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ITERATIVE METHODS FOR PROBLEMS IN COMPUTATIONALFLUID DYNAMICSHOWARD C. ELMAN�, DAVID J. SILVESTERy AND ANDREW J. WATHENzAbstract. We discuss iterative methods for solving the algebraic systems of equations arising fromlinearization and discretization of primitive variable formulations of the incompressible Navier-Stokesequations. Implicit discretization in time leads to a coupled but linear system of partial di�erentialequations at each time step, and discretization in space then produces a series of linear algebraicsystems. We give an overview of commonly used time and space discretization techniques, and wediscuss a variety of algorithmic strategies for solving the resulting systems of equations. The emphasisis on preconditioning techniques, which can be combined with Krylov subspace iterative methods. Inmany cases the solution of subsidiary problems such as the discrete convection-di�usion equation andthe discrete Stokes equations plays a crucial role. We examine iterative techniques for these problemsand show how they can be integrated into e�ective solution algorithms for the Navier-Stokes equations.1. Introduction. Our objective is to compute solutions of incompressible owproblems modelled by the Navier-Stokes equations in a ow domain 
 � IRd (d = 2or 3) with a piecewise smooth boundary @
:@u@t + u � ru� �r2u+rp = 0 in W � 
� (0; T )(1.1) r � u = 0 in W :(1.2)together with boundary and initial conditions of the formu(x; t) = g(x; t) onW � @
� [0; T ];(1.3) u(x; 0) = u0(x) in 
:(1.4)Our notation is standard: u is the uid velocity, p is the pressure, � > 0 is a speci�edviscosity parameter (in a non-dimensional setting it is the inverse of the Reynoldsnumber), and T > 0 is some �nal time. The initial velocity �eld u0 will be assumedto satisfy the incompressibility constraint, that is, r � u0 = 0. The boundary velocity�eld satis�es R@
 g � n ds = 0 for all time t, where n is the unit vector normal to @
.We also assume that the pressure solution is uniquely speci�ed e.g. by insisting thatits mean value is zero.If g is independent of t then the usual objective is simply to compute steady-state solutions of (1.1){(1.2). In other cases however, time-accuracy is importantand the requirements of the time discretisation will be more demanding; speci�cally,an accurate and unconditionally stable time-discretisation is necessary to adaptivelychange the timestep to reect the dynamics of the underlying ow. Two classes of timediscretisation scheme are described below, operator splitting methods and linearisedimplicit methods.� Department of Computer Science and Institute for Advanced Computer Studies, University ofMaryland, College Park, MD 20742, USA, e-mail: elman@cs.umd.edu. This work was supported bythe U. S. National Science Foundation under grants ASC-8958544 and DMS-9423133.y Department of Mathematics, University of Manchester Institute of Science and Technology,Manchester M601QD, UK, email: djs@lanczos.ma.umist.ac.ukz Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX13QD, UK,email: Andy.Wathen@comlab.ox.ac.uk 1



1.1. Operator splitting Methods. One attractive approach ensuring stabil-ity and high accuracy is to decouple the convection and incompressibility operatorsusing an \alternating-direction" splitting; see Glowinski & Dean [5]. Assuming uni-form timesteps �t = T=n for ease of exposition, the simplest two-stage (Peaceman-Rachford) scheme [39] is given below.Algorithm 1.1. Given u0, � 2 [0; 1], � 2 (0; 1), � 2 (0; 1), �nd u1,u2, : : :, unvia un+� � un��t � ��r2un+� + u� � run+� = ��r2un � rpn in 
;un+� = gn+� on @
:(1.5) un+1 � un+�(1� �)�t � ��r2un+1 +rpn+1 = ��r2un+� � u� � run+�r � un+1 = 0 in 
;un+1 = gn+1 on @
:(1.6)In practice the choice of parameters is restricted; the splitting of the di�usiveterms must be done consistently i.e. � + � = 1, and the \frozen" velocity in theconvective term must be divergence free i.e. r �u� = 0, otherwise the skew symmetryof the convective term will not be preserved. Another important consideration withregard to the choice of u� is the linearity, or otherwise, of the equation systems thatmust be solved at each time level. In particular, the natural choice of u� = un gives alinear method but in this case the accuracy is only �rst order. Second order accuracycan be achieved by setting u� = un+� , but in this case a nonlinear convection-di�usionproblem (1.5) must be solved at every time level, in addition to the generalised Stokesproblem (1.6).The Peaceman-Rachford splitting method has one drawback (see [5] and [46]),namely, that it is not asymptotically stable when applied to the standard model prob-lem with an exponentially decaying solution. Thus we can expect any implementationof Algorithm 1.1 to perform poorly if the time-step is not small enough when theunderlying ow exhibits fast transient behaviour. In addition, the methodology is notwell suited to computing steady-state ow solutions by \pseudo-timestepping" withlarge timesteps. Motivated by these observations, Glowinski [5] proposed a three-stagevariant of the Peaceman-Rachford scheme which has all the good features of the orig-inal method whilst retaining stability in the asymptotic limit �t!1. The resultingmethod is commonly referred to as \Le �-scheme".Algorithm 1.2. Given u0, � 2 (0; 1=2), � 2 (0; 1), � 2 (0; 1), �nd u1, u2, : : :,un via un+� � un��t � ��r2un+� +rpn+� = ��r2un � un � runr � un+� = 0 in 
;un+� = gn+� on @
:(1.7) un+1�� � un+�(1� 2�)�t � ��r2un+1�� + : : :u� � run+1�� = ��r2un+� � rpn+� in 
;un+1�� = gn+1�� on @
:(1.8) 2



un+1 � un+1����t � ��r2un+1 + : : :rpn+1 = ��r2un+1�� � u� � run+1��r � un+1 = 0 in 
;un+1 = gn+1 on @
:(1.9)The nonlinear scheme u� = un+1�� is considered in [5], and requires the solutionof two generalised Stokes problems (1.7),(1.9), and one nonlinear convection-di�usionequation (1.8) at each time step. In this case, either choosing �=� = 1=2 or else setting� = 1� 1=p2 with � + � = 1 gives second order accuracy as �t ! 0. In particular,setting � = 1� 1=p2, � = (1� 2�)=(1� �) and � = �=(1� �) gives a method which issecond order accurate in time, unconditionally stable, has good asymptotic propertiesand has commonality between the coe�cient matrices at the various substages, see [5].The unconditional stability of the scheme in an incompressible Navier-Stokes settingwas established by Klou�cek & Rys [31].In [46] a linear �-scheme is developed which retains second order accuracy (settingu� = un+� in Algorithm 1.2 reduces the accuracy to �rst order). The key here is to usean appropriate combination of the two convection matrices when freezing the velocityin Algorithm 1.2, viz: u� = 2� � 1� un + 1� �� un+� :(1.10)In this case a linear convection-di�usion problem (1.8) must be solved at each timelevel. Furthermore, the results in [46] show that the accuracy of the resulting methodis not compromised. In contrast, making the choice u� = un+� badly impinges onaccuracy as �t! 0.Summarising the discussion of splitting methods; both the two-stageAlgorithm 1.1in the case of small �t, and the three-stage Algorithm 1.2 in general, give accuratetime discretisation of the Navier-Stokes problem (1.1){(1.4). In sections 3 and 4that follow we describe how the component Stokes and (linear) convection-di�usionsub-problems may be solved e�ciently using contemporary preconditioned Krylovsubspace iteration methods. The spatial discretisations of the convection-di�usionand Stokes subproblems which arise above are discussed in section 2.If � is small then an e�cient alternative to operator-splitting is to use the \char-acteristics" of the associated hyperbolic problem (looking backwards in time to ensurestability), see Douglas & Russell [6]. Using this approach a single Stokes problem ofthe form (1.6) must be solved at every time-level so the discussion in section 4 is alsorelevant to this class of methods.1.2. Linearised Implicit Methods. The simplest time-stepping approach forthe Navier-Stokes equations is a simple one-stage �nite di�erence discretisation. Ageneric (and unconditionally stable) algorithm (cf. Algorithms 1.1 and 1.2) is givenbelow.Algorithm 1.3. Given u0, � 2 [1=2; 1], �nd u1, u2, : : :, un via(un+1 � un)�t + u� � run+� � �r2un+� +rpn+� = 0r � un+� = 0 in 
;un+� = gn+� on @
:(1.11) 3



Here un+� = �un+1 + (1 � �)un and pn+� = �pn+1 + (1 � �)pn. Note that p0 isrequired if � 6= 1 so the Algorithm 1.3 is not self-starting in general. In this case anapproximation to p0 must be computed explicitly by manipulation of the continuumproblem, or alternatively it must be approximated by taking one (very small) step ofa self-starting algorithm (e.g. with � = 1 above).Algorithm 1.3 contains the well known nonlinear schemes of backward Euler andCrank-Nicolson. These methods are given by (un+� = un+1, u� = un+1), (un+� =un+ 12 , u� = un+ 12 ), and are �rst and second order accurate respectively. In eithercase, a nonlinear problem must be solved at every time-level. As a result neitherof these methods is to be recommended if time-accuracy is needed. A well knownlinearisation strategy is to set u� = un above. This does not a�ect the stabilityproperties of the time-discretisation, but it does reduce the Crank-Nicolson accuracyto �rst order as �t! 0 (the �rst order accuracy of backward Euler is unchanged). Toretain second order accuracy in a linear scheme the Simo-Armero scheme [45] givenby setting un+� = un+ 12 with u� = (3un�un�1)=2 in Algorithm 1.3 is recommended.Using linearised backward Euler (or the Simo-Armero scheme) a frozen-coe�cientNavier-Stokes problem (or Oseen problem) arises at each discrete time step. In con-trast to the operator splitting case, the Oseen methodology is primarily of inter-est when solving steady-state problems|the linearised backward Euler method isuniquely well suited to pseudo-timestepping since it inherits the long term asymptoticdissipative behaviour of (1.1){(1.2), see [45] for details. Alternatively, attacking thesteady state version of (1.1){(1.2) directly introduces a (steady-state) Oseen systemat every iterative level. In section 5 we consider techniques for solving such Oseenproblems using preconditioned Krylov subspace methods.2. Spatial discretisation. In this section, the spatial discretisation of the sub-problems arising from the operator splitting methods in section 1.1 are discussed. Forsimplicity, we only consider the steady-state limit of the linearised convection-di�usionand Stokes sub-problems here; for example, as would arise from setting �t ! 1 in(1.5) and (1.6) respectively.2.1. The linearised convection-di�usion problem. The problem addressedhere is the following: Given some convective velocity �eld (or \wind") w 2 IRd suchthat r �w = 0, �nd a scalar variable u (the transported quantity) satisfying� �r2u+w � ru = f in 
;(2.1)with a boundary condition u(x) = g(x) on @
. In practice, for example when solving(1.5), the \wind" is not actually pointwise divergence-free. Our discussion is stillrelevant in such cases|our starting point is then an equivalent formulation of themomentum conservation equations (1.1), with the convection term expressed in skew-symmetric form, see [45] for details.Simple �nite di�erence methods are often appropriate when spatially discretis-ing the model problem (2.1)), especially if the geometry is straightforward and \fastsolution" is the goal. Alternatively, if the ow domain is irregular or if adaptive re-�nement via a posteriori error control is to be included, then �nite element spatialapproximation is best. The theory underlying �nite element approximation of (2.1) issummarised for completeness below. For further details, see for example, Quarteroni& Valli [40]. 4



