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Abstract. We discuss iterative methods for solving the algebraic systems of equations arising from
linearization and discretization of primitive variable formulations of the incompressible Navier-Stokes
equations. Implicit discretization in time leads to a coupled but linear system of partial differential
equations at each time step, and discretization in space then produces a series of linear algebraic
systems. We give an overview of commonly used time and space discretization techniques, and we
discuss a variety of algorithmic strategies for solving the resulting systems of equations. The emphasis
is on preconditioning techniques, which can be combined with Krylov subspace iterative methods. In
many cases the solution of subsidiary problems such as the discrete convection-diffusion equation and
the discrete Stokes equations plays a crucial role. We examine iterative techniques for these problems
and show how they can be integrated into effective solution algorithms for the Navier-Stokes equations.

1. Introduction. Our objective is to compute solutions of incompressible flow
problems modelled by the Navier-Stokes equations in a flow domain © ¢ IR? (d=2
or 3) with a piecewise smooth boundary 0€:

811 2 .
(1.1) E—I—u-Vu—VVu—I—Vp =0 mW=Qx(01)
(1.2) V-u = 0 in W.

together with boundary and initial conditions of the form

(1.3) u(x,t) = g(x,t) on W = 0Q x [0,T];

(1.4) u(x,0) = up(x) in Q.

Our notation is standard: u is the fluid velocity, p is the pressure, v > 0 is a specified
viscosity parameter (in a non-dimensional setting it is the inverse of the Reynolds
number), and 7" > 0 is some final time. The initial velocity field ug will be assumed
to satisfy the incompressibility constraint, that is, V- ug = 0. The boundary velocity
field satisfies [, g -nds = 0 for all time ¢, where n is the unit vector normal to €.
We also assume that the pressure solution is uniquely specified e.g. by insisting that
its mean value is zero.

If g is independent of ¢ then the usual objective is simply to compute steady-
state solutions of (1.1)-(1.2). In other cases however, time-accuracy is important
and the requirements of the time discretisation will be more demanding; specifically,
an accurate and unconditionally stable time-discretisation is necessary to adaptively
change the timestep to reflect the dynamics of the underlying flow. Two classes of time
discretisation scheme are described below, operator splitting methods and linearised
implicit methods.
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1.1. Operator splitting Methods. One attractive approach ensuring stabil-
ity and high accuracy is to decouple the convection and incompressibility operators
using an “alternating-direction” splitting; see Glowinski & Dean [5]. Assuming uni-
form timesteps At = T'/n for ease of exposition, the simplest two-stage (Peaceman-
Rachford) scheme [39] is given below.

ArGoRrITHM 1.1. Given u°, 6 € [0,1], a € (0,1), 8 € (0,1), find ut,u?, ..., u®
via
w'tl —un 2 9 9 2
—aAt arVi*u" o V"t = pgrvia" - Vp" in Q,
(1.5) ut? = g™’ onoq.
un—l—l _ un—|—€ 0 0
W — foViumt L vprtt = V" — ut V't
V.ou"tt = 0 in Q,
(1.6) utt = g"t! on9Q.

In practice the choice of parameters is restricted; the splitting of the diffusive
terms must be done consistently i.e. a + 8 = 1, and the “frozen” velocity in the
convective term must be divergence free i.e. V-u* = 0, otherwise the skew symmetry
of the convective term will not be preserved. Another important consideration with
regard to the choice of u* is the linearity, or otherwise, of the equation systems that
must be solved at each time level. In particular, the natural choice of u* = u” gives a
linear method but in this case the accuracy is only first order. Second order accuracy
can be achieved by setting u* = u”*?, but in this case a nonlinear convection-diffusion
problem (1.5) must be solved at every time level, in addition to the generalised Stokes
problem (1.6).

The Peaceman-Rachford splitting method has one drawback (see [5] and [46]),
namely, that it is not asymptotically stable when applied to the standard model prob-
lem with an exponentially decaying solution. Thus we can expect any implementation
of Algorithm 1.1 to perform poorly if the time-step is not small enough when the
underlying flow exhibits fast transient behaviour. In addition, the methodology is not
well suited to computing steady-state flow solutions by “pseudo-timestepping” with
large timesteps. Motivated by these observations, Glowinski [5] proposed a three-stage
variant of the Peaceman-Rachford scheme which has all the good features of the orig-
inal method whilst retaining stability in the asymptotic limit At — oo. The resulting
method is commonly referred to as “Le #-scheme”.

ALGoriTHEM 1.2. Given u°, 8 € (0,1/2), a € (0,1), 8 € (0,1), find u', u?, ...,
u” via

un—|—€ —u”
IAL — Vit L vyttt = Buviet — u” - V"
v.outt = 0 in Q,
(1.7) 't = g™t onoq.

un—l—l—@ _ un—|—€ 1
oA VT
u - Vot = apviat — vttt in Q.

(1.8) u =l = g t=l o 9.



un—l—l _ un—l—l—@
- Vil 4

fAt
Vil = uvie =l _ g gt
V.ou"tt = 0 in Q,
(1.9) utt = g"t! on9Q.

The nonlinear scheme u* = u"*+'=% is considered in [5], and requires the solution

of two generalised Stokes problems (1.7),(1.9), and one nonlinear convection-diffusion
equation (1.8) at each time step. In this case, either choosing a=3 = 1/2 or else setting
6 =1—1/v/2 with a 4+ 8 = 1 gives second order accuracy as At — 0. In particular,
setting # = 1 —1/v/2, a = (1-260)/(1—6) and 3 = /(1 — 0) gives a method which is
second order accurate in time, unconditionally stable, has good asymptotic properties
and has commonality between the coefficient matrices at the various substages, see [5].
The unconditional stability of the scheme in an incompressible Navier-Stokes setting
was established by Klou¢ek & Rys [31].

In [46] a linear #-scheme is developed which retains second order accuracy (setting
u* = u"t? in Algorithm 1.2 reduces the accuracy to first order). The key here is to use
an appropriate combination of the two convection matrices when freezing the velocity
in Algorithm 1.2, viz:
(1.10) ut = 200 1u” + #u”"’e.
In this case a linear convection-diffusion problem (1.8) must be solved at each time
level. Furthermore, the results in [46] show that the accuracy of the resulting method
"9 badly impinges on

is not compromised. In contrast, making the choice u* = u
accuracy as At — 0.

Summarising the discussion of splitting methods; both the two-stage Algorithm 1.1
in the case of small At, and the three-stage Algorithm 1.2 in general, give accurate
time discretisation of the Navier-Stokes problem (1.1)-(1.4). In sections 3 and 4
that follow we describe how the component Stokes and (linear) convection-diffusion
sub-problems may be solved efficiently using contemporary preconditioned Krylov
subspace iteration methods. The spatial discretisations of the convection-diffusion
and Stokes subproblems which arise above are discussed in section 2.

If v is small then an efficient alternative to operator-splitting is to use the “char-
acteristics” of the associated hyperbolic problem (looking backwards in time to ensure
stability), see Douglas & Russell [6]. Using this approach a single Stokes problem of
the form (1.6) must be solved at every time-level so the discussion in section 4 is also
relevant to this class of methods.

1.2. Linearised Implicit Methods. The simplest time-stepping approach for
the Navier-Stokes equations is a simple one-stage finite difference discretisation. A
generic (and unconditionally stable) algorithm (cf. Algorithms 1.1 and 1.2) is given
below.

ArGoriTEM 1.3. Given u®, § € [1/2,1], find u', u?, ..., u” via

(un—l—l _ un)

N +u*- Vun-l—é’ _ l/v2un+6’ n Vpn-l-@ -0
V.out? = 0 inQ,
(1.11) ut’ = g™’ onoQ.



Here u™t? = gu™*! + (1 — #)u” and p"+? = Gp"*+! + (1 — 6)p". Note that p° is
required if § # 1 so the Algorithm 1.3 is not self-starting in general. In this case an
approximation to p” must be computed explicitly by manipulation of the continuum
problem, or alternatively it must be approximated by taking one (very small) step of
a self-starting algorithm (e.g. with # = 1 above).

Algorithm 1.3 contains the well known nonlinear schemes of backward Euler and
Crank-Nicolson. These methods are given by (u"t? = uw"t!, w* = uw't!), (v’ =
u”"'%, ut = u”"'%), and are first and second order accurate respectively. In either
case, a nonlinear problem must be solved at every time-level. As a result neither
of these methods is to be recommended if time-accuracy is needed. A well known
linearisation strategy is to set u* = u” above. This does not affect the stability
properties of the time-discretisation, but it does reduce the Crank-Nicolson accuracy
to first order as At — 0 (the first order accuracy of backward Euler is unchanged). To
retain second order accuracy in a linear scheme the Simo-Armero scheme [45] given
by setting u"t® = uts with u* = (3u™ —u""1)/2in Algorithm 1.3 is recommended.

Using linearised backward Euler (or the Simo-Armero scheme) a frozen-coefficient
Navier-Stokes problem (or Oseen problem) arises at each discrete time step. In con-
trast to the operator splitting case, the Oseen methodology is primarily of inter-
est when solving steady-state problems—the linearised backward Fuler method is
uniquely well suited to pseudo-timestepping since it inherits the long term asymptotic
dissipative behaviour of (1.1)~(1.2), see [45] for details. Alternatively, attacking the
steady state version of (1.1)~(1.2) directly introduces a (steady-state) Oseen system
at every iterative level. In section 5 we consider techniques for solving such Oseen

problems using preconditioned Krylov subspace methods.

2. Spatial discretisation. In this section, the spatial discretisation of the sub-
problems arising from the operator splitting methods in section 1.1 are discussed. For
simplicity, we only consider the steady-state limit of the linearised convection-diffusion
and Stokes sub-problems here; for example, as would arise from setting At — oo in
(1.5) and (1.6) respectively.

2.1. The linearised convection-diffusion problem. The problem addressed
here is the following: Given some convective velocity field (or “wind”) w € TR? such
that V-w = 0, find a scalar variable u (the transported quantity) satisfying

(2.1) ~ Wi+ w-Vu=f in Q,

with a boundary condition u(x) = g(x) on 9€. In practice, for example when solving
(1.5), the “wind” is not actually pointwise divergence-free. Our discussion is still
relevant in such cases—our starting point is then an equivalent formulation of the
momentum conservation equations (1.1), with the convection term expressed in skew-
symmetric form, see [45] for details.

Simple finite difference methods are often appropriate when spatially discretis-
ing the model problem (2.1)), especially if the geometry is straightforward and “fast
solution” is the goal. Alternatively, if the flow domain is irregular or if adaptive re-
finement via a posteriori error control is to be included, then finite element spatial
approximation is best. The theory underlying finite element approximation of (2.1) is
summarised for completeness below. For further details, see for example, Quarteroni

& Valli [40].



The weak formulation of (2.1) is defined in terms of the Sobolev space H}() (the
set of functions with derivatives in L?(2) and which are zero on 9Q). Defining the
space X = H}(Q), it is easy to see that the solution u satisfies

(2.2) a(u,v) = (f,v) Vo e X,

where a(-,-) is the bilinear form a(u,v) = v(Vu,Vv)+ (w - Vu,v), and (-, ) denotes
the usual scalar L%(Q) inner product.

Since  is bounded and w is divergence-free, the bilinear form a(-,-) is coercive
and bounded over X

(2.3) alu,u) = v||Vul® Yu € X,
la(u,v)] < Cw [|Vul|||Vo]] Vue X, Vv e X,

and the continuity constant Cyy is given by
Cw = v+ Ca||wllpe (g

where (Cq is the Poincaré constant associated with ). Existence and uniqueness of
the solution to (2.1) then follows from the Lax-Milgram lemma.

