5.73 5.92c, 6.0d, 6.0e 6.0a

L1c-Γ15v 4.26 3.95 4.38c, 4.26d, 4.20e 4.20a

X1c-L3v 4.00 4.33 3.99c, 4.18d 3.55a

m1∗ .22 ± .02(XW) .24 ± .02 - .247f

m2∗ .22 ± .02(XW) .24 ± .02 - .247f

m3∗ 1.2 ± .02(XΓ) .7 ± .1 - .667f

Table 2.4: Band energies and effective masses of 3C-SiC. ( Energies are in eV and

effective masses are in units of the electron mass. Here a is from reference [48], b is

from [49], c is from [45], d is from [46], e is from [47], and f is from [71]. )
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Model(local) Model(nonlocal) DFT Expt.

4H-SiC

M1c 3.21 3.20 3.2b 3.26a

m1∗ 1.50 ± .05(MΓ ) .60 ± .05 .58c .58c

m2∗ .19 ± .02(MK) .20 ± .02 .29c .29c

m3∗ .39 ± .02(ML) .36 ± .02 .31c .33c

m⊥∗ .53 ± .03 .35 ± .02 .42c .42d

m‖∗ .19 ± .04 .31 ± .05 .29c .29d

6H-SiC

MLmin
1c 2.99(L) - 3.0b 3.02a

m1∗ .90 ± .03(LA) - .77c

m2∗ .22 ± .02(LH) - .24c

m3∗ 1.43 ± .02(LM) - 1.42c

m⊥∗ .44 ± .02 - .42c .42d

m‖∗ 1.14 ± .14 - 1.1 − 2.0c 2.0 ± .2d

Table 2.5: Band energies and effective masses of 4H and 6H SiC. ( Energies are in

eV and effective masses are in units of the electron mass. Here a is from reference

[2], b is from [72], c is from [42], and d is from [73]. )
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4H(local) 4H(nonlocal) 6H(local)

G2 V S V A V S V A V S V A

22
3 -.463 -.462

23
4 -.443 -.027

25
6 -.426 -.016 -.425 -.018

3 -.392 .002 -.390 .000 -.391 .001

3 5
12 -.314 .040 -.312 .038 -.313 .038

4 .075

41
3 -.180 .090 -.177 .088

43
4 -.130 .101

52
3 -.046 .117 -.043 .113 -.044 .114

63
4 .030 .113

71
3 .058 .110 .062 .106

Table 2.6: Model potential EPM form factors of 4H, and 6H-SiC when G2<8. (

Form factors are in Rydbergs. The form factors which exist for G2, in units of

3C-SiC reciprocal vectors, but whose structure factor vanishes are not shown. )
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4H(local) 4H(nonlocal) 6H(local)

G2 V S V A V S V A V S V A

8 .088 .092 .091

9 5
12 .135 .078 .140 .073 .138 .075

102
3 .152 .157

103
4 .156 .055

105
6 .153 .057 .158 .052 .156 .054

11 .153 .055 .159 .049 .157 .051

11 5
12 .155 .048 .161 .043 .159 .045

115
6 .156 .042 .161 .037

12 .040 .034 .036

121
3 .154 .035 .159 .030

123
4 .152 .027

132
3 .126 .020 .130 .016

142
3 .014 .011

143
4 .093 .012

Table 2.7: Model potential EPM form factors of 4H, and 6H-SiC when G2≥8. (

Form factors are in Rydbergs. The form factors which exist for G2, in units of

3C-SiC reciprocal vectors, but whose structure factor vanishes are not shown. )
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Figure 2.1: Si local-model potential bandstructure.
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Figure 2.2: Model potential of Si. (EPM form factors of [60] (•) are included.)
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Figure 2.3: Diamond local-model potential bandstructure.
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Figure 2.4: Model potential of C. (The EPM form factors of [61] (•) are included).
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Unit Cells of SiC Polytypes
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Figure 2.5: Unit cells for the SiC polytypes.
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Figure 2.6: 3C-SiC Local(-) and nonlocal(- -) model bandstructure.
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Figure 2.7: Hexagonal Brillouin zone and irreducible wedge.
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Figure 2.8: 4H-SiC nonlocal model bandstructure.
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Figure 2.9: 6H-SiC local-model potential bandstructure.
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Figure 2.10: Asymmetric(V A) and symmetric(V S) model potentials. (The EPM

form factors of [45] (•). The form factor for V A
11 of both [46] and [47] (∗) varies

significantly and is also shown. The model potentials without charge transfer(-·-),

with charge transfer(- -), and fitted to 3C-SiC band energies(—) are shown.)
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Figure 2.11: Model potential conduction band edge of 4H-SiC. ( Here we show the

results with(- -) and without(–) the nonlocal correction. The M− Γ and M-K

distances shown are equal to the M-L distance ).
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Figure 2.14: Experimental[76] and local model density of states at conduction edge

for 3C(–), 4H(- -), and 6H(-·-). (For comparison the conduction band minimum is

set to zero for each method. Nonlocal results for 3C and 4H do not vary noticeably).
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Chapter 3

Simulation of Bulk Electron Transport in

Hexagonal SiC

In this Chapter a study of high-field temperature-dependent electron transport in

6H-SiC is presented. This investigation is carried out using a full-band Monte Carlo

simulator which is developed specifically for modeling SiC. The motivation for ex-

ploring the transport properties of SiC stems from its high saturation velocity, high

thermal conductivity and large breakdown voltage, which lead to a wealth of po-

tential applications in electronic devices operating at high temperature and high

power.
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3.1 Scattering Rates

The scattering mechanisms considered in our simulations are acoustic phonon, inter-

valley optical phonon, polar optical phonon, ionized impurity, and impact ionization

scattering. The rates are all based on the “Golden Rule” in Eq. (1.2). For an elec-

tron with energy ε, the scattering rates Γ are given by

Γ(ε) = Λ(ε)DOS(ε± Eq). (3.1)

Here DOS is the EPM band structure density of states which is stored in a look-up

table before the Monte Carlo simulation begins. The term Λ is the proportionality

factor between the rate and the density of states and depends on the type of scatterer

involved. The energy transfer Eq also depends on the scattering mechanism in

question.

The factor Λ is approximated as the proportionality constant between the

scattering rate and the density of states when the electron occupies the nonparabolic

minmia of the lowest conduction band. This minima is described by an effective mass

of md=0.66me and a nonparabolic factor of α=0.323. The form for Λ is thus more

reliable when the electron energy ε is smaller and electrons stay in the minima of

the lowest subband. The rate at higher energies is determined by scaling Λ, which is

based on a model band structure, by the realistic empirical pseudopotential density

of states DOS. The material parameters for the scattering rates are given in Tables

3.1 and 3.2.

In the case of acoustic phonon scattering, the deformation potential approx-

imation is considered[82]. The rate is determined for the elastic case where the
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energy transfer is set to zero. The rate in Eq. (3.1) is determined by

Λac(ε) =
π (KBT )3D2

acDOS(ε)

4mdh̄u4ρ
√
γ

([
F±

2 (X2) − F±
2 (X1)

]
(±)

[
F±

3 (X2) − F±
3 (X1)

])
,

(3.2)

where

γ(ε) = ε (1 + αε) , (3.3)

and the +(-) sign is for absorption(emission) of an acoustic phonon[38]. The F

factors are given by

F±
n (X) =

∫ X

0

[
Nq(x

′) +
1

2
(∓)

1

2

]
x

′ndx′, (3.4)

where Nq is the Bose-Einstein equilibrium distribution function. The values of the

limits of integration X are given in Table 3.3.

For scattering with intervalley phonons, a zeroth order and a first order inter-

action are considered. The zeroth order rate is determined by[38]

Λiv0(ε) =
πh̄D2

iv0

ρEiv0

[
N(Eiv0) +

1

2
(∓)

1

2

]
, (3.5)

where the upper(lower) sign is for absorption(emission) of an optical phonon with

characteristic energy Eiv0. The energy transfer in Eq. (3.1 ) is ±Eiv0. This phonon

energy is given in Table 3.2. Here Div0 is the deformation potential which is fitted

to experiments. The phonon occupation number at fixed energy Eiv0 is given by

N(Eiv0) = (exp (Eiv0/KBT ) − 1)−1 . (3.6)

The first order interaction is given by [83, 84]

Λiv1(ε) =
2πmdD

2
iv1

ρh̄Eiv1

[γ(ε) + γ(ε±Eiv1)]
[
N(Eiv1) +

1

2
(∓)

1

2

]
. (3.7)
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The deformation potential Div1 will be used as an adjustable fitting parameter.

The scattering rate between a conduction electron and a polar optical phonon

is formulated in terms of the Froelich interaction and the effective field strength

induced by the phonon. This is the polar field Eo, which is taken as a fitting

parameter here. Slight adjustments are made to the theoretically expected result[37,

38, 85]

Eo =
mdeEpo

4π2h̄2

(
1

ε∞
− 1

εs

)
. (3.8)

Here Epo is the energy of the polar optical phonon and the dielectric constant at

both high-frequencies, ε∞, and at low-frequencies(static), εs, is included.

The electron energy after scattering is ε′=ε±Epo, where the upper sign is for

phonon absorption and the lower sign is for phonon emission. In terms of the polar

field, the proportionality factor from Eq. (3.1) is then

Λpo(ε) =
4π2h̄3Eo

m2
d

√
γ(ε)γ(ε′)

⎡
⎣A ln

∣∣∣∣∣∣
√
γ(ε) +

√
γ(ε′)√

γ(ε) −
√
γ(ε′)

∣∣∣∣∣∣+B

⎤
⎦C−1. (3.9)

Here we have

A = [2 (1 + 2αε) (1 + αε′) + α (γ(ε) + γ(ε′))]2 , (3.10)

B = −2α
√
γ(ε)γ(ε′) [4 (1 + αε) (1 + αε′) + α (γ(ε) + γ(ε′))] , (3.11)

and

C = 4 (1 + αε) (1 + αε′) (1 + 2αε) (1 + 2αε′) . (3.12)

For the scattering of electrons with ionized impurities, Ridely’s method is

used[79]. The rate is

Γimp(ε) =
ϑg

d

[
1 − exp

(
−d/ϑgΓ

BH(ε)
)]
, (3.13)

55



where ϑg is the electron group velocity, and d is the average distance between the

ions. A value of 25πd=N1/3 is used here, where N is the density of ionized impurities.

For this we use N=n + 2NA, where n is the mobile charge density and NA is the

density of acceptors. The donor state energies involved in the determination of n

are 0.08, 0.12, and 0.45eV. The term ΓBH is the Brooks-Herring scattering rate [86]

given by

ΓBH(ε) =
Ne4

16
√

2mdπε2s

[
log
(
1 + γ2(ε)

)
− γ2(ε)

1 + γ2(ε)

]
γ−3/2(ε), (3.14)

where collisions are taken to be elastic.

For the impact ionization scattering rate the Keldysh expression is used[41].

The rate is given by

Γii(ε) = ΓT (ε)P
(
ε− Eth

Eth

)2

. (3.15)

Here P , the hardness factor, and Eth, the threshold energy, are adjustable parame-

ters. The total rate, including all of the other scattering mechanisms except Γii, is

given by ΓT . A threshold of 1.07[87] times the band gap and a hardness factor of

10[87] were used for the impact ionization scattering rate.

3.2 Monte Carlo Simulator

To simulate the electron transport properties we adapt the full-band MC method

(FBMCM)[41, 79, 80], to hexagonal SiC. Here we will focus of steady-state simu-

lations of electron transport in 6H-SiC. The electronic band structure is calculated

using the method in Chapter 2. We include the six lowest conduction bands shown
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in Fig. 3.1. The electronic energy spectrum for each of these bands is implemented

on a mesh in electron wavevector space using the scheme of Rauberheimer and

Gilat[81].

In this method the irreducible wedge in the hexagonal unit cell is broken up

into tiny cells, cubes and triangular prisms, which completely fill the irreducible

wedge. This is shown in Fig. 3.2. For the FBMCM, we broke the wedge into 5,610

cells. The band structure energy in the center of each cube and on the center of

the ΓKHA plane of each prism, is stored in a look-up table. The gradient of the

band structure energy, dE/d�k, is also stored at each of these points. Within each

cell, the electronic structure is considered to be constant in a plane perpendicular to

the gradient. Each cell volume then contains many k surfaces of constant energy E.

These surfaces can be calculated from the values of the stored band structure energy

and gradient at the cell midpoint. The maximum and minimum energy, Emax and

Emin, contained in each cell are also calculated and stored.

The look-up table can be accessed during the simulation to give the k-space

surface for a constant electron energy ε=E. Given ε, the surface is found by first

searching the band structure look-up table for all cells containing ε. Then the

surface corresponding to ε can be calculated for each cell using the Rauberheimer

and Gilat method[81]. Adding the contributions of all cells gives the k-space surface

corresponding to the electron energy ε.

As for the scattering mechanisms in our simulations, we considered acoustic,

intervalley optical, polar optical, ionized impurity, and impact ionization scattering.

The rates were given in the previous section. The method of Shichijo et al.[41] is
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used to determine the final electron state after scattering with an acoustic phonon.

As for the scattering mechanisms in our simulations, we considered acoustic,

intervalley optical, polar optical, ionized impurity, and impact ionization scatter-

ing. The rates were given in the previous section. The acoustic and intervalley

deformation potentials, along with the polar field were treated as adjustable param-

eters, which were varied from the results of analytical band Monte Carlo transport

simulations of SiC[85, 87, 88].

A flowchart of the FBMCM is shown in Fig. 3.3. Once the physical parameters

for 6H-SiC are defined and the band structure look-up table is produced, a look-up

table, S(ε), for the total scattering rate is produced. This allows the simulations to

proceed faster. The electron then drifts for a time Td(ε), which is always sufficiently

smaller than the inverse of the total rate in the look-up table S(ε). Since the

band structure of the entire Brillouin zone is contained in the irreducible wedge,

the electron energy after the drift can be obtained from the band structure look-up

table for the wedge. Before accessing the look-up table, the electron wavevector

�k is first rotated into the equivalent wavevector �kw inside the wedge. The electron

energy ε( �kw)=ε(�k) is then found by determining the particular cell and the particular

constant energy surface within the cell that contains �kw.

Using the methods of Chapter 1, a random number can then be used to de-

termine if a scattering event occurs. This is facilitated by access to the scattering

rate using the look-up table S(ε). If no scattering occurs then the process repeats

with another drift. If a scattering event occurs then a random number is used to

pick the particular mechanism according to the procedure in Chapter 1. Now the
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electron energy, ε′, after the scattering event is determined. If a phonon scattering

event is chosen, then the final electron energy is determined by adding (subtract-

ing) the phonon energy for phonon absorption (emission). In the case of acoustic

phonon scattering, the average phonon energy is calculated and used to find ε′[41].

Ionized impurity scattering is treated as elastic, while the electron is placed at the

conduction band minimum after an impact ionization event occurs.

Once the final energy is determined, the final electron wavevector is found

from the band structure look-up table. First the k-space surface An for energy ε′

is determined in each cell n by the methods mentioned previously. Then a random

number r is chosen. If there are N cells which contain ε′, the final state cell n1 is

found from the condition

Sn1−1 ≤ r ≤ Sn1, (3.16)

where the partial sum S is defined as

Sn1 =

∑n1
n=1An∑N
n=1An

. (3.17)

So the final electron wavevector �k′ is selected to be in the n1 cell. If the scattering

mechanism is acoustic phonon scattering, there must be a check to make sure the

phonon wavevector is not too large[41]. If this check fails then a new final state is

determined. If an appropriate final state cannot be found a new scattering mecha-

nism or a new drift is implemented. In the case of polar optical or ionized impurity,

where scattering is anisotropic, the area An in the sum of equation (3.17) is weighted

by the scattering rate |Γ(θ′)|. Here θ′ is the angle between the initial wavevector

and the midpoint wavevector of the particular cell. Once the final cell n1 is found
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the final electron wavevector �k′ is found on the cell constant energy surface An1

using 2 random numbers. Now the final electron state is found and the electron will

undergo another drift. This process continues until convergence of the drift velocity.

3.3 Results for Bulk 6H-SiC

The main focus of our FBMCM simulations is to gain insight into the temperature-

dependent electron transport properties of 6H-SiC. We aim to determine how much

of the electronic band structure is needed in order to simulate high-field electron

transport. We also find a set of electron-phonon coupling constants that agree with

experimental data. These constants are the acoustic and intervalley deformation

potentials and the polar field created by a longitudinally-polarized polar optical

phonon. Since the effective mass is very large along the c-axis, as seen in Table

1.5, 6H-SiC devices are typically designed so that current flows perpendicular to the

c-axis. Our simulations will therefore focus on transport along this direction.

To find a set of electron-phonon coupling constants that agree with experi-

mental results, we compare to experimental results in both the low and high field

regions over a range of temperatures. In each case the doping concentration used

in the simulations is adjusted to match that of the experiments. The results of

this process can be found in Table 3.2. The acoustic and the first order intervalley

deformation potentials where adjusted from the results of analytical band Monte

Carlo simulations[85, 87].

In Fig. 3.4 we show the comparison of our FBMCM, with fitted electron-
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phonon coupling constants, to experiments at low fields[89]. The low-field mobility

over a wide range of temperatures is shown. This mobility shows a characteristic

T−2 dependence indicative of mobility degradation due to phonon scattering pro-

cesses. Our simulation results fit these trends well. In 3.5, further comparisons with

experiments are shown. Here the full-band Monte Carlo results are compared with

experimental measurements of the electron drift velocity at temperatures of 296K,

408K, and 593K. Again the drift velocity decreases with increasing temperature due

to an increase in the number of phonon scatterers.

Our FBMCM simulations indicate that a driving field of 1MeV/cm leads to

the saturation of the drift velocity for temperatures below 1000K. Since SiC is a

potential material for high-temperature electronics, it is interesting to determine how

the magnitude of the drift velocity at saturation, ϑsat, will vary with temperature.

We find that ϑsat decreases linearly with temperature, at a rate of 1x104cm/s per

one Kelvin increase in the temperature. We show these results in Fig. 3.6.

As can be seen in Fig. 3.1, the band structure for 6H-SiC is quite complicated.

It is often convenient to use a model analytical band structure within a Monte Carlo

simulation to avoid the complexity of using a large look-up table to obtain the

electronic energy spectrum. To precede with such a model, one must first determine

how many bands are needed and how many band structure valleys are needed. The

answers to these questions will depend on the magnitude of the driving field and the

lattice temperature. We have therefore used our full-band Monte Carlo simulations

to investigate the portion of the band structure that is occupied by conduction

electrons at various fields and temperatures. An occupancy greater than one tenth of
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the total electron concentration is defined as significant. The significantly occupied

band structure will contribute to the important transport properties of 6H-SiC such

as the electron drift velocity and the mobility.

The fraction of time that the simulated electron spends in each of the six

conduction bands is shown in Figs. 3.7 and 3.8 for temperatures of 296K, and

598K respectively. This time is proportional to the occupancy of each band by

the total concentration of conduction electrons. We see that at low fields there

are many more electrons in the second band as the temperature increases. This is

the expected result near equilibrium. The onset of significant occupancy of bands

3-6 although occurs at larger fields as the temperature increases. This phenomena

occurs since the electron drift to higher energies is inhibited by a larger phonon

scattering rate. This does not occur in the case of the second band since it is very

close in energy to the first band. The threshold for significant occupancy of the

third band occurs at roughly 350kV/cm at room temperature and at 450 kV/cm for

598 K. The threshold for the fourth band is found at 750 kV/cm and 1000 kV/cm

for these temperatures. At 1000 kV/cm the fifth band is just reaching significant

occupancy at room temperature. We conclude that a 3-4 band model should be

sufficient for electron transport simulations at room temperature and above.

The conduction band minimum, as seen in Fig. 3.1, occurs in the L − M

valley of the Brillouin zone. The Γ valley although is less than 1.5eV above. It

is therefore interesting to investigate the occupancy of the Γ valley with varying

field and temperature and to determine when it is appropriate to include it in an

analytical band structure. This is shown in Fig. 3.9 for temperatures of 296 and
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598 K. We find that the Γ valley does not become occupied until after 400 kV/cm

at these temperatures. The occupancy is greater at lower temperatures as a result

of a larger average electron energy. The number of electrons occupying the valley

becomes significant for fields above 750 kV/cm. Our results indicate that this valley

should be included in a high-field Monte Carlo simulation.

3.4 Chapter Summary

We have presented the methodology for a full-band Monte Carlo method for the

simulation of electron transport in hexagonal SiC. The empirical pseudopotential

band structure within the irreducible wedge is include on a mesh. A method is

presented for determining the constant energy surfaces ε(�k) using the discretization

scheme of Rauberheimer and Gilat[81]. These surfaces are used to determine the

electronic states after a scattering event, and to find the electron energy after each

incremental drift in the applied field.

Once the electron-phonon coupling constants are adjusted in accordance with

experiments, the temperature and applied field dependence of electron transport

is studied in 6H-SiC. We find that the saturation velocity decreases linearly from

1.71x107cm/s to 1.05x107cm/s as the lattice temperature increases from 300K to

1000K. We also find the in the high-field regime, the four lowest conduction bands

of the M − L valley, along with the lowest band of the Γ valley are significantly

occupied with conduction electrons.

The results of the Monte Carlo simulations presented here can be used to
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model the mobility of 6H-SiC devices. Theses models could readily be used in other

electron transport simulation tools such as drift-diffusion simulators. In Figs. 3.10,

3.11, and 3.12 we show the resulting mobility from the full-band simulations.
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Band Structure Parameters:

md=0.66me α = 0.323

Density:

3.166 g/cm3(ρ)

Dielectric constant:

9.66(εs static) 6.5(ε∞ frequency-dependent)

Sound velocity:

1.37x106cm/s(ϑl Longitudinal) 1.0x106cm/s(ϑt Transverse))

Doping:

10.5x1016cm−3(ND donors) 0.4x1016cm−3 (NA acceptors)

Donor levels:

0.08eV 0.12eV 0.45eV

Table 3.1: Material parameters of 6H-SiC used in Monte Carlo simulations.
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Acoustic deformation potential:

23.0eV(Dac)

Polar optical scattering:

Polar field(Eo) 1.08x105V/cm

Phonon energy(Epo) 120 meV

Optical intervalley scattering:

Zero order

Deformation potential(Div0) 14.0x108eV/cm

Phonon energy(Eiv0) 85.4meV

First order

Deformation potential(Div1) 2.0eV

Phonon energy(Eiv1) 33.2meV

Impact ionization scattering

Hardness(P) 10

Threshold(Eth) 3.2eV

Table 3.2: Scattering parameters of 6H-SiC used in Monte Carlo simulations.
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Absorption Emission

X1 = C
(√

εu −√
ε
)

none(rate is zero) ε < εu

X2 = C
(√

εu +
√
ε
)

X1 = 0 X1 = 0 ε > εu

X2 = C
(√

ε+
√
εu

)
X2 = C

(√
ε−√

εu

)

Table 3.3: Acoutic phonon scattering limits of integration. (Here ε is the electron

energy, and εu=mdϑ
2
l /2, where md is the effective mass and ϑl is the longitudinal

sound velocity. Also C=4
√
εu/KBT .)
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Figure 3.1: Lowest Six Bands of Bulk 6H-SiC Band Structure.
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Free flight Td(E)

Rotate k into wedge

Get: E, k, r, and S(E).
Update accumulators

 Input : physical parameters, and discretized E(k) and dE(k)/dk for wedge

Initialize: initial state (E,k,r) and scattering rate table S(E)

Get RN:  pick scattering mechanism
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 to wavevector Kf
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Update accumulators
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Stop: Output accumulators Vd, <E>, etc.
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Get: RN
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 criteria?

