
ABSTRACT

Title of dissertation: NEW ALGORITHMIC TECHNIQUES
FOR LARGE SCALE VOLUMETRIC
DATA VISUALIZATION ON
PARALLEL ARCHITECTURES

QIN WANG, Doctor of Philosophy, 2008

Dissertation directed by: Professor Joseph JaJa
Department of Electrical and
Computer Engineering

Volume visualization is widely used as an effective approach for the visual

exploration, computational analysis, and manipulation of volumetric datasets. Due

to the dramatic advances in imaging instruments and computing technologies, such

datasets are now appearing at a very fast rate with increasingly larger sizes in many

engineering, science and medical applications. Isosurface and direct volume ren-

dering(DVR) are two of the most widely used techniques to render such datasets.

This dissertation introduces novel techniques for rendering isosurfaces and volumes,

and extends these techniques to multiprocessor architectures. We first focus on

cluster-based techniques for isosurface extraction and rendering using polygonal ap-

proximation. We present a new simple indexing scheme and data layout approach,

which enable scalable and efficient isosurface generation. This algorithm is the first

known parallel algorithm to achieve provable load balancing on multiprocessor sys-

tems. We also develop an algorithm to generate isosurfaces using ray-casting on

multi-core processors. Our method is based on a hybrid strategy that begins with

an object order traversal of the data followed by ray-casting on ordered sets of an

adaptive number of subcubes, one set for each small group of pixels on the im-

age. We develop a multithreaded implementation, which uses new dynamic load

balancing techniques that start with an image partitioning for the initial stage and

then perform dynamic allocation of groups of ray-casting tasks among the different

threads. The strategy ensures almost equal loads among the cores while maintaining

spatial data locality. This scheme is extended to perform direct volume rendering

and is shown to achieve similar improvements in terms of overall performance, load

balancing, and scalability. We conduct a large number of tests for all our algorithms

on the University of Maryland Visualization Cluster and on the 8-core Clovertown

platform using a wide variety of datasets such as Richtmyer-Meshkov Instability

dataset (7.5GB for each time step) and Visible Human dataset (∼1GB). We obtain

results that consistently validate the efficiency and the scalability of our algorithms.

In particular, the overall performance of our hybrid ray-casting scheme achieves

an interactive rendering rate on high resolution (10242) screens for all the datasets

tested.

NEW ALGORITHMIC TECHNIQUES FOR LARGE SCALE
VOLUMETRIC DATA VISUALIZATION ON PARALLEL

ARCHITECTURES

by

Qin Wang

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2008

Advisory Committee:
Dr. Joseph JaJa, Chair/Advisor
Dr. Rama Chellappa
Dr. Manoj Franklin
Dr. David Mount
Dr. Amitabh Varshney
Dr. Donald Yeung

c© Copyright by
Qin Wang

2008

Acknowledgments

I would like to thank my advisor, Professor Joseph JaJa for bringing me an

invaluable opportunity to work on challenging and interesting projects to fulfill my

Ph.D. study. His expertise and research attitude inspire me throughout the course.

Without his support and advising, I could not complete this program and learn so

much.

I would also like to thank Professor Amitabh Varshney and his group in Com-

pute Science department for the valuable research collaboration. Professor Varshney

always made himself available for the discussion and his thoughtful opinion has been

very helpful on the projects.

My gratitude goes to Fritz McCall and UMIACS help desk staff for their

prompt technical assistance in the system setup and configuration. I am also grateful

to my committee members for their serving on the board and their expertise to

examine my research work.

I am indebted to my family for their endless supports and patience of many

years.

ii

Table of Contents

List of Tables vi

List of Figures viii

List of Abbreviations ix

1 Introduction 1
1.1 Challenges . 1
1.2 Contributions . 3
1.3 Outline . 7

2 Volume Visualization 8
2.1 Volumetric Data . 8
2.2 Basic Visualization Techniques . 9

2.2.1 Isosurface . 9
2.2.2 Polygonal Approximation . 10
2.2.3 Pixel-based Ray-casting . 12
2.2.4 Direct Volume Rendering . 14
2.2.5 Transfer Function . 16

2.3 Acceleration Techniques . 17
2.3.1 Metacell . 17
2.3.2 Hierarchical Structures . 17
2.3.3 Empty Space Leaping . 19
2.3.4 Early Ray Termination . 20
2.3.5 Packet-of-Rays . 20

3 Previous Work 22
3.1 Isosurface Extraction and Rendering 22
3.2 Isosurface Ray-Casting . 25
3.3 Direct Volume Rendering . 28

4 Compact Interval Tree for Isosurface Extraction and Rendering 32
4.1 Isosurface Extraction Computational Model 33
4.2 Compact Interval Tree Indexing Scheme 34

4.2.1 Standard Interval Tree . 34
4.2.2 Our Indexing Scheme . 35
4.2.3 Space Consumption Analysis 38

4.3 Efficient Isosurface Extraction Method 39
4.4 Parallel Processing Scheme . 40

4.4.1 Span Space Partitioning . 40
4.4.2 Provable Load Balancing . 41
4.4.3 Sort-last Composition . 43

4.5 Extension to Time Varying Data . 44

iii

4.6 UM Visualization Cluster . 44
4.7 Experiments and Performance Analysis 46

4.7.1 Preprocessing . 47
4.7.2 Load Balancing . 47
4.7.3 Overall Performance and Scalability 48

4.8 Summary . 54

5 Hybrid Ray-casting for Isosurface Rendering 55
5.1 Features of Existing Ray-casting Algorithms 56
5.2 Basic Strategy . 57

5.2.1 Compact BONO-Tree Construction 58
5.2.2 Phase I: Bounded Block List Generation 59
5.2.3 Phase II: Spatial-Aware Ray-Casting 60

5.3 Improvements on Basic Strategy . 61
5.3.1 Extension to Packets of Rays 61
5.3.2 Adaptive Block Size . 62

5.4 Parallel Processing Scheme . 64
5.4.1 Block List Generation . 65
5.4.2 Z-Order Screen Partitioning 65
5.4.3 Dynamic Task Scheduling of Ray-Casting 66

5.5 The Clovertown Multi-Core Processors 67
5.6 Experiments and Performance Analysis 68

5.6.1 Datasets Used and Space Consumption 70
5.6.2 Performance Implication on List Upper Bound 72
5.6.3 Overall Performance . 76
5.6.4 Performance Comparison . 79
5.6.5 Cache Performance . 80
5.6.6 Scalability . 82

5.7 Summary . 84

6 Extension of Hybrid Scheme to Direct Volume Rendering(DVR) 85
6.1 Extended Hybrid Ray-casting Scheme 86

6.1.1 Pre-processing . 87
6.1.2 Block Discrimination Method 88
6.1.3 Sequential Algorithm . 90
6.1.4 Parallel Processing . 91

6.2 Experiments and Performance Analysis 92
6.2.1 Datasets Used and Space Consumption 93
6.2.2 Performance Implication on List Upper Bound 94
6.2.3 Overall Performance . 99
6.2.4 Scalability . 101

6.3 Summary . 101

iv

7 Conclusion 103
7.1 Summary . 103
7.2 Further Discussion . 106

A Performance of Our Isosurface Extraction Algorithm on the Cluster 109

B Rendered Isosurface and DVR Images by Ray-casting for RMI Datasets 112

Bibliography 116

v

List of Tables

4.1 Size comparison between standard and compact interval trees 39

4.2 Measured load imbalance of one and two-byte scalar field datasets . . 48

4.3 Measured load imbalance of four-byte scalar field datasets 49

4.4 Performance summary of our algorithm on a single node 50

4.5 Overall performance of four processors for time-varying datasets . . . 53

5.1 List generation time on single-core over upper bound k 62

5.2 Parameters of various datasets used 72

5.3 Size of our indexing structure and preprocessing time 72

5.4 Performance of our algorithm on the Clovertown 77

5.5 Comparison over ray traversal steps 78

5.6 Performance comparison on the Clovertown 78

5.7 Performance benchmark comparison between Opteron and Xeon . . . 79

5.8 Performance comparison between our algorithm and others 80

5.9 Comparison of cache misses between our algorithm and others 81

5.10 Average frame rate of our algorithm on the Clovertown 82

5.11 Measured work load balance on the two Phases 83

6.1 Size of our indexing structure and preprocessing time 95

6.2 Execution time and composition steps of our DVR algorithm 98

6.3 Comparison over composition and ray traversal steps 99

6.4 DVR performance comparison between our algorithm and others . . . 100

6.5 Average frame rate of our DVR algorithm on the Clovertown 100

6.6 Measured DVR work load balance on the two Phases 102

vi

A.1 Performance of our isosurface algorithm with two processors 109

A.2 Performance of our isosurface algorithm with four processors 110

A.3 Performance of our isosurface algorithm with eight processors 110

A.4 Performance of our isosurface algorithm with sixteen processors . . . 111

vii

List of Figures

2.1 Illustrative 3D grid . 10

2.2 Span space for active cells . 11

2.3 Different triangulation cases among cubic cell 12

2.4 Illustrative recursive ray traversal in 2D data space 13

2.5 DVR pipeline processing . 15

2.6 Illustrative recursive ray traversal . 19

4.1 Our span space partitioning scheme 36

4.2 Compact interval tree structure . 37

4.3 Span space partitioning for parallelism 41

4.4 The visualization cluster architectural diagram 45

4.5 Overall execution time on the cluster 51

4.6 Speedups of our algorithm . 52

5.1 Execution time of PhaseI and PhaseII on a single-core 63

5.2 Intel Quad-Core Processor Architectural Diagram 68

5.3 The six datasets used in our experiments 71

5.4 Execution times of our algorithm over upper bound k 74

5.5 Percentage of pixels left to shade after the block lists 75

5.6 Analysis of the percentage of rays having no intersection 76

6.1 Illustrative diagram for 2D-dimensional discriminate function 89

6.2 The six datasets used in our DVR tests 94

6.3 The 2D histograms of the six datasets used in our DVR tests 95

6.4 Execution times of our DVR algorithm over upper bound k 96

viii

6.5 Percentage of composition steps after the list and ESL efficiency . . . 97

B.1 Isosurface image I of RMI dataset . 112

B.2 Isosurface image II of RMI dataset 113

B.3 DVR image I of RMI dataset . 114

B.4 DVR image II of RMI dataset . 115

ix

List of Abbreviations

AMC Active MetaCell
BBIO Binary-Blocked I/O
BONO Branch on Need Octree
CPU Central Processing Unit
CT Computer Tomography
DVR Direct Volume Rendering
ESL Empty Space Leap
GPU Graphics Processing Unit
LLNL Lawrence Livermore National Laboratory
LOD Level of Detail
MIMD Multiple Instruction Multiple Data
MRI Magnetic Resonance Imaging
NIH National Institutes of Health
NUMA Non-Uniform Memory Access
RMI Richtmyer-Meshkov Instability
SIMD Single Instruction Multiple Data
TB Tera-Byte

x

Chapter 1

Introduction

Visualization is a process that creates images to convey salient information

about the underlying data. Because of the extraordinary capability of the human

visual system to interpret images quickly and effectively, visualization is a very

important method for exploring and analyzing the features, patterns and relations

embedded in the data. Nowadays, with the fast evolving computing technology,

visualization is playing an ever-expanding role in applications in science, engineering,

medicine, multimedia, finance, etc. In particular, scientific visualization is now an

integral component of scientific computation and simulation, which aims to create

a visual representation of complex scientific data to provide insights underlying the

physical phenomena. Such visual abstraction and reduction of underlying data into

images is in general a very computationally demanding process.

1.1 Challenges

During the past three decades, there has been unprecedented growth in com-

putational and acquisition technologies, which resulted in the increasing capability

of investigating the physical world in detail with high precision as well as modeling

and simulating very complex phenomena. It is not uncommon that hours, or even

days of simulation running on high performance computers produce vast amount

1

of data ranging from hundreds of giga-bytes to tens of tera-bytes. As an exam-

ple of such a dataset, consider the process of the Richtmyer-Meshkov instability in

inertial confinement fusion and supernovae from the ASCI team at the Lawrence

Livermore National Labs(LLNL). This dataset represents a simulation in which two

gases, initially separated by a membrane, are pushed against a wire mesh. These

are then perturbed with a superposition of long wavelength and short wavelength

disturbances and a strong shock wave. The simulation took 9 days on 960 CPUs

and produced about 2.1 TB of simulation data. The data shows the characteris-

tic development of bubbles and spikes and their subsequent merger and break-up

over 272 time steps, each consisting of 20482× 1920 volume of one-byte scalar field.

Another example is the popular medical dataset coming from the Visible Human

Project established by the National Institute of Health(NIH). The generated dataset

contains 1, 871 cross-section CT and anatomical images in the size of 15 GB for the

male subject while 5, 189 images of 39 GB for the female. In the past decade, a

great number of efforts were made to visually explore and analyze such large scale

datasets interactively with mixed results.

Since the visualization of large scale data demands a great deal of computa-

tion and irregular communication, previously only supercomputers equipped with

proprietary graphic system, such as SGI Reality Monster with 128 processors, were

able to support the visual exploration on large datasets. However, such super com-

puters can only be afforded by a limited number of researchers. Since early 1990’s,

driven by the availability of high speed networks and cheap prices of PCs, cluster-

ing has become a cost-effective platform to provide massive computing power. In a

2

cost-effective way, visualization systems built upon a cluster consisting of off-shelf

computers with GPU cards have been since then exploited to visualize 3D datasets.

More recently, the newly emerging multi-core processor technology which includes

multiple CPUs on a single chip is attracting considerable attention from researchers

to conduct visualization on this new platform. Although there are a number of visu-

alization systems and techniques developed using these parallel platforms, they are

usually targeted for several orders of magnitude smaller datasets, and do not scale to

gigabyte or terabyte-sized datasets. Hence, visual exploration and interaction with

large scale datasets requires the development of a high-performance visualization

software infrastructure running on affordable parallel platforms that can essentially

handle the growing size of datasets, extract the features of interest efficiently and

render them interactively on high resolution screen.

1.2 Contributions

This dissertation considers the problem of visualizing large scale datasets us-

ing isosurfaces and Direct Volume Rendering (DVR) technologies on two different

parallel architectures, namely multiprocessor clusters and multi-core processors. We

have developed three new algorithms that offer significant improvements over prior

schemes. Part of the work in this dissertation appears in [24] and [69].

Our first major contribution concerns the extraction of a polygonal approxima-

tion of isosurfaces. A new compact indexing structure and a new data partitioning

scheme are developed for out-of-core isosurface extraction and rendering of large

3

scale data on a multiprocessor environment. This scheme results in the following

contributions:

• The algorithm uses a smaller indexing structure and a more effective bulk data

movement than the best known previous algorithms while achieving similar

asymptotic bounds. In particular, the size of our indexing structure is shown

to be orders of magnitude smaller than that of the interval tree for a number

of well-known datasets.

• Our scheme can be implemented on a distributed storage multiprocessor envi-

ronment such that the data distribution across the local disks of the different

processors results in a provably balanced workload irrespective of the isovalue.

Moreover, the total amount of work across the different processors is about

the same as that required by the serial version of the algorithm.

• The experimental results show that isosurfaces can be generated and rendered

at the rate of 3.5 ∼ 4.0 million triangles per second on the Richtmyer-Meshkov

dataset using our algorithm on a single processor. On a 16-node cluster, we

achieve scalable performance across widely different isovalues with a perfor-

mance of up to 60 million triangles per second. The experimental results

also show that our algorithm achieves excellent load balancing for a variety of

datasets over a wide range of isovalues.

Our second major contribution is the development of a novel hybrid strategy

for rendering isosurfaces using ray-casting on a multi-core processor. The proposed

4

method is based on a hybrid strategy that begins with an object order traversal of

the data followed by ray-casting on ordered sets of an adaptive number of subcubes.

Compared with existing ray-casting approaches, our scheme achieves the following:

• A short list of possible candidate data blocks is generated for each small set

of contiguous pixels through the traversal of a BONO tree (Branch On Need

Octree), built upon a coarse version of the volumetric data. Such a process

can be performed extremely fast because the BONO tree is very compact

and the imposed upper bound of the data block list restricts the traversal

significantly. This enables us to identify almost all the pixels with rays not

intersecting the isosurfaces through the BONO tree travel, and the percentage

of the non-intersecting rays cast is extremely small.

• We cast rays that traverse through a limited number of blocks in a front to back

order, and skip a substantial fraction of irrelevant portions of the volumetric

data up front.

• Nearby pixels will likely have a number of common blocks on their lists and

hence spatial locality of pixels can be exploited to achieve high performance

caching. That is, processing nearby pixels can make effective use of caching

since their corresponding lists are short and are likely to share blocks.

• The multi-threaded implementation on multi-core processors, using new dy-

namic load balancing techniques, ensures almost equal loads among the cores

while maintaining spatial data locality.

5

• The extensive testing of our algorithm on a variety of datasets, of widely

different complexities, indicates that the scheme can easily achieve interactive

high resolution rendering of isosurfaces of large scale volumetric scalar data

on emerging multi-core processors.

Our third major contribution is to extend the hybrid ray-casting scheme to

accelerate direct volume rendering on large scale datasets as well. Our extended

scheme achieves:

• The BONO tree is augmented with extra dimensional information to accom-

modate the specification and application of interactive 2D transfer functions

at runtime.

• A novel block discrimination method is proposed to classify the blocks into

various types and directly support empty space leaping in an effective way in

the case of direct volume rendering.

• The multi-threaded implementation demonstrates a high degree of scalabil-

ity, excellent load balancing, and effective memory management on multi-core

processors.

• Extensive experimental tests show significantly superior performance over pre-

viously published algorithms for direct volume rendering by ray-casting, and

result in interactive rates for very large datasets such as the Lawrence-Livermore

instability dataset on high-resolution screens.

6

1.3 Outline

The rest of this dissertation is organized as follows. Chapter 2 introduces

existing visualization technologies as well as some related acceleration techniques.

Chapter 3 reports on the previous algorithms and methods used to render isosur-

faces and DVR, but mainly focusing on multiprocessor environment and multi-core

processors. Chapter 4 presents a new simple indexing scheme and data layout ap-

proach, which enables scalable and efficient isosurface generation resulting in the

first known parallel algorithm to achieve provable load balancing on multiprocessor

cluster systems. The novel hybrid scheme that improves isosurface ray-casting is

presented in Chapter 5 and its extension to direct volume rendering is described in

Chapter 6. We conclude in Chapter 7.

7

Chapter 2

Volume Visualization

Volume visualization is used to create images from scalar and vector datasets

defined typically on 3D or 4D space. It involves a process of transforming a multidi-

mensional dataset onto a 2D image plane to gain insights of the salient features and

the structure contained within the data. The transformation takes place by sam-

pling the 3D data, interpolating the data value, classifying the optical properties of

the material, and compositing the visual effects to come up with 2D images. There

are two widely used methods for volume visualization, isosurfaces or Direct Volume

Rendering(DVR). The isosurface method computes and renders surfaces with con-

stant density value while the DVR method can more generally reveal the underlying

translucent structure and the features of the data. Before discussing various tech-

niques regarding these two methods, we first introduce the data representation of

the underlying datasets.

2.1 Volumetric Data

A volumetric dataset consists of a collection of values obtained by sampling a

function at various locations in a 3D space, which can be in structured or unstruc-

tured format. A structured dataset is associated with certain form of regularity

in sampling positions, while positions can be arbitrary in an unstructured dataset.

8

This thesis primarily studies methods that are applicable to structured datasets

dominated in many scientific domains. Typically, instrument measurements and

computer simulation are the two main sources for such datasets. For example,

in the Visible Human Project, Computer Tomography(CT), Magnetic Resonance

Imaging(MRI), and Anatomical images are obtained via the experimental measure-

ment of male and female cadavers. These 2D images are stacked together to form a

3D data grid with each pixel representing a grid point. On the other hand, the RMI

dataset from LLNL is generated directly by computer simulation, with one scalar

density value at each grid point. An illustrative 3D grid is shown in Figure 2.1,

where each point on the grid is called a voxel (as analogous to pixel in 2D image),

and is associated with a scalar value. Alternatively, this grid can be viewed as a

collection of cubic cells, each of which contains eight neighboring grid points. The

Vmin and Vmax of a cell are defined respectively as the minimum and maximum of

eight scalar values belonging to the cell. Based upon such volumetric data rep-

resentation, various techniques have been developed to visualize the dataset using

isosurfaces and direct volume rendering.