To generate a discrete system we take a finite dimensional subspace X, C X,
where h is a representative mesh parameter, and enforce (2.2) over X},. Specifically,
we look for a function uj such that uj = ¢, on 92, which solves

(2.5) a(up,v) = (fu,v) Vv € Xy,

where f;, is the L?(Q) orthogonal projection of f into X, and gj is typically the
interpolant of of the boundary data g.

Since we are using a conforming approximation, uy is also uniquely defined, and
if g =0, (2.3) and (2.4) imply the following a priori error estimate

CW .
. - < — )|
(2.6) IV (u =)l < == inf [[V(u—0)

Although the finite element approximation in (2.6) is of optimal order as h — 0,
the stability clearly depends on the ratio C'w/v. In general, oscillatory solutions are
observed if the characteristic “mesh Peclet number” is large, i.e.

hllwl|
2v

P. = > 1,

for example, if there are any boundary layers which are not resolved by the mesh. In
general, when convection dominates, the discrete solution “inherits” instability from
the associated solution of (2.2).

An alternative to adaptive mesh refinement is to “ignore” physical boundary lay-
ers, and to stabilise the discrete problem; e.g. using some form of upwinded discretisa-
tion. In a finite element setting this is conveniently achieved using a Petrov-Galerkin
framework [27, 28] with a “shifted” (non-conforming) test space, say,

(2.7) a(up,v+ow-Vo)=(fr,v+ 6w -Vov)  Vve Xy,



where 6 is an appropriately chosen stabilisation/upwinding parameter, see below. Tak-
ing a standard element-wise evaluation of the non-conforming term, and using a lin-
ear Py (or (J1) approximation space, the formulation (2.7) simplifies to the so-called
streamline-diffusion method

(2.8) b(up,v) = alup,v)+ (w-Vup, 6w -Vo)=(fr,v+éw-Vov)  Vove X,

This formulation clearly has better stability properties than the original since there is
additional coercivity in the local flow direction,

(2.9) b(u,u) = v ||Vul)® + 6||w - Vul|* Yue Xp.

Another appealing feature of the stabilised formulation (2.7) is that it is consistent—
the exact solution of the differential equation (2.1) satisfies (2.7). This means that
high order approximations (Py or @ for k& > 2) can be used without compromising
accuracy.

Returning now to the choice of 4, it is possible to show that the solution of (2.7)
satisfies the “best possible” error estimate (for any degree of polynomial approxima-
tion), under the assumption that ¢ in (2.7) is of the form

ah

(2.10) 6=—— forall P. > 1.
Il

Here oo > 0is a “tuning parameter”, and h is the usual representative mesh parameter.
For a more complete discussion, and a review of the error analysis of the streamline
diffusion method, see [28]. Note that if the discretised problem is diffusion-dominated
(i.e. P. <1) then the corresponding “best” choice above is § = 0, in which case (2.7)
reduces to the standard Galerkin formulation (2.5).

In practice, determining an appropriate choice of a in (2.10) is crucial. (This
issue will also arise when we consider stabilised Stokes formulations below). There are
two aspects to consider here: firstly, it very easy to over-stabilise giving smooth but
inaccurate solutions, secondly, the performance of iterative solvers applied to (2.8) will
clearly be influenced by the choice of parameter. This second aspect will be an issue
in section 3, where some experiments are presented for a model problem with constant
“wind” w, solving (2.5) and (2.7), using uniform grids of bilinear finite elements. (The
associated software is freely available, see section 6 for details.) If the wind is constant,
then an optimal value is known (from Fourier analysis) o* = 1/2(1 — 1/P.), which
minimises the contraction rate of iterative solvers applied to (2.8), see [17] for further
details. Note that o™ — 0 as P, — 1 so that “stabilising” the standard method is
likely to adversely affect the convergence of iterative solvers if the discrete problem is
diffusion dominated.

2.2. The Stokes problem. Here we consider the following problem: find the
velocity vector u € IR? and the scalar p (the “pressure”) satisfying

(2.11) ~Vu+Vp = f in Q
(2.12) Veu = 0 in Q,

with specified velocity boundary conditions

(2.13) u(x) = g(x) on 0Q.



Note that in (2.11)—(2.12) the viscosity coefficient v has been incorporated into the
definition of the forcing function and the pressure.

The theory underlying the solution of (2.11)—(2.13) using finite element methods
is outlined below. For full details see Girault & Raviart [21]. The weak formulation
of (2.11)=(2.12) is defined in terms of the Sobolev spaces H}(Q) and L3(Q) (the set
of functions in L?(Q) with zero mean value on Q). Defining a velocity space X =
(H(92))? and a pressure space M = L3(1), it is easy to see that the solution (u,p) of
2.11)-(2.12) satisfies

2.14
2.15

(
(2.14) (Vu,Vv)—(p,V-v) = (f,v) WweX

(2.15) (V-w,q) = 0 VgeM,

where (-, -) denotes the usual vector or scalar L%(Q) inner product. Since £ is bounded
and connected there exists a constant x satisfying the continuous inf-sup condition:

&
(2.16) sup (P, V- w) > klplly Ve M.

?
wex Iwlix

Existence and uniqueness of solution follows, see [21].

To generate a discrete system we take finite dimensional subspaces X C X and
My, C L*(Q), where h is a representative mesh parameter, and enforce (2.14)—(2.15)
over the discrete subspaces (again specifying that functions in M} have zero mean to
ensure uniqueness). Specifically, we look for functions u, and p, such that

(2.17) (Vu,,Vv) — (pn,V-v) = (£,v) Vv e Xy,
(2.18) (V . uh,q) = 0 Vg € My,

Here, f;, is the (L2(2))? orthogonal projection of f into X,.

The well-posedness of (2.17)—(2.18) is not automatic since we do not have an in-
ternal approximation (i.e. functions satisfying (2.18) do not necessarily satisfy (2.15)).
A sufficient condition for the existence and uniqueness of the solution to (2.17)—(2.18)
is that the following discrete inf-sup condition is satisfied: there exists a constant =
independent of h such that

(2.19) sup P,V w)

> 7lpll Vp € M.
weX, [IVwl]]

Note that the semi-norm ||Vwl|| in (2.19) is equivalent to the norm ||w]||x used in
(2.16) for functions w € X. In the case g = 0 the condition (2.19) also guarantees
optimal approximation in the sense of the error estimate

(2.20)  [[V(u=wp)[| + [lp = pall £ C(inf [[V(u—wv)[[+ inf |Ip—ql).
veX;, qEM},

Note that the constant C' in (2.20) is inversely proportional to the inf-sup constant v
in (2.19).

The simplest example of an unstable method is the computationally convenient
equal-order velocity/pressure approximation based on a single grid. The problem is
that the pressure space is too rich compared to the velocity space in this case. The sim-
plest way of constructing an equal order approximation such that (2.19) is uniformly
satisfied is to introduce two grids: for example in IR? starting from a coarse grid of

7



rectangles, a refined grid can be constructed by joining the mid-points of the edges.
The condition (2.19) is then satisfied by taking a C° piecewise bilinear function on
the coarse mesh for the pressure approximation, and a C° piecewise bilinear function
on the fine mesh for each of the velocity components. Numerical results presented
in sections 4 and 5 were generated using this approach—henceforth referred as the
()1—-1s0—()2 method.

To construct the matrix analogue of (2.17)—(2.18) it is convenient to introduce
discrete operators A : X, — X, and B : X, — M), defined via

(2.21) (.AV}L,W;L) = (VV}L,VW;L) Vv, wp € Xy,
(2.22) (Bvhyqn) = —(V-va,qn) Vv € Xy, Vau € My,

so that B* is the adjoint of B, i.e. (vi, B*qn) = (Bvp,qn). With these definitions the
discrete problem (2.17)-(2.18) can be rewritten as a matrix system:

./4 B* uy - fh)
(2.23) (5 ) (n)=(5):
Furthermore, the inf-sup inequality (2.19) simplifies to

B
(2.24) lpall < sup —BWnaPn)

—_ v My,
WhEXh (AWh,Wh)l/z ph 6 h

It is instructive to express the inf-sup condition in terms of the actual finite element
matrices that arise in practice. To this end, let us explicitly introduce the finite element
basis sets, say,

(2.25) X = span{i}ioy, My = span{¢;}ily;

and associate the functions uy, py, £, with the vectors v € IR", p € IR” and f € IR"
of generalised coefficients, up, = 3", u;¢; etc. Defining the n X n “vector-stiffness
matrix” A;; = (V¢;, Vo) and also the m x n “divergence matrix” B;; = —(V.¢;, 1),
gives the finite element version of (2.23):

220) (5 5)G) =)

Moreover, introducing the m x m pressure “mass matrix” @;; = (¥, 1;); leads to the
finite element version of (2.19) or (2.24): for all p € IR™,

¢
£y,,\1/2 P Bu
(2.27) Y('Qp)'? < mgXW
tnA-1/2

p'BA w

2.28 = —_—

(2.28) vtz (whw)1/2

(2.29) = (p'BAT'B'p)'?,

since the maximum is attained when w = A~Y/2B*p. Thus, we have a characterisation
of the inf-sup constant:

tBA—lBt
(2.30) 7% = min u
p#0 p'Qp



In simple terms it is precisely the square root of the smallest eigenvalue of the Schur
complement preconditioned by the pressure mass matrix: Q' BA~'B’.

The discrete inf-sup condition is extremely restrictive. The problem is that the
simplest conforming finite element methods such as Q1—Fy (trilinear/bilinear velocity
with constant pressure) are not stable in the sense that pressure vectors p € M), can
be constructed for which the inf-sup constant tends to zero under uniform refinement.
This type of instability can be difficult to detect in practice since the associated discrete
systems are non-singular, (so that each of the discrete problems are uniquely solvable),
however they become rapidly ill-conditioned as h — 0.

The simplest way of getting such low-order methods to work in practice is to
relax the discrete incompressibility condition (2.18). An efficient approach is the fol-
lowing Iocal stabilisation method, which is based on controlling the jumps in pressure
across element boundaries within an appropriate macroelement subdidvision, M say,
as follows

(2.31) (Vu,,Vv) = (pp,V-v)=(fh,v) VveXy
(2.32) (Vowg) -8y hm/ [pallgl.ds = 0 Vg€ M,.

In (2.32), Iy, is the set of all edges/faces in the interior of the m’th macroelement,
§ is a positive stabilisation parameter (see below) and hy, is a local measure of the
macroelement’s size, see [30]. Of course, if stability is to be achieved then the number
of elements in each macroelement must be sufficiently large—if every macroelement
contained just one element there are no internal jump terms (i.e. I'y, = (), and (2.31)—
(2.32) degenerates to the unstabilised formulation. In the motivating paper [30], it is
rigorously established that as long as M is constructed so that each macroelement is
topologically equivalent to a reference macroelement having a velocity node on every
edge (or every face in three-dimensions), then there exists a minimal parameter value
Bo such that the formulation (2.31)—(2.32) is stable; i.e. there exists a constant 7,
bounded away from zero independently of h such that the following “inf-sup like”
condition is satisfied

p,V'W 1
(233)  swp DTS ol - (5% b [B124s)E Ve M.
wek, v 2 e

e€l'm

As a result, if § > (p then an optimal error estimate can be established in the case
g = 0 (see [30])
(2.34) IV(w=up)ll +1|p = pall < Ch

where C' is a constant independent of h and 3 (it depends only on fy). Note that
the same estimate (2.34) characterises the approximation accuracy of the Q1-iso—Q)
method above (with a different constant C').

Using a stabilised formulation of the form (2.31)—(2.32) leads to the following
matrix system

(3 2000

9



where A and B are as defined in (2.26), and 5 corresponds to the pressure stabilisation
termin (2.32). Furthermore we have an explicit representation of the stability constant
v, in (2.33)

(2.36) v2 = min PBAT B + fp'Sp
* p#0 PQp ’

which is the analogue of (2.30) in the unstabilised case.

