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Exploiting Monotone Convergence Functionsin Parallel ProgramsWilliam Pugh, Evan Rosser, and Tatiana ShpeismanDepartment of Computer ScienceUniversity of Marylandfpugh,ejr,murkag@cs.umd.eduAbstract. Scienti�c codes which use iterative methods are often di�-cult to parallelize well. Such codes usually contain while loops whichiterate until they converge upon the solution. Problems arise since thenumber of iterations cannot be determined at compile time, and tests fortermination usually require a global reduction and an associated barrier.We present a method which allows us avoid performing global barri-ers and exploit pipelined parallelism when processors can detect non-convergence from local information.1 IntroductionMany scienti�c programs solve problems iteratively; that is, they compute anapproximation to a solution, check if the approximation is su�ciently accurate(check for convergence), and conditionally perform another iteration.In most instances, the loops inside the while are parallel, with data onlyneeding to be communicated from one iteration to the next. However, the conver-gence test requires a global reduction and barrier, which can impose substantialperformance penalties on some systems.In a few cases, such as when a natural ordering is used in a relaxation al-gorithm, the inner loops carry dependencies and cannot be run in parallel. Toexploit parallelism in these loops, a number of researchers [1,4,5,2,7,3] have pro-posed speculative execution: a wavefront technique is used to execute the programin parallel, despite the fact that all loops carry dependences. Since this ignoresthe termination condition of the while loop, iterations of the while loop areexecuted speculatively until each iteration is completely executed and it can bedetermined that the loop will continue past that iteration.For both of these situations, we propose that we recognize and exploit a com-mon pattern: that the convergence condition depends monotonically on lookingat more and more data: if, from looking at a subset of the data we can determinethat the while loop has not terminated, looking at more data will not changethat decision.In particular, each processor can check to see it can determine that a whileloop continues just from looking at local data. If so, it can start on the nextiteration without waiting for the global reduction to complete. Figure 1 shows



the advantages conferred by eliminating this dependency. In programs where thebody of the while loop can be executed in parallel, this allows us to avoid thepenalties imposed by a global barrier. In the case where the body of the whileloop contains dependences, this can often allow us to obtain doacross/pipelinedparallelism.If this idea is to be exploited, it is important that it be provided or supportedby the compiler. Unless the program is written in explicitly parallel form, thereis no way for a user to write a program that computes a reduction on just alllocal data, and then goes on to compute a global reduction if needed.No cross-processor dependenceswithin an iteration of the whileloop Cross-processor dependenceswithin an iteration of the whileloop
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Fig. 1. Advantages of removing dependency on global reductionIn this paper, we discuss:{ What is required to recognize such patterns{ What code must be generated to exploit such patterns{ Experimental studies for the benchmarks SOR with Chebyshev accelerationand tomcatv.



2 Exploiting local informationIn checking for convergence, the costs involved are the wait incurred by all pro-cessors while the result is computed, and that of the communication and syn-chronization associated with the reduction. To avoid these costs, we would liketo do as much computation as possible on the local processor, and we would liketo determine as quickly as possible the outcome of the convergence check. Specif-ically, if any processor could determine locally that the computation would notconverge at this iteration, it could continue execution without fear that resultscould not be used. In this section, we �rst describe how to detect opportunitiesfor this optimization; then we describe how we transform the program to takeadvantage of these properties.2.1 Detecting monotone convergence functionsThere are two aspects to detecting when our optimization can be applied. First,we need to detect the fact that the program has the loop structure that makesour optimization possible. Second, we need to determine if the function thatchecks for convergence has the monotonicity property we require.Since it is a well-studied problem, we assume that any while loops that existimplicitly (with if statements and gotos) have already been recognized. Rec-ognizing the pattern is then straightforward. We look for a pattern in whichthere is an outermost while loop, followed by a nest of for loops, and �nallycontaining a global reduction, with a scalar data dependence to the while looptest.The second aspect is detecting that the condition checking while loop termi-nation can be computed locally with only a portion of the data. In other words,adding more data from other processors will not change the result of the func-tion, and the result of the condition will change only once, from false to true.We wish to detect a number of common cases that can be recognized withoutextensive analysis. One condition which meets this criterion is checking if x � y,where x is the result of a reduction that is non-decreasing as more data is added,and y is a value that can be computed locally and is identical on all processors.In iterative codes, this pattern exists when checking to see if the current solutionexceeds the acceptable error. Analogously, x � y works when x is the result of anon-increasing function. A conjunction or disjunction of such conditions is alsoacceptable, as is a conjunction with a condition on the maximum number ofiterations to perform (or any other scalar condition that can be computed oneach processor from local data). Since this pattern is common in iterative codes,recognizing this pattern is su�cient for a number of programs.Now we must characterize functions which are non-decreasing or non-increas-ing:{ Sum of non-negative numbers (as from absolute value or square){ Maximum reductionsNon-increasing:



{ Minimum reductionsIf x1; x2 are results of non-decreasing (non-increasing) functions, the followingare non-decreasing (non-increasing):{ px1, if x1 is known to be positive{ x1 � x2, if x1 and x2 both positive (negative){ x1 � y or x1=y, where y is non-negative and invariant in the while loopAs an example, here are three commonly-used non-decreasing norms that fallinto this category:{ jjxjj1 (in�nity norm) : maxni=1 jxij{ jjxjj2 (second norm) : pPni=1 x2i{ jjxjj1 (�rst norm) : Pni=1 jxijIt is feasible to detect these patterns in many real codes. In more compli-cated codes, a user directive might be useful to inform the compiler that theoptimization is possible.2.2 Changes to the codeIn this section, we describe how the modi�ed program will proceed on eachprocessor.New variables In order to take advantage of partial information about con-vergence, we need to keep track of several quantities in addition to the originalprogram variables. These variables fall into two categories: �rst, those that recordprogress on the each processor, and those that record progress across all proces-sors. One processor is designated as the master processor, which will handle theglobal reduction.Each processor must keep track of how many iterations w of the while loopit has executed. This is necessary in order to provide the basis for processors tocompare their relative progress through the program.The master processor handles the remaining variables. First, it must recordinformation about the global progress. If it is known that iteration w of thewhile loop will be executed, then it follows that all iterations w0 < w will alsobe executed. Therefore, the designated processor only need to know the numberof wmax, the last iteration that is known not to converge. Each local processorkeeps a local copy of this variable, local wmax.The master processor must also combine partial reduction results. For iter-ation wmax, some processors may have completed their portion of the compu-tation, but found that their portion of the reduction was not enough to provenon-convergence. The master processor accumulates results from each processorthat has completed iteration wmax, to determine if a combination of individualcontributions can prove non-convergence. In addition, on the last iteration, theaccumulation represents the result of the global reduction once all processorshave �nished.



for(n = 1; n<= MAXITS; n++)rnorm = 0.0;jsw = 1;for(ipass=1; ipass<=2; ipass++)lsw = jsw;for(j = 2; j < jmax; j++)for(l = lsw+1; l<jmax; l+=2)resid=...rnorm += fabs(resid);u[j][l] -= omega*resid/-4;lsw=3-lsw;jsw = 3-jsw;omega=...;if(rnorm < EPS) return;

for(n = 1; n<= MAXITS; n++)local_rnorm = 0.0;jsw = 1;for(ipass=1; ipass<=2; ipass++)lsw = jsw;for(j = 2; j < jmax; j++)for(l = local_min+lsw+1;l<local_max;l+=2)resid=...local_rnorm += fabs(resid);u[j][l] -= omega*resid/-4;lsw=3-lsw;jsw = 3-jsw;omega=...;// Check termination locally.w = n;if(! w < local_w_max)send(master_proc, w, local_rnorm)if (! local_rnorm < EPS)// Can't proceed on local// informationreceive(master_proc, new_w);if (new_w == TERMINATE)return;elselocal_w_max = new_w;Fig. 2. Pseudo-code for SOR with Chebyshev acceleration, before and after transfor-mationChecking non-convergence In this section, we describe how an individualprocessor decides whether it can safely proceed to the next iteration withoutwaiting for the result of the global reduction.Each processor p can proceed without waiting if local wmax > wp + 1; thatis, another processor has already detected non-convergence at iteration w, andthat information was sent to p in a previous iteration.Otherwise, the processor performs its local portion of the reduction. If itindicates non-convergence, it sends a pair of values (w; local reduction) to themaster processor, and continues to the next while iteration.If the local reduction does not allow p to continue, it sends the values asabove, and waits for a reply from the master processor. The reply will be eitheran iteration number, indicating that it is safe to go on, or a message that theprogram should terminate. If the response indicates non-convergence, the pro-cessor p saves the iteration number into local wmax, allowing it to avoid checkingagain until wp = local wmax.