The weak formulation of (2.1) is de�ned in terms of the Sobolev space H10(
) (theset of functions with derivatives in L2(
) and which are zero on @
). De�ning thespace X � H10(
), it is easy to see that the solution u satis�esa(u; v) = (f; v) 8v 2 X;(2.2)where a(�; �) is the bilinear form a(u; v) = �(ru;rv) + (w � ru; v); and (�; �) denotesthe usual scalar L2(
) inner product.Since 
 is bounded and w is divergence-free, the bilinear form a(�; �) is coerciveand bounded over Xa(u; u) = � kruk2 8u 2 X;(2.3) ja(u; v)j � Cw krukkrvk 8u 2 X; 8v 2 X;(2.4)and the continuity constant Cw is given byCw = � + C
kwkL1(
)where C
 is the Poincar�e constant associated with 
. Existence and uniqueness ofthe solution to (2.1) then follows from the Lax-Milgram lemma.To generate a discrete system we take a �nite dimensional subspace Xh � X ,where h is a representative mesh parameter, and enforce (2.2) over Xh. Speci�cally,we look for a function uh such that uh = gh on @
, which solvesa(uh; v) = (fh; v) 8v 2 Xh;(2.5)where fh is the L2(
) orthogonal projection of f into Xh, and gh is typically theinterpolant of of the boundary data g.Since we are using a conforming approximation, uh is also uniquely de�ned, andif g = 0, (2.3) and (2.4) imply the following a priori error estimatekr(u� uh)k � Cw� infv2Xh kr(u� v)k:(2.6)Although the �nite element approximation in (2.6) is of optimal order as h ! 0,the stability clearly depends on the ratio Cw=�. In general, oscillatory solutions areobserved if the characteristic \mesh Peclet number" is large, i.e.Pe � hkwk2� > 1;for example, if there are any boundary layers which are not resolved by the mesh. Ingeneral, when convection dominates, the discrete solution \inherits" instability fromthe associated solution of (2.2).An alternative to adaptive mesh re�nement is to \ignore" physical boundary lay-ers, and to stabilise the discrete problem; e.g. using some form of upwinded discretisa-tion. In a �nite element setting this is conveniently achieved using a Petrov-Galerkinframework [27, 28] with a \shifted" (non-conforming) test space, say,a(uh; v + �w � rv) = (fh; v + �w � rv) 8v 2 Xh;(2.7) 5



where � is an appropriately chosen stabilisation/upwinding parameter, see below. Tak-ing a standard element-wise evaluation of the non-conforming term, and using a lin-ear P1 (or Q1) approximation space, the formulation (2.7) simpli�es to the so-calledstreamline-di�usion methodb(uh; v) � a(uh; v) + (w � ruh; �w � rv) = (fh; v + �w � rv) 8v 2 Xh:(2.8)This formulation clearly has better stability properties than the original since there isadditional coercivity in the local ow direction,b(u; u) = � kruk2 + �kw � ruk2 8u 2 Xh:(2.9)Another appealing feature of the stabilised formulation (2.7) is that it is consistent|the exact solution of the di�erential equation (2.1) satis�es (2.7). This means thathigh order approximations (Pk or Qk for k � 2) can be used without compromisingaccuracy.Returning now to the choice of �, it is possible to show that the solution of (2.7)satis�es the \best possible" error estimate (for any degree of polynomial approxima-tion), under the assumption that � in (2.7) is of the form� = �hkwk for all Pe > 1:(2.10)Here � > 0 is a \tuning parameter", and h is the usual representative mesh parameter.For a more complete discussion, and a review of the error analysis of the streamlinedi�usion method, see [28]. Note that if the discretised problem is di�usion-dominated(i.e. Pe � 1) then the corresponding \best" choice above is � = 0, in which case (2.7)reduces to the standard Galerkin formulation (2.5).In practice, determining an appropriate choice of � in (2.10) is crucial. (Thisissue will also arise when we consider stabilised Stokes formulations below). There aretwo aspects to consider here: �rstly, it very easy to over-stabilise giving smooth butinaccurate solutions, secondly, the performance of iterative solvers applied to (2.8) willclearly be inuenced by the choice of parameter. This second aspect will be an issuein section 3, where some experiments are presented for a model problem with constant\wind" w, solving (2.5) and (2.7), using uniform grids of bilinear �nite elements. (Theassociated software is freely available, see section 6 for details.) If the wind is constant,then an optimal value is known (from Fourier analysis) �� = 1=2(1 � 1=Pe), whichminimises the contraction rate of iterative solvers applied to (2.8), see [17] for furtherdetails. Note that �� ! 0 as Pe ! 1 so that \stabilising" the standard method islikely to adversely a�ect the convergence of iterative solvers if the discrete problem isdi�usion dominated.2.2. The Stokes problem. Here we consider the following problem: �nd thevelocity vector u 2 IRd and the scalar p (the \pressure") satisfying�r2u+rp = f in 
(2.11) r � u = 0 in 
;(2.12)with speci�ed velocity boundary conditionsu(x) = g(x) on @
:(2.13) 6



Note that in (2.11){(2.12) the viscosity coe�cient � has been incorporated into thede�nition of the forcing function and the pressure.The theory underlying the solution of (2.11){(2.13) using �nite element methodsis outlined below. For full details see Girault & Raviart [21]. The weak formulationof (2.11){(2.12) is de�ned in terms of the Sobolev spaces H10(
) and L20(
) (the setof functions in L2(
) with zero mean value on 
). De�ning a velocity space X �(H10(
))d and a pressure space M � L20(
), it is easy to see that the solution (u; p) of(2.11){(2.12) satis�es(ru;rv)� (p;r � v) = (f ;v) 8v 2 X(2.14) (r � u; q) = 0 8q 2M;(2.15)where (�; �) denotes the usual vector or scalar L2(
) inner product. Since 
 is boundedand connected there exists a constant � satisfying the continuous inf-sup condition:supw2X (p;r �w)kwkX � �kpkM 8p 2M:(2.16)Existence and uniqueness of solution follows, see [21].To generate a discrete system we take �nite dimensional subspaces Xh � X andMh � L2(
), where h is a representative mesh parameter, and enforce (2.14){(2.15)over the discrete subspaces (again specifying that functions in Mh have zero mean toensure uniqueness). Speci�cally, we look for functions uh and ph such that(ruh;rv)� (ph;r � v) = (fh;v) 8v 2 Xh(2.17) (r � uh; q) = 0 8q 2Mh:(2.18)Here, fh is the (L2(
))d orthogonal projection of f into Xh.The well-posedness of (2.17){(2.18) is not automatic since we do not have an in-ternal approximation (i.e. functions satisfying (2.18) do not necessarily satisfy (2.15)).A su�cient condition for the existence and uniqueness of the solution to (2.17){(2.18)is that the following discrete inf-sup condition is satis�ed: there exists a constant independent of h such thatsupw2Xh (p;r �w)krwk � kpk 8p 2Mh:(2.19)Note that the semi-norm krwk in (2.19) is equivalent to the norm kwkX used in(2.16) for functions w 2 X. In the case g = 0 the condition (2.19) also guaranteesoptimal approximation in the sense of the error estimatekr(u� uh)k + kp� phk � C( infv2Xh kr(u� v)k + infq2Mh kp� qk):(2.20)Note that the constant C in (2.20) is inversely proportional to the inf-sup constant in (2.19).The simplest example of an unstable method is the computationally convenientequal-order velocity/pressure approximation based on a single grid. The problem isthat the pressure space is too rich compared to the velocity space in this case. The sim-plest way of constructing an equal order approximation such that (2.19) is uniformlysatis�ed is to introduce two grids: for example in IR2 starting from a coarse grid of7



rectangles, a re�ned grid can be constructed by joining the mid-points of the edges.The condition (2.19) is then satis�ed by taking a C0 piecewise bilinear function onthe coarse mesh for the pressure approximation, and a C0 piecewise bilinear functionon the �ne mesh for each of the velocity components. Numerical results presentedin sections 4 and 5 were generated using this approach|henceforth referred as theQ1{iso{Q2 method.To construct the matrix analogue of (2.17){(2.18) it is convenient to introducediscrete operators A :Xh 7! Xh and B : Xh 7!Mh de�ned via(Avh;wh) = (rvh;rwh) 8vh;wh 2 Xh;(2.21) (Bvh; qh) = �(r � vh; qh) 8vh 2 Xh; 8qh 2Mh;(2.22)so that B� is the adjoint of B, i.e. (vh; B�qh) = (Bvh; qh). With these de�nitions thediscrete problem (2.17){(2.18) can be rewritten as a matrix system:�A B�B 0 ��uhph � = � fh0 � :(2.23)Furthermore, the inf-sup inequality (2.19) simpli�es tokphk � supwh2Xh (Bwh; ph)(Awh;wh)1=2 8ph 2Mh:(2.24)It is instructive to express the inf-sup condition in terms of the actual �nite elementmatrices that arise in practice. To this end, let us explicitly introduce the �nite elementbasis sets, say, Xh = spanf�igni=1; Mh = spanf jgmj=1;(2.25)and associate the functions uh, ph, fh with the vectors u 2 IRn, p 2 IRm and f 2 IRnof generalised coe�cients, uh = Pni=1 ui�i etc. De�ning the n � n \vector-sti�nessmatrix" Aij = (r�i;r�j) and also the m�n \divergence matrix" Bij = �(r:�j ;  i),gives the �nite element version of (2.23):�A BtB 0 ��up� = � f0� :(2.26)Moreover, introducing the m�m pressure \mass matrix" Qij = ( i;  j); leads to the�nite element version of (2.19) or (2.24): for all p 2 IRm,(ptQp)1=2 � maxu ptBu(utAu)1=2(2.27) = maxw=A1=2u ptBA�1=2w(wtw)1=2(2.28) = (ptBA�1Btp)1=2;(2.29)since the maximum is attained when w = A�1=2Btp. Thus, we have a characterisationof the inf-sup constant: 2 = minp6=0 ptBA�1BtpptQp :(2.30) 8



In simple terms it is precisely the square root of the smallest eigenvalue of the Schurcomplement preconditioned by the pressure mass matrix: Q�1BA�1Bt.The discrete inf-sup condition is extremely restrictive. The problem is that thesimplest conforming �nite element methods such as Q1{P0 (trilinear/bilinear velocitywith constant pressure) are not stable in the sense that pressure vectors p 2 Mh canbe constructed for which the inf-sup constant tends to zero under uniform re�nement.This type of instability can be di�cult to detect in practice since the associated discretesystems are non-singular, (so that each of the discrete problems are uniquely solvable),however they become rapidly ill-conditioned as h! 0.The simplest way of getting such low-order methods to work in practice is torelax the discrete incompressibility condition (2.18). An e�cient approach is the fol-lowing local stabilisation method, which is based on controlling the jumps in pressureacross element boundaries within an appropriate macroelement subdidvision, M say,as follows (ruh;rv)� (ph;r � v) = (fh;v) 8v 2 Xh(2.31) (r � uh; q)� � Xm2Me2�m hm Ze [[ph]]e[[q]]eds = 0 8q 2Mh:(2.32)In (2.32), �m is the set of all edges/faces in the interior of the m'th macroelement,� is a positive stabilisation parameter (see below) and hm is a local measure of themacroelement's size, see [30]. Of course, if stability is to be achieved then the numberof elements in each macroelement must be su�ciently large|if every macroelementcontained just one element there are no internal jump terms (i.e. �m = ;), and (2.31){(2.32) degenerates to the unstabilised formulation. In the motivating paper [30], it isrigorously established that as long as M is constructed so that each macroelement istopologically equivalent to a reference macroelement having a velocity node on everyedge (or every face in three-dimensions), then there exists a minimal parameter value�0 such that the formulation (2.31){(2.32) is stable; i.e. there exists a constant sbounded away from zero independently of h such that the following \inf-sup like"condition is satis�edsupw2Xh (p;r �w)krwk � p2skpk � (� Xm2Me2�m hm Ze [[p]]e2ds) 12 8p 2Mh:(2.33)As a result, if � � �0 then an optimal error estimate can be established in the caseg = 0 (see [30]) kr(u� uh)k + kp� phk � Ch(2.34)where C is a constant independent of h and � (it depends only on �0). Note thatthe same estimate (2.34) characterises the approximation accuracy of the Q1{iso{Q2method above (with a di�erent constant C).Using a stabilised formulation of the form (2.31){(2.32) leads to the followingmatrix system �A BtB ��S ��up� = � f0� :(2.35) 9