2.2 Basic Visualization Techniques

2.2.1 Isosurface

Given a scalar density function F (x) over a 3D geometric space G, x ∈ G, F ∈

V (V specifies a scalar value space), an isosurface S consists of the 3D point x such

that F (x) = λ, for some constant isovalue λ.

9

Figure 2.1: Illustrative 3D grid, each grid point contains a scalar value
measured at a discrete sampling location.

As the density function F (x) is only known through a set of sample values

fi at discrete sampling locations over the 3D space, i.e., F = {fi}, fi ∈ V , in

practice an isosurfaces can be approximated through interpolated values over the

set {fi}. For the volumetric data in the 3D grid representation, eight scalar values

of a cell are referenced to interpolate points on the isosurface located inside each

cell. Two different approaches are adopted to carry out the interpolation process,

one by polygonal approximation, the other by ray-casting.

2.2.2 Polygonal Approximation

A popular method for computing an isosurface is by approximating the sur-

face with a polygonal mesh followed by rendering the mesh using the usual graphics

pipeline. The isosurface inside each cubic cell of a volumetric dataset can be approx-

10

Figure 2.2: Span space for active cells.

imated by a set of polygonal geometries such as triangles as follows. The process

begins by examining the isovalue λ with Vmin and Vmax of the cell. If the condi-

tion Vmin ≤ λ < Vmax is satisfied (such as those cells located in the rectangular

shaded region in span space of Figure 2.2), the cell intersects isosurface and will be

called active. An intersecting position is determined along each edge by linear in-

terpolation based upon scalar values of two end voxeles and isovalue λ. After these

intersecting positions are obtained from edges, a triangle mesh can be composed

to approximate the isosurface inside of the cell. There are in total of at most 256

intersecting scenarios. In reality, 15 cases are sufficient since the other cases can be

generated by symmetry. These are represented in Figure 2.3.

This type of geometric approximation is also called triangulation, and was first

proposed by Lorensen in [14]. In this scheme, the isosurface is approximated from

11

Figure 2.3: 15 unique triangulation cases among cubic cell.

each active cell one after another in a brute force manner. As a result, a great

number of triangles are generated for large scale dataset, which could amount to

massive computations. There have been many acceleration techniques proposed to

efficiently locate the active cells, some of which will be introduced in Section 2.3.

2.2.3 Pixel-based Ray-casting

The triangulation process generates a geometric approximation of isosurfaces,

whose rendering may produce visual artifacts. Moreover, this process doesn’t take

into consideration the position of the viewpoint and hence may waste a great deal

of computation on triangles that may not be visible from the viewpoints of interest.

Another technique is to use ray-casting. For each pixel on the screen, a ray is

cast along the viewing direction across the data grid. When the ray encounters an

active cell, a trilinear interpolation process takes place within the cell to locate the

12

Figure 2.4: Illustrative recursive ray traversal in 2D data space.

intersecting position where its density value is equal to λ [36]. The ray goes through

the cells following the forward viewing direction until such intersecting position is

found. In such case, a shading is performed for the corresponding pixel on the

screen relative to the lighting and selected shade model. The ray-casting process is

inherently a view-dependent approach for isosurface rendering since it only locates

and shades the first intersection voxel and skips all the data behind. Also, each in-

tersecting position along the ray is accurately computed such that the visual quality

of ray-casting isosurface can be very high. Unlike the polygonal approximation in

which the performance is directly related to the number of extracted triangles, the

pixel-by-pixel approach of ray-casting makes the rendering speed more sensitive to

the screen size other than the size of the dataset and the complexity of the isosur-

face. An illustrative ray-casting diagram in 2D space is shown in Figure 2.4 with

shaded squares specifying the active cells and dashed lines indicating the part of

13

isosurfaces invisible from the viewpoint.

2.2.4 Direct Volume Rendering

Although isosurfaces play a very important role in volume visualization, they

have several drawbacks. First, triangle meshes are only an approximated represen-

tation of a surface; second, much of the information gets lost by extracting only

surfaces from the original 3D dataset since the surface is just a 2D geometric repre-

sentation; third, amorphous phenomena, such as clouds, gas, soft tissue, etc., cannot

be adequately represented by means of surfaces. Therefore, it is desirable to gener-

ate a volumetric representation that extracts and renders the information directly

from the dataset without going through an intermediate geometric approximation.

Direct volume rendering by ray-casting involves shooting a ray through each

pixel on the screen along the viewing direction and directly computing the opacity

and color of the pixel using sampled data at equal distance intervals along the ray.

Given the low-albedo optical model described in [60], the color on the final image

can be computed by the following integration:

C =
∫ L

0
Csτse

−
∫ s

0
τtdtds (2.1)

Cs and τs are the material color and opacity per unit length respectively at

the location s. In most cases, this integration has no analytic solution but can be

composited approximately in front-to-back order using a recursive Riemann sum

[49] as in the formula below:

αi+1 = αi + (1− αi)αs (2.2)

14

Figure 2.5: DVR pipeline processing.

Ci+1 = Ci + (1− αi)αsCs (2.3)

where αs =
∫ si+1
si

τtdt, αs and Cs are usually mapped from the properties of the

voxels (such as scalar field value and/or gradient value) by a user-specified transfer

function. The stages in the pipeline process of direct volume rendering are illus-

trated in Figure 2.5. First, a series of discrete locations are sampled uniformly

along each ray one at a time; next, the scalar value at each location is obtained by

applying certain filters such as trilinear interpolator; third, the optical properties of

the material, captured by opacity and color, are obtained by classification through a

transfer function; There can be an optional shading process to factor in the contribu-

tion from the lighting effect; At last, the composition step accumulates the opacity

and colors over the ray in a front-to-back order following the recursive composition

equations 2.2 and 2.3. In general, the DVR process is much more computationally

intensive than isosurface computation in that the final pixel color is determined by

the composition of visual contributions from the data throughout the entire space.

15

2.2.5 Transfer Function

The transfer function, which maps the material properties of a voxel onto

opacity and color, is critical in capturing and rendering the features and patterns of

interest from the underlying dataset. Transfer functions can be one-dimensional, i.e.

mapping from scalar density value to optical properties, or multi-dimensional using

the additional dimensions for gradient and/or curvature, which can improve the

capability of distinguishing the features based upon their higher order derivatives.

The classification via transfer function is achieved through a table mapping, which

is straightforward and efficient for one or two dimensions but much more complex

to manipulate for higher dimensions. A transfer function could introduce extra

artifacts when the mapping from density value to opacity/color raises the Nyquist

frequency of the underlying data. However, increasing the sampling rate would

produce significantly more computational work load and compromise the rendering

speed. One way to suppress such artifacts without increasing the sampling rate is

to adopt pre-integral transfer functions. The method approximates αs through the

integration over the density field instead of the spatial space as follows:

αs =
∫ si+1

si

τ(t)dt =
∫ fi+1

fi

τ(f)
dt

df
df ≈ ∆si

∆fi

(T (fi+1)− T (fi)) (2.4)

Where T (f) =
∫ f
0 τ(f)df , called pre-integral transfer function, which prevents

the piecewise mapping from the field value to optical properties.

16

2.3 Acceleration Techniques

Volume visualization is a computationally demanding task especially for large

scale datasets and high resolution screens. There are various techniques that have

been developed over the past 15 years or so to accelerate the process of isosurface

generation and direct volume rendering. The most widely adopted techniques are

described next.

2.3.1 Metacell

Metacell is defined as a group of neighboring cells within a spatial bounding

box. In particular, the metacell is trivially a subcube in the case of structured grids.

The initial concept of metacell is driven by clustering the cells into the size of one

or several contiguous disk blocks to facilitate I/O access. Using metacells can also

reduce the data duplication on the boundary voxels, otherwise almost eight times

size of data would be expected in the representation of a collection of individual

cells. Obviously, data locality is improved by utilizing metacell as well. In addition,

another advantage of metacell is that a hierarchical spatial indexing structure can

be constructed upon metacells, the size of this hierarchical structure will then be

compact, and hence will improve the memory access performance for large datasets.

2.3.2 Hierarchical Structures

Hierarchical structures have been widely used to avoid processing the parts

of the data which do not contribute visually to the final image. Two widely used

17

structures are the octree [23] and the kd-tree [13]. A node of such hierarchical

structures represents a spatially bounded region. An octree recursively divides the

spatial space into eight sub-regions while a kd-tree splits the space recursively into

two halves alternatively along each spatial dimension. In extracting isosurfaces by

polygonal mesh approximation, each node of the octree or kd-tree is augmented

with the minimum and the maximum scalar values (Vmin and Vmax) of the subtree

rooted at this node. If the stabbing condition is not satisfied at the node (i.e. the

isovalue λ is not between Vmin and Vmax), the whole subtree is removed from further

processing. Another important hierarchical structure is the interval tree [2, 28] which

enables the extraction of the active cells in an optimal fashion. Basically, each node

of an interval tree contains a set of intervals denoted by the values of Vmin and

Vmax which sandwitch a median value associated with the node. The intervals with

both Vmin and Vmax smaller (or larger) than the median value belong to the left (or

right) subtree respectively. Based upon their individual median values, the nodes

constitute a binary tree which allow us to determine the intervals containing a given

isovalue through a binary search process. More discussions will be given on this

structure along with the description of our new algorithm in Section 4.2.

Regarding the ray-casting technology, each ray advances forward along the

viewing direction in a front-to-back order using the hierarchical structures. An

illustrative 2D case of recursive ray traversal is shown in Figure 2.6. Starting from

the root node, each ray intersecting the bounding box of the current node is tested

for the intersection with the middle planes perpendicular to the three axes. These

intersecting positions located within the bounding box are then sorted according

18

Figure 2.6: Illustrative recursive ray traversal.

to their distance to the ray source position. Based upon their ordering, the front-

to-back visiting order to the current node can be easily established as well as the

recursive traversal of the ray. A hierarchical indexing structure provides a critical

support for other acceleration techniques introduced below.

2.3.3 Empty Space Leaping

Important features in volumetric datasets are partially captured by isovalues or

transfer functions. Parts of a dataset may not produce any visual effect on the final

image. In the method of ray-casting, the ray can skip the empty (or transparent)

region when traversing across the dataset to save computation and memory access.

Using the octree or kd-tree, the visibility of each block corresponding to a node can

19

be quickly determined by examining the isosurface stabbing condition or testing the

difference of the pre-integral transfer function value between Vmin and Vmax of the

node. If there is no visual contribution from the region represented by this node,

the ray is advanced forward to skip the traversal within the subtree under this node.

The empty space leaping is particularly effective when the features of interest come

from a limited part of the whole dataset.

2.3.4 Early Ray Termination

Another important acceleration technology for ray-casting is early ray termi-

nation. As to the isosurface rendering, the early ray termination is an inherent part

of the technique as the ray stops after intersecting the isosurface. When rays tra-

verse across a volume grid in front-to-back order for direct volume rendering, many

of the rays may quickly accumulate an opacity close to 1 by Equation 2.2. This

means that features of the dataset located in the back are occluded and need not to

be processed to produce the final image. Those rays can be terminated before they

pass through the entire grid.

2.3.5 Packet-of-Rays

The packet-of-rays exploits the CPU SIMD extensions that exist in many

current architectures to apply a single operation on four operands at once. In

such way a packet of four rays can be traversed as one single unit throughout the

volumetric dataset. An extended version of this technology can traverse a beam of

20

rays (not limited to four rays) across the data grid in the hope of achieving significant

speedups. But, both techniques suffer from the overhead caused by merging and

splitting of rays or the frustum that encloses the ray beam during the traversal

process. The relatively high speedups reported are only observed in coherent scenes.

21

Chapter 3

Previous Work

This chapter will present an overview of a number of algorithms and tech-

niques directly related to this dissertation. These methods are divided into three

categories: isosurface extraction and rendering, isosurface ray-casting, and direct

volume rendering. The review begins by describing the sequential algorithms but

the focus will be more on parallel schemes developed for multiprocessor systems.

The contributions made by these schemes are summarized along with their limita-

tions especially when dealing with the challenges imposed by large scale datasets.

The discussion aims to introduce the great efforts many researchers have devoted

to this field and at the same time to provide sufficient context to understand the

contributions of our work.

3.1 Isosurface Extraction and Rendering

The Marching Cubes(MC) algorithm proposed in [14] scans the entire cell set,

one cell at a time, and determines whether a cell is cut by the isosurface, and in

the affirmative generates a local triangulation of the isosurface intersection with the

cell. The overall triangular mesh is then rendered. Many improvements to this

initial algorithm have been reported in the literature. Some algorithms attempt

to reduce the number of examined cells by using a spatial data structure such as

22

the octree [22, 23], while others partition the range of the scalar field values and

construct an index on the span space [20]. A theoretically optimal algorithm was

described in [8], and involves the construction of an interval tree on the scalar

field intervals defined by the cells. Such a data structure enables the exploration

of only the active cells (cells that intersect the isosurface) and hence it is output

sensitive. This algorithm was later generalized into a theoretically optimal out-

of-core isosurface extraction strategies in [4, 5]. For multiprocessor environments,

several parallel algorithms have been reported for the case when the data can fit

in the main memory [9, 10, 16, 18, 19, 20]. As to larger scale datasets, parallel

out-of-core algorithms such as those in [3, 7, 21, 25, 26, 27] have been reported.

For a multiprocessor cluster environment in which each processor has its

own main memory and local disk, the processors communicate and exchange data

through an interconnection network using message passing. Critical factors that in-

fluence the performance include the amount of work required to generate the index

and organize the data on the different disks (preprocessing step); the relative compu-

tational loads of the different processors corresponding to an arbitrary isovalue; the

performance of the rendering and rasterization into a single display; and the total

amount of work relative to the (best) sequential algorithm. The preprocessing step

described in [5, 6, 7] involves partitioning the dataset into metacells and building a

B-tree like interval tree, called Binary-Blocked I/O interval tree (BBIO tree). The

computational cost of this step is asymptotically similar to an external sort, which

is likely to be too expensive in practice. The isosurface generation requires that a

host traverses the BBIO tree to determine the indices of the active metacells, after

23

which jobs are dispatched on demand to the available processors. In addition to the

substantial preprocessing overhead, a significant bottleneck with this scheme is the

host overhead in coordinating and dispatching jobs, and the unpredictability of the

access pattern to the available disks. The algorithm described in [25] attempts to

solve the load balancing problem by distributing the data based on a range space

partition. The range of possible field values is partitioned into a number of intervals.

Blocks are then assigned to triangular matrix entries depending on which intervals

a block spans. An external interval tree (BBIO tree) is then built separately for the

data on each processor. Again this strategy involves a very expensive preprocessing

step but in addition there is no guarantee of load balancing among the processors.

In fact, it is easy to construct a dataset that will result in extremely unbalanced

loads among the processors. Moreover, while the BBIO is “asymptotically optimal”

for I/O performance (in terms of the number of active metacells brought to memory

and not necessarily the active cells), it does incur a significant overhead in terms

of size and performance. The extracted local surface is then streamed to parallel

rendering servers, followed by compositing the outputs of the different frame buffers

to a tiled-display. The preprocessing algorithm described in [27] is based on parti-

tioning the range of scalar values into equal-sized subranges, creating afterwards a

file of subcubes for each subrange. The blocks in each range file are then distributed

across the different processors, based on a work estimate of each block. As in [25],

the preprocessing is computationally expensive and there is no guarantee that the

loads of the different processors will be about the same in general.

In summary, existing parallel out-of-core algorithms either require unpredictable

24

data accesses to the disks, which can cause a considerable overhead, or use complex

indexing schemes with no guaranteed load balancing. The parallel out-of-core al-

gorithm proposed in this thesis work uses a simple indexing scheme with provable

load balancing among the processors (regardless of the datasets or the isovalue) and

incurs almost no overhead relative to the efficient sequential version of the algorithm.

3.2 Isosurface Ray-Casting

Isosurface ray-casting directly generates the isosurface by shooting rays from

the viewpoint through the pixels and computing the intersections of these rays with

the isosurface. As a special case of ray tracing technique, ray-casting only considers

and traces the primary ray. Nevertheless, ray-casting delivers most effectively the

visual information of isosurfaces and is the most time-consuming component of

ray tracing. This method, coupled with various techniques for improving visual

effects such as shading, reflection, and global illumination, can generate extremely

high quality visualization of isosurfaces. However, the method is computationally

demanding, especially for high resolution screens, since it is pixel-by-pixel approach

and hence its complexity depends on the number of rays and the size of the dataset

as well as on the scheme used for ray traversal and for computing and shading the

intersection voxels of the rays with the isosurface. Note that in general the memory

access is relatively expensive as the voxels are not processed in the same order as

the data layout, and cache performance can be poor since the cells intersected with

cast rays are not easily predictable.

25

Given the high computational requirements of isosurface ray tracing, Parker et.

al. [19] describe an implementation on the SGI Reality Monster, which is a shared-

memory multiprocessor with up to 128 processors, and show interactive isosurface

rendering of the 1GB Visible Woman dataset. The screen size used is 5122. Their

algorithm uses a simple multi-level spatial hierarchy with a 3D tiling of the input

data to improve cache performance. More recently, Wald et. al. [42] describe

an implementation using a combination of a kd-tree and coherent ray tracing that

exploits the SIMD extensions that are available on many of the current multi-core

processors. A kd-tree is a binary tree that represents a spatial partitioning of the

volume data. Each node, except for the leaves, represents a splitting plane that is

closest to the center of the largest dimension. Each node contains the minimum and

the maximum of the densities contained within the subtree. This structure is very

similar to the octree as described in [23, 33], except that the authors claim that the

kd-tree more easily enables a simple handling of packets of rays used in coherent

ray tracing. Coherent ray tracing traverses packet of rays through the kd-tree in

order to make effective use of the SIMD extensions. However this comes at the cost

of creating an indexing structure that is at least twice as large as the input data

size. For example, their most compact kd-tree representation of the 8GB LLNL

dataset is of size 18GB. The authors illustrate the performance of their scheme on a

single and on a 5-node cluster of dual-1.8 GHz AMD Opteron, with a default screen

size of 5122. A more compact kd-tree is introduced in [30] and used for isosurface

ray tracing on two-processor platform, each is a dual-core 2.6 GHz AMD Opteron

with 16GB RAM. They show interactive rate isosurface rendering for a variety of

26

datasets of sizes up to 8GB but using half the memory used in [42].

The multi-layer ray tracing algorithm (MLRTA) reported in [39] exploits

spatial coherence in image space to speedup the rendering of geometric objects of

a few million triangles. The speedups achieved by the MLRTA method basically

rely on coherent scenes containing geometric objects of large 3D extension to ensure

that a wide range of ray beams treated as a single traversal entity can quickly

detect deep entry points. However, in order to handle small objects, a repeated tile

splitting process is required to subdivide the ray beams gradually, thereby creating a

significant overhead and resulting in a traversal that is similar to the octree traversal.

Hence, it is questionable whether the method will perform well on complex (and

possibly incoherent) isosurfaces in large scale datasets such as LLNL where the

concept of large object extension is not applicable. In fact, it has been noticed that

the packet ray traversal technique (including the exploitation of SIMD instructions)

may perform poorly on incoherent complex scenarios where frequent ray splitting

and merging could lead to a worse performance than just using a single-ray [33,

34, 30]. As the most recent implementation of the single-ray scheme, an octree

representation that contains the scalar data as well as the range information is used

in [33] to generate competitive performance on multi-core processors. Its multi-

resolution level of detail (LOD) version that incorporates coherent ray tracing to

work around the problem of incoherent scenes appears in [34], resulting in faster

rendering of LOD data in some cases.

The ray-casting implemented on GPUs also appeared in the past few years

with the advent of improved GPU programmability. The GPU-based ray-casting

27

implementation is reported in [43, 32]. However, the GPU-based approach is con-

strained by its on-board memory size (usually 512MB) and its fairly strict SIMD

programming model.

