
BFGS WITH UPDATE SKIPPING AND VARYING MEMORYTAMARA GIBSONy , DIANNE P. O'LEARYz , AND LARRY NAZARETHxJuly 9, 1996Abstract. We give conditions under which limited-memory quasi-Newton methods with exactline searches will terminate in n steps when minimizing n-dimensional quadratic functions. We showthat although all Broyden family methods terminate in n steps in their full-memory versions, onlyBFGS does so with limited-memory. Additionally, we show that full-memoryBroyden familymethodswith exact line searches terminate in at most n + p steps when p matrix updates are skipped. Weintroduce new limited-memoryBFGS variants and test them on nonquadraticminimizationproblems.Key words. minimization, quasi-Newton, BFGS, limited-memory, update skipping, Broydenfamily1. Introduction. The quasi-Newton family of algorithms remains a standardworkhorse for minimization. Many of these methods share the properties of �nitetermination on strictly convex quadratic functions, a linear or superlinear rate ofconvergence on general convex functions, and no need to store or evaluate the secondderivative matrix. In general, an approximation to the second derivative matrix isbuilt by accumulating the results of earlier steps. Descriptions of many quasi-Newtonalgorithms can be found in books by Luenberger [16], Dennis and Schnabel [7], andGolub and Van Loan [11].Although there are an in�nite number of quasi-Newton methods, one method sur-passes the others in popularity: the BFGS algorithm of Broyden, Fletcher, Goldfarb,and Shanno; see, e.g., Dennis and Schnabel [7]. This method exhibits more robust be-havior than its relatives. Many attempts have been made to explain this robustness,but a complete understanding is yet to be obtained [23]. One result of the work in thispaper is a small step toward this understanding, since we investigate the question ofhow much and which information can be dropped in BFGS and other quasi-Newtonmethods without destroying the property of quadratic termination.We answer this question in the context of exact line search methods, those that�nd a minimizer on a one-dimensional subspace at every iteration. (In practice,inexact line searches that satisfy side conditions such as those proposed by Wolfe, seex4.3, are substituted for exact line searches.) We focus on modi�cations of well-knownquasi-Newton algorithms resulting from limiting the memory, either by discardingthe results of early steps (x2) or by skipping some updates to the second derivativeapproximation (x3). We give conditions under which quasi-Newton methods willterminate in n steps when minimizing quadratic functions of n variables. Althoughall Broyden familymethods (see x2) terminate in n steps in their full-memory versions,we show that only BFGS has n-step termination under limited-memory. We also showthat the methods from the Broyden family terminate in n+ p steps even if p updatesare skipped, but termination is lost if we both skip updates and limit the memory.yApplied Mathematics Program, University of Maryland, College Park, MD 20742.gibson@math.umd.edu. This work was supported in part by the National Physical Science Con-sortium, the National Security Agency, and the University of Maryland.zDepartment of Computer Science and Institute for Advanced Computer Studies, University ofMaryland, College Park, MD 20742. oleary@cs.umd.edu. This work was supported by the NationalScience Foundation under grant NSF 95-03126.xDepartment of Pure and Applied Mathematics, Washington State University, Pullman, WA99164. nazareth@amath.washington.edu. 1

2 T. Gibson, D. P. O'Leary, L. NazarethIn x4, we report the results of experiments with new limited-memory BFGS vari-ants on problems taken from the CUTE [3] test set, showing that some savings intime can be achieved.Notation. Matrices and vectors are denoted by boldface upper-case and lower-caseletters respectively. Scalars are denoted by Greek or Roman letters. The superscript\T" denotes transpose. Subscripts denote iteration number. Products are alwaystaken from left to right. The notation spanfx1;x2; : : : ;xkg denotes the subspacespanned by the vectors x1;x2; : : : ;xk. Whenever we refer to an n-dimensional strictlyconvex quadratic function, we assume it is of the formf(x) = 12xTAx� xTb;where A is a positive de�nite n � n matrix and b is an n-vector.2. Limited-Memory Variations of Quasi-Newton Algorithms. In thissection we characterize full-memory and limited-memory methods that terminate inn iterations on n-dimensional strictly convex quadratic minimization problems usingexact line searches. Most full-memory versions of the methods we will discuss areknown to terminate in n iterations. Limited-memory BFGS (L-BFGS) was shown byNocedal [22] to terminate in n steps. The preconditioned conjugate gradient method,which can be cast as a limited-memory quasi-Newton method, is also known to termi-nate in n iterations; see, e.g., Luenberger [16]. Little else is known about terminationof limited-memory methods.Let f(x) denote the strictly convex quadratic function to be minimized, and letg(x) denote the gradient of f . We de�ne gk � g(xk), where xk is the kth iterate. Letsk = xk+1 � xk;denote the change in the current iterate andyk = gk+1 � gk;denote the change in gradient.Let x0 be the starting point, and let H0 be the initial inverse Hessian approximation.For k = 0; 1; : : :1. Compute dk = �Hkgk .2. Choose �k > 0 such that f(xk + �dk) � f(xk + �kdk) for all � > 0.3. Set sk = �kdk.4. Set xk+1 = xk + sk .5. Compute gk+1.6. Set yk = gk+1 � gk .7. Choose Hk+1.Fig. 2.1. General Quasi-Newton MethodWe present a general result that characterizes quasi-Newton methods, see Figure 2.1,that terminate in n iterations. We restrict ourselves to methods with an update ofthe form Hk+1 =
kPTkH0Qk + mkXi=1wikzTik:(2.1)Here,

L-BFGS Variations 31. H0 is an n� n symmetric positive de�nite matrix that remains constant forall k, and
k is a nonzero scalar that can be thought of as an iterative rescaling ofH0. 2. Pk is an n� n matrix that is the product of projection matrices of the formI� uvTuTv ;(2.2)where u 2 spanfy0; : : : ;ykg and v 2 spanfs0; : : : ; sk+1g, and Qk is an n � n matrixthat is the product of projection matrices of the same form where u is any n-vectorand v 2 spanfs0; : : : ; skg,3. mk is a nonnegative integer, wik (i = 1; 2; : : : ;mk) is any n-vector, and zik(i = 1; 2; : : : ;mk) is any vector in spanfs0; : : : ; skg.We refer to this form as the general form. The general form �ts many knownquasi-Newton methods, including the Broyden family and the limited-memory BFGSmethod. We do not assume that these quasi-Newton methods satisfy the secantcondition, Hk+1yk = sk;nor that Hk+1 is positive de�nite and symmetric. Symmetric positive de�nite updatesare desirable since this guarantees that the quasi-Newton method produces descentdirections. Note that if the update is not positive de�nite, we may produce a dk suchthat dTk sk > 0 in which case we choose �k over all negative � rather than all positive�. Example. The method of steepest descent [16] �ts the general form (2.1). Foreach k we de�ne
k = 1; mk = 0; and Pk = Qk = H0 = I:(2.3)Note that neither w nor z vectors are speci�ed since mk = 0.Example. The (k + 1)st update for the conjugate gradient method with precon-ditioner H0 �ts the general form (2.1) with
k = 1; mk = 0; Pk = I� yksTksTk yk ; and Qk = I:(2.4)Example. The L-BFGS update, see Nocedal [22], with limited-memory constantm can be written asHk+1 = VTk�mk+1;kH0Vk�mk+1;k + kXi=k�mk+1VTi+1;k sisTisTi yiVi+1;k;(2.5)where mk = minfk + 1;mg andVik = kYj=i�I � yisTisTi yi� :L-BFGS �ts the general form (2.1) if at iteration k we choose
k = 1; mk = minfk + 1;mg;(2.6) Pk = Qk = Vk�mk+1;k; andwik = zik = (Vk�mk+i+1;k)T (sk�mk+i)p(sk�mk+i)T (yk�mk+i) :

4 T. Gibson, D. P. O'Leary, L. NazarethObserve that Pk;Qk and zik all obey the constraints imposed on their construction.BFGS is related to L-BFGS is the following way: if we were to use every (s;y)pair in the formation of each update (i.e. we have unlimited memory), we would becreating the same updates as BFGS. In practice, however, one would never do thatbecause it would take more memory than storing the BFGS matrix.Example. We will de�ne limited-memory DFP (L-DFP). Our de�nition is consis-tent with the de�nition of limited-memory BFGS given in Nocedal [22]. Let m � 1and let mk = minfk + 1;mg. In order to de�ne the L-DFP update we need to createa sequence of auxiliary matrices for i = 0; : : : ;mk.Ĥ(0)k+1 = H0; andĤ(i)k+1 = Ĥ(i�1)k+1 +UDFP(Ĥ(i�1)k+1 ; sk�mk+i;yk�mk+i);where UDFP(H; s;y) = �HyyTHyTHy + ssTsTy :The matrix Ĥ(mk)k+1 is the result of applying the DFP update mk times to the matrixH0 with the mk most recent (s;y) pairs. Thus, the (k + 1)st L-DFP matrix is givenby Hk+1 = Ĥ(mk)k+1 :To simplify our description, note that Ĥ(i)k+1 can be rewritten asĤ(i)k+1 = I� Ĥ(i�1)k+1 yk�mk+iyTk�mk+iyTk�mk+iĤ(i�1)k+1 yk�mk+i! Ĥ(i�1)k+1 + sk�mk+isTk�mk+isTk�mk+iyk�mk+i= �V̂(i)0k�T H0 + iXj=1 �V̂(i)jk�T sk�mk+jsTk�mk+jsTk�mk+jyk�mk+j ;for i � 1 where V̂(i)jk = iYl=j+1264I � yk�mk+l �H(l�1)k+1 yk�mk+l�TyTk�mk+lH(l�1)k+1 yk�mk+l 375 :Thus Hk+1 can be written asHk+1 = VT0kH0 + mkXi=1 VTik sk�mk+isTk�mk+isTk�mk+iyk�mk+i! ;(2.7)where Vik = mkYj=i+1264I� yk�mk+j �Ĥ(j�1)k+1 yk�mk+j�TyTk�mk+jĤ(j�1)k+1 yk�mk+j 375 :