where A and B are as de�ned in (2.26), and S corresponds to the pressure stabilisationterm in (2.32). Furthermore we have an explicit representation of the stability constants in (2.33) 2s = minp6=0 ptBA�1Btp+ �ptSpptQp ;(2.36)which is the analogue of (2.30) in the unstabilised case.One of the features of (2.31){(2.32) is that if the discrete incompressibility con-straints are added together, then the jump terms sum to zero in each macroelement(a speci�c example is given below). This is crucially important to the success of themethod since it implies that the local incompressibility of the original method is re-tained after stabilisation (albeit over macroelements). The major potential limitationof this approach is that stability is only guaranteed if the stabilisation parameter �is bigger than the critical value �0. Fortunately this does not cause any di�cultyin practice, since an over-estimate of the critical parameter is easily computed if theextremal eigenvalues of the Schur complement and the stabilisation matrix are known;speci�cally, it is shown in [43] that �� � �0 if �� = �2=�2 with�2 = maxp6=0 ptBA�1BtpptQp ;(2.37) �2 = maxp6=0 ptSpptQp:(2.38)A simple estimate of � is well known (see [18]): a Cauchy-Schwarz argument yieldsj(divv; p)j2kvk2Xkpk2M � kdivvk2krvk2 � d;(2.39)so for example in IR2 we have p2 � �. In practice, this estimate (which holds forall mixed approximations) seems to be pessimistic. In particular, in the case of theQ1{P0 approximation, numerical computations on quasi-uniform Cartesian grids ofrectangular elements suggest that that �! 1 from below, as h! 0.Using a macroelement stabilisation, � in (2.38) can be computed locally. Toillustrate this, consider the case of a uniform grid of j � j square Q1{P0 elements ofside h. If j is even then local stabilisation can be based on 2� 2 macroelements, andwith an appropriate local numbering, the stabilisation matrix S is block diagonal withidentical 4� 4 blocks of the following formSM = h20BB@ 2 �1 0 �1�1 2 �1 00 �1 2 �1�1 0 �1 21CCA :(2.40)As a result the eigenvalues of S are 0; 2h2; 2h2; 4h2 (each with multiplicity equal toj2=4). Furthermore, since the pressure is piecewise constant the mass matrix Q isdiagonal with entries equal to h2. Hence, �2 = 4 in (2.38), and �2 = 1 in (2.37) sothat a \good" parameter value is easily deduced, namely � = 1=4. This is impor-tant since it allows the possibility of constructing usable software built around Q1{P010



for discretising Stokes problems (see section 6). Some numerical results using thissoftware/methodology are described in section 4.Finally, we note that the discretisation of the Oseen problem (1.11), which arisesusing the linearised implicit time-stepping methods (see section 1.2) can be done us-ing the Stokes methodology described above, and will give good results if the owis di�usion-dominated in the sense that boundary layers are properly resolved by themesh. Some numerical results using stabilised Q1{P0 are described in section 5. Gener-alising the streamline-di�usion approximations of the transport terms (cf. section 2.1)is also possible, although the characterisation of appropriate stabilisation parametersis much more di�cult to do automatically in the Oseen case.3. Solution methods for the discrete convection-di�usion equation. Dis-cretization of the convection-di�usion equation (2.1) using �nite di�erences or �niteelements (via (2.5) or (2.8)) leads to a linear system of equationsFu = f(3.1)where u and f are vectors in IRn. F is a nonsymmetric matrix of the form�A+N:Here A = ��h, the discrete Laplacian, for the usual �nite di�erence or Galerkindiscretizations, or in the case of streamline upwinding, A = ��h + Aw where Awcorresponds to the stabilizing term of (2.8). N is a skew-symmetric matrix, the discreteconvection operator.We will emphasize splitting methods for (3.1), that is, representations of thecoe�cient matrix in the form F = Q�Rwhere Q is the nonsingular splitting matrix. Such a splitting can be used to producea stationary iteration u(k+1) = Q�1(Ru(k) + f)(3.2)where u(0) is an arbitrary initial guess, or Q can be used as a preconditioner for (3.1)in combination with Krylov subspace methods. The classical analysis of the stationarymethod (3.2) proceeds as follows; see [1, 48, 52] for comprehensive presentations ofthese results and [34, 47] for concise overviews. Let e(k) = u � u(k) denote the errorat the kth step of the stationary iteration (3.2). Thene(k) = (Q�1R)ke(0);and for any consistent norm k � k,ke(k)k � k(Q�1R)kk ke(0)k:(3.3)Analysis is based on the fact thatlimk!1 k(Q�1R)kk1=k = �(Q�1R)(3.4) 11



Fig. 1. Natural horizontal line ordering and nonzero structure of matrix.
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nz = 256where � denotes the spectral radius. The iteration is convergent if and only if �(Q�1R) <1, and roughly speaking, the error decreases in magnitude by a factor of �(Q�1R) ateach step. Consequently, � is referred to as the convergence factor. The e�ectiveness ofKrylov subspace methods depends in large part on the existence of a polynomial thattakes on the values 1 at the origin and is small on the eigenvalues of Q�1A = I�Q�1R[1, 41]; thus, it is also desirable to make �(Q�1R) as small as possible for Krylov sub-space methods.3.1. Analysis of convergence factors. We �rst consider versions of the clas-sical Jacobi, Gauss-Seidel and successive over-relaxation (SOR) iterative methods anddiscuss analytic bounds on convergence factors for these methods. Throughout ourdiscussion, we will use the two-dimensional version of (2.1); see [1, 34, 47, 48, 52] forgeneral presentations. Let 
 denote the unit square (0; 1) � (0; 1) and assume thediscretisation is performed on a uniform grid using �nite di�erences or linear or tri-linear �nite elements. If the grid is ordered with a natural left-to-right bottom-to-topordering, then the resulting matrix F has block tridiagonal form in which the blockdiagonal is a tridiagonal matrix. Figure 1 shows an example for a 6�6 grid ordered byhorizontal lines. The nonzero structure of the matrix for a nine-point operator on thisgrid is shown on the right. This structure would arise from a bilinear �nite elementdiscretisation; for �nite di�erences or linear �nite elements (with unidirectional tri-angles), the o�-diagonal blocks would be diagonal or bidiagonal, respectively. Figure2 shows an alternative line red-black ordering and the structure of the correspondingmatrix. Variants based on vertical orderings are de�ned analogously.For any of the line orderings, let F = D � L � U where D denotes the blockdiagonal of F , �L denotes the lower triangular matrix consisting of entries below theblock diagonal D, and �U is the analogous upper triangular matrix. The classicalstationary methods are de�ned by the following splittings:line Jacobi: Q = D; R = D � F ;line Gauss-Seidel: Q = D � L; R = U ;line SOR: Q = 1! (D � !L); R = 1! [(1� !)D+ !U ] :The matrix F arising from these orderings is block consistently ordered [52]. Conse-quently, the spectral radii of the line Jacobi and line Gauss-Seidel iteration matrices12



Fig. 2. Horizontal line red-black ordering and nonzero structure of matrix.
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nz = 256are related by �((D� L)�1U) = �(D�1C)2(3.5)where C = D � F . Moreover, if the Jacobi matrix D�1C has real eigenvalues and itsspectral radius is less than one, then the spectral radius of the SOR iteration matrixL! = (D � !L)�1[(1� !)D+ !U ] is minimized by !� = 21+p1��(D�1C)2 and�(L!�) = !� � 1:(3.6)Thus the key to the analysis is to bound �(D�1C). We treat some speci�c casesindividually.The constant coe�cient problem � = 1 and w = (�; �) in (2.1) is the startingpoint for much of the analysis. Any �nite di�erence discretisation produces a �ve-point operator which can be represented by a \computational molecule"�e�c a �d�b(3.7)In this, case, we can give an exact expression for �(D�1C). The proof depends on thefact that the block diagonal matrix D can be symmetrized using a diagonal similaritytransformation, see [11].Theorem 3.1. If cd � 0, then the spectral radius of the block Jacobi iterationmatrix for the horizontal line ordering is2pbe cos(�h)a � 2pcdcos(�h) :13



If be � 0, then the spectral radius of the block Jacobi iteration matrix for the verticalline ordering is 2pcd cos(�h)a� 2pbe cos(�h) :The conditions in this theorem are satis�ed if all of the o�-diagonal entries b, c, d ande of F are greater than equal to zero. This is the case, for example, if centred �nitedi�erences are used to discretise the �rst derivatives in (2.1) on a �ne enough mesh,or if upwind di�erencing is used [11, 12]. For example, if centred di�erences are usedon a uniform n� n grid with h = 1=(n+ 1), then with  = �h=2, � = �h=2, Theorem3.1 is equivalent to the following result.Corollary 3.2. For centred di�erences, if jj < 1 then the spectral radius ofthe block Jacobi iteration matrix for the horizontal line ordering ispj1� �2j cos(�h)2�p1� 2 cos (�h) :If j�j < 1, then the spectral radius of the block Jacobi iteration matrix for the verticalline ordering is pj1� 2j cos(�h)2� p1� �2 cos (�h) :Figure 3 shows some examples of spectral radii of Gauss-Seidel iteration matricesfor centred di�erence discretisations and various parameters. Larger values of  (re-spectively �) correspond to increased convection in the horizontal (vertical) direction.These results indicate that it is advantageous to orient the grid lines in directionsorthogonal to the dominant direction of ow, i.e., to perform the Gauss-Seidel sweepin the direction of ow.For �nite di�erence operators with computational molecules of type (3.7), the gridpoints and equations can be ordered with a red-black ordering so that every equationcentred at a \red" point depends only on \black" unknowns, and every equationcentred at a \black" point depends only on \red" unknowns. In matrix notation, thisprocess corresponds to ordering the rows and columns of F so that the problem (3.1)has the form  F11 F12F21 F22 ! u(r)u(b) ! =  f (r)f (b) !where F11 and F22 are nonsingular diagonal matrices. Decoupling of the red pointsu(r) is equivalent to producing a smaller systemF̂ u(b) = f̂where F̂ = F22 � F21F�111 F12 and f̂ = f (b) � F21F�111 f (r):F̂ is also a sparse matrix, and for appropriate orderings of the reduced grid F̂ isblock consistently ordered. Two examples, a natural two-line ordering and a red-blacktwo-line ordering, are shown in �gure 4. As above, analysis of the Gauss-Seidel andSOR methods uses (3.5) and (3.6). For the orderings of �gure 4, we have the followingbounds for the block Jacobi iteration matrices. The proof again depends on �nding anappropriate symmetrization operator for F̂ ; see [11, 12, 13, 14] for proofs and extensivediscussions of other problems and orderings.14