  Enough
scattering?

Figure 3.3: Flowchart for the full-band Monte Carlo program. (Here E is the

electronic band structure energy, k is the electron wavevector, S(E) is the scattering

rate look-up table, Td(E) is the drift time, and Vd is the drift velocity. Also r is the

position of the electron, and RN is a random number.)

70



10
2

10
1

10
2

10
3

10
4

M
o
b
ili

ty
 (

c
m

2
/V

/s
)

TEMPERATURE (K)

Experiment 
Monte Carlo
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Figure 3.6: Saturation velocity ⊥ to the c-axis.
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Figure 3.7: Band occupancy at T=296K. ( Band 1 is not shown. )
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Figure 3.8: Band occupancy at T=598K. ( Band 1 is not shown. )

75



300 400 500 600 700 800 900 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Field (kV/cm)

fr
a
c
ti
o
n
 o

f 
ti
m

e
 i
n
 Γ

 v
a
lle

y
 

T=296
T=598
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Figure 3.10: Monte Carlo mobility ⊥ to the c-axis.
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Figure 3.11: Monte Carlo mobility (⊥ c) for temperatures between 300K and 600K.

78



300 350 400 450 500 550 600
0

50

100

150

200

250

300

Temperature (K)

M
o
b
ili

ty
 (

c
m

2 /V
/s

)

Fields ranging from 1 to 1000 kV/cm 

Figure 3.12: Monte Carlo mobility (⊥ c) for fields between 1 and 1000KV/cm.
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Chapter 4

Surface Band Structure Calculations for

Hexagonal SiC.

Since it is advantages to be able to use different crystalline orientations at the

oxide interface, a study of the surface band structure of SiC is important. Among

other things it can be used to predict how different interface planes will impact the

transport properties when incorporated in a MOSFET. In this work we investigate

the conduction band edge electronic structure at the oxide-SiC interface. The (0110),

(1120), (0338), and (0001) orientations of 4H-SiC and 6H-SiC are considered. As

in a typical Si MOSFET, band-bending at the interface leads to confinement of

electrons perpendicular to the oxide-SiC surface and a departure from the band

structure of the bulk.[91] The transverse bands are split into a number of subbands,
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and the interface electrons exist as a quasi 2-dimensional gas. Here we determine the

electronic structure parallel to the oxide-SiC plane, and determine the perpendicular

subband structure self-consistently with the perpendicular electrostatic potential.

Comparisons are made between different orientations in both 4H-SiC and 6H-SiC.

The results show both interesting similarities and interesting differences among the

surfaces and among the two polytypes.

4.1 Surface Band Structure

The method we use to determine the band structure of an n-type inversion layer

of 4H and 6H-SiC is based on work that has been done for Si[92, 93, 84] and 3C-

SiC[94]. The electric field parallel to the oxide interface is considered small and

the bands are therefore accurately treated using the parabolic approximation. Here

the constant energy ellipse of the conduction band edge parallel to the surface is

determined from the bulk constant energy ellipsoid. For a given surface orientation,

the bulk ellipsoid is rotated accordingly and the energy dispersion parallel to the

interface is obtained. For the perpendicular direction the confinement of electrons

splits the energy spectrum into a number of subbands which as we will see in the

next section, can be obtained by solving Shrödinger’s equation.

The crystal structure of Si and 3C-SiC are diamond and zincblende respec-

tively, with the conduction band minimum near the X symmetry point in the Bril-

louin zone. For the case of 4H and 6H-SiC however we have a hexagonal lattice, with

the conduction band edge along the M-L symmetry line. In Figs. 2.8 and 2.9 we
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show the bulk band structure of 4H-SiC and 6H-SiC calculated using the empirical

pseudopotential method.[32] The minimum for 4H-SiC occurs at the high symmetry

point M so there will be a valley degeneracy of 3 instead of 6 as in Si. In 6H-SiC the

exact location of the conduction band minimum is still uncertain. Experiments do

indicate that it is somewhere along the M-L symmetry line.[95, 96] Band structure

calculations show varying results with the minimum at L, M , or between M and

L.[32, 97, 98, 99] The results in this work will be sensitive to the exact location only

if the valley degeneracy is affected. Since the conduction band is so flat along M-L,

varying by less than 0.1eV, we therefore consider the minimum of 6H-SiC to occur

at the L symmetry point, as seen in Fig. 2.9, and use a valley degeneracy of 3 for

6H as well.

A number of different surface orientations are investigated. In terms of the

Miller-Bravais Index notation, the (0001), (0110), and (1120) planes are shown in

Fig. 4.1. The (1010) and (1100) planes are also studied since they are equivalent to

the (0110) plane. We will also consider the (0338) plane. To find the vector normal

to this plane, the normal of the (0330) plane in Fig. 4.1 is rotated ≈ 54.7o towards

the c-axis.

Using the effective-mass approximation, Shrödinger’s equation for an inversion

layer electron in subband s is

⎡
⎣−h̄2

2

∑
i,j

ωij
∂

∂xi

∂

∂xj
− eφ(z) − εs

⎤
⎦ψs = 0. (4.1)

Here the first term is the kinetic-energy operator, εs is the electron energy, ψs is

the electron wavefunction, and φ(z) is the potential perpendicular to the interface
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along z. The elements of the reciprocal effective-mass tensor for a given surface

orientation are ωij. They are obtained from the bulk principle axes elements, ωnn,

using the transformation

ωij =
∑
n

AinAjnωnn. (4.2)

The rotation matrix A is composed of the direction cosines for the rotation. Fol-

lowing the work of Stern and Howard[92], the wavefunction for an inversion layer

electrons is expressed as

ψs(x, y, z) =
[
ζs(z)e

−iz(ω13k1+ω23k2)/ω33

]
eik1x+ik2y. (4.3)

The first term in brackets is the envelope of the wavefunction in the potential well

φ(z), while the wavefunction parallel to the interface is in terms of momentum

eigenstates with wavevectors k1 and k2. Now substituting the wavefunction into in

Eq. (4.1), a Schrödinger equation for ζs(z) is obtained

[−h̄2

2m3

d2

d2z
− eφ(z) − Es

]
ζs(z) = 0, (4.4)

where m3, the principle axes effective mass perpendicular to the interface, is identi-

fied as m3=ω
−1
33 . This equation is used to obtain both the subband energies Es and

the electron charge density, e|ζs(z)|2, along the inversion well. The procedure for

this calculation is detailed in the next section. The total electron energy considering

motion along x, y and z is

εs = Es +
h̄2k2

1

2m1
+
h̄2k2

2

2m2
+
h̄2k1k2

2m12
. (4.5)

Here m1 and m2 are principle axes effective masses of the constant energy ellipse
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parallel to the interface when 1/m12 vanishes. The values of these masses are:

1/m1 = (ω11 − ω2
13/ω33)

1/m2 = (ω22 − ω2
23/ω33)

1/m12 = (ω12 − ω13ω23/ω33) .

(4.6)

To obtain the principle axes the constant energy ellipse must be rotated in the

interface plane so that 1/m12=0. The new axes are then the principle axes for the

ellipse.

So using the rotated inverse effective mass tensor ωij, the principle axes ef-

fective masses are readily obtained. In Fig. 4.2 the constant energy ellipses and

Brillouin zones for the various surface orientations are displayed. Here only the

ellipses for the lowest conduction band are shown. As discussed previously, the con-

duction band minimum for 6H-SiC is shown at the L point. If a location closer to the

M point is chosen then the minimum would move closer to the 4H-SiC minimum.

In Table 4.1 we show analytical equations for the principle axes effective masses

of the surfaces in terms of those of the bulk. These results are general and can be

used if the surfaces of other materials with hexagonal symmetry are considered.

Here the longitudinal principle axes masses for the rotated surface are m1 and m2 in

Fig. 4.2. The larger the variation between these two masses, the more anisotropic

the transport properties will usually be along the oxide-semiconductor surface. The

principle axis mass for the transverse direction, m3, is also given in Table 4.1. For all

except the (0001) orientation, the projection of the bulk constant energy ellipsoids

onto the surface creates 2 sets of non-equivalent minima. When these bands are split

into subbands in the inversion layer, a subband ladder will result from each of the 2
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non-equivalent conduction band minima. The ladder with the lowest energy state is

labeled as the “lowest ladder” or the “1st ladder ” in Table 4.1 and is characterized

by the largest transverse effective mass m3. The results for m1 and m2 in Table 4.1

are accurate for both bands in the (0110), (1120), and (0001) orientations. For the

(0338) surface although these results are accurate when the principle axes of the

ellipses align closely with the Brillouin zone axes shown in Fig. 4.2. For the case

of (0338) 6H-SiC and the second conduction band of (0338) 4H-SiC, the principle

axes are only rotated about 11-12 degrees off the Brillouin zone axes. The equations

in Table 4.1 are therefore very close approximations. For the first conduction band

of (0338) 4H-SiC although the angle is about 40o. The longitudinal effective mass

formulas in Table 4.1 are off by about 15% in this one particular case. For all

orientations and all bands, the product m1m2 in Table 4.1 is accurate. In Tables

4.2 and 4.3 the values of the effective masses used in this work are given using the

accepted bulk values. [32, 99] The results here for m1 and m2 of the first conduction

band of (0338) 4H-SiC are accurate and do not correspond to the formulas in Table

4.1.

Since the bulk bands are used to determine the nature of the conduction band

minimum, two important approximations are made. First of all, no account is

made of the effects of surface states on the band structure and second of all the

effective mass approximation is used. In Si the first approximation is reasonable

since the density of interface states is as low as 1010eV −1cm−2. Also the effective

mass approximation has been found to be justified in Si when the average distance of

the electron from the interface is larger than 2nm.[93] For SiC although the interface
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state densities are currently found to be as large as 1011 − 1012eV −1cm−2 in 6H and

1012 − 1013eV −1cm−2 in 4H.[15, 16, 17] Such large densities, especially, in 4H-SiC

make the use of bulk-like conduction bands at the interface less reliable than in Si.

To determine the utility of the effective mass approximation in the inversion

layer of hexagonal SiC, the length scale of lattice periodicity perpendicular to the

interface must be considered. This distance, L⊥, will be large when a large com-

ponent of the c-axis is oriented perpendicular to the interface, making the effective

mass approximation questionable. In Fig. 4.3 we display the 4H-SiC lattice in the

ABCA′B′C ′ notation. The periodicity of the lattice for the various orientations is

shown. In Table 4.1II we see that L⊥ for the (0001) and (0338) orientations is about

twice as large as in Si for 4H-SiC and is about 3 times as large for 6H-SiC. Based on

the results for Si, the use of the effective mass theory for these orientations is best

applied when the average distance of the electrons from the interface is greater than

4nm in 4H-SiC and greater than 6nm in 6H-SiC. The results of this work will show

that these conditions are well met under conditions of very weak inversion. For the

(0110), and (1120) orientations the effective mass approximation may be used when

electrons in the inversion layer are even closer than the minimum distance found

for Si. This occurs because the lattice constant is smaller in SiC(3.08A) than in

Si(5.43A). For the (1120) surfaces this approximation may be valid down to 1nm.

Although the method we use is of a more limited validity in the larger polytypes

of SiC than in Si, there are a number of reasons why this approach can lead to

useful knowledge of the electronic structure. Currently a lot of research is focused

at reducing the interface state density in 4H and 6H-SiC MOSFET inversion layers.
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If these states can be reduced to densities common in Si, then the method we use

would certainly be applicable as it is in Si. Also it is not know how significant

the effect of the large density of interface states will be. Experimental deviations

from the results here could be used to access the effects of the surface states on

the band structure. The effective mass approximation should not be a problem for

orientations of 4H and 6H-SiC for which the c-axis is parallel to the oxide interface.

We will also include the analysis of the (0001) and (0338) orientations since the

results likely will help give a qualitative understanding of the band structure along

these directions. We also note that the effective mass approximation is routinely used

in modeling MOSFETs and agreement with experiment is obtained, even though

calculations show the inversion electrons are on the average less than 2nm from

the oxide surface. A very important application of this work is its usefulness in

transport simulations, such as the Monte Carlo method, which often rely on the use

of an electronic energy spectrum in analytic form.

4.2 Subband Calculation

To determine the subband energies and the mobile charge density perpendicular to

the interface, Schrödinger’s equation, in the form of Eq. (4.4), must be solved. This

is complicated however since the confining electrostatic potential at the interface

itself depends on the mobile charge that builds up in the inversion layer. A self-

consistent φ(z) must therefore be used in Eq. (4.4) since it depends on each Es

and ζs(z) itself. The method used for this is similar to that used by Stern.[93]
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Self-consistency is obtained by requiring that Possion’s equation

d2φ(z)

d2z
= −

(
ρdepl(z) − e

∑
s

Ns|ζs(z)|2
)/

ε, (4.7)

be simultaneously satisfied along with Schrödinger’s equation. Here Ns are the

electron concentrations in each subband, ρdepl is the depletion charge density and

ε=9.72εo is the dielectric constant for SiC. So in order to calculate φ(z), Ns and zd

must be known.

For the electrostatic potential φ(z) the Hartree approximation is used. We

therefore neglect the effects of many-body interactions and of the image charge

potential at the surface. This approximation is better than might be expected

since these two effects tend to cancel each other to some degree. Exchange and

correlation tend to lower the surface energy levels while the image force tends to

raise them. [94, 100] The Hartree approximation has been found to be a useful

first approximation for the electrostatic potential in Si inversion layers, so we feel

confident using it here.[93] As mentioned in the previous section, the electrostatic

field parallel to the oxide-semiconductor interface is considered to be small enough

so that a parabolic band structure dispersion can be used. This field should also be

small so that equilibrium Fermi-Dirac statistics can be employed perpendicular to

the interface.

In this work the response of the inversion layer to variations in the total con-

centration of free electrons at the surface, Ninv and the temperature, T , is studied.

For fixed Ninv, the level in each subband is found according to

Ninv =
∑
s

Ns =
g
√
m1m2KBT

πh̄2

∑
s

ln [1 + exp ([EF −Es] /KBT )] , (4.8)
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where EF is the Fermi energy at the interface and the logarithmic term is the

solution of the zero index Fermi-Dirac integral. The valley degeneracy, g, and the

density of states effective mass,
√
m1m2 , are given in Tables 4.2 and 4.3. For

all the orientations other than the (0001), more than one band structure ladder

is involved. In these cases the subbands from each ladder enter the s sum. In

order to determine Ns and thus φ(z) we need to know more than just the subband

energy levels and wavefunctions, the Fermi energy must also be found. Once the

Schrödinger equation is solved, Eq. (4.8) is in fact used to find EF and thus each

Ns is subsequently determined.

Considering a p-doped SiC MOSFET, with a uniform acceptor density NA

and a smaller uniform donor density ND, the ionized impurity charge density at the

interface is

ρdepl(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−e (NA −ND) 0 < z < zd

0 else.

(4.9)

Here the semiconductor is depleted of holes up to a distance of zd from the oxide

interface. It is assumed that all of the impurities are ionized in this depletion layer.

Also the transition region from the depletion region to the bulk occurs abruptly at

zd. Using these approximations, the depletion depth is calculated using

zd =
√

2εφB/e (NA −ND), (4.10)

where the effective band bending from the bulk to the oxide surface is given by[91]

eφB = Eg/2 + EF −KBT − eNinvZav/ε. (4.11)

Here Eg is the bulk energy gap and the average penetration of the mobile inversion
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layer electrons into the semiconductor is

Zav =
∑
s

Ns

∫
z|ζs(z)|2dz

/
Ninv. (4.12)

The first term in Eq. (4.11) accounts for the band bending of the substrate con-

duction band to the Fermi Level. The second term, EF , accounts for an adjustment

of the surface band edge relative to the Fermi level, while the third term, −KBT ,

accounts for the potential falloff at the edge of the depletion region at zd. The final

term then includes the band bending due to the mobile charge at the interface. So

once the Fermi energy is obtained using Eq. (4.8), the charge densities entering

Poisson’s equation can be readily determined.

The self-consistent numerical calculations involve the discretization of Eqs.

(4.4) and (4.7) in the z direction. These equations are then solved iteratively along

with the calculated Fermi energy that is itself consistent with Eqs. (4.9) and (4.10).

The oxide-semiconductor boundary potential barrier is assumed large enough so

that the wavefunction does not penetrate into the oxide. This is a good approxi-

mation for Si. It would fail only when the surface is inverted well beyond the limits

of the effective-mass approximation along z. [93] The larger bandgap makes this

approximation less reliable in 4H and 6H-SiC. Here we do assume that the oxide-

semiconductor barrier is large enough so that we may allow the wave function to

vanish at the oxide (ζs(0)=0). The discretization of z goes up to a maximum value

of zmax which is determined when ζs(zmax)=0 for all the low lying subbands that are

significantly occupied. In this work we consider 10 such subbands for each of the

two bands considered. The set of wavefunctions for these subbands are the same
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for each of the two bands, but the two sets of 10 subband energies are offset by the

energy spacing of the bands. The subbands are also divided amongst the different

ladders. In the case of the (0001) orientation there is only one subband ladder with

10 subbands, whereas for the other orientations two ladders with 5 subbands each

are considered.

The boundary condition used for the potential at the interface is φ(0)=0. We

therefore will consider all energies relative to the surface potential. The electric field

at the boundary is set equal to Fo where

−dφ(z)

dz

∣∣∣∣∣
z=0

= Fo = e [Ninv + (NA −ND) zd]
/
ε. (4.13)

Using these boundary conditions, Eq. (4.7) can be solved giving

φ(z) = −Foz + e

(
(NA −ND) z2/2 +

∑
s

Ns

∫ z

0
dz′
∫ z′

0
dz′′|ζs(z′′)|2

)/
ε, (4.14)

in the region of interest where z < zd. This equation is used to set the boundary

condition φ(zmax), where at zmax the sum in Eq. (4.14) is zero. Using this boundary

condition means that we only discretize z in the region where the wavefunctions are

non-zero 0 < z < zmax. Instead of using Poisson’s equation, Eq. (4.14) could in effect

be used to determine the self-consistent potential but this is not computationally

practical unless the double integral can be solved analytically.

Now we will describe the iterative procedure. For the first iteration (1), the

initial subband wavefunctions and energies are taken as the analytical solutions for

a triangular well. These are the Airy functions (Ai)

ζ (1)
s (z) = Ai

((
2m3seFo/h̄

2
)1/3 [

z −
(
E(1)

s /eFo

)])
= Ai ([z − z1]/z2) , (4.15)
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with energies

E(1)
s =

[
3

2
π
(
s+

3

4

)]2/3

eFoz2. (4.16)

Here the notation m3s is for the transverse mass of the ladder subband s belongs

to. The initial value E
(1)
F is calculated from Eq. (4.8), then the initial value of the

electrostatic potential, φ(1)(z), is determined using Eqs. (4.10) and (4.14). In this

case Eq. (4.14) is solved analytically since

∫ z

0
dz′
∫ z′

0
dz′′|ζ (1)

s (z′′)|2 = z +
z2
3

[
χ2Ai2(χ) − χAi′2(χ) − 2Ai(χ)Ai′(χ)

] ∣∣∣∣∣
χ=[z−z1]/z2

χ=−z1/z2

.

(4.17)

For weak inversion, when Ninv<∼NAzd, φ
(1)(z) could be used as a next approxima-

tion to the triangular well potential transverse to the interface.

The iterative procedure then begins with the discretization in z and subsequent

diagonalization of the Eq. (4.4). This gives the values E(2)
s and ζ (2)

s (z). Then E
(2)
F ,

is obtained and the boundary value φ(2)(zmax) is found from Eq. (4.14). Next Eq.

(4.7), also discretized in z, is solved giving φ(2)(z). The iterative procedure is then

continued until φ(n)(z)=φ(n−1)(z). To aid convergence, after a few iterations we

update the new potential by using the average of the newly calculated function with

that of the previous iteration.

In Fig. 4.4, we show the self-consistent results for the (0110), and (1120) ori-

entations in 6H-SiC. The lowest 3 or 4 subbands are given for each surface. Also the

the potential φ(z) and the charge density are given as functions of z the penetration

depth into the semiconductor. The charge density for electrons in the lowest state

of the lower subband ladder Eo is also shown. In the particular example given the
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surface is relatively strongly inverted and most of the mobile electrons occupy the

lower subbands of the two ladders Eo and E ′
o.

4.3 Results

4.3.1 (0110) and (1120) Orientations

The (0110), and (1120) arrangements both have small transverse periodic lengths

L⊥, therefore the effective mass approximation used in the band structure calculation

is very reliable. From Tables 4.2 and 4.3, it can also be seen that these surfaces

have identical principle axes effective masses for the second(higher) subband ladder.

This ladder is characterized by a small transverse mass m′
3, and a large anisotropy

between the longitudinal masses m′
1 and m′

2 for the first conduction band. The

second conduction band has a large m′
3 in 4H-SiC, but since the interband energy

gap is large we focus on the first conduction band. The (0110), and (1120) directions

are fundamentally different in the first(lower) subband ladder. In the former case the

perpendicular mass is significantly larger than that of the second ladder. It is about

1.7 times as large in 4H-SiC and about 2.5 times as large in 6H-SiC. There is a large

difference in the nature of the longitudinal masses between the two (0110) polytypes.

These masses are very similar in 4H-SiC but there is tremendous anisotropy in 6H-

SiC. For the (1120), orientation the lower ladder has effective masses which are

very similar to that of the higher subband ladder. The first ladder is therefore

characterized by a small transverse mass and anisotropy in the parallel direction.
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The fundamental difference between the (0110), and (1120) surface ordering is the

relation of the 1st subband ladder to the 2nd. For (0110) surfaces these ladders

are distinctly different whereas for the (1120) surfaces they are very similar. In the

latter case the subbands almost behave as just one ladder in some situations.

The results for the lowest subband energies are shown in Fig. 4.5. Since the

gap between the lowest two conduction bands is 0.1eV in 4H-SiC, fewer subbands

from the 2nd conduction band are shown for this polytype. The lowest subband from

this band is distinctive since it crosses the higher subbands of the 1st conduction

band in Fig. 4.5. For 6H-SiC the two conduction bands are closer in energy than

the subband spacing. In general these two bands will be simply treated as one band

when their energy gap, 0.01eV , is less than the thermal energy. A noticeable trend

in Figs. 4.4 and 4.5 is that the lowest subbands for each of the ladders, Eo and E ′
o,

are further apart for the (0110) orientation. This occurs because of differences in

the transverse mass between the ladders. Since these trends occur at low values of

Ninv, the results of the triangular-well approximation can be used. We see from Eq.