The master processor operates as follows. Upon receiving a pair of values(wp; reductionp) from a processor p, it checks the global progress as indicatedby wmax. If wp < wmax, this message does not help prove more progress throughthe program. If reductionp shows that p was not able to prove non-convergenceby itself, p must be waiting for a reply, and wmax is returned; reductionp isdiscarded as unnecessary. If wp = wmax, then the reductionp portion is addedinto the growing global reduction. If the most recent contribution is enough todetect non-convergence, then the master processor sets wmax to wp + 1, andsends it to all waiting processors to indicate that they can proceed (including pif reductionp was not su�cient by itself to prove this fact). Finally, if the masterprocessor still cannot tell that the loop will continue after wmax, it adds p to thelist of waiting processors and waits for more data.If p is the last processor to report, and the master processor �nds that thecomputation has converged, the master processor sends a message indicatingtermination to all processors. The partial reduction now contains the value forthe global reduction.An improvement to this scheme is to delay performing reduction communi-cation between the worker processors and the master processor until at least oneprocessor needs help in proving non-convergence. At that point, the processor inquestion sends a request to the master, which instructs all other processors tobegin sending reduction messages. At each iteration, a processor probes to seeif such a message from the master processor has arrived.Communication between individual processors is not a�ected by this opti-mization.An example of the transformed code appears in Figure 2. The code is adaptedfrom [8].3 Example: SORIn this section we present an example program that can be parallelized usingour method.The major program class arises from solving partial di�erential equation(PDE) boundary value problems using �nite-di�erence methods [8,6]. For exam-ple, consider solving a partial di�erential equation of the following form:f1(x; y) � @u2=@x2 + f2(x; y) � @u2=@y2 + f3(x; y) � @u=@x+f4(x; y) � @u=@y + f5(x; y) � u(x; y) = f0(x; y) (1)Given the open region 
 in R2 and a function g(x; y), the problem is to �ndsuch a function u that is continuous on the closure of 
, satis�es Equation 1 in
, and equals g on the boundary.Discretizing this problem on the N �N mesh using �nite-di�erence methodleads to the following discrete problem:



aj;l � uj+1;l + bj;l � uj�1;l + cj;l � uj;l+1 + dj;l � uj;l�1 + ej;l � uj;l + fj;l = 0;for j = 2; N � 1 and l = 2; N � 1uj;l = gj;l; (2)for j = 1 or j = N or l = 1 or l = NAs a particular example of PDE boundary value problem we shall considersolving Laplace's equation @u2=@x2 + @u2=@y2 = 0 on the region 
 = f(x; y) :0 < x < 1; 0 < y < 1g with the Dirichlet boundary conditions de�ned byfunction g(x; y) = sinh(3�y) � sinh(3�y) � 10�3 [6].// Set the initial guess for uj;lfor l = 1 to N dofor j = 1 to N doif j = 1 or j = N or l = 1 or l = Nthenuj;l = g( j�1N ; l�1N )elseuj;l = 0endforendfor// Iterate until the convergence criteria is metfor i = 1 to MAXITS dornorm = 0// Update values of uj;l using red-black orderingjsw = 1for ipass = 1 to 2 dolsw = jswfor j = 2 to N � 1 dofor l = lsw + 1 to N � 1 by 2 dorj;l = uj+1;l + uj�1;l + uj;l+1 + uj;l�1 � 4uj;lrnorm = rnorm + fabs(rj;l)uj;l = uj;l � ! � rj;l=� 4endforlsw = 3� lswendforjsw = 3� jsw// adjust over-relaxation parameter !! = adjust(!)endforif rnorm < " then returnendforerror (\Iteration number limit exceeded")Fig. 3. Algorithm for solving Dirichlet problem using SOR