3.3 Direct Volume Rendering

Software techniques developed for direct volume rendering fall primarily into

three main categories: Ray-casting [55, 56], Splatting [72] and hybrid strategies such

as the Shear-Warp algorithm [53]. Although the GPU-based technology currently

delivers the fastest rendering of volumetric data due to its massive pipeline stream

processing, much improved GPU programmability, and 3-D texture mapping [47,

52, 65, 48, 11], the high rendering frame rate is observed when the processed data

is able to fit in the GPU on-board memory. Currently, the limited size (i.e. 512MB

∼ 1024MB) of on-board memory prevents GPU from achieving interactive volume

rendering on large size datasets. Researchers have considered a number of parallel

volume rendering schemes for ray-casting [63], splatting [62] and shear-warp [54, 66]

using either PC clusters or tightly coupled MIMD supercomputer systems. Although

the splatting method avoids sampling over empty regions by projection of kernel

functions, its parallel version seems to be inefficient and complicated in the way

it utilizes the early termination technique [62]. Shear-warp generally produces low

quality images due to its bilinear interpolation with severe artifacts showing up

when changing the viewing direction around 45o [53, 54]. Consequently, ray-casting

seems to be the preferred technique in terms of its technical simplicity and ability

28

of producing higher quality images. Nevertheless, the ray-casting approach usually

involves significantly more computation due to its pixel-by-pixel processing (and

hence heavily depends on the screen size), which makes it hard to achieve interactive

rendering for moderate size datasets. Refer to [61, 49] for a good overview and a

comparison of the various volume rendering techniques.

Since the direct volume rendering method by ray-casting was first published

by Levoy in [55], many alternate versions, such as those reported in [56, 68, 64,

70, 71], have been introduced. However, empty space leaping requires either a

hierarchical structure (i.e. multilevel-grid [64], octree [56], kd-tree [68], etc) which

incurs a significant overhead, or a space-consuming per-vertex register structure such

as DFB-jumping described in [70] which however can not accommodate interactively

changing the transfer function. To improve the efficiency of ray-casting for direct

volume rendering, a two-step method is proposed in [41]. The first step consists of

projecting the boundary cells onto the image plane using graphics hardware, and

the second step applies the octree ray tracing but now slightly more constrained.

Some other schemes use quantized voxels to accelerate volume rendering [37], or

cache-efficient layouts of bounding volume hierarchies [44] to improve kd-tree access

during ray casting for some medium size of datasets. On the other hand, the idea

of projecting non-empty cells onto screen was introduced to determine the first and

last cells hit by each ray using either GPU hardware [67] or cell-template [71]. But

the schemes are inefficient in skipping empty regions between the bounded range. To

skip empty space more effectively and reduce the overhead of repeated hierarchical

traversal, an object-oriented ray-casting method is proposed in [38], which performs

29

ray-casting right after each cell projection and processes one cell after another in

front-to-back octree traversal order. The limitation of this approach is that there is

no straightforward way to parallelize this algorithm which involves in-order traversal

of octree.

The parallelization of the general ray-casting method for direct volume render-

ing has been described by many researchers [63, 46, 57, 58, 64, 45]. The approaches

used can be classified according to three categories: image-space, object-space and

hybrid. The image-space parallel scheme is easier to implement due to the indepen-

dent pixel-by-pixel approach of ray-casting but makes it quite hard to achieve good

load balancing and cache coherence due to the irregular data access pattern and

the unpredictable image complexity on the screen with varying transfer function

and viewing direction. Nieh presented a parallel scheme for the serial ray-casting

algorithm [56] on shared-memory MIMD system in [63] and achieved the scalabil-

ity around 70 ∼ 80% by utilizing dynamic task stealing from other processors at

runtime. Other similar implementations [46, 64] yield relatively the same scalability

performance. On the other hand, the object-space partition scheme is relatively pop-

ular on distributed systems. The basic idea relies on dividing the dataset evenly in

a certain way or randomly among the processors in the hope of achieving good load

balancing and regular memory access pattern [57, 58, 59]. But, these algorithms

require additional merging and re-sorting of the ray segments to produce correct

rendering of images with significant synchronization time for the image composition

stage. Moreover, the early ray termination condition can not be easily applied un-

der object-space partitioning schemes. Using a completely different strategy, hybrid

30

parallel shear-warp algorithms [54, 66] require additional 2D image warping process

and the image quality does not in general match those produced by the other al-

gorithms. Another hybrid parallel scheme [45] divides full screen into small image

tiles and the dataset hierarchically into bricks. The algorithm obtains data bricks

that intersect with viewing frustum by repeated octree traversal, which incurs a

significant overhead, in order to achieve load balancing with dynamically assigned

both image tiles and data bricks among processors.

The transfer function, which maps the material properties of the data into

opacity and colors, is critical in capturing and rendering the features and patterns

of interest. Initially, the transfer function was applied at the preprocessing step as

in [56], which does not allow interactive modification and rendering. More recently,

researchers have allowed users to specify and modify the transfer function at run

time using a friendly interface, and introduced multi-dimensional transfer functions

that can be much more effective in capturing complex patterns and features [50, 51].

Furthermore, pre-integral transfer function was introduced in [47] to suppress the

artifacts stemming from discrete sampling along the ray. Our scheme supports the

interactive construction of multi-dimensional transfer functions while using the pre-

integral technique.

31

Chapter 4

Compact Interval Tree for Isosurface Extraction and

Rendering

In this chapter, we introduce novel techniques to enable efficient isosurfaces

extraction for large scale datasets that do not fit in main memory. Specifically,

we develop a simple indexing scheme, called compact interval tree, which is orders

of magnitude smaller than existing indexing structures, and meanwhile provides

more efficient bulk data movement. The parallel implementation of this algorithm

on a distributed multiprocessor environment introduces a new scheme to distribute

the data, which results in a provable load balanced workload among the processors

regardless of the datasets or the isovalue, and incurs almost no overhead relative

to the efficient sequential version of the algorithm. We make use of the University

of Maryland visualization cluster in which each node consists of a 2-way symmetric

multiprocessor with 8GB of main memory, a 60GB local disk, and an NVIDIA

GPU (Graphics Processing Unit). The nodes are interconnected via a 10 Gbps

InfiniBand, with four nodes reserved for compositing the image frame buffer outputs

from the processors and displaying the results on a wall-sized screen (multi-projector

display). We start by defining the out-of-core computational model used to evaluate

our methods for isosurface extraction.

32

4.1 Isosurface Extraction Computational Model

Due to the electromechanical components, disks have two to three orders of

magnitude longer access time than random-access main memory. In order to amor-

tize the access time over a large amount of data, a single disk access reads or writes

a block of contiguous data at once, typically of size 4KB or 8KB. We will use the

standard model [1] to measure the I/O performance of our algorithms. We denote

the input size by N , the disk block size by B, and the size of the main memory by

M . In this work, we are assuming that N is much larger than M , which in turn

is much larger than B. The I/O performance of an external memory algorithm is

measured by the number of I/O operations, each such operation involving the read-

ing or writing of a single disk block. As a result, scanning contiguously the input

data requires O(N/B) I/O operations.

Our parallel computation model consists of a number of processors, each with

its own local main memory and disk, interconnected through an interconnection

network. The processors communicate and exchange data through message passing

using the interconnection network. Since we are interested in large scale data, we

assume that the input data resides on the disks of the available processors. A

preprocessing step involves rearranging the data among the disks with the goal to

optimizing the access patterns to the data, and to distributing the computational

load equally among the processors.

33

4.2 Compact Interval Tree Indexing Scheme

Our algorithm can handle both structured and unstructured grids and makes

use of the metacell notion introduced in Section 2.3.1. In general, a metacell consists

of a cluster of neighboring cells. All the metacells are about the same size, which

is a small multiple of the disk block size. In particular, for the structured grid of

the Richtmyer-Meshkov dataset, our metacell consists of a subcube of 8 × 8 × 8

neighboring cells, represented by a list of the scalar values appearing in a predefined

order. Our indexing structure and isosurface query algorithm are designed upon

the concept of metacell. With each metacell, we associate an interval (vmin, vmax)

corresponding respectively to the minimum and maximum values of the scalar field

over the metacell. Our compact interval tree structure makes use of the span space

concept to organize the data layout. Before introducing this structure, we begin

with a brief review of the standard binary interval tree.

4.2.1 Standard Interval Tree

Given a set of intervals, to build the binary interval tree, we store the median of

the endpoints of the intervals at the root and assign all the intervals containing that

value to the root. We then recursively build the left and right subtrees corresponding

respectively to the intervals completely to the left and the right of the value stored at

the root. More specifically, each node of the tree holds a splitting value vm and two

secondary lists of the intervals (vmin, vmax) satisfying the condition vmin ≤ vm ≤ vmax,

one list in increasing order of vmin values and the second in decreasing vmax values.

34

The remaining intervals with vmax < vm are assigned to the left subtree while the

intervals with vm < vmin are assigned to the right subtree. The tree is completed

when all the intervals are captured and assigned to a node. Because two copies of a

list of intervals are stored at each node, the size of the interval tree is at least twice

as large as the size of original set of intervals.

4.2.2 Our Indexing Scheme

Our compact interval tree is similar to the interval tree except that we don’t

store the two sorted lists of intervals at each node. Instead, we store the distinct

values of the vmax endpoints of these intervals, sorted in decreasing order, and asso-

ciate with each such value a pointer to a list of intervals sorted in increasing order

of left endpoint value vmin. We now explain the compact interval tree in the context

of the isosurface problem and its relationship to the metacells generated from the

input data. Consider the span space consisting of all possible combinations of the

(vmin, vmax) values of the scalar field. With each such pair we associate a list con-

taining the metacells whose minimum scalar field value is vmin and whose maximum

scalar field value is vmax. The essence of the scheme for our compact interval tree

is illustrated through Figure 4.1 representing the span space, and Figure 4.2 repre-

senting the compact interval tree built upon the n distinct values of the endpoints

of the intervals corresponding to the metacells.

Let vm0 be the median of all the endpoints ranging from v0 to vn. The root of

the interval tree corresponds to all the intervals whose vmin values fall in the range

35

Figure 4.1: Span space partitioning scheme for our indexing structure.

[v0, . . . , vm0], and whose vmax values fall in the range [vm0, . . . , vn]. Such intervals are

represented as points in the square of Figure 4.1 whose bottom right corner is located

at (vm0, vm0). We group together all the metacells having the same vmax value in this

square, and store them consecutively on disk from left to right in increasing order of

their vmin values. We refer to this contiguous arrangement of all the metacells having

the same vmax value within a square as a brick. The bricks within the square are in

turn stored consecutively on disk in decreasing order of the vmax values. The root

will contain the value vm0, the number of non-empty bricks in the corresponding

square (of the span space), and an index list of the corresponding bricks. This index

list consists of at most n/2 entries corresponding to the non-empty bricks, each entry

containing three fields: the vmax value of the brick, the smallest vmin value of the

metacells in the brick, and a pointer that indicates the start position of the brick

36

Figure 4.2: Compact interval tree structure and the associated metacell lists.

on the disk. Each brick contains contiguous metacells in increasing order of vmin

values, and each metacell consists of its vmin value, its location information such as

metacell ID, and a list of the scalar field values of the vertices (in a predefined order)

within the metacell. We recursively repeat the process for the left and right children

of the root. We will then obtain two smaller squares whose bottom right corners

are located respectively at (vm10, vm10) and (vm11, vm11) in the span space, where

vm10 and vm11 are the median values of the endpoints of the intervals associated

respectively with the left and right subtrees of the root. In this case, each child will

have at most n/4 non-empty index entries associated with its corresponding bricks

on the disk. This recursive process is continued until all the intervals are exhausted.

At this point we have captured all possible (vmin, vmax) pairs and their associated

metacell lists.

37

4.2.3 Space Consumption Analysis

Note that the size of the standard interval tree is typically much larger than

the size of our indexing structure. We can upper bound the size of our compact

interval tree as follows. There are at most n/2 index entries at each level of the

compact interval tree and the height of the tree is no more than O(log n). Hence

our compact interval tree consists of O(n log n) index entries, each entry having three

fields. Therefore the total size of our compact interval tree is O(n log n), while the

size of the standard interval tree is Ω(N), where N is the total number of intervals

and hence can be as large as Ω(n2). In fact, the standard interval tree is always

at least twice as large as our indexing structure regardless of the relative values

of N and n since the interval tree stores each interval (vmin, vmax) twice while our

indexing structure stores each such interval at most once (the extra space required

for pointers to the corresponding data on disk is the same in both cases).

In Table 4.1 below we compare the sizes of the two indexing structures for some

well-known data sets from LLNL, the Stanford Volume Data Archive and IEEE

visualization. While the Richtmyer-Meshkov data uses one-byte scalar fields, the

MRBrain and CTHead datasets consist of two-byte scalar fields, and the remaining

four data sets (generated from a hurricane simulation) use floating point scalar fields.

As can be seen from the table, our indexing structure is substantially smaller than

the standard interval tree, even in the case when N ≈ n.

38

Table 4.1: Size comparison between standard and compact interval trees. N
denotes the number of distinct intervals and n represents the number of distinct
vmax values.

DataSet Scalar Field Size of Interval Tree

Name Size N n Standard Compact

RMI a one bytes 18,970 227 222.3 KB 6.0 KB

MRBrain b two bytes 756,982 2,894 11.6 MB 22.6 KB

CTHead b two bytes 817,642 3,238 12.5 MB 25.3 KB

Pressure c four bytes 24,507,104 20,748,433 560.9 MB 237.4 MB

Velocity c four bytes 24,444,597 17,548,131 559.5 MB 200.8 MB

aRichtmyer-Meshkov Instability dataset from http://www.llnl.gov/CASC/asciturb/
b3D CT images from http://graphics.stanford.edu/data/voldata/
cSimulation data of a Hurricane from http://vis.computer.org/vis2004contest/data.html

4.3 Efficient Isosurface Extraction Method

Given a query isovalue λ, consider the unique path from the leaf node labeled

with the largest value ≤ λ to the root. Each internal node on this path contains an

index list with pointers to some bricks. For each such node, two cases can happen

depending on whether λ belongs to the right or left subtree of the node.

Case 1: λ falls within the range covered by the node’s right subtree. In this

case, the active metacells associated with this node can be retrieved from the disk

sequentially starting from the first brick until we reach the brick with the smallest

value vmax larger than λ.

Case 2: λ falls within the range covered by the node’s left subtree. The active

metacells are those whose vmin values satisfy vmin ≤ λ, from each of the bricks on the

index list of the node. These metacells can be retrieved from the disk starting from

the first metacell on each brick until a metacell is encountered with a vmin > λ. Note

39

that since each entry of the index list contains the smallest vmin of the corresponding

brick, no I/O access will be performed if the brick contains no active metacells.

Once an active metacell is in memory, any of the several variations of the

Marching Cubes algorithm can be used to precisely determine the active cells within

the metacell and generate the appropriate triangles defining the isosurface mesh.

4.4 Parallel Processing Scheme

Assume that we have p processors, each with its own local disk, and the pro-

cessors are interconnected with some type of a high-speed interconnection network.

We will show how to partition the input data among the p local disks and apply our

compact tree indexing structure to extract and render isosurfaces in a scalable and

efficient way. The main challenge is to ensure load balancing among the processors

for any isovalue while maintaining the same total amount of work as that of our

sequential algorithm.

4.4.1 Span Space Partitioning

We start by showing how to distribute the N input metacells among the local

disks in such a way that the active metacells corresponding to any isovalue are spread

almost evenly among the processors. We first sort the N metacells in decreasing

order of their vmax values. The N sorted metacells are then divided evenly into√
N/p sets, each set containing

√
pN consecutive metacells in the sorted order.

Then, we re-sort the metacells within each set by increasing order of vmin values.

40

We now stripe all the N metacells as they appear after the two sorting steps across

the p disks. That is, the first metacell is stored on the disk of the first processor, the

second on the disk of the second processor, and so on wrapping around as necessary.

We next prove the following property of our partitioning scheme.

Figure 4.3: Each pair (vmin, vmax) is illustrated as a point and assumed in this case to
correspond to a single metacell. For N = 32 and p = 3, the metacells are partitioned
into 3 sets separated by dashed lines. The colors black, white, and grey are used to
denote the metacells belonging to the first, second, and third processor respectively.

4.4.2 Provable Load Balancing

Lemma: Our metacell partitioning algorithm distributes the N metacells of

the initial dataset onto p processors such that each processor receives N/p + O(1)

metacells. For any isovalue λ, each processor will hold at most N∗/p+2
√

N/p active

metacells, where N∗ is the total number of active metacells corresponding to the

isovalue λ.

41

Proof: The first part of the lemma is obvious since the N metacells, after

getting rearranged in the two sorting steps, are striped across the p disks. Given an

isovalue λ, the corresponding active metacells are those represented in the shaded

region shown in Figure 4.3 of the span space. We now examine how these metacells

are distributed among the p processors. After the first sorting step, our partition-

ing algorithm distributes the N metacells evenly into
√

N/p sets, each of which

contributes
√

pN metacells. The second sorting step is performed within each set

separately, after which all the metacells are striped across the p disks. Each set

whose vmax values are larger than or equal to λ (the first two sets in Figure 4.3)

contributes an equal number of active metacells with a difference of at most one

for each set since the metacells within each set were sorted in increasing order of

vmin. Since there are at most
√

N/p such sets, the total difference of active metacells

contributed by these sets is at most
√

N/p. We may have an additional set some

of whose vmax values are larger than or equal to λ, and the rest are strictly smaller

(the last set in Figure 4.3). In this case, the maximum difference in the number of

active metacells among all the p processors can not possibly exceed
√

N/p, which is

the number of metacells placed at each processor from this set. Therefore the max-

imum difference in the number of active metacells among all processors is bounded

by 2
√

N/p, and the proof of the lemma is complete.

A few observations about our partitioning algorithm are in order. The first

is that the above upper bound on the number of active metacells per processor is

extremely conservative. As we will illustrate later, the bounds achieved in practice

across widely different data sets are substantially better than this upper bound. The

42

second observation is that in general we expect N∗ to be of order N2/3 for interesting

isovalues in which case 2
√

N/p is asymptotically much smaller than N∗/p. Third,

our scheme is the only scheme, as far as the authors know, for which asymptotic

load balancing bounds can actually be established.

4.4.3 Sort-last Composition

Once the metacells are distributed among the p processors, we create a com-

pact interval tree that corresponds to the local data set. The isosurface query can

now be carried out simultaneously by all the p processors using their own local in-

dexing lists. As a result, roughly the same number of triangles are generated by

each processor, which are then rendered locally. The p frame buffers will then be

composited in a binary-swap way [15] using their depth information to create the

final output. Except for the very last step, we have provably split the work asymp-

totically equally among the processors, without increasing the total work relative to

the sequential algorithm and without requiring communication between the proces-

sors (such a strategy is referred to as sort-last strategy in the literature). For large

scale datasets such as the Richtmyer-Meshkov dataset whose isosurfaces consist of

hundreds of millions of triangles, the compositing step involves the movement of

data that is orders of magnitude smaller than the total size of the triangles, and

hence can be done extremely quickly given a high-speed interconnection network as

will be illustrated later.

43

4.5 Extension to Time Varying Data

Given the extremely compact size of our indexing structure, this scheme can be

easily extended to deal with large scale time-varying data as follows. We have shown

that the size of our indexing structure is O(n log n) for a single time step during

which there are n distinct values of the endpoints of the intervals corresponding to

the metacells. To index time-varying data of m time steps, we can use the same

indexing scheme for each time step separately resulting in an indexing structure

of size O(mn log n). Note that the size of the indexing structure depends only on

the number of time steps, which is typically small, say in the order of hundreds

and rarely in the thousands, but independent of the total number of cells of the

given dataset. For example, one-byte scalar data with hundreds of time steps will

require an indexing structure of size at most a few megabytes, regardless of the size

of each grid since the number n of possible distinct values is 28 = 256. Similarly

for two-byte scalar data, the size of the indexing structure increases to hundreds of

Megabytes, which is still reasonable and can easily fit in today’s processors’ main

memory. In the case of Richtmyer-Meshkov data set, we have 270 time steps with

7.5GB per time step, which amounts to a total of about 2.1TB. However the size of

our indexing structure for the whole data set is only 3.2MB.

