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With its capabilities like elimination of intersymbol interference, intercell interfer-

ence averaging, scalability and high bandwidth efficiency OFDMA is becoming the basis

for current wireless communication technologies. In this dissertation we study the prob-

lem of multiple access and resource allocation for OFDMA-based cellular systems that

support users with various quality of service (QoS) requirements.

In Chapters 2 and 3 of the dissertation, we consider the problem of downlink trans-

mission (from base station to users) for proportional fairness of long term averaged re-

ceived rates of data users as well as QoS for voice and video sessions. Delay requirements

of real time sessions are converted into rate requirements at each frame. The base station

allocates available power and bandwidth to individual users based on received rates, rate

constraints and channel conditions. We formulate and solvethe underlying constrained

optimization problem and propose an algorithm that achieves the optimal allocation. In

Chapter 3, we obtain a resource allocation scheme that is simpler but achieves a perfor-

mance comparable to the optimal algorithm proposed in Chapter 2. The algorithms that



we propose are especially intended for broadband networks supporting mobile users as

the subchannelization scheme we assume averages out the fading in subchannels and per-

forms better under fast fading environment. This also leadsto algorithms that are simpler

than the ones available in the literature.

In Chapter 4 of the dissertation we include relay stations tothe previous model. The

use of low-cost relay stations in OFDM based broadband networks receives increasing at-

tention as they help to improve the cell coverage. For a network supporting heterogeneous

traffic we study TDMA based subframe allocation for base and relay stations as well as

joint power/bandwidth allocation for individual sessions. We propose an algorithm again

using the constrained optimization framework. Our numerical results prove that our mul-

tihop relay scheme indeed improves the network coverage andsatisfy QoS requirements

of user at the cell edge.

In the last Chapter, we deviate from the previous chapters and consider an OFDMA

based system where the subchannels experience frequency selective fading. We investi-

gate a standard subchannel allocation scheme that exploitsmultiuser diversity by allocat-

ing each subchannel to the user with maximum normalized SNR.Using extreme value

theory and generating function approach we did a queueing analysis for this system and

estimated the QoS violations through finding the tail distribution of the queue sizes of

users. Simulation results show that our estimates are quiteaccurate and they can be used

in admission control and rate control to improve the resource utilization in the system.
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Chapter 1

Introduction

Design of wireless systems involve finding solutions to somelink-levelandsystem

levelchallenges. Link-level challenges are primarily caused byphysical medium, which

are the channel fading (varying with time and frequency) andmultiple access interference.

A variety of modulation and coding schemes have been previously proposed in order to

overcome these challenges. On the other hand system level challenges are caused by

some specific properties of the wireless system, e.g. numberand types of users using the

network, Quality of Service requirements of different types of traffic. In this thesis we

will mainly concentrate on resource allocation in wirelessmultiple access which requires

joint consideration of these link and system level challenges.

1.1 Background and Related Work

Resource allocation and scheduling is of paramount importance in wireless net-

works, where the resources (power, bandwidth, time) are scarce and channel conditions

like noise, fading and shadowing are much more severe when compared to their wired

counterparts.

What makes this resource allocation problem more challenging and interesting is

that the available resources are shared by users, which are subject to statistically differ-

ent channel conditions and which demand different types of services. This requires to
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change the classical layered approach to network design andanalysis, and adopt a new

design paradigm, which is calledcross-layering. One of the most common examples

is performing medium access control (MAC) layer functions by taking into account the

instantaneous and long term channel conditions, which is a physical layer quantity. In

fact, using the channel information it is possible to increase throughput by scheduling at

each time slot, the user with the best channel conditions. This is referred to asmultiuser-

diversity[1], which increases the throughput gain as the number of users increases. The

scheduling schemes that exploit this diversity are referred to asopportunistic schedulers

[2]. Recent high speed communication technologies 1× EV-DO and High Speed Packet

Data Access (HSPDA) are based on this phenomenon.

Opportunistic scheduling schemes such as 1×EV are initially designed to support

data services. Data user with the best channel condition is scheduled at each time slot.

This brings up the issue offairnessbecause users located further away from the Base

Station have much less chance of having the best channel. To solve this problemPro-

portional Fair (PF) schedules are proposed, which look at the ratio of current achievable

rates and long term received rates. This provides a fair balance between spectral efficiency

(bits/sec/Hz) and fairness. High Data Rate (HDR) technology [3] for data communica-

tions is based on this technique.

Ever growing demand for online multimedia applications requires scheduling schemes

that achieve much higher rate and quality of service (QoS) for various types of services.

Various applications such as Web Browsing, FTP, VoIP, VideoStreaming and even in-

teractive online gaming have much different traffic loads and delay requirements. Most

commonly, the transmitter (e.g. Base Station (BS)) allocates separate buffers for incom-
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ing traffic belonging to different types of applications. While scheduling, the buffer oc-

cupancy level and delay of the head-of-line packet (which are originally Network Layer

parameters) are taken into account. This is another examplefor cross-layering.