(4.16) that the subband energy ratios of the two ladders are given by

E ′
i

/
Ej =

⎛
⎝m3

m′
3

[
i+ 3/4

j + 3/4

]2
⎞
⎠

1/3

, (4.18)

where i and j are subband numbers. Since m3 is significantly larger than m′
3 in the

(0110) arrangement, the subband ladder spacing is quite large. When Eq. (4.18)

is applied to the (1120) surface, we see that the similarity between the transverse

masses of the two ladders indicates a close interladder energy spacing. We see this

in Figs. 4.4 and 4.5.
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In Fig. 4.6, results for the distribution of electrons among the subbands are

shown as the mobile inversion charge or temperature is varied. For convenience,

no distinction is made between the two conduction bands here. This means that

for instance the lower ladder in Fig. 4.6 is the addition of the lower ladder for

the two conduction bands. In the limit of high temperature or the limit of very

weak inversion, the relative population of each ladder falls onto the ratio of valley

degeneracies 2/3:1/3 in Tables 4.2 and 4.3. In these limits many subbands are

occupied and a 3-D continuum of states exists. The opposite extreme is the ideal

2-D limit of the inversion layer when only one subband is occupied. This is the

situation typically for small temperatures or when the inversion is very strong. In

the results of Fig. 4.6, the surfaces exist somewhere between these two limits. In

the following discussion, when we refer to a ladder as being “ 3-D like” or “2-D

like”, this is relative to the other ladders being considered and does not necessarily

mean the surface is at these limits. The inversion layers will only attain these limits

under conditions of extremely low or extremely high temperatures or inversion.

The results in Fig. 4.6 are best explained by determining the factors that influ-

ence the percent occupation of a particular ladder. Using Eqs. (4.8) and (4.16), the

electron distribution depends on the energy difference Eo-EF (m3) and the density

of states effective mass md=
√
m1m2 parallel to the interface. The energy difference

between the first subband and the Fermi level, Eo-EF , depends on the transverse

mass. It affects each subband since in the triangular-well approximation each Ninv

in Eq (8) can be represented as a function of Eo-EF by using Eq. (4.16). Quantiza-

tion in the inversion layer tends to push the subband energies above the conduction
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band edge of the unquantized surface. In Eq. (4.16), we see that this process is

weaker for larger transverse effective masses since E ∝ m
−1/3
3 . For a fixed total

charge density Ninv, the relative occupation of the 1st ladder relative to the 2nd

increases when m3 is larger than m′
3 since the subbands of the first ladder are lower

in energy. Under these circumstances Eo-EF would tend to be larger in ladder 1,

since the subband energy levels are closer, and more of the higher subbands would

be occupied in this ladder. The first ladder would therefore be more “3-D like” than

the second.

This is the situation which occurs for the (0110) surface where m3 > m′
3. This

can be observed in Fig. 4.6(a), where a larger percentage of the higher subbands are

occupied in the first ladder. This occurs for both weak and strong inversion. The

same effect can be seen with varying temperature in Fig. 4.6(c). The 1st ladder is

more “3-D like” at high temperatures when compared to the 2nd ladder. As the

temperature is decreased, the occupation of the higher subbands decreases in both

ladders as expected. When the (0110) surface temperature is decreased to very

small values(50K) in Fig. 4.6(c), the surface tends towards a perfect 2-D system

with only Eo occupied. For temperatures below 100K(4H) and 200K(6H) in Fig.

4.6(c), the system is essentially two dimensional. This would typically occur at

higher temperatures, but the process is limited by the 1st ladder which progresses

to the 2-D state slower as the temperature is lowered. Since m3 is larger and m′
3

smaller in the 6H-SiC polytype, the difference in the two ladders is more pronounced

than in 4H-SiC. Also the occupation ratio of the two ladders is significantly larger

than the the 3-D limit result of 2. This occurs again because the subbands are lower
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in energy in the first ladder due to the larger transverse mass. This effect would

be even larger if ratio md/m
′
d was not smaller than one in the (0110) orientation.

So since the two ladders are different the system as a whole is further from a 3-D

system. The 3-D limit would therefore only occur at much larger temperatures or

at much weaker levels of inversion than those simulated in Figs. 4.6(a) and 4.6(c).

For the (1120) surface, both subband ladders are similar to the 2nd ladder

of the (0110) orientation and therefore are more “2-D like” when compared to the

(0110) 1st ladder. Also because the subband ladders are equivalent, the fractional

occupancy of the two ladders falls very close to the valley degeneracy ratios. In 4H-

SiC this persists even when the mobile charge is increased to 1X1013cm−2. Since

m3/m
′
3 is about 8% larger in 6H-SiC, the 1st ladder is occupied slightly more than

twice as much as the 2nd at room temperature, especially when the level of inversion

is large. In Fig. 4.6(d) it is seen that temperatures need to go below approximately

100K in 6H-SiC for the system to be essentially 2-dimensional. For 4H-SiC the

situation is different. For this polytype, both subbands are significantly occupied

even down to 50K. In Fig. 4.7, it can be seen that the electrons begin to exist at the

interface in a 2-D gas when the temperature is decreased so that the Fermi energy

crosses the lowest subband. In (1120) oriented 4H-SiC, the Fermi level crosses the

the lowest subband of the second ladder around 120K. This means that this surface

does not tend towards a perfect 2-D system at very low temperatures. Here two

subbands, Eo and E ′
o, are expected to be filled, even as T → 0. This is similar to

the case of (100) oriented 3C-SiC.[94]

Another interesting result related to the surface band structure calculation
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is the determination of the average penetration of the mobile electrons into the

semiconductor in Eq. (4.12). Calculations of Zav, shown as a function of mobile

charge in Fig. 10a, show that the penetration depth is less in the (0110) orientation.

As we saw for the subband energy spacing, this is a trend which occurs for not only

strong but also weak inversion. It is therefore useful to consider the triangular-well

approximation results again. Using Eqs. (4.12), (4.15) and (4.16), the penetration

depth is[93]

Zav =
∑
s

2Ns

[
3

2
π
(
s+

3

4

)]2/3 (
h̄2/2m3eFo

)1/3
/

3Ninv. (4.19)

So Zav∝(1/m3)
1/3 and is therefore smaller for the (0110) orientation, which has a

larger ladder 1 transverse mass. These results can also be seen in Fig. 4.4 where the

charge density verses distance is shown for 6H-SiC. Since m3 is quite small for (1120)

6H-SiC and large for (0110) 6H-SiC, the differences are prominent. The charge

density is significantly shifted away from the surface in the former case. Since this

would tend to lower the MOSFET capacitance, (0110) 6H-SiC MOSFETS should

have a larger drive current when compared to 6H-SiC MOSFET using the (1120)

orientation.

4.3.2 (0001) and (0338) Orientations

The (0001) and (0338) surfaces of 4H-SiC and 6H-SiC have large transverse periodic

lengths due to the large size of the direct lattice primitive cell along the c-axis. As

mentioned, the results here are based on the use of an effective mass transverse

to the interface. This approximation is questionable for these orientations since
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L⊥ is large, but it is still likely that this method will lead to a useful qualitative

understanding of these surfaces. This is especially true for 4H-SiC for which L⊥ is

only approximately twice that of Si. The results of the method will also be more

reliable when the temperature is larger or the surface inversion is weaker.

In 4H-SiC the (0001) subband ladder is very similar to the 1st ladder of the

(1120) orientation, with the same transverse mass in fact. Since both ladders are

very similar for the (1120) surface, these two surfaces are therefore very similar.

The only significant difference is that only one subband ladder occurs in the (0001)

orientation. The (0001) surface in 6H-SiC is however different as a result of the huge

transverse mass. Indeed, this property makes (0001) 6H-SiC unique among all the

other surfaces we consider.

So unlike all the other surface orientations, the (0001) surface is very different

in 4H-SiC and 6H-SiC. In Fig. 4.9 we see that the the 2-D limit occurs at a much

lower temperature in 6H-SiC. For higher temperatures the distribution of electrons

in the higher subbands is much larger in 6H-SiC. Continuing the comparison of the

various surfaces in terms of how relatively close they are to the 2-D or 3-D limits, the

(0001) 4H-SiC surface turns out to be more “2-D like” while in the case of 6H-SiC,

the surface is the most “3-D like” of all the surfaces. Since m3 is large in 6H-SiC,

the subband energies in Fig. 4.10(a) are low in energy and very closely spaced.

Here Eo-EF is typically large and many of the higher subbands are significantly

occupied when the surface is weak to moderately inverted. Comparing the average

penetration depth of electrons into the semiconductor in Fig. 4.8(b), Zav is much

larger in 4H-SiC. This is expected in a more ‘2-D like” surface since m3 is small.
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In 6H-SiC Zav is the by far the smallest of any orientation considered. Even at

moderate inversion strengths, Ninv=5X1012cm−2, this distance is only 2nm or less.

This is at the limit of the effective mass approximation in Si. Since L⊥ is three

times as large, the 6H-SiC (0001) surface appears to far exceed the limits of this

approximation. Such a small penetration depth is likely to translate in a larger

MOSFET drive current though. For the (0001) surface of 4H-SiC the situation is

different. When the inversion is weak, the effective mass approximation should likely

be reliable.

We find that the (0338) orientation is very similar to the (0110) orientation.

As seen in Tables 4.2 and 4.3, the transverse mass is large in the 1st ladder and

small in the 2nd. The results for the distribution of electrons among the subbands

is shown in Fig. 4.11. These results are similar to the (0110) surface since the

ratio m3/m
′
3 is very similar. Most of the discussion of the (0110) surface in the last

section can therefore be applied to the (0338) arrangement. One difference although

warrants mentioning. The transverse mass for 6H-SiC is larger for the (0338) surface

allowing more of the higher subbands to become occupied in Fig. 4.11. This also

results in a lower Zav in Fig. 10.

4.4 Chapter Summary

Here we have determined the band structure of an n-type inversion layer in 4H-SiC

and 6H-SiC. The subband levels have been self-consistently calculated using the

Hartree and effective masses approximations. The latter approximation is believed
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to be reliable for the (0110) and (1120) surface orientations but is more questionable

for the (0338) and (0001) orientations where the lattice periodicity perpendicular to

the interface occurs over a relatively large length scale. In these cases though we do

believe that the results lead to a potentially useful qualitative understanding of the

trends in the subband structure of these surfaces.

Results show that the conduction band edge for the (0110) and (0338) orienta-

tions is split into 2 distinct subband ladders. Electrons in the ladder of lowest energy

are found to in general occupy the higher subbands, and are generally further from

the interface when compared to the 2nd ladder. The 1st ladder is relatively more “3-

D like” than the second. For the electronic structure parallel to the interface there

are differences among the two polytypes. In 6H-SiC the two longitudinal masses

are very different and the material properties of these surfaces, such as the electron

mobility, are likely to exhibit anisotropy. For 4H-SiC the situation is different, here

m1 and m2 are similar in the 1st subband ladder. This should lead to anisotropy

in the electron transport properties of these surface only when the higher energy

subband becomes occupied with electrons.

The (1120) and (0001) surfaces and very similar in 4H-SiC. Here the 2 subband

ladders in the (1120) orientation are both similar to the one ladder for the (0001)

surface. The properties of these orientations turn out to be relatively more “2-D

like” when compared to the other surfaces. The 6H-SiC (1120) orientation is similar

to that in 4H-SiC, but the 6H-SiC (0001) orientation is unique. Due to the huge

transverse mass, this orientation is extremely “3-D like” when compared to all the

other surfaces consider. Here the electrons are therefore generally found to exist in
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a number of closely spaced subband levels, very close to the oxide interface. In each

ladder of both polytypes, there is significant anisotropy in the (1120) and (0001)

surface band structure parallel to the interface.
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Surface m1 m2 m3

(0110)

lower(1) (3m′
1 +m′

2) /4 m′
3 4m′

1m
′
2/ (3m′

1 +m′
2)

higher(2) m′
2 m′

3 m′
1

(1120)

lower(1) (m′
1 + 3m′

2) /4 m′
3 4m′

1m
′
2/ (m′

1 + 3m′
2)

higher(2) m′
2 m′

3 m′
1

(0338)

lower(1) * (3m′
1 +m′

2) /4 M/ (9m′
1 + 3m′

2) 12m′
1m

′
2m

′
3/M

higher(2) m′
2 (m′

1 + 2m′
3) /3 3m′

1m
′
3/ (m′

1 + 3m′
3)

(0001)

all m′
1 m′

2 m′
3

Table 4.1: Effective mass transformations. (Here m are the principle axes ef-

fective masses and m′ are the bulk values. The 4H-SiC bulk values used in

this work are (0.29, 0.58, 0.33) and (0.90, 0.58, 0.33) for the first(lower) and sec-

ond(higher) conduction bands respectively.[32, 99] The bulk values for 6H-SiC are

(0.22, 0.90, 1.43).[32, 99] Also M = (4m′
1m

′
2 + 6m′

1m
′
3 + 2m′

2m
′
3). * Results for

(0338) m1 and m2 are when the principle axes lie close to the the Brillouin zone

axes shown Fig. 4.2(b). This is not the case for the 1st conduction band of 4H-SiC

where this formula is off by 15% from the values used in this work. The product

m1m2 is valid in all cases.)
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Surface (0110) (1120) (0338) (0001)

(1) (2) (1) (2) (1) (2) all

Degen. 2 1 2 1 2 1 3

*(Band 1) 4H

Transverse mass

m3 .46 .29 .33 .29 .41 .30 .33

Longitudinal masses

m1 .36 .58 .51 .58 .36 .58 .29

m2 .33 .33 .33 .33 .37 .32 .58

Density of states mass

.35 .44 .41 .44 .37 .43 .41

*(Band 2) 4H

Transverse mass

m3 .64 .90 .79 .90 .49 .57 .33

Longitudinal masses

m1 .82 .58 .66 .58 .82 .58 .90

m2 .33 .33 .33 .33 .43 .52 .58

Density of states mass

.52 .44 .47 .44 .60 .55 .72

Table 4.2: Effective masses for 4H-SiC surface orientations. (Ladder 1(2) is the

lower(higher) ladder.)
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Surface (0110) (1120) (0338) (0001)

(1) (2) (1) (2) (1) (2) all

Degen. 2 1 2 1 2 1 3

*(Band 1) 6H

Transverse mass

m3 .51 .22 .27 .22 .65 .31 1.43

Longitudinal masses

m1 .39 .90 .73 .90 .39 .90 .22

m2 1.43 1.43 1.43 1.43 1.12 1.03 .9

Density of states mass

.75 1.13 1.02 1.13 .66 .96 .45

Table 4.3: Effective masses for 6H-SiC surface orientations. (Masses of band 2, not

shown, are the same as those of band 1. Ladder 1(2) is the lower(higher) ladder.)
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Surface (0110) (1120) (0338) (0001)

L⊥(nH-SiC)
√

3a a
√

3a2 + c2 c

L⊥(nH-SiC)/L⊥(Si) 1 1/
√

3
√

1 + 2n2/9
√

2n/3

L⊥(4H-SiC)/L⊥(Si) 1 1/
√

3 2.1 1.9

L⊥(6H-SiC)/L⊥(Si) 1 1/
√

3 3.0 2.8

Table 4.4: Periodicity perpendicular to the interface. ( L⊥ is the length of lattice

periodicity perpendicular to the interface. For SiC, a=3.08A and c=
√

2/3an.
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Figure 4.1: SiC Lattice shown in the (0001) plane.
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Figure 4.2: Brillouin zones and conduction-edge band structure for 4H and 6H-SiC.

Only the lowest conduction band is shown. Since the results are similar for both

polytypes, only the 4H results are shown in a) and b). Note if the 2nd conduction

band is considered for 4H-SiC, the ladders are switched.
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Figure 4.4: Self-consistent results for the (0110) and (1120) orientations of 6H-SiC.

The subband ladders are labeled as unprimed(lower) and primed(higher) identically

for both surfaces. The total charge density and charge density in the subband Eo

are shown. The results are for a temperature of 300K, mobile charge of Ninv =

5X1012cm−2 and doping of NA −ND = 1X1016cm−3.
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Figure 4.5: Subband energies for a) (0110) 6H-SiC, b) (0110) 4H-SiC, c) (1120)

6H-SiC, and d) (1120) 4H-SiC. The lowest 10 subbands are shown. The results are

for a temperature of T=300K and a doping density of NA −ND = 1X1016cm−3.
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Figure 4.6: Fraction of electrons vs. mobile inversion layer charge at T=300K for

the a) (0110) and b) (1120) directions. Fraction of electrons vs. temperature for

the c) (0110) and d) (1120) directions where Ninv = 5X1012cm−2. The results are

for a doping density of NA −ND = 1X1016cm−3.
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densities here are Ninv = 5X1012cm−2 and NA −ND = 1X1016cm−3 respectively.
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Chapter 5

Simulation of Surface Electron Transport in

Hexagonal SiC.

The applications of SiC MOSFETs in high-power electronic devices are severly lim-

ited by small inversion layer electron mobilities[12, 13, 14], that likely result from

the presence of a larger interface trap density[15, 16, 17, 18]. It is believed that

these traps exist in a sub-oxide layer between the true oxide and the 4H-SiC in-

version layer[101]. Since these near interface traps (NIT) become very large near

the conduction band edge, it has been postulated that they may be the result of

suboxide Si-Si antibonding states.

Of all the SiC polytypes, 4H-SiC has the largest bulk drift velocity (2x107cm/s),

and therefore is expected to have the best performance in electronic applications.
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The channel mobility for (0001) oriented 4H-SiC although is extremely low (typically

10cm2/V s or less)[13, 102, 103, 104, 11]. It has recently been discovered that the

trap density in 4H-SiC MOSFETs is significantly less when the (1120) crystalline

orientation is used as opposed to the typical (0001) orientation[16]. Furthermore,

the surface low-field mobility has been observed to increase ten-fold when the (1120)

surface is used[105]. These results suggest that the choice of a (1120) orientation

may well improve the problematic small mobilities in 4H-SiC MOSFETs.

In this Chapter we present the results of a Monte Carlo simulation of electron

transport along the inversion layer channel of a 4H-SiC/SiO2 interface. We simulate

both the (0001) and (1120) orientations, and compare the results to experiments.

5.1 Surface Electronic Band Structure

Electron transport in the inversion layer of 4H-SiC/SiO2 MOSFET, shown in Fig.

5.1, will depend on the quasi 2-dimensional band structure at the interface. This

is composed of two parts, a subband structure perpendicular to the interface along

the z direction, and a 2-dimensional band structure parallel to the interface. The

subband structure along z is determined by the methods in Chapter 4. As for the

surface parallel to the interface, the electron energy, ε(k), is considered as a continu-

ous function of the electron wavevector k. Since we will simulate low-field transport,

we consider only energies near the subband minima. To model the electron energy

a spherical band structure is used within the effective mass approximation. The

effective mass for an electron in subband s is given by ms=
√
m1m2. Here, in the no-
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tation of Chapter 4, m1 and m2 are the principle axes effective masses parallel to the

interface. Here ms depends on the occupied subband perpendicular to the interface

since it depends on the particular subband ladder that the electron occupies.

The electron energy dispersion, ε(k), parallel to the interface is then deter-

mined by:

h̄2k2

2ms
= (ε(k) − Es) (1 + αs(ε(k) −Es)) , (5.1)

where the nonparabolicity factor for each subband is given by α = 0.323 for 4H-

SiC. To occupy the subband s, the energy ε(k) must be larger than the subband

minimum energy Es. Since we deal with conduction band electrons, the zero level

for the electron energy is set equal to E0, the energy of the lowest subband.

Usually the scattering rates are proportional to the density of final electron

states DOS. Here in 2-dimensions, parallel to the interface, we have

DOSs(ε) =
2πms(1 + α (ε− Es))

h̄2 Θ(ε− Es), (5.2)

where the heavy side step function Θ insures thatDOSs is zero if the electron energy

is less than the subband minimum energy Es.

5.2 Scattering

In this section we develop the quasi-2D scattering rate for a free conduction electron

at the 4H-SiC/SiO2 interface. The mechanisms considered are scattering by acoustic

phonons, optical phonons, trapped interface charge, ionized impurities, and surface

roughness. We assume that the effect of these scatterers on the electronic structure
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is weak, and can be treated using first order perturbation theory[106]. The rate

is then described by the well known “Fermi’s Golden Rule”. Using the method of

Price [107], the scattering rate for an electron with wavevector �k in subband s is

expressed as a sum over possible final states in each subband s′ with wavevector �k′.

This can be represented as

Γs(ε(k)) =
2π

h̄

∑
s′

∫ 2π

0
dθ′
∫
k′dk′|Mss′(Q)|2δ(ε(k′) − ε(k) ± Ep(Q)), (5.3)

where Mss′(Q) are the matrix elements for the electron-scatterer interaction energy,

and Ep(Q) is the energy lost upon scattering. Here �Q = �k′ − �k, is the 2D wavevec-

tor involved in the transfer or electron momentum parallel to the interface. The

momentum transfer in the perpendicular direction, along z, is defined as qz. Inte-

grations over k′ and qz will occur over the limits of 0 to infinity, though this will not

be shown explicitly.

The quasi-2D interaction, Mss′, is found by the integration of the 3-dimensional

interaction , Hss′, over qz. This is represented by the expression:

|Mss′(Q)|2 = (2π)2
∫

|Hss′(Q, qz)|2|Iss′(qz)|2dqz, (5.4)

where Iss′(qz) is the overlap integral. Using the self-consistent wavefunctions in Eq.

(4.4), the square of the overlap integral is

|Iss′(qz)|2 =
∫
|ζs(z)|2|ζs′(z′)|2 exp(iqz(z − z′))dzdz′, (5.5)

and upon integration over the perpendicular momentum transfer,

∫
|Iss′(qz)|2dqz = 2π

∫
|ζs(z)|2|ζs′(z)|2dz ≡ π

bss′
. (5.6)
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Here bss′ is a characteristic length scale for the overlap integral, where 1/bss′ identifies

how fast |Iss′(qz)|2 falls off with increasing qz.

When many different types of scatterers are present, the total rate is the sum

of the rates of the individual unique scatterers. Here we consider acoustic phonon

(ac), optical phonon (po), ionized impurity (ii), trapped inversion charge (it) , and

surface roughness scattering (sr). The total scattering rate, Γs, is then given by the

sum

Γs = Γac
s + Γpo

s + Γii
s + Γit

s + Γsr
s . (5.7)

In the next subsections each individual rate will be discussed.

5.2.1 Acoustic Phonon Scattering

The interaction between a free mobile conduction electron and an acoustic phonon is

treated within the deformation potential theory[108]. Here long wavelength phonons

are considered, and the shift in the electronic energy upon scattering is considered

to be analogous to the effect of an equivalent locally homogeneous strain. The

scattering rate then depends on the deformation potential parameter Dac, which is

the proportionality constant between the band structure energy shift and the strain.