L-BFGS Variations 5Equation (2.7) looks very much like the general form given in (2.1). L-DFP �ts thegeneral form with the following choices:
k = 1; Pk = V0k; Qk = I;(2.8) wik = VTiksk�mk+i=(sTk�mk+iyk�mk+i); and zik = sk�mk+i:Except for the choice of Pk, it is trivial to verify that the choices satisfy the generalform. To prove that Pk satis�es the requirements, we need to showĤ(i�1)k+1 yk�mk+i 2 spanfs0; : : : ; sk+1g; for i = 1; : : : ;mk and all k:(2.9)Proposition 2.1. For limited-memory DFP, the following two conditions holdfor each value of k:Ĥ(i�1)k+1 yk�mk+i 2 spanfs0; : : : ; skg for i = 1; : : : ;mk � 1 and(2.10) Ĥ(i�1)k+1 yk�mk+i 2 spanfs0; : : : ; sk;H0gk+1g for i = mk; andspanfH0g0; : : : ;H0gk+1g � spanfs0; : : : ; sk+1g:(2.11)Proof. We will prove this via induction. Suppose k = 0. Then m0 = 1. We haveĤ(0)k+1yk =H0y0 = H0g1 �H0g0 2 spanfs0;H0g1g:(Recall that spanfs0g is trivially equal to spanfH0g0g.) Furthermore,s1 = ��1H1g1= ��1 �H0g1 � yT0H0g1yT0H0y0 (H0g1 �H0g0) + sT0 g1yT0 s0 s0� :So we can conclude,�1� yT0H0g1yT0H0y0�H0g1 = � � 1�1 s1 + yT0H0g1yT0H0y0H0g0 + sT0 g1yT0 s0 s0� :Hence, H0g1 2 spanfs0; s1g, and so the base case holds.Assume thatĤ(i�1)k yk�1�mk�1+i 2 spanfs0; : : : ; sk�1g for i = 1; : : : ;mk�1 � 1; andĤ(i�1)k yk�1�mk�1+i 2 spanfs0; : : : ; sk�1;H0gkg for i = mk�1; andspanfH0g0; : : : ;H0gkg � spanfs0; : : : ; skg:We will use induction on i to show (2.10) for the (k + 1)st case. For i = 1,Ĥ(0)k+1yk�mk+1 = H0yk�mk+1 = H0gk�mk+2 �H0gk�mk+1:Using the induction assumptions from the induction on k, we get thatĤ(0)k+1yk�mk+1 2 spanfs0; : : : ; sk;H0gk+1g; if mk = 1;Ĥ(0)k+1yk�mk+1 2 spanfs0; : : : ; skg; otherwise:

6 T. Gibson, D. P. O'Leary, L. NazarethAssume that Ĥ(i�2)k+1 yk�mk+i�1 2 spanfs0; : : : ; skg (induction assumption for i). Next,Ĥ(i�1)k+1 yk�mk+i = �V̂(i�1)0k �T H0yk�mk+i+ i�1Xj=1 sTk�mk+j�1yk�mk+isTk�mk+j�1yk�mk+j�1 �V̂(i�1)jk �T sk�mk+j�1:For values of i � mk � 1, �V̂(i�1)jk �T maps any vector v intospanfv; Ĥ(0)k+1yk�mk+1; : : : ; Ĥ(i�2)k+1 yk�2g:and so Ĥ(i�1)k+1 yk�mk+i is inspanfH0yk�mk+i; Ĥ(0)k+1yk�mk+1; : : : ; Ĥ(i�2)k+1 yk�2; sk�mk+1; : : : ; sk�2g:Using the induction assumptions for both i and k, we getĤ(i�1)k+1 yk�mk+i 2 spanfs0; : : : ; skg;and we can continue the induction on i. If i = mk, thenĤ(mk�1)k+1 yk 2 spanfH0yk; Ĥ(0)k+1yk�mk+1; : : : ; Ĥ(mk�2)k+1 yk�1; sk�mk+1; : : : ; sk�1g;so Ĥ(mk�1)k+1 yk 2 spanfs0; : : : ; sk;H0gk+1g:Hence the induction on i is complete and this proves (2.10) in the (k + 1)st case.Now, considersk+1 = ��k+1Hk+1gk+1= VT0kH0gk+1 + mkXi=1 sTk�mk+igk+1sTk�mk+iyk�mk+iVTiksk�mk+i:Using the structure of Vjk and (2.10) we see thatH0gk+1 2 spanfs0; : : : ; sk+1g:Hence, (2.11) also holds in the (k + 1)st case.Example. The Broyden Class or Broyden Family is the class of quasi-Newtonmethods whose matrices are linear combinations of the DFP and BFGS matrices:Hk+1 = �HBFGSk + (1� �)HDFPk ; � 2 R;see, e.g., Luenberger [16, Chap. 9]. The parameter � is usually restricted to valuesthat are guaranteed to produce a positive de�nite update, although recent work withSR1, a Broyden Class method, by Khalfan, Byrd and Schnabel [14] may change thispractice. No restriction on � is necessary for the development of our theory. TheBroyden class update can be expressed asHk+1 = Hk + skskskyk � HkykyTkHkyTkHkyk+ � (ykHkyk)� sksTk yk � HkykyTkHkyk�� sksTk yk � HkykyTkHkyk�T :

L-BFGS Variations 7We sketch the explanation of how the full-memory version �ts the general formgiven in (2.1). The limited-memory case is similar. We can rewrite the Broyden Classupdate as follows:Hk+1 = Hk + (�� 1)HkykyTkyTkHkykHk � � skyTksTk ykHk + sksTksTk yk+ � yTkHkyk � sksTk(sTk yk)2 � � HkyksTksTk yk= "I� �(1� �)sTk yk �Hkyk + �yTkHkyk � sk�yTkyTkHkyk � sTk yk #Hk+ ��1 + � yTkHkyksTk yk � sk � �Hkyk� sTksTk yk :Hence, Hk+1 = V0kH0 + k+1Xi=1wikzTik;where Vik = Qkj=i �I� ((1��)sTkyk�Hkyk+�yTkHkyk�sk)yTkyTkHkyk�sTkyk � ;wik = Vik h�1 + � yTi�1Hi�1yi�1sTi�1yi�1 si�1�� �Hi�1yi�1i ; and zik = sTi�1sTi�1yi�1 :It is left to the reader to show that Hkyk is in spanfs0; : : : ; sk+1g, and thus theBroyden Class updates �t the form in (2.1).2.1. Termination of Limited-Memory Methods. In this section we showthat methods �tting the general form (2.1) produce conjugate search directions (The-orem 2.2) and terminate in n iterations (Corollary 2.3) if and only if Pk mapsspanfy0; : : : ;ykg into spanfy0; : : : ;yk�1g for each k = 1; 2; : : :; n. Furthermore, thiscondition on Pk is satis�ed only if yk is used in its formation (Corollary 2.4).Theorem 2.2. Suppose that we apply a quasi-Newton method (Figure 2.1) withan update of the form (2.1) to minimize an n-dimensional strictly convex quadraticfunction. Then for each k before termination (i.e. gk+1 6= 0),gTk+1sj = 0; for all j = 0; 1; : : : ; k;(2.12) sTk+1Asj = 0; for all j = 0; 1; : : : ; k; and(2.13) spanfs0; : : : ; sk+1g = spanfH0g0; : : : ;H0gk+1g;(2.14)if and only ifPjyi 2 spanfy0; : : : ;yj�1g; for all i = 0; 1; : : :; j; j = 0; 1; : : :; k:(2.15)Proof. (() Assume that (2.15) holds. We will prove (2.12){(2.14) by induction.Since the line searches are exact, g1 is orthogonal to s0. Using the fact that P0y0 = 0