One of the features of (2.31)-(2.32) is that if the discrete incompressibility con-
straints are added together, then the jump terms sum to zero in each macroelement
(a specific example is given below). This is crucially important to the success of the
method since it implies that the local incompressibility of the original method is re-
tained after stabilisation (albeit over macroelements). The major potential limitation
of this approach is that stability is only guaranteed if the stabilisation parameter /3
is bigger than the critical value fy. Fortunately this does not cause any difficulty
in practice, since an over-estimate of the critical parameter is easily computed if the
extremal eigenvalues of the Schur complement and the stabilisation matrix are known;
specifically, it is shown in [43] that 8. > 3o if 8. = I'?/©? with

tBA—lBt
(2.37) T2 = max 2 - P
p#0 PQp
t
p'Sp
2.38 A? = max
( ) p#0 p'Qp

A simple estimate of I is well known (see [18]): a Cauchy-Schwarz argument yields

(divv.p)? _ [ldivy]?

(2.39) < <d,
IvIxlIplR, — 119Vl

so for example in IR? we have /2 > I'. In practice, this estimate (which holds for
all mixed approximations) seems to be pessimistic. In particular, in the case of the
()1— Py approximation, numerical computations on quasi-uniform Cartesian grids of
rectangular elements suggest that that I' — 1 from below, as h — 0.

Using a macroelement stabilisation, A in (2.38) can be computed locally. To
illustrate this, consider the case of a uniform grid of j X j square J1—Fy elements of
side h. If 7 is even then local stabilisation can be based on 2 x 2 macroelements, and
with an appropriate local numbering, the stabilisation matrix S is block diagonal with
identical 4 x 4 blocks of the following form

2 -1 0 -1
—1 2 -1 0
0 -1 2 -1
-1 0 -1 2

(2.40) Sy = h?

As a result the eigenvalues of S are 0,2h% 2h? 4h* (each with multiplicity equal to
7%/4). Furthermore, since the pressure is piecewise constant the mass matrix @ is
diagonal with entries equal to h?. Hence, A? = 4 in (2.38), and I'> = 1 in (2.37) so
that a “good” parameter value is easily deduced, namely 5 = 1/4. This is impor-
tant since it allows the possibility of constructing usable software built around ¢1—Fp

10



for discretising Stokes problems (see section 6). Some numerical results using this
software/methodology are described in section 4.

Finally, we note that the discretisation of the Oseen problem (1.11), which arises
using the linearised implicit time-stepping methods (see section 1.2) can be done us-
ing the Stokes methodology described above, and will give good results if the flow
is diffusion-dominated in the sense that boundary layers are properly resolved by the
mesh. Some numerical results using stabilised ()1—FP, are described in section 5. Gener-
alising the streamline-diffusion approximations of the transport terms (cf. section 2.1)
is also possible, although the characterisation of appropriate stabilisation parameters
is much more difficult to do automatically in the Oseen case.

3. Solution methods for the discrete convection-diffusion equation. Dis-
cretization of the convection-diffusion equation (2.1) using finite differences or finite
elements (via (2.5) or (2.8)) leads to a linear system of equations

(3.1) Fu=f

where u and f are vectors in IR". F'is a nonsymmetric matrix of the form

vA+ N.
Here A = —Ayj, the discrete Laplacian, for the usual finite difference or Galerkin
discretizations, or in the case of streamline upwinding, A = —A, + A,, where A,

corresponds to the stabilizing term of (2.8). N is a skew-symmetric matrix, the discrete
convection operator.

We will emphasize splitting methods for (3.1), that is, representations of the
coeflicient matrix in the form

F=Q-R

where @) is the nonsingular splitting matriz. Such a splitting can be used to produce
a stationary iteration

(3.2) WD = Q7 R 1 )

where u(%) is an arbitrary initial guess, or () can be used as a preconditioner for (3.1)
in combination with Krylov subspace methods. The classical analysis of the stationary
method (3.2) proceeds as follows; see [1, 48, 52] for comprehensive presentations of
these results and [34, 47] for concise overviews. Let ) = u — u(*¥) denote the error
at the kth step of the stationary iteration (3.2). Then

e = (Q_IR)ke(o)a
and for any consistent norm || - ||,

(3-3) M) < 1@ R ([

Analysis is based on the fact that
(3.4) lim (@7 R VE = p(Q'R)

11



Fia. 1. Natural horizontal line ordering and nonzero structure of matriz.
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where p denotes the spectral radius. The iteration is convergent if and only if p(Q ' R) <
1, and roughly speaking, the error decreases in magnitude by a factor of p(Q~1R) at
each step. Consequently, p is referred to as the convergence factor. The effectiveness of
Krylov subspace methods depends in large part on the existence of a polynomial that
takes on the values 1 at the origin and is small on the eigenvalues of Q™'A = I- Q'R
[1, 41]; thus, it is also desirable to make p(Q~'R) as small as possible for Krylov sub-
space methods.

3.1. Analysis of convergence factors. We first consider versions of the clas-
sical Jacobi, Gauss-Seidel and successive over-relaxation (SOR) iterative methods and
discuss analytic bounds on convergence factors for these methods. Throughout our
discussion, we will use the two-dimensional version of (2.1); see [1, 34, 47, 48, 52] for
general presentations. Let © denote the unit square (0,1) x (0,1) and assume the
discretisation is performed on a uniform grid using finite differences or linear or tri-
linear finite elements. If the grid is ordered with a natural left-to-right bottom-to-top
ordering, then the resulting matrix F has block tridiagonal form in which the block
diagonal is a tridiagonal matrix. Figure 1 shows an example for a 6 X 6 grid ordered by
horizontal lines. The nonzero structure of the matrix for a nine-point operator on this
grid is shown on the right. This structure would arise from a bilinear finite element
discretisation; for finite differences or linear finite elements (with unidirectional tri-
angles), the off-diagonal blocks would be diagonal or bidiagonal, respectively. Figure
2 shows an alternative line red-black ordering and the structure of the corresponding
matrix. Variants based on vertical orderings are defined analogously.

For any of the line orderings, let > = D — I — U where D denotes the block
diagonal of F', — L denotes the lower triangular matrix consisting of entries below the
block diagonal D, and —U is the analogous upper triangular matrix. The classical
stationary methods are defined by the following splittings:

line Jacobi: Q=0D, R=D - F;
line Gauss-Seidel: @ =D — L, R=1U;
line SOR: Q=YD-wl), R=1[(1-w)D+wl].

The matrix /' arising from these orderings is block consistently ordered [52]. Conse-
quently, the spectral radii of the line Jacobi and line Gauss-Seidel iteration matrices

12



Fia. 2. Horizontal line red-black ordering and nonzero structure of matrix.
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nz = 256
are related by
(3.5) (D~ 1)7'U) = p(D7'C)

where C' = D — F. Moreover, if the Jacobi matrix D~1C has real eigenvalues and its
spectral radius is less than one, then the spectral radius of the SOR iteration matrix

- . -1 . . e x _ 2
L,=(D—-wLl) '[(1-w)D+ wU]is minimized by w* = T and

(3.6) p(Ly) =w™ — 1.

Thus the key to the analysis is to bound p(D71C). We treat some specific cases
individually.

The constant coefficient problem v = 1 and w = (o,7) in (2.1) is the starting
point for much of the analysis. Any finite difference discretisation produces a five-
point operator which can be represented by a “computational molecule”

(3.7)

In this, case, we can give an exact expression for p(D~'(C'). The proof depends on the
fact that the block diagonal matrix D can be symmetrized using a diagonal similarity
transformation, see [11].

THEOREM 3.1. If ed > 0, then the spectral radius of the block Jacobi iteration
matrix for the horizontal line ordering is

2V/be cos(mh)
a — 2v/edcos(th)

13



If be > 0, then the spectral radius of the block Jacobi iteration matrix for the vertical
line ordering is

2v/cd cos(Th)
a — 2v/be cos(h)

The conditions in this theorem are satisfied if all of the off-diagonal entries b, ¢, d and
e of I’ are greater than equal to zero. This is the case, for example, if centred finite
differences are used to discretise the first derivatives in (2.1) on a fine enough mesh,
or if upwind differencing is used [11, 12]. For example, if centred differences are used
on a uniform n x n grid with h = 1/(n+ 1), then with v = oh/2, 6 = 7h/2, Theorem
3.1 is equivalent to the following result.

COROLLARY 3.2. For centred differences, if |y| < 1 then the spectral radius of
the block Jacobi iteration matrix for the horizontal line ordering is

V|1 = 62| cos(mh)
2 — /1 —~2%cos(nh)
If|6] < 1, then the spectral radius of the block Jacobi iteration matrix for the vertical
line ordering is

V|1 =72 cos(mh)
2 —+/1—62cos(wh)

Figure 3 shows some examples of spectral radii of Gauss-Seidel iteration matrices
for centred difference discretisations and various parameters. Larger values of v (re-
spectively ¢) correspond to increased convection in the horizontal (vertical) direction.
These results indicate that it is advantageous to orient the grid lines in directions
orthogonal to the dominant direction of flow, i.e., to perform the Gauss-Seidel sweep
in the direction of flow.

For finite difference operators with computational molecules of type (3.7), the grid
points and equations can be ordered with a red-black ordering so that every equation
centred at a “red” point depends only on “black” unknowns, and every equation
centred at a “black” point depends only on “red” unknowns. In matrix notation, this
process corresponds to ordering the rows and columns of F' so that the problem (3.1)

has the form
Fi Fig ul”) _ f(T)
Fo Iy u® )T

where Fj1 and Fhy are nonsingular diagonal matrices. Decoupling of the red points
u(") is equivalent to producing a smaller system

FPul = f
where F = F22 — F21F1_11F12 and f = f(b) — FglFl_llf(T).

F is also a sparse matrix, and for appropriate orderings of the reduced grid Fis
block consistently ordered. Two examples, a natural two-line ordering and a red-black
two-line ordering, are shown in figure 4. As above, analysis of the Gauss-Seidel and
SOR methods uses (3.5) and (3.6). For the orderings of figure 4, we have the following
bounds for the block Jacobi iteration matrices. The proof again depends on finding an
appropriate symmetrization operator for F’; see [11, 12, 13, 14] for proofs and extensive
discussions of other problems and orderings.

14



Fia. 3. Spectral radii of line Gauss-Seidel iteration matrices for various parameters.
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THEOREM 3.3. If be > 0 and c¢d > 0, then the spectral radius of the two-line
Jacobi iteration matrix is bounded by

2be cos2wh + 4+v/bede cosh

[a2 — 2(\/@{— \/%)2 — 2¢cd+
4v/bede (1 — cosmh) + 4ed (1 — cos? Th)]

+ o(h?).

CoROLLARY 3.4. For centred differences, if |y| < 1 and |é| < 1, then the spectral
radius of the two-line block Jacobi iteration matrix for the reduced system is bounded

by

(1 — &%) cos2mh + 2/(1 —42)(1 — 62) cosmh

[8 - \/1—7 + V1827 = (1-9%) +
2\/ 1=~ (1—-06%)(1 —cosmh)+2(1 —

+ o(R?).

2) (1 — cos® wh)]

These bounds are typically stronger than those above for the unreduced system. Re-
sults for vertical two-line orderings can be established in the same way.

The results above are derived from properties of the matrices D and C of the block
Jacobi splitting. An alternative approach due to Parter [36] and Parter and Steuerwalt
[38] based more closely on the differential operators reveals asymptotic convergence
rates as h — 0. (See also [37].) Let F denote the differential operator on the left side
of (2.1), and assume the discretization matrix F is scaled so that F'/h* approximates
F with truncation error o(1) at all mesh points of € not next to the boundary, and
O(1) at points next to . Let F' = — R be a splitting.

THEOREM 3.5. Suppose the following conditions hold for all small h:

1. p(Q7IR) < 1.