For acoustic phonon scattering, the 3-D matrix element is then

|Hac
ss′|2 =

h̄D2
acKBT

2(2π)3ρu2
l

, (5.8)

were the limit of small phonon energies, relative to KbT , is assumed and the Bose-

Einstein phonon occupation number, N , is approximated as

N(q) ≈=
KBT

h̄qul

. (5.9)
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Here only longitudinal phonon modes are considered and ul is the longitudinal ve-

locity of sound in the material. For 4H-SiC we use ul=1x106cm/s. Also ρ here is

the 3-dimensional mass density. Using the results of the bulk transport simulations

in Chapter 3, an acoustic deformation potential of Dac=17eV is used for the surface

simulations.

Now since |Hss′|2 is independent of qz and Q, the acoustic rate from equation

5.3 becomes

Γac
s (ε(k)) =

∑
s′

2π2|Hac
ss′|2

h̄bss′

∫ 2π

0
dθ′
∫
k′dk′δ(ε(k′) − ε(k) ∓ h̄ulQδss′), (5.10)

where the −(+) sign is for phonon absorption(emission). The phonon energy is

Ep = h̄ulQ for intra-subband transitions and zero for inter-subband transitions

when s �=s′. In the later case the resulting integration of �k′ is difficult to solve if

inelastic scattering is considered. Here the scattering is therefore approximated as

elastic. For intra-subband transitions however, the inelastic rate is used because the

�k′ integration can be solved analytically. Using the method of Basu [109], the rate

becomes

Γac
s (ε(k)) =

D2
acKBT

8πρu2
l

∑
s′

1

bss′
DOSs′(ε)

(
1 ± 2

π
arcsin(ms′ul/h̄k)δss′

)
. (5.11)

When k and thus the electron energy is zero, the intra-subband scattering rate is

also elastic and the arcsin term vanishes.

5.2.2 Polar Optical Phonon Scattering

Since SiC is a polar material, with the C atoms being more electronegative than

the Si atoms, a longitudinal optical phonon will produce a polarization field in the
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lattice. This field leads to a significant perturbation of the electronic band structure

and conduction band electrons are in effect scattered by the phonon. In the case of

polar optical scattering, the interaction energy is given by[107, 111, 112]

|Hpo
ss′(Q, qz)|2 =

e3Eoao

4π(2π)3h̄ (Q2 + q2
z + q2

sc)
, (5.12)

where Eo is the polar field and ao is the Bohr radius. The polar field is taken as

Eo=1.08x105V/cm from the bulk simulations in Chapter 3. The screening wavevec-

tor, qsc, is taken as the inverse of the Debye length

qsc =

√
e2Ninv

εZavKBT
, (5.13)

where ε=9.72εo is the static dielectric constant of 4H-SiC. The term Ninv is the 2-

dimensional number density of mobile electrons in the inversion layer and Zav is their

average distance from the 4H-SiC/oxide interface. This is the screening wavevector

expected in 3D for the screening of slowing varying potentials in space and time.

The 2D interaction for polar optical phonon scattering is given by performing

a contour integration of |Hpo
ss′(Q, qz)|2 in the complex qz plane according to equation

(5.4). The result is

|Mpo
ss′(Q)|2 =

e3Eoao

4π(2π)3h̄
√
Q2 + q2

sc

Fss′, (5.14)

where the form factor is

Fss′(Q) = π
∫ ∫

|ζs(z)|2|ζs′(z′)|2 exp(−
√
Q2 + q2

sc|z − z′|)dzdz′. (5.15)

This form factor will also appear in the scattering rate for the interface charge. Now
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for polar optical scattering, the scattering rate from equation 5.3 is

Γpo
s (ε(k)) =

e3Eoao

2(2π)3h̄

∑
s′

(
N DOSs′(ε+ Epo)P

−
s′ (k) + (N + 1) DOSs′(ε− Epo)P

+
s′ (k)

)
.

(5.16)

where the (-) sign is for optical phonon absorption and the (+) sign is for optical

phonon emission. The phonon occupation probability is

N = (exp (Epo/kBT ) − 1)−1 , (5.17)

with the phonon energy, Epo=120meV , taken from the bulk simulations in Chapter

3. The P terms are integrals over θ′, the angle between the initial and final electron

wavevectors. They are equal to

P∓
s′ =

1

2π

∫
Fss′(Q

∓)√
(Q∓)2 + q2

sc

dθ′, (5.18)

where Q∓ is

Q∓ =
√

(K∓
s′ )

2 + k2 − 2K∓
s′kcos(θ

′). (5.19)

The term K∓
s′ in the equation for Q∓ is the magnitude of the final electron wavevec-

tor. It is fixed by the k′ integration to the value

K∓
s′ =

√
2ms′(ε ± Epo)(1 + αs′(ε ± Epo))/h̄. (5.20)

Here the integrand of P∓
s′ is related to probability of scattering into a final state at

an angle of θ′ from the initial wavevector �k. A look-up table is produced for these

values at the beginning of the Monte Carlo program in order to easily select the

final scattering states as the program runs. This look-up table stores the rate for

any selection of k and θ′. The P∓
s′ integrals are also solved numerically to determine
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a second look-up table for the total polar optical rate for any k or energy ε. This

is used to determine how often electrons scatter from the polar field as they are

transported across the inversion layer by the applied field.

5.2.3 Ionized Impurity Scattering

In the case of a uniform distribution of charge scatterers in the inversion layer, we

can continue to find the quasi 2-dimensional scattering rates from the 3-dimensional

interaction potential. Here we will assume a uniform density of dopants NA − ND,

using the notation of previous Chapters. Beginning with the 3-D interaction between

a free conduction electron and an ionized impurity of charge e, we have

|H ii
s (Q, qz)|2 =

e4

(2π)3ε2 (Q2 + q2
z + q2

sc)
2 . (5.21)

We include only intra-subband scattering events since inter-subband scattering will

be weak as long as the subband energy minima are not very close in energy. Proceed-

ing to determine the 2-D interaction using equation (5.4) and performing a contour

integral we obtain

|M ii
s (Q)|2 ==

e4

(2π)3ε2 (Q2 + q2
sc)

3/2

(
Fss(Q) +

√
Q2 + q2

sc F
∗
ss(Q)

)
. (5.22)

Here a second form factor is introduced and is given by

F ∗
ss′(Q) = π

∫ ∫
|ζs(z)|2|ζs′(z′)|2|z − z′| exp(−

√
Q2 + q2

sc|z − z′|)dzdz′, (5.23)

shown here for the general case when inter-subband transitions are included.

Since the rate decreases sharply with 2-D wavevector Q, scattering can be
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treated as elastic to a good approximation. In this case the wavevector becomes

Q = 2ksin(θ′). (5.24)

Now the rate is

Γii
s (ε(k)) =

(NA −ND)e4DOSs(ε)

(2π)2h̄ε2
P (k), (5.25)

where the integral of θ′ is

P (k) =
1

2π

∫ 2π

0
dθ′

Fss(Q) +
√
Q2 + q2

sc F
∗
ss(Q)

(Q2 + q2
sc)

3/2

(
1 − 2CiiJ1(QRii)

QRii

)
, (5.26)

and the wavevector Q is given by equation 5.24. The last term in the equation

above takes into account the correlation of the charged impurities. The term J1 is

the 1st order spherical Bessel function. If Cii is set to zero then these charges are

uncorrelated in a random distribution and may even overlap. Here we use, Cii=1,

in which case the charged impurities are no closer than a distance Rii where

Rii =

(
3Cii

4π(NA −ND)

)1/3

. (5.27)

Here again the integrand of P will be used to select the angle θ′ between the

initial and final electron wavevectors. Look-up tables are produced at the beginning

of the Monte Carlo algorithm for the rate at each k and the rate at each (k, θ′).

5.2.4 Interface Trap Scattering

Interface traps are interface states that readily trap conduction electrons and then

subsequently serve as charged scatterers for other mobile conduction electrons. They

are presently believed to be the cause of the low mobilities typically observed in
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the inversion layers of SiC MOSFETs. The interface traps in SiC MOSFETs are

believed to reside close to the semiconductor-oxide interface. These may be carbon

complexes that seem to penetrate the semiconductor to some degree, or NITs located

very close to the interface, maybe in the sub-oxide layer between the SiC and SiO2

layers[101]. The states which act as NITs are likely Si-Si bonds in this sub-oxide

which produce antibonding bands very close to the conduction band of SiC. Since

at the present it seems that the NITs are the major source of mobility degradation

in SiC MOSFETs, we will here assume that all the interface trap charge is located

right at the semiconductor-oxide interface. The rate although will be presented in

a format which can handle changes in the location of the trap density.

In the case of interface traps, the charge density is not uniform throughout the

inversion layer. As a result we cannot develop the rate based on the 3-D interaction

energy as in the cases of acoustic phonon, polar optical phonon, and ionized impurity

scattering. Here we begin with the 2-D interaction energy term [112, 113, 91]

|M it
s (Q)|2 =

e4

4π(2π)3ε2 (Q+ qsc)
2

∑
t

Nit(zt)Fss(Q, zt)

(
1 − 2CtJ1(QRt)

QRt

)
. (5.28)

The sum here is over a specified number of layers t along the z direction into the

semiconductor. A small distance is chosen for the interlayer distance. Here we used

1 angstrom. The contribution of each 2-dimensional layer of trapped charge Nit(zt)

is then added to attain the total rate due to all of the trapped charge. The form

factor here is the integrand of Fss(Q) in equation (5.15), but for the bare potential

case without qsc. It takes the form

Fss(Q, zt) = π
∫ zmax

0
|ζs(z′)|2| exp(−Q|zt − z′|)dz′. (5.29)
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Since the rate is not developed directly from the 3D rate in the case of interface

trap scattering, a screening wavevector appropriate for a quasi-2D system should

be used. Other forms for qsc where investigated, such as the result of the random-

phase approximation in quasi-2D[91] and a perturbation solution for the screened

coulomb potential in quasi-2D, but these did not agree with experiments as well as

equation (5.13) did. So in this work the potential of a trapped interface charge is

also screened using the inverse of the Debye length for qsc.

The correlation factor for the charges is also included here for each layer, but

in this case

Rt =

√
Ct

πNit(zt)
. (5.30)

Here Ct is set equal to 1 for each layer of charge corresponding to a uniform dis-

tribution of charges. We will also consider just one layer of interface traps right at

the interface at z=0. The model could easily be extented to include a distribution

of charges away from the interface. This was not found to alter the mobility signifi-

cantly although. The rate for a nonuniform distribution of ionized impurities could

also be easily developed with the method of this section.

The rate for scattering between a free conduction electron and a layer of

trapped charge of density Nit directly at the semiconductor-oxide interface is

Γit
s (ε(k)) =

e4NitDOSs(ε)

4π(2π)3ε2
P (k), (5.31)

where again we assume elastic collisions. In this case the integral P (k) is

P (k) =
1

2π

∫ 2π

0
dθ
Fss(Q, 0)

(
1 − 2C0J1(QR0)

QR0

)
(Q+ qsc)

2 . (5.32)
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Again as in the previous cases we collect look-up tables for Γit
s (ε(k), θ) and Γit

s (ε(k)

before the Monte Carlo simulations of electron transport proceed.

5.2.5 Surface Roughness Scattering

Another scattering mechanism that must be included is surface roughness scattering.

Surface roughness encompasses the wide range of chemical disorder in the fabrication

of surfaces between two dissimilar materials. Here we will use a simple but commonly

used model to describe these surface effects [91, 114, 115]. At the MOS interface,

the point of transition from Si02 to SiC along the z direction is described as a

random fluctuation about the average surface position. This average is specified as

the z=0 position in this work. The surface fluctuation, ∆z(�ρ), depends on �ρ, the

position vector along the interface, perpendicular to the z direction in Fig. 5.1. The

potential φ(z) in the inversion layer is assumed to vary due to these fluctuations by

an amount

∆φsr(�ρ, z) =
dφ(z)

dz
∆z(�ρ). (5.33)

The potential φ(z) here is the inversion layer potential determined self-consistently

by the methods in Chapter 4. Since the effects of surface roughness are not uniform

throughout the inversion layer volume, we will again develop the 2-dimensional

interaction directly. The square of these matrix elements takes the form

|Msr
ss′(Q)|2 =

∣∣∣∣
∫
d�ρ∆z(�ρ) exp

(
−i �Q · �ρ

)∣∣∣∣2
∣∣∣∣∣
∫
dzζ∗s′(z)

dφ(z)

dz
ζs(z)

∣∣∣∣∣
2

. (5.34)
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We use the self-consistent wavefunctions and inversion layer potential to determine

the square of the effective field defined as

e2E2
eff =

∣∣∣∣∣
∫
dzζ∗s′(z)

dφ(z)

dz
ζs(z)

∣∣∣∣∣
2

, (5.35)

where φ(z) is in eV.

The best fit to experiments is often obtained by taking ∆z(�ρ) to be exponential

in form according to [114]

∆z(�ρ) = ∆z exp (−ρ/Λ), (5.36)

where ∆z is the average displacement of the surface and Λ is the average range of

its spatial variation along �ρ. The square of the matrix element then becomes

|Msr
ss′(Q)|2 =

⎛
⎜⎝πe

2E2
eff

(
∆zΛ

)2

1 + (ΛQ)2 /2

⎞
⎟⎠ . (5.37)

The terms ∆z and Λ are parameters usually obtained by the fitting of transport

simulations to experiment in cases where surface roughness scattering dominates,

for example in cases when the inversion charge is large. In silicon MOSFETs, typical

values are found to be ∆z=0.2nm and Λ=2.2nm. These length scales are related

to the size of 2D islands of Si protruding from the surface prior to the deposition

of SiO2. As a rough approximation we will assume that such islands in SiC will

have the same number of unit cells as for Si. In this case we will approximate the

dimensions of these islands in SiC by simply scaling the corresponding value for Si

to account for the unit cell of SiC. To illustrate this scaling we use the case of the

(0001) orientation in 4H-SiC. Referring to Chapter 4, here the lattice periodicity

along z is 1.9 times that of Si, while the lattice periodicity is 1/
√

3 times that of Si
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along the interface surface. We therefore use values of ∆z=0.38nm and Λ=1.2nm

for (0001) oriented 4H-SiC.

Assuming that surface roughness causes only elastic intra-subband transitions,

the rate is

Γsr
s (ε(k)) =

e2E2
eff

(
∆zΛ

)2
DOSs(ε)

2h̄
P (k). (5.38)

The integral over θ′ here is

P (k) =
1

2π

∫ 2π

0
dθ′

Q

(Q+ qsc)
(
1 + (ΛQ)2 /2

) , (5.39)

where Q is given by equation (5.24) for elastic collisions. As in the case of polar

optical phonon and interface charge scattering, the screening wavevector, qsc, is

given by equation (5.13). As in the previous cases, look-up tables are made for the

rate at each value of (k, θ′) , and also at each value of k by solving P (k) numerically.

5.3 Monte Carlo Method

For the surface Monte Carlo simulations the general method of Chapter 1 is em-

ployed, but without a look-up table for the electronic band structure as in Chapter

3. Here we will discuss a few unique aspects of the surface Monte Carlo simulations.

These are the inclusion of the self-consistent surface calculations of Chapter 4, the

method for determining scattering events using look-up tables, and the determina-

tion of the mobility through a simulation of the diffusion constant.
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5.3.1 Self-Consistent Calculations

Before starting the Monte Carlo simulations, the self-consistent properties of the

inversion layer are determined perpendicular to the interface. The 2-dimensional

mobile charge density Ninv and trapped interface charge density Nit are fixed at

specified values. The subband energy structure Es, the subband wavefunctions

ζ(z), the inversion layer potential φ(z), and the average penetration of the electrons

into the SiC inversion layer Zav, are all determined using the self-consistent method

of Chapter 4 with one exception. Due to the presence of trapped charge at the

semiconductor/oxide interface, the surface field in equation (4.13) must now include

Nit. This field now becomes

Fo = e [Ninv + (NA −ND) zd +Nit] /ε. (5.40)

Since Nit is quite large in 4H-SiC, the effect on the subband structure is significant,

raising the subband energies and increasing the subband energy spacing compared

to the results of Chapter 4 when Nit was not present.

The results of the self-consistent calculations are then used to determine the

various look-up tables for the scattering rates. These tables specify Γ(k) and also

Γ(k, θ′) for each scattering mechanism. For the tables we use a mesh size of 50 for

the magnitude of the electron wavevector k, which ranges from k=0 to k=π/2a.

The mesh size for the scattering angle θ′ is again 50, where θ′ ranges from 0 to 2π.
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5.3.2 Determination of Scattering Events

In the surface Monte Carlo simulations, an electron is allowed to drift freely in the

applied field for a drift time (Td). This time must be shorter than the relaxation

time due to the scattering Tr(ε(k)), which is the inverse of the scattering rate. This

time depends on the electron energy ε(k) before the drift. For the simulations we

used Td=1x10−16 seconds when 10Td<Tr. In the case of low gate voltages and low

temperatures Γit may be very large when the electron energy is very small. In these

cases the drift time is shortened so that the condition 10Td<Tr is still met.

After an electron drifts for a time Td, the rates for every scattering mechanism

for every allowed subband transition are calculated using the look-up table for the

electron wavevector k. The determination of the rate from the look-up table can be

explained with the following example for an arbitrary scattering mechanism n. If k

lies between two mesh points k1 and k2 in the look-up table, the rate at k is then

determined by

Γn(k) = Γn(k1)
|k1 − k|
|k2 − k1| + Γn(k2)

|k2 − k|
|k2 − k1| . (5.41)

The rates are all summed up to attain the total rate ΓT (k). A random number

with a flat distribution between 0 and 1 is then assigned. If this random number

is less than TdΓT (k) a scattering event occurs and another flat random number r2

between 0 and 1 is then produced to pick the particular scattering event. The event

n′ which overlaps this second random number in the sum

n′−1∑
n=1

Γn(k)

ΓT (k)
< r2 <

n′∑
n=1

Γn(k)

ΓT (k)
, (5.42)

is then the stochastically selected event which scatters the electron.
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The final energy after the scattering event is unchanged if an elastic event

such as a Γit or Γsr mechanism is chosen. If polar optical scattering is chosen then

the energy of the optical phonon involved, 120meV from Chapter 3, must be added

(absorption) or subtracted (emission) from the initial electron energy. For acoustic

phonon scattering the final energy is determined by the method of Basu[109]. In

this method the magnitude of the phonon wavevector, q, is found from a flat random

number r between 0 and 1 according to:

q = 2k
(
sin
[
rπ

2
± (r − 1)sin

(
msul

h̄k

)]
± msul

h̄k

)
. (5.43)

Here, as defined previously, ms is the effective mass parallel to the interface, ul

is the longitudinal velocity of sound in 4H-SiC, and the +(-) indicates absorp-

tion(emission). Once q is determined, the final electron energy is found from the

relation

ε(k′) = ε(k) + h̄ulq, (5.44)

where we continue the notation of labeling ε as the electron energy, and k′ as the

magnitude of the electron wavevector after the scattering occurs.

As for the determination of the angle between the initial electron wavevector

�k and the final wavevector �k′, a uniform probability between 0 and 2π is used for

acoustic phonon scattering. The angle can then be chosen with a random number r

according to θ′=θ+ 2πr. In the case of the other scattering mechanisms the look-up

table in (k, θ′) is used to find θ′. To illustrate the procedure we take the case of

interface trap scattering. Here the (k, θ′) look-up table contains the integrand values

in equation (5.32), which we will label as P (k, θ′). The angle θ′ is divided up into
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increments dθ′ in the look-up table. We Label the partial sum Sn1 as

Sn1 =
n=n1∑
n=1

|P (k, ndθ′)|/ST . (5.45)

where ST is the sum of |P (k, ndθ′)| over all of the 50 mesh points. The index n1

can be identified as bounding the final angle θ′ if the criteria

Sn1−1 < r < Sn1, (5.46)

is met. Here again r is a flat random number between 0 and 1. Once n1 is found,

the final angle θ′ can be found according to the expression:

θ′ = n1dθ
|Sn1 − r|

|Sn1 − Sn1−1| + (n1 − 1)dθ
|Sn1−1 − r|
|Sn1 − Sn1−1| . (5.47)

This procedure is followed for scattering by polar optical phonons, interface traps,

and surface roughness. The final electron wavevector �k′ is then assigned at an angle

of θ+ θ′, where θ is the angle before the scattering event. Angles are defined so that

an angle of 0 lies along the direction of the driving field.

5.3.3 Determination of the Mobility

Monte Carlo simulations at low-fields often take a long time to converge, especially

in the case where the primary scattering mechanism is elastic. This is the case

here where scattering from charged interface traps dominates the total scattering

rate. Here we determine the low-field mobility (µ) from a simulation of the diffusion

constant (D). Once the diffusion constant is obtained, the mobility is found using

the Einstein relation

µ =
eD

kBT
. (5.48)
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The method we use requires the calculation of the velocity autocorrelation function

C[38]. The diffusion constant is found through the relation

D =
∫
C(t)dt =

∫
〈δϑ(t′)δϑ(t′ + t)〉 dt, (5.49)

where the angle brackets indicate an ensemble average over time t′ and ϑ(t′) is the

velocity at time t′. The fluctuation of the velocity from the average velocity at time t′

is given by δϑ(t′). The average velocity is the drift velocity ϑd. The autocorrelation

function can readily be reduced according to

C(t) = 〈[ϑ(t′) − ϑd] [ϑ(t′ + t) − ϑd]〉 = 〈ϑ(t′)ϑ(t′ + t)〉 − ϑ2
d. (5.50)

To determine C(t) a correlation time Tc is chosen and broken into Nc intervals.

Each interval lasts for a time ∆Tc=Tc/Nc. As the transport simulation proceeds,

the velocity is stored at each time interval i∆Tc where i = 1, ..., Nc. Once i = Nc,

or equivalently i∆Tc=Tc, the product ϑ(i∆Tc)ϑ((i − j)∆Tc) is stored for each j =

1, ..., Nc. The simulation then repeats for a fresh time Tc. This process continues NT

times for a total time of NTTc. Afterwards the total product ϑ(i∆Tc)ϑ((i− j)∆Tc)

is averaged over i and the autocorrelation function is found as

C(j∆Tc) = ϑ(i∆Tc)ϑ((i− j)∆Tc) − ϑ2
d, (5.51)

The drift velocity, ϑd, is determined using the methods in Chapter 3. The diffusion

constant is then found by summing C(j∆Tc) over all times j∆Tc.

The method requires that Tc be long enough so that C(t)=0, for all times longer

than Tc. Here we broke the correlation time into steps of duration ∆Tc=1x10−14s.
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Taking 50, 000 correlation steps, Tc is 5x10−9s. We then found convergence by

proceeding through NT =2000 steps of time Tc.