Fig. 3. Spectral radii of line Gauss-Seidel iteration matrices for various parameters.
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Fig. 4. Horizontal two-line orderings of the reduced grid.
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Theorem 3.3. If be � 0 and cd � 0, then the spectral radius of the two-lineJacobi iteration matrix is bounded by2 be cos 2�h+ 4pbcde cos�h[a2 � 2(pcd+pbe)2 � 2cd+4pbcde (1� cos�h) + 4cd (1� cos2 �h)] + o(h2):Corollary 3.4. For centred di�erences, if jj < 1 and j�j < 1, then the spectralradius of the two-line block Jacobi iteration matrix for the reduced system is boundedby (1� �2) cos 2�h+ 2p(1� 2)(1� �2) cos�h[8� (p1� 2 +p1� �2)2 � (1� 2) +2p(1� 2)(1� �2) (1� cos�h) + 2(1� 2) (1� cos2 �h)] + o(h2):These bounds are typically stronger than those above for the unreduced system. Re-sults for vertical two-line orderings can be established in the same way.The results above are derived from properties of the matrices D and C of the blockJacobi splitting. An alternative approach due to Parter [36] and Parter and Steuerwalt[38] based more closely on the di�erential operators reveals asymptotic convergencerates as h! 0. (See also [37].) Let F denote the di�erential operator on the left sideof (2.1), and assume the discretization matrix F is scaled so that F=h2 approximatesF with truncation error o(1) at all mesh points of 
 not next to the boundary, andO(1) at points next to @
. Let F = Q� R be a splitting.Theorem 3.5. Suppose the following conditions hold for all small h:1. �(Q�1R) < 1.2. �(Q�1R) is an eigenvalue of Q�1R.3. kRk2 is bounded independent of h.4. There is a smooth function q satisfying q(x; y) � q0 > 0 on �
, such that(Ru; v) = (qu; v) + E(3.8)where in (3.8), q refers to the vector of mesh values, and E = he1(u; v) + h2e2(u; v)depends on � and � .1 Then as h ! 0, �(Q�1R) = 1 � �0h2 + o(h2), where �0 is thesmallest eigenvalue of the problemFu = �qu in 
; u = 0 on @
:(3.9)This result is very easy to apply to the constant coe�cient problem. The mesh func-tion q of (3.8) is a constant obtained by inspection as the sum of the entries of thecomputational molecule that de�ne R. For example, for the Jacobi splittings, q = 2for the one-line ordering of the full system and q = 3=4 for the two-line ordering ofthe reduced system. If the minimal eigenvalue of (3.9) is known, then the asymptoticconvergence factor is identi�ed. On the unit square,�0 = 1q  �24 + �24 + 2�2! :1 Here e1 is a function of �rst order di�erences in u and v and e2 is a function of second orderdi�erences; see [38] for a more precise statement. 16



For the line Jacobi splittings we have discussed here, the convergence factors are1�  �28 + �28 + �2! one-line ordering, full system1�  �23 + �23 + 83�2! two-line ordering, reduced system.The �rst of these expressions agrees with the asymptotic convergence factor obtainedfrom Corollary 3.2 and the second one is slightly stronger than that obtained fromCorollary 3.4. Note that Corollaries 3.2 and 3.4 provide insight into the nonsymptoticregime. Other examples of the use of this methodology are given in [12, 36, 38].Finally, we note that another popular splitting method for discrete convection-di�usion equations is based on incomplete LU (ILU) factorization of the coe�cientmatrix. Recall that a nonsingular M-matrix B is one for which Bij � 0 for i 6= jand B�1 � 0 [48]. It is well-known [32] that for any such B there is a unique ILUfactorization Q = LU such that L is unit lower triangular, U is upper triangular,lij = 0 and uij = 0 for (i; j) =2 N , and [Q � B]ij = 0 for (i; j) 2 N , where N is anindex set containing all diagonal indices (i; i). It can be shown [3, 13, 51] that ifB = Q1 � R1 = Q2 � R2;where Q1 = L1U1 and Q2 = L2U2 are incomplete factorizations such that the set ofmatrix indices for which L1 +U1 is permitted to be nonzero is contained in the set ofindices for which L2+U2 is permitted to be nonzero, then �(Q�12 R2) � �(Q�11 R1). Forthe examples arising from �nite di�erences that we have considered, both F and F̂ arenonsingular M-matrices for a �ne enough mesh. Let Q1 = Q obtained by the ILU(0)factorization (i.e., the index set N equals the nonzero set of of the coe�cient matrix)with error matrix R, and let Q2 = D from the block Jacobi splitting. It follows that�(Q�1R) � �(D�1C):Thus, all the bounds obtained above for the block Jacobi method carry over to theILU(0) factorization.3.2. Ordering e�ects. We now turn to some issues associated with the under-lying ow and the e�ects of ordering of the discrete grid. As noted in the discussionfollowing Corollary 3.2, some of the analysis depends on the orientation of lines inthe grid. Once that orientation is �xed, however, there is no dependence on orderingof unknowns. For example, none of results above depend on whether a \natural" or\red-black" ordering is used, and all of them are independent of the sign of the coef-�cients of the convection terms, which determine the direction of ow. Indeed, for anatural ordering in which relaxation is performed in a direction opposite the directionof ow, the bounds on convergence factor are identical.2In practice, the performance of relaxation methods is sensitive to ordering. Asmight be expected from intuition, it is better to relax in the direction of ow thanin the opposite direction, and performance for orderings such as red-black that don'tbear a clear relation to ow direction is somewhere in between these extremes. Thedi�erence between the analytic results and these performance characteristics stems2 Theorem 3.5 has no dependence even on line orientation.17



Fig. 5. Four orderings for a one-dimensional grid, for � > 0 and n = 8.@�1 @�2 @�3 @�4 @�5 @�6 @�7 @�8 Natural,with ow@�8 @�7 @�6 @�5 @�4 @�3 @�2 @�1 Natural,against ow@�1 @�5 @�2 @�6 @�3 @�7 @�4 @�8 Red-black,with ow@�8 @�4 @�7 @�3 @�6 @�2 @�5 @�1 Red-black,against owfrom the di�erence between (3.3) and (3.4). The expression (3.4) provides insight intoasymptotic behaviour as the number of iterations becomes large, but it provides no in-formation about transient behaviour displayed before the limiting value is approached.Many aspects of this issue can be understood from the one-dimensional version of(2.1) �u00 + �u0 = fon the unit interval (0; 1) with Dirichlet boundary conditions and � > 0. Let n denotethe number of interior mesh points of a uniform grid. Finite di�erence and linear �niteelement discretization lead to a linear system (3.1) in which, for a natural ordering,the coe�cient matrix F is tridiagonal of order n, with constant values on its threeinterior bands. Assume that F is normalized to have unit diagonal, so that it can berepresented as F = tri [�b; 1; �c ] :In addition, assume b+ c = 1 (needed for a consistent discretisation) and b > 0, c > 0(for a nonoscillatory solution [25]). We say that the discrete problem is convection-dominated if b is large, i.e., close to 1. The Gauss-Seidel iteration matrix is L1 =(I �L)�1U , where L and U are the strict lower triangular and upper triangular partsof F .Figure 5 shows examples of four di�erent orderings for n = 8. There are twonatural orderings, together with two red-black orderings induced by the natural or-derings. Figure 6 shows a representative example of the behaviour of relaxation forconvection-dominated problems that reveals the limitations of the standard analysis.The �gure plots ke(k)k1, on a logarithmic scale, against the iteration count k, for theGauss-Seidel method corresponding to the four ordering schemes. Here, n = 32 andb = 7=8. The initial guess is a normally distributed random vector with mean 0 andvariance 1, and the right hand side and solution are identically zero. The spectralradius for each of the orderings is �(L1) = :434. Figure 7 shows the norms kLk1k1. Inboth �gures, the highlighted values correspond to k = n � 1 and k = n=2� 1 for thenatural ordering against the ow and red-black orderings, respectively. It is evidentthat the norms are closely correlated with the performance of the solution algorithm,and that the spectral radius reveals nothing about the transient behaviour.The iteration matrices arising from di�erent orderings will be distinguished asfollows. For the left-to-right natural ordering, inducing a relaxation sweep oriented18



Fig. 6. l1-norms of the errors in Gauss-Seidel iteration, for n = 32 and b = 7=8.
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Fig. 7. log10 kLk1k1 for n = 32 and b = 7=8.
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with the ow, the iteration matrix is F = (I � L)�1U , whereL = tri [ b; 0; 0 ]; U = tri [ 0; 0; c ]:The red-black ordering induced by this natural ordering gives rise to the coe�cientmatrix F = I � LRB � URB whereLRB =  0 0B 0 ! ; URB =  0 C0 0 ! ;and B = tri [ 0; b; c ]; C = tri [ b; c; 0 ];of dimensions dn=2e � bn=2c and bn=2c � dn=2e respectively. The iteration matrix isgiven by FRB = (I � LRB)�1URB = (I + LRB)URB =  0 C0 BC ! :For sweeps oriented against the ow, rather than reversing the ordering, it is equivalentto use the left-to-right natural ordering and perform an \upper-triangular" sweep, i.e.,with the iteration matrix G = (D � U)�1L.We summarize an analysis for the one-dimensional problem below. Proofs anddescriptions of additional numerical experiments are given in [9]. There are threeresults: lower bounds on the values of both kGkk1 and kF kRBk1, and upper bounds onthe values of kF kk1. Essentially the same lower bounds apply in the l1-norm, andthe upper bounds can be generalized to any lp-norm.Theorem 3.6. The norm kGkk1 for Gauss-Seidel iteration with sweeps againstthe ow is bounded below for k < n bykGkk1 � (1� c2)k�1(1� cn�(k�1)):Theorem 3.7. For problems whose order n is divisible by four, the norm kF kRBk1for Gauss-Seidel iteration associated with the red-black ordering induced by a left-to-right natural ordering is bounded below as follows:kF kRBk1 � 2�  (k; c) for k � n=2� 1:where  (k; c) is zero for k < n=4 and close to zero for n=4 � k < n=2. (See [9] for aprecise de�nition.)Theorem 3.8. The norm kF kk1 for Gauss-Seidel iteration with sweeps that fol-low the ow is bounded above bykF kk1 � 1� bn+k�20@k�1Xj=0 n+ k � 3 + jj !cj1A :(3.10)For k > (n� 3)c=(1� 2c), the following simpler upper bound holds:kF kk1 � k n + 2k � 3k !bn�2(bc)kk(1� 2c)� (n� 3)c :(3.11) 20



Fig. 8. Comparison of kGkk1 with lower bounds, for n = 32 and c = 1=8.
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Fig. 9. Comparison of kF kRBk1 with lower bounds, for n = 32 and c = 1=8.
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Fig. 10. Comparison of kF kk1 with upper bounds, for n = 32 and b = 7=8.
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BoundsFigures 8, 9 and 10 plot norms and the bounds from each of these results, for theproblem used for Figs. 6 and 7. The results of Theorems 3.6 and 3.7 indicate thatif b is near 1 then the norms of the iteration matrices for sweeping against the owand the red-black ordering are close to one for n � 1 and n=2� 1 steps, respectively.Consequently, these orderings incur a latency in which little reduction in the error isobtained. In contrast, Theorem 3.8 shows that the norm of the iteration matrix issmall for sweeping with the ow.It is possible to generalize the upper bounds of Theorem 3.8 to line relaxationmethods applied to two-dimensional problems. In this case, the angle between the owdirection and sweep direction plays a role in both performance and bounds; detailscan be found in [10].3.3. Discussion. We now discuss some practical issues associated with solvingthe convection-di�usion equation. We �rst note some limitations of the analysis citedin sections 3.1 and 3.2, namely, the results apply only to constant coe�cient prob-lems and they are limited to �nite di�erence discretisations. The latter restrictionis not transparent for Theorem 3.5 but requirement (2) of this result is typically es-tablished using the fact that the coe�cient matrix is an M-matrix and applying thePerron-Frobenius theory; see [38], p. 1185. Standard �nite element discretisations ofthe convection-di�usion equation do not produce M-matrices, and we know of littleanalysis for anything other than �nite di�erences. (Cf. [10].)Despite these limitations, we have found that the analysis above gives a good in-dication of the behaviour of splitting methods for simple ows or other discretisations.Examples demonstrating this for a semicircular ow are given in [13], which also con-tains some analysis for variable coe�cient problems. As an example of behaviour forother discretisations, we consider two versions of bilinear �nite elements applied to theproblem (2.1) with constant convection coe�cients v = (�p22 ; p22 ) on the unit square,f = 0, and Dirichlet boundary conditions u(x; 1) = u(y; 0) = 0, u(1,y)=1, u(x; 0) = 0for x � 1=2 and u(x; 0) = 1 for x > 1=2. We discretise on a uniform n�n element gridusing either a pure Galerkin method (2.5) or a streamline upwind Petrov-Galerkinmethod (2.8). These problems were generated using the MATLAB code described in22