4.6 UM Visualization Cluster

The testing platform consists of a 16-node visualization cluster, each node

consists of a 2-way SMP Dual-CPU running at 3.0 GHz, an 8GB main memory, a

44

60GB local disk that can achieve 70 MB/sec I/O transfer rate, and one NVIDIA6800

GPU card with bi-directional 4GBps data transfer rate to memory via PCI-Express

(×16) Bus. The GPU communicates with CPU and RAM via the MCH(Memory

Controller Hub). These 16 Nodes are inter-connected through 10Gbps Topspin

InfiniBand network. In addition, four nodes are connected to four projectors for a

four-way tiled wall-sized display via their GPU card’s DVI port. The architecture

of a single node is illustrated in Figure 4.4.

Figure 4.4: The visualization cluster architectural diagram.

As a visualization cluster, each node of the system can run graphics programs

and dispatch OpenGL commands to its GPU for rendering. The system software

configuration includes Redhat Linux Enterprise 3.0, MPI, and the Chromium pack-

age to enable the parallel rendering among multiple rendering nodes. Basically,

the Chromium is able to intercept OpenGL command calls from graphics appli-

45

cations and sends them to proper rendering servers according to the tiled-display

layout3 [12]. For the parallel rendering scheme, we use the sort-last method [17]. The

essence of this method is to have each node render its triangles locally using the

on-board GPU, after which the output is read back from the GPU’s frame buffer

and sorted according to the display server’s tile layout. Different regions of the

frame buffer including the z-buffer content are forwarded to the appropriate render-

ing servers, each of which will be responsible for displaying a specific region on the

wall-sized display. At each rendering server, the components of the frame buffers

from various processors are composited using their z-buffer contents and rendered

to the display device connected to server’s GPU. In our experiments, the time of

sorting and shuffling the frame buffers among various nodes via 10Gbps InfiniBand

doesn’t cause a noticeable overhead compared to time it takes to extract and render

the triangles at each node as we will see later.

4.7 Experiments and Performance Analysis

We tested the performance of our parallel scheme intensively on the Richtmyer-

Meshkov dataset because this is one of the most challenging datasets in terms of

both size scale and data complexity. This dataset consists of 2048 × 2048 × 1920

one-byte scalar values with very high complexity for each time step and spans 270

time steps. The data amounts to 7.5GB for each time step for a total of 2.1TB.

3http://chromium.sourceforge.net/

46

4.7.1 Preprocessing

During the data preprocessing stage, we scan the data once and create the

metacells, where each metacell consists of a four-byte ID indicating the location of

the metacell, 9×9×9 one-byte scalar values of the vertices, for a subcube of 8×8×8

cells and the minimum values of the metacell vertices. At this point, the original

data has been converted to 256 × 256 × 240 metacells, each of length 734 bytes.

Using our scheme, we stripe the metacells among the available disks and build each

local indexing structure separately on each node. In particular, each node of the

visualization cluster will hold a compact interval tree with pointers to the bricks

stored on its local disk. For a single time step, this preprocessing takes about 30

minutes to complete on a single node of our cluster.

4.7.2 Load Balancing

Since the performance of our algorithm depends critically on how the overall

computational load is allocated to the different processors, we start by illustrating

the load balancing achieved on a 16-processor cluster using seven different datasets,

including the five datasets listed in Table 4.1. The average number of active meta-

cells among all the processors as well as the maximum difference between the loads

of any two processors are shown in Tables 4.2 and 4.3, over a wide range of isoval-

ues. As the results show, the maximum difference of the number of active metacells

among all the p processors is substantially smaller than the established upper bound

of 2
√

N/p, for all cases, and clearly illustrate the excellent load balancing achieved

47

Table 4.2: Measured load imbalance in number of active metacells among sixteen
nodes with varying isovalues for one-byte and two-byte datasets. N denotes the
number of intervals and p is the number of processors, which is equal to 16. Ave.
N?/p represents average number of active metacells per processor.

LLNL Dataset MRBrain Dataset CTHead Dataset

One-byte scalar Two-byte scalar Two-byte scalar
N = 5, 629, 653 N = 6, 134, 838 N = 5, 799, 589

2(N/p)1/2 = 1, 186 2(N/p)1/2 = 1, 238 2(N/p)1/2 = 1, 204

Iso- Ave. Max Iso- Ave. Max Iso- Ave. Max
Value N?/p Diff Value N?/p Diff Value N?/p Diff

10 90,986 33 1,253 24,657 108 0 12,196 36

30 129,505 28 1,480 28,797 72 272 30,149 24

50 165,931 26 1,707 36,185 61 544 18,255 42

70 177,806 18 1,934 41,931 52 816 14,696 27

90 150,728 18 2,161 29,164 38 1,088 45,802 9

110 110,231 14 2,388 17,132 44 1,360 17,683 34

130 81,769 11 2,615 7,284 36 1,632 15,536 27

150 64,839 5 2,842 5,425 42 1,904 14,161 61

170 54,411 6 3,069 3,903 38 2,176 12,258 22

190 47,232 7 3,296 2,052 18 2,448 6,055 44

210 41,658 12 3,523 522 32 2,720 1,215 36

in practice by our scheme. Since the total work of our parallel scheme is about

the same as the sequential algorithm, we expect the performance of our parallel

algorithm to be linearly scalable as we show next in some detail for the Richtmyer-

Meshkov dataset.

4.7.3 Overall Performance and Scalability

We consider time step 250 of the Richtmyer-Meshkov dataset. After pre-

processing the dataset, we obtain 5, 592, 802 metacells that occupy a space of size

48

Table 4.3: Measured load imbalance in number of active metacells among sixteen
nodes with varying isovalues for four-byte floating-point datasets corresponding to
a hurricane simulation. N denotes the number of intervals and p is the number of
processors, which is equal to 16. Ave. N?/p represents average number of active
metacells per processor.

Four-byte floating-point datasets:

N = 24, 651, 099; 2(N/p)1/2 = 2, 482

Pressure Dataset Velocity Dataset

IsoValue Ave. N?/p Max Diff IsoValue Ave. N?/p Max Diff

-3272.59 83 9 -60.44 65 9

-2763.30 214 16 -49.66 410 20

-2254.02 410 30 -38.88 1,315 38

-1744.74 633 32 -28.10 2,602 53

-1235.46 1,020 12 -17.32 6,135 75

-726.18 1,678 34 -6.55 46,495 55

-216.90 3,095 39 4.23 49,948 70

292.38 22,879 32 15.01 15,791 41

801.66 19,730 65 25.79 5,308 27

1310.94 15,003 49 36.57 1,087 39

1820.22 9,334 45 47.35 198 35

3.828GB, which is nearly 50% smaller than the original 7.5GB size since we elim-

inate the metacells for which all the vertices have the same scalar field value. We

vary the isovalues from 10 up to 210, in steps of 20. For each of these isovalues,

we ran the algorithm on one, two, four, eight, and sixteen nodes. We evaluate the

performance of our isosurface extraction algorithm according to the following three

metrics:

(i) the I/O time it takes to retrieve the active metacells from the disk, referred

to as Active MetaCell(AMC) Retrieval time;

49

(ii) the amount of CPU time required to go through the active metacells and

generate the appropriate triangles, referred to as Triangulation time;

(iii) finally the rendering time, which reflects the time it takes to render the

triangles on the local GPU, after which the different frame buffers are composited

to generate the final display. The time it takes to do the compositing of the very

last step is included in the total time.

Table 4.4: Performance summary of our algorithm on a single node. AMC refers to
the active metacells. The last column shows that the performance is linear in the
number of triangles and hence the algorithm is output sensitive.

Iso- Number Number AMC Triang- Rend- Total Overall
value of of Retrieval ulation ering Time Rate

Triangles AMC (sec) (sec) (sec) (sec) (sec)

10 228,770,844 1,455,782 15.49 36.2 19.00 70.74 3.23

30 376,578,332 2,072,085 21.52 57.9 21.50 100.98 3.73

50 569,387,336 2,654,902 25.74 85.41 32.65 143.85 3.96

70 651,834,482 2,844,889 25.89 96.31 37.39 159.65 4.08

90 511,136,810 2,411,647 21.96 76.09 29.26 127.35 4.01

110 329,408,766 1,763,701 17.13 50.45 19.09 86.72 3.8

130 229,201,420 1,308,299 13.30 35.25 13.28 61.89 3.7

150 177,035,314 1,037,426 10.71 27.18 10.29 48.23 3.67

170 146,369,438 870,573 9.12 22.38 8.51 40.05 3.66

190 125,365,482 755,710 7.99 19.09 7.27 34.41 3.64

210 108,977,638 666,527 7.07 16.5 6.32 29.94 3.64

We first consider the performance of our algorithm on a single processor. From

Table 4.4, we can see that the number of generated triangles varies from 100 million

to 650 million over the range of isovalues from 10 to 210. Our indexing structure

is of size 6KB, which is quite small compared to the size of the data. As shown

50

in Table 4, we are able to achieve the I/O rate of about 70MB/s in retrieving the

active metacells, with a linear relationship between the total time and the number

of triangles generated. It is also shown that the triangle generation stage is the

bottleneck for the whole isosurface extraction as we need to go through each of the

active unit cells within an active metacell to generate the triangles as necessary.

Once the triangles are generated, they are rendered on the GPU very quickly. As a

result we were able to extract and render isosurfaces at the rate of almost 4 million

triangles per second.

Figure 4.5: Overall execution time of up to sixteen processors over a range of iso-
values.

Table A.1 through Table A.4 (in the Appendix A) show the execution times

of the major steps of our algorithm on 2, 4, 8, and 16 processors over a wide

range of isovalues. A careful examination of the experimental results in these tables

clearly illustrate the scalability and the efficiency of our scheme. Note also that the

compositing step (whose time is equal to the total time minus the sum of the times

51

of the other steps) is extremely fast and takes at most a few hundreds of milliseconds

even on 16 processors.

Figure 4.6: Corresponding speedups of up to sixteen processors over a range of
isovalues.

The overall time spent on the extraction and rendering of isosurfaces for various

isovalues is illustrated in Figure 4.5. The corresponding speedups are highlighted in

Figure 4.6. As expected, our scheme achieves very good scalability relative to our

extremely efficient serial algorithm, independent of the particular isovalue.

We now consider the more general case of time-varying datasets that are to be

explored by extracting and rendering isosurfaces corresponding to a time step and an

isovalue. We can index the 270 time steps of the Richtmyer-Meshkov dataset using

our indexing scheme. The size of the resulting indexing structure is 3.2MB, which

easily fits into the main memory of a node. The layout of the data of each time step

will be distributed across the processors as before. Extracting an isosurface of a

time step amounts to determining the appropriate indexing structure for that time

52

step, which can easily be performed since the whole indexing structure is in main

memory. Table 4.5 shows the results for time steps 180 through 195 for the isovalue

of 70 on four processors. Each row of the table lists the number of active metacells,

the number of triangles generated, the execution time on a four-node configuration,

and the overall rate of triangles rendered (millions per second).

Table 4.5: Overall performance of four processors on Isovalue 70 over 16 time steps

Time-Step Num of Active Number of Overall Overall Rate
Meta Cells Triangles Time (Sec) (×106/s)

180 2,249,247 499,936,480 35.971 13.898

181 2,259,741 502,356,768 32.934 15.253

182 2,269,996 504,717,568 32.717 15.427

183 2,280,249 507,140,192 33.349 15.207

184 2,290,438 509,504,96 33.145 15.372

185 2,300,808 511,877,56 33.628 15.222

186 2,310,642 514,222,240 34.121 15.071

187 2,320,869 516,675,168 34.524 14.966

188 2,330,322 519,26,80 33.732 15.387

189 2,340,363 521,496,928 34.3 15.204

190 2,295,699 516,444,992 31.405 16.445

191 2,360,385 526,339,520 35.163 14.969

192 2,370,458 528,728,448 34.523 15.315

193 2,380,148 531,149,920 35.256 15.066

194 2,389,433 533,600,192 35.172 15.171

195 2,399,116 536,50,304 35.891 14.936

53

4.8 Summary

In this chapter, a new indexing structure and a new partitioning algorithm

are presented for out-of-core isosurface extraction and rendering of large scale data.

The indexing scheme is based on a compact version of the interval tree that makes

use of the span space concept whose size is O(n log n) compared to Ω(N) for the

standard interval tree, where N is the number of all possible pairs of scalar field

values appearing in metacells and n is the number of their distinct endpoints. The

data is arranged in a compact layout on the disk, which enables very efficient I/O

performance. We have shown that the new algorithm can easily be adapted to a

multiprocessor environment, provably delivering efficient and scalable performance.

The algorithm was tested extensively on a wide variety of datasets, and was shown

in detail to achieve scalable performance on the Richtmyer-Meshkov dataset over

different processor configurations and different isovalues.

54

Chapter 5

Hybrid Ray-casting for Isosurface Rendering

A major drawback of polygonal-based isosurface generation is the need to

extract a potentially very large triangular mesh for each specific isovalue, a large

part of which, however, may not be visible from any specific viewpoint. The size of

this view-independent triangular mesh tends to increase significantly as the size of

the dataset grows or as the structure of the isosurface becomes more complex. In

fact, as shown in the previous chapter, it consists of hundreds of millions of triangles

in the Richtmyer-Meshkov instability dataset from LLNL. One approach to address

this drawback is to only extract and render the triangles that cover the portions

of the isosurface, which are visible from the viewpoints of interest. A scheme for

view-dependent rendering was introduced in [35], in which they showed that the

view dependent visualization can significantly reduce the complexity of the rendered

surfaces. Unfortunately, view dependent isosurface generation algorithms tend to be

relatively slow in extracting triangles as they have to deal with two different types

of constraints. The first involves a range search relative to the given isovalue, while

the second constraint amounts to a spatial filtering to identify the visible portion of

the isosurface. In order to achieve interactive rendering, researchers have resorted to

parallel algorithms such as those that appeared in [31, 26]. A recent method based

on an elaborate data structure for a persistent octree was described in [40]. On

55

the other hand, we should note that the quality of the generated isosurfaces using

triangular meshes may not be of high quality especially for complex regions as the

triangular mesh is just a polygonal approximation of the surface.

5.1 Features of Existing Ray-casting Algorithms

An alternative approach for generating isosurfaces is using ray-casting method-

ology. Such an approach was first proposed in [19], using a brute-force ray-casting

on the SGI Reality Monster based upon a shared memory multiprocessor. A dis-

tributed memory version was described in [29], and schemes based on kd-trees and

octree are described in [30, 42, 33]. In general, there are several main features that

have been exploited in the literature to speed up the computation of isosurfaces

through ray-casting listed as follow:

• The use of spatial decomposition indexing structures augmented by the range

of the densities at each node. Such a structure enables the culling away of large

parts of the data, which are not part of the visible portion of the isosurface.

Also, the input data can be incorporated into the structure to generate a

multiresolution representation of the volumetric data.

• The mapping of the inherent parallelism of ray-casting into pipelined and

parallel architectures since the ray traversal corresponding to any pixel can be

performed independently of any other ray traversal.

• An attempt to optimize cache performance by processing chunks of the input

data of suitable sizes.

56

• The exploitation of the SIMD extensions on some of the newer multi-core

processors, which led to the idea of shooting a packet of rays (typically, 4

rays corresponding to 2× 2 adjacent pixels) as the unit traversal through the

volumetric dataset.

Except for applying the above techniques in different ways, all the known

isosurface ray-casting algorithms follow more or less the same basic strategy. In

this part of work, we introduce a new strategy to greatly improve ray-casting for

isosurface rendering. This method is a combination of object-order projection of a

coarse version of the data and a very efficient ray-casting restricted to a few data

blocks for each packet of rays (corresponding to adjacent pixels). For clarity, we

start by presenting the basic version for single ray, which will be extended to exploit

the idea of packets of rays afterwards.

5.2 Basic Strategy

At a high level, our scheme consists of the following two phases.

Phase I: We perform a traversal of a 3D-tiled version of our volumetric

dataset, using a very compact data structure, to identify, through projection from

object space onto the image space, the visible and isosurface-intersecting 3D-tiles

corresponding to each pixel. From now on, we refer to a 3D-tile of the input data

as a data block or simply a block. At the end of this phase, we will have, for each

pixel, a list of data blocks that are visible from the ray through this pixel and that

intersect the isosurface, organized in a front-to-back order relative to the viewpoint.

57

Phase II: We now shoot a ray from each pixel through its ordered list of data

blocks constructed during Phase I (assuming the list is non-empty; otherwise there is

no work to be done), checking whether an intersection voxel with the isosurface lies

within a block from the list. There is no need to proceed further once an intersection

is found. This is done through a trilinear interpolation process and followed by the

shading of the corresponding pixel under the diffuse shading model (which is widely

used in scientific visualization).

5.2.1 Compact BONO-Tree Construction

We organize our volumetric data into a coarse grid of equal-sized blocks, where

the scalar field values within each block are stored contiguously in a pre-defined order

and the block is identified by the coordinates of a pre-specified corner. We use an

octree to index the data within a block such that the leaves correspond to 2× 2× 2

cells. That is, each leaf will contain a pointer to such a cell. As usual, each node

of the octree will contain the minimum and maximum of the values of the voxels

lying within the region represented by the node. In addition, we build a BONO

(Branch-On-Need Octree) [23] tree for the coarse grid, augmented as usual by the

appropriate value ranges. The BONO structure is very similar to the octree except

that, for data resolutions other than powers of two, BONO avoids allocating nodes

of empty subtrees, and hence it is more space-efficient than the original octree. Note

that the blocks are always chosen so that each dimension is a power of two, and

58

hence the use of octrees to index their scalar data.

5.2.2 Phase I: Bounded Block List Generation

Phase I is implemented as follows. For efficiency reasons, we limit the size of

the list of blocks associated with each pixel to a fixed constant k. We later show

that the value k is rather small for the most efficient implementation. We note

that we will always obtain the correct visible isosurface regardless of the value of

k. The BONO tree representing the coarse grid is traversed starting from the root.

Assume we reach a node v of the tree. If the range stored in v contains the isovalue,

we project the minimum axis-aligned bounding box (AABB) of v onto the screen.

Such a 3D AABB is computed by using the coordinates of a pre-specified corner,

whose x, y, and z extensions can be deduced from the level of v. We consider all

the pixels falling within the projected area. If the size of the list of any such pixel

is less than k, we traverse the children of v in a front to back order relative to the

view point. Otherwise, we skip the subtree rooted at v. Once a leaf is reached, the

list of each pixel falling within the projection of the minimum bounding box of the

corresponding block is augmented with a pointer to this block unless the list already

has k blocks. Notice that at the end of this phase, we have a list of size at most k

blocks associated with each pixel, and organized in a front to back order since this

is how the BONO tree was traversed. The limit imposed by the value k makes this

phase quite efficient.

59

5.2.3 Phase II: Spatial-Aware Ray-Casting

Phase II is implemented as follows. For each pixel with non-empty list, we

shoot a ray from this pixel through the list of its blocks, one block at a time in the

order they appear on the list. If the list is empty, the ray does not intersect the

isosurface. Otherwise, the ray goes through active cells one by one within a block

via the front-to-back octree traversal. When the ray encounters an active cell, we

perform a trilinear interpolation upon the active cell for the isosurface intersection,

which is followed by (diffuse) shading if such intersection exists. The intersection

interpolation is computed accurately using the method described in [36] while the

normals are computed using forward difference. If the ray reaches the end of the

list without finding such intersection (and hence the list is of size k), we revert to

the traditional approach by resuming the traversal of the BONO tree from where

we stopped during the first phase, which is indicated at the end of each k-sized list.

Lastly, if the list is of size less than k with no intersection found at this stage, it

implies that this ray does not intersect the isosurface. Clearly we will always end

up with the correct intersection points of all the rays with the isosurface regardless

of the value of k. However, we will later show that the case when we have to resume

the traversal of the BONO tree (as in the traditional approach) occurs rarely if k is

chosen appropriately.