5.4 Results for (0001) 4H-SiC

5.4.1 Analysis of Data

In order to simulate electron transport at the MOS interface in 4H-SiC, we use

the experimental data of Saks and Agarwal (SA)[11]. Here the Hall mobility was

determined for a MOS Hall bar. Capacitance and gate voltage measurements can

typically be used to obtain the total charge density in the MOS channel under

inversion conditions, but cannot distinguish between the free and trapped charge

densities present. The advantage of using Hall measurements is the ability to accu-

rately determine the mobile free charge density Ninv from measurements of the Hall

voltage. The density of trapped charge can then be found by subtracting Ninv, from

the total inversion layer charge.

The experiments of SA were performed on polysilicon gated MOS hall bars.

A 10 micron epitaxial later of lightly p-doped (1x1016cm−3) 4H-SiC was laid onto a

heavily p-doped (P+) 4H-SiC substrate. Then heavily doped n-type (N+) regions for

the source and drain contacts were produced by ion implantation of nitrogen. The

wafers were then annealed at relatively low temperatures to reduce step bunching

of 4H-SiC. Following this a 31nm oxide was deposited and then reoxided to reduce

the interface trap density. A layer of phosphorus-doped poly-silicon was laid down
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onto the oxide for the gate, and nickel contacts were made to the source and drain

N+ regions. The MOS hall bar is shown in Fig. 5.2.

By measuring the Hall voltage (VH) and the drain current (Id) as a function

of the gate voltage (VG), Saks and Agarwal (SA) were able to determine the VG-

dependent mobile change density in the inversion layer (Ninv). These results were

reported in terms of the variation of Ninv per one volt change in the gate voltage,

a quantity we will label as ∆Ninv(VG). These results are reproduced in Fig. 5.3 for

temperatures of 200K, 297K, and 440K. For a fixed gate voltage, ∆Ninv is found

to increase with temperature. We also show in Fig. 5.3 our analytical fits used in

the Monte Carlo simulations:

∆Ninv =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
χ1(T )

(
VG

12V

)2
+ χ2(T )

(
VG

12V

)
+ χ3(T )

]
1010cm−2 VG < 12V

[χ1(T ) + χ2(T ) + χ3(T )] 1010cm−2 else

(5.52)

The values for the coefficients χ1 − χ3 are given in Table 5.1.

To determine the charge concentration Ninv(VG), we use standard theoretical

methods for the onset of inversion in MOSFETs [116]. Here the total charge density

in the channel (NT ) is found from the oxide capacitance per unit area (Cox) and the

threshold voltage for the onset of inversion (VT ) according to:

NT (VG) =
Cox

e
(VG − VT ) , (5.53)

where

∆NT = Cox/e = ∆Ninv + ∆Nit. (5.54)

The term ∆Nit is the change in trapped charge per one volt change in gate voltage.

In Fig. 5.4a we show the experimental results for the drain vs. gate voltage. It
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is clear that there is a dramatic increase in the threshold voltage as the tempera-

ture decreases. The threshold voltage appears to vary as T−2. In Si MOS surfaces,

where there is significantly less trapped charge, the threshold voltage tends to in-

crease much slower as the temperature decreases, with an approximate dependence

of T−1[117]. It is therefore very likely that the behavior of VT in 4H-SiC is due to the

large number of charges that are trapped in the inversion layer. The procedure we

use to determine VT from the SA experiments is to weight each drain current curve

so that the saturation values are the same, then the threshold voltage is determined

as the gate voltage when the drain current is about 1/400th of its saturation value.

This is shown in Fig. 5.4b. We find that the extracted gate voltages agree very well

with the formula:

VT (T ) = 1.5 +
(

424

T

)2

V. (5.55)

This form, essentially a 1/T 2 dependence with an offset, agrees very well with the

experiments of Harada et al.[118], though they observed an offset in the range of

2 − 3 instead of 1.5.

Once obtaining VT we can then reasonably approximate the free charge density

as

Ninv(VG, T ) = ∆Ninv (VG − VT (T )) , (5.56)

were the charge density is zero below the threshold and then increases linearly with

VG above the threshold. If we assume that the uncharacteristicly large increase in

the threshold voltage with decreasing temperature is a result of the interface traps

only, we can identify the threshold voltage at large temperatures as the threshold
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voltage for a trap-free surface. For gate voltages in the range of 1.5<VG<VT (T )

in this model, there will be a build-up of trapped charge of density dNit(T ) =

(VT (T ) − 1.5)Cox/e. We therefore model the occupied trap density as

Nit(VG, T ) = (Cox/e− ∆Ninv) (VG − VT (T )) + dNit(T ). (5.57)

In Fig. 5.5 we plot the free charge density and the trapped charge density

using the results above. These densities are used in the Monte Carlo simulation

of electron transport at the 4H-SiC/oxide interface. The density of surface traps

increases with decreasing temperature while the density of free electrons decreases.

This can be explained by the observation of a large density of surface trap states

near the conduction band edge[16]. As the temperature drops, the occupation of

states near the Fermi level increases relative to those further above. For a fixed

total charge in the channel, the Fermi energy moves up towards the band edge with

decreasing temperature, increasing the trapped charge density and decreasing the

free charge density.

5.4.2 Simulation Results

Using our analytical formulas for Ninv and Nit in equations (5.56) and (5.57), we

perform a Monte Carlo simulation of electron transport along the (0001) SiC-SiO2

interface. Electron mobilities are determined for a low field of 5kV/cm parallel to

this interface (in the (0001) plane), as the gate voltage VG is increased. In Fig.

5.6, the results for temperatures of 200K, 297K, and 440K, are shown. The results

agree with the average Hall mobilities observed by SA, which are roughly ≈ 15,
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25, and 40 cm2/V s at temperatures of 200K, 297K, and 440K respectively. In

Fig. 5.6 we see that the mobility actually increases with temperature for all the

simulated gate voltages. For a Si/SiO2 interface with a relatively low density of

interface traps, the low-field mobility characteristically decreases with temperature

above 300K. This decrease is due to an increase in acoustic phonon scattering and

approximately depends on the inverse square of the lattice temperature (T−2)[117].

In the case of (0001) oriented SiC, the temperature dependence of the rate indicates

that the scattering of electrons from trapped interface charges, not from acoustic

phonons, is the dominant scattering mechanism for both high and low temperatures.

This can be readily seen from the plots of the scattering rate for electrons in the 1st

subband in Fig. 5.7.

The rates for scattering from interface traps (Γit), surface roughness (Γsr),

acoustic phonons (Γac), and polar optical phonons (Γpo), are all shown in Fig. 5.7.

The rate for ionized impurity scattering is included in Γit, but since it is small

compared to the scattering from trapped electrons, we still label the combined rate

as Γit. We see that Γit is very large and essentially dominates the other scattering

mechanisms within the range of gate voltages and temperatures simulated in Fig 5.7.

It is larger at lower temperatures where the number of trapped electrons is larger

and the number of free electrons is lower. Both trends, seen in Fig. 5.5, increase

the rate. The smaller the number of free electrons Ninv the weaker the screening of

the electric field from the trapped electrons. This corresponds to a larger scattering

rate. Furthermore, as the gate field increases, there is a decrease in Γit. This occurs

since the increase of the screening charge with increasing VG dominants the increase
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in the trapped charge Nit.

As for the other rates, the phonon scattering rates increase with increasing

temperature. We see that Γsr, decreases with increasing temperature due to more

effective screening, and increases with increasing gate potential since the effective

field increases. At reasonably low temperatures, it is likely that Γsr will eventually

rise with increasing VG to become the dominant rate. Here a mobility peak should

occur, at a particular value of VG. This gate voltage could possibly be used to

determine the surface roughness parameters ∆z and Λ. It is most likely that this

critical point in the mobility could have been identified if the experimental results

of SA were extended to higher gate voltages. Such peaks at large gate voltages have

been observed in the experiments of Harada et al. [118].

To simulate the low-field mobility as a function of temperature T, we need to

determine Ninv(T ) and Nit(T ) at a number of temperatures. By fitting to the SA

results at temperatures of 200K, 297K, and 440K, we find the following analytical

formulas for gate voltages of VG=8V and VG=12V :

Nit(T, VG) =
[
χ4(VG) +

(
T − 200K

200K

)]
1012cm−2, (5.58)

and

Ninv(T, VG) =

[
χ5(VG) + χ6(VG)

(
T − 200K

200K

)3/2
]

1010cm−2. (5.59)

The fitting parameters χ4 − χ6 are given in Table 5.1. These fits are shown in Fig.

5.8. The SA experiments do not extend beyond T=440K, but we want to simulate

higher temperatures. We have therefore extrapolated the fits of Ninv(T ) and Nit(T )
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to higher temperatures assuming the same trends as found in the SA data range

below T=440K.

The Monte Carlo simulations over a wide temperature range are shown in Fig.

5.9, for gate fields of 8V and 12V . We find that the mobility increases linearly

(∝ T ) with temperature. This agrees with the results of Saks and Agarwal (SA),

also shown in Fig. 5.9. Experiments by Matsunami et al. [105] although have

indicated a temperature rise ∝ T 2.6. In this work a very large threshold voltage of

7.78V was measured at 300K. Since the value extracted from the SA experiments,

3.5V , was much smaller, the sample of Matsunami et al. likely contained a much

larger density of interface traps. This would indicate that the exponent n for the

temperature dependence of the mobility (T n), may very likely increase in samples

were there tends to be a larger number of trapped charges at the interface.

It is important to note that no adjustable parameters are used in the Monte

Carlo simulations. Electron-phonon coupling constants and the polar field are fixed

according to the results of Chapter 3 by fitting to experimental data in the bulk.

There are no adjustable parameters within the interface charge scattering rates. The

parameters for surface roughness scattering were obtained by scaling the results from

Si. Since we find that this is not a dominant scattering mechanism in the case here,

where a large number of charges are trapped at the interface, we feel this is justified.

As mentioned, it might be possible to determine these roughness parameters from

the mobility peaks at high gate voltages.
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5.5 Results for (1120) 4H-SiC

It has been determined experimentally by Yano, Hirao, Kimoto and Matsunami

(YHKM) that if the (1120) instead of the (0001) surface of 4H-SiC is used for the

interface with SiO2, the interface trap density is significantly reduced[16]. This

can be seen in Fig. 5.10, were we plot the experimental results of YHKM. Now

to compare the simulated Monte Carlo mobility along the (0001) surface of 4H-SiC

with that along the (1120) surface, we need to determine how the density of trapped

states changes. We accomplish this by using the SA results for the (0001) surface

as in the last section, but we now scale the density of trapped states according to

N
(1120)
it

∣∣∣∣
SA

=

⎛
⎝N (1120)

it

N
(0001)
it

⎞
⎠
∣∣∣∣∣
Y HKM

N
(0001)
it

∣∣∣∣
SA
. (5.60)

This can be used to obtain N
(1120)
it

∣∣∣∣
SA

for comparision with the experiments of Saks

and Agarwal (SA). This method enables us to estimate this density in a way which

is as independent of sample processing differences as possible. The differences in the

processing of the two orientations in the work of Yano et al. (YHKM) is assumed

to be at a minimum. To determine the trapped interface charge densities from the

YHKM experiments, we use the experimental density of traps DOSit(E)
∣∣∣∣
Y HKM

in

Fig. 5.10. The result for each surface (X), where (X) is (0001) or (1120), is

N
(X)
it

∣∣∣∣
Y HKM

=
∫ Es+Eg

0
f(E)DOS

(X)
it (E)

∣∣∣∣
Y HKM

dE. (5.61)

Here the energy integrals run from the valence band edge at E = 0, to the relative

energy of the first subband. With a bulk gap energy of Eg=3.2eV for 4H-SiC, the

energy of the first subband, relative to the valence band edge, is Es +Eg. The term
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f(E) is the Fermi-Dirac equilibrium distribution function

f(E) =

(
1 + .5 exp

(
E − (Ef + Eg)

KbT

))−1

, (5.62)

where Ef is the Fermi energy calculated self-consistently with the adjusted densi-

ties Ninv and Nit for the (1120) orientation. Contary to the case for the (0001)

orientation, Nit will not be fixed during the self-consistent calculations in the inver-

sion layer , since it depends on Ef . As in Chapter 4, Ef is defined relative to the

bulk conduction band edge at Eg. To evalue equation (5.61), we use the following

analytical fits to DOSit(E)
∣∣∣∣
Y HKM

in Fig. 5.10

log10(DOSit)

∣∣∣∣
Y HKM

= χ7(E)Eχ8 + χ9, (5.63)

where the density of states is in units of cm−2. The results for the fitting constants

χ, which depend on the surface orientation and energy, are given in Table 5.1.

We also adjust the SA results for the mobile electron density Ninv. This

occurs through the adjustment of the threshold voltage in equation (5.55). Since

the number of trapped charges decreases on going from the (0001) to the (1120)

surface, VT should approximately change according to

VT (T ) = 1.5 +
(

424

T

)2
⎛
⎝N (1120)

it

N
(0001)
it

⎞
⎠
∣∣∣∣∣
Y HKM

V. (5.64)

The Fermi energy used here in the calculation of the ratio of trapped charge densities

is the value that can be used along with DOS
(0001)
it

∣∣∣∣
Y HKM

to obtain the build-up of

trapped interface charge before inversion in the SA experiments. This requires

N
(0001)
it

∣∣∣∣
Y HKM

=
(

424

T

)2

Cox/e. (5.65)
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We therefore obtain for the threshold voltage in (1120) 4H-SiC

V
(1120)
T (T ) = 1.5 +

N
(1120)
it

Cox/e

∣∣∣∣
Y HKM

, (5.66)

with N
(1120)
it

∣∣∣∣
Y HKM

evaluated at the formentioned Fermi energy. We find that the

threshold voltages for the (1120) orientation are significantly less and can be accu-

rately model as

V
(1120)
T (T ) = 3.5 − T

440
. (5.67)

The mobile charge density in equation (5.59) for the (0001) orientation is then

adjusted according to

N
(1120)
inv (T, VG) = N

(0001)
inv (T, VG)

⎡
⎣VG − V

(1120)
T (T )

VG − V
(0001)
T (T )

⎤
⎦ , (5.68)

where N
(0001)
inv and V

(0001)
T are given by equations (5.59) and (5.55) respectively.

In Fig. 5.11 we show the result of our Monte Carlo simulations of low-field

electron mobility for a large temperature range. We find that the mobility for the

(1120) orientation, using the adjusted charge densities, is much larger than that

of the (0001) orientation. Mobilities as large as 90cm2/V s at room temperature

are found. This agrees very well with the experimental results for this orientation

where a value of 95.9cm2/V s for current along the <0001> crystalline direction

and 81.7cm2/V s along the <1100> direction where obtained for (1120) oriented

surfaces[105]. In our simulations we assumed a spherical conduction band since not

current direction was specified in the SA experiments. This approximation is still

reasonable for comparison with the (1120) experiments since the effective masses

along <0001> and <1100> are very similar. Our results are close to the average
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of the two experimental results. We find that the temperature falls of as T−.5. The

experiments of Matsunami et al. found a fall off proportional to T−2.2 however[105].

We also determine the mobility for electron transport in the (0001) plane,

but fix Nit and Ninv equal to those used in the simulations of the (1120) surface.

As seen in Fig. 5.11, the results are very similar to the simulations for the (1120)

orientation. This occurs since the surface band structure of the two orientations

is very similar, even though the (1120) orientation has two subband ladders while

the (0001) orientation has but one. There are two main reasons for this similarity.

The first is a result of the principle-axes effective masses, m1 and m2 and m3 in

the notation of Chapter 4, which vary little between the two orientations. The

second reason is the very small spacing between the two subband ladders in the

(1120) orientation. We see this in Fig. 5.12, where the low-lying subband electronic

structure of the two orientations is very similar. Here in Fig. 5.12 there is no

density of trapped charge at the interface, but if we did included trapped charge,

the subband structure would still be similar for the two orientations. In Fig. 5.13 we

also see that the relative occupancy of each (1120) ladder falls very closely to their

degeneracy contributions 2/3 and 1/3, even when inversion is weak. This occurs

since the energy spacing between the ladders is very small. One material property,

directly related to the subband structure, is the average distance, Zav, that the

inversion layer mobile electrons penetrate into the semiconductor. The larger this

distance the larger the mobility since scattering from both the occupied traps and

the surface roughness will be weakened. Since the fraction of occupied higher energy

subbands is very similar in each orientation, we see in Fig. 5.14 that Zav is also very
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similar for the two orientations of 4H-SiC. So based on a comparison of the self-

consistent electronic structure calculation at the interface, it is clear to see why the

mobility for both (0001) and (1120) 4H-SiC would be similar if the same density of

trapped charge where present at the surface.

5.6 Chapter Summary

Using the results of experimental data[11] for free and trapped charge densities in the

(0001) orientation, low-field mobilities were simulated. The simulation results were

found to agree qualitatively very well with experiments. The mobility was found to

rise linearly with increasing temperature, in agreement with experiments[11].

We also simulated transport along the inversion layer of a (1120) oriented 4H-

SiC/SiO2 interface. We found that the reduction in electron traps near the interface

lead to a dramatic improvement in the mobility. The mobility increased from ≈

0-40cm2/V s in the (0001) orientation to ≈ 90cm2/V s in the (1120) orientation. We

also found that the mobility decreased with increasing temperature. These results

agreed well with experiments on (1120) oriented 4H-SiC[105].

We also found that a commensurate reduction in the density of interface traps

for the (0001) orientation lead to mobilities that were essentially equivalent to those

simulated for the (1120) orientation. An analysis of the electronic subband structure

revealed a strong similarity amongst the two orientations. This similarity means

that if the density of interface traps could be reduced in the (0001) orientation, the

transport properties should be very similar to those of the (1120) orientation.
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T=200K T=297K T=440K

χ1=17 χ1=17 χ1=0

χ2=0 χ2=0 χ2=32

χ3=-4.0 χ3=-0.72 χ3=-5.5

VG=8V VG=12V (0001)

χ4=4.4 χ4=6.5 χ7=2.63x10−5

χ5=7.2 χ5=78 χ8=10

χ6=62 χ6=70 χ9=10.64

(1120)(E > 3eV ) (1120)(2.6eV ≤ E ≤ 3eV ) (1120)(E < 2.6eV )

χ7=4.69 χ7=2.20 χ7=1.07

χ8=1 χ8=1 χ8=1

χ9=-2 χ9=6.1 χ9=9

Table 5.1: Fitting parameters χ
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Figure 5.1: SiC/oxide interface
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Figure 5.3: Change in inversion layer mobile electron concentration Ninv per one

volt change in the gate voltage VG for the Hall experiments of Saks and Agarwal

(SA)[11]. Temperatures of 200K, 297K, and 440K are shown. The solid lines are

the analytical fits used in our Monte Carlo calculations. Here ∆NT is the oxide

capacitance Cox/e, the expected result for ∆Ninv in the absence of trapped charge.
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Hall bar at temperatures of 200K, 297K, and 440K [11]. In b) the currents are

scaled for a determination of the threshold voltage VT which is consistent amongst

the three temperatures.
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Figure 5.5: Model for mobile interface charge density and trapped interface charge

density vs. gate voltage for temperatures of 200K, 297K, and 440K. .
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Figure 5.7: Scattering rate for an electron in the 1st subband of (0001) 4H-SiC. In

a) the rates are for a gate voltage of 8V and temperatures of 200K, and 440K. In

b) the rates are for a gate voltage of 12V and temperatures of 200K, and 440K.
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Chapter 6

Semiclassical Electron Transport in Carbon

Nanotubes

As with conventional electronic devices, theoretical modeling should play a key role

in the development of CNT-based electronics by predicting performance at both

the device and circuit level. Industrial device modeling is typically performed using

“semiclassical approximations”, and solving transport equations based on either the

drift-diffusion approximation or by solving the Boltzmann’s equation. For the latter

approach it is common to either solve Boltzmann’s equation directly, using an ana-

lytical approximation for the distribution function,[128] or indirectly with the Monte

Carlo method[38, 129]. An intriguing question is in what form can these techniques

be used in the modeling of nanoscale devices based on materials such as CNTs.

165



With the advent of the miniaturization of feature lengths in conventional devices

to submicron distances, this question is being addressed. It has been found that

MOSFETs with inversion layer widths of only a few nanometers, can be simulated

using full quantum mechanical treatment along the nanoscale inversion layer po-

tential well only, while maintaining semiclassical transport elsewhere[130, 131]. For

a CNT, there is nanometer scale confinement along the circumference, but along

the tube there are indications that delocalization of π-electrons can occur[132]. For

long tubes under these conditions, a “semiclassical treatment” of electron transport

along the tube axis may well be an apt treatment. This is supported by electrical

measurements on nanotube transistors and diodes which indicate that semiclassical

band-bending models can describe operation at room temperature[120, 127].

Often, the basic properties of the electronic structure and the phonon spectrum

of CNTs can be well approximated by the zone-folding method (ZFM)[22]. In this

method the wrapping of graphene into a CNT imposes restrictions on the available

wavevector space, but for allowed wavevectors, the electron and phonon energy

spectrum are not altered from that of graphene. The effect of the ZFM on the

material properties can be quite significant. For example two-thirds of all CNTs are

predicted to be semiconductors, whereas graphene itself is a semimetal. These trends

as well as the ZFM results for electronic bandgaps and the density of states in CNTs,

have been verified experimentally[133, 134, 135]. Since calculations[22, 136, 137]

which go beyond the ZFM, considering the curvature of the CNT, don’t significantly

improve the portions of the electron and phonon energy spectrum that is relevant

in this work, only the ZFM is considered.
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The material properties of carbon nanotube depend on the tube diameter and

the orientation of bonds between the carbon atoms that make up the tube. These

properties can be described uniquely by the fundamental tube indices n and m.

These indices relate the lattice vector of graphene to the nanotube lattice vectors.

The bonding orientation in any carbon nanotube lies between the two extreme

cases of the zig-zag(m=0) and the armchair(n=m) tubes. These are the highly

symmetrical achiral tubes. They are characterized by a small lattice vector along

the tube axis and thus a small unit cell.

In this Chapter we focus on a semiclassical charge transport model in semicon-

ducting CNTs based on the ZFM. Since such a model is expected to be more accurate

as the length of the unit cell along the tube axis decreases, we will consider the highly

symmetrical zig-zag nanotubes. The internal forces on the electrons are described

via quantum mechanics whereas external fields act by altering the electronic crystal

momentum via Newtonian mechanics. We consider long and “perfectly intrinsic”

tubes without deformities, defects, and impurities. Since the bandgap decreases

with increasing diameter, we focus on small diameter semiconducting CNTs were

the bandgap at room temperature is significantly larger than the thermal energy. A

diagram of a n=10 single-walled CNT is shown in Fig. 6.1. Along the tube axis,

wavevectors are continuous and restricted from the case of graphene due only to the

larger length of the CNT unit cell in this direction. Perpendicular to the tube axis

although, significant confinement of the electron and phonon eigenvectors allows

only discrete wavevector values. The electron is therefore treated as a wavepacket

of Bloch states along the tube axis but around the tube circumference it is typically
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delocalized in the small CNT diameters considered here. An analogous treatment

for phonons is also used. Electron transport occurs through the action of a uniform

electric field directed solely along the tube axis.