8 T. Gibson, D. P. O'Leary, L. Nazarethfrom (2.15), and the fact that zi0 2 spanfs0g implies gT1 zi0 = 0, i = 1; : : : ;mk, wesee that s1 is conjugate to s0 sincesT1As0 = �1dT1 y0= ��1gT1HT1 y0= ��1gT1
0QT0H0P0 + m0Xi=0 zi0wTi0!y0= ��1
0gT1QT0H0P0y0 + m0Xi=0 gT1 zi0wTi0y0!= 0:Lastly, spanfs0g = spanfH0g0g, and so the base case is established.We will assume that claims (2.12){(2.14) hold for k = 0; 1; : : : ; k̂ � 1 and provethat they also hold for k = k̂.The vector gk̂+1 is orthogonal to sk̂ since the line search is exact. Using theinduction hypotheses that gk̂ is orthogonal to fs0; : : : ; sk̂�1g and sk̂ is conjugate tofs0; : : : ; sk̂�1g, we see that for j < k̂,gT̂k+1sj = (gk̂ + yk̂)T sj = (gk̂ +Ask̂)T sj = 0:Hence, (2.12) holds for k = k̂.To prove (2.13), we note thatsT̂k+1Asj = ��k̂+1gT̂k+1HT̂k+1yj ;so it is su�cient to prove that gT̂k+1HT̂k+1yj = 0 for j = 0; 1; : : : ; k̂. We will use thefollowing facts:(i) gT̂k+1QT̂k = gT̂k+1 since the v in each of the projections used to form Qk̂ is inspanfs0; : : : ; sk̂g and gk̂+1 is orthogonal to that span.(ii) gT̂k+1zik̂ = 0 for i = 1; : : : ;mk̂ since each zik̂ is in spanfs0; : : : ; sk̂g and gk̂+1is orthogonal to that span.(iii) Since we are assuming that (2.15) holds true, for each j = 0; 1; : : : ; k̂ thereexists �0; : : : ; �k̂�1 such that Pk̂yj can be expressed as Pk̂�1i=0 �iyi.(iv) For i = 0; 1; : : : ; k̂�1, gk̂+1 is orthogonal toH0yi because gk̂+1 is orthogonalto spanfs0; : : : ; sk̂g and H0yj 2 spanfs0; : : : ; sk̂g from (2.14).Thus, gT̂k+1HT̂k+1yj = gT̂k+1
k̂QT̂kH0Pk̂ + mk̂Xi=1 zik̂wTik̂!yj=
k̂gT̂k+1QT̂kH0Pk̂yj + mk̂Xi=1 gT̂k+1zik̂wTik̂yj=
k̂gT̂k+1H0Pk̂yj=
k̂gT̂k+1H00@k̂�1Xi=1 �iyi1A

L-BFGS Variations 9=
k̂ k̂�1Xi=1 �igT̂k+1H0yi= 0:Thus, (2.13) holds for k = k̂.Lastly, using (i) and (ii) from above,sk̂+1 = ��k̂+1Hk̂+1gk̂+1= ��k̂+1
k̂PT̂kH0Qk̂gk̂+1 + mk̂Xi=1wik̂zTik̂gk̂+1!= ��k̂+1
k̂PT̂kH0gk̂+1:Since PT̂k maps any vector v into spanfv; s0; : : : ; sk̂+1g by construction, there exist�0; : : : ; �k̂+1 such thatsk̂+1 = ��k̂+1
k̂0@H0gk̂+1 + k̂+1Xi=0 �isi1A :Hence, H0gk̂+1 2 spanfs0; : : : ; sk̂+1g;so spanfH0g0; : : : ;H0gk̂+1g � spanfs0; : : : ; sk̂+1g:To show equality of the sets, we will show that H0gk̂+1 is linearly independent offH0g0; : : : ;H0gk̂g. (We already know that the basis fH0g0; : : : ;H0gk̂g is linearlyindependent since it spans the same space as the linearly independent set fs0; : : : ; sk̂gand has the same number of elements.) Suppose that H0gk̂+1 is not linearly indepen-dent. Then there exist �0; : : : ; �k̂, not all zero, such thatH0gk̂+1 = k̂Xi=0 �iH0gi:Recall that gk̂+1 is orthogonal to fs0; : : : ; sk̂g. By our induction assumption, thisimplies that gk̂+1 is also orthogonal to fH0g0; : : : ;H0gk̂g. Thus for any j between 0and k̂, 0 = gT̂k+1H0gj = 0@ k̂Xi=0 �iH0gi1AT gj = k̂Xi=0 �igTi H0gj = �jgTj H0gj:Since H0 is positive de�nite and gj is nonzero, we conclude that �j must be zero.Since this is true for every j between zero and k, we have a contradiction. Thus, theset fH0g0; : : : ;H0gk̂+1g is linearly independent. Hence, (2.14) holds for k = k̂.()) Assume that (2.12){(2.14) hold for all k such that gk+1 6= 0 but that (2.15)does not hold; i.e., there exist j and k such that gk+1 6= 0, j is between 0 and k, andPkyj 62 spanfy0; : : : ;yk�1g(2.16)

10 T. Gibson, D. P. O'Leary, L. NazarethThis will lead to a contradiction. By construction of Pk, there exist �0; : : : ; �k suchthat Pkyj = kXi=0 �iyi:(2.17)By assumption (2.16), �k must be nonzero. From (2.13), it follows that gTk+1HTk+1yj =0. Using facts (i), (ii), and (iv) from before, (2.14) and (2.17), we get0 = gTk+1HTk+1yj = gTk+1
kQTkH0Pk + mkXi=1 zikwTik!yj=
kgTk+1QTkH0Pkyj + mkXi=1 gTk+1zikwTikyj=
kgTk+1H0Pkyj=
kgTk+1H0 kXi=0 �iyi!=
k kXi=0 �igTk+1H0yi=
k�kgTk+1H0yk=
k�k �gTk+1H0gk+1 � gTk+1H0gk�=
k�kgTk+1H0gk+1:Thus since neither
k nor �k is zero, we must havegTk+1H0gk+1 = 0;but this is a contradiction since H0 is positive de�nite and gk+1 was assumed to benonzero.When a method produces conjugate search directions, we can say something abouttermination.Corollary 2.3. Suppose we have a method of the type described in Theorem 2.2satisfying (2.15). Suppose further that Hjgj 6= 0 whenever gj 6= 0. Then the schemereproduces the iterates from the conjugate gradient method with preconditioner H0 andterminates in no more than n iterations.Proof. Let k be such that g0; : : : ;gk are all nonzero and such that Higi 6= 0 fori = 0; : : : ; k. Since we have a method of the type described in Theorem 2.2 satisfying(2.15), conditions (2.12) { (2.14) hold. We claim that the (k + 1)st subspace ofsearch directions, spanfs0; : : : ; skg, is equivalent to the (k + 1)st Krylov subspace,spanfH0g0; : : : ; (H0A)kH0g0g.From (2.14), we know that spanfs0; : : : ; skg = spanfH0g0; : : : ;H0gkg. We willshow via induction that spanfH0g0; : : : ;H0gkg = spanfH0g0; : : : ; (H0A)kH0g0g.This base case is trivial, so assume thatspanfH0g0; : : : ;H0gig = spanfH0g0; : : : ; (H0A)iH0g0g;for some i < k. Now,gi+1 = Axi+1 � b = A(xi + si)� b = Asi + gi;

L-BFGS Variations 11and from (2.14) and the induction hypothesis,si 2 spanfH0g0; : : : ;H0gig = spanfH0g0; : : : ; (H0A)iH0g0g;which implies thatH0Asi 2 spanf(H0A)H0g0; : : : ; (H0A)i+1H0g0g:So, H0gi+1 2 spanfH0g0; : : : ; (H0A)i+1H0g0g:Hence, the search directions span the Krylov subspace. Since the search directionsare conjugate (2.13) and span the Krylov subspace, the iterates are the same as thoseproduced by conjugate gradients with preconditioner H0.Since we produce the same iterates as the conjugate gradient method and theconjugate gradient method is well-known to terminate within n iterations, we canconclude that this scheme terminates in at most n iterations.Note that we require that Hjgj be nonzero whenever gj is nonzero; this require-ment is necessary since not all the methods produce positive de�nite updates and itis possible to construct an update that maps gj to zero. If this were to happen, wewould have a breakdown in the method.The next corollary de�nes the role that the latest information (sk and yk) playsin the formation of the kth H-update.Corollary 2.4. Suppose we have a method of the type described in Theo-rem 2.2 satisfying (2.15). Suppose further that at the kth iteration Pk is composedof p projections of the form in (2.2). Then at least one of the projections must haveu =Pki=0 �iyi with �k 6= 0. Furthermore, if Pk is a single projection (p = 1), then vmust be of the form v = �ksk + �k+1sk+1 with �k 6= 0.Proof. Consider the case of p = 1. We havePk = I� uvTvTu ;where u 2 spanfy0; : : : ;ykg and v 2 spanfs0; : : : ; sk+1g. We will assume thatu = kXi=0 �iyi and v = k+1Xi=0 �isi:for some scalars �i and �i. By (2.15), there exist �0; : : : ; �k�1 such thatPkyk = k�1Xi=0 �iyi:Then yk � vTykvTu u = k�1Xi=0 �iyi;and so vTykvTu u = yk � k�1Xi=0 �iyi:(2.18)

12 T. Gibson, D. P. O'Leary, L. NazarethFrom (2.13), the set fs0; : : :skg is conjugate and thus linearly independent. Since weare working with a quadratic, yi = Asi for all i; and since A is symmetric positivede�nite, the set fy0; : : : ;ykg is also linearly independent. So the coe�cient of the ykon the left-hand side of (2.18) must match that on the right-hand side, thusvTykvTu �k = 1:Hence, �k 6= 0;(2.19)and yk must make a nontrivial contribution to Pk.Next we will show that �0 = �1 = � � � = �k�1 = 0. Assume that j is between 0and k � 1. Then Pkyj = yj � vTyjvTu u= yj � �Pk+1i=1 �isi�T yjvTu u= yj � Pk+1i=1 �isTi AsjvTu u= yj � �jsTj AsjvTu u:Now sjAsj is nonzero because A is positive de�nite. If �j is nonzero then the coe�-cient of u is nonzero and so yk must make a nontrivial contribution to Pkyj, implyingthat Pkyj 62 spanfy0; : : : ;yk�1g. This is a contradiction. Hence, �j = 0.To show that �k 6= 0, consider Pkyk. Suppose that �k = 0. ThenvTyk = �k+1yTk sk+1 + �kyTk sk= �k+1sTkAsk+1= 0;and so Pkyk = yk � vTykvTu u = yk:This contradicts Pkyk 2 spanfy0; : : : ;yk�1g, so �k must be nonzero.Now we will discuss that p > 1 case. Label the u-components of the p projectionsas u1 through up. Then Pkyk = yk + pXi=1
iui;for some scalars
1 through
p. We know thatPkyk 2 spanfy0; : : : ;yk�1g;