60

5.3 Improvements on Basic Strategy

We now consider some acceleration techniques for the basic strategy, which

exploit the coherency between nearby pixels and their associated block lists.

5.3.1 Extension to Packets of Rays

Our scheme builds for each pixel a small size list of data blocks that are visible

from the ray through this pixel and that intersect the isosurface. In general, we

expect the lists of adjacent pixels to significantly overlap, especially for close views.

We exploit this feature by combining the lists of each group of adjacent pixels (say

2×2 as used in our experimental results) into a single list. This is somewhat similar

in spirit to the use of packet of rays in [42, 34]. However in this work we do not

make use of SIMD instructions to process the packet of rays for ray-casting since

its success depends upon scene coherency and the use of such instructions may lead

to poorer rendering performance on complex incoherent scenarios as pointed out in

[33, 34]. Instead, our emphasis here is on high level algorithmic techniques that are

applicable to all scenes. However, we intend to explore in the future the additional

benefits of our algorithm when SIMD instructions are exploited to process each

grouped list of data blocks for coherent scenes.

During the Phase I creation of the lists, we traverse the BONO tree as before.

However we create lists for each packet of rays (corresponding to an adjacent group

of pixels typically 2× 2) rather than a separate list for each pixel. Whenever such a

group of pixels overlaps with the projection of the current node being traversed, the

61

Table 5.1: List generation time on single-core for Far and Close views with various
upper bound k using single pixels (resulting in 1024 × 1024 lists) and groups of
2 × 2 adjacent pixels (resulting in 512 × 512 lists) on a 10242 screen. To make
the comparison fair, the list upper bound k is adjusted so that two cases generate
relatively the same number of shaded pixels after rays are cast through the data
blocks on the lists.

List upper bound k Time (msec) Ratio

of lists 10242 5122 10242 5122

3 6 273 110 2.48
Far 7 14 362 142 2.55

11 22 434 169 2.57

3 6 228 68 3.35
Close 7 14 334 92 3.63

11 22 449 119 3.77

group’s list is processed as before. Since we are now creating fewer lists, the per-

formance of Phase I improves substantially as illustrated in Table 5.1, which shows

the execution times corresponding to different values of k to generate respectively

10242 lists (one list per pixel) and 5122 lists (one list for each 2× 2 adjacent pixels).

During Phase II, a slight overhead will be incurred as the upper bound k on

the size of the list needs to be increased for the grouped list. However we will show

later that we achieve the best performance when k is around 22, compared to 12 in

the single pixel case, and therefore the overhead will be minimal.

5.3.2 Adaptive Block Size

Another improvement to our basic scheme is to make the size of the data

block adaptive. For far views, we can use relatively large size blocks especially when

processing large volumetric data. For example, we use 8× 8× 8 blocks for the RMI

dataset to handle the rendering of far views, which results in 6×6 pixels on average

62

being covered by the projection of a data block, and this seems to achieve the best

performance when generating the lists for groups of 2× 2 adjacent pixels. However

when we zoom in for close views, the smaller size blocks are more effective especially

that the number of BONO nodes visited and the number of projected blocks are

much smaller but the projection of a block covers more pixels (e.g. 12 × 12 on

average when we use 4 × 4 × 4 blocks for a 16 : 1 zoom-in close view). Figure 5.1

illustrates the performance of each of Phase I and Phase II on the RMI dataset as

a function of the block size and the viewpoint.

Figure 5.1: Execution time of list generation(PhaseI) and ray-casting(PhaseII) on
a single-core as we vary the zoom-in from far-view to close-view for block sizes 83

and 43.

We make our scheme adaptive as follows. We visit the BONO nodes as before,

except that, for close views, at the end of the traversal of the BONO tree, we proceed

with the octree traversal of the BONO tree leaves until we reach the desired block

size. After reaching the desired size, we proceed using the current blocks to compute

the minimum bounding box and construct the lists for the various packets of rays.

63

With the adaptation of the block size from 8× 8× 8 to 4× 4× 4, our tests show an

overall speedup of around 10 ∼ 20%.

5.4 Parallel Processing Scheme

As multi-core processors begin to dominate the computing market, new pro-

gramming paradigms are needed to fully exploit the performance opportunities of-

fered by these processors. In general, parallel programming remains a difficult task

in spite of the considerable related research efforts undertaken during the past sev-

eral decades. Unfortunately, this task becomes even more difficult for multi-core

processors given the limited on-chip memory, and the typical complex memory hi-

erarchies present in such architectures. On the other hand, multi-core processors

present an opportunity for speeding up the computation by partitioning the load

among the cores, but a careful management of the memory hierarchy (including

whatever caches are available) is critical to the overall performance, in addition to

the usual problem of trying to ensure balanced loads among the cores with as little

communication as possible. Under this perspective, we will focus on programming a

single multi-core processor rather than a cluster of these processors since we believe

this is where the main challenge is, and moreover a multi-core processor will soon

be the common platform for most people.

The multi-core architecture presents opportunities for speeding up demand-

ing computations if the available resources can be effectively used. Typically a

multi-threaded program is used to specify the tasks executed on the cores and the

64

coordination involved among these tasks. In general, assume there are p cores on a

multi-core processor, with some local (possibly shared) cache or memory available

for each core. Using p threads, each phase in the serial version of our algorithm is

parallelized as follows.

5.4.1 Block List Generation

To handle Phase I, the screen is divided into almost equal contiguous regions.

Each thread traverses the BONO tree and creates the lists of blocks corresponding

to its groups of pixels within the region. Hence a traversal of a node is followed by

traversing the children nodes in a front to back order only if the projection of the

minimum bounding box of the node intersects with the thread’s screen region and

there is at least one list associated with the region which is not full (i.e., its size is

less than k). Note that our BONO tree is small and only a fraction (no more than

10%) of the total BONO tree nodes are actually accessed during Phase I due to the

imposed list upper bound k.

5.4.2 Z-Order Screen Partitioning

We then partition the screen and group the ray-casting tasks through all the

lists as follows.

i. Partition the screen into small image-size tiles (for example 8× 8 or 16× 16)

and order these tiles using a Z-order (or a space-filling curve such as Hilbert

space filling curve). Such an ordering will ensure a high degree of spatial

65

locality of nearby tiles and will result in high cache performance as we will

show later. This step is performed during the preprocessing stage and takes a

few milliseconds.

ii. After the lists are generated, assign a weight to each small-size image tile,

which is equal to the number of non-empty lists within the tile, and compute

the total weight W of all the tiles.

iii. Following the Z-order of the image tiles, group the tiles as follows. The first

set of tiles whose total weight is W
2

are divided into p equal groups, each

group consisting of a contiguous set of tiles following the Z-order. A group is

identified by a pair of indices indicating the first and the last image tile in the

group. The second set of remaining tiles whose total weight is W
4

is divided

equally as before into p groups. This process is repeated until each image tile

is associated with a group, and hence we need at most a logarithmic number

of iterations in screen size, each iteration creating p groups. The result is a

list LI of pairs of indices, each pair delineating a group of image tiles.

5.4.3 Dynamic Task Scheduling of Ray-Casting

We perform ray-casting in Phase II dynamically as follows. Initially, each

thread will grab a group of image tiles from the ordered list LI created through

screen partitioning. A thread will then process its group by shooting rays through

the pixels in the group using the generated data block lists. Once a thread completes

the processing of its group, it grabs the first available group of tiles from the list LI ,

66

and start processing the corresponding group. The process continues until all the

image tiles are processed.

Our dynamic allocation of the ray-casting tasks attempts to achieve an opti-

mal trade-off between two conflicting requirements. The first is the desire to have

fine-grain tasks to be assigned dynamically with the goal of achieving tight load

balancing. The second requirement is to make the number of jobs as small as pos-

sible with the goal of minimizing the amount of coordination and synchronization

among the threads. In our list LI , we start with jobs (corresponding to groups of

image tiles) that are relatively large, and decrease the sizes until we reach fine-grain

jobs at the last p positions of LI . Therefore our strategy seems to strike an opti-

mal balance between the two requirements. In the next section, we will illustrate

the performance of each step, and show in particular that we are able to achieve

a very tight load balancing among the different threads as well as very high cache

performance.

5.5 The Clovertown Multi-Core Processors

We use the Clovertown platform, consisting of two Quad-Core Intel 1.86 GHz

Xeon Processors 5320. Each dual-core on a Quad-core shares an L2 cache of size

4 MB, and hence the total L2 cache available is 8 MB. Its architectural diagram is

shown in Figure 5.2. Our Clovertown platform has 8 GB of main memory, which

constitutes an upper bound on the size of the datasets used in our experiments.

67

Figure 5.2: Intel Quad-Core Processor Architectural Diagram.

5.6 Experiments and Performance Analysis

We have conducted extensive testing of our algorithm on six datasets whose

sizes range from about 100MB to 8GB, which is the largest dataset that can fit

into the main memory of our Clovertown platform. Although the isosurface can

be generated from an arbitrary viewing point, we report our test results for two

typical views: Far-view that enables the viewing of the complete isosurface on the

screen; and Close-view that consists of a zooming by a ratio of 16 : 1 to view details

of regions of interest. These two view settings will typically involve significantly

different numbers of voxels intersecting the isosurface, which directly influence the

performance of any isosurface rendering algorithm. Hence, we measure the cor-

responding performance separately to shed more light into the robustness of our

scheme. In addition, we take six different viewing angles for both Far-view and

Close-view, specified by zenith angle φ = {15o, 45o, 75o} and azimuth angle θ =

{22.5o, 45o} in spherical coordinates. Due to the high topological complexity of

68

most generated isosurfaces, the screen resolution for our testing is typically set at

10242, which for example enables the highlighting of the fine details of the complex

RMI dataset from LLNL. As described before, our scheme consists of an initial phase

that generates a list of data blocks for each packet of rays, followed by a dynamic

allocation of groups of Z-ordered image tiles among the processor cores, and ending

with ray-casting through the lists associated with groups of adjacent pixels. If the

ray intersects the isosurface, the intersection position is calculated by solving a tri-

linear interpolation equation as in [36], then the pixel is shaded by computing the

forward difference gradient as the normal at the intersection position and applying

the diffuse shading model. We measure the execution time of each phase as well

as the overall rendering frame rate of the corresponding isosurfaces. We will show

scalability in the number of cores used. In particular, we run our tests on 1, 2, 4, 8

CPU cores of our Clovertown platform and measure the performance for each case

separately.

At this point, we note that comparing our experimental results with those

of previous algorithms is not straightforward (except when comparing the sizes of

the indexing structures) since prior work did not provide sufficient details about

their testing scenarios and they used different processors (which sometimes were

faster in CPU clock speed than our 1.86 GHz Quad-core processors and had more

main memory). However we will see later that our performance numbers suggest

significantly better performance than any of the published algorithms. To illustrate

the relative increased performance achieved by our techniques in a concrete way,

we implemented a ray-casting algorithm using the octree indexing structure, while

69

trying to make as effective use of the memory hierarchy and multithreading as much

as possible. All the detailed steps for ray traversal, computing the intersection

points, and shading are the same as in our algorithm. In particular, our multi-

threaded implementation of the octree traversal algorithm is based on a dynamic

allocation of static small screen tiles (8× 8 pixels) to the different processor cores.

Therefore the comparison between the two algorithms running on the same machine

with identical datasets, viewpoints, and screen sizes will highlight the differences in

the strategies used by both algorithms rather than the small implementation details.

Moreover, it appears that the performance of this octree traversal algorithm is rather

similar to that achieved by the octree algorithm reported in [33].

5.6.1 Datasets Used and Space Consumption

We selected six datasets for our tests, which can generate spatially sparse

or dense, topologically smooth or complex isosurfaces, and which represent most

types of isosurfaces encountered in various applications (Figure 6.2). The sizes of

these datasets vary from 87MB to 8GB, which is the largest that can fit into our

main memory. These datasets illustrate our scheme’s adaptivity to various types of

isosurfaces and data sizes.

Table 6.1 illustrates the block size used for each dataset and the corresponding

number of blocks for each case. In all cases, the number of blocks is relatively small

and does not exceed a few millions, and hence the corresponding BONO tree is very

compact and can be constructed extremely quickly. In fact, our largest BONO tree

70

Figure 5.3: The six datasets used in our experiments. From left to right, top to
down, the datasets are: Aneurism, Bunny, Skull, Abdominal, VisMale and RMI
respectively.

is around 46MB for the RMI 8GB dataset. On the other hand, the accumulated

size of the finer indexing structures (that is, octrees) for all the data blocks is just

a fraction of original dataset, no more than 1
4

as shown in Table 5.3. Note that the

total sizes of our indexing structures are substantially smaller than those used by

the kd-tree algorithms (such as [42, 30]).

Due to the simplicity of our indexing structure, the preprocessing times are

also much better than any of the published preprocessing times even when the

previous algorithms are run on faster processors. We note that the compressed

octree reported in [33] consolidates regions with uniform values into a single octree

node, and hence can result in significant space savings especially for the case when

71

Table 5.2: Parameters of various datasets used
Data Field Grid Data Block # of
Sets Size Size Size Size Blocks

Abdominal 2 bytes 5122 × 174 87 MB 43 302 K
Bunny 2 bytes 5122 × 360 180 MB 43 1,181 K

Aneurism 2 bytes 5122 × 512 256 MB 43 1,620 K
Skull 2 bytes 5122 × 512 256 MB 43 1,680 K

VisMale 2 bytes 5122 × 1882 941 MB 83 663 K
RMI 1 bytes 20482 × 1920 7.5 GB 83 5,655 K

Table 5.3: Size of our indexing structure for Blocks and BONO tree along with their
preprocessing time

Data Indexing Size (MB) Preprocess Time (Sec) Space
Blocks BONO Blocks BONO Overhead

Abdominal 11.52 2.97 7.1 0.172 13.24 %
Bunny 45.07 11.43 15.2 0.332 25.04 %

Aneurism 61.80 15.68 23.4 0.407 24.14 %
Skull 64.12 16.26 25.6 0.427 25.05 %

VisMale 187.37 6.43 88.3 0.221 19.91 %
RMI 809.08 46.79 520.0 1.950 10.53 %

the spatial variability is relatively small. In fact a compression of up to 25% is

reported for the RMI dataset. Since in our case the indexing structure is separate

than the data itself, we can make use of this technique to compress the volumetric

data as well.

5.6.2 Performance Implication on List Upper Bound

In addition to our new strategy that combines object order traversal followed

by ray-casting, we make use of a novel trick by putting a limit k on the number

of blocks computed for each group of adjacent pixels (corresponding to a packet of

rays). We examine here the critical importance of such an upper bound.

The total execution time of our algorithm consists of four main components:

72

(i) the time it takes to traverse the BONO tree and to generate the lists of

blocks;

(ii) the time it takes to group the small-sized image tiles into groups for dy-

namic allocation among the processor cores;

(iii) the time to perform ray-casting through the data block lists;

(iv) the time needed for ray-casting of the unfinished pixels (that is, those

pixels whose lists were of size k with no intersection found in step (iii)).

The amount of work involved in grouping the image tiles is small (in the order

of 2 ∼ 3 milliseconds). The bulk of the time is spent on steps (i), (iii), and (iv).

In order to illustrate the trade-off involved relative to the upper bound k and the

various stages of the algorithm, we ran a number of experiments on the RMI dataset

of time step 250 using the isovalue of 70 and screen resolution 10242 for Far-view

settings on our Clovertown platform. We measured the execution time on a single

core for different values of k, ranging from 0 to 42 (note that octree ray-casting

is the same as the case when k = 0). The corresponding results are illustrated in

Figures 5.4.

From these results, we can make the following observations. First, the octree

ray-casting corresponding to the case when k = 0 has the longest execution time

by a factor of approximately 40% relative to our algorithm for the best value of k.

Second, the time it takes to generate the block lists (indicated in blue) increases

with the value k almost linearly because the depth complexity of RMI data is high

(∼ 50) but its contribution to the total time is less than 10% for k ≤ 30. Third,

the ray-casting on the block lists (indicated in red) takes an increasingly larger

73

Figure 5.4: Execution times of the different stages of our algorithm on a single core
vs. the value of upper bound k. The results are for the Far-view of the RMI dataset
of time step 250 using 10242 screen resolution.

fraction of the total execution time as k increases, and is significantly larger than

the time it takes to generate the lists. Fourth, and perhaps most importantly, the

number of rays that have no intersection with the isosurface after going through

exactly k blocks (indicated in yellow) drops very quickly initially as k increases and

then somewhat levels off, which can be verified more clearly by examining the curve

shown in Figure 5.5. The combined effect of these properties lead to an optimal

value for k that in our experiments has been in the range 16 ∼ 22. For example,

the optimal value of k is around 20 ∼ 22 for the RMI dataset, while for the VisMale

dataset, the optimal value of k is around 16 ∼ 18 because of a smaller complexity

depth.

Another important benefit of our scheme is the significant decrease in the

number of rays cast which do not intersect the isosurface relative to the existing

strategy. The traversal of the BONO tree effectively identifies the area on the screen

74

Figure 5.5: Percentage of pixels left to shade after going through k blocks from the
lists for the 20482 × 1920 RMI dataset at time step 250. Screen size is 10242.

where the isosurface is mapped, passing this information for ray-casting through the

block lists. Figure 5.6 illustrates the dependence of the non-intersecting rays cast

upon the value of k. The blue curve represents the number of non-intersecting rays

determined when going through the lists containing less than k blocks, while the

red curve represents the number of non-intersecting rays determined at the very last

step of the algorithm after their k-size lists were completed. Obviously, the total

number of non-intersecting rays cast is the sum of these two numbers, and does not

depend upon the value k > 0. The percentage is out of the total number of rays

cast by our algorithm. As shown in Figure 5.6, the value of k directly impacts these

two numbers, while the total number of non-intersecting rays cast by our algorithm

(for k > 0) is about 5.2% of the total number of rays cast. On the other hand, the

octree ray-casting doesn’t filter out any ray initially and simply shoots a ray through

each pixel. When the isosurface doesn’t occupy most of the screen, which is not

75

Figure 5.6: Analysis of the percentage of rays having no intersection with the iso-
surface in our scheme using the 20482 × 1920 RMI dataset at time step 250 under
Far-view. Screen size is 10242.

uncommon in Far-view, the percentage of non-intersecting rays over total number

of rays cast could be large (such as in Aneurism and Abdominal datasets). For the

same RMI dataset and the same screen resolution, octree ray-casting ends up with

around 45% non-intersecting rays on average over the six tested viewpoints under

Far-view. This clearly illustrates the power of our hybrid strategy that manages to

almost eliminate the casting of non-intersecting rays.

We will assume for the rest of the testing that an optimal value of k has been

selected and report the performance corresponding to this value.

5.6.3 Overall Performance

In this section, we give an overview on the overall performance of our algorithm

on different datasets using a range of viewpoints. The tests conducted are for both

the Far-view and the Close-view, each from six viewing angles specified by (φ ,

76

θ), using a 10242 screen resolution. A variable number of cores, up to 8, are used

by running the multi-threaded version of our algorithm. While the scalability of

our algorithm and a detailed analysis of the load balance are described later in

Section 5.6.6, we report here on the overall performance and compare it with the

best published results. The performance, expressed in terms of fps to render the

RMI dataset (time step 250 and the isovalue is equal to 70), is listed in Table 5.4

for the Far-view and the Close-view at the six different viewing angles. As can be

seen, we achieve interactive rates regardless of the viewpoint or the viewing angle

for a very complex isosurface on a high resolution screen. These results illustrate

the robustness of our scheme regardless of the complexity of the scene. Note that

the number of cores is supposed to steadily increase in the future (perhaps doubling

every 18 ∼ 24 months), and hence our scheme will easily achieve interactive rates

on future desktop or laptop processors.

Table 5.4: Performance of our algorithm on the Clovertown in fps for the RMI
dataset with screen resolution 10242 and isovalue 70 under Far and Close views.