Galerkin Streamline Upwinding� Hor. Vert. Hor. R/B Hor. Vert. Hor. R/B1=10 240 262 257 � � �1=25 84 110 98 � � �1=50 29 57 43 31 59 451=100 15 46 31 15 44 291=200 div. div. div. 6 37 221=250 div. div. div. 9 38 23Table 1Iterations for bilinear �nite elements applied to the convection-di�usion equation.section 6.Table 1 shows the iteration counts needed by three variants of line relaxation(horizontal, vertical and horizontal red-black) to solve the discrete problems withn = 32, with stopping criterionkf � Fu(k)k2=kfk2 � 10�6:Note that the ow direction forms a �45� angle with the horizontal axis. Conse-quently, the direction of horizontal line relaxation contains a large component in thedirection of ow whereas vertical line relaxation is essentially sweeping against theow. The results show that as the ow becomes stronger (i.e. as the viscosity � de-creases), the di�erences among the methods are essentially as predicted in section 3.2:sweeping against the ow incurs a latency of approximately n steps and the red-blackordering incurs a latency of approximataly n=2 steps. Moreover, the iteration countsdecrease dramatically as convection becomes more dominant, as the results of section3.1 predict.We also note, however, that the use of these ideas for more complex ows andon large-scale parallel computers lead to some open questions. For example, for thecircular ow arising in the driven cavity problem (see section 5), there are portions ofthe domain where neither a horizontal or vertical line orientation produces a sweepin the direction of ow, and it may be necessary to use more sophisticated strategiesto handle such ows. We expect complex three-dimensional ows to add additionaldi�culties. On parallel architectures, it is known that red-black and multi-color order-ings lead to higher parallel e�ciencies than natural orderings. However, the latencyassociated with red-black orderings shows that these reorderings may have limitationsthat need to be overcome to produce e�ective solution methods.4. Solution methods for the discrete Stokes equations. The stability issueassociated with mixed approximation of the Stokes problem is of central importancewhen it comes to �nding fast and reliable iterative solution methods. In this section wewill develop the theory and present computational results for only one class of method,namely those based on preconditioned Minimum Residual iteration, but see [8] for acomparison of various competitive techniques. The relevant theory for any of thealternative approaches is based on the key result (2.30) which is a direct consequenceof the stability required to ensure accuracy properties of the underlying approximation.In our examples, we concentrate on two particular mixed �nite elements: the stableQ1�iso�Q2 and locally stabilised Q1 � P0 approximations. Our aim is to illustrate23



the general structure for stable and stabilised mixed spaces with these convenient andpopular choices. Since we wish to concentrate on the stability issue, we consider herethe steady state Stokes problem as mentioned in section 2. For consideration of theadditional issue arising with time-dependent problems see [4].4.1. Statement of the problem. As in section 2, we can express the discreteStokes problem as Ax :=  A BtB ��S ! up ! =  f0 !(4.1)where A is the discrete vector-Laplacian, B is the discrete gradient so that its adjointBt is the discrete negative divergence and S is the stabilisation matrix with � being thenon-negative stabilisation parameter. The vector u contains the velocity coe�cientsin terms of the selected basis and p correspondingly for the pressure. Certainly Ais symmetric and it will also be positive de�nite with the usual Dirichlet boundaryconditions, B will be full rank except that the vector p = (1; 1; : : : ; 1)t representinghydrostatic (constant) pressure will be in the null space (unless it is explicitly removed)and S will be symmetric and positive semi-de�nite (S = 0 in the case of an unstabilisedapproximation). Any body forces are represented in the vector f .Employing the Sylvester Law of Inertia ([22] pp. 274), the congruence transform A BtB ��S ! =  I 0BA�1 I ! A 00 ��S � BA�1Bt ! I A�1Bt0 I !reveals that A has nu positive eigenvalues and np negative eigenvalues for a stableor stabilised method. This observation follows directly from the discrete stabilitycondition (2.36).The inde�niteness of the Stokes system is thus clear. Note that if the mesh size his reduced and the discrete problem size correspondingly increased, both the numberof positive and negative eigenvalues increases: some authors refer to such systems asbeing highly (or strongly) inde�nite. It is the solution of such linear systems whichwe address in this section.4.2. The MINRES method. There are two applicable Krylov subspace iter-ative methods for such symmetric and inde�nite systems: SYMMLQ and MINRES,both based on the symmetric Lanczos procedure and both due to Paige and Saunders[35]. Here we concentrate on the MINRES methods since it possesses a minimisa-tion property. We comment that to our knowledge, SYMMLQ has not been tried ondiscrete Stokes problems.In the generic context of solving the symmetric and inde�nite matrix systemAx = b;MINRES is characterised by the following. The kth iterate xk lies in the (a�ne)Krylov subspace x0 + spanfr0;Ar0;A2r0; : : : ;Ak�1r0g24



where r0 = b�Ax0 is the initial residual. Correspondingly for the kth residual vectorwe have rk 2 r0 + spanfAr0;A2r0; : : : ;Akr0g;the de�ning condition being that krkk2 is minimum from this space. Thus if �k is theset of all real polynomials of degree less than or equal to k then rk = p(A)r0, withp(0) = 1 and p being optimal in the above sense. Employing a spectral (eigenvector)expansion r0 =X�ivi ; Avi = �iviwe have rk = p(A)X�ivi =X�ip(�i)viso that krkk2 = minp2�k;p(0)=1 kX�ip(�i)vik2= minp2�k;p(0)=1 �X�2i p(�i)2vtivi� 12� minp2�k;p(0)=1 maxi jp(�i)j �X�2i vtivi�12or krkk2kr0k2 � minp2�k;p(0)=1 max�2�(A) jp(�)jwhere �(A) denotes the eigenvalue spectrum. Note that the orthogonality of theeigenvectors which is a consequence of the symmetry of A is important here. Alsoif one were interested in positive de�nite symmetric matrices A, this convergenceestimate would be the same as that for the `classical' Conjugate Gradient method(which requires fewer operations per iteration) except that krkk2 would be replacedby qrtkA�1 rk = p(x� xk)tA (x� xk) def= kx� xkkA.In order to achieve rapid convergence, preconditioning will be as important hereas in the symmetric and positive de�nite case. Also it is desirable to ensure thatany preconditioner does not destroy the underlying symmetry of the original problemelse more general non-symmetric iterative methods such as GMRES ([42] or see thepaper by Van der Vorst in this volume) would have to be employed. Such methodsare generally less e�cient than their symmetric counterparts (see for example [16]).In order to preserve symmetry in the preconditioned system we employ a symmetricand positive de�nite preconditioner M which for theoretical purposes only we factoras M = M 12 M 12 . (A Cholesky factorisation could equally be used). We are theninterested in applying MINRES to the preconditioned systemM� 12AM� 12 (M 12 x) =M� 12 bor eA ex = eb25



say. Now the corresponding preconditioned residual iser = eb� eA ex =M� 12 (b� Ax) =M� 12 rso that kfrkk22 = frktfrk = rtkM�1rk = krkk2M�1 :The preconditioned MINRES convergence estimate therefore becomeskrkk2M�1kr0k2M�1 � minp2�k ;p(0)=1 max�2�(M�1A) jp(�)j := b�k:(4.2)Note that the use of a positive de�nite preconditioner was necessary as k � kM�1does not de�ne a norm for inde�nite M. A consequence is that preconditioningcan not alter the inertia of the original system since M� 12AM� 12 is a congruencetransform and the Sylvester Law of Inertia applies. That is, any symmetric andinde�nite matrix preconditioned by a positive de�nite matrix is necessarily left withthe same number of positive and negative eigenvalues. The role of preconditioning inthis case is therefore to cluster both the positive and the negative eigenvalues so thatthe polynomial approximation error b�k in (4.2) is small for low number of iterations,k. A second point is that (unlike in the case of the conjugate gradient method) re-duction of the residual in the preconditioned MINRES algorithm is in a norm whichis dependent on the preconditioner. Thus one must be careful not to select a precon-ditioner which simply distorts this norm. We will return to this point later.At each MINRES iteration we will require the solution of a system of equationswith the preconditioner as coe�cient matrix. Thus from the point of view of practi-cality, this must be readily achieved.4.3. Preconditioning. The convergence estimate (4.2) shows that convergencedepends on the eigenvalues of the preconditioned system: our goal now is to estimatethese eigenvalues. In particular for a partial di�erential equation problem such as theStokes problem, we are interested in the rate of MINRES convergence for large discreteproblems, i.e. for discretisations on �ne meshes which lead to very large dimensionalmatrix systems. It is therefore appropriate to consider how the rate of convergencedepends on the representative mesh-size, h, as h ! 0. The best case will be if thenumber of iteration required to achieve convergence to a given tolerance does notdepend on h.Since this preserves the underlying block structure of the coe�cient matrix, weare interested in block diagonal preconditioning matrices of the form P 00 M !(4.3)where both P and M are symmetric and positive de�nite. The eigenvalues we wishto estimate are therefore the eigenvalues � of A BtB ��S ! up ! = � P 00 M ! up ! :26



We readily see that if P = A then � = 1 is an eigenvalue of multiplicity nu � npcorresponding to any eigenvector [u; 0]t with Bu = 0. (The multiplicity comes simplyfrom the size of the right null space of the rectangular matrix B). In the stable case(S = 0), if also M = BA�1Bt, the remaining eigenvalues satisfy(1� �)Au = �Btp and Bu = �BA�1Btpor by eliminating u, (�2 � �+ 1)BA�1Btp = 0:Thus since the assumed inf-sup stability in this case ensures that BA�1Bt is positivede�nite, we deduce that � = 1=2 � p5=2 are the remaining eigenvalues each withmultiplicity np. This is an ideal situation from the point of view of convergenceof MINRES: since the preconditioned matrix M� 12AM� 12 has only three distincteigenvalues the convergence bound (4.2) will be zero for k = 3 as there is a cubicpolynomial with these three roots. That is, MINRES will terminate with the exactsolution after three iterations regardless of the size of the discrete problem.Unfortunately use of the Schur complement BA�1Bt in the preconditioner is notdesirable since it is in general a dense matrix which is not easy to construct let aloneto invert (or rather solve a system) at each MINRES iteration. But this is where thediscrete inf-sup stability condition (2.30) and (2.37) provides the key: the pressuremass matrix Q is spectrally equivalent to BA�1Bt and so we lose little by selectingM = Q. The analysis with this choice is similar to the above: we haveAu+Btp = �AuBu = �Qp:The case � = 1 arises with the same eigenvectors (and thus multiplicity) as above,and for � 6= 1 eliminating u using the �rst of these equations givesBA�1Btp = �(�� 1)Qp:Thus for each eigenvalue � of Q� 12BA�1BtQ� 12 there are a pair of eigenvalues� = 12 � 12p1 + 4� < 0 and � = 12 + 12p1 + 4� > 0of the original problem. Now since discrete inf-sup stability and boundedness imply2 � � � �2, we see that� 2 "1�p1 + 4�22 ; 1�p1 + 422 # [ f1g [ "1 +p1 + 422 ; 1 +p1 + 4�22 #for every eigenvalue. That is, the multiple eigenvalue � = 1 is retained and theremaining eigenvalues are pairwise symmetric about 12 and lie in small intervals whichare uniformly bounded and uniformly bounded away from the origin. In this situationthe convergence of MINRES will not take only three iterations, but nevertheless it27