2. p(@~'R) is an eigenvalue of Q' R.

3. ||R||2 is bounded independent of h.

4. There is a smooth function q satistying q(z,y) > qo > 0 on Q, such that

(3.8) (Ru,v) = (qu,v)+ E

where in (3.8), q refers to the vector of mesh values, and E = heq(u,v) + h%ey(u,v)
depends on o and 7.' Then as h — 0, p(Q™'R) = 1 — Agh® + o(h*), where Ag is the

smallest eigenvalue of the problem

(3.9) Fu=Aqu in Q, u =0 on 0.

This result is very easy to apply to the constant coefficient problem. The mesh func-
tion ¢ of (3.8) is a constant obtained by inspection as the sum of the entries of the
computational molecule that define R. For example, for the Jacobi splittings, ¢ = 2
for the one-line ordering of the full system and ¢ = 3/4 for the two-line ordering of
the reduced system. If the minimal eigenvalue of (3.9) is known, then the asymptotic
convergence factor is identified. On the unit square,

1 [ o? 72
Ao==[—+ —+272].
0 q(4-|-4-|-7f)

! Here e; is a function of first order differences in u and v and ez is a function of second order
differences; see [38] for a more precise statement.
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For the line Jacobi splittings we have discussed here, the convergence factors are

2 2
+ T + 72 one-line ordering, full system

o
1— | —
8 8

o2 1 8, . .
1 - 3 + Y + §7r two-line ordering, reduced system.

The first of these expressions agrees with the asymptotic convergence factor obtained
from Corollary 3.2 and the second one is slightly stronger than that obtained from
Corollary 3.4. Note that Corollaries 3.2 and 3.4 provide insight into the nonsymptotic
regime. Other examples of the use of this methodology are given in [12, 36, 38].
Finally, we note that another popular splitting method for discrete convection-
diffusion equations is based on incomplete LU (ILU) factorization of the coefficient
matrix. Recall that a nonsingular M-matrix B is one for which B;; < 0 for ¢ # j
and B™! > 0 [48]. Tt is well-known [32] that for any such B there is a unique ILU
factorization ¢ = LU such that L is unit lower triangular, U is upper triangular,
li; = 0 and u;; = 0 for (4,5) ¢ NV, and [Q — Bl;; = 0 for (¢,5) € N, where A is an

index set containing all diagonal indices (¢,7). It can be shown [3, 13, 51] that if
B=Q1— R =02~ Ry,

where )1 = LUy and ()2 = LoU;y are incomplete factorizations such that the set of
matrix indices for which Ly 4+ U; is permitted to be nonzero is contained in the set of
indices for which L+ Uj is permitted to be nonzero, then p(Qz_le) < p(Ql_lRl). For
the examples arising from finite differences that we have considered, both F and F are
nonsingular M-matrices for a fine enough mesh. Let Q1 = ¢ obtained by the ILU(0)
factorization (i.e., the index set A equals the nonzero set of of the coefficient matrix)
with error matrix R, and let )3 = D from the block Jacobi splitting. It follows that

p(Q7'R) < p(D'C).

Thus, all the bounds obtained above for the block Jacobi method carry over to the
ILU(0) factorization.

3.2. Ordering effects. We now turn to some issues associated with the under-
lying flow and the effects of ordering of the discrete grid. As noted in the discussion
following Corollary 3.2, some of the analysis depends on the orientation of lines in
the grid. Once that orientation is fixed, however, there is no dependence on ordering
of unknowns. For example, none of results above depend on whether a “natural” or
“red-black” ordering is used, and all of them are independent of the sign of the coef-
ficients of the convection terms, which determine the direction of flow. Indeed, for a
natural ordering in which relaxation is performed in a direction opposite the direction
of flow, the bounds on convergence factor are identical.?

In practice, the performance of relaxation methods is sensitive to ordering. As
might be expected from intuition, it is better to relax in the direction of flow than
in the opposite direction, and performance for orderings such as red-black that don’t
bear a clear relation to flow direction is somewhere in between these extremes. The
difference between the analytic results and these performance characteristics stems

2 Theorem 3.5 has no dependence even on line orientation.
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Fia. 5. Four orderings for a one-dimensional grid, for o > 0 and n = 8.

| | Natural,
| | Natural,
g 7 6 5 4 3 2 1 against flow
| | Red-black,
r 5 2 6 3 7 4 '8 with flow
| | Red-black,
8 4 7 3 6 2 b 1 against flow

from the difference between (3.3) and (3.4). The expression (3.4) provides insight into
asymptotic behaviour as the number of iterations becomes large, but it provides no in-
formation about transient behaviour displayed before the limiting value is approached.

Many aspects of this issue can be understood from the one-dimensional version of
(2.1)

—u”—I—Uu/:f

on the unit interval (0, 1) with Dirichlet boundary conditions and ¢ > 0. Let n denote
the number of interior mesh points of a uniform grid. Finite difference and linear finite
element discretization lead to a linear system (3.1) in which, for a natural ordering,
the coeflicient matrix F is tridiagonal of order n, with constant values on its three
interior bands. Assume that F is normalized to have unit diagonal, so that it can be
represented as

F=tri[-b 1, —¢].

In addition, assume b+ ¢ = 1 (needed for a consistent discretisation) and b > 0, ¢ > 0
(for a nonoscillatory solution [25]). We say that the discrete problem is convection-
dominated if b is large, i.e., close to 1. The Gauss-Seidel iteration matrix is £; =
(I — L)7'U, where L and U are the strict lower triangular and upper triangular parts
of F.

Figure 5 shows examples of four different orderings for n = 8. There are two
natural orderings, together with two red-black orderings induced by the natural or-
derings. Figure 6 shows a representative example of the behaviour of relaxation for
convection-dominated problems that reveals the limitations of the standard analysis.
The figure plots ||e()||;, on a logarithmic scale, against the iteration count k, for the
Gauss-Seidel method corresponding to the four ordering schemes. Here, n = 32 and
b = 7/8. The initial guess is a normally distributed random vector with mean 0 and
variance 1, and the right hand side and solution are identically zero. The spectral
radius for each of the orderings is p(£;) = .434. Figure 7 shows the norms ||£f]];. In
both figures, the highlighted values correspond to k = n — 1 and k = n/2 — 1 for the
natural ordering against the flow and red-black orderings, respectively. It is evident
that the norms are closely correlated with the performance of the solution algorithm,
and that the spectral radius reveals nothing about the transient behaviour.

The iteration matrices arising from different orderings will be distinguished as
follows. For the left-to-right natural ordering, inducing a relaxation sweep oriented
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Fi1G. 6. li-norms of the errors in Gauss-Seidel iteration, for n = 32 and b =7/8.

102 T T T T T

10t

100

101

llerll

102

103

Natural

104 vith low

105 . . . . .
0

Fia. 7. logyg |[£5|[1 for n =32 and b=17/8.

10t T T T T T T

100 4

o0l Agang \ With

Neatural

21
10 againgt flow

Ie_27¢ll

Re-
-3 4
10 blac!

4l Natural 1
104 with flow

105 1

106 . . . . . .
0

19



with the flow, the iteration matrix is F' = (I — L)~'U, where
L=tri[b,0,0], U=tri[0,0,c].

The red-black ordering induced by this natural ordering gives rise to the coefficient
matrix F = I — Lrp — Urp where

0 O 0 C
LRB—(B 0)7 URB—(O 0)7

B=1tri[0,b,¢], C=tri[b, e 0],

and

of dimensions [n/2] x |n/2| and |n/2] X [n/2] respectively. The iteration matrix is
given by

_ 0 C
Frp = (I - Lrp) 'Urp = (I + Lrp)Urp = ( 0 BC ) .

For sweeps oriented against the flow, rather than reversing the ordering, it is equivalent
to use the left-to-right natural ordering and perform an “upper-triangular” sweep, i.e.,
with the iteration matrix G = (D — U)71L.

We summarize an analysis for the one-dimensional problem below. Proofs and
descriptions of additional numerical experiments are given in [9]. There are three
results: lower bounds on the values of both ||G*||; and ||FEgl||1, and upper bounds on
the values of || F*||;. Essentially the same lower bounds apply in the /,,-norm, and
the upper bounds can be generalized to any /,-norm.

THEOREM 3.6. The norm ||G*||; for Gauss-Seidel iteration with sweeps against
the flow is bounded below for k < n by

IGH > (1= )71 (1 = e,

THuEOREM 3.7. For problems whose order n is divisible by four, the norm || F 5|1
for Gauss-Seidel iteration associated with the red-black ordering induced by a left-to-
right natural ordering is bounded below as follows:

IFEgllL > 2 — (k,e) fork <mn/2—1.

where (k, ¢) is zero for k < n/4 and close to zero for n/4 < k < n/2. (See [9] for a
precise definition.)

TurorREM 3.8. The norm || F*||; for Gauss-Seidel iteration with sweeps that fol-
low the flow is bounded above by

k—1 .
(3‘10) HFkul Sl_bn+k—2 (Z ( n+k;3‘|‘] )Cj) .
7=0

For k> (n —3)c/(1— 2c¢), the following simpler upper bound holds:

k( n—I-Qkk -3 )b”_Q(bc)k
k(1 —2¢)—(n—3)c

20
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Fia. 8. Comparison of ||G¥||1 with lower bounds, for n = 32 and ¢ = 1/8.
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Fia. 9. Comparison of ||[FEg|l1 with lower bounds, for n = 32 and c = 1/8.
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Fia. 10. Comparison of ||F*|[1 with upper bounds, for n =32 and b =17/8.
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Figures 8, 9 and 10 plot norms and the bounds from each of these results, for the
problem used for Figs. 6 and 7. The results of Theorems 3.6 and 3.7 indicate that
if b is near 1 then the norms of the iteration matrices for sweeping against the flow
and the red-black ordering are close to one for n — 1 and n/2 — 1 steps, respectively.
Consequently, these orderings incur a latency in which little reduction in the error is
obtained. In contrast, Theorem 3.8 shows that the norm of the iteration matrix is
small for sweeping with the flow.

It is possible to generalize the upper bounds of Theorem 3.8 to line relaxation
methods applied to two-dimensional problems. In this case, the angle between the flow
direction and sweep direction plays a role in both performance and bounds; details
can be found in [10].

3.3. Discussion. We now discuss some practical issues associated with solving
the convection-diffusion equation. We first note some limitations of the analysis cited
in sections 3.1 and 3.2, namely, the results apply only to constant coeflicient prob-
lems and they are limited to finite difference discretisations. The latter restriction
is not transparent for Theorem 3.5 but requirement (2) of this result is typically es-
tablished using the fact that the coefficient matrix is an M-matrix and applying the
Perron-Frobenius theory; see [38], p. 1185. Standard finite element discretisations of
the convection-diffusion equation do not produce M-matrices, and we know of little
analysis for anything other than finite differences. (Cf. [10].)

Despite these limitations, we have found that the analysis above gives a good in-
dication of the behaviour of splitting methods for simple flows or other discretisations.
Examples demonstrating this for a semicircular flow are given in [13], which also con-
tains some analysis for variable coefficient problems. As an example of behaviour for
other discretisations, we consider two versions of bilinear finite elements applied to the
problem (2.1) with constant convection coefficients v = (—%=, ¥=) on the unit square,
f =10, and Dirichlet boundary conditions u(z,1) = u(y,0) =0, u(1l,y)=1, u(z,0) =0
forz <1/2and u(z,0) = 1 for > 1/2. We discretise on a uniform n x n element grid
using either a pure Galerkin method (2.5) or a streamline upwind Petrov-Galerkin
method (2.8). These problems were generated using the MATLAB code described in
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Galerkin Streamline Upwinding

v Hor. Vert. Hor.R/B | Hor. Vert. Hor. R/B
1/10 | 240 262 257 — — -
1/25 | 84 110 98 - — —
1/50 | 29 57 43 31 59 45
1/100 | 15 46 31 15 44 29
1/200 | div.  div. div. 6 37 22
1/250 | div.  div. div. 9 38 23

TABLE 1

Iterations for bilinear finite elements applied to the convection-diffusion equation.

section 6.