10242 Screen φ− θ

View Core 15-22 15-45 45-22 45-45 75-22 75-45

Far 2-core 0.87 0.87 0.84 0.81 1.36 1.35
8-core 3.41 3.44 3.28 3.20 5.29 5.24

Close 2-core 1.32 1.27 1.08 1.00 1.04 0.98
8-core 5.08 4.85 4.15 3.85 4.12 3.83

As already noted in previous research [19, 42], the ray traversal across the

spatial acceleration structure, such as kd-trees or octrees, constitutes the major

portion of the total execution time (usually around 65% ∼ 70%) in octree ray-

casting. Yet, Phase I of our algorithm uses efficient object-order projection of blocks

77

to considerably reduce the number of ray traversal steps in Phase II, which in large

part leads to our superior performance. In Table 5.5 the comparison of number

of ray traversal steps in our algorithm and octree ray-casting for various datasets

clearly elucidates this aspect.

Table 5.5: Number of ray traversal steps undertaken during ray-casting in octree
ray-casting and our algorithm for a screen size of 10242 screen using all the datasets
considered in this paper.

10242 Screen octree ray ours
Dataset casting (×103) (×103) ratio

Abdominal 39,992 5,865 6.82
Bunny 22,547 2,585 8.72

Aneurism 45,237 3,291 13.8
Skull 37,648 5,463 6.89

VisMale 21,421 3,174 6.75
RMI (far) 42,228 12,944 3.26

RMI (close) 42,868 6,129 6.99

Table 5.6: Measured performance on 8-core Clovertown in fps for our scheme and
the octree ray-casting algorithm under Far-view setting for various datasets

Screen size 5122 10242

Dataset octree ours ratio octree ours ratio

Abdominal 12.99 24.65 1.90 3.80 7.87 2.07
Bunny 22.22 38.56 1.74 6.49 12.66 1.95

Aneurism 13.89 39.33 2.83 3.77 12.35 3.27
Skull 13.70 25.02 1.83 3.76 7.19 1.91

visMale 18.52 29.68 1.60 5.52 9.26 1.68

We now report a summary of our performance results on the other datasets

illustrated in Fig. B.4. These results, expressed in terms of fps under the Far-view

setting and taking the average over the different viewing angles, are shown in Ta-

ble 5.6. Since these datasets have lower depth complexity than the RMI dataset,

combined with the fact that their isosurfaces cover the screen unevenly, our algo-

78

rithm delivers a faster interactive rendering rate and achieves further performance

improvements over the octree ray-casting algorithm. Note also the significant per-

formance achieved for the lower resolution screen of size 5122.

5.6.4 Performance Comparison

We compare our algorithm to the algorithm reported in [33], which uses the

16-core NUMA 2.4 GHz Opteron workstation. As far as we know, the performance

numbers published in [33] are the best known for the general isosurface ray-casting

problem. Since our platform is different than theirs, we need to calibrate the two

processors. Comparing the SPEC benchmark1 performance on the AMD Opteron

2.6 GHz and the Intel Xeon 1.86 GHz with the same number of cores (8 in each

case) as shown in Table 5.7, we note that the Opteron runs slightly faster and has

significantly better throughput than the Intel Xeon.

Table 5.7: Performance comparison between an 8-core Opteron 8218 and an 8-core
Xeon E5320 using the SPEC benchmark.

CPU Model AMD Opteron 8218 Intel Xeon E5320

CPU Clock 2.6 GHz 4 processors 1.86 GHz 2 processors
Multi-Core 2-core per die 4-core per die

L1 Cache per core 64 KB I + 64 KB D 32 KB I + 32 KB D
L2 Cache per die 2 MB I+D 8 MB I+D

Main memory 32 GB DDR2-5300 16 GB DDR2-5300

Cint 11.3 11.1
Speed Cfp 11.9 9.57

Through- Cint rate 85.3 58.5
put Cfp rate 83.2 41.3

1http://www.spec.org/benchmarks.html

79

Table 5.8: Performance comparison in fps for RMI datasets on 10242 screen resolu-
tion. NUMA is Knoll’s platform consisting of AMD 2.4GHz 16-core Opteron with
64GB memory, Clovertown is our platform consisting of Intel 1.86GHz 8-Core with
8GB memory. The RMI datasets and testing views correspond to their settings with
isovalue = 20.

Screen 10242 NUMA 16-Core Clovertown 8-Core

View Time step Knoll et. al. ours

50 7.4 5.88
Far 150 5.7 4.90

270 4.7 4.15

50 4.3 7.04
Close 150 3.6 5.81

270 3.5 5.58

Listed in Table 5.8 are the performance numbers reported in [33] on their

16-core NUMA and the performance numbers of our algorithm on the Clovertown

8-core using the same dataset, the same viewpoint, and the same screen size. While

the number of cores on their platform is twice the number of cores on our platform

and they have access to 64GB of memory compared to 8GB on our platform, our

performance is much better for close views and only worse by no more than 25% for

far views. As we show later, our algorithm is highly scalable and hence we expect

our performance to almost double on a 16-core Clovertown, and hence the resulting

performance will be significantly better than that of the algorithm in [33].

5.6.5 Cache Performance

A critical factor affecting the performance of any ray-casting algorithm is the

irregular data access, which makes it difficult to exploit caches. This issue is even

more critical on multi-core processors as the overhead of memory accesses becomes

80

Table 5.9: Comparison of cache misses of our algorithm and the octree ray-casting
algorithm on the RMI dataset with isovalue 70 and screen resolution 10242. Data
load request refers to the number of requests issued for min/max and voxel values
during the ray-casting; Cache miss is the number of requests that fail to find the
requested data inside the cache after the initial load; Miss rate is calculated as cache
miss divided by data load request.

Number of Cores Single-core 8-core

Data load Cache Miss Cache Miss
View Method request miss rate miss rate

Octree 122,341K 2,153K 1.76% 3,340K 2.73%
Far Ours 66,336K 813K 1.25% 836K 1.26%

Ratio 1.84 2.65 – 4.00 –

Octree 123,881K 2,384K 1.92% 5,305K 4.28%
Close Ours 52,660K 723K 1.37% 764K 1.45%

Ratio 2.35 3.25 – 6.94 –

relatively more significant. During Phase I of our scheme, the data access is relatively

regular as we process the data in object order and generate block lists. During Phase

II, our scheme sorts the small-size image tiles (typically, 8× 8) into a Z-order, and

group the tiles into decreasing size groups that depend on the weight of each tile,

followed by dynamic allocation of these groups to the different threads. We now

illustrate the resulting cache performance. Table 5.9 shows the cache miss rates

achieved by our scheme and the octree ray-casting, on both a single core and an

8-core Clovertown for far and close views of the RMI dataset respectively. Here we

have excluded the initial misses caused by the first time access to the data. As can

be seen from Table 5.9, the number of data load requests and cache misses in our

method are significantly lower than those for the octree method, and a thread in

our method will rarely need to access the main memory after the first time the data

was loaded.

81

5.6.6 Scalability

Our scheme achieves a very good scalability in terms of the number of cores

used. The first phase divides the image equally among the core processors, and

hence the work load is distributed almost equally among them. Before performing

the ray-casting phase, we create an ordered list of groups of small-size image tiles,

which are then dynamically allocated to the threads as they become available. While

the lists associated with each group of pixels are of different sizes, they are upper

bounded by the value of k, which is typically less than or equal to 22. Given the

dynamic allocation, we expect the loads on the different threads to be almost equally

distributed, resulting in scalable performance. This is indeed the case as illustrated

in Table 5.10, which shows the average frame rate over six views for the two different

settings of the viewpoint on the RMI dataset using a varying number of cores. The

results are for 5122 and 10242 screen resolution respectively.

Table 5.10: Average frame rate of our algorithm on Clovertown for the RMI dataset
at time step 250 under a varying number of CPU cores using 5122 and 10242 screen
resolution.

Screen Size 5122 10242

Cores Far-view Close-view Far-view Close-view

1 1.77 1.97 0.51 0.56
2 3.53 3.82 1.02 1.12
4 7.03 7.64 2.04 2.23
8 13.08 14.53 3.98 4.31

Scalability 92.4% 92.2% 97.5% 96.2%

In fact, an examination of Table 5.10 reveals that the scalability of our algo-

rithm is above 90% for both views for up to the maximum number of cores available

on our Clovertown platform, where the scalability at 8-core is computed as the per-

82

centage of the performance in fps achieved on 8-core relative to the performance

on a single core multiplied by 8 (best possible speedup). Clearly, the advantage of

ray-redistribution in our scheme is more useful for the sparse isosurfaces such as

those generated by the Abdominal, Aneurism, and Skull datasets since many of the

block lists will be empty.

Table 5.11: The work from two Phases distributed among eight threads running
among 8-core for 10242 screen and isovalue 70 along with their corresponding indi-
vidual execution time. The tests are done on RMI dataset for both far and close
views. The work load of Phase II is measured by the number of rays cast, the num-
ber of ray traversal steps and intersections. Total includes the synchronization time
and writing time of the frame buffer.

8-core / 10242 Number of (×103) Time (msec)

View Proc No. Rays Traversal Intersect I II Total

0 98 1,380 277 19 223 250
1 102 1,353 274 22 223 250

F 2 99 1,365 276 22 223 250
a 3 97 1,393 274 18 224 251
r 4 96 1,355 278 16 223 250

5 101 1,344 275 22 223 250
6 100 1,365 273 21 223 250
7 94 1,361 275 18 223 250

σ
Avg

× 100% 2.14 0.81 0.48 10.8 0.21 0.19

0 147 850 382 21 202 231
1 155 844 378 21 203 232

C 2 140 897 360 21 202 231
l 3 127 915 381 20 202 231
o 4 149 857 379 21 203 232
s 5 157 880 371 22 202 231
e 6 149 852 377 20 200 230

7 151 844 382 21 203 232

σ
Avg

× 100% 4.39 2.61 1.39 2.32 0.31 0.27

Another way to illustrate the scalability of our scheme is through Table 6.6

that shows the loads on the different threads for the RMI dataset for both the far and

83

close views. We provide more details for Phase II since it constitutes approximately

90% of the total computational load. Note that the numbers of ray cast, octree

traversal steps, and intersection are almost evenly distributed among the threads

regardless of the viewpoint. Therefore the loads are extremely well-balanced among

the different threads.

5.7 Summary

In this chapter we presented a novel hybrid strategy for rendering isosurfaces

by ray-casting. The resulting algorithm starts with an object order traversal that

eliminates almost all the pixels with non-intersecting rays and creates short lists

of ordered small data blocks for the remaining pixels, then apply ray-casting for

relevant pixels on these lists. We have shown that the total size of our indexing

structure is very compact and that our performance is significantly superior rela-

tive to the published isosurface ray-casting algorithms. We have also shown that

our algorithm can effectively exploit the memory hierarchies and its multithreaded

implementation can efficiently utilize the multicore platform, which is available on

almost all new processors. We presented the results of some of our extensive tests,

showing interactive rendering rates for a variety of datasets, of widely different com-

plexities, of size up to that of our main memory on a high resolution 10242 screen.

All these results indicate that our scheme can easily achieve interactive rendering of

isosurfaces of large scale volumetric scalar data on emerging multi-core processors.

84

Chapter 6

Extension of Hybrid Scheme to Direct Volume

Rendering(DVR)

As mentioned before, the surface representation is not able to account for the

internal translucent structures of the datasets which appear in most applications.

Direct volume rendering creates images from the 3D datasets by sampling the optical

properties and compositing their visual effects throughout the data volume. While

there are several different approaches to perform direct volume rendering, we focus

here on the ray-casting method since this seems to produce the highest visualization

quality for volumetric datasets among software-based technology (as outlined in

Section 3.3). In general, the work involved in direct volume rendering using ray-

casting can be divided into two parts: the first part comes from the traversal of

the rays across the data volume, and the second is the opacity/color composition

along the ray, which makes use of Riemann sums and a transfer function. Hence,

this process demands much more computation than in the isosurface case. In this

chapter, we extend the method presented in the previous chapter to develop an

extremely effective algorithm for DVR.

Before presenting our method, we introduce some terminology for describing

our algorithm. We denote a set of spatially adjacent cells (e.g., 4×4×4 or 8×8×8

cells) as a data block or simply block. Given a transfer function and a preset small

85

positive value ε, we can characterize data blocks as follows: transparent block, each

vertex of which has opacity < ε; semi-transparent block, some vertices of which have

opacity < ε while other vertices have opacity ≥ ε; and diffuse block, all the vertices

of which have opacity ≥ ε.

6.1 Extended Hybrid Ray-casting Scheme

Similar to the hybrid ray-casting scheme for isosurfaces, our strategy for DVR

consists of two main phases.

Phase I involves an object order traversal of the data using a spatial hierarchi-

cal BONO tree representation whose leaves represent data blocks. The main purpose

of this phase is to determine for each group of pixels (containing 2× 2 pixels in our

implementation) a list of non-transparent data blocks (i.e. semi-transparent and dif-

fuse blocks) encountered by the packet of rays in a front-to-back order. As before,

we place an upper bound k on the number of such data blocks for all the lists. This

will substantially reduce the traversal time without affecting the rendering quality.

Phase II consists of shooting rays through the pixels using the lists of data

blocks generated during Phase I. The blocks are processed in a front-to-back order

and the early termination technique is applied on each ray when possible. In the

case when k blocks are processed with a resulting opacity short of the threshold, we

extend the ray traversal further across the dataset to continue compositing along

the view direction.

We next provide more details about our scheme.

86

6.1.1 Pre-processing

The preprocessing step starts by constructing the BONO-tree as described

in Section 5.2.1 except that a region with constant voxel value can not now be

ignored. We organize our volumetric data into a coarse grid of data blocks with

fixed size (each block contains 8 × 8 × 8 or 4 × 4 × 4 cells), where the scalar field

values within each block are stored contiguously in a pre-defined order and the

block is identified by the coordinates of a pre-specified corner. To accommodate

2D transfer functions, we compute the normal magnitude at each vertex using the

method of center difference. We use an octree to index the data within a data

block and store the minimum and maximum density values and normal magnitude

pairs, (dmin, hmin) and (dmax, hmax), at each node with the leaves corresponding to

2×2×2 cells, where dmin and hmin are respectively the minimum density value and

the minimum normal magnitude of all the vertices contained within the subtree.

The parameters dmax and hmax correspond to the maximum values. In addition, we

build a BONO (Branch-On-Need Octree) [23] tree on the coarse grid consisting of

the data blocks, augmented as usual by the appropriate min/max pairs of density

values and magnitude of normals. Note that the blocks are always chosen so that

each dimension is a power of two, and hence the use of octrees to index their data.

We will later show that our indexing structure is compact for all our datasets and

the preprocessing step can be performed very quickly even for very large datasets.

87

6.1.2 Block Discrimination Method

We devise a new method that is able to quickly classify data blocks as transpar-

ent, semi-transparent, or diffuse to allow for efficient empty space leaping based on

any 2D transfer function selected by the user. The method creates a discrimination

function implemented as a table generated quickly once the 2D transfer function is

specified. The construction procedure of such a table D(vi, gj) with discrete values

vi for the scalar field and gj for the gradient magnitude amounts to the follow-

ing computation. Given a small preset value ε and user-specified transfer function

opacity(v, g), the value of D(vi, gj) is set as the number of pairs (vk, gl) such that

vk ≤ vi, gl ≤ gj, and opacitiy(vk, gl) > ε.

During the BONO tree traversal step in Phase I, the minimum and maximum

density and gradient pairs, (dmin, hmin) and (dmax, hmax) are retrieved from a BONO

tree node which corresponds to a subvolume (See Figure 6.1). The discrimination

method finds the largest discrete value vmin smaller than dmin, and the smallest

discrete value vmax which is larger than or equal to dmax, and similarly for gmin

and gmax with respect to the gradient magnitudes hmin and hmax. Using the table

D(vi, gj) we can compute the value ∆, the number of pairs (vk, gl) such that vmin ≤

vk ≤ vmax, gmin ≤ gl ≤ gmax, and opacitiy(vk, gl) > ε by Equation 6.1

∆ = D(vmax, gmax)−D(vmin−1, gmax)−D(vmax, gmin−1) + D(vmin−1, gmin−1) (6.1)

Then, the ∆ value can be used to classify the blocks as follows:

• If ∆ = 0, the block is transparent;

88

• If ∆ is equal to the number of pairs in the box bounded by (vmin, gmin) and

(vmax, gmax), the block is classified as diffuse;

• Otherwise, the block is classified as semi-transparent. Note that in this case

the block could be transparent in which case we will process it unnecessarily

but this will not affect in any way the correctness of the rendering process.

Since ∆ represents the number of discrete values of the pairs (vi, gj) which are

mapped to an opacity larger than ε, it is easy to observe that our designation of

transparent and diffuse blocks is always accurate. Note that our block discrimination

method involves only the transfer function and the min/max values of the scalar

field and gradient magnitude of the data blocks, and hence can be processed very

quickly via table look-up and incorporated into Phase I of our extended scheme.

Figure 6.1: An illustrative diagram for employing 2D-dimensional discriminate func-
tion D(vi, gj), given (dmin, hmin) and (dmax, hmax). The shaded area is bounded by
discrete pair values (vmin, gmin) and (vmax, gmax). vmin = bdminc, gmin = bhminc,
vmax = ddmaxe, gmax = dhmaxe when vi and gj takes consecutive integer values.

89

6.1.3 Sequential Algorithm

After the preprocessing step, Phase I of our strategy is implemented as follows.

The BONO tree is traversed starting from the root. Assume we reach a node v. The

block discrimination process is applied to v with min/max range values retrieved

from the node. We skip the node if it is classified as transparent; otherwise, we

process the node as follows. We project the minimum bounding box of v onto the

screen, and consider all the sizes of the lists corresponding to all the groups of pixels

intersecting the projection. Should any of the lists be of size smaller than the upper

bound k, we proceed and traverse the children of node v if v is semi-transparent in

a front-to-back order relative to the viewpoint. Once a block of certain size (such

as 8× 8× 8 for far view or 4× 4× 4 for close view) is reached, we augment the lists

corresponding to the groups of pixels, which overlap the projection, with a pointer

to the block. If v is classified as diffuse, we project the minimum bounding box of

v onto the screen and augment the corresponding block lists by pointing to node v

whenever the size of the list is less than k.

Since the nodes are traversed and projected along the viewing order, a falsely

classified semi-transparent node will not produce an error and is likely to get cor-

rected once we traverse down its subtree. Therefore we end up with lists, each with

no more than k blocks for each group of pixels, such that the blocks are arranged

in front-to-back order relative to the viewpoint.

During Phase II, we shoot rays through the pixels of each group using the cor-

responding block lists. Each ray proceeds using grid traversal for diffuse blocks or

90

octree traversal for semi-transparent blocks along the viewing direction while com-

positing the colors and updating the opacity values using the Riemann sum (Equa-

tions 2.2 and 2.3) with the specified transfer function, while applying early ray

termination whenever possible. If the accumulated opacity is lower than the thresh-

old (e.g., 0.99 in our setting) after the ray goes through up to k blocks on the list,

the ray continues traversal further across the dataset via the BONO tree structure

until either reaching the threshold or going beyond the date volume boundary. We

will also show that the percentage of such continued ray traversals is minimal given

any sufficiently large value of k.

6.1.4 Parallel Processing

The objective of a multi-threaded implementation of our algorithm is to al-

locate the computation among the different cores in such a way as to (i) achieve

an almost equal distribution of the work; (ii) ensure as little communication and

coordination among the threads as possible; and (iii) make effective use of the mem-

ory hierarchy present in multi-core architectures. This last requirement is especially

important when dealing with irregular data movement for large scale datasets as is

the case for our volume rendering problem.

The parallel scheme of extended hybrid ray-casting is very similar to the one for

isosurface ray-casting presented before, and involves a progressively finer partition

of the tasks, each of which corresponding to shooting rays through pixels, coupled

with dynamic allocation of these tasks to the cores as they become available. In fact,

91

the multithreaded scheme for hybrid ray-casting described in the previous chapter

can be easily adapt to direct volume rendering and achieve the three goals above by

modifying the computation of weight W in the step of Z-Order Screen Partitioning

(in Section 5.4.2). That is, in our parallel direct volume rendering, the weight W

is computed as the summation of the sizes of all the blocks on the lists rather than

the number of non-empty lists to more accurately estimate the workload during the

following ray-casting task.