will be fast and (crucially) will be independent of the size of the discrete problem. Foran unstable approximation we have  = 0 (or  ! 0 under mesh re�nement), so thenegative eigenvalues would not be bounded away from the origin and poor convergenceresults.Before proceding to more general theory, we motivate other approximations whichwill preserve the e�ective form of this `ideal' preconditioner but which lead to a morepractical overall preconditioner.It is apparent that preconditioning with M as above requires at each MINRESiteration the solution of two systems of equations of size nu and np and with coe�cientmatrices P and M respectively. The `ideal' choice P = A thus requires an exactsolution of a Poisson equation for each of the velocity components since A is the vectorLaplacian coming from approximation of the viscous terms. Conveniently there hasbeen much analysis of preconditioners for the Laplacian (see for example the papersby Xu and Chan in this volume).We do not need to use an inner preconditioned conjugate gradient iteration toe�ect an exact solution, but are in a position to simply take P to be a domain de-composition or multilevel preconditioner for example. That is we simply let P be apreconditioner for the Laplacian. By applying a suitable scaling to P if necessary wewill assume that � � utAuutPu � 1 for all u:(4.4)If we use a powerful preconditioner such as a multigrid cycle, then � will be near 1independently of the discrete problem size (usually expressed in terms of inverse powersof the mesh size parameter, h) and we might expect that only a few more MINRESiterations will be required than if we made the more expensive choice P = A. If weuse a weaker preconditioner such as diagonal scaling for which � = O(h2) then moreMINRES iterations will be needed for convergence.It is a much simpler matter to approximate the ideal choice of M further by ap-proximating the pressure mass matrixQ without signi�cantly a�ecting the convergenceof MINRES. The simplest choice M = diag(Q) is proved to be a good approximationto Q in [49]. Speci�cally we will assume�2 � ptQpptMp � �2 for all p:(4.5)Using a continuous P1 pressure approximation for example, replacing the mass matrixQ by its diagonal is very convenient computationally, and furthermore (4.5) is satis�edin this case with � = 1=p2 and � = p2.4.4. Eigenvalue bounds. Our analysis proceeds with the assumptions (4.4),(4.5) and the further assumption of boundedness of the stabilisation matrix S:ptSpptQp � �2 for all p:(4.6)Using the locally stabilised Q1 � P0 mixed approximation described in section 2, wechoose M = Q in (4.5) since Q is a diagonal matrix and in this case we know that� = 2 on a uniform mesh. 28



For the eigenvalue analysis it is convenient to consider the symmetrically precon-ditioned system:M� 12AM� 12 =  P� 12AP� 12 P� 12BtM� 12M� 12BP� 12 ��M� 12SM� 12 !=  eA eBteB �� eS ! = eA:(4.7)In the following, we denote by �max the largest singular value of eB (i.e. the largesteigenvalue of eB eBt).Lemma 4.1. All negative eigenvalues � of eA satisfy12 ��� ��2�2 �q(� + ��2�2)2 + 4�2max� � �(4.8)and � � 12�� �q�2 + 42�2��(4.9)and all positive eigenvalues � of eA satisfy� � �;(4.10)and � � 12 �1 +q1 + 4�2max� :(4.11)Proof. If � is an eigenvalue of eA then there are vectors u, p not both zero satisfyingeAu + eBtp = �u(4.12) eBu� � eSp = �p:(4.13)If � > 0 then u 6= 0 since otherwise (4.13) implies p = 0 as eS is positive semi-de�nite.If � < 0 then p 6= 0 since otherwise (4.12) implies u = 0 as eA is positive de�nite.Taking the scalar product of (4.12) with u and the scalar product of (4.13) withp and subtracting gives ut eAu+ �pt eSp = � utu � � ptpwhich using (4.4) and the positive semi-de�niteness of � eS gives(�� �)utu � ��ptpleading to (4.10) for positive � since u 6= 0 in this case.Further for � > 0, substituting for p from (4.13) into the scalar product of u with(4.12) gives ut eAu+ 1�ut eBt�I + �� eS��1 eBu = �utu29



where the stated matrix inverse certainly exists because �; � > 0 and eS is positivesemi-de�nite. Moreover the maximum eigenvalue of (I + �� eS)�1 is 1 thus�ut eAu + ut eBt eBu � �2utufrom which follows 0 � �2 � �� �2max:This gives (4.11).For � < 0, eA��I is invertible, so we can take the scalar product of (4.13) with pand substitute for u from (4.12) to obtainpt eB( eA� �I)�1 eBtp+ �pt eSp = ��ptp:(4.14)Considering (4.14), if � < 0 is an eigenvalue of eA thenpt eB eA� 12 (I � � eA�1)�1 eA� 12 eBtp+ �pt eSp = ��ptpwhere p 6= 0. Because the eigenvalues of (I � � eA�1)�1 are(1� �=�)�1 � : : : � (1� �)�1;we have (1� �=�)�1pt eB eA�1 eBtp+ �pt eSp � ��ptp;and since 0 � (1� �=�)�1 � 1 there follows(1� �=�)�1�pt eB eA�1 eBtp+ �pt eSp� � ��ptp:Using (4.7) to express this in terms of the blocks of the original unpreconditionedStokes matrix (4.1) this is(1� �=�)�1ptM� 12 (BA�1Bt + �S)M� 12 p � ��ptp:Now using the stability property (2.36) this implies2(1� �=�)�1ptM� 12QM� 12 p � ��ptpwhich by employing (4.5) further implies2�2(1� �=�)�1ptp � ��ptp:Since p 6= 0 this gives 0 � �2 � ��� �2�2from which (4.9) easily follows.To derive (4.8) we use (4.6) and (4.5) in (4.14) to obtain(�� �)�1�2max+ ��2�2 � ��or 0 � �2 + (��2�2 � �)�� �2max � ��2�2�which yields the result.It is convenient to remove �max from these bounds since estimates for this quantityare not readily available. 30



Lemma 4.2. �max � ��(4.15)Proof. For all p we havept eB eBtp = ptM� 12BP�1BtM� 12 p� ptM� 12BA�1BtM� 12 pusing (4.4). So given that (2.37) holds in the stable or stabilised case we havept eB eBtp � �2 ptM� 12QM� 12 p� �2 �2 ptpwhere we have further used (4.5). We have thus proved�2max � �2 �2and hence (4.15).Employing Lemma 4.2, the bounds (4.8) and (4.11) become12 ��� ��2�2 �q(�+ ��2�2)2 + 4�2 �2� � �(4.16)and � � 12 �1 +p1 + 4�2 �2� :(4.17)Regarding (4.16),(4.9),(4.10) and (4.17) as the best bounds which we can estimate,we are now in a position to �nd an upper bound on the convergence rate of thepreconditioned MINRES algorithm by considering the approximation problem in (4.2).Before doing so let us just point out the dependencies of the relevant quantities �, ,�, �, � and � as well as the stabilisation parameter � (which arises only in a stabilisedformulation):� �: depends on how well the preconditioning block P approximates the discreteLaplacian A� : stability constant|bounded above zero independently of the mesh� �: boundedness constant: � � pd for any domain 
 � IRd (see (2.39))� �, �: positive constants independent of problem size even for the simplechoice M = diag(Q). For such a choice of the preconditioning block M , theseconstants are tabulated in ([49]) for many di�erent �nite elements types� �: upper bound on the stabilisation matrix S|an O(1) constant.� �: positive stabilisation parameter optimally chosen to be just large enoughto achieve stability (see [43]).Any of these parameters may depend on the geometry of the domain and/orthe computational grid, BUT it is only � which can depend explicity on the size ofthe discrete problem. That is, the only way that mesh-size dependence arises in theeigenvalues bounds for the preconditioned Stokes coe�cient matrix eA is through adependence of � on the representative mesh-size, h. Therefore, provided that somesimple approximation of the pressure mass matrix is used so that (4.5) is satis�ed31



and provided a suitable stable or stabilised formulation is employed so that (2.30) or(2.36) and (4.6) hold then the convergence of the preconditioned MINRES algorithmwill be essentially determined by the quality of the Laplacian preconditioner, P . Letus illustrate with a few examples.Example 1: P = diag(A) and M is any suitable choice (such as diag(Q)) whichsatis�es (4.5).For this case we have � = ch2 + O(h4) for some constant c independent of h (seefor example [2], pp. 240). By considering the leading asymptotic term for small h itis apparent that the eigenvalue bounds (4.16),(4.9),(4.10) and (4.17) de�ne a pair ofeigenvalue inclusion intervals of the form�(M� 12AM� 12 ) � [�a;�bh] [ [ch2; d]:(4.18)The constants a, b, c and d are de�ned in terms of , �, �, �, � and � by the aboveformulae but they do not depend on h. (c is exactly as above because of the simpleform of (4.10)). We demonstrate the asymptotic manipulation for the least obviousbound (4.9):� � 12�ch2 +O(h4)�q(ch2 + O(h4))2 + 42�2(ch2 +O(h4))�= 12�ch2 +O(h4)� 2c 12 �h �1 + O(h4)�12�= �c 12�h+ 12ch2 +O(h4):The important point to note here is that as h ! 0 the negative eigenvaluesapproach the origin at only half the rate at which the positive eigenvalues can approachfrom above. h ��max ��min �+min �+max1=8 �0:7547 �0:1556e0 0.2747e0 2.06401=16 �0:7701 �0:9500e-1 0.7444e-1 2.13471=32 �0:7740 �0:5253e-1 0.1902e-1 2.15311=64 �0:7749 �0:2770e-1 0.4783e-2 2.15771=128 �0:7752 �0:1427e-1 0.1198e-2 2.1589Table 2Extreme eigenvalues: Q1 � P0 element with diagonal preconditioningIn table 2 we show the results of eigenvalue computations on the diagonally pre-conditioned Stokes coe�cient matrix as above for a driven cavity ow problem (seesection 6 for associated software). We show the extreme eigenvalues of M� 12AM� 12for a sequence of regular grids re�ned by bisection and using the locally stabilisedQ1�P0 element with the `optimal' stabilisation parameter value � = 0:058 (see [43]).The driven cavity problem was solved on only half of the ow domain by using thenatural symmetry about the centreline. The most positive and most negative eigen-values (�+max and ��max respectively) clearly approach constant values as h is reduced,the negative eigenvalue nearest to the origin (��min) is approximately halved and thesmallest positive eigenvalue (�+min) reduces by approximately a quarter as h is halved:32



h �min �max �min(P�1A) �max(P�1A)1=8 0.1686 0.9340 0.8519 1.00001=16 0.1655 0.9862 0.8220 1.00001=32 0.1642 0.9967 0.8090 1.0000Table 3Extreme eigenvalues of Q�1BA�1Bt and P�1A: Q1�iso�Q2 element with multigrid precondi-tioningthese results therefore show that (4.18) is descriptive and is not just providing crudebounds.We note that example 1 is illustrative of the generic situation: if P is chosen suchthat � = O(hr) and M is an appropriate approximation of the pressure mass matrixthen �(M� 12AM� 12 ) � [�a;�bhr=2] [ [chr; d]:(4.19)That is the negative eigenvalues always approach the origin at half of the rate ofthe positive eigenvalues. The analysis given here therefore applies to a wide range ofLaplacian preconditioners including, for example, the modi�ed incomplete choleskyfactorisation ([32], [26]) for which r = 1.Example 2: P is a multigrid cycle for A (see for example the paper by Xu in thisvolume) and M = Q (or some approximation).This is actually the easiest situation from the view point of the analysis as � isbounded away from zero independently of h. In table 3 we give the computed extremaleigenvalues of P�1A for our test problem employing the stable Q1�iso�Q2 elementon a sequence of re�ned meshes. The preconditioner P represents a single multigridV-cycle with an `optimally' damped Jacobi smoother. It is apparent that � � 0:8in this situation. Also tabulated in 3 are the extreme eigenvalues, �min and �max ofQ�1BA�1Bt: these show that  � 0:16 and � � 1 for this element. It follows thatthe bounds (4.16),(4.9),(4.10) and (4.17) are all independent of h.An interesting point arises with the use of spectrally equivalent preconditionerssuch as in this example, namely convergence of MINRES occurs in norm which isnaturally associated with the problem, see [44].4.5. The rate of convergence of MINRES. In the case of a spectrally equiv-alent Laplacian preconditioner P such as a multigrid cycle, we may simply note thatsince all of the eigenvalues are bounded away from in�nity and away from the ori-gin independently of the mesh-size h, then b�k in (4.2) is also independent of h. Theconvergence of MINRES in this case should therefore be independent of problem size.This is clearly displayed in table 4 where we present some preconditioned MINRESiteration counts.The problem is again the leaky lid driven cavity but solved on only half of the do-main by using the natural symmetry. For these results the stable Q1�iso�Q2 elementwas used and the convergence criterion was a reduction by 10�6 in the M�1-norm ofthe residual. The preconditioner AMG1 represents a single multigrid V-cycle: as abovean `optimally' damped Jacobi smoother was employed. Iteration and total op countsusing the `ideal' block preconditioner P = A , the diagonally scaled MINRES methodof example 1 above, and the block preconditioner based on a Modi�ed Incomplete33