Table 1 shows the iteration counts needed by three variants of line relaxation
(horizontal, vertical and horizontal red-black) to solve the discrete problems with
n = 32, with stopping criterion

1f = Fu®l2/] 1 f]|2 < 107°.

Note that the flow direction forms a —45° angle with the horizontal axis. Conse-
quently, the direction of horizontal line relaxation contains a large component in the
direction of flow whereas vertical line relaxation is essentially sweeping against the
flow. The results show that as the flow becomes stronger (i.e. as the viscosity v de-
creases ), the differences among the methods are essentially as predicted in section 3.2:
sweeping against the flow incurs a latency of approximately n steps and the red-black
ordering incurs a latency of approximataly n/2 steps. Moreover, the iteration counts
decrease dramatically as convection becomes more dominant, as the results of section
3.1 predict.

We also note, however, that the use of these ideas for more complex flows and
on large-scale parallel computers lead to some open questions. For example, for the
circular flow arising in the driven cavity problem (see section 5), there are portions of
the domain where neither a horizontal or vertical line orientation produces a sweep
in the direction of flow, and it may be necessary to use more sophisticated strategies
to handle such flows. We expect complex three-dimensional flows to add additional
difficulties. On parallel architectures, it is known that red-black and multi-color order-
ings lead to higher parallel efficiencies than natural orderings. However, the latency
associated with red-black orderings shows that these reorderings may have limitations
that need to be overcome to produce effective solution methods.

4. Solution methods for the discrete Stokes equations. The stability issue
associated with mixed approximation of the Stokes problem is of central importance
when it comes to finding fast and reliable iterative solution methods. In this section we
will develop the theory and present computational results for only one class of method,
namely those based on preconditioned Minimum Residual iteration, but see [8] for a
comparison of various competitive techniques. The relevant theory for any of the
alternative approaches is based on the key result (2.30) which is a direct consequence
of the stability required to ensure accuracy properties of the underlying approximation.

In our examples, we concentrate on two particular mixed finite elements: the stable
()1—iso—()2 and locally stabilised )1 — Fy approximations. Qur aim is to illustrate
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the general structure for stable and stabilised mixed spaces with these convenient and
popular choices. Since we wish to concentrate on the stability issue, we consider here
the steady state Stokes problem as mentioned in section 2. For consideration of the
additional issue arising with time-dependent problems see [4].

4.1. Statement of the problem. As in section 2, we can express the discrete
Stokes problem as

o (5 %) ()-(6)

where A is the discrete vector-Laplacian, B is the discrete gradient so that its adjoint
B! is the discrete negative divergence and S is the stabilisation matrix with 3 being the
non-negative stabilisation parameter. The vector u contains the velocity coefficients
in terms of the selected basis and p correspondingly for the pressure. Certainly A
is symmetric and it will also be positive definite with the usual Dirichlet boundary
conditions, B will be full rank except that the vector p = (1,1,...,1)" representing
hydrostatic (constant) pressure will be in the null space (unless it is explicitly removed)
and S will be symmetric and positive semi-definite (5 = 0 in the case of an unstabilised
approximation). Any body forces are represented in the vector f.

Employing the Sylvester Law of Inertia ([22] pp. 274), the congruence transform

A Bt _

B -S|~
I 0 A 0 I A-'B!
BA™Y T 0 —pS—-BA™'B 0 I

reveals that A has n, positive eigenvalues and n, negative eigenvalues for a stable
or stabilised method. This observation follows directly from the discrete stability
condition (2.36).

The indefiniteness of the Stokes system is thus clear. Note that if the mesh size h
is reduced and the discrete problem size correspondingly increased, both the number
of positive and negative eigenvalues increases: some authors refer to such systems as
being highly (or strongly) indefinite. It is the solution of such linear systems which
we address in this section.

4.2, The MINRES method. There are two applicable Krylov subspace iter-
ative methods for such symmetric and indefinite systems: SYMMLQ and MINRES,
both based on the symmetric Lanczos procedure and both due to Paige and Saunders
[35]. Here we concentrate on the MINRES methods since it possesses a minimisa-
tion property. We comment that to our knowledge, SYMMLQ has not been tried on
discrete Stokes problems.

In the generic context of solving the symmetric and indefinite matrix system

Az = b,

MINRES is characterised by the following. The kth iterate 2y lies in the (affine)
Krylov subspace

2 k-1
xo + span{rg, Arg, Ao, ..., A" ro}
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where rg = b — Az is the initial residual. Correspondingly for the kth residual vector
we have

L € g + span{Aro,AQTO, .. .,Akro},

the defining condition being that [|74||2 is minimum from this space. Thus if Il is the
set of all real polynomials of degree less than or equal to k then r; = p(A)rg, with
p(0) = 1 and p being optimal in the above sense. Employing a spectral (eigenvector)
expansion

Ty = g o, Av = Ay

we have
re = p(A)Y aiv =Y aip(Ai)v;
so that
r = mm «a v
7|2 I _ I el
1
= mm ( ar v ; )
p€EIl,p(0 Z p ‘
1
min max ( a ) ?
or
[l7k]2

< min max A
I7oll2 ~ pellk,p(0)=1 AeA(A) (A

where A(A) denotes the eigenvalue spectrum. Note that the orthogonality of the
eigenvectors which is a consequence of the symmetry of A is important here. Also
if one were interested in positive definite symmetric matrices A, this convergence
estimate would be the same as that for the ‘classical” Conjugate Gradient method
(which requires fewer operations per iteration) except that ||rg||2 would be replaced
by /ri A= r = /(@ — 2p)fA(z — o) ef |l — a4

In order to achieve rapid convergence, preconditioning will be as important here
as in the symmetric and positive definite case. Also it is desirable to ensure that
any preconditioner does not destroy the underlying symmetry of the original problem
else more general non-symmetric iterative methods such as GMRES ([42] or see the
paper by Van der Vorst in this volume) would have to be employed. Such methods
are generally less efficient than their symmetric counterparts (see for example [16]).
In order to preserve symmetry in the preconditioned system we employ a symmetric
and positive 1deﬁl}ite preconditioner M which for theoretical purposes only we factor
as M = M2 Mz2. (A Cholesky factorisation could equally be used). We are then
interested in applying MINRES to the preconditioned system

M™ZAM 3 (Mzz) = M~ 2b

or



say. Now the corresponding preconditioned residual is

1

F=b-AT=M3(b-Az)= M 3¢
so that
7RIl = 7575 = riMT e = [l

The preconditioned MINRES convergence estimate therefore becomes

[7E IR . A
12 T2 — < min max M= pr.
( ) HTOHiA—l pEHk,p(O):1 /\GA(M_lA) |p( )| /0

Note that the use of a positive definite preconditioner was necessary as || - || -1
does not define a norm for indefinite M. A consequence is that preconditioning
can not alter the inertia of the original system since M ZAM™E is a congruence
transform and the Sylvester Law of Inertia applies. That is, any symmetric and
indefinite matrix preconditioned by a positive definite matrix is necessarily left with
the same number of positive and negative eigenvalues. The role of preconditioning in
this case is therefore to cluster both the positive and the negative eigenvalues so that
the polynomial approximation error py in (4.2) is small for low number of iterations,
k.

A second point is that (unlike in the case of the conjugate gradient method) re-
duction of the residual in the preconditioned MINRES algorithm is in a norm which
is dependent on the preconditioner. Thus one must be careful not to select a precon-
ditioner which simply distorts this norm. We will return to this point later.

At each MINRES iteration we will require the solution of a system of equations
with the preconditioner as coefficient matrix. Thus from the point of view of practi-
cality, this must be readily achieved.

4.3. Preconditioning. The convergence estimate (4.2) shows that convergence
depends on the eigenvalues of the preconditioned system: our goal now is to estimate
these eigenvalues. In particular for a partial differential equation problem such as the
Stokes problem, we are interested in the rate of MINRES convergence for large discrete
problems, i.e. for discretisations on fine meshes which lead to very large dimensional
matrix systems. It is therefore appropriate to consider how the rate of convergence
depends on the representative mesh-size, h, as h — 0. The best case will be if the
number of iteration required to achieve convergence to a given tolerance does not
depend on h.

Since this preserves the underlying block structure of the coefficient matrix, we
are interested in block diagonal preconditioning matrices of the form

(4.3) ( 103 o )

where both P and M are symmetric and positive definite. The eigenvalues we wish
to estimate are therefore the eigenvalues A of

(3 5)6) =06
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We readily see that if P = A then A = 1 is an eigenvalue of multiplicity n, — n,
corresponding to any eigenvector [u,0]" with Bu = 0. (The multiplicity comes simply
from the size of the right null space of the rectangular matrix B). In the stable case
(S =0),if also M = BA7! B!, the remaining eigenvalues satisfy

(1 - X)Au=—B'p and Bu=ABA™'B'p
or by eliminating w,
(M= A+ 1)BA™'Bp =0.

Thus since the assumed inf-sup stability in this case ensures that BA~! B! is positive
definite, we deduce that A = 1/2 & +/5/2 are the remaining eigenvalues each with
multiplicity n,. This is an ideal situation from the point of view of convergence
of MINRES: since the preconditioned matrix M2 AM™? has only three distinct
eigenvalues the convergence bound (4.2) will be zero for k& = 3 as there is a cubic
polynomial with these three roots. That is, MINRES will terminate with the exact
solution after three iterations regardless of the size of the discrete problem.

Unfortunately use of the Schur complement BA~! B! in the preconditioner is not
desirable since it is in general a dense matrix which is not easy to construct let alone
to invert (or rather solve a system) at each MINRES iteration. But this is where the
discrete inf-sup stability condition (2.30) and (2.37) provides the key: the pressure
mass matrix @ is spectrally equivalent to BA™! B! and so we lose little by selecting
M = ). The analysis with this choice is similar to the above: we have

Au—l—Btp = Mu
Bu = AQp.

The case A = 1 arises with the same eigenvectors (and thus multiplicity) as above,
and for A # 1 eliminating u using the first of these equations gives

BA™'B'p = A(A = 1)Qp.

Thus for each eigenvalue p of Q_%BA_lBtQ_% there are a pair of eigenvalues

1 1
V14+4p <0 and /\:§—|—§\/1—|—4,u>0

of the original problem. Now since discrete inf-sup stability and boundedness imply
v? < pu < T?, we see that

A=

N | —

1
2

A e 1—V1+412 1 — /1 + 492
2 ’ 2
U{1} U 14+ V14492 14+ /14417
2 ’ 2
for every eigenvalue. That is, the multiple eigenvalue A = 1 is retained and the

remaining eigenvalues are pairwise symmetric about % and lie in small intervals which
are uniformly bounded and uniformly bounded away from the origin. In this situation
the convergence of MINRES will not take only three iterations, but nevertheless it
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will be fast and (crucially) will be independent of the size of the discrete problem. For
an unstable approximation we have ¥ = 0 (or v — 0 under mesh refinement), so the
negative eigenvalues would not be bounded away from the origin and poor convergence
results.

Before proceding to more general theory, we motivate other approximations which
will preserve the effective form of this ‘ideal’ preconditioner but which lead to a more
practical overall preconditioner.

It is apparent that preconditioning with M as above requires at each MINRES
iteration the solution of two systems of equations of size n, and n, and with coefficient
matrices P and M respectively. The ‘ideal’ choice P = A thus requires an exact
solution of a Poisson equation for each of the velocity components since A is the vector
Laplacian coming from approximation of the viscous terms. Conveniently there has
been much analysis of preconditioners for the Laplacian (see for example the papers
by Xu and Chan in this volume).