In the next section, we present experimental results over a wide variety of

datasets, which illustrate the scalability of our algorithm and the excellent load

balance achieved among the different cores.

6.2 Experiments and Performance Analysis

We have conducted extensive tests of our algorithm on six volumetric datasets

with sizes varying from 150MB to 7.5GB. We select six viewpoints with zenith angles

φ = {15o, 45o, 75o} and azimuth angles θ = {12o, 102o} in spherical coordinates and

report their average frame rates. The tests were conducted on the Clovertown

platform, consisting of two Quad-Core Intel 1.80 GHz Xeon Processors 5320. Each

dual-core shares an L2 cache of size 4MB, and hence the total L2 cache available

is 8MB. Our Clovertown platform has 8GB of main memory, which constitutes an

upper bound on the size of the datasets used in our tests. We generate visualizations

with screen resolutions 5122 and 10242, and report corresponding performance for

Far-view and Close-view settings.

92

Since the work involved in direct volume rendering using ray-casting can be

divided into the ray traversal across space, and the color composition along the

rays through non-transparent region, we report on the number of ray traversal steps

(excluding those steps that contribute to color composition) and the number of color

composition steps separately. Also measured are the execution times during Phase

I and Phase II of our multithreaded scheme using a varying number of cores on

Clovertown platform. Note that excluding Phase I of our scheme (i.e., block-list

length k = 0) converts our algorithm into a variant of the well-known image-based

DVR approaches, such as those proposed by [56] and [64]. We observe considerable

performance improvement when Phase I of our scheme is applied to accelerate the

ray-casting process using suitable values of k. The detailed performance numbers

will be presented after introducing the datasets used.

6.2.1 Datasets Used and Space Consumption

The six datasets used in our tests (shown in Figure 6.2 as rendered by our

scheme) belong to the following three major domains: geometric objects (Bonsai,

XTree), medical CT scan (Cadaver, Prone, VF), and scientific simulation (RMI). In

our scheme, data blocks consisting of background voxels do not need to be indexed,

resulting in a very compact representation in general. As shown in Table 6.1 for

the six datasets, the corresponding BONO trees are quite compact and the space

required by all the octrees representing the data blocks is in general below 40% of

original data size despite the fact that we augment the data with the minimum and

93

maximum gradient values within each octree node to make use of the 2D transfer

function. During preprocessing, we also generate the 2D histograms in terms of

density and gradient values as shown in Figure 6.3 to enable us to construct the 2D

transfer function for volume rendering.

Figure 6.2: The six datasets used in our tests. From left to right, top to down,
the datasets are: Bonsai, XmasTree(XTree), Cadaver, VisFemale(VF), Prone and
Richtmyer-Meshkov Instability (RMI) respectively.

6.2.2 Performance Implication on List Upper Bound

As in the case of isosurface ray-casting, the upper bound k imposed on the

block-list plays a critical role in accelerating the ray-casting with a very small over-

head incurred during Phase I of our algorithm. To quantify the performance gain

due to the value of k, we analyze our performance as follows.

94

Figure 6.3: The 2D histograms (i.e. density value and magnitude of the gradient)
of the six datasets used in our tests. From left to right, top to down, the datasets
are: Bonsai, XmasTree, Cadaver, VisFemale, Prone and RMI respectively.

The total execution time of our algorithm consists of four main components:

(i) the time of Phase I for generating the lists of blocks using the BONO tree

traversal;

(ii) the time of grouping the small-sized image tiles into larger tasks for dy-

namic allocation among the processor cores, which is typically about 2 ∼ 3 msec;

(iii) the time of ray-casting through the data blocks on the lists to composite

Table 6.1: Sizes of grid and indexing structure for various datasets used along with
their preprocessing time. The dimension of data block in pre-processing is of 4×4×4
cells for all the tested datasets except that RMI dataset has 8× 8× 8 cells for each
block.
Dataset Dimension Grid BONO Block Time(sec)

Bonsai 5122 × 308× 2B 154MB 8.5MB 44.2 (28.7 %) 29.3
Cavader 5122 × 424× 2B 212MB 8.2MB 45.1 (21.3 %) 31.2
Prone 5122 × 462× 2B 231MB 17.1MB 94.3 (36.8 %) 33.9
XTree 5122 × 512× 2B 256MB 17.4MB 94.0 (36.7 %) 35.5
VF 5122 × 1734× 2B 867MB 45.0MB 159.5 (18.4 %) 125.1
RMI 20482 × 1920× 1B 7,680MB 51.27MB 1,596 (20.8 %) 736.1

95

the colors and opacities;

(iv) the time needed for ray-casting of the unfinished pixels (i.e., those pixels

whose lists were of size k but with accumulated opacity short of threshold).

We divide the work in Phase II into color composition steps over non-transparent

regions and ray traversal steps for empty space leaping via the hierarchical struc-

ture. We conduct a series of tests on the LLNL RMI dataset at the time step 250 to

capture the trade-off among the execution times of the various steps with varying k

values, using a single core on our Clovertown platform with a 10242 screen.

Figure 6.4: Execution times of the different stages of our algorithm on a single core
vs. the value of the upper bound k. The results are for the Far-view of the LLNL
RMI dataset of time step 250 using 10242 screen resolution.

From the results in Figure 6.4, we can make the following observations. First,

the pure ray-casting without the generation of block-lists (i.e., k = 0) has the

longest execution time by a factor of approximately 40% relative to the best value

of k. Second, the time it takes to generate the block lists in Phase I (indicated in

96

Figure 6.5: Percentage of composition steps left after going through k blocks from
the lists and Percentage of composition steps over total steps (including composition
and traversal steps), i.e. Empty Space Leap Efficiency, for the Far-view of RMI
dataset at time step 250. Screen size is 10242.

blue) increases with the value k almost linearly but its contribution to the total time

is less than 10% for all the tested values of k. Third, the time that Phase II takes

for compositing beyond the k blocks (indicated in yellow) goes down very quickly

initially as k increases and then somewhat levels off, which makes an optimal value

k at around 40.

During the ray traversal in Phase II, traversal steps lead the rays to skip

the empty space while compositing steps compute the optical interaction with the

material and composite the visual effects along the ray transport. We measure the

percentage of the number of compositing steps over the total number of steps (which

include compositing and traversal steps), called Empty Space Leap(ESL) Efficiency,

as well as the percentage of the number of compositing steps beyond the k blocks

over the total number of the steps. As illustrated in Figure 6.5, the increasing ESL

97

Efficiency with the list upper bound k (red curve) indicates that utilizing block

lists in Phase II significantly reduces the number of ray traversal steps because

the number of compositing steps stays the same over the value k. However, the

increment becomes somewhat flat when k reaches a certain value because much

fewer composition steps are left after an increasing number of k blocks are processed

by ray-casting (indicated by the blue curve in Figure 6.5).

Table 6.2: Measured execution time of our DVR algorithm for Phase I and II as well
as the number of composition(CP) steps within optimal k blocks on the lists and
beyond these blocks on single-core of Clovertown for a screen of resolution 10242

and different view type settings

Time (sec) # of CP steps (×103)

Datasets k I II k blocks beyond (%)

Bonsai 70 0.32 3.87 10,751 164 1.50
Cadaver 75 0.24 4.52 11,926 350 2.85
Prone 70 0.67 8.21 19,966 387 1.90
XTree 70 0.38 5.24 16,243 284 1.72

VF(far) 70 0.34 5.26 13,536 186 1.36
VF(close) 70 0.56 8.20 29,158 334 1.13
RMI(far) 40 0.34 5.98 15,901 289 1.79

RMI(close) 60 0.67 7.44 22,862 346 1.50

The tests conducted on the other datasets yield similar results under their

individual optimal values of k to those obtained for the LLNL RMI dataset. As can

be seen from these results listed in Table 6.2, the time of Phase I is well below 10%

of the Phase II time while the number of compositing steps beyond k blocks are a

small percentage of the total number of steps. The numbers of compositing and ray

traversal steps undertaken in Phase II for various datasets and view types under

corresponding optimal k values in Table 6.3 confirm that the number of traversal

steps are dramatically reduced by using Phase I, which in turn results in an increase

98

Table 6.3: Number of composition(CP) steps and number of ray traversal steps
undertaken to skip empty space during DVR ray-casting with k = 0 and k =
optimal value k∗ in our algorithm under screen size of 10242 for various datasets
and view types. ESL Efficiency(ESL Eff.) is defined as the percentage of number of
compositions over number of total steps including composition and traversal steps.

of steps CP Traversal ESL Eff. (%)
(×106) both k = 0 k∗ k = 0 k∗ ratio

Bonsai 10.9 50.1 4.5 17.9 70.9 4.0
Cadaver 12.3 74.7 8.3 14.1 59.7 4.2
Prone 20.4 122.1 14.9 14.3 57.8 4.0
XTree 16.5 83.8 7.5 16.5 68.8 4.2

VF(far) 13.7 72.1 12.6 16.0 52.1 3.3
VF(close) 29.5 146.7 12.9 16.7 69.7 4.2
RMI(far) 16.2 51.0 3.4 24.1 82.5 3.4

RMI(close) 23.2 69.7 4.6 25.0 83.4 3.3

on ESL efficiency by a factor of up to 4.

6.2.3 Overall Performance

We report on the overall performance of our algorithm in terms of fps on

visualizing the six datasets using up to 8 cores on our Clovertown system under

5122 and 10242 screen resolutions. The comparison is made with the well-known

DVR ray-casting approach based on the use of the octree, which is same as our

implementation when the block list length k is set to zero. However we use our

multi-threaded scheme in all cases, which gives a substantial boost to the previous

DVR ray-casting approach in terms of scalability on our multi-core processor. In

fact, the performance numbers reported for this scheme on the 8-core platform are

significantly better than the published ray-casting results for similar size datasets

and screens with software-based acceleration techniques. Table 6.4 summarizes the

results, and shows that the frame rate of our algorithm can reach 2 ∼ 6fps for

99

5122 screen and 1 ∼ 2fps for a screen of resolution 10242. For the 10242 screen,

the performance improvement over the well-known octree algorithm (with our new

multi-threaded implementation) can range from 40% to over 100%, while it becomes

a bit lower on a 5122 screen because Phase I is less effective when the projection of

BONO tree node covers fewer pixels under lower resolution.

Table 6.4: Measured DVR performance on 8-core Clovertown in fps for our scheme
and the octree ray-casting algorithm on 5122 and 10242 screen for various datasets

Screen size 5122 10242

Dataset octree ours ratio octree ours ratio

Bonsai 4.67 6.58 1.41 1.26 1.84 1.46
Cadaver 3.50 5.46 1.56 0.93 1.60 1.72
Prone 2.00 2.99 1.49 0.53 0.89 1.68
XTree 2.92 4.42 1.52 0.78 1.36 1.74

VF(far) 2.89 3.92 1.36 0.81 1.31 1.61
VF(close) 1.57 2.54 1.62 0.40 0.89 2.19
RMI(far) 3.01 3.76 1.25 0.87 1.26 1.45

RMI(close) 2.62 3.85 1.47 0.69 0.98 1.42

Table 6.5: Average frame rate of our DVR algorithm on Clovertown for the RMI
dataset at time step 250 under a varying number of CPU cores using 5122 and 10242

screen resolution.
Screen Size 5122 10242

of Cores Far Close Far Close

1 0.48 0.51 0.16 0.13
2 0.96 1.02 0.31 0.25
4 1.93 2.03 0.64 0.50
8 3.76 3.85 1.26 0.98

Scalability 97.0% 94.2% 98.7% 95.1%

100

6.2.4 Scalability

We turn now to examining the scalability of our algorithm in terms of the

number of cores and the corresponding loads on the cores induced by our multi-

threaded dynamic allocation scheme. Table 6.5 shows the average frame rate over

six views for the two different settings of the viewpoint on the RMI dataset using

a varying number of cores. The results are for 5122 and 10242 screen resolution

respectively, both showing a scalability well above 90% as we increase the number

of cores to the maximum of eight available on our platform.

Table 6.6 illustrates the loads on the different threads for the RMI dataset

for both the far and close views. Note that the numbers of compositing and ray

traversal steps are almost evenly distributed among the threads regardless of the

viewpoint for Phase II which takes up more than 90% of the total computational

cost. Therefore the loads are extremely well-balanced among the different threads.

6.3 Summary

In this chapter, we extended the hybrid ray-casting strategy for direct volume

rendering. The resulting algorithm uses an object order traversal coupled with a

novel block discrimination method to generate a list of blocks in viewing order for

each group of pixels and achieve efficient empty space skipping in the following

ray-casting stage. We have shown that the total size of our indexing structure is

very compact and that our performance is significantly superior along with high

scalability and excellent load balancing relative to the published software-based

101

Table 6.6: The work from the two phases distributed among eight threads running
on 8-core for 10242 screen along with their corresponding individual execution time.
The tests are done on RMI dataset for both far and close views. The work load of
Phase II is measured by the number of composition steps and the number of ray
traversal steps. Total time includes the synchronization time and writing time of
the frame buffer.

Number of steps(×103) Time (msec)

View Proc No. Composition Traversal I II total

0 421 2,036 40 721 781
1 387 2,033 50 721 781

F 2 392 2,035 58 720 780
a 3 447 1,994 45 720 780
r 4 392 2,022 46 720 780

5 470 2,028 57 721 781
6 391 2,033 47 721 781
7 427 2,020 40 722 782

σ
Avg

× 100% 6.93 0.64 13.35 0.09 0.08

0 670 2,917 72 932 1,007
C 1 758 2,897 70 932 1,007
l 2 689 2,937 73 933 1,008
o 3 767 2,915 71 932 1,007
s 4 771 2,900 71 933 1,008
e 5 657 2,969 72 932 1,007

6 793 2,921 71 933 1,008
7 739 2,920 70 935 1,010

σ
Avg

× 100% 6.56 0.73 1.36 0.10 0.10

schemes. We presented the results of some of our extensive tests, showing interactive

rendering rates for a variety of datasets of widely different sizes. All these results

indicate that our scheme can deliver interactive rendering of large scale volumetric

data on emerging multi-core processors.

102

Chapter 7

Conclusion

Volume Rendering is widely used as an effective approach for the visual ex-

ploration, computational analysis, and manipulation of volumetric datasets. Due

to the dramatic advances in imaging instruments and computing technologies, such

datasets are now appearing in many engineering, science and medical applications

at a very fast rate with increasingly larger sizes from giga-bytes to tera-bytes. The

visualization of such datasets is critical to enable the discovery of features and pat-

terns of interest. However, visualizing such large scale of datasets interactively is a

computationally demanding task and poses significant challenges to carry it out on

current computing platforms. Currently clusters of processors and multi-core pro-

cessors are the two most important computing platforms. A significant amount of

research has concentrated on exploiting their computational capability and potential

use for volume visualization of large scale datasets.

7.1 Summary

In this dissertation, we have developed parallel schemes for visualizing volu-

metric datasets by rendering isosurfaces or by direct volume rendering on two parallel

architectures, multiprocessor clusters and multi-core processors. Our first algorithm

for isosurface computation contains a new simple indexing structure called compact

103

interval tree for out-of-core isosurface extraction and rendering of large scale data

sets and an efficient and scalable implementation on multiprocessor environments in

which each processor has access to its own local disk. The second scheme proposes

a new hybrid method for the interactive rendering of isosurfaces using ray-casting

on multi-core processors. This method consists of a combination of an object-order

traversal that coarsely identifies possible candidate 3D data blocks for each small

set of contiguous pixels, and an isosurface ray-casting strategy tailored for the re-

sulting limited-size lists of candidate 3D data blocks. We have extended the hybrid

ray-casting scheme to parallel direct volume rendering with a new block discrimina-

tion method in support of interactive 2D transfer function and efficient empty space

leaping.

The key components in our new schemes include compact interval tree indexing

structure, span space partitioning scheme, upper bounded block list generation for

groups of pixels, Z-order screen partitioning and dynamic task dispatching, as well as

block discrimination method under 2D transfer function. The major achievements

are summarized below:

• Part I: The compact interval tree enables the identification of the active cells

extremely quickly, using more compact indexing structure and more effec-

tive bulk data movement than previous schemes. Moreover, the span space

partitioning leads to a parallel implementation of the algorithm that provably

achieves load balancing across the processors independent of the isovalue, with

almost no overhead in the total amount of work relative to the sequential al-

104

gorithm. We have conducted a large number of experimental tests on the

University of Maryland Visualization Cluster using the RichtmyerMeshkov in-

stability data set, and have obtained results that consistently validate the

efficiency and the scalability of our algorithm.

• Part II: The generation of the lists of data blocks enables the identification

of the possible regions which could produce the isosurfaces for each pixel on

the screen and significantly reduce the computation by efficiently skipping the

empty space and irrelevant pixels. The grouping of nearby pixels exploits

the data locality among the neighboring block lists and helps achieve higher

cache performance. The upper bound imposed on the block list makes the

list generation process computationally and algorithmically efficient. Based

upon the block lists, the Z-order screen partitioning scheme allows dynamic

allocation of groups of ray-casting tasks among the different threads to ensure

almost equal loads among the different cores while maintaining spatial locality.

We have tested our algorithm on a dual-processor Clovertown platform, each

consisting of a Quad-Core 1.86 GHz Intel Xeon Processor, showing that our

method is efficient and scalable, and achieves high cache performance and

excellent load balancing, resulting in an interactive isosurface rendering on a

screen with 10242 resolution for all the datasets tested up to the maximum

size that can fit in the main memory of our platform.

• Part III: The hybrid ray-casting scheme was extended to direct volume ren-

dering with the same high degree of scalability, excellent load balancing, and

105

efficient memory management as in the case of isosurface. The block dis-

crimination method allows interactively specifying a 2D transfer function and

produce the block lists to achieve efficient empty space leaping in direct volume

rendering. Our extensive experimental tests on the same Clovertown platform

over a wide variety of well-known volumetric datasets show significantly su-

perior performance for direct volume rendering, and result in interactive rates

for very large datasets such as the RichtmyerMeshkov instability dataset on

high-resolution screens.

7.2 Further Discussion

Our hybrid ray-casting scheme can achieve interactive isosurface rendering

and direct volume rendering on large scale volumetric datasets upon high resolution

screen. This technology can also be applied to other areas as well. Some of the

possible extensions include:

(i) Geometric object visualization — physical objects are usually represented

by bounding polygonal meshes. The BONO tree built upon the bounding box of

nearby polygons can produce the list of 3D blocks which is used to identify potential

intersection with rays and skip the empty space up front. Similar to the case of

isosurface, the intersecting location between the viewing ray and the object can be

computed and the shading can be performed for the corresponding pixel. However,

since the size of polygons may differ dramatically from each other, the size of 3D

blocks can be adaptive as well to accommodate the difference and obtain the higher

106

acceleration based upon our hybrid scheme.

(ii) Multivariate data visualization — visualizing multivariate datasets is an

important and effective method to discover and reveal the relations among the un-

derlying data components and has received more research attention in the literature.

For the single field datasets, one dimensional transfer function can be the choice.

While, 2D or higher dimensional transfer functions are used to work on multivariate

datasets with each dimension corresponding to one individual data component. Our

extended hybrid ray-casting scheme for DVR can directly adapt to the two-scalar

field datasets by associating the secondary dimension with the values on the other

scalar field. For the multivariate datasets with more scalar fields, we can build the

BONO tree with more augmented min/max ranges and examine the relation be-

tween any two scalar fields swiftly by the existing handling method for 2D transfer

function. However, to quickly explore the relation among three or more scalar fields

demands a new way of handling transfer function, which is one of current research

topics in the field of volume visualization and beyond the scope of this study.

Our ray-casting techniques focus on speeding up primary ray traversal but does

not seem to be applicable to secondary ray traversals for ray-tracing in a straight-

forward way. Nevertheless, the primary ray traversal is the most time consuming

part in ray-tracing and using ray-casting can sufficiently produce high quality iso-

surfaces and direct volume rendering for most applications in scientific visualization.