L-BFGS Variations 13and that yk 62 spanfy0; : : : ;yk�1g:Thus yk 2 spanfu1; : : : ; upg;and since ui 2 spanfy0; : : : ;ykg for i = 1; : : : ; p, we can conclude that at least one uimust have a nontrivial contribution from yk.2.2. Examples of Methods that Reproduce the CG Iterates. Here aresome speci�c examples of methods that �t the general form, satisfy condition (2.15)of Theorem 2.2, and thus terminate in at most n iterations.Example. The conjugate gradient method with preconditioner H0, see (2.4),satis�es condition (2.15) of Theorem 2.2 sincePkyj = �I� yksTksTk yk�yj = 0 for all j = 0; : : : ; k:Example. Limited-memory BFGS, see (2.6), satis�es condition (2.15) of Theo-rem 2.2 since Pkyj = � 0 for j = k �mk + 1; : : : ; k; andyj for j = 0; : : : ; k �mk:Example. DFP (with full memory), see (2.8), satis�es condition (2.15) of Theo-rem 2.2. Consider Pk in the full memory case. We havePk = kYj=0�I� yiyiHTiyTi Hiyi� :For full-memory DFP, Hiyj = sj for j = 0; : : : ; i� 1. Using this fact, one can easilyverify that Pkyj = 0 for j = 0; : : : ; k. Therefore, full-memory DFP satis�es condition(2.15) of Theorem 2.2. The same reasoning does not apply to the limited-memorycase as we shall show in x2.3.The next corollary gives some ideas for other methods that are related to L-BFGSand terminate in at most n iterations on strictly convex quadratics.Corollary 2.5. The L-BFGS (2.5) method will terminate in n iterations onan n-dimensional strictly convex quadratic function even if any combination of thefollowing modi�cations is made to the update:1. Vary the limited-memory constant, keeping mk � 1.2. Form the projections used in Vk from the most recent (sk;yk) pair along withany set of m� 1 other pairs from f(s0;y0); : : : ; (sk�1;yk�1)g .3. Form the projections used in Vk from the most recent (sk;yk) pair along withany m � 1 other linear combinations of pairs from f(s0;y0); : : : ; (sk�1;yk�1)g:4. Iteratively rescale H0.Proof. For each variant, we show that the method �ts the general form in (2.1),satis�es condition (2.15) of Theorem 2.2 and hence terminates by Corollary 2.3.1. Let m > 0 be any value which may change from iteration to iteration, andde�ne Vik = kYj=i I� yjsTjsTj yj! :

14 T. Gibson, D. P. O'Leary, L. NazarethChoose
k = 1; mk = minfk + 1;mg;Pk = Qk = Vk�mk+1;k; andwik = zik = (Vk�mk+i+1;k)T (sk�mk+i)p(sk�mk+i)T (yk�mk+i) :These choices �t the general form. Furthermore,Pkyj = � 0 if j = k �mk; k�mk + 1; : : : ; k; andyj if j = 0; 1; : : : ; k �mk � 1;so this variation satis�es condition (2.15) of Theorem 2.2.2. This is a special case of the next variant.3. At iteration k, let (ŝ(i)k ; ŷ(i)k) denote the ith (i = 1; : : : ;m � 1) choice of anylinear combination from the span of the setf(s0;y0); : : : ; (sk�1;yk�1)g;and let (ŝ(m)k ; ŷ(m)k) = (sk;yk). De�neVik = mYj=i I � (ŷ(i)k)(ŝ(i)k)T(ŝ(i)k)T (ŷ(i)k)! :Choose
k = 1; mk = minfk + 1;mg;Pk = Qk = V1;k; andwik = zik = (Vi+1;k)T (ŝ(i)k)q(ŝ(i)k)T (ŷ(i)k) :These choices satisfy the general form (2.1). Furthermore,Pkyj = � 0 if yj = y(i)k for some i; andyj otherwise:Hence, this variation satis�es condition (2.15) of Theorem 2.2.4. Let
k in (2.1) be the scaling constant, and choose the other vectors andmatrices as in L-BFGS (2.6).Combinations of variants are left to the reader.Remark. Part 3 of the previous corollary shows that the \accumulated step"method of Gill and Murray [10] terminates on quadratics.Remark. Part 4 of the previous corollary shows that scaling does not a�ecttermination in L-BFGS. In fact, for any method that �ts the general form, it is easyto see that scaling will not a�ect termination on quadratics.2.3. Examples of Methods that Do Not Reproduce the CG Iterates.We will discuss several methods that �t the general form given in (2.1) but do notsatisfy the conditions of Theorem 2.2.

L-BFGS Variations 15Example. Steepest descent, see (2.3), does not satisfy condition (2.15) of The-orem 2.2 and thus does not produce conjugate search directions. This fact is well-known; see, e.g., Luenberger [16].Example. Limited-memory DFP, see (2.8), with m < n does not satisfy the con-dition on Pk (2.15) for all k, and so the method will not produce conjugate directions.For example, suppose that we have a convex quadratic withA = 24 1 0 00 2 00 0 4 35 ; and b = 24 111 35 :Using a limited-memory constant of m = 1 and exact arithmetic, it can be seen thatthe iteration does not terminate within the �rst 20 iterations of limited-memory DFPwith H0 = I. The MAPLE notebook �le used to compute this example is availableon the World Wide Web [9].Remark. Using the above example, we can easily see that no limited-memoryBroyden class method except limited-memory BFGS terminates within the �rst niterations.3. Update-Skipping Variations for Broyden Class Quasi-Newton Algo-rithms. The previous section discussed limited-memory methods that behave likeconjugate gradients on n-dimensional strictly convex quadratic functions. In this sec-tion, we are concerned with methods that skip some updates in order to reduce thememory demands. We establish conditions under which �nite termination is preservedbut delayed for the Broyden Class.3.1. Termination when Updates are Skipped. It was shown by Powell [26]that if we skip every other update and take direct prediction steps (i.e. steps of lengthone) in a Broyden class method, then the procedure will terminate in no more than2n+1 iterations on an n-dimensional strictly convex quadratic function. An alternateproof of this result is given by Nazareth [21].We will prove a related result. Suppose that we are doing exact line searches usinga Broyden Class quasi-Newton method on a strictly convex quadratic function anddecide to \skip" p updates to H (i.e. choose Hk+1 = Hk on p occasions). Then, thealgorithm terminates in no more than n+ p iterations. In contrast to Powell's result,it does not matter which updates are skipped or if multiple updates are skipped in arow.Theorem 3.1. Suppose that a Broyden Class method using exact line searchesis applied to an n-dimensional strictly convex quadratic function and p updates areskipped. Let J(k) = fj � k : the update at iteration j is not skippedg:Then for all k = 0; 1; : : : gTk+1sj = 0; for all j 2 J(k); and(3.1) sTk+1Asj = 0; for all j 2 J(k):(3.2)Furthermore, the method terminates in at most n + p iterations at the exact mini-mizer.Proof. We will use induction on k to show (3.1) andHk+1yj = sj ; for all j 2 J(k):(3.3)

16 T. Gibson, D. P. O'Leary, L. NazarethThen (3.2) follows easily since for all j 2 J(k),sTk+1Asj = ��k+1gk+1Hk+1yj= ��k+1gk+1sj= 0:Let k0 be the least value of k such that J(k) is nonempty; i.e., J(k0) = fk0g.Then gk0+1 is orthogonal to sk0 since line searches are exact, and Hk0+1yk0 = sk0since all members of the Broyden Family satisfy the secant condition. Hence, the basecase is true. Now assume that (3.1) and (3.3) hold for all values of k = 0; 1; : : : ; k̂�1.We will show that they also hold for k = k̂.Case I. Suppose that k̂ 62 J(k̂). Then Hk̂+1 = Hk̂ and J(k̂ � 1) = J(k̂), so forany j 2 J(k̂), gT̂k+1sj = (gk̂ +Ask̂)T sj(3.4) = gT̂k sj + sT̂kAsj= 0;and Hk̂+1yj = Hk̂yj = sj:Case II. Suppose that k̂ 2 J(k̂). Then Hk̂+1 satis�es the secant condition andJ(k̂) = J(k̂�1)[fk̂g. Now gk̂+1 is orthogonal to sk since the line searches are exact,and it is orthogonal to the older sj by the argument in (3.4). The secant conditionguarantees that Hk̂+1yk̂ = sk̂, and for j 2 J(k̂) but j 6= k̂ we haveHk̂+1yj = Hk̂yj + sk̂sT̂ksk̂yk̂yj � Hk̂yk̂yT̂kHk̂yT̂kHk̂yk̂ yj+ � (yT̂kHk̂yk̂) sk̂sT̂k yk̂ � Hk̂yk̂yT̂kHk̂yk̂! sk̂sT̂k yk̂ � Hk̂yk̂yT̂kHk̂yk̂!T yj= sj + sT̂kAsjsk̂yk̂ sk̂ � Hk̂yk̂yT̂k sjyT̂kHk̂yk̂+ � (yk̂Hk̂yk̂) sk̂sT̂k yk̂ � Hk̂yk̂yT̂kHk̂yk̂! sT̂kAsjsT̂k yk̂ � yT̂k sjyT̂kHk̂yk̂!= sj:In either case, the induction result follows.Suppose that we skip p updates. Then the set J(n � 1 + p) has cardinality n.Without loss of generality, assume that the set fsigi2J(n�1+p) has no zero elements.From (3.2), the vectors are linearly independent. By (3.1),gTn+psj = 0; for all j 2 J(n� 1 + p);and so gn+p must be zero. This implies that xn+p is the exact minimizer of f .