We do not need to use an inner preconditioned conjugate gradient iteration to
effect an exact solution, but are in a position to simply take P to be a domain de-
composition or multilevel preconditioner for example. That is we simply let P be a
preconditioner for the Laplacian. By applying a suitable scaling to P if necessary we
will assume that

t
U Au <1 for all «.

4.4
(4.4) “= wtPu —

If we use a powerful preconditioner such as a multigrid cycle, then a will be near 1
independently of the discrete problem size (usually expressed in terms of inverse powers
of the mesh size parameter, h) and we might expect that only a few more MINRES
iterations will be required than if we made the more expensive choice P = A. If we
use a weaker preconditioner such as diagonal scaling for which @ = O(h?) then more
MINRES iterations will be needed for convergence.

It is a much simpler matter to approximate the ideal choice of M further by ap-
proximating the pressure mass matrix ¢ without significantly affecting the convergence
of MINRES. The simplest choice M = diag(()) is proved to be a good approximation
to @) in [49]. Specifically we will assume

¢
pdp 2
(4.5) 9* < =L <0 for all p.
p'Mp
Using a continuous Py pressure approximation for example, replacing the mass matrix
@) by its diagonal is very convenient computationally, and furthermore (4.5) is satisfied

in this case with 8 = 1/\/5 and O = /2.

4.4. Eigenvalue bounds. Our analysis proceeds with the assumptions (4.4),
(4.5) and the further assumption of boundedness of the stabilisation matrix S:

)
pt P < A? for all p.
p'ap
Using the locally stabilised ¢); — Py mixed approximation described in section 2, we
choose M = () in (4.5) since () is a diagonal matrix and in this case we know that
A = 2 on a uniform mesh.

(4.6)
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For the eigenvalue analysis it is convenient to consider the symmetrically precon-
ditioned system:

1 1 1 1
_1 _1 P 2AP™2 P :B'M~3
MoAMEE = (M—%BP—% —BM"ESM™3 )
A B .
4. = (2 " )=A
(+.7) (5 %5)-

In the following, we denote by omax the largest singular value of B (i.e. the largest
eigenvalue of BBY).

Lemma 4.1. All negative eigenvalues A of A satisfy

(4.8) ; (a _BA?07 —\/(a + BA202) 1 4031“) <A

and

1
(4.9) A< 3 (a —y/a? + 4720204)

and all positive eigenvalues A of A satisfy
(4.10) a <A,

and

1
(4.11) A< (1 +4/1+ 40313}() .

Proof. If Ais an eigenvalue of A then there are vectors u, p not both zero satisfying

(4.12) Au+ Blp = \u

(4.13) Bu— 35p = Ap.

If A > 0 then u # 0 since otherwise (4.13) implies p = 0 as S is positive semi-definite.
If A < 0 then p # 0 since otherwise (4.12) implies u = 0 as A is positive definite.

Taking the scalar product of (4.12) with u and the scalar product of (4.13) with
p and subtracting gives

ul Au + ﬁptgp = Aulu — Aplp
which using (4.4) and the positive semi-definiteness of 55 gives
(a — Nulu < =Ap'p

leading to (4.10) for positive A since u # 0 in this case.
Further for A > 0, substituting for p from (4.13) into the scalar product of u with
(4.12) gives
i 7 [ B\ 5 ¢
uAu—l—XuB I—I_XS Bu = Au'u
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where the stated matrix inverse certainly exists because G,A > 0 and S is positive
semi-definite. Moreover the maximum eigenvalue of (1 + gS)_l is 1 thus

Mt Au + w!BtBu > Moty
from which follows
0>MN - A-0d2..

This gives (4.11).

For A < 0, A — Al is invertible, so we can take the scalar product of (4.13) with p
and substitute for u from (4.12) to obtain

(4.14) ptg(g - /\I)_lgtp + BptSp = —Ap'p.
Considering (4.14), if A < 0 is an eigenvalue of A then
PBATHI - AATYHTTATE B 4 5p'Sp = —\plp

where p # 0. Because the eigenvalues of (I — AA=1)~1 are

(1-=Xa)yt<...<(1=-)N"1
we have

(1—Xa)'p'BAT B'p + pp'Sp < —Ap'p,

and since 0 < (1 — A/a)™! < 1 there follows

(1=A/a)™! (ptﬁﬁ‘lﬁtp + ﬂpt?p) < —\p'p.

Using (4.7) to express this in terms of the blocks of the original unpreconditioned
Stokes matrix (4.1) this is

(1- /\/a)_lptM_%(BA_lBt + ﬁS)M_%p < = Ap'p.
Now using the stability property (2.36) this implies
V(L= Aa) P MT2QM " 5p < —\p'p
which by employing (4.5) further implies
Y01 = M)y < = \p'p.
Since p # 0 this gives
0 <A\ —a)—ay??

from which (4.9) easily follows.
To derive (4.8) we use (4.6) and (4.5) in (4.14) to obtain

(a —N)7lol  + BATOT > —)A

max

or

0> A%+ (BA20% — a)X — 02, — BA’O%

max

which yields the result. o
It is convenient to remove oy, from these bounds since estimates for this quantity
are not readily available.
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Lemma 4.2.
(4.15) Omax < TO

Proof. For all p we have

tar—= —1ptys—=3
pM 2BP "B'M™zp
<M ZBATB'M 3p

p'BB'p

using (4.4). So given that (2.37) holds in the stable or stabilised case we have

2t M—TQM™2
P Q P
F2 @2 ptp

p'BB'p <
<

where we have further used (4.5). We have thus proved

ol <T?0?

max

and hence (4.15). o
Employing Lemma 4.2, the bounds (4.8) and (4.11) become

(4.16) % (a — BA%0? — \/(a + fA202)? 1 T2 @2> <A

and
(4.17) A< %(1+—V1—+4F2(ﬂ).

Regarding (4.16),(4.9),(4.10) and (4.17) as the best bounds which we can estimate,
we are now in a position to find an upper bound on the convergence rate of the
preconditioned MINRES algorithm by considering the approximation problem in (4.2).
Before doing so let us just point out the dependencies of the relevant quantities o, 7,
I', 8, © and A as well as the stabilisation parameter 3 (which arises only in a stabilised
formulation ):

¢ a: depends on how well the preconditioning block P approximates the discrete
Laplacian A

e v: stability constant—bounded above zero independently of the mesh

e T: boundedness constant: T' < +/d for any domain © C TR? (see (2.39))

e 0, O: positive constants independent of problem size even for the simple
choice M = diag(Q). For such a choice of the preconditioning block M, these
constants are tabulated in ([49]) for many different finite elements types

o A: upper bound on the stabilisation matrix S—an O(1) constant.

e [3: positive stabilisation parameter optimally chosen to be just large enough
to achieve stability (see [43]).

Any of these parameters may depend on the geometry of the domain and/or
the computational grid, BUT it is only a which can depend explicity on the size of
the discrete problem. That is, the only way that mesh-size dependence arises in the
eigenvalues bounds for the preconditioned Stokes coefficient matrix A is through a
dependence of a on the representative mesh-size, h. Therefore, provided that some
simple approximation of the pressure mass matrix is used so that (4.5) is satisfied
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and provided a suitable stable or stabilised formulation is employed so that (2.30) or
(2.36) and (4.6) hold then the convergence of the preconditioned MINRES algorithm
will be essentially determined by the quality of the Laplacian preconditioner, P. Let
us illustrate with a few examples.

Example 1: P = diag(A) and M is any suitable choice (such as diag(Q)) which
satisfies (4.5).

For this case we have @ = ch? + O(h*) for some constant ¢ independent of & (see
for example [2], pp. 240). By considering the leading asymptotic term for small A it
is apparent that the eigenvalue bounds (4.16),(4.9),(4.10) and (4.17) define a pair of
eigenvalue inclusion intervals of the form

(4.18) AM EAM™Z) C [—a, —bh] U [ch?,d].

The constants a, b, ¢ and d are defined in terms of v, I, 8, @, A and 8 by the above
formulae but they do not depend on h. (c is exactly as above because of the simple
form of (4.10)). We demonstrate the asymptotic manipulation for the least obvious

bound (4.9):

A

IN

%(dﬁ + O(h*) = \/(ch? + O(h*))? + d726%(ch? + O(h4)))

1 1
5 (ch2 +0(h*) = 2¢30vh (1 + O(h")) 2)
1
= —c3y0h + S +0(h").
The important point to note here is that as h — 0 the negative eigenvalues

approach the origin at only half the rate at which the positive eigenvalues can approach
from above.

h A1r_nax A1r_nin A1r—|1;1in A1r—|1;1ax

1/8 —0.7547 | —0.1556e0 | 0.2747e0 | 2.0640
1/16 | —0.7701 | —0.9500e-1 | 0.7444e-1 | 2.1347
1/32 | —0.7740 | —0.5253e-1 | 0.1902e-1 | 2.1531
1/64 | —0.7749 | —0.2770e-1 | 0.4783e-2 | 2.1577

1/128 | —=0.7752 | —0.1427e-1 | 0.1198e-2 | 2.1589
TABLE 2
Extreme eigenvalues: Q1 — Py element with diagonal preconditioning

In table 2 we show the results of eigenvalue computations on the diagonally pre-
conditioned Stokes coefficient matrix as above for a driven cavity flow problem (see
section 6 for associated software). We show the extreme eigenvalues of M ZAM 2
for a sequence of regular grids refined by bisection and using the locally stabilised
()1 — Py element with the ‘optimal’ stabilisation parameter value 5 = 0.058 (see [43]).
The driven cavity problem was solved on only half of the flow domain by using the
natural symmetry about the centreline. The most positive and most negative eigen-
values (At,, and Aj,. respectively) clearly approach constant values as h is reduced,
the negative eigenvalue nearest to the origin (A . ) is approximately halved and the
smallest positive eigenvalue (/\r‘;in) reduces by approximately a quarter as h is halved:

32



h Hmin Hmax Amin(]D_lA) Amax(]D_lA)
1/8 | 0.1686 | 0.9340 0.8519 1.0000
1/16 | 0.1655 | 0.9862 0.8220 1.0000
1/32 | 0.1642 | 0.9967 0.8090 1.0000

TABLE 3

Extreme eigenvalues of Q' BATIB® and P71 A: Qi—iso—Q, element with multigrid precondi-
teoning

these results therefore show that (4.18) is descriptive and is not just providing crude
bounds.

We note that example 1 is illustrative of the generic situation: if P is chosen such
that o = O(h") and M is an appropriate approximation of the pressure mass matrix
then

(4.19) AMTZAM ) C [—a, —bh"/?2] U [ch", d].

That is the negative eigenvalues always approach the origin at half of the rate of
the positive eigenvalues. The analysis given here therefore applies to a wide range of
Laplacian preconditioners including, for example, the modified incomplete cholesky
factorisation ([32], [26]) for which r = 1.

Example 2: P is a multigrid cycle for A (see for example the paper by Xu in this
volume) and M = ) (or some approximation).

This is actually the easiest situation from the view point of the analysis as « is
bounded away from zero independently of h. In table 3 we give the computed extremal
eigenvalues of P~ A for our test problem employing the stable Q;—iso—Q, element
on a sequence of refined meshes. The preconditioner P represents a single multigrid
V-cycle with an ‘optimally’ damped Jacobi smoother. It is apparent that o ~ 0.8
in this situation. Also tabulated in 3 are the extreme eigenvalues, pmin and pmax of
Q" 'BA~!'B!: these show that v ~ 0.16 and I' = 1 for this element. It follows that
the bounds (4.16),(4.9),(4.10) and (4.17) are all independent of h.

An interesting point arises with the use of spectrally equivalent preconditioners
such as in this example, namely convergence of MINRES occurs in norm which is
naturally associated with the problem, see [44].