After discretization we get a discrete problem of type 2 with the coe�cientsaj;l = bj;l = cj;l = dj;l = 1; ej;l = �4 and fj;l = 0.This problem can be solved iteratively using one of the relaxation meth-ods. We shall consider solving it using Successive Over-relaxation (SOR) withChebyshev acceleration [8]. The algorithm is shown in Figure 3.At each iteration the new values ui+1j;l are computed from the old valuesuij;l,uij+1;l,uij�1;l, uij;l+1 and uij;l�1. The values uj;l are updated in so called black-red order, when, �rst all uj;l s:t: j + l is even (\black squares of the checker-board") are processed, and then all uj;l s:t: j + l is odd (\red squares") areprocessed.The algorithm stops when the 1-norm of the residual r becomes su�cientlysmall: krik1 � ".4 ResultsWe performed experiments on several example codes to determine the e�ec-tiveness of this technique. We collected statistics based on uniprocessor runs todetermine how often the technique may be useful, and we applied the techniqueby hand to two programs.We ran an instrumented version of the SOR sample program on a uniproces-sor machine to examine its convergence behavior.We assumed a data distributionthat distributes columns of the u array over 16 processors.We modi�ed the globalreduction to perform each of the 16 reductions that would take place on localprocessors, then examined how useful the information would be in determiningnon-convergence locally.We found that for the normal ordering, the sample code converged in 1141iterations of the while loop. For the �rst 906 iterations, or 79.4%, all 16 pro-cessors were able to detect that the computation had not yet converged frompurely local information. A majority of processors could determine this for the�rst 1026 iterations, or 89.3% of the total iterations.For the red-black ordering, the sample code converged in 1028 iterations, andall processors could determine non-convergence locally for the �rst 902 iterations,or 87.7%. A majority of the processors could detect non-convergence for 937iterations, or 91.1%.So, for the greatest part of the computation, our optimization allows theprogram to avoid 90% of the global reductions (and the barriers associated withthem). Furthermore, on the normal ordering, the optimization would allow us touse doacross-style parallelism for most of the program, where little parallelismwas previously available.We also examined the benchmark program tomcatv from the SPEC bench-marks. This program computes the in�nity norm over two arrays, and exits whenthe norm falls below a value eps. The code does not converge given the test data,and runs for 100 iterations; thus, running it demonstrates the maximum poten-tial gain from avoiding the reduction, and does not measure performance for theportion of computation closer to convergence.