Using this semiclassical model, we employ a 1-D steady-state Monte Carlo

simulation of electron transport along the tube axis of single-walled semiconducting

CNTs. Zig-zag tubes, where m = 0, are considered with wrapping indices of n = 10

to 59. Since the diameter is proportional to n whereas the the bandgap is inversely

proportional to n, this corresponds to a diameter range of ≈ .8 to 4.6nm and a

bandgap range of ≈ 1.1 to 0.1eV. Transport occurs within electronic subbands

obtained from the zone-folded graphene antibonding π-orbital band. Two of the

six graphene K point band structure valleys are contained within these subbands.

Upon scattering with phonons, electrons may make intrasubband, intersubband-

intravalley, or intersubband-intervalley transitions. The particular phonon involved

depends on selection rules that conserve the total energy and crystal momentum

of the electron-phonon system. The crystal momentum is conserved around the

circumference as a result of the periodic boundary conditions for both the electrons

and phonons. We observe field controlled negative differential mobility (NDM)

caused by the electron transfer between the 2 lowest energy subbands in the Monte

Carlo simulations.
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6.1 Electron and Phonon Energy Spectra

As mentioned, both the CNT band structure and phonon spectrum are calculated

from graphene by the zone-folding method. The CNT Brillouin zone that results is

a collection of N 1-D slices through the k-space of graphene, each with a length of

2π
T

, where T is the length of the CNT unit cell and N is the number of graphene

unit cells within a single CNT unit cell. For a zig-zag tube of index n, N = 2n and

T ≈ .43nm. The Brillouin zone for a n=10 zig-zag tube is shown in Fig. 6.2. It is

well know that a metallic CNT is obtained by tube wrappings for which n −m is

a multiple of 3[22]. The semiconducting tubes which do not meet this criteria can

further be separated into two types, those for which n−m+1 is a multiple of 3 and

thus a metal and those for which n−m−1 would be a metal. These two tube types

are distinguished by different trends in the zone-folded electronic energy states near

the Fermi level as n and m vary[138]. As shown in Fig. 6.2, the difference depends

on whether the lowest conduction band is obtained right before or right after the

zone slices reach the graphene conduction band minimum at the K point.

Zone-folding allows just one discrete value for the wavevector perpendicular

to the tube axis for each of the 2n graphene unit cells within the zig-zag CNT unit

cell. The result is that each band of graphene is broken into 2n subbands in the

nanotube. For a zig-zag tube of diameter d, the electron wavevector is:

�k = (kz, η) = kz ẑ +
2η

d
θ̂, (η = −n, ...n), (6.1)

where confinement along θ̂ is described by the electronic quantum number η. The

wavevectors at η = ±n are treated as one shared zone boundary wavevector. Since
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we are dealing with long tubes, the z-component along the tube axis, kz, is treated

as continuous. This is equivalent to previous representations of the CNT Brillouin

zone where the slices proceed from 0 to 2n − 1,[22] except now symmetry in ±η

can be utilized. This is important since, except for the zone boundary value, the

electronic subbands are degenerate for ±η. There are thus n + 1 distinct states,

n − 1 of which are doubly degenerate. As seen in Fig. 6.2, this degeneracy in η

corresponds to two equivalent valleys in the subband structure each centered near a

graphene K point. It is found that electrons may scatter between and occupy both

of these valleys.

As mentioned previously, we consider electron conduction within delocalized

π-orbitals along the nanotube axis. We therefore are interested in the subbands

produced from the π-antibonding band of graphene. This band structure is obtained

from the π-orbital nearest-neighbor tight-binding band structure of a graphene sheet,

calculated using a nearest-neighbor π-hopping integral of γ ∼= 3 eV[22]. We do not

include the wavefunction overlap integral. The energy dispersion for a zig-zag tube

is:

E(�k) = E(kz, η) = ±γ
√√√√1 + 4 cos

(
Tkz

2

)
cos

(
πη

n

)
+ 4 cos2

(
πη

n

)
(−π

T
< kz <

π

T
).

(6.2)

Results agree with experimentally measured band gap energies and density of states

in CNTs[133, 134]. The conduction electron wavefunction, consistent with the zone-

folding method, is

ψ�k =
∑
�k

< �r|�k >=
1√
2πL

∑
kzη

ei(kzz+ηθ)ukzη(z, θ), (6.3)
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where L is the CNT length, and u are the graphene π-antibonding orbitals that are

normalized over the graphene unit cell. Since we are interested electron transport

at relatively low applied fields, we focus on the electron band structure of the first

few subbands. The energy Eb(kz) of the first three of these subbands, labeled by

the subband index b, is modeled using the following analytical expression:

h̄2k2
z

2m∗
b(n)

= (Eb −Em
b (n)) [1 + αb(n)(Eb − Em

b (n))] , (b = 1, 2, 3). (6.4)

The density of states for subband b is:

DOSb(Eb) =

√
m∗

b(1 + 2αbEb)

h̄
√

2Eb(1 + αbEb)
. (6.5)

Here Em
b (n), m∗

b(n), and αb(n) are the energy minimum, effective mass, and non-

parabolicity factor of subband b respectively. In Table 6.1, each is given as a function

of the fundamental tube index n or equivalently, since d ∝ n, as a function of diam-

eter d. The subband quantum numbers, ηb(n) in Table 6.1, are also n-dependent.

For low-field transport in the first few subbands, it is desirable that this energy

model be accurate for electron energies up to 5Em
1 above the Fermi level, where the

Fermi level is located halfway between the conduction and valence subbands. In this

range, the subband energy model reproduces the tight-binding band structure with

percent error of less than 2%. Considering just the band structure near the Fermi

level is a good approximation since at equilibrium a conduction electron is over 10

million more times likely to occupy the first subband minimum than an energy as

high as 5Em
1 . The band structure of zig-zag semiconductors with n = 10 and n = 59

are shown in Fig. 6.3, representing the n index range of the simulations. This range

is chosen since the energy separation between the first two subbands is much larger
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than the thermal energy, allowing the relative population of these subbands to be

controlled by the external field.

The phonon wavevector, �q = (qz, ηp), also takes the form of Eq. (6.1). Similarly

to the electron, the axial component, qz, is continuous and the phonon is localized

as a wavepacket along this direction. In the high-symmetry achiral zig-zag tubes

that we focus on, the presence of mirror planes allows the phonon eigenvectors

to generally fall into longitudinal and transverse polarizations[139]. A torsional

polarization is also possible in a CNT. For the phonon energy spectrum of graphene

we use a fourth-nearest-neighbor force constant model. Force parameters are used

which have been successfully fitted to experiments[22]. Similarly to the electronic

energy bands, zone-folding splits up each of the 6 phonon branches of graphene into

2n subbranches in the nanotube, each specified by a subbranch quantum number

ηp.

In this work the CNT subbranches of the graphene acoustic and optical modes

are considered. First we discuss the acoustic modes. Of these phonons, there are four

for which the phonon energy, Ep, vanishes as the wavevector, qz, vanishes. These

include a longitudinal, torsional, and a doubly degenerate transverse mode. Once

the electron-phonon scattering selection rules are determined in the next section,

its found that these four phonons are involved in only intraband-intravalley elec-

tron transitions. This results since each of these modes has a subbranch quantum

number of zero, and thus has no wavevector component perpendicular to the tube

axis. Due to the quantization of the wavevector along the circumference, most of

the CNT acoustic modes have a dispersion relation in which the phonon energy is
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nonzero as qz → 0. These subbranches all have a nonzero ηp and turn out to be in-

volved in intersubband electron scattering. Those with a large ηp mediate intervalley

scattering.

Since theory predicts that the change in the π-electronic energy under lon-

gitudinal strain is larger than under torsional[140, 141] or transverse[142] strain,

electron scattering by longitudinal polarizations is treated as the most dominant

of the acoustic modes. The importance of these longitudinal modes has been ob-

served in thermal relaxation studies of nanotubes[143]. We therefore consider just

the longitudinal acoustic modes. For scattering of electrons within the first three

conduction bands, the spectra of the acoustic phonons considered is shown in Fig.

6.4. The particular phonon subbranches that maybe involved in the scattering of

electrons between the first three electronic subbands is limited by selection rules.

These selection requirements will be derived later in this chapter. The energy dis-

persion relation is

Ep(qz, ηp) = Eo
p(ηp) + h̄υsΘ(qz, ηp)

(
|qz| − |ηp

d
|
)
, (6.6)

were υs = 20km/s and the phonon energies at qz = 0, Eo
p(ηp), are given in Table

6.2. For the LAIV phonon Θ = 0, whereas for the other acoustic modes

Θ(qz, ηp) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 |qz| > |ηp

d
|

0 else.

(6.7)

As the tube diameter increases the intravalley acoustic phonons all converge to

the graphene longitudinal acoustic phonon. The intervalley subbranches, grouped

together as LAIV in Fig. 6.4, are to a good approximation dispersionless with
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an energy of ∼= 158 meV . An exception though is the intervalley acoustic phonon

that scatters electrons between the 3rd subband of different valleys. This phonon

has less energy, but as the tube diameter increases, its energy also approachs 158

meV . As the tube diameter increases the intervalley acoustic phonons all become

dispersionless with a phonon energy of 158 meV .

For the optical modes we also consider only the longitudinally polarized phonon

of graphene. There are three dispersionless subbranches (LO,LOIV -1, LOIV -2).

The other intervalley phonons are grouped together as one phonon subbranch (LOIV )

with significant dispersion. The dispersion relation for the optical modes is

Ep(qz, ηp) = Eo
p(ηp) + h̄υsΘop(qz, ηp)|qz|, (6.8)

where Θop, which is nonzero only for the LOIV phonon, is given by

Θop(qz, ηp) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2.5
n

LOIV

0 else.

(6.9)

As the tube diameter increases the intervalley optical phonons all become dispersion-

less with a phonon energy of 158meV , the common phonon energy for longitudinally

polarized acoustic and optical phonons at the K-point in graphene.

6.2 Electron-Phonon Scattering

Electron-phonon scattering in CNTs is treated using the standard methods of lattice

scattering[106]. The effect of ion vibrations on the periodic crystal potential is
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considered small enough to treat using first-order perturbation theory. Considering

the duration of a scattering event to be short, the rate of electron-phonon scattering

is represented by the familiar “Golden Rule”

Γ =
2π

h̄
| < f |Hep|i > |2δ(Ef − Ei), (6.10)

where i and f are the initial and final states of the system, E is the energy, and Hep

is the space-dependent electron-phonon interaction. Assuming short-range interac-

tions we will use the deformation theory[108] to approximate Hep. Using longitu-

dinally polarized phonon eigenvectors in a form consistent with confinement in the

ZFM, the displacement of the lattice at a tube position of �r = zẑ + θd
2
θ̂ is

U(�r) =
∑
�q

√√√√ h̄

2Mω�q

[
a�q e

i(�q·�r)q̂ + c.c
]
. (6.11)

The sum is over phonon wavevectors �q = qz ẑ+
2ηp

d
θ̂, where z and θ are the coordinates

along the tube axis and around the tube circumference respectively. As mentioned

the component of the wavevector along the tube, qz, is treated as continuous since

the tube length is large, whereas the component along θ is quantized. So the sum

includes all subbranches ηp. The amplitude of each eigenvector depends on the

lattice mass M , the subbranch wavevector-dependent frequency ω�q, and the phonon

creation and anniliation operators a† and a. The electron-phonon interaction, Hep, is

found from the shift in electronic energy due to a phonon. Within the deformation

potential theory, this shift is given by the perturbation of the electronic energy

when an electron interacts with a long wavelength phonon and is set equivalent to
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the effect of a locally homogeneous strain. This electronic energy change is then

< �k′|∆E|�k > =< �k′|D∑�q

√
h̄/2Mω�q

[
iqa�q e

i(�q·�r) + c.c
]
|�k >

= D
∑

qzηp

√
h̄Q2/2Mωqzηp < �k′|iaqzηp e

i(qzz+ηpθ) + c.c.|�k >,
(6.12)

for an electron transtion from state �k to state �k′. The acoustic deformation potential

D is the proportionality constant between the electronic energy shift and the lattice

strain. For zig-zag tubes, D has been calculated to be approximately 3γ[140, 142].

The electron-phonon coupling constant for optical phonons depends on the

acoustic deformation potential D in this work. It is approximated as 1
2
DQ, where

Q is the wavevector when the two atoms in the graphene unit cell vibrate in oppo-

site directions. Similar approximations are found to work well in traditional bulk

semiconductors [38, 106]. For both acoustic and optical phonons Q is:

Q(qz , ηp) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
|qz|2 + |2ηp

d
|2 acoustic

2
√

(3)π

T
optical.

(6.13)

Now we concentrate on the matrix elements that determine the electron-

phonon selection rules. Using the electron wavefunction in Eq. (6.3) and the lattice

symmetry along the tube axis the following matrix element becomes

< �k′|ei(qzz+ηpθ)|�k >=
NT δkz−k′

z,qz

2πL

∫ T

0
dz
∫ 2π

0
dθeiδηθu∗�k′(z, θ)u�k(z, θ), (6.14)

where δη=η−η′+ηp. Here the integral along the entire tube is replaced by the

integral along just the CNT unit cell by using the axial-symmetry relations

j=NT∑
j=1

ei(kz−k′
z+qz)jT = NT δkz−k′

z ,qz , (6.15)
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and

u�k(z + jT, θ) = u�k(z, θ), (6.16)

where jT are the lattice vectors along z and NT is the total number of CNT unit

cells in the tube.

Now using the CNT symmetry vector[22] for a zig-zag tube, �R, the positions

of each graphene unit cell can be found according to

α�R = α

[
T

2
ẑ +

πd

N
θ̂

]
, α = integers(1.....N). (6.17)

The z-component of α�R wraps back around so that it always stays within the unit

cell, which has a of length T along the z direction. This is shown in Fig. 6.5(a).

The unit cell can be redrawn as in Fig. 6.5(b), so that the integration along z is

now continuous. Then Eq. (6.12) may be written as

< �k′|ei(qzz+ηpθ)|�k >=
NT δkz−k′

z ,qz

2πL

α=N∑
α=1

∫ Tα
2

T (α−1)
2

dz
∫ 2π(2z+T )

TN

2π(2z−T )
TN

dθeiδηθu∗�k′(z, θ)u�k(z, θ).

(6.18)

Now using the �R symmetry of the graphene unit cells, which are contained within

the CNT unit cell,

u�k(�r + α�R) = u�k(�r), (6.19)

Eq. (6.18) may be reduced to a integration over a single graphene unit cell

< �k′|ei(qz+ηpθ)|�k >=
NT δkz−k′

z ,qz

2πL

∫ T
2

0
dz
∫ 4πz

TN

4π(z−T )
TN

dθeiδηθu∗�k′(z, θ)u�k(z, θ)
α=N∑
α=1

eiδη 2πα
N .

(6.20)

Since there is periodicity around the circumference, the sum may be equivalently

redrawn by starting the sum at an arbitrary graphene unit cell β + 1, where β is an
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integer

α=N∑
α=1

eiδη 2πα
N =

α=β+N∑
α=β+1

eiδη 2πα
N = eiδη 2πβ

N

α=N∑
α=1

eiδη 2πα
N . (6.21)

To satisfy this condition for arbitrary β, δη must be zero and thus

α=N∑
α=1

eiδη 2πα
N = Nδδη,0 = Nδη′−η,ηp . (6.22)

This gives

< �k′|ei(qz+ηpθ)|�k >=
NNT δkz−k′

z,qzδη′−η,ηp

2πL

∫ T
2

0
dz
∫ 4πz

TN

4π(z−T )
TN

dθu∗�k′(z, θ)u�k(z, θ) = δkz−k′
z,qzδη′−η,ηp ,

(6.23)

since the graphene π-antibonding orbitals are normalized over the graphene unit

cell.

These are the selection rules for phonons involved in a given transition from an

initial �k = (kz, η) to a final �k′ = (k′z, η
′) electron state. Electron-phonon scattering

must not only conserve momentum along the tube axis but also conserve the quan-

tum number η. The periodic boundary conditions for the electrons and phonons

along the circumference retain the conservation of the 2-D crystal momentum in the

CNTs. The electron-phonon interaction is

| < f |Hep|i > |2 = | < �k′;N(±)1|∆E|�k;N > |2

=
∑

q∗zη∗
p
h̄2D2

(
Q(q∗z , η

∗
p)
)2 (

N(q∗z , η
∗
p) + 1

2
(±)1

2

)
/2MEp(q

∗
z , η

∗
p),

(6.24)

where the sum includes all phonon wavevectors q∗z and quantum numbers η∗p that

satisfy the selection rules in Eq. (6.23). N is the phonon occupation number rep-

resented using the Bose-Einstein distribution function, while in the bracketed (±)

sign, the upper sign is for phonon emission and the lower for phonon absorption.
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Using Eq. (6.10) the “Golden Rule” and integrating over all final electron

states, the scattering rate from an electronic state in subband b with wavevector kz

to to an electronic state in subband b′ is

Γbb′(kz) =
∑
q∗zη∗

p

h̄D2
(
Q(q∗z , η

∗
p)
)2

(q∗z , η
∗
p)

2ρEp(q∗z , η∗p)

(
N(Ep(q

∗
z , η

∗
p)) +

1

2
(±)

1

2

)
Ibb′(kz, q

∗
z , η

∗
p),

(6.25)

where conservation of energy and crystal momentum is also required. Here ρ is the

CNT mass density along the tube axis. It is proportional to n according to:

ρ(n) = 1.9nX10−15g/cm. (6.26)

The term Ibb′ would typically correspond to a function of the density of final states

under the golden rule formalism. Since semiclassically the density of states diverges

in 1-D, higher order quantum effects are needed. It has been found in quantum wires

that a full quantum mechanical treatment of the 1-D scattering rate can be well

approximated by including collisional broadening within the golden rule[144, 145].

Following these results we adjust Eq. (6.25) by broadening the semiclassical Ibb′

with a Gaussian according to

Ibb′(kz, q
∗
z , η

∗
p) =

√
2/π

∆ (1 + erf(E/∆))

∫ ∞

−E

e−( E′2
2∆2 )DOSb′(E + E ′)dE ′

1 (±) q∗z
|q∗z |h̄υsΘ(Ep + E ′)DOSb′(E + E ′)

,

(6.27)

where DOSb′ is the density of states in band b′, erf is the error function and

E = Eb(kz) (∓) Ep(q
∗
z , η

∗
p). (6.28)

The broadening of final states ∆ is determined self-consistently for each member of
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the sum in Eq. (21) according to

∆ = h̄Γbb′(kz, q
∗
z , η

∗
p). (6.29)

When b and b′ correspond to different valleys in the electronic subband structure, ηp

is large. The intervalley phonons, grouped as LAIV or LOIV , have the same phonon

energy, but since they cause different subband electron transitions and therefore

have different quantum numbers ηp, they will have different scattering rates. As

previously mentioned and given in Eq. (6.6) and (6.7), the acoustic phonon energy

dispersion is significant for the intravalley subbranches with small ηp. For the LA

intrasubband branch when Ep is much less than the thermal energy KbTL, only

backscattering occurs and we use the small phonon energy limit[106]

q∗2z

(
N(Ep(q

∗
z)) + 1

2
(±)1

2

)
Ep(q∗z)

∼= KbTL

h̄2υ2
s

, (6.30)

in Eq. (6.25).

In all, eight different phonon processes may potentially contribute to the b→ b′

scattering rate in Eq. (6.25). These include absorption and emission of both acoustic

and optical phonons of the intravalley or intervalley variety. For each process, a

maximum of 2 phonon wavevectors, q∗z , will enter the sum in Eq. (6.25). This gives

a maximum of sixteen terms. Fewer terms typically appear in practice though due to

the constraints of energy and crystal momentum conservation. For a given phonon

process, the two possible phonon wavevectors involved in the scattering rate are:

q∗z(kz, b, b
′) =

−B ±√
B2 − 4AC

2A
, (6.31)
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where

A = 1 − 2αb′m
∗
b′υ

2
sΘ

2,

B = 2kz (∓) q∗z
|q∗z |

4m∗
b′υsΘ(1+2α′

b
Ea)

h̄
,

C = k2
z − 2m∗

b′Ea(1+αb′Ea)

h̄2 ,

and

Ea = Eb(kz) − Em
b′ (∓)E ′

p.

(6.32)

The term E ′
p is the phonon energy in Eq. (6.6) and Eq. (6.8) minus the qz

dependent part. It is given by

E ′
p(η

∗
p) = Ep(q

∗
z , η

∗
p) − h̄Θ(q∗z , η

∗
p)|q∗z |. (6.33)

The scattering rates for electrons in the first 2 subbands are shown in Fig.

6.6 when the deformation potential D is set at 9eV. The total optical, intravalley

acoustic, and intervalley acoustic are shown. Unlike the acoustic rate, the optical

rate is not divided since the intravalley and intervalley rates are very similar. The

large peaks occur when electrons are able to scatter into a subband minima where

the density of final states is large. The peaks in the acoustic intervalley rate occur

at energies close to where the optical peaks occur since the longitudinal acoustic and

optical branches of the graphene spectrum are degenerate near the graphene zone-

boundary. Double peaks can be seen in both the intravalley acoustic and optical
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rates. In the former case these are the result of an absorption peak followed closely

with increasing electron energy by an emission peak. For the optical rate, the double

peaks occur since the intervalley phonons have less energy than the intravalley. In

the case of the optical scattering rate, the double peaks therefore correspond to an

intervalley peak followed closely by an intravalley peak.

We show the rate for two different tubes sizes in Fig. 6.6. These are for the

smallest diameter, n=10, and largest diameter, n=59, tubes simulated here. First

we will concentrate on the scattering rate for the n=10 tube in Fig.s 6.6(a) and

6.6(c). For scattering of electrons in the first band, phonon scattering is dominated

by 1 → 1 intravalley acoustic scattering until around 158meV . Once this threshold

energy is reached optical and acoustic intervalley emission mechanisms dominate.

When electrons are in the second band the scattering rate can be divided into 3

regions. The first is at very low electron energies near the minimum of the second

subband. Here intravalley acoustic scattering dominates. The next region occurs as

the electron energy is increased but is below the threshold for 2 → 2 scattering. Here

optical and acoustic intervalley 2 → 1 emission scattering dominate but acoustic in-

travalley scattering also contributes. Once the 2 → 2 threshold energy at 158meV is

reached, optical and acoustic intervalley emission scattering then dominates strongly

for electrons within the second subband.

The phonon scattering rates indicate that the threshold for significant electron-

phonon scattering occurs around 158eV. This is due to scattering with both acoustic

and optical intervalley, or near zone-boundary, phonons. The threshold occurs when

conduction electrons attain the energy of the intervalley phonon, which is 158eV
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for both the acoustic and optical modes. High-field experiments on metallic car-

bon nanotubes are indeed consistent with a dominant phonon energy around this

energy[146, 147].