4.5. The rate of convergence of MINRES. In the case of a spectrally equiv-
alent Laplacian preconditioner P such as a multigrid cycle, we may simply note that
since all of the eigenvalues are bounded away from infinity and away from the ori-
gin independently of the mesh-size h, then pj in (4.2) is also independent of h. The
convergence of MINRES in this case should therefore be independent of problem size.
This is clearly displayed in table 4 where we present some preconditioned MINRES
iteration counts.

The problem is again the leaky lid driven cavity but solved on only half of the do-
main by using the natural symmetry. For these results the stable )1 —iso—@Q); element
was used and the convergence criterion was a reduction by 1076 in the M~!'-norm of
the residual. The preconditioner Ap;gq represents a single multigrid V-cycle: as above
an ‘optimally” damped Jacobi smoother was employed. Iteration and total flop counts
using the ‘ideal’ block preconditioner P = A | the diagonally scaled MINRES method
of example 1 above, and the block preconditioner based on a Modified Incomplete
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P A P = AMGI P = AMIO P = diag(A)
h | M=Q| M=Q | M=Q |M =diag(Q)
1/8 23 27 (0.44) | 28(0.19) | 41 (0.23)
1/16 | 25 28 (1.97) | 38(1.22) | 94 (2.25)
1/32 | 27 30 (8.10) | 53 (7.69) | 206(20.63)
1/64 | 27 | 31(36.33) | 78 (54.89) | 427(175.04)

TABLE 4
MINRES iterations (Megaflops): Q1—Iso—Q2 element

Cholesky factorisation (MIC) are also included for comparison. Note that the cost
of the incomplete factorisation is not included in the flop counts given in the table;
preconditioning is via sparse upper and lower triangular matrix solves in this case.
The use of P = A is expensive in operation counts since a full factorisation is needed
in this case, so only the MINRES iteration counts are included for comparison. The
computations were done on a Sun Sparcstation-10 using MATLAB 4.1.

Note that use of P = A or of the more practical multigrid cycle as a preconditioner
for the Laplacian does indeed imply that the number of MINRES iterations does not
depend on the discrete problem size. Use of the multigrid preconditioner rather than
the ‘ideal’ choice P = A is seen to increase the number of iterations only slightly: it
is nearly ideal, but much more efficient overall. Indeed the multigrid preconditioner
gives an ‘optimal’ Stokes solver: the total number of floating point operation increases
by a factor of approximately four each time the grid is refined to create four times as
many discrete variables. This is a very desirable property.

It remains to analyse the convergence of MINRES for preconditioners such as
those in the two right hand columns of table 4 above which do not involve multigrid
or some other spectrally equivalent Laplacian preconditioner.

Having estimated the eigenvalue spectrum in the form A(A) C E where E com-
prises two intervals of the form [—a, —b] U [¢, d] with a, b, ¢ and d being positive, our
attention therefore turns to the approximation problems

4.20 pr = min max_|p(A
(4.20) et AeA(A)| (M|

4.21 < min max [p(z)| := pg-
(4.21) S athin | maxlp@)li= oy
We know from (4.2) that p; bounds the relative reduction in the MINRES residual
after k iterations; if little is lost in the inequality above then it is more tractable to deal
with the approximation problem (4.21) on intervals rather than (4.20) on the discrete
eigenvalue set. A rapidly decreasing sequence py will still indicate fast convergence.
In fact, when a single number is desired to represent convergence, it is convenient
to consider the asymptotic convergence factor
= lim pM/*
P k—o0 Pk
which represents a bound on the average contraction in the residual per iteration.
Firstly we require some results from Approximation Theory to characterise poly-
nomials p € Iy, p(0) = 1 which solve the minimax problem (4.21) for different sets £
(see for example [33] for these results). Note that {py} must be a decreasing (non-
negative) sequence as each successive iteration simply increases the allowable degree
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Fia. 11. Optimal polynomial on a single interval

of p by one. Existence and uniqueness of the solution is known and a characterisation
is expressed in terms of the number of points in the set F at which py is attained.

Let us consider first the simpler problem when £ = [¢, d] with ¢ > 0 such as would
arise if A were symmetric and positive definite. In this case the optimal polynomial
p € 1l satisfies |p(z;)| = pi for k+1 distinct points @ = 20 < 21 < ... < Tp_1 < 2 =
b. Moreover p(z;) = —p(x;_1) for j = 1,2,..., k. It is then a straightforward matter
to see that p must be as sketched in figure 11.

We now take the unusual step of writing down an ordinary differential equation
initial value problem which must be satisfied by the polynomial p. Noting that p = +py

at the points 2, ..., 25—y where the derivative p’ vanishes as well as at the endpoints
of the interval [¢, d] we have
(4.22) K (p*(2) = p}) = (¢'(2))X(x — e)(z — d)

where the constant scaling term k% comes from equating the leading coefficient (of
2%%) on both sides of this equation. The ‘initial’ value is p(0) = 1.

The nonlinear ordinary differential equation (4.22) can now be differentiated to
give

2k pp’ = 2p/p" (@ — ¢)(x — d) + ()} (22 — ¢ — d)

so the common factor p’ can be cancelled to reveal the linear ordinary differential
equation

(4.23) (z — )z —d)p" 4+ (z — (c+d)/2)p — k*p = 0.

This is the classical Chebyshev equation (see for example [24], pp. 1033) the solutions
of which are the well known Chebyshev polynomials Ty (z) = cos k¢, & = cos ¢ suitably
shifted to the interval [¢, d] and scaled to satisfy the side condition p(0) = 1. (This
may be discovered by seeking a series solution).

35



This is a rather unusual way to show the well-known result that the solution of
the polynomial approximation problem (4.21) is

1= (B (2
(see for example [2]).

Using the definition in terms of the cosine it follows that —1 < T) < 1 for the
relevant argument and so the preconditioned MINRES convergence estimate (4.2)
becomes

Il (c+4)
4.24 <ppe=1/T .
2 el <=1/ (=

If ¢ and/or d are defined asymptotically in terms of h then use can be made of the
asymptotics of Chebyshev polynomials to give asymptotic formulae for p; in terms of

h. For example if ¢ = O(h"),d = O(1) then

lim p/* =1-0(K7?)
k—oo
(see [2]).

We use this non-standard approach here because it is actually more general since
it extends to various situations where M~z AM~7 is indefinite.

The first indefinite case we consider is £ = [—d,—c] U [¢,d]. We say that a
symmetric matrix A with A € A(A) = -\ € A(A) is ‘symmetrically indefinite’: such
a matrix necessarily leads to consideration of an inclusion set of this form. In this case
the optimal polynomials p in (4.21) must inherit the symmetry of the inclusion set
and so must be of the form sketched in figure 12. We see that p’ vanishes at the origin
as well as at the points where p attains +pg, so in a similar manner to the above we

obtain the ordinary differential equation

Faf(p*(x) = pt) = (0(2)*(x = o)z = d)(x + ¢)(x + d)
= (P(2)*(2* - H)(a® - d?)

which is necessarily satisfied by the optimal polynomial.
Making the change of variable y = 2% and setting p(z) = ¢(y) so that p/(z) =
2x¢'(y) we obtain

k2 (q*(y) — pi) = 42°(¢'(9))*(y — )y — d?)
(k/2)*(*(y) — pi) = (d(9)*(y — )y — d*).

This is precisely in the form of (4.22) and so proceding as above we obtain ¢ as the
Chebyshev polynomial of degree k/2 shifted to the interval [c?, d%] and scaled to satisfy

¢(0) = L:
2y—02—d2 62+d2
9(y) = Tryo (W) /Tk/z (Cz — 2]
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Fia. 12. Optimal polynomial on two intervals symmetric about the origin
Thus in terms of the optimal polynomial p of degree k we have

202 — 2 — (* 2+ d?
P} =Ty (T) /Ty (ﬁ)

and so for symmetrically indefinite systems the MINRES convergence estimate is

I ¢ +d
4.25 < =1/T —F |-
( ) HTOH > Pk / k/2 2 _ 2

In a partial differential equation situation where ¢ = O(h"),d = O(1) as above, we
would thus have
lim p/ =10
It is instructive to compare this with the convergence that would be achieved
by an iterative method such as MINRES (or Conjugate Gradients) applied to the

symmetric and positive definite ‘normal equations’ (NE), A% = Ab. For this system
A(A?) C [¢*,d*] so that we can estimate convergence using (4.24) to obtain

[Esl] NE 4 d
< =1/T. | — .
e < =Y\

Comparing (4.25) with (4.26) we see that we can expect that MINRES for the original
indefinite symmetric problem will take twice the number of iterations as MINRES (or
the more efficient Conjugate Gradient method) for the normal equations to achieve
the same reduction of residual. Since for the normal equations fwo matrix-vector

(4.26)

multiplies will be required at each iteration compared to only one for the indefinite
system so that the normal equation method will be twice as expensive per iteration,
we deduce that there is essentially nothing to choose between these two approaches in
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this case. That is, the iterative solution of ‘symmetrically indefinite’ systems using a
method such as MINRES is no better than the much more generally applicable normal
equations approach. A more precise statement of this result is given by Freund [19].

When proposing the use of preconditioned MINRES for a class of indefinite sys-
tems it is therefore important to show that the eigenvalues are not symmetric about
the origin. For the Stokes problem the results of the previous section establish a pre-
cise non-symmetry in the eigenvalues: for non-optimal preconditioners, the negative
eigenvalues approach the origin at half of the rate of the positive eigenvalues under
mesh refinement.

In this situation, the approach employing ordinary differential equations as above
can still be employed to derive a convergence estimate, though the details are rather
more involved (see [50]). We quote only the result: If the eigenvalues of A are contained
in a set of the form

[—a,—bh"/?] U [ch”, d]
then
lim p" =1 - O,

That is the convergence of MINRES on the Stokes problem is at a rate precisely
half way between that achived for a symmetric positive definite problem such as the
Laplacian and that achieved for the corresponding normal equations.

5. Solution methods for the discrete Oseen equations. In this section we
examine methods for solving the steady-state Navier-Stokes equations that combine
and build on the techniques of sections 3 and 4. The methods are designed for the
steady-state Oseen equations (At — oo in (1.11)). These equations also arise from a
nonlinear iteration for solving the Navier-Stokes equations in which u* represents the
iterate from a given step and the solution u is the iterate for the next step. See [29]
for a convergence analysis.

Discretisation leads to a matrix problem

(5.1) (g j;)(Z):(g)’

where v and p now represent discrete versions of velocity and pressure, respectively.
F is a discrete vector convection-diffusion operator and B represents the coupling
between the discrete velocity u and the pressure p. For simplicity of presentation we
only present results for the unstabilised case S = 0.

5.1. Preconditioning I: Convection-diffusion solves. We first describe two
preconditioning techniques developed in [7] that generalise the methods of section 4
essentially by replacing the approximation P to the vector Laplacian operator in (4.3)
with an approximation to the vector convection-diffusion operator F. It is easiest
to describe the ideas using the exact operator F. Thus, consider the block diagonal
preconditioner

(5.2) ( o A )
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where () is the pressure mass matrix. As in section 4, the eigenvalues of the precon-
ditioned system are the solutions of the generalised eigenvalue problem

(5 5) )= (0 ) (0)

These are given by A = 1 or

NEIVEET
==t

where 11 comes from the generalised eigenvalue problem for the Schur complement
system,

1
(5.3) BF 1B'p =4 (—Q) p.
v
The following result provides a bound on p.
THEOREM 5.1. The eigenvalues of the generalised Schur complement problem
(5.3) for the Oseen operator are contained in a rectangular box in the right half plane

of the form
2.2 2 T2
BRG] IV B
6% 4 12 2792

where v and T' are as in (2.30) and (2.37), and § = p(A7IN).