#Processors IP User spaceOptimized Unoptimized Optimized Unoptimized2 189 181 212 1804 97 95 130 968 53 57 66 4912 40 55 43 3316 37 73 36 25Table 1. Execution times in seconds for tomcatv (size 1025) on the SP2We implemented a straightforward message-passing version of tomcatv, plusseveral latency-tolerating transformations, to produce a baseline version. Wethen applied our transformation to that program, and compared the two.Experiments were performed on a 16-processor IBM SP2, using the MPIFlibrary for communications. We �rst examined which processors could determinenon-convergence in isolation. For a problem size of n=257, using any number ofprocessors up to 16, all processors can determine convergence in every iteration.For a problem size of n=513, running on 16 processors, the last processor cannotdetect non-convergence in iterations 36 - 100, and must communicate.Table 1 shows results of running tomcatv with problem size 1025 undertwo di�erent communications libraries on the SP2. Using the IP protocol forcommunication, which has a higher latency and overhead, the transformationimproved performance, particularly on larger numbers of processors. Under thefaster user space (US) protocol, however, the transformed code ran slower thanthe original. Contrary to our expectations, using looser synchronization to permitoverlap resulted in worse performance than using barriers: when we inserted abarrier in the transformed code, it removed any opportunity for overlap, butimproved performance. We speculated on the cause of this behavior, but were notable to conclusively determine the cause. Since the transformation is predicatedon the assumption that removing barriers increases performance, it should notbe used on systems where that assumption does not hold.We also implemented a message-passing parallel version of SOR. The re-sults are displayed in Figure 4. The best speedup on 15 processors (including aserver process) was 5.8. The last portion of the computation, where reductioncommunication is required, is at least partially sequentialized. To examine thee�ect of that portion of the computation, we ran versions of the program thatterminate after 1000 iterations, before any processor has to request assistancefrom the server (labeled as 1k on the graph). That version showed speedups to7.7 on 15 processors. Since the version which computes until convergence comesreasonably close to the performance of the version which performs no reduc-tions, improvements in performance are likely to come in areas unrelated to thereduction and convergence computation.We also examined some more complicated applications to see what wouldbe required to apply the transformation. We looked at the serial version of bt,one of the sample applications from the NAS Parallel Benchmarks. In this code,
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Fig. 4. Speedups for SOR on 16-processor SP2in the badi subroutine, a vector of �ve norms is computed, and convergenceis based upon all �ve meeting the convergence criteria. In addition, the com-putation of the norms takes place across a number of procedures. In order tobe e�ective as an automatic transformation on this code, it would probably benecessary to both recognize more complicated convergence functions, and use in-terprocedural analysis to determine both possibility and pro�tability of applyingthe optimization; alternatively, users could supply directives to request it.5 ConclusionWe have presented a method for reducing global reductions and increasing op-portunities for doacross-style parallelism in certain kinds of iterative programs.The situation we have described, a monotone convergence test, arises frequentlyin real numerical applications. The techniques we have described allow us toavoid the cost of a barrier synchronization for most of the computation, untilglobal information is necessary to determine if the computation has converged.Our technique also allows us to provide e�cient doacross/pipelined paral-lelism when the body of a while loop contains cross-processor dependencies. Webelieve the technique we propose is more practical than speculative execution[1,4,5,2,7,3].



In a language like HPF, the transformation we describe has to be performedby the compiler; there is no way for the user to express a reduction over localdata and make a decision based on that.In the experiments we performed, for most of the computation, local dataalone was su�cient to determine that the algorithm had not yet converged. Wealso found that the technique can improve performance for both the case withdependences and without. On systems where removing barriers may decreaseperformance, it should not be applied.In computations with convergence tests, other transformations are possible(for example, checking for convergence only every ten iterations). While thesetransformations may be useful, they can change the results of some computationsand we believe they should not be done without the users involvement andconcurrence.References1. J.-F. Collard. Space-time transformation of while-loops using speculative execution.In Proc. of the 1994 Scalable High Performance Computing Conf., pages 429{436,Knoxville, TN, May 1994. IEEE.2. J.-F. Collard. Automatic parallelization of while-loops using speculative execution.Int. J. of Parallel Programming, 23(2):191{219, April 1995.3. M. Griebl and J.-F. Collard. Generation of synchronous code for automatic paral-lelization of while loops. In N.N., editor, EuroPar 95, Lecture Notes in ComputerScience. Springer-Verlag, 1995.4. M. Griebl and C. Lengauer. On scanning space-time mapped while loops. InB. Buchberger and J. Volkert, editors, Parallel Processing: CONPAR 94 { VAPPVI, Lecture Notes in Computer Science 854, pages 677{688. Springer-Verlag, 1994.5. M. Griebl and C. Lengauer. On the space-time mapping of WHILE-loops. ParallelProcessing Letters, 4(3):221{232, September 1994.6. David Kincaid and Ward Cheney. Numerical Analysis. Brooks/Cole PublishingCompany, 1991.7. C. Lengauer and M. Griebl. On the parallelization of loop nests containing whileloops. In N. N. Mirenkov, Q.-P. Gu, S. Peng, and S. Sedukhin, editors, Proc.1st Aizu Int. Symp. on Parallel Algorithm/Architecture Synthesis (pAs'95), pages10{18. IEEE Computer Society Press, 1995.8. William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.Numerical Recipes in C: The Art of Scienti�c Computing. Cambridge UniversityPress, second edition, 1992.