L-BFGS Variations 173.2. Loss of Termination for Update Skipping with Limited-Memory.Unfortunately, updates that use both limited-memory and repeated update-skippingdo not produce n conjugate search directions for n-dimensional strictly convex qua-dratics, and the termination property is lost. We will show a simple example, limited-memory BFGS with m = 1, skipping every other update. Note that according toCorollary 2.4, we would still be guaranteed termination if we used the most recentinformation in each update.Example. Suppose that we have a convex quadratic withA = 24 1 0 00 2 00 0 4 35 ; and b = 24 111 35 :We apply limited-memory BFGS with limited-memory constant m = 1 and H0 = Iand skip every-other update to H. Using exact arithmetic in MAPLE, we observethat the process does not terminate even after 100 iterations [9].4. Experimental Results. The results of x2 and x3 lead to a number of ideasfor new methods for unconstrained optimization. In this section, we motivate, de-velop, and test these ideas. We describe the collection of test problems in x4.2. Thetest environment is described in x4.3. Section 4.4.1 outlines the implementation of theL-BFGS method (our base for all comparisons) and xx4.4.2{4.4.7 describe the varia-tions. Pseudo-code for L-BFGS and its variations is given in Appendix B. Completenumerical results, many graphs of the numerical results, and the original FORTRANcode are available [9].4.1. Motivation. So far we have only given results for convex quadratic func-tions. While termination on quadratics is beautiful in theory, it does not necessarilyyield insight into how these methods will do in practice.We will not present any new results relating to convergence of these algorithmson general functions; however, many of these can be shown to converge using theconvergence analysis presented in x7 of [15]. In [15], Liu and Nocedal show thata limited-memory BFGS method implemented with a line search that satis�es thestrong Wolfe conditions (see x4.3 for a de�nition) is R-linearly convergent on a convexfunction that satis�es a few modest conditions.4.2. Test Problems. For our test problems, we used the Constrained and Un-constrained Testing Environment (CUTE) by Bongartz, Conn, Gould and Toint. Thepackage is documented in [3] and can be obtained via the world wide web [2] or via ftp[1]. The package contains a large collection of test problems as well as the interfacesnecessary for using the problems. The test problems are stored as \SIF" �les. Wechose a collection of 22 unconstrained problems. The problems ranged in size from10 to 10,000 variables, but each took L-BFGS with limited-memory constant m = 5at least 60 iterations to solve. Table 4.1 enumerates the problems, giving the SIF �lename, the dimension (n), and a description for each problem. The CUTE packagealso provides a starting point (x0) for each problem.4.3. Test Environment. We used FORTRAN77 code on an SGI Indigo2 torun the algorithms, with FORTRAN BLAS routines from NETLIB. We used thecompiler's default optimization level.Figure 2.1 outlines the general quasi-Newton implementation that we followed.For the line search, we use the routines cvsrch and cstep written by Jorge J. Mor�e

18 T. Gibson, D. P. O'Leary, L. NazarethNo. SIF Name n Description & Reference1 EXTROSNB 10 Extended Rosenbrock function (nonseparableversion) [30, Problem 10].2 WATSONS 31 Watson problem [17, Problem 20].3 TOINTGOR 50 Toint's operations research problem [29].4 TOINTPSP 50 Toint's PSP operations research problem [29].5 CHNROSNB 50 Chained Rosenbrock function [29].6 ERRINROS 50 Nonlinear problem similar to CHNROSNB [28].7 FLETCHBV 100 Fletcher's boundary value problem [8, Prob-lem 1].8 FLETCHCR 100 Fletcher's chained Rosenbrock function [8, Prob-lem 2].9 PENALTY2 100 Second penalty problem [17, Problem 24].10 GENROSE 500 GeneralizedRosenbrock function [18, Problem5].11 BDQRTIC 1000 Quartic with a banded Hessian with band-width=9 [5, Problem 61].12 BROYDN7D 1000 Seven diagonal variant of the Broyden tridiagonalsystem with a band away from diagonal [29].13 PENALTY1 1000 First penalty problem [17, Problem 23].14 POWER 1000 Power problem by Oren [25].15 MSQRTALS 1024 The dense matrix square root problem by No-cedal and Liu (case 0) seen as a nonlinear equa-tion problem [4, Problem 204].16 MSQRTBLS 1025 The dense matrix square root problem by No-cedal and Liu (case 1) seen as a nonlinear equa-tion problem [4, Problem 201].17 CRAGGLVY 5000 Extended Cragg & Levy problem [30, Prob-lem 32].18 NONDQUAR 10000 Nondiagonal quartic test problem [5, Prob-lem 57].19 POWELLSG 10000 Extended Powell singular function [17, Prob-lem 13].20 SINQUAD 10000 Another function with nontrivial groups and rep-etitious elements [12].21 SPMSRTLS 10000 Liu and Nocedal tridiagonal matrix square rootproblem [4, Problem 151].22 TRIDIA 10000 Shanno's TRIDIA quadratic tridiagonal problem[30, Problem 8].Table 4.1Test problem collection. Each problems was chosen from the CUTE package.and David Thuente from a 1983 version of MINPACK. This line search routine �nds an� that meets the strong Wolfe conditions,f(x + �d) � f(x) + !1�g(x)Td;(4.1) jg(x+ �d)Tdj � !2jg(x)T sj;(4.2)see, e.g., Nocedal [23]. We used !1 = 1:0� 10�4 and !2 = 0:9. Except for the �rstiteration, we always attempt a step length of 1.0 �rst and only use an alternate valueif 1.0 does not satisfy the Wolfe conditions. In the �rst iteration, we initially try astep length equal to kg0k�1. The remaining line search parameters are detailed inAppendix A.We generate the matrix Hk by either the limited-memory update or one of thevariations described in x4.4, storing the matrix implicitly in order to save both memoryand computation time.We terminate the iterations if any of the following conditions are met at iteration

L-BFGS Variations 19k: 1. The inequality kgkkkxkk < 1:0� 10�5;is satis�ed,2. the line search fails, or3. the number of iterations exceeds 3000.We say that the iterates have converged if the �rst condition is satis�ed. Otherwise,the method has failed.4.4. L-BFGS and its variations. We tried a number of variations to the stan-dard L-BFGS algorithm. L-BFGS and these variations are described in this subsectionand summarized in Table 4.2.4.4.1. L-BFGS: Algorithm 0. The limited-memory BFGS update is given in(2.5) and described fully by Byrd, Nocedal and Schnabel [22]. Our implementationand the following description come essentially from [22].Let H0 be symmetric and positive de�nite and assume that the mk pairsfsi;yigk�1i=k�mkeach satisfy sTi yi > 0.We will letSk = [sk�mksk�mk+1 � � � sk�1] and Yk = [yk�mkyk�mk+1 � � �yk�1];where mk = minfk + 1;mg, and m is some positive integer. We will assume thatH0 = I and that H0 is iteratively rescaled by a constant
k as is commonly donein practice. Then, the matrix Hk obtained by k applications of the limited-memoryBFGS update can be expressed asHk =
kI + � Sk
kYk �� U�Tk (Dk +
kYTkYk)U�1k �U�Tk�U�1k 0 �� STk
kYTk � ;where Uk and Dk are the mk �mk matrices given by(Uk)ij = � (sk�mk�1+i)T (yk�mk�1+j) if i � j;0 otherwise;and Dk = diagf(sk�mk)T (yk�mk); : : : ; sTk�1yk�1g:We will describe how to compute dk = �Hkgk in the case that k > 0. Let xkbe the current iterate. Let mk = minfk + 1;mg. Given sk�1;yk�1;gk, the matricesSk�1;Yk�1;Uk�1;YTk�1Yk�1;Dk�1, and the vectors STk�1gk�1;YTk�1gk�1:1. Update the n �mk�1 matrices Sk�1 and Yk�1 to get the n �mk matricesSk and Yk using sk�1 and yk�12. Compute the mk-vectors STk gk and YTk gk.3. Compute the mk-vectors STk yk�1 and YTk yk�1 by using the fact thatyk�1 = gk � gk�1:We already know mk � 1 components of Skgk�1 from Sk�1gk�1, and likewise forYkgk�1. We need only compute sTk�1gk�1 and yTk�1gk�1 and do the subtractions.