P = A P = AMG1 P = AMIC P = diag(A)h M = Q M = Q M = Q M = diag(Q)1=8 23 27 (0.44) 28 (0.19) 41 (0.23)1=16 25 28 (1.97) 38 (1.22) 94 (2.25)1=32 27 30 (8.10) 53 (7.69) 206(20.63)1=64 27 31 (36.33) 78 (54.89) 427(175.04)Table 4MINRES iterations (Megaops): Q1�iso�Q2 elementCholesky factorisation (MIC) are also included for comparison. Note that the costof the incomplete factorisation is not included in the op counts given in the table;preconditioning is via sparse upper and lower triangular matrix solves in this case.The use of P = A is expensive in operation counts since a full factorisation is neededin this case, so only the MINRES iteration counts are included for comparison. Thecomputations were done on a Sun Sparcstation-10 using MATLAB 4.1.Note that use of P = A or of the more practical multigrid cycle as a preconditionerfor the Laplacian does indeed imply that the number of MINRES iterations does notdepend on the discrete problem size. Use of the multigrid preconditioner rather thanthe `ideal' choice P = A is seen to increase the number of iterations only slightly: itis nearly ideal, but much more e�cient overall. Indeed the multigrid preconditionergives an `optimal' Stokes solver: the total number of oating point operation increasesby a factor of approximately four each time the grid is re�ned to create four times asmany discrete variables. This is a very desirable property.It remains to analyse the convergence of MINRES for preconditioners such asthose in the two right hand columns of table 4 above which do not involve multigridor some other spectrally equivalent Laplacian preconditioner.Having estimated the eigenvalue spectrum in the form �( eA) � E where E com-prises two intervals of the form [�a;�b] [ [c; d] with a, b, c and d being positive, ourattention therefore turns to the approximation problemsb�k = minp2�k;p(0)=1 max�2�( eA) jp(�)j(4.20) � minp2�k;p(0)=1 maxx2E jp(x)j := �k:(4.21)We know from (4.2) that b�k bounds the relative reduction in the MINRES residualafter k iterations; if little is lost in the inequality above then it is more tractable to dealwith the approximation problem (4.21) on intervals rather than (4.20) on the discreteeigenvalue set. A rapidly decreasing sequence �k will still indicate fast convergence.In fact, when a single number is desired to represent convergence, it is convenientto consider the asymptotic convergence factor� := limk!1 �1=kkwhich represents a bound on the average contraction in the residual per iteration.Firstly we require some results from Approximation Theory to characterise poly-nomials p 2 �k; p(0) = 1 which solve the minimax problem (4.21) for di�erent sets E(see for example [33] for these results). Note that f�kg must be a decreasing (non-negative) sequence as each successive iteration simply increases the allowable degree34
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1

0 Fig. 11. Optimal polynomial on a single intervalof p by one. Existence and uniqueness of the solution is known and a characterisationis expressed in terms of the number of points in the set E at which �k is attained.Let us consider �rst the simpler problem when E = [c; d] with c > 0 such as wouldarise if eA were symmetric and positive de�nite. In this case the optimal polynomialp 2 �k satis�es jp(xj)j = �k for k+1 distinct points a = x0 < x1 < : : : < xk�1 < xk =b. Moreover p(xj) = �p(xj�1) for j = 1; 2; : : : ; k. It is then a straightforward matterto see that p must be as sketched in �gure 11.We now take the unusual step of writing down an ordinary di�erential equationinitial value problem which must be satis�ed by the polynomial p. Noting that p = ��kat the points x1; : : : ; xk�1 where the derivative p0 vanishes as well as at the endpointsof the interval [c; d] we havek2(p2(x)� �2k) = (p0(x))2(x� c)(x� d)(4.22)where the constant scaling term k2 comes from equating the leading coe�cient (ofx2k) on both sides of this equation. The `initial' value is p(0) = 1.The nonlinear ordinary di�erential equation (4.22) can now be di�erentiated togive 2k2pp0 = 2p0p00(x� c)(x� d) + (p0)2(2x� c� d)so the common factor p0 can be cancelled to reveal the linear ordinary di�erentialequation (x� c)(x� d)p00 + (x� (c+ d)=2)p0� k2p = 0:(4.23)This is the classical Chebyshev equation (see for example [24], pp. 1033) the solutionsof which are the well known Chebyshev polynomials Tk(x) = cosk�; x = cos� suitablyshifted to the interval [c; d] and scaled to satisfy the side condition p(0) = 1. (Thismay be discovered by seeking a series solution).35



This is a rather unusual way to show the well-known result that the solution ofthe polynomial approximation problem (4.21) isp(x) = Tk �2x� c� dd� c �.Tk �c+ dc� d�(see for example [2]).Using the de�nition in terms of the cosine it follows that �1 � Tk � 1 for therelevant argument and so the preconditioned MINRES convergence estimate (4.2)becomes krkkkr0k � �k = 1.Tk �c+ dc� d� :(4.24)If c and/or d are de�ned asymptotically in terms of h then use can be made of theasymptotics of Chebyshev polynomials to give asymptotic formulae for �k in terms ofh. For example if c = O(hr); d = O(1) thenlimk!1 �1=kk = 1� O(hr=2)(see [2]).We use this non-standard approach here because it is actually more general sinceit extends to various situations where M� 12AM� 12 is inde�nite.The �rst inde�nite case we consider is E = [�d;�c] [ [c; d]. We say that asymmetric matrix eA with � 2 �( eA)) �� 2 �( eA) is `symmetrically inde�nite': sucha matrix necessarily leads to consideration of an inclusion set of this form. In this casethe optimal polynomials p in (4.21) must inherit the symmetry of the inclusion setand so must be of the form sketched in �gure 12. We see that p0 vanishes at the originas well as at the points where p attains ��k, so in a similar manner to the above weobtain the ordinary di�erential equationk2x2(p2(x)� �2k) = (p0(x))2(x� c)(x� d)(x+ c)(x+ d)= (p0(x))2(x2 � c2)(x2 � d2)which is necessarily satis�ed by the optimal polynomial.Making the change of variable y = x2 and setting p(x) = q(y) so that p0(x) =2xq0(y) we obtain k2x2(q2(y)� �2k) = 4x2(q0(y))2(y � c2)(y � d2)or (k=2)2(q2(y)� �2k) = (q0(y))2(y � c2)(y � d2):This is precisely in the form of (4.22) and so proceding as above we obtain q as theChebyshev polynomial of degree k=2 shifted to the interval [c2; d2] and scaled to satisfyq(0) = 1: q(y) = Tk=2 2y � c2 � d2d2 � c2 !.Tk=2 c2 + d2c2 � d2! :36
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0Fig. 12. Optimal polynomial on two intervals symmetric about the originThus in terms of the optimal polynomial p of degree k we havep(x) = Tk=2 2x2 � c2 � d2d2 � c2 !.Tk=2 c2 + d2c2 � d2!and so for symmetrically inde�nite systems the MINRES convergence estimate iskrkkkr0k � �k = 1.Tk=2 c2 + d2c2 � d2! :(4.25)In a partial di�erential equation situation where c = O(hr); d = O(1) as above, wewould thus have limk!1 �1=kk = 1�O(hr)It is instructive to compare this with the convergence that would be achievedby an iterative method such as MINRES (or Conjugate Gradients) applied to thesymmetric and positive de�nite `normal equations' (NE), eA2 ex = eAeb. For this system�( eA2) � [c2; d2] so that we can estimate convergence using (4.24) to obtainkrNEk kkrNE0 k � �NEk = 1.Tk  c2 + d2c2 � d2! :(4.26)Comparing (4.25) with (4.26) we see that we can expect that MINRES for the originalinde�nite symmetric problem will take twice the number of iterations as MINRES (orthe more e�cient Conjugate Gradient method) for the normal equations to achievethe same reduction of residual. Since for the normal equations two matrix-vectormultiplies will be required at each iteration compared to only one for the inde�nitesystem so that the normal equation method will be twice as expensive per iteration,we deduce that there is essentially nothing to choose between these two approaches in37



this case. That is, the iterative solution of `symmetrically inde�nite' systems using amethod such as MINRES is no better than the much more generally applicable normalequations approach. A more precise statement of this result is given by Freund [19].When proposing the use of preconditioned MINRES for a class of inde�nite sys-tems it is therefore important to show that the eigenvalues are not symmetric aboutthe origin. For the Stokes problem the results of the previous section establish a pre-cise non-symmetry in the eigenvalues: for non-optimal preconditioners, the negativeeigenvalues approach the origin at half of the rate of the positive eigenvalues undermesh re�nement.In this situation, the approach employing ordinary di�erential equations as abovecan still be employed to derive a convergence estimate, though the details are rathermore involved (see [50]). We quote only the result: If the eigenvalues of eA are containedin a set of the form [�a;�bhr=2] [ [chr; d]then limk!1 �1=kk = 1� O(h3r=4):That is the convergence of MINRES on the Stokes problem is at a rate preciselyhalf way between that achived for a symmetric positive de�nite problem such as theLaplacian and that achieved for the corresponding normal equations.5. Solution methods for the discrete Oseen equations. In this section weexamine methods for solving the steady-state Navier-Stokes equations that combineand build on the techniques of sections 3 and 4. The methods are designed for thesteady-state Oseen equations (�t ! 1 in (1.11)). These equations also arise from anonlinear iteration for solving the Navier-Stokes equations in which u� represents theiterate from a given step and the solution u is the iterate for the next step. See [29]for a convergence analysis.Discretisation leads to a matrix problem F BtB ��S ! up ! =  f0 ! ;(5.1)where u and p now represent discrete versions of velocity and pressure, respectively.F is a discrete vector convection-di�usion operator and B represents the couplingbetween the discrete velocity u and the pressure p. For simplicity of presentation weonly present results for the unstabilised case S = 0.5.1. Preconditioning I: Convection-di�usion solves. We �rst describe twopreconditioning techniques developed in [7] that generalise the methods of section 4essentially by replacing the approximation P to the vector Laplacian operator in (4.3)with an approximation to the vector convection-di�usion operator F . It is easiestto describe the ideas using the exact operator F . Thus, consider the block diagonalpreconditioner  F 00 1�Q !(5.2) 38



where Q is the pressure mass matrix. As in section 4, the eigenvalues of the precon-ditioned system are the solutions of the generalised eigenvalue problem F BtB 0 ! up ! = �  F 00 1�Q ! up ! :These are given by � = 1 or � = 1�p1 + 4�2where � comes from the generalised eigenvalue problem for the Schur complementsystem, BF�1Btp = � �1�Q� p :(5.3)The following result provides a bound on �.Theorem 5.1. The eigenvalues of the generalised Schur complement problem(5.3) for the Oseen operator are contained in a rectangular box in the right half planeof the form " 2�2�2 + �2 ;�2#� i "�22 ; �22 # :where  and � are as in (2.30) and (2.37), and � = �(A�1N).This is proved [7] by bounding the eigenvalues of the symmetric part of BF�1Bt (withrespect to 1�Q) and the skew-symmetric part of BF�1Bt, and then applying Bendix-son's theorem ([47], p. 418). But  and � are independent of the mesh size h of thediscretisation. Moreover, since N and A are �rst-order and second-order operators,respectively, � is also independent of h [15]. Consequently, the box containing the gen-eralised eigenvalues of (5.3) are independent of the discretisation mesh size. A boundon the eigenvalues of the preconditioned Oseen operator is an immediate consequence.Corollary 5.2. The eigenvalues of the discrete Oseen operator (5.1) precon-ditioned by (5.2) consist of � = 1 of multiplicity nu � np, together with four setsconsisting of points of the form 1+(a� bi) and �a� bi. These sets can be enclosed intwo rectangular regions that are symmetric with respect to <(�) = 12 whose bordersare bounded independently of h.The preconditioned system can be solved using any Krylov subspace method. Theconvergence behavior of such methods depends implicitly on �nding a polynomial thatis small on the spectrum of the coe�cient matrix. (Again see [42] or the paper by Vander Vorst in this volume.) The fact that the eigenvalues for the preconditioned systemderived from (5.2) lie on both sides of the imaginary axis is a potential disadvantageof this preconditioner. An alternative that avoids this problem is the block triangularpreconditioning operator  F Bt0 � 1�Q ! :(5.4)For this choice, the associated generalised eigenvalue problem is�F BtB O ��up� = ��F Bt0 � 1�Q��up� :(5.5) 39