This is proved [7] by bounding the eigenvalues of the symmetric part of BF~! B! (with
respect to %Q) and the skew-symmetric part of BF~'B?, and then applying Bendix-
son’s theorem ([47], p. 418). But v and I' are independent of the mesh size h of the
discretisation. Moreover, since N and A are first-order and second-order operators,
respectively, 6 is also independent of & [15]. Consequently, the box containing the gen-
eralised eigenvalues of (5.3) are independent of the discretisation mesh size. A bound
on the eigenvalues of the preconditioned Oseen operator is an immediate consequence.

COROLLARY 5.2. The eigenvalues of the discrete Oseen operator (5.1) precon-
ditioned by (5.2) consist of A = 1 of multiplicity n, — n,, together with four sets
consisting of points of the form 14 (a £ bi) and —a £ bi. These sets can be enclosed in
two rectangular regions that are symmetric with respect to ®(\) = + whose borders
are bounded independently of h.

The preconditioned system can be solved using any Krylov subspace method. The
convergence behavior of such methods depends implicitly on finding a polynomial that
is small on the spectrum of the coefficient matrix. (Again see [42] or the paper by Van
der Vorst in this volume.) The fact that the eigenvalues for the preconditioned system
derived from (5.2) lie on both sides of the imaginary axis is a potential disadvantage
of this preconditioner. An alternative that avoids this problem is the block triangular
preconditioning operator

(5.4) (107 B )

14

For this choice, the associated generalised eigenvalue problem is

(55) (5 0)()=2 (0 fo) ()
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As above, one solution is A = 1, now of multiplicity n,. If A # 1, then premultiplying
the first block row of (5.5) by BF ™! and using the relation Bu = —\ (1Q)p leads to
the equation (5.3) for the other eigenvalues. Thus, we have the following result.

THEOREM 5.3. The eigenvalues of the discrete Oseen operator preconditioned by
(5.4) consist of A = 1 together with the generalised eigenvalues of S in (5.3). Therefore,
the eigenvalues are bounded independently of h and they all have positive real part.

The analysis in [16] shows that for a particular starting guess the ¢’th GMRES
polynomial derived from the triangular preconditioning (5.4) is identical to the (2¢ —
1)st GMRES polynomial for the diagonal preconditioning (5.2). Experimental results
for both GMRES and the quasi-minimal residual method (QMR) [20] indicate that
this analysis is predictive for arbitrary initial guesses, i.e., the triangular method
requires roughly half the iterations to converge [7]. Moreover, the inverse of the block
triangular preconditioner can be expressed in factored form as

FoBt N (FtoN(I B\(T o
0 -1 T\ 0 T 0 -1 0 vQt )’

so that the only overhead associated with using (5.4) instead of (5.2) is a matrix
multiplication by B!. Therefore, this preconditioner is typically more effective for the
Oseen problem.

Since the eigenvalues for either of these preconditioners are independent of the
mesh size, the asymptotic convergence rate of GMRES is also independent h [42].
Table 5 shows the iterations required by GMRES and QMR to solve the driven cavity
problem on @ = (—1,1) x (=1,1) using the Q1 —iso—Q discretization with an n X n
non-uniform grid of elements for velocities. The initial guess was identically zero and
the stopping criterion was

(5)- (5 3) ()
()

These results, which come from [7], indicate that the iteration counts are independent
of the mesh size. (This is less evident for the smallest value » = 1/100 considered here;
we believe that this is because finer meshes are needed for the asymptotic behavior to
be displayed in this case.) See [7] for additional experimental results.

2 <107°.

2

5.2. Preconditioning II: Stokes solves. An alternative approach considered
in [23] builds on the ideas of section 4 in a different way, by using a symmetric operator
as a preconditioner for the Oseen equations. Here we consider one example from [23],
the symmetric part of (5.1). This is a discrete Stokes operator

vA B!
o )
Thus, using this with a Krylov subspace method entails solving the discrete Stokes

equations at each step. See [23] for other examples of symmetric preconditioners as
well as a discussion of their use for stationary iterative methods.
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Tterations of GMRES

Grid v=1|v=1/10 | v =1/50
16 x 16 18 25 45
32 x 32 19 31 69
64 X 64 17 32 93
128 x 128 14 31 110

Iterations of QMR

Grid v=1|v=1/10 |v=1/50 | v =1/100
16 x 16 22 28 51 73
32 x 32 22 36 78 126
64 X 64 22 39 112 189
128 x 128 | 16 36 127 253
TABLE 5

Iterations for Q1—iso—Q)2 finite elements applied to the Oseen equation with block triangular
preconditioning.

An analysis of the Stokes preconditioning is as follows. Once again, we have a
generalised eigenvalue problem,

)60 0)0)

One solution is A = 1, which has eigenvectors of the form (u, p)*® where Nu = 0 and p
is arbitrary. Any remaining eigenvalues satisfy

Fu+ Blp= X\ ((Z/A)u + Btp)

where u is such that Bu = 0. If (u,p)! is any eigenvector, then taking the inner
product with u leads to the expression for the corresponding eigenvalue

(u, Nu)
(u, (vA)u)

(Note that if u exists it will be complex.) It follows that

A=1+

SO <+ p(A7N).

Thus, we have established the following result.

THEOREM 5.4. The eigenvalues of the discrete Oseen operator (5.1) precondi-
tioned by (5.6) consist of A\ = 1 of multiplicity at least n, together with at most
n, — n, eigenvalues of the form 1 + in/v where |n| < p(A7IN).

These eigenvalues lie on a vertical line segment in the complex plane with real part
equal to 1. As noted in section 5.1, p(A~1N) is independent of the mesh size, so that
the asymptotic convergence rate of GMRES will also be independent of h [23, 42].

Table 6 shows the results of numerical experiments with the Stokes preconditioner
[23] applied to the driven cavity problem. Here the discretization is locally stabilised
(1 — PO with 3 = 1/4. (See section 6.) The stopping criterion and initial guess are as
in section 5.2.
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Tterations of GMRES

Grid |v=1|v=1/10|v=1/100
8 X8 5 11 26

16 x 16 4 12 39

32 x 32 4 12 45

64 X 64 4 12 45

Iterations of QMR

Grid =1|v=1/10 | v=1/50 | v =1/100
8 X8 7 12 27 45
16 x 16 ) 14 40 67
32 x 32 ) 14 47 83
64 x 64 6 13 47 89
TABLE 6

Iterations for locally stabilised Q1 — Py finite elements (with 3 = 1/4) applied to the Oseen
equation with Stokes preconditioning.

5.3. Discussion. We conclude this section with a brief discussion comparing the
two classes of ideas presented here. Fach of the approaches requires the solution of a
key subproblem, the discrete convection-diffusion equation for the methods of section
5.1 and the discrete Stokes equations for the method of section 5.2.> We have not
made a systematic comparison of these approaches and will refrain from making a
recommendation here. For a practical computation we would expect the solution of
either of the subproblems to be replaced by an approximate solution obtained using an
iterative method. These computations could be done using the techniques of sections
3 or 4. This issue adds to the difficulty in making a comparison of the two approaches.

Finally, we point out that although both methodologies discussed here produce
asymptotic convergence rates that are independent of the mesh size, they are depen-
dent on the viscosity v. This is seen in the lower bound of v? for the real parts of the
eigenvalues in Theorem 5.1 (which is shown to be tight in [7]) and the upper bound
of 1/v in Theorem 5.3. In both cases the iteration counts appear to grow linearly in
1/v, and therefore we expect these ideas to be most suitable problems with relatively
high viscosity, i.e., low Reynolds numbers.

6. Test Problems and Software. In this section, the test problems used to
illustrate the methodology in sections 3-5 are described. These problems can be
constructed (and the solutions plotted) using MATLAB software which is available
by anonymous ftp in the tar files
ftp://ftp.ma.man.ac.uk/pub/narep/convdiff.tar
ftp://ftp.ma.man.ac.uk/pub/narep/oseen.tar
The three test problems that are built-in are described below.

® As described, the techniques of section 5.1 also require the action of the inverse of the mass matrix.
However, as we observed in section 4, this can be replaced with a less expensive computation using,
say, the diagonal of the mass matrix, without affecting asymptotic convergence properties. Indeed,
this choice was used for the results of section 5.1.
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6.1. The Convection-Diffusion Problem. The directory /convdiff/ con-
tains two driver routines; square_grid and stretch_grid. These generate solutions
to (2.1) using square or rectangular bilinear )1 elements. The “wind” w is defined
within the function transprt.m, and for the test problem (see section 3.3) it is set to
a constant vector (—v/2/2,v/2/2). The boundary conditions are defined in the func-
tion skewx.m. In the test problem, the solution satisfies v = 1 on part of the bottom
boundary and on the right-hand wall, and w = 0 on the remainder.

supg solution

\

A \\

\‘\‘“::‘\:\\\\\‘\\\\\
MR

il

01

Fi1c. 13. Convection skew to the mesh

Reducing the viscosity parameter v increases the relative strength of the wind,
and if v is “small” there is an internal layer generated by the discontinuity on the
inflow boundary, and a boundary layer at the left hand wall and along the top. The
case v = 1/100 is illustrated in figure 13. This shows a uniform 32 x 32 grid solution
corresponding to the streamline diffusion formulation (2.8), and was generated via
square_grid. Note that for this combination of v and % the standard Galerkin solution
is oscillatory, unless stretched grids are used to resolve the boundary layer (via the
routine stretch grid).

6.2. The Stokes Problem. The directory /oseen/ contains two driver routines;
square mesh and stretch mesh. These generate finite element matrices associated
with the Oseen operator using square (or rectangular) 1Py elements. These matrices
are “saved” on the datafile system nobc.mat.

selected streamlines pressure field

Fia. 14. Stokes driven cavity flow

Having set up the system matrices, the Stokes flow test problem (see sections 4.4
and 4.5) can be solved using the driver stokes. The “leaky driven cavity” boundary
conditions are defined in the function ldcavf.m; the vertical velocity is set to zero
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everywhere, whereas the horizontal velocity is set to unity on the lid, and is zero on
the other boundaries. One of the interesting features of the problem is that the pres-
sure is singular at the top corners, i.e. where the imposed velocity is discontinuous.
Without convection the flow is (anti-)symmetric about the line # = 0, where the pres-
sure must be identically zero. This feature can be exploited when generating the flow
solution (see section 4). A typical flow is illustrated in figure 14. This shows a uniform
32 x 32 grid solution of the stabilised system (2.35) with the “optimal” stabilisation
parameter 8 = 0.058. Using ¢J1—Fy the pressure solution becomes increasingly oscilla-
tory as 8 — 0, although a realistic velocity solution is obtained for this test problem
without stabilisation (this is not true in general). If stretched grids are used (via the
routine stretch mesh) then secondary recirculations (so called “Moffatt eddies”) can
be observed in the bottom two corners.

6.3. The Oseen Problem. Having set up the system matrices as above (using
square mesh or stretch_mesh), the Oseen flow test problem (see sections 5.1 and 5.2)
can be solved using the driver osn. Unlike the Stokes case where there is no convection,
in the Oseen problem there is a “wind” which is defined within the function wind.m.
For the test problem the wind is the “divergence-free vortex” w = (2y(1—2?), —22(1—
y%)). As in the Stokes case, the “leaky cavity” boundary conditions are defined in the
function ldcavf.m.

selected streamlines pressure field

2.

Fia. 15. Oseen driven cavity flow

Reducing the viscosity parameter v increases the relative strength of the wind,
and if v is “small” the centre of primary recirculation (which is on the line z = 0 in
the Stokes case) is moved significantly to the right. The case v = 1/50 is illustrated
in figure 15. This shows a stretched grid 32 x 32 grid solution of the stabilised system
(5.1) with a stabilisation parameter § = 1/4. The secondary recirculations can be
clearly observed here.
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