Given the ever increasing sizes of the volumetric data, an interesting issue is whether

our ray-casting techniques can be extended to handle out-of-core data. We believe

that this is the case and the coherency among the neighboring blocks and between

107

two consecutive views can be exploited to accelerate ray-casting upon out-of-core

datasets. It is expected that the details of such extensions will come up in future

research.

108

Appendix A

Performance of Our Isosurface Extraction Algorithm on the Cluster

Table A.1: Execution time of our isosurface extraction algorithm with two processors
over varying isovalues.

Iso- Retrieval Triangula- Render- Total Rate
value (sec) tion(sec) ing(sec) Time(sec) (106/s) Speedup

10 7.774 18.391 9.625 36.005 6.32 1.96

30 11.015 29.338 10.948 53.31 7.046 1.89

50 12.871 43.044 16.549 74.827 7.589 1.92

70 12.971 48.655 17.532 80.537 8.064 1.98

90 11.03 38.386 14.842 64.42 7.891 1.98

110 8.615 25.165 9.596 43.568 7.521 1.99

130 6.732 17.672 6.711 31.412 7.297 1.97

150 5.497 13.607 5.181 24.639 7.185 1.96

170 4.631 11.185 4.28 20.33 7.2 1.97

190 4.012 9.548 3.674 17.479 7.172 1.97

210 3.585 8.267 3.195 15.162 7.188 1.97

109

Table A.2: Execution time of our isosurface extraction algorithm with four proces-
sors over varying isovalues.

Iso- Retrieval Triangula- Render- Total Rate
value (sec) tion(sec) ing(sec) Time(sec) (106/s) Speedup

10 4.583 9.299 4.867 19.979 11.45 3.54

30 6.009 14.705 5.455 27.604 13.642 3.66

50 6.601 21.58 8.251 37.81 15.059 3.8

70 6.243 24.186 9.475 40.172 16.226 3.97

90 5.228 19.109 7.436 32.331 15.81 3.94

110 4.38 12.645 4.783 22.23 14.818 3.9

130 3.606 8.827 3.323 16.213 14.137 3.82

150 2.956 6.8 2.571 12.73 13.907 3.79

170 2.482 5.596 2.135 10.549 13.875 3.8

190 2.136 4.779 1.825 9.11 13.761 3.78

210 1.799 4.119 1.587 7.806 13.961 3.84

Table A.3: Execution time of our isosurface extraction algorithm with eight proces-
sors over varying isovalues.

Iso- Retrieval Triangula- Render- Total Rate
value (sec) tion(sec) ing(sec) Time(sec) (106/s) Speedup

10 2.332 4.72 2.511 9.972 23.055 7.09

30 3.004 7.458 2.778 13.989 27.012 7.22

50 2.984 10.875 4.192 18.558 30.761 7.75

70 3.005 12.263 4.792 20.387 32.049 7.83

90 2.733 9.724 3.761 16.648 30.784 7.65

110 2.269 6.382 2.422 11.867 27.86 7.31

130 1.903 4.456 1.691 8.771 26.256 7.06

150 1.561 3.433 1.315 6.947 25.629 6.94

170 1.293 2.827 1.09 5.797 25.416 6.91

190 1.08 2.408 0.934 4.928 25.63 6.98

210 0.923 2.088 0.81 4.22 26.041 7.09

110

Table A.4: Execution time of our isosurface extraction algorithm with sixteen pro-
cessors over varying isovalues.

Iso- Retrieval Triangula- Render- Total Rate
value (sec) tion(sec) ing(sec) Time(sec) (106/s) Speedup

10 1.396 2.372 1.251 5.994 38.167 11.8

30 1.461 3.759 1.372 7.584 49.654 13.31

50 1.776 5.493 2.044 9.911 57.45 14.51

70 1.803 6.16 2.32 10.936 59.604 14.6

90 1.538 4.85 1.813 8.769 58.289 14.52

110 1.222 3.186 1.182 6.019 54.728 14.41

130 0.934 2.229 0.828 4.379 52.341 14.13

150 0.749 1.719 0.642 3.472 50.989 13.89

170 0.645 1.418 0.528 2.868 51.035 13.96

190 0.572 1.206 0.449 2.463 50.9 13.97

210 0.515 1.046 0.388 2.09 52.142 14.33

111

Appendix B

Rendered Isosurface and DVR Images by Ray-casting for RMI

Datasets

Figure B.1: Isosurface image rendered by ray-casting under close-view for RMI
dataset at time step 50 with isovalue 70.

112

Figure B.2: Isosurface image rendered by ray-casting under close-view for RMI
dataset at time step 250 with isovalue 70.

113

Figure B.3: DVR image rendered by ray-casting under close-view for RMI dataset
at time step 50.

114

Figure B.4: DVR image rendered by ray-casting under close-view for RMI dataset
at time step 250.

115

Bibliography

[1] A. Aggarwal and J. S. Vitter, The input/output complexity of sorting and related
problems, Communications of the ACM, 31(9), pp.1116–1127, 1988.

[2] L. Arge and J. S. Vitter, Optimal dynamic interval management in external
memory (extended abstract), IEEE Symposium on Foundations of Computer
Science, pp. 560–569, 1996.

[3] C. L. Bajaj, V. Pascucci, D. Thompson and X. Zhang, Parallel accelerated
isocontouring for out-of-core visualization, Proceedings of 1999 IEEE Parallel
Vis. and Graphics Symp., pp. 97–104, 1999

[4] Y–J. Chiang and C. T. Silva, I/O optimal isosurface extraction, Proceedings
IEEE Visualization, pp. 293–300, 1997.

[5] Y–J. Chiang, C. T. Silva and W. J. Schroeder, Interactive out-of-core isosurface
extraction, Proceedings IEEE Visualization, pp. 167–174, 1998.

[6] Y. Chiang and C. Silva, External memory techniques for isosurface extraction in
scientific visualization, External Memory Algorithms and Visualization, Vol. 50,
pp. 247–277, DIMACS Book Series, American Mathematical Society, 1999

[7] Y–J. Chiang, R. Farias, C. Silva and B. Wei, A unified infrastructure for parallel
out-of-core isosurface and volume rendering of unstructured grids, Proc. IEEE
Symp. on parallel and large-data visualization and graphics, pp. 59–66, 2001

[8] P. Cignoni, C. Montani, D. Darti and R. Scopigno, Optimal isosurface extrac-
tion from irregular volume data, Proceedings of the 1996 symposium on Volume
visualization, pp. 31–38 San Francisco, USA 1996.

[9] P. Ellsiepen, Parallel isosurfacing in large unstructured datasets, Visualization
in scientific computing ’ 95, pp. 9–23, Springer Verlag, 1995.

[10] C. Hansen and P. Hinker, Massively parallel isosurface extraction, Proc. IEEE
Visualization, pp. 77–83, 1992.

[11] W. Hong, F. Qiu and A. Kaufman, GPU-based object-order raycasting for large
datasets, EurographicsIEEE VGTC Workshop on Volume Graphics, pp. 177-
186, 2005.

116

[12] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. Kirchner and J.
Klosowski, Chromium: A stream processing framework for interactive rendering
on clusters, Proceedings of SIGGRAPH 2002, pp. 693–702, 2002.

[13] Y. Livnat, H. Shen, and C.R. Johnson, A Near Optimal Isosurface Extraction
Algorithm Using the Span Space, IEEE Trans. Visualization and Computer
Graphics, vol. 2, no. 1, pp. 73–84, March 1996.

[14] W. E. Lorensen and H. E. Cline, Marching Cubes: A high resolution 3D surface
construction algorithm, Maureen C. Stone, editor. Computer Graphics (SIG-
GRAPH ’87 Proceedings), vol. 21, pp. 161–169, July 1987.

[15] K. Ma, J. S. Painter, C. D. Hansen, and M. F. Krogh, Parallel volume rendering
using binary-swap image composition, Computer Graphics and Application,
vol. 14(4), pp. 59-68, 1994.

[16] S. Miguet and J. M. Nico, A load-balanced parallel implementation of marching-
cubes algorithm, Proceedings of High performance computing Symp. ’95, pp.
229–239, 1995.

[17] S. Molnar, M. Cox, D. Ellsworth and H. Fuchs, A sorting classification of
parallel rendering, IEEE Computer Graphics and Applications, Vol. 14, No. 4,
pp. 23–32, July 1994.

[18] T. S. Newman and N. Tang, Approaches that exploit vector-parallelism for three
rendering and volume visualization techniques, Computer and Graphics, Vol. 24,
no. 5 pp. 755–774, 2000.

[19] S. Parker, P. Shirley, Y. Livnat, C. Hansen and P.-P. Sloan, Interactive ray
tracing for isosurface rendering, IEEE Visualization ’98, pp. 233–238, Oct 1998.

[20] H. W. Shen, C. D. Hansen, Y. Livnat and C. R. Johnson, Isosurfacing in span
space with utmost efficiency (ISSUE), IEEE Visualization’96, pp. 281–294, Oct
1996.

[21] C. Silva, Y. Chiang, J. El-Sana and P. Lindstrom, Out-of-core algorithms for
scientific visualization and computer graphics, Visualization’02, Course Notes
for Tutorial #4, 2002.

[22] P. M. Sutton and C. D. Hansen, Isosurface extraction in time-varying fields
using a temporal branch-on-need tree (T-BON), IEEE Visualization ’99, IEEE
Computer Society Press, pp. 147–154, Oct. 25–29 1999.

117

[23] J. Wilhelms and A. Van Gelder, Octrees for faster isosurface generation, Com-
puter Graphics (San Diego Workshop on Volume Visualization), vol. 24, pp.
57–62, 1990.

[24] Q. Wang, J. JaJa and A. Varshney, An Efficient and Scalable Parallel Algorithm
for Out-of-core Isosurface Extraction and Rendering, Journal of Parallel and
Distributed Computing (JPDC), vol.6, no.5, pp. 592–603, May 2007.

[25] X. Zhang, C. L. Bajaj and W. Blanke, Scalable isosurface visualization of mas-
sive datasets on cots clusters, Proc. IEEE Symposuim on parallel and large-data
visualization and graphics, pp. 51–58, 2001.

[26] X. Zhang, C. L. Bajaj and V. Ramachandran, Parallel and out-of-core view-
dependent isocontour visualization using random data distribution, Proc. Joint
Eurographics-IEEE TCVG Symp. on visualization and graphics, pp. 9–18, 2002.

[27] H. Zhang and T. S. Newman, Efficient parallel out-of-core isosurface extraction,
Proc. IEEE Symposium on parallel and large-data visualization and graphics
(PVG) ’03, pp. 9–16, Oct. 2003.

[28] P. Cignoni, P. Marino, C. Montani, E. Puppo and R. Scopigno, Speeding up
isosurface extraction using interval trees, IEEE Transactions on Visualization
and Computer Graphics vol. 3, no. 2, pp. 158–170, April–June, 1997.

[29] D. E. DeMarle, S. Parker, M. Hartner, C. Gribble, and C. Hansen, Distributed
Interactive Ray Tracing for Large Volume Visualization, Proceedings of the
2003 IEEE Symposium on Parallel and Large-Data Visualization and Graphics
(PVG), pp. 87–94, 2003.

[30] M. Gross, C. Lojewski, M. Bertram and H. Hagen, Fast implicit kd-trees: accel-
erated isosurface ray tracing and maximum intensity projection for large scalar
fields, Proceedings of Computer Graphics and Imaging (CGIM), pp. 67–74,
2007.

[31] J. Gao and H.-W. Shen, Parallel View-Dependent Isosurface Extraction Using
Multi-Pass Occlusion Culling, Proceedings of the 2001 IEEE Symposium on
Parallel and Large-Data Visualization and Graphics, pp. 67–74, 2001.

[32] M, Hadwiger, C. Sigg, H. Scharsach, K. Bhler and M. Gross, Real-Time Ray-
Casting and Advanced Shading of Discrete Isosurfaces, Proceedings of Euro-
graphics 2005, pp. 303–312, 2005.

118

[33] A. Knoll, S. G. Parker and C. D. Hansen, Interactive Isosurface Ray Tracing of
Large Octree Volumes, Proceedings of the 2006 IEEE Symposium on Interactive
Ray Tracing, pp. 115–124, 2006.

[34] A. Knoll, C. D. Hansen and I. Wald, Coherent Multiresolution Isosurface Ray
Tracing, Scientific Computing and Imaging Institute, University of Utah, Techi-
nal Report No. UUSCI-2007-001, 2007.

[35] Y. Livnat and C. Hansen, View Dependent Isosurface Extraction, Proceedings
of the conference on IEEE Visualization 1998, pp. 175–180, 1998.

[36] G. Marmitt, H. Friedrich, A. Kleer and S. Parker, Fast and accurate ray-voxel
intersection techniques for iso-surface ray tracing, Proceedings of Vision, Mod-
eling and Visualization(VMV), pp. 429–435, 2004.

[37] B. Mora, J. P. Jessel and R. Caubet, Accelerating volume rendering with quan-
tized voxels, Proceedings of the 2000 IEEE symposium on Volume visualization,
pp. 63–70, October, 2000.

[38] B. Mora, J. P. Jessel and R. Caubet, A new object-order ray-casting algorithm,
Proceedings of the conference on IEEE Visualization 2002, pp. 203–210, Octo-
ber, 2002.

[39] A. Reshetov, A. Soupikov and J. Hurley, Multi-level ray tracing algorithm,
ACM Transactions on Graphics, Proceedings of ACM SIGGRAPH 2005, pp.
1176–1185, 2005.

[40] Q. M. Shi, J. JaJa, Isosurface extraction and spatial filtering using persistent
octree (POT), IEEE Transactions on Visualization and Computer Graphics
vol. 12, no. 5, pp. 1283–1290, September, 2006.

[41] L. Sobierarjski and R. Avila, A Hardware Acceleration Method for Volume Ray
Tracing, Proceedings of the 6th conference on IEEE Visualization 1995, pp.
27–34, 1995.

[42] I. Wald, H. Friedrich, G. Marmitt, P. Slusallek, and H. P. Seidel, Faster Iso-
surface Ray Tracing using Implicit KD-Trees, IEEE Transactions on Computer
Graphics and Visualization, vol. 11, no. 5, pp. 562–572, 2005.

[43] R. Westermann and B. Sevenich, Accelerated volume ray-casting using texture
mapping, Proceedings of the conference on IEEE Visualization 2001, pp. 271–
278, 2001.

119

[44] S. E. Yoon and D. Manocha, Cache-efficient layouts of bounding volume hier-
archies, EUROGRAPHICS 2006, vol. 25, no. 3, pp. 507–516, 2006.

[45] C. Bajaj, I. Ihm, G. Koo, and S. Park, Parallel Ray Casting of Visible Human
on Distributed Memory Architectures, In Data Visualization, Eurographics, pp.
269–276, May 1999.

[46] J. Challinger, Scalable Parallel Volume Raycasting for Nonrectilinear Compu-
tational Grids, Proc. of Parallel Rendering Symposium93, pp. 81–88, 1993.

[47] K. Engel, M. Kraus, and T. Ertl, High-Quality Pre-Integrated Volume Render-
ing Using Hardware-Accelerated Pixel Shading, Proc. of SIGGRAPH Graphics
Hardware Workshop01, pp. 9–16, 2001.

[48] T. Foley and J. Sugerman, KD-Tree Acceleration Structures for a GPU Ray-
tracer, In Proceedings of Graphics Hardware 2005

[49] A. Kaufman and K. Mueller, Overview of Volume Rendering, Chapter of Visu-
alization Handbook, 2005

[50] G. Kindlmann, and J. Durkin, Semi-automatic generation of transfer functions
for direct volume rendering, Symp. Volume Visualization98, pp. 79–86, 1998.

[51] J. Kniss, G. Kindlmann, and C. Hansen, Multidimensional Transfer Func-
tions for Interactive Volume Rendering, IEEE Transactions on Visualization
and Computer Graphics, vol. 8, no. 3, pp. 270–285, 2002.

[52] J. Kruger and R. Westermann, Acceleration Techniques for GPU-based Volume
Rendering, IEEE Visualization 2003.

[53] P. Lacroute and M. Levoy, Fast volume rendering using a shear-warp factoriza-
tion of the viewing transformation, Proc. SIGGRAPH 94, pp. 451–458, 1994.

[54] P. Lacroute, Real-Time Volume Rendering on Shared Memory Multiprocessors
Using the Shear-Warp Factorization, IEEE Parallel Rendering Symposium 95
Proceedings, pp. 15-22, 1995.

[55] M. Levoy, Display of surfaces from volume data, IEEE Comp. Graph. and Appl.,
vol. 8, no. 5, pp. 29–37, 1988.

[56] Marc Levoy, Efficient ray tracing of volume data, ACM Transactions on Graph-
ics, 9(3): pp. 245–261, July 1990.

120

[57] K. Ma, Parallel Volume Ray-Casting for Unstructured-Grid Data on
Distributed-Memory Architectures, Proc. of Parallel Rendering Symposium95,
pp. 23–30, 1995.

[58] K. Ma, and T. Crockett, A Scalable Parallel Cell-Projection Volume Rendering
Algorithm for Three-Dimensional Unstructured Data, Proc. of Parallel Render-
ing Symposium 97, 1997.

[59] M. Matsui, F. Ino and K. Hagihara, Parallel Volume Rendering with Early
Ray Termination for Visualizing Large-Scale Datasets, ISPA 2004, pp. 245–
256, 2004

[60] N. Max, Optical models for direct volume rendering, IEEE Trans. Vis. and
Comp. Graph., vol. 1, no. 2, pp. 99–108, 1995.

[61] M. Meiner, J. Huang, D. Bartz, K. Mueller, and R. Crawfis, A practical com-
parison of popular volume rendering algorithms, Symposium on Volume Visu-
alization and Graphics 2000, pp. 81–90, 2000.

[62] K. Mueller, N. Shareef, J. Huang, and R. Crawfis, High quality splatting on
rectilinear grids with efficient culling of occluded voxels, IEEE Transactions on
Visualization and Computer Graphics, vol. 5, no. 2, pp. 116–134, 1999.

[63] J. Nieh, and M. Levoy, Volume Rendering on Scalable Shared- Memory MIMD
Architectures, Proc. of Volume Visualization Symposium, pp. 17–24, 1992.

[64] S. Parker, M. Parker. Y. Livnat, P. Sloan, C. Hansen, and P. Shirley, Interactive
Ray Tracing for Volume Visualization, IEEE Transactions on Visualization and
Computer Graphics, vol. 5, no. 3, pp. 238–250, 1999.

[65] S. Roettger, S. Guthe, D. Weiskopf, T. Ertl and W. Strasser, Smart Hardware-
Accelerated Volume Rendering, Proceedings of the symposium on Data visual-
isation 2003, pp. 231–238, 2003

[66] J. P. Schulze, U. Lang, The Parallelization of the Perspective Shear-Warp Vol-
ume Rendering Algorithm, Proceedings of the 4th Eurographics Workshop on
Parallel Graphics and Visualization, pp. 61–69, 2002

[67] L. Sobierarjski and R. Avila, A Hardware Acceleration Method for Volume Ray
Tracing, Proceedings of the 6th conference on IEEE Visualization 1995, pp.
27-34, 1995.

[68] K. Subramaniam and D. Fussel Applying Space Subdivision Techniques to Vol-
ume Rendering, In Proc. IEEE Visualization, pp. 150–158, Oct. 1990.

121

[69] Q. Wang and J. JaJa, Intreactive High Resolution Isosurface Ray Casting on
Multi-core Processors, IEEE Visualization and Computer Graphics, Preprint,
Dec 2007.

[70] M. Wan, Q. Tang, A. Kaufman, Z. Liang, and M. Wax, Volume Rendering
Based Interactive Navigation within the Human Colon, In Proc. IEEE Visual-
ization, pp. 397-400, 1999.

[71] M. Wan, A. Sadiq, and A. Kaufman, Fast and Reliable Space Leaping for In-
teractive Volume Rendering, In Proc. IEEE Visualization, pp. 195-202, Oct.
2002.

[72] L. Westover, Footprint evaluation for volume rendering, SIGGRAPH 90, pp.
367–376, 1990.

122