Now comparing with the larger tube in Fig.s 6.6(b) and 6.6(d), we see that the

scattering rates markedly decrease as n increases. This occurs since with increasing

diameter the density of final scattering states decreases and the CNT mass per unit

length increases, both decreasing the scattering rate. From Eq.s 6.5 and 6.25, we

find at low energies

Γ ∝ D2

n
√
γ
. (6.34)

In large tubes electrons in subband 1 are scattered significantly by intravalley (1 →

2) phonon emission and absorption processes at low energies. This is not seen in the

smaller tubes since before the electron can reach energies to allow these intravalley

(1 → 2) processes, the threshold at 158 meV for the strong (1 → 1) intervalley

process is reached. For electrons in subband 2 of the small tubes, near the energy

minimum, strong (2 → 1) intervalley phonon emission processes occurs. In the larger

tubes, the energy gap between the subbands is too small and only the intravalley

(2 → 2) process occurs. For comparison we plot the total rate for a small n=10

tube together with a larger n=58 tube in Fig. 6.7.

6.3 Transport Simulation

Charge transport in zig-zag semiconducting CNTs is studied using standard Monte

Carlo techniques[38]. Simulations are homogeneous and of sufficient time duration
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to characterize steady-state phenomena of many non-interacting electrons using the

single-electron method[38]. CNTs are treated as “ideal”, in that they are extremely

long, undoped, and without any defects or other imperfections. The basic principles

of semiclassical transport[148] are used, in which quantum mechanics is used to de-

termine the electronic energy levels and scattering rates due to the lattice, whereas

applied external fields accelerate electrons semiclassically. In this work a homoge-

neous external electric field directed solely along the CNT axis is considered. This

field is not considered strong enough to cause intersubband transitions in the CNTs

simulated. The validity of this approximation requires that the subband separation,

∆E, always obey the relation[148]

∆E >
√
EFeFT , (6.35)

where EF is the Fermi energy of graphene, e is the electron charge, F is the external

electric field, and T the the magnitude of the translation vector. An obvious ex-

ception occurs in the smaller diameter tubes where subband crossing occurs. This

can be seen in Fig. 6.3. For simplicity in this work, the consequences of subband

crossing are ignored.

As mentioned, the only scattering mechanisms considered involve the sub-

branches of the graphene longitudinal acoustic and optical modes. Electron-electron

scattering is not included here but may contribute to the electron drift velocity by

increasing the intersubband-intravalley scattering rate. This would be more likely in

the larger tubes we consider, where both the transverse momentum transfer between

the subbands and the phonon scattering rate are small. Intrasubband scattering via
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electron-electron interactions though should not effect the electron drift velocity

since the initial and final interacting electron pair would be indistinguishable in one

dimension, leading to no net randomization of the net electron momentum of the

system[149].

It is necessary to point out that in one dimension the Monte Carlo simulation

is complicated by peaks in the scattering rate, Γ , which can be seen in Fig. 6.6.

Between stochastically chosen scattering events during the simulation, electrons drift

in the applied electric field. This drift time, τd, should be small compared to 1
Γ(E)

,

so that the scattering rate is properly resolved in the Monte Carlo simulation. This

requires that the drift time always be adjusted so that at all times τd(E) ≤ 1
10Γ(E)

.

For convergence in the low-field regime, where the electron mobility is constant, this

criteria is adjusted so that τd(E) ≤ 1
100Γ(E)

.

In Fig. 6.8 we show simulation results when only acoustic phonon scattering

is included. The simulated electron drift velocity, υd, varies distinctly with applied

electric field. Results are shown in Fig. 6.8 for fields where the average electron

energy, which increases with increasing field, is below the band structure model limit

of 5Em
1 (n). Peaks reaching values of υd as large as ∼= 3 - 5 X107 cm/s as n increases

from 10 to 59 are observed. The critical field, Fc(n), at which the drift velocity

maximum occurs is seen to decrease with increasing n from ∼= 60 to 2 kV/cm in

the range of n that is simulated. The low-field mobility is large, increasing as n,

and thus the tube diameter, increases. This mobility increases from 0.4 X104 to

12 X104 cm2/V s as n increases from 10 to 59. Results for graphite, ∼= 1.5 X104

cm2/V s,[150] lie within this range. In the larger tubes, the low-field mobility is likely
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overestimated since electron-electron scattering is not considered. This is not the

case in the smaller tubes since the phonon scattering rate is large and intersubband

transitions at low fields are rare.

Negative differential mobility occurs when the slope of the drift velocity with

field becomes negative. The simulated results show that dυd

dF
does indeed become

negative once the velocity peak occurs. NDM is caused by the ’transferred-electron

effect’ [151, 152] involving the first two subbands. This occurs since the conduction

velocity, 1
h̄

dE
dk

, is larger in the first subband than in the second. The differential

mobility becomes negative as the concentration of electrons in the second subband

increases in response to an increasing applied electric field. For field-controlled

NDM, the energy gap between the first two subbands should be large compared to

the thermal energy of the electrons. This condition is met for the CNTs considered

here, but for larger tubes this condition may not be satisfied.

Analysis of the dependence of the peaks in the drift velocity on the tube

diameter and the band structure hopping integral γ, indicates a peak height of

υmax
d (n, γ) =

(
3nγ2

8

)1/3 (
1 − β

2n

)
× 107cm/s. (6.36)

occurring at a critical field of

Fc(n,D, γ) =

(
1 − β

(
8

n

)2
)

γD2

27n3/2
× 106V/cm. (6.37)

The weak increase of υmax
d with n is related to the increase of the conduction velocity

of the first subband. Also Fc increases as the phonon scattering increases and is

approximately proportional to D2/n.

186



Differences based on the tube type are represented by the use of the term β.

Here β = [gcd(n + 1, 3) − 1] = 0 or 2, where gcd(n + 1, 3) indicates the greatest

common divisor between (n + 1) and 3. The origin of the β correction can be

seen in Fig. 6.9. For a type 2 tube, the minimum energy lies at kz=0 along the

K-K symmetry line, whereas for a type 1 tube the minima lies along the Γ-K

symmetry line. In the smaller tubes the subbands are far enough from the K point

so that the there is a significant difference in the electronic structure between the

two tube types. This difference is reduced as the tube diameter increases and the

fundamental tube index n increases since the minimum subband approaches the K

point in both tube types. Furthermore the type 1 and type 2 zig-zag tubes likely

represent the extreme cases for the semiconducting tubes and other, chiral tubes,

should have a β between 0 and 2. We can see this by considering the electronic

structure of graphene[22]. If we sample the electronic structure of graphene at

a k point along the Γ-K symmetry line near the K point, and then continue to

sample the band structure moving towards a point on the K-K symmetry line while

keeping
√
|k2 −K2| constant, we will find no critical points. For fixed 2n + m,

which determines the subband spacing from the K point in both achiral and chiral

nanotubes, the maximum band structure difference between (2n + m) ± 1 is that

found in the zig-zag tubes. We therefore expect Eq.s (6.36) and (6.37) could be

used in the chiral carbon nanotubes once the 2n dependence of the zig-zag tubes is

replaced with the appropriate 2n + m dependence for the general semiconducting

tube. The correction factor β would then be expected to have the extreme values of

0 in the type 2 zig-zag tubes and 2 in the type 1 zig-zag tubes, with β for the chiral
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tubes lying between. More work is needed to test this hypothesis.

As n approaches 59, the drift velocities of the two tube types become virtually

indistinguishable. This is illustrated in Fig. 6.8(b) where the peaks for both tube

types are shown together. Since important features of charge transport occur at

the critical field, Eq. (6.35) should be satisfied at this field value. We find that

it is satisfied for the tubes considered. The band separation between the first and

second subband satisfies Eq. (6.35) with at least a factor of 2.5 to spare in the tubes

considered in this work. For increasing larger tubes although, the condition would

eventually fail to be satisfied and field-mediated intersubband transitions would

occur readily.

One thing that determines the characteristics of the drift velocity peak is the

decrease in the scattering rate with increasing n, as seen in Eq. (6.34), With less

scattering as n increases, electrons gain energy and occupy the second subband more

readily as the field increases. This lowers the critical field significantly. The con-

duction velocity of the first subband, υc1, also strongly influences the drift velocity.

As n increases, this velocity increases weakly with n, allowing the electrons to reach

higher drift velocities before the second subband is occupied. Differences in the

peaks of υd as the tube type varies result largely from alterations in υc1. As seen

in Fig. 6.10, the average velocity and the occupation of the second subband both

increase much faster with increasing field when n = 10 as opposed to when n = 11.

This occurs since compared to the type 1 tubes, the effective mass of the type 2

tubes is smaller. Since the conduction velocity is proportional to 1
m∗

1(n)
, it follows

from the results in Table 6.1 that υc1(�k, n) is larger in the type 2 tubes by a factor
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of (n+4)
n

. For the large tubes considered this is a small increase, but for the smaller

tube this factor approaches 1.5. This leads to the β deviations for the different tube

types in Eq.s (6.36) and (6.37) when n is small.

The effect of optical phonon scattering on the drift velocity is seen in Fig.

6.11. Here Monte Carlo results are shown along with a model analytical fit. The

model will be addressed in the following discussion. The analytical fit is given for

the case including optical and acoustic phonon scattering along with the case when

only acoustic scattering is considered. We see that optical phonon scattering acts

to broaden the drift velocity peaks on the high-field side. There is also a slight

reduction in the peak high.

Now we will discuss the analytical model presented in Fig. 6.11. From the

results of the Monte Carlo simulations, we obtain a single-walled carbon nanotube

(SWCNT) mobility model that depends on tube index (n), deformation potential

(D), band structure parameter (γ), and electric field (F ). We find that the low-

field mobility µ0 is independent of the field, and increases quadratically with n/D

according to

µ0(n,D, γ) =

(
nγ3/4

4D

)2 (
1 − α

n2/3

)
× 104cm2/V s. (6.38)

This form for low field mobility from is analogous to the familiar expression: q/Γm∗.

To see this, we note that the effective mass (m∗) in a zig-zag SWCNT is ∝ 1/nγ in

Table 6.1 and the scattering rate (Γ) for small fields, is ∝ D2/n
√
γ. Combining these

expressions we see that the mobility in the CNT ohmic region near equilibrium is

proportional to q/Γm∗. The low-field mobility is larger in the larger tubes considered
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in this work since both the effective mass and the scattering rate are smaller.

Using the expressions in Eq.s 6.36 and 6.37, the mobility takes on the familiar

υmax
d

F
characteristic of high-field transport. In addition, the model must be further

modified to account for the negative differential mobility (NDM) that results from

electrons transferring to higher subbands. The NDM effect can be expressed using

a Gaussian

µ1(F, n,D, γ) =
υmax

d

F
exp

(
− [log10(F/Fc)]

2 /S
)
× 104cm2/V s. (6.39)

Here the Gaussian broadening parameter S is

S(F, n,D, γ) = 1.3 + Θ(F − Fc)

√
n

2
, (6.40)

where Θ is a heavy side step function. The broadening is therefore larger on the

high-field side of the velocity peak.

We have presented both low and high field mobilities. The transition point

from low-field to high-field mobility occurs at the electric field F0. At this unique

point µ1(F0, n,D, γ) = µ0(n,D, γ); solving for F0 gives:

F0(n,D, γ) = exp

⎛
⎝log(Fc) − 31

9
+

√(
31

9
− log(Fc)

)2

+
62

9
log(υmax

d /µ0) − log2(Fc)

⎞
⎠.

(6.41)

In Fig. 6.14 we show the resulting mobility model vs. applied field for a

number of SWCNTs. The mobility is high in the low-field region, then drops as the

electrons begin to significantly populate the second subband. The larger mobilities

for wider tubes is attributed to a smaller effective mass and a smaller scattering

rate. In Fig. 6.12 and 6.13 we compare electron velocity calculated with the new
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analytical mobility model with values that were calculated by Monte Carlo. We see

that agreement is excellent for both fixed and variable values of the deformation

potential. Results are for three values of the deformation potential D, ranging from

≈3-15eV . This wide range allows comparison with theoretical predictions since

calculations for zig-zag CNTs indicate a D≈ 9eV [140, 142], whereas calculations for

graphite have resulted in a deformation potential of D≈ 16eV [153]. We see in Fig.

6.13 that the critical field, Fc, at which the drift velocity peak occurs, increases with

increasing D. This is expected since the larger the scattering rate the larger the

field must be to significantly populate the second subband. There is however little

change in the drift velocity peak with D indicating that υmax
d is much more sensitive

to the conduction velocity of the first subband than the scattering rate. The low

field mobility decreases with increasing D as expected from Eq. 6.38.

6.4 Chapter Summary

In summary, semiclassical transport has been applied to electron conduction through

long “perfect” semiconducting zig-zag carbon nanotubes with wrapping indexes be-

tween 10 and 59. The zone-folding method is used to calculate the electronic energy

levels consisting of two valleys, while scattering occurs through the interaction of

electrons with the zone-folded longitudinally-polarized acoustic and optical phonons

of graphene. Steady-state charge transport simulations considering a homogeneous

applied electric field are performed using the Monte Carlo method.

Simulations at low fields show electron mobilities as large as in graphite for
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the larger tubes. At higher fields, the drift velocity is found to rise and peak with

increasing field, reaching values as high as 5 X107 cm/s in the larger tubes. It

should be noted that the ability to extend the transport model to even larger zig-

zag tubes in order to determine how these properties evolve further is limited by

the decreasing energy spacing between the first two subbands. In larger tubes, the

transport model must be altered if this spacing becomes small enough to allow field-

assisted intersubband transitions or if the spacing approaches the thermal energy of

the electrons.

The peaks in the electron drift velocity, which vary with n, show negative

differential mobility due to electron transfer between the first two electronic sub-

bands. This transfer may occur within the same or within different but equivalent

band structure valleys. This effect also occurs in other traditional semiconductors

with small direct bandgaps such as GaAs, but in these materials electron transfer

between unequivalent valleys in the electronic band structure is usually involved. It

is likely that some of the electronic properties of these materials may also exist in

CNTs. One interesting property of GaAs related to NDM is its ability to support

microwave fluctuations in the electron current know as the Gunn-effect[154]. There

are many applications of the NDM in these materials. Applications in electronics

include use in oscillators, amplifiers, and logic and functional devices[155]. It may

be possible that similar applications for CNTs may also exist.

Using our Monte Carlo results, we have developed a mobility model to describe

transport in semiconducting SWCNTs. Large low-field mobilities are found to be

≈ 0.4 − 13x104cm2/V s, which is of the same order of those observed in recent
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experiments [30, 31]. The results also indicate negative differential mobility at larger

fields, and a very large drift velocity peak of ≈ 3 to 6x107cm/s.

The mobility model can be used to easily predict the characteristics of electron

transport in these tubes, and should find significant applications in the simulation

and understanding of nanotube-based electronic devices. In Fig. 6.14 we show the

resulting mobility model vs. applied field for a number of SWCNTs. The mobility

is high in the low-field region, then drops as the electrons begin to significantly

populate the second subband. The larger mobilities for wider tubes is attributed to

a smaller effective mass and a smaller scattering rate.
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Subband 1

Em
1 (n) =

πγ√
3n

[0.55eV]

m∗
1(n) =3me

nγ
(1 − .0044n+

gcd(n+1,3)−gcd(n−1,3)
n

) [0.068me]

α1(n) = 3
2γ (.3n− 1) [1.43]

η1(n) = ±η0 [±7]

Subband 2

Em
2 (n) = 2Em

1 (n)(1+
gcd(n−1,3)−gcd(n+1,3)

3n ) [1.18eV]

m∗
2(n) = m∗

1(n)(Em
2 (n)

Em
1 (n)+

5
n
[E

m
2 (n)

Em
1 (n) (gcd(n − 1, 3) − 1) − (gcd(n + 1, 3)− 1)]) [0.327me]

α2(n) = 3
2γ (.2n− 1) [0.64]

η2(n) = ±2(n− η0) [±6]

Subband 3

Em
3 (n) = 4Em

1 (n)(1+
1+2gcd(n+1,3)−3gcd(n−1,3)

4n ) [1.90eV]

m∗
3(n) = m∗

1(n)(Em
3 (n)

Em
1 (n)+

5
n [E

m
3 (n)

Em
1 (n) (gcd(n + 1, 3) − 1) − (gcd(n − 1, 3)− 1)]) [0.202me]

α3(n) = 3n2

300γ
[0.39]

η3(n) = ±2(2η0 − n) [±8]

Table 6.1: CNT Band Structure Properties. (Results for n=10 are shown in brackets

[]. Here η0 is 2n
3

rounded to the nearest integer, and gcd(x, y) is the greatest common

divisor of x and y. )
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Phonon Band Transfer Eo
p(ηp) (meV) ηp(n)

LA intrasubband-intravalley 0 0

LA− 1 intersubband-intravalley 1 ↔ (2, 3) 3000
8n

[38] ±1

LA− 2 intersubband-intravalley 2 ↔ 3 3000
4n [74] ±2

LAIV intersubband-intervalley 1 ↔ 1 158 ±2(n− η0)[6]

LAIV intersubband-intervalley 2 ↔ 2 158 ±2(2η0 − n)[8]

LAIV − 1 intersubband-intervalley 3 ↔ 3 158(1−12
n2 )[132] ±2(3n− 4η0)[4]

LAIV intersubband-intervalley 1 ↔ 2 158 ±η0[7]

LAIV intersubband-intervalley 1 ↔ 3 158 ±(4n− 5η0)[5]

LAIV intersubband-intervalley 2 ↔ 3 158 ±2(n− η0)[6]

Table 6.2: CNT acoustic phonon properties. (Results for n=10 are shown in brackets

[]. Here η0 is 2n
3

rounded to the nearest integer and Eo
p(ηp(n)) is the phonon energy

at qz=0. Intravalley modes show linear dispersion with a characteristic velocity of

υs=20 km/s.)
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Phonon Band Transfer Eo
p(ηp) (meV) ηp(n)

LO intrasubband-intravalley .200 0

LO intersubband-intravalley 1 ↔ (2, 3) 200 ±1

LO intersubband-intravalley 2 ↔ 3 200 ±2

LOIV intersubband-intervalley 1 ↔ 1 158 ±2(n− η0)[6]

LOIV intersubband-intervalley 2 ↔ 2 158 ±2(2η0 − n)[8]

LOIV − 2 intersubband-intervalley 3 ↔ 3 158(1+30
n2 )[190] ±2(3n− 4η0)[4]

LOIV intersubband-intervalley 1 ↔ 2 158 ±η0[7]

LOIV − 1 intersubband-intervalley 1 ↔ 3 158(1+ 30
2n2 )[180] ±(4n− 5η0)[5]

LOIV intersubband-intervalley 2 ↔ 3 158 ±2(n− η0)[6]

Table 6.3: CNT optical phonon properties. (Results for n=10 are shown in brackets

[]. Here η0 is 2n
3

rounded to the nearest integer and Eo
p(ηp(n)) is the phonon energy at

qz=0. LOIV modes show linear dispersion with a characteristic velocity of υs=50/n

km/s.)
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Figure 6.1: Zig-zag n=10 carbon nanotube, where T is the unit cell length.

197



k

kθ

K

1

2

1

2η=0

η=nη=-n

z

Figure 6.2: Brillouin zone for a zig-zag semiconducting CNT superimposed on

graphene k-space. (The example here is for an n=10 tube. The wavevector along

the tube axis and perpendicular to it are kz and kθ respectively. Two types of semi-

conductors are possible depending on if slice 1 or slice 2 gives bands closest to the

Fermi level. Type 1 is when the greatest common divisor gcd(n + 1, 3) = 3 and

type 2 is when gcd(n− 1, 3) = 3. The 2 dashed(- - -) lines for η = ±10 are for the

zone boundary and count as just one complete slice. The tube type labeling here is

distinct from the subband labeling used.)
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Figure 6.3: Band Structure for a n = 10 zig-zag CNT. ( Tight-binding band structure

(dash line) and the model subands (solid line) of Eq. (6.4) are shown. The inset is

for a n = 59 tube. These represent the range of CNT sizes simulated in this work. )
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tained and located at multiples of the wrapped symmetry vector �R.) b) Unwrapped

CNT unit cell.
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Figure 6.6: Room temperature scattering rate Γ as a function of electron energy for:

a) electron in band 1 of an n = 10 tube, b) electron in band 1 of an n = 59 tube, c)

electron in band 2 of an n = 10 tube, and d) electron in band 2 of an n = 59 tube.
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Figure 6.8: Simulated drift velocity vs. homogenous electric field for a number of

zig-zag CNTs with indices n. (Only acoustic phonon scattering is included here.

Both the high and low field results are shown in a), while b) focuses on the peaks

in the simulated drift velocity. Monte Carlo results are shown for type 1 tubes (- -),

where n+1 is a multiple of 3, and for type 2 tubes (—), where n−1 is a multiple of

3. The variation in the drift velocity between the two tube types is significant only

for the small tubes.)
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Figure 6.10: Simulated average electron energy and percent occupancy of subband

2 vs. electric field in a n = 10 and a n = 11 zig-zag CNT.
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SWCNTs with indices n= 10, 22, and 58 (symbols). The results of the mobility

model multiplied by the applied field are also shown (solid lines).
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Chapter 7

Conclusion

In this dissertation a study of silicon carbide and carbon nanotubes is presented.

Both are materials with potentially new applications in electronics. For each we

studied the material properties related to the transport electrons. This included

calculations of the electronic structure and the Monte Carlo simulation of electron

transport.

7.1 Silicon Carbide

The motivation for exploring the transport properties of SiC stems from its high

saturation velocity, high thermal conductivity and large breakdown voltage, which

leads to a wealth of potential applications in electronic devices operating at high
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temperature and high power. A new approach to the empirical pseudopotential

method (EPM) calculation of the band structure of SiC is presented which over-

comes the need for extensive experimental data. The method reduces the roughly

30 EPM fitting parameters needed to just two for 4H and one for 6H SiC. This

allows fitting to the limited amount of experimental data available for these poly-

types and the subsequent use of the EPM to calculate their band structure. A

means of fitting to experimental effective masses through a nonlocal correction is

also introduced. The procedure involves the construction of the empirical pseudopo-

tential of diamond phase Si and C from local-model potentials based on the Heine

and Abarenkov potential. These potentials successfully reproduce the experimen-

tal band energies around the band gap region using one fitting parameter for each

material. Once charge transfer is introduced, the potentials are then transferred to

the heteropolar polytypes of SiC and the local potential is fit to the experimental

band energies using just one local fitting parameter for each polytype. A nonlocal

correction, introducing a second additional fitting parameter, is then included to

fit the experimental effective masses of 3C and 4H SiC. Since reasonable agreement

with experimental effective mass measurements was obtained in 6H SiC with just

the one local parameter, the nonlocal correction was not used.