As above, one solution is � = 1, now of multiplicity nu. If � 6= 1, then premultiplyingthe �rst block row of (5.5) by BF�1 and using the relation Bu = �� ( 1�Q)p leads tothe equation (5.3) for the other eigenvalues. Thus, we have the following result.Theorem 5.3. The eigenvalues of the discrete Oseen operator preconditioned by(5.4) consist of � = 1 together with the generalised eigenvalues of S in (5.3). Therefore,the eigenvalues are bounded independently of h and they all have positive real part.The analysis in [16] shows that for a particular starting guess the i'th GMRESpolynomial derived from the triangular preconditioning (5.4) is identical to the (2i�1)st GMRES polynomial for the diagonal preconditioning (5.2). Experimental resultsfor both GMRES and the quasi-minimal residual method (QMR) [20] indicate thatthis analysis is predictive for arbitrary initial guesses, i.e., the triangular methodrequires roughly half the iterations to converge [7]. Moreover, the inverse of the blocktriangular preconditioner can be expressed in factored form as F Bt0 � 1�Q !�1 =  F�1 00 I ! I Bt0 �I ! I 00 �Q�1 ! ;so that the only overhead associated with using (5.4) instead of (5.2) is a matrixmultiplication by Bt. Therefore, this preconditioner is typically more e�ective for theOseen problem.Since the eigenvalues for either of these preconditioners are independent of themesh size, the asymptotic convergence rate of GMRES is also independent h [42].Table 5 shows the iterations required by GMRES and QMR to solve the driven cavityproblem on 
 = (�1; 1)� (�1; 1) using the Q1�iso�Q2 discretization with an n � nnon-uniform grid of elements for velocities. The initial guess was identically zero andthe stopping criterion was f0 !�  F BtB 0 ! ukpk !2 f0 !2 � 10�6 :These results, which come from [7], indicate that the iteration counts are independentof the mesh size. (This is less evident for the smallest value � = 1=100 considered here;we believe that this is because �ner meshes are needed for the asymptotic behavior tobe displayed in this case.) See [7] for additional experimental results.5.2. Preconditioning II: Stokes solves. An alternative approach consideredin [23] builds on the ideas of section 4 in a di�erent way, by using a symmetric operatoras a preconditioner for the Oseen equations. Here we consider one example from [23],the symmetric part of (5.1). This is a discrete Stokes operator �A BtB 0 ! :(5.6)Thus, using this with a Krylov subspace method entails solving the discrete Stokesequations at each step. See [23] for other examples of symmetric preconditioners aswell as a discussion of their use for stationary iterative methods.40



Iterations of GMRESGrid � = 1 � = 1=10 � = 1=5016� 16 18 25 4532� 32 19 31 6964� 64 17 32 93128� 128 14 31 110Iterations of QMRGrid � = 1 � = 1=10 � = 1=50 � = 1=10016� 16 22 28 51 7332� 32 22 36 78 12664� 64 22 39 112 189128� 128 16 36 127 253Table 5Iterations for Q1�iso�Q2 �nite elements applied to the Oseen equation with block triangularpreconditioning.An analysis of the Stokes preconditioning is as follows. Once again, we have ageneralised eigenvalue problem, F BtB 0 ! up ! = � �A BtB 0 ! up ! :One solution is � = 1, which has eigenvectors of the form (u; p)t where Nu = 0 and pis arbitrary. Any remaining eigenvalues satisfyFu +Btp = � �(�A)u+ Btp�where u is such that Bu = 0. If (u; p)t is any eigenvector, then taking the innerproduct with u leads to the expression for the corresponding eigenvalue� = 1 + (u;Nu)(u; (�A)u) :(Note that if u exists it will be complex.) It follows thatj=(�)j � 1� �(A�1N):Thus, we have established the following result.Theorem 5.4. The eigenvalues of the discrete Oseen operator (5.1) precondi-tioned by (5.6) consist of � = 1 of multiplicity at least np together with at mostnu � np eigenvalues of the form 1� i�=� where j�j � �(A�1N).These eigenvalues lie on a vertical line segment in the complex plane with real partequal to 1. As noted in section 5.1, �(A�1N) is independent of the mesh size, so thatthe asymptotic convergence rate of GMRES will also be independent of h [23, 42].Table 6 shows the results of numerical experiments with the Stokes preconditioner[23] applied to the driven cavity problem. Here the discretization is locally stabilisedQ1�P0 with � = 1=4. (See section 6.) The stopping criterion and initial guess are asin section 5.2. 41



Iterations of GMRESGrid � = 1 � = 1=10 � = 1=1008� 8 5 11 2616� 16 4 12 3932� 32 4 12 4564� 64 4 12 45Iterations of QMRGrid � = 1 � = 1=10 � = 1=50 � = 1=1008� 8 7 12 27 4516� 16 5 14 40 6732� 32 5 14 47 8364� 64 6 13 47 89Table 6Iterations for locally stabilised Q1 � P0 �nite elements (with � = 1=4) applied to the Oseenequation with Stokes preconditioning.5.3. Discussion. We conclude this section with a brief discussion comparing thetwo classes of ideas presented here. Each of the approaches requires the solution of akey subproblem, the discrete convection-di�usion equation for the methods of section5.1 and the discrete Stokes equations for the method of section 5.2.3 We have notmade a systematic comparison of these approaches and will refrain from making arecommendation here. For a practical computation we would expect the solution ofeither of the subproblems to be replaced by an approximate solution obtained using aniterative method. These computations could be done using the techniques of sections3 or 4. This issue adds to the di�culty in making a comparison of the two approaches.Finally, we point out that although both methodologies discussed here produceasymptotic convergence rates that are independent of the mesh size, they are depen-dent on the viscosity �. This is seen in the lower bound of �2 for the real parts of theeigenvalues in Theorem 5.1 (which is shown to be tight in [7]) and the upper boundof 1=� in Theorem 5.3. In both cases the iteration counts appear to grow linearly in1=�, and therefore we expect these ideas to be most suitable problems with relativelyhigh viscosity, i.e., low Reynolds numbers.6. Test Problems and Software. In this section, the test problems used toillustrate the methodology in sections 3{5 are described. These problems can beconstructed (and the solutions plotted) using MATLAB software which is availableby anonymous ftp in the tar �lesftp://ftp.ma.man.ac.uk/pub/narep/convdiff.tarftp://ftp.ma.man.ac.uk/pub/narep/oseen.tarThe three test problems that are built-in are described below.3 As described, the techniques of section 5.1 also require the action of the inverse of the mass matrix.However, as we observed in section 4, this can be replaced with a less expensive computation using,say, the diagonal of the mass matrix, without a�ecting asymptotic convergence properties. Indeed,this choice was used for the results of section 5.1.42



6.1. The Convection-Di�usion Problem. The directory /convdiff/ con-tains two driver routines; square grid and stretch grid. These generate solutionsto (2.1) using square or rectangular bilinear Q1 elements. The \wind" w is de�nedwithin the function transprt.m, and for the test problem (see section 3.3) it is set toa constant vector (�p2=2;p2=2). The boundary conditions are de�ned in the func-tion skewx.m. In the test problem, the solution satis�es u = 1 on part of the bottomboundary and on the right-hand wall, and u = 0 on the remainder.
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Fig. 13. Convection skew to the meshReducing the viscosity parameter � increases the relative strength of the wind,and if � is \small" there is an internal layer generated by the discontinuity on theinow boundary, and a boundary layer at the left hand wall and along the top. Thecase � = 1=100 is illustrated in �gure 13. This shows a uniform 32� 32 grid solutioncorresponding to the streamline di�usion formulation (2.8), and was generated viasquare grid. Note that for this combination of � and h the standard Galerkin solutionis oscillatory, unless stretched grids are used to resolve the boundary layer (via theroutine stretch grid).6.2. The Stokes Problem. The directory /oseen/ contains two driver routines;square mesh and stretch mesh. These generate �nite element matrices associatedwith the Oseen operator using square (or rectangular) Q1{P0 elements. These matricesare \saved" on the data�le system nobc.mat.
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Fig. 14. Stokes driven cavity owHaving set up the system matrices, the Stokes ow test problem (see sections 4.4and 4.5) can be solved using the driver stokes. The \leaky driven cavity" boundaryconditions are de�ned in the function ldcavf.m; the vertical velocity is set to zero43



everywhere, whereas the horizontal velocity is set to unity on the lid, and is zero onthe other boundaries. One of the interesting features of the problem is that the pres-sure is singular at the top corners, i.e. where the imposed velocity is discontinuous.Without convection the ow is (anti{)symmetric about the line x = 0, where the pres-sure must be identically zero. This feature can be exploited when generating the owsolution (see section 4). A typical ow is illustrated in �gure 14. This shows a uniform32 � 32 grid solution of the stabilised system (2.35) with the \optimal" stabilisationparameter � = 0:058. Using Q1{P0 the pressure solution becomes increasingly oscilla-tory as � ! 0, although a realistic velocity solution is obtained for this test problemwithout stabilisation (this is not true in general). If stretched grids are used (via theroutine stretch mesh) then secondary recirculations (so called \Mo�att eddies") canbe observed in the bottom two corners.6.3. The Oseen Problem. Having set up the system matrices as above (usingsquare mesh or stretch mesh), the Oseen ow test problem (see sections 5.1 and 5.2)can be solved using the driver osn. Unlike the Stokes case where there is no convection,in the Oseen problem there is a \wind" which is de�ned within the function wind.m.For the test problem the wind is the \divergence-free vortex"w = (2y(1�x2);�2x(1�y2)). As in the Stokes case, the \leaky cavity" boundary conditions are de�ned in thefunction ldcavf.m.
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Fig. 15. Oseen driven cavity owReducing the viscosity parameter � increases the relative strength of the wind,and if � is \small" the centre of primary recirculation (which is on the line x = 0 inthe Stokes case) is moved signi�cantly to the right. The case � = 1=50 is illustratedin �gure 15. This shows a stretched grid 32� 32 grid solution of the stabilised system(5.1) with a stabilisation parameter � = 1=4. The secondary recirculations can beclearly observed here. REFERENCES[1] O. Axelsson, Iterative Solution Methods, Cambridge University Press, New York, 1994.[2] O. Axelsson and V. A. Barker, Finite Element solution of boundary value problems: Theoryand Computation, Academic Press, New York, 1984.[3] R. Beauwens, Factorization iterative methods, M-operators and H-operators, Numer. Math., 31(1979), pp. 335{357. 44
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