20 T. Gibson, D. P. O'Leary, L. NazarethNo. Reference Brief Description0 x4.4.1 L-BFGS with no options.1 x4.4.2, Variation 1 Allow m to vary iteratively basing the choice of m of kgkand not allowing m to decrease.2 x4.4.2, Variation 2 Allow m to vary iteratively basing the choice of m of kgkand allowing m to decrease.3 x4.4.2, Variation 3 Allow m to vary iteratively basing the choice ofm of kg=xkand not allowing m to decrease.4 x4.4.2, Variation 4 Allow m to vary iteratively basing the choice ofm of kg=xkand allowing m to decrease.5 x4.4.3 Dispose of old information if the step length is greater thanone.6 x4.4.4, Variation 1 Back-up if the current iteration is odd.7 x4.4.4, Variation 2 Back-up if the current iteration is even.8 x4.4.4, Variation 3 Back-up if a step length of 1.0 was used in the last iteration.9 x4.4.4, Variation 4 Back-up if kgkk > kgk�1k.10 x4.4.4, Variation 3* Back-up if a step length of 1.0 was used in the last iterationand we did not back-up on the last iteration.11 x4.4.4, Variation 4* Back-up if kgkk > kgk�1k and we did not back-up on thelast iteration.12 x4.4.5, Variation 1 Merge if neither of the two vectors to be merged is itselfthe result of a merge and the 2nd and 3rd most recent stepstaken were of length 1.0.13 x4.4.5, Variation 2 Merge if we did not do a merge the last iteration and thereare at least two old s vectors to merge.14 x4.4.6, Variation 1 Skip update on odd iterations.15 x4.4.6, Variation 2 Skip update on even iterations.16 x4.4.6, Variation 3 Skip update if kgk+1k > kgkk.17 Alg. 5 & Alg. 8 Dispose of old information and back-up on the next itera-tion if the step length is greater than one.18 Alg. 13 & Alg. 1 Merge if we did not do a merge the last iteration and thereare at least two old s vectors to merge, and allowm to varyiteratively basing the choice of m of kgk and not allowingm to decrease.19 Alg. 13 & Alg. 3 Merge if we did not do a merge the last iteration and thereare at least two old s vectors to merge, and allow m tovary iteratively basing the choice of m of kg=xk and notallowing m to decrease.20 Alg. 13 & Alg. 2 Merge if we did not do a merge the last iteration and thereare at least two old s vectors to merge, and allowm to varyiteratively basing the choice ofm of kgk and allowingm todecrease.21 Alg. 13 & Alg. 2 Merge if we did not do a merge the last iteration and thereare at least two old s vectors to merge, and allowm to varyiteratively basing the choice of m of kg=xk and allowingmto decrease.Table 4.2Description of Numerical Algorithms4. Compute U�1k . Rather than recomputing U�1k , we update the matrix fromthe previous iteration by deleting the leftmost column and topmost row if mk = mk�1and appending a new column on the right and a new row on the bottom. Let �k�1 =1=sTk�1yk�1 and let (U�1k�1)0 be the (mk�1)� (mk�1) lower right submatrix ofU�1k�1and let (STkyk�1)0 be the upper mk � 1 elements of STk yk�1. ThenU�1k = � (U�1k�1)0 ��k�1(U�1k�1)0(STk yk�1)00 �k�1 � :

L-BFGS Variations 21Note that sTk�1yk�1 = (STk yk�1)mk and so is already computed.5. Assemble YTkYk. We have already computed all the components.6. Update Dk using Dk�1 and sTk�1yk�1 = (STkyk�1)mk .7. Compute
k = yTk�1sk�1=yTk�1yk�1:Note that both yTk�1sk�1 and yTk�1yk�1 have already been computed.8. Compute two intermediate valuesp1 = U�1k STk gk;p2 = U�1k (
kYTkYkp1 +Dkp1 �
kYTk gk):9. Compute dk =
kYkp1 � Skp2 �
kgk:The storage costs for this are very low. In order to reconstruct Hk, we need tostore Sk;Yk;U�1k ;YTkYk, Dk (a diagonal matrix) and a few m-vectors. This requiresonly 2mn + 2m2 + O(m) storage. Assuming m << n, this is much less storage thanthe n2 storage required for typical implementation of BFGS.Step Operation Count2 4mn� 2m3 4n+ 2m� 24 2m2 � 4m+ 37 18 8m2 + 2m9 4m2 + 2mTable 4.3Operations Count for Computation of Hkgk . Steps with no operations are not shown.The computation ofHg takes at most O(mn) operations assuming n >> m. (SeeTable 4.3.) This is much less than the O(n2) time normally needed to compute Hgwhen the whole matrix H is stored.We are using L-BFGS as our basis for comparison. For information on the per-formance of L-BFGS see Liu and Nocedal [15] and Nash and Nocedal [19].4.4.2. Varying m iteratively: Algorithms 1{4. In typical implementationsof L-BFGS, m is �xed throughout the iterations: once m updates have accumulated,m updates are always used. We considered the possibility of varying m iteratively,preserving �nite termination on convex quadratics. Using an argument similar to thatpresented in [15], we can also prove that this algorithm has a linear rate of convergenceon a convex function that satis�es a few modest conditions.We tried four di�erent variations on this theme. All were based on the followinglinear formula that scales m in relation to the size of kgk. Let mk be the number ofiterates saved at the kth iteration, with m0 = 1. Here, think of m as the maximumallowable value of mk. Let the convergence test be given by kgkk=kxkk < �. Thenthe formula for mk at iteration k ismk = min�mk�1 + 1;�(m � 1) log �k � log �0log 100�� log �0� + 1� :

22 T. Gibson, D. P. O'Leary, L. NazarethAlg. No. m = 5 m = 10 m = 15 m = 500 1 0 0 11 0 0 0 02 1 0 0 03 2 0 0 14 1 0 0 15 0 0 0 06 1 0 0 17 0 0 0 18 0 0 0 09 0 0 0 010 0 0 0 011 0 0 0 012 1 0 0 113 1 0 0 114 11 11 11 1115 3 3 3 316 10 10 8 917 0 0 0 018 1 1 0 019 1 0 0 120 1 1 1 121 3 1 0 1Table 4.4The number of failures of the algorithms on the 22 test problems. An algorithm is said to have\failed" on a particular problem if a line search fails or the maximum allowable number of iterations(3000 in our case) is exceeded.We have two choices for �k, and a choice of whether or not we will allowmk to decreaseas well as increase. The four variations are1. �k = kgkk and require mk � mk�1,2. �k = kgkk,3. �k = kgkk=kxkk and require mk � mk�1, and4. �k = kgkk=kxkk.We used four values of m: 5,10,15 and 50, for each algorithm. The results aresummarized in Tables 4.4 { 4.8. More extensive results can be obtained [9].Table 4.4 shows that these algorithms had roughly the same number of failuresas L-BFGS.Table 4.5 compares each algorithm to L-BFGS in terms of function evaluations.For each algorithm and each value of m, the number of times that the algorithmused as few or fewer function evaluations than L-BFGS is listed relative to the totalnumber of admissible problems. Problems are admissible if at least one of the twomethods solved it. We observe that in all but three cases, the algorithm used as fewor fewer function evaluations than L-BFGS for over half the test problems.Table 4.6 compares each algorithm to L-BFGS in terms of time. The entries aresimilar to those in Table 4.5. Observe that Algorithms 1-4 did very well in terms oftime, doing as well or better than L-BFGS in nearly every case.For each problem in each algorithm, we computed the ratio of the number offunction evaluations for the algorithm to the number of function evaluations for L-BFGS. Table 4.7 lists the means of these ratios. A mean below 1.0 implies thatthe algorithm does better than L-BFGS on average. The average is better for thealgorithms in 6 out of 16 cases for the �rst four algorithms. Observe, however, thatall the means are close to one.

L-BFGS Variations 23Alg. No. m= 5 m = 10 m = 15 m= 501 8/22 10/22 17/22 17/222 7/22 13/22 13/22 19/223 14/21 14/22 12/22 15/214 12/21 17/22 15/22 16/215 19/22 20/22 20/22 21/226 21/21 22/22 22/22 21/217 8/22 12/22 10/22 10/228 12/22 14/22 12/22 15/229 6/22 13/22 12/22 16/2210 12/22 14/22 12/22 15/2211 10/22 10/22 11/22 14/2212 21/21 22/22 22/22 21/2113 3/22 4/22 4/22 4/2214 2/21 2/22 2/22 2/2115 2/22 1/22 1/22 1/2216 1/22 1/22 1/22 1/2217 12/22 13/22 12/22 14/2218 3/22 4/22 5/22 4/2219 2/22 3/22 4/22 4/2220 2/22 4/22 4/22 5/2221 1/22 2/22 4/22 4/22Table 4.5Function Evaluations Comparison. The �rst number in each entry is the number of times thealgorithm did as well as or better than normal L-BFGS in terms of function evaluations. The secondnumber is the total number of problems solved by at least one of the two methods (the algorithmand/or L-BFGS).We experience savings in terms of time for the �rst four algorithms. These algo-rithms will tend save fewer vectors than L-BFGS since mk is typically less than m;and so less work is done computing Hkgk in these algorithms. Table 4.8 gives themean of the ratios of time to solve for each value of m in each algorithm. Note thatmost of the ratios are far below one in this case.These variations did particularly well on problem 7. See [9] for more information.4.4.3. Disposing of old information: Algorithm 5. We may decide that weare storing too much old information and that we should stop using it. For example,we may choose to throw away everything except for the most recent informationwhenever we take a big step, since the old information may not be relevant to thenew neighborhood. We use the following test: If the last step length was bigger than1, dispose of the old information.The algorithm performed nearly the same as L-BFGS. There was substantialdeviation on only one or two problems for each value of m, and this seemed evenlydivided in terms of better and worse. From Table 4.4, we see that this algorithmsuccessfully converged on every problem. Table 4.5 shows that it almost always didas well or better than L-BFGS in terms of function evaluations. However, Table 4.7shows that the di�erences were minor. In terms of time, we observe that the algorithmgenerally was faster than L-BFGS (Table 4.6), but again, considering the mean ratiosof time (Table 4.8), the di�erences were minor. The method also does particularlywell on problem 7 [9].4.4.4. Backing Up in the Update to H: Algorithms 6-11. As discussedin x2.2, if we always use the most recent s and y in the update, we preserve quadratictermination regardless of which older values of s and y we use.