A study of high-field temperature-dependent electron transport in bulk 6H-SiC

is also presented. This investigation is carried out using a full-band Monte Carlo

method(FBMCM) simulator which is developed specifically for modeling SiC. Since

the effective mass is extremely large along the c-axis[32], transport was simulated

in the plane perpendicular to the c-axis. With a large number of highly anisotropic
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conduction bands close to the band edge, the transport properties of 6H-SiC is

highly dependent on the band structure. Here the full details of the multiband band

structure is included, using the model pseudopotential approach of Chapter 2. The

resulting band structure, was inputed into the FBMCM code, Using temperature-

dependent drift velocity measurements[90] and the FBMCM simulator, results for

the acoustic and intervalley optical deformation potentials were determined. The

fitted deformation potentials were found to compare well with experiments over a

wide temperature range. The number of conduction bands and band structure val-

leys needed for high field simulations was addressed. The first four conduction bands

are found to be significantly occupied in the saturation region at room temperature,

while only the first three are occupied at 600 K. The Γ valley is found to be sig-

nificantly occupied at large fields. The temperature dependence of the saturation

velocity and high field mobility was also determined from the Monte Carlo simula-

tions. The simulations showed that the drift velocity in the plane perpendicular to

the c-axis saturated at 1.71X107 cm/s at room temperature and at 1.05X107 cm/s

at 1000 K.

In Chapter 4 results for the surface band structure calculation of 4H-SiC and

6H-SiC was presented. This was carried out by solving for the electronic subband

levels and the electrostatic potential together self-consistently. The Brillouin zones

for a number of surface orientations were found and presented for the first time.

It was found that the conduction band edge for the (0110) and (0338) orienta-

tions was split into 2 distinct ladders. The effective masses parallel to the interface

were found to be similar in 4H-SiC for each orientations. This was not the case in
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6H-SiC although where considerable anisotropy was found.

In the case of the (1120) surface, two subband ladders where also found. these

two ladders were very similar in 4H-SiC, and were enfact similar to the one (0001)

ladder. This was not the case in 6H-SiC were each of the (1120) ladders were found

to be very distinct from the single (0001) 6H-SiC ladder. The behavior of (1120)

4H-SiC was unique at very low temperatures. In this orientation the two ladders

are so closely spaced, ≈ .01eV for the doping in Fig. 4.7(d), that both ladders are

occupied at very low temperatures. The (0001) orientation of 6H-SiC was found to

be very distinct from every other orientation considered. Here the inversion layer

electrons tend to reside very close to the oxide interface.

In Chapter 5 the surface band structure calculations were incorporated into

Monte Carlo simulations of electron transport in (0001) and (1120) 4H-SiC. With a

careful analysis of experimental data[11] for the (0001) orientation, analytical mod-

els for the free carrier and trapped carrier densities along with the threshold voltage

were extracted. The threshold voltage decreased with increasing temperature as

T−2. The trapped carrier density was very large at the (0001) 4H-SiC/oxide inter-

face. It decreased with increasing temperature. The free carrier density however

increased with increasing temperature. These trends are related to the increasing

trap density near the conduction band edge of 4H-SiC.

Upon simulation of the low-field mobility for the (0001) orientation, a 1/T

dependence was found, matching the experimental findings[11]. This was found to

be the result of both a decrease in the trapped charge density and an increase in

the screening of the trapped charge by the free electrons in the inversion layer.
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Procceding to simulate the (1120) surface of 4H-SiC, the simulated mobility far

exceeded the results for the (0001) orientation. This was due to a reduced density of

trap states. The result agreed well with experiments on the (1120) orientation[118].

Our results support the belief that a (1120) 4H-SiC/SiO2 should improve the prob-

lematic low mobilities of 4H-SiC inversion layers.

7.2 Carbon Nanotubes

Experiments have indicated that gated single-walled carbon nanotubes (SWCNTs)

act as tiny field-effect transistors[29]. The mechanism is believed to be the gate po-

tentials manipulation of a Schottky barrier at the nanotube/metal contact junction[156].

It is hoped that arrays of such FETs could be developed into integrated circuits that

could be used to perform computer logic[157]. The advantage would be the ability

to pack an enormous number of transistors into a small space, due to the small

dimensions of the nanotube.

Nanotubes could also however be used to supplement the existing silicon tech-

nology. In this case the apparently large mobility[123] of SWCNTs could be used to

produce fast electronic devices. One example is to embed a SWCNT into a silicon

MOSFET[35]. In such applications long nanotubes could be used, and a semiclas-

sical picture of electron transport developed. The work in Chapter 6 was aimed

at developing such a semiclassical transport picture. Models for the electronic en-

ergy spectrum and the phonon energy spectrum as a function of tube index were

developed. Only semiconducting zig-zag tubes where considered.
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Monte Carlo simulations indeed showed large mobilities in the low-field region.

Increasing with tube index n for tube with diameters in the range of approximately

0.8-4.6nm .This was the result of a decrease in the effective mass and an increase

in the linear mass density as n increased. The simulations showed mobilities on the

order of experiments[123, 30]. Also large drift velocity peaks reaching 5x107cm/s

were simulated. After the peak, negative differential mobility (NDM) was observed.

These effects were found to result from the increase in effective mass as electrons

are transferred from subband 1 to subband 2 with increasing field. This is the

first prediction of such a transferred electron effect NDM in carbon nanotubes. It

is believed that electronic device applications, such as oscillators, may result from

such an effect.
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Appendix A

Model Pseudopotential

A.1 Theory of the Atomic Pseudopotential

The choice of a successful band structure method to attain the electronic structure

of a crystalline solid, depends on how strongly the valence electrons interact with

the atomic cores of the crystal. The core consists of the nucleus and the tightly

bound electrons. If electrons interact strongly with the cores, then the electronic

wavefunctions will be similar to the atomic wavefunctions and a band structure

method such as the tight-binding method would be appropriate. In cases where

the electrons stay out of the atomic cores, then a plane wave band structure

method would typically be more appropriate.

The pseudopotential band structure method (PM)[43] falls into the relm of plane
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wave methods where the electron-core interaction is considered to only weakly

impact the electronic structure. The electron-core interaction can therefore be

simplified. In the PM the atomic core is assumed to be frozen in an atomic-like

configuration, and is represented as an ion. To built into the formalism the lack of

valence electron density within the core, a fictitious repulsive force Vr is included

within the core. This could be interpreted as an overestimation of the repulsive

force between the core electrons and the valence electrons. The calculation of the

electronic structure is simplified by the addition of this force since it allows the use

of a smooth potential and wavefunction in the core region. These are the

pseudopotential and the pseudowavefunction, and differ from the real potential

and real wavefunction only in the core. The primary concern within the core then

becomes the adjustment of the boundary conditions, which influences the valence

electron wavefunction outside of the core.

The form of the fictitious repulsive potential can be realized with the use of the

orthogonal-plane-wave method. Here the purpose is also to smooth the core

potential. The real wavefunction is expected to be smooth outside of the core and

rapidly oscillating inside the core where it will assume a form orthogonal to the

core states due to c electron-electron interactions. This can be represented as

ψ = φ−∑
t

< φt|φ > φt, (A.1)

where φ is a smooth function and φt are the occupied core states. The expansion

coefficients of the φt states are fixed by requiring the weak increase of υmax
d with n

is related to the increase of the conduction velocity of the first subband. Also Fc
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increases as the phonon scattering increases and is approximately proportional to

D2/n.

ψ be orthogonal to these core states.

Now assuming Hψ = Eψ and Hφt = Etφt, and operating on the wavefunction

with the Hamiltonian

H =
p2

2m
+ V a

c + V a
r , (A.2)

the result is [
p2

2m
+ V C + V R

]
φ(�r) = Eφ(�r). (A.3)

Here V C is the crystal potential and V R is the pseudizing repulsive potential of the

atomic core:

V R(�r, �r′) =
∑

t

[E −Et] |φt(�r′) >< φt(�r)| =
∞∑
l=0

V R
l (r)|lm >< lm′|, (A.4)

where in the notation we will use, there is a sum over m and m′ from −l to l.

Notice that V R is energy dependent and nonlocal, depending not only on the

valence electron’s coordinate, but also the spatial distribution of the core states.

The sum over core states becomes a sum over their orbital angular momentum

components and the nonlocality its determined by the quantum number l. The

repulsive potential V R is made strong enough to nearly cancel V C within the core

allowing φ, the pseudowavefunction, to be represented as a sum of low frequency

plane waves. This potential also fixes the boundary conditions at the edge of the

core so that the real band structure energies E are obtained.

The total potential including the repulsive term is the pseudopotential

V (�r, �r′) = V C(�r) + V R(�r, �r′) = V L(�r) + V NL(�r, �r′). (A.5)
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Here the local potential V L contains the crystal potential V C plus the local part of

V R. The term V NL is the nonlocal correction. It is usually desirable to use an

energy independent and local potential. This is possible when the realm of valence

electron energies of interest are much larger than the energy of the core states, so

that E −Et can be assumed constant, and the cancellation at different values of l

is the same. In such cases V R is treated in a local approximation plus a small

nonlocal correction V NL.

The full atomic potential[50, 51, 52] consists of interactions with the ions,

including the nucleus and core electrons, the valence electrons considered as a

uniform density free-electron gas, and the potential due to a 1st order screening

correction to the uniform density of the valence electrons. This can be written

V = [Vh + Σx + Σc]
i + [Vh + Σx + Σc]

b + [Vh + Σx + Σc]
screening +

[
Σi+b

c − Σi
c − Σb

c

]

(A.6)

The first bracketed term is the ion potential including the average

potential(Hartree h) along with the exchange(x) and correlation (c) potentials of

the ion. The second term is for the valence(band) electrons while the third term is

the screening term which will be included through the dielectric constant and

nonlocal screening. The final term is a correction due to the nonadditivity of the

correlation potentials.

Due to the translational symmetry of the lattice, the Fourier sum of the

pseudopotential involves reciprocal lattice vectors �G only. For the local potential
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we have

V L(�r) =
∑
�G

V L( �G)ei �G·�r (A.7)

Here the Fourier coefficient is

V L( �G) =
∑
α

Sα( �G)V L
α ( �G), (A.8)

with the sum over each atomic species α present. Within this sum, V L
α ( �G) is the

Fourier transform of the atomic potential of an atom of type α. The structure

factor, S, is

Sα( �G) =
1

Nα

∑
cellj

∑
�τα

e−i �G·( �Rj+�τα), (A.9)

where the sums are over every unit cell j in the lattice and the basis vectors of

species α. Nα is the total number of atoms of species α in the lattice, and �Rj is

the position of the jth unit cell. This can be simplified using the relation

∑
cellj

e−i �G· �Rj = Nj, (A.10)

where Nj is the number of unit cells in the lattice. The structure factor then

becomes

Sα( �G) =
1

nα

∑
�τα

e−i �G·�τα , (A.11)

with nα then total number of atoms of species α in the unit cell. The problem of

finding the sum of potentials for each atom in the crystal has now been reduced to

finding the potential of the unit cell.

The atomic potentials in Fourier space can be evaluated from the real space

atomic pseudopotential according to

V L
α ( �G) =

1

Ωα

∫
Ωα

V L
α (�r)e−i �G·�rd3r (A.12)
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where Ωα is the atomic volume and Vα(�r) is the atomic pseudopotential of species

α.

So far we have been considering only the local potential, but the formalism for the

nonlocal potential is the same, except that the nonlocal Fourier transform

V NL
α (�k + �G1, �k + �G2) =

1

Ω2
α

∫
Ωα

d�r
∫
Ωα

d�r′V NL
α (�r, �r′)e−i[(�k+ �G1)·�r+(�k+ �G2)·�r′], (A.13)

is used. Here �G= �G2- �G1, and the Fourier sum is over �G. Now we will consider the

Fourier transform of the total potential, V ( �G), which contains both local and

nonlocal components.

For diamond(AN ) or zinc-blende(ANB8−N ) phases, the Fourier transform of the

pseudopotential is represented in terms of symmetric, V S, and antisymmetric, VA,

parts of the A and B atomic potentials

V ( �G,�k) = V S( �G,�k)cos( �G · �τ) + iV A( �G,�k)sin( �G · �τ) (A.14)

where

V S( �G,�k) =
VA( �G,�k) + VB( �G,�k)

2

V A( �G,�k) =
VA( �G,�k) − VB( �G,�k)

2
(A.15)

Now the phase space potential can be found by determining the Fourier transform

of the atomic potential. This involves a number of components as seen in Eq. (A.6

). In the following sections we will discuss in detail the different components of the

atomic potential Vα( �G,�k).
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A.2 Model for the Atomic Ion Pseudopotential

Here we will concentrate on the ion potential, V i in Eq. (A.6 ), which was

calculated using the nonlocal model potential of Heine-Abarenkov. In this model

the bare core potential is represented as a sum of angular-momentum-dependent

square wells extending over a nonlocal core of radius Rl within which valence

electrons interact with the core electrons. As a first approximation, the model

parameters for each semiconductor atom were taken from the Heine-Animula

metallic values. These results were obtained by comparison of the model potential

well depths, Al, with the experimental energy levels of the corresponding free ions.

Taking into account their energy dependence, metallic values were then obtained

by extrapolating from the free ion energy to the corresponding equivalent energy

relative to the Fermi level of the metal. An approximation to the metal values was

thus obtained by fitting to atomic spectroscopic data. For simplicity,

Heine-Animula considered the metallic square wells to be energy independent with

the same radius, R, used for each. Here this restriction is not invoked, so that

l-component of the ion potential has a characteristic well radius of Rl. The model

potential is:

V i
α =

l=∞∑
l=0

V i
l |lm >< lm′|, (A.16)

where

V i
l (�r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Al r <= Rl

−Z
r

r > Rl

(A.17)

Here Z is the number of valence electrons of the α atomic species. The relevant

members of the sum will only involve the l values of the unexcited valence and
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core electrons. As is evident from the Phillips-Kleinman cancellation theorem,[54]

these are the angular-momentum components that will be canceled in the core to

produce a smooth pseudopotential. HA argued that higher harmonics would

produce pseudowavefunction nodes within the core. Such structure in the

pseudowavefunction would be incompatible with the concepts of the

pseudopotential method. For Si and C, we will therefore not need to include

members of the sum for l > 1. Based on the cancellation theorem, these

unnecessary angular-momentum components of the potential should all be roughly

the same size. They can therefore all be removed from the sum by removing the

l = 2 component as an average. The l = 2 well then forms the local potential. The

potential will then be

V i
α = V i

2 +
l=1∑
l=0

[Al − A2] |lm >< lm′| (A.18)

where V i
l (r) − V i

2 (r) = (Al −A2)Θ(Rl − r), with Θ(Rl − r) the heavy side step

function. Here the second term represents the nonlocal correction in Eq. (A.5).

The radii Rl and potential well depths Al are parameters that can be fit to

experimental data by varying these parameters from those obtained by Heine and

Abarenkov.

An example for Carbon is shown in Fig. A.1. Here the full flexibility of the model

potential is invoked, and each l-component of the ion potential has an independent

radii Rl. This can be used to obtain an accurate band structure for carbon using

only 125 plane waves, reproducing the results of all-plane-wave methods. In

Chapter 2 of this dissertation, we used the same radius for every l-component of
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Figure A.1: Ion Pseudopotential for Carbon

the carbon core potential to limit the number of fitting parameters needed to

construct the SiC model potential.

As mentioned, the local atomic pseudopotential for the ion of species α is given by

the l=2 term in Eq. (A.16). The result is

V L
α ( �G) =

1

ΩG

∫
V2(�r)e

i �G·�rd3r =
4π

ΩG

∫
V2(�r)r sin (Gr)dr

=
4π

ΩG

[
AlR2 cos (GR2)

G
− Al sin (GR2)

G2
− Z cos (GR2)G

]
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=
−8πZ

ΩG2

[(
1 − AlR2

Z

)
cos (GR2) +

Al

ZG
sin (GR2)

]
(A.19)

The nonlocal correction for the ion potential is

V NL
α (�r, �r′) =

1∑
l=0

(Al − A2)Θ(Rl − r)δ(r − r′)Ylm(θ, φ)Ylm′(θ′, φ′). (A.20)

Here again we do not explicitly include the sums over m and m′ from −l to l. Now

to determine the Fourier transform of Eq. (A.13), the following spherical

harmonics expansion is used:

ei �K1·�r = 4π
∑
l1m1

(il1)jl1(K1r)Y
∗
l1m1

(θ �K1
, φ �K1

)Yl1m1(θ, φ). (A.21)

The Fourier transform of the nonlocal correction to the atomic potential then

becomes

V NL
α ( �K2, �K1) =

∑
l

4π(2l + 1)Pl(cos θ �K1, �K2
)Λl(K1, K2). (A.22)

where

Λl(K1, K2) =
1

Ωα

∫ Rl

0
jl1(K1r)jl2(K2r)Vl(r)r

2dr. (A.23)

Here we have used the addition theorem

∑
mm′

Y ∗
lm(θ �K1

, φ �K1
)Ylm′(θ �K2

, φ �K2
) =

2l + 1

4π
Pl(cos θ �K1, �K2

) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1/4π, l = 0

3/4π cos θ �K1, �K2
, l = 1

(A.24)

For l, the cosine of the angle between �K1 and �K1 must be included according to

equation (35). This becomes

cos θ �K1, �K2
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 − ( �K2− �K1)

2

2K2
1

)
, K1 = K2(

K2
2+K2

1−( �K2− �K1)
2

2K1K2

)
, K1 �= K2

(A.25)
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The term Λl(K1, K2) is solved by integration by parts for the cases K2 = K1 and

K2 �= K1 separately.

The result forK1 = K2 is:

Λ(K1, K2, q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−(A0−A2)R3
a

Ωa

[
j2
0(K1Ra) − cos (K1Ra)j1(K1Ra)

K1Ra

]
, l = 0

−(A1−A2)R3
a

Ωa
[j2

1(K1Ra) − j0(K1Ra)j2(K1Ra)] , l = 1

(A.26)

and for K1 �= K2 have:

Λ(K1, K2, q) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−2(A0−A2)R2
a

Ωa[K2
2−K2

1 ]
[K1j1(K1Ra)j0(K2Ra) −K2j1(K2Ra)j1(K1Ra)] , l = 0

−2(A1−A2)R2
a

Ωa[K2
2−K2

1 ]
[K1j2(K1Ra)j1(K2Ra) −K2j2(K2Ra)j1(K1Ra)] , l = 1

(A.27)

where the j’s are the spherical Bessel functions.

A.3 Model for the Atomic Orthogonality Hole

Correction to the Band Potential

The band or valence electron potential V b in Eq. (A.6) is considered to be uniform

in space and is therefore neglected since it will only scale the electron energies. An

orthogonality hole correction is however included onto the uniform Hartree band

potential. This occurs due to the overestimation of the density of valence electrons

in the core in the pseudopotential method. The real wavefunction will be highly

structured in the core reducing the probability-density amplitude as opposed to

that of the pseudowavefunction which is smooth in the core. Unlike the

uncorrected Hartree band potential, the orthogonality correction is not uniform.

In the core it is positive and attractive owing to the overestimation of charge
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density there by the pseudopotential method. Outside of the core it is zero.

A correction to the band exchange potential is also included. This potential is also

only nonzero in the core but will be negative and repulsive since exchange is

attractive. The two orthogonality hole corrections can be combined, approximating

the exchange as 1/2 of the Hartree correction as might be expected when dealing

with uniform densities. The orthogonality hole charge density in the core is then

n(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2Zα
Ωc

= Z
Ωc

(
Rc

Ra

)3
r <= Rc

0 r > Rc

(A.28)

Here Rc is the radius of the core for a given atomic species ignoring its weak

angular-momentum dependence. Also Ωc is the core volume corresponding to Rc.

The potential due to the orthogonality hole is local and is represented by the

expression:

Voh(G) =
−4πn(G)

G2
=

−8πZα

ΩcG2Ωa

∫
r sin (Gr)dr

=
−24πZα

ΩaG3R3
c

[sin (GRc) −GR cos (GRc)] (A.29)

A.4 Model for the Atomic Correlation

Correction

In this section the model potential for the correction in Eq. (A.6) due to the

nonadditivity of the correlation potentials within the ion and band model

potentials is detailed. Since the correlation potential depends on the electron
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density, we can write

V cc =
[
Σi+b

c − Σi
c − Σb

c

]
= µc(ni + nb) − µc(ni) − µc(nb). (A.30)

The result must be considered within and outside of the core since inside the core

n = ni + nb 	 ni and outside of the core n = nb. Therefore

V cc(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−µc(nb) = −Ec r <= Rc

0 r > Rc

(A.31)

The correlation correction potential then becomes the Fourier transform of a

square well of depth −Ec, the correlation strength, and radius Rc

V cc(G) =
4πEc

ΩcG3
[sin (GRc) −GR cos (GRc)] (A.32)

A.5 Screening of Ion Potential

The bare local local potential is screened by a dielectric function appropriate for

semiconductors. The Penn dielectric function[56]

ε(G;Eg) = 1 +

[
h̄ωp

Eg

]2 [
1 − Eg

4EF

]
[
1 + EF

Eg

(
G

EF

)2√
1 − Eg

4EF

]2 (A.33)

is used, where EF is the Fermi energy, ωp the plasma frequency, and Eg is a band

gap parameter determined by the G→ 0 limit

Eg =
h̄ωp√
ε(0) − 1

(A.34)

This will screen the bare local ion potential according to

V L
α ( �G) =

V L
α ( �G)

ε(G;Eg)
(A.35)
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Screening of the nonlocal potential is included through the use of Sham and

Ziman’s screened self-consistent potential[52]. With q=| �K2 − �K1|, this can be

approximated as

I( �K1, �K2) =
4πe2

Ωαq2

(1 − f(q))

ε(q;Eg)

∑
K1<KF

[
V NL

α + (V NL
α )∗

]
E(K1) −E(K2)

(A.36)

or

I( �K1, �K2) = −8πm∗

Ωαq2

(1 − f(q))

ε(q;Eg)

8π

Ωα

1∑
l=0

(2l + 1)(Al − A2)R
2
lHl, (A.37)

where m∗ =
meff

me
, and the relation me

h̄2 = 1
aoe2 = 1

e2 in a.u. is used. Also the Kl are

given by

Hl =
2Ωa

(2π)3

∫
K1<kF

2 [K1jl+1(K1Rl)jl(K2Rl) −K2jl+1(K2Rl)jl(K1Rl)]Pl(cos Θ �K1, �K2
)d �K1

(K2
1 −K2

2 )
2

(A.38)

and the screened exchange term factor, including the scattering wavevector

ks = 2kF

π
is

f(q) =
q2

2 (q2 + k2
F + k2

s)
(A.39)

A.6 Fourier Transform of the Complete Atomic

Pseudopotential

The screened atomic pseudopotential can thus be represented as

Vα(�k+ �G1, �k+ �G2) =
V L

α ( �G2 − �G1)

ε( �G2 − �G1))
+I(�k+ �G1, �k+ �G2)+V

NL
α (�k+ �G1, �k+ �G2). (A.40)
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The total bare local potential V L
α includes the contributions from the local ion,

correlation, and orthogonality hole potentials. The result is

V L
α (G) =

−8πZ

ΩαG2

[(
1 − AlR

Z

)
cos (GR) +

Al

ZG
sin (GR)

]

+

[
4πEc

ΩcG3
− −24πZα

ΩαG3R3
c

]
[sin (GRc) −GR cos (GRc)] (A.41)

where G = | �G2 − �G1|.
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