24 T. Gibson, D. P. O'Leary, L. NazarethAlg. No. m = 5 m = 10 m = 15 m = 501 15/22 18/22 20/22 18/222 16/22 19/22 18/22 18/223 16/21 14/22 15/22 15/214 17/21 18/22 20/22 18/215 15/22 13/22 14/22 15/226 16/21 19/22 15/22 15/217 11/22 11/22 10/22 7/228 11/22 7/22 6/22 5/229 9/22 10/22 7/22 8/2210 11/22 8/22 5/22 5/2211 9/22 8/22 9/22 5/2212 11/21 12/22 8/22 11/2113 5/22 10/22 13/22 17/2214 2/21 2/22 2/22 3/2115 6/22 6/22 9/22 10/2216 1/22 2/22 3/22 3/2217 11/22 8/22 5/22 4/2218 8/22 14/22 19/22 20/2219 11/22 11/22 17/22 19/2220 10/22 14/22 17/22 19/2221 9/22 16/22 16/22 18/22Table 4.6Time Comparison. The �rst number in each entry is the number of times the algorithm did aswell as or better than normal L-BFGS in terms of time. The second number is the total number ofproblems solved by at least one of the two methods (the algorithm and/or L-BFGS).Using this idea, we created some algorithms. Under certain conditions, we discardthe next most recent values of s and y in the H although we still use the most recents and y vectors and any other vectors that have been saved from previous iterations.We call this \backing up" because it as if we back-up over the next most recent valuesof s and y. These algorithms used the following four tests to trigger backing up:1. The current iteration is odd.2. The current iteration is even.3. A step length of 1.0 was used in the last iteration.4. kgkk > kgk�1k.In two additional algorithms, we varied situations 3 and 4 by not allowing a back-upif a back-up was performed on the previous iteration.The backing up strategy seemed robust in terms of failures. In 4 out of the 6variations we did for this algorithm, there were no failures at all. See Table 4.4 formore information.It is interesting to observe that backing up on odd iterations (Algorithm 6) andbacking up on even iterations (Algorithm 7) caused very di�erent results. Backingup on odd iterations seemed to have almost no e�ect on the number of functionevaluations (Table 4.7) and little e�ect on the time (Table 4.8). However, backing upon even iterations causes much di�erent behavior from L-BFGS. It does worse thanL-BFGS on most problems, but better on a few.Algorithms 8 and 10 were two variations of the same idea: backing up if theprevious step length was one. This wipes out the data from the previous iterationafter it has been used in one update. Both show improvement over L-BFGS in termsof function evaluations; in fact, these two algorithms have the best function evalua-tion ratio for the m = 50 case (Table 4.7). Unfortunately, these algorithms did notcompete with L-BFGS in terms of time (Table 4.8). There is little di�erence between

L-BFGS Variations 25Alg. No. m= 5 m = 10 m = 15 m= 501 1.054 1.017 0.931 1.0082 1.099 0.976 0.968 0.9453 1.006 0.957 1.391 1.0144 0.998 1.297 0.970 1.0005 1.021 0.971 1.005 1.0106 1.000 1.000 1.000 1.0007 1.099 0.996 1.205 1.0208 0.991 1.677 1.507 0.8919 1.035 1.371 1.005 0.94710 0.991 1.677 1.507 0.89111 1.044 0.992 0.981 0.91612 1.000 1.000 1.000 1.00013 1.137 1.178 1.244 1.37314 7.521 7.917 8.288 8.50215 3.408 4.778 5.292 5.90016 8.981 5.671 5.807 6.71017 0.981 1.023 0.924 0.91818 1.201 1.529 1.209 1.36519 1.212 1.959 1.242 1.38720 1.263 1.101 1.226 1.37521 1.406 1.161 1.178 1.394Table 4.7Mean function evaluations ratios for each algorithm compared to L-BFGS. Problems for whicheither method failed are not used in this mean.Algorithms 8 and 10 | probably because there were rarely many steps of length oneis a row.Algorithms 9 and 11 are also two variations of the same idea: back-up on iterationk + 1 if the norm of gk is bigger than the norm of gk+1. There is a larger di�erencebetween the results of 9 and 11 than there was between 8 and 10. In terms of functionevaluation ratios (Table 4.7), Algorithm 11 did better, indicating that it may not bewise to back-up twice in a row. Both of these did poorly in terms of time as comparedwith L-BFGS (Table 4.8).4.4.5. Merging s and y information in the update: Algorithms 12 and13. Yet another idea is to \merge" s data so that it takes up less storage and com-putation time. By merging, we mean forming some linear combination of various svectors. The y vectors would be merged correspondingly. Corollary 2.5 shows thatas long as the most recent s and y are used without merge, old s vectors may bereplaced by any linear combination of the old s vectors in L-BFGS.We used this idea in the following way: if certain criteria were met, we replacedthe second and third newest s vectors in the collection by their sum, and did similarlyfor the y vectors. We used various tests to determine when we would do a merge:1. Neither of the two vectors to be merged is itself the result of a merge andthe second and third most recent steps taken were of length 1.0.2. We did not do a merge the last iteration and there are at least two old svectors to merge.The �rst variation (Algorithm 12) performs almost identically to L-BFGS, es-pecially in terms of time (Table 4.5). Occasionally it did worse in terms of time(Table 4.6). These observations are also re
ected in the other results in Table 4.7 andTable 4.8. It is likely that very few vectors were merged.The second variation (Algorithm 13) makes gains in terms of time, especially for

26 T. Gibson, D. P. O'Leary, L. NazarethAlg. No. m = 5 m = 10 m = 15 m = 501 0.972 0.894 0.784 0.8842 0.993 0.831 0.780 0.7833 0.955 0.870 1.071 0.8984 0.907 1.119 0.823 0.8565 1.041 0.969 0.993 1.0046 1.007 0.983 0.977 0.9957 1.088 1.010 1.179 1.6928 1.057 1.421 1.426 1.4259 1.032 1.220 1.043 1.17310 1.056 1.405 1.440 1.41211 1.062 1.050 1.062 1.20812 1.008 1.011 1.013 1.00213 1.083 1.082 0.983 0.96014 4.585 3.703 3.228 2.41715 2.318 2.583 2.700 2.63316 8.589 5.428 4.894 5.95617 1.053 1.166 1.089 1.39918 1.081 1.229 0.860 0.88519 1.130 1.423 0.915 0.92320 1.114 0.867 0.837 0.91621 1.258 0.927 0.859 0.974Table 4.8Mean time ratios for each algorithm compared to L-BFGS. Problems for which either methodfailed are not used in this mean.the larger values of m (Table 4.6 and Table 4.8). Unfortunately, this re
ects only asaving in the amount of linear algebra required. The number of function evaluationsgenerally is larger for this algorithm than L-BFGS (Table 4.5 and Table 4.7).4.4.6. Skipping Updates to H: Algorithms 14{16. If every other updateto H is skipped and a step length of one is always chosen, BFGS will terminate in2n iterations on a strictly convex quadratic function. The same holds true whendoing an exact line search. (See x3.) Unfortunately, neither property holds in thelimited-memory case. We will, however, try some algorithms motivated by this idea.The idea is that, every so often, we do not use the current s and y to update H,and instead just use the old H. There are three variations on this theme.1. Skip update on odd iterations.2. Skip update on even iterations.3. Skip update if kgk+1k > kgkk.As with the algorithms that did back-ups, the results of the skipping on odd oreven iterations were quite di�erent. Skipping on odd updates (Algorithm 14) didextremely well for every value of m on only two problems: 1 and 12. Otherwise, it didvery badly. Skipping on even updates (Algorithm 15) performed somewhat better. Itdid extremely well on problem 7 but not on problems 1 and 12. It also did better thanL-BFGS in terms of time on more occasions than Algorithm 14 (Table 4.6). Neitherdid well in terms of function evaluations, but the mean ratios for function evaluations(Table 4.7) and time (Table 4.8) were usually far greater than one.Skipping the update if the norm of g increased (Algorithm 16) did not do well atall. It only did better in terms of function evaluations for one problem for each valueof m (Table 4.5) and rarely did better in terms of time (Table 4.6). It ratios werevery bad for function evaluations (Table 4.7) and time (Table 4.8)

L-BFGS Variations 274.4.7. Combined Methods: Algorithms 17-21. We did some experimenta-tion with combinations of methods described in the previous sections.In Algorithm 17, we combined Algorithms 5 and 8: we dispose of old informationand back-up on the next iterations if the step length is greater than one. Essentiallywe are assuming that we have stepped out of the region being modeled by the quasi-Newton matrix if we take a long step and we should thus rid the quasi-Newton matrixof that information. This algorithm did well in terms of function evaluations, havingmean ratios of less than one for three values of m (Table 4.7), but it did not do aswell in terms of time.In Algorithms 19-21, we combined merging and varying m. These algorithms didwell in terms of time for larger m (Table 4.8) but not in terms of function evaluations(Table 4.7).5. Conclusions. There is a spectrum of quasi-Newton methods, ranging fromthose that require the storage of an n�n approximate Hessian (e.g. the Broyden fam-ily) to those that require only the storage of a few vectors (e.g. conjugate gradients).Limited-memory quasi-Newton methods fall in between these extremes in terms ofperformance and storage. There are other methods that fall into the middle ground;for example, conjugate gradient methods such as those proposed by Shanno [27] andNazareth [20], the truncated-Newton method [24, 6] and the partitioned quasi-Newtonmethod [13].We have characterized which limited-memory quasi-Newton methods �tting a gen-eral form (2.1) have the property of producing conjugate search directions on convexquadratics. We have shown that limited-memory BFGS is the only Broyden familymember that has a limited-memory analog with this property. We also consideredupdate-skipping, something that may seem attractive in a parallel environment. Weshow that update skipping on quadratic problems is acceptable for full-memory Broy-den class members in that it only delays termination, but that we lose the propertyof �nite termination if we both limit memory and skip updates.We have also introduced some simple-to-implement modi�cations of the standardlimited-memoryBFGS algorithm that seem to behave well on some practical problems.Appendix A. Line Search Parameters. Table A.1 give the line search pa-rameters used for our code. Note that in the �rst iteration, the initial steplength iskg0k�1 rather than 1.0.Variable Value DescriptionSTP 1.0 Step length to try �rst.FTOL 1:0� 10�4 Value of !1 in Wolfe conditions.GTOL 0.9 Value of !2 in Wolfe conditions.XTOL 1:0� 10�15 Relative width of interval of uncertainty.STPMIN 1:0� 10�15 Minimum step length.STPMAX 1:0� 1015 Maximum step length.MAXFEV 20 Maximum number of function evaluations.Table A.1Line Search ParametersAppendix B. Pseudo-Code.B.1. L-BFGS: Algorithm 0. The pseudo-code for the computation of dk =�Hkgk at iteration k for L-BFGS is given in Figure B.2. The update of H is alsohandled implicitly in this computation.

28 T. Gibson, D. P. O'Leary, L. Nazareth% Compute d_k = -H_k g_kif (sze == 0)d = -g;else% Step 0idx = 2 - (sze - oldsze);% Step 1S = [S(:,idx:oldsze),s];Y = [Y(:,idx:oldsze),y];% This is needed for Step 3 before we overwrite Stg and YtgStoldg = [Stg(idx:oldsze); s'*oldg];Ytoldg = [Ytg(idx:oldsze); y'*oldg];% Step 2Stg = S'*g;Ytg = Y'*g;% Step 3Sty = Stg - Stoldg;Yty = Ytg - Ytoldg;% Step 4rho = 1.0/Sty(sze);invU = ...[invU(idx:oldsze,idx:oldsze) -rho*invU(idx:oldsze,idx:oldsze)*Sty(1:sze-1)zeros(1,sze-1) rho];% Step 5YtY = ...[YtY(idx:oldsze,idx:oldsze) Yty(1:sze-1)(Yty(1:sze-1))' Yty(sze)];% Step 6D = [D(idx:oldsze), Sty(sze)];% Step 7gamma = Sty(sze)/Yty(sze);% Step 8p1 = invU*Stg;p2 = invU*(gamma*YtY*p1 + diag(D)*p1 - gamma*Ytg);% Step 9d = gamma*Y*p1 - S*p2 - gamma*g;endFig. B.1. MATLAB pseudo-code for the computation of d = Hg in L-BFGS. sze is the numberof s vectors available for the update this iteration and oldsze is the number of s vectors that wereavailable the previous iteration. For L-BFGS, sze is chosen as the minimum of oldsze + 1 and m(the limited-memory constant).B.2. Varying m iteratively: Algorithms 1{4. Suppose that mk denotes thenumber of (s;y) pairs to be used in the kth update. Then simply chose sze as theminimum of oldsze + 1 and mk before computing dk.B.3. Disposing of old information: Algorithm 5. If the disposal criterionis met at iteration k, set oldsze to zero and sze to one before computing dk.B.4. Backing Up in the Update to H: Algorithms 6-11. If we are toback-up at iterations k, set oldsze to the one less than the previous value of sze andset sze as the minimum of oldsze + 1 and m, as usual.B.5. Merging s and y information in the update: Algorithms 12 and 13.Merging is the most complicated variation to handle. Before we determine the newestsze and before we compute dk, we execute the pseudo-code given in Figure B.1. Wethen set oldsze to one less than the previous value of sze and set sze as the minimumof oldsze + 1 and m, as usual. We are assuming we are at iteration k, but that the

L-BFGS Variations 29newest values of s and y have not yet been added to S and Y.% Execute before choosing new value for sze and before computing dS(:,sze-1) = S(:,sze) + S(:,sze-1);Y(:,sze-1) = Y(:,sze) + Y(:,sze-1);Stg(sze-1) = S(:,sze-1)'*g;Ytg(sze-1) = Y(:,sze-1)'*g;delta = S(:,sze-1)'*Y(:,sze-1);rho = 1.0/delta;invU = ...[invU(1:sze-2,1:sze-2) -rho*invU(1:sze-2,1:sze-2)*S(:,1:sze-2)'*Y(:,sze-1)zeros(1,sze-2) rho];temp = YtY(1:sze-2,sze-1) + YtY(1:sze-2,sze);YtY = [YtY(1:sze-2,1:sze-2) temptemp' Y(:,sze-1)'*Y(:,sze-1)];D = [D(1:sze-2), delta];Fig. B.2. MATLAB pseudo-code for the merge variation. This �xes the values of the compo-nents that are used in the computation of dk.B.6. Skipping Updates to H: Algorithms 14{16. To skip the update atiteration k, set sze to oldsze. Compute Stg and Ytg before Step 0 and then skip toStep 8 and continue. REFERENCES[1] I. Bongartz, A. R. Conn, N. Gould, and P. L. Toint, ftp://thales.math.fundp.ac.be/pub/cute.[2] , http://www.rl.ac.uk/departments/ccd/numerical/cute/cute.html.[3] , CUTE: constrained and unconstrained testing environment, ACM Transactions onMathematical Software, 21 (1995), pp. 123{160.[4] A. Buckley, Test functions for unconstrained minimization, Tech. Report TR 1989CS-3,Mathematics, statistics and computing centre, Dalhousie University, Halifax (CDN), 1989.Cited in [1, 2, 3].[5] A. Conn, N. Gould, M. Lescrenier, and P. Toint, Performance of a multifrontal scheme forpartially separable optimization, Tech. Report 88/4, Department of Mathematics, FUNDP,Namur, Belgium, 1988. Cited in [1, 2].[6] R. S. Dembo and T. Steihaug, Truncated-Newton algorithms for large-scale unconstrainedoptimization, Mathematical Programming, 26 (1983), pp. 190{212.[7] J. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization andNonlinear Equations, Series in Computational Mathematics, Prentice Hall, 1983.[8] R. Fletcher, An optimal positive de�nite update for sparse Hessian matrices, NumericalAnalysis NA/145, University of Dundee, 1992. Cited in [1, 2].[9] T. Gibson, D. O'Leary, and L. Nazareth, http://www.cs.umd.edu/users/oleary/LBFGS/index.html, 1996.[10] P. E. Gill and W. Murray, Conjugate-gradient methods for large-scale nonlinear optimiza-tion, Tech. Report SOL 79-15, Systems Optimization Laboratory, Department of Opera-tions Research, Stanford University, Stanford, California, 94305, 1979.[11] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins UniversityPress, Baltimore, 2nd ed., 1989.[12] N. Gould. Private communication to authors of [3]. Cited in [1, 2].[13] A. Griewank and P. L. Toint, Partitioned variable metric updates for large structured opti-mization problems, Numer. Math., 39 (1982), pp. 119{137.[14] H. Khalfan, R. Byrd, and R. Schnabel, A theoretical and experimental study of the sym-metric rank one update, Tech. Report CU-CS-489-90, Department of Computer Science,University of Colorado at Boulder, 1990.[15] D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization,Mathematical Programming, 45 (1989), pp. 503{528.[16] D. G. Luenberger, Linear and Nonlinear Programming, Addison Wesley, 2nd ed., 1984.

30 T. Gibson, D. P. O'Leary, L. Nazareth[17] J. J. Mor�e, B. S. Garbow, and K. E. Hillstrom, Testing unconstrained optimization soft-ware, ACM Trans. on Math. Software, 7 (1981), pp. 17{41.[18] S. Nash, Newton-type minimization via the Lanczos process, SIAM Journal on NumericalAnalysis, 21 (1984), pp. 770{788.[19] S. G. Nash and J. Nocedal, A numerical study of the limited memory BFGS method and thetruncated-Newton method for large scale optimization, SIAM J. Optimization, 1 (1991),pp. 358{372.[20] L. Nazareth, A relationship between BFGS and conjugate gradient algorithms and its impli-cations for new algorithms, SIAM Journal on Numerical Analysis, 16 (1979), pp. 794{800.[21] , On the BFGS method. Univ. of California, Berkeley, 1981.[22] J. Nocedal, Updating quasi-Newton matrices with limited storage, Mathematics of Computa-tion, 35 (1980), pp. 773{782.[23] , Theory of algorithms for unconstrained optimization, in Acta Numerica (1991), Cam-bridge Univ. Press, 1992, pp. 199{242.[24] D. P. O'Leary, A discrete Newton algorithm for minimizing a function of many variables,Mathematical Programming, 23 (1982), pp. 20{33.[25] S. Oren, Self-scaling variable metric algorithms, Part II: implementation and experiments,Management Science, 20 (1974), pp. 863{874. Cited in [1, 2].[26] M. J. D. Powell, Quadratic termination properties of minimization algorithms I. Statementand discussion of results., J. Inst. Maths Applics, 10 (1972), pp. 333{342.[27] D. F. Shanno, Conjugate gradient methods with inexact line searches, Math. of Oper. Res., 3(1978), pp. 244{256.[28] P. Toint, An error in specifying problem CHNROSNB. Cited in [1, 2].[29] , Some numerical results using a sparse matrix updating formula in unconstrained opti-mization, Mathematics of Computation, 32 (1978), pp. 839{852.[30] , Test problems for partially separable optimization and results for the routine PSPMIN,Tech. Report 83/4, Department of Mathematics, FUNDP, Namur, Belgium, 1983. Citedin [1, 2, 3].