In this work we will study scheduling of heterogeneous traffic for multiple access

systems that have multichannel transmission capability. By using multichannel transmis-

sion techniques a user can get a number of parallel channels depending on its channel

condition and rate requirements and transmit without interfering with other users. Mul-

tilevel Modulation and Coding Schemes (MCS) are also employed in order to cope with

multipath fading and achieve high data rate and low bit errorrates (BER). For example

WCDMA based systems such as (HSDPA) use multiple orthogonalspreading sequences

and OFDMA based system such as WiMax and Long Term Evolution (LTE) use multiple

orthogonal subcarriers. In this work we consider OFDMA as the multicarrier transmis-

sion scheme. Within OFDMA framework, the resources allocated to the users come in

three dimensions: time slots, frequency and power. This requires the scheduler to operate

with higher degree of freedom and more flexibility, and potentially higher multiplexing

capacity. This also makes the notion of resource fairness obsolete and makes the prob-

lem more involved. We plan to develop scheduling algorithmsfully taking advantage of

the degree of freedom inherent to OFDMA system. Below, we briefly explain OFDMA

technology and its recent applications. This will also helpto explain the motivation in

choosing this transmission scheme in this thesis.

3



1.1.1 OFDMA Technology and its Advantages

OFDM is a digital modulation scheme in which a wideband signal is split into a

number of narrowband signals. Because the symbol duration of a narrowband signal is

larger than that of a wideband signal, the amount of time dispersion caused by multipath

delay spread is reduced. OFDM is a special case of multicarrier modulation in which

multiple user symbols are transmitted in parallel using different subcarriers with overlap-

ping frequency bands that are mutually orthogonal. This technique implements the same

number of channels as conventional FDM with a much reduced bandwidth requirement.

In conventional FDM, adjacent channels are well separated using a guard interval. In

order to realize the overlapping technique, interference between adjacent channels must

be reduced. Therefore, orthogonality between subcarriersis required. In OFDM each

subcarrier has an integer number of cycles within a given time interval , and the number

of cycles by which each adjacent subcarrier differs is exactly one. This property ensures

OFDM subcarrier orthogonality. The subcarriers are data modulated and are fed through a

serial- to-parallel conversion process. Each symbol is assigned a subcarrier and an inverse

DFT (IDFT) performed to produce a time domain signal.

OFDM deals with multipath delay spread by dividing the totalbandwidth B into

K narrowband channels where K is the number of subcarriers. Orthogonal Frequency

Division Multiple Access (OFDMA) is an extension of OFDM, where multiple users can

transmit at the same time by sharing the subcarriers. In order to make this resource shar-

ing more practical subcarriers are grouped intosubchannels. There are various ways to

group the subcarriers, i.e.subchannelizationmethods. There are two classes of subcar-
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Figure 1.1: OFDM Diagram

rier grouping modes,distributedandadjacent, which are roughly illustrated in figure 1.2.

In general, distributed subcarrier permutations perform very well in mobile applications

while adjacent subcarrier permutations can be properly used for fixed, portable, or low

mobility environments [4].Adjacentsubchannelization (AMC) uses adjacent subcarri-

ers to form subchannels. When used with fast feedback channels it can rapidly assign

a modulation and coding combination per subchannel. On the other handdistributed

subchannelization (PUSC, FUSC) employs full-channel diversity by distributing the al-

located subcarriers to subchannels using a permutation mechanism. By this way, a user

observes the same channel quality in all subchannels. Frequency diversity minimizes the

performance degradation due to fast fading characteristics of mobile environments. It has

been previously observed that adjacent subchannelizationprovides more capacity (∼ 10%

[5],[6], [7]) than distributed methods because of the averaging effect. On the other hand

especially for mobile systems distributed methods providebetter channel estimation and
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easiness of allocation in a fast fading environment. Hence,distributed subchannelization

is the method that we used in this work.

subchannel 1:green
subchannel 2: red
subchannel 3: black

subchannel 1:green
subchannel 2: red
subchannel 3: black

a) PUSC

b) Band AMC

Figure 1.2: PUSC and AMC subchannelization example in a 3-subchannel OFDMA sys-

tem is shown.

Advantages of OFDM with respect to its counterparts (e.g CDMA) can be sum-

marized as follows. By using narrowband signals OFDM can combat multipath delay

spread more effectively. The reason is that the wavelength of a narrowband signal is

much greater than a typical multipath delay spread. This makes OFDM successful in

Non-Line-of-Sight (NLOS) communication systems. Moreover, OFDM distributes the

information across several subcarriers, with the use of forward error correction (FEC), if

an error occurs in one subchannel, those errors are recovered by FEC. OFDM also has

better spectral efficiency since intersymbol interferenceis eliminated by using the cyclic

prefix. Therefore OFDM also doesn’t require channel equalization. Besides OFDMA has

the scalability advantage through using different FFT sizes without changing subcarrier
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spacing (521, 1024, 2048 FFT). By this way, increasing system bandwidth doesn’t affect

multipath fading.

1.1.1.1 WiMax Technology

One of the reasons that we studied OFDMA based scheduling is its applications in

recently developed technologies like WiMax. The system considered in this work is moti-

vated by the recent IEEE 802.16 standard that defines the air interface and medium access

control (MAC) specifications for wireless metropolitan area networks. Such networks in-

tend to provide high speed voice, data and on demand video streaming services for end

users. IEEE 802.16 standard is often referred to as WiMax andit provides substantially

higher rates than cellular networks. Besides it eliminatesthe costly infrastructure to de-

ploy cables, therefore it is becoming an alternative to cabled networks, such as fiber optic

and DSL systems [8]. Although originally the standard [8] isfor communication in 11-66

GHz range, more recent updates on this standard allows communication in 2-11 GHz fre-

quency range, which is more suitable for non line of sight (NLOS) communications [9],

[10].

WiMax networks are designed for point to multipoint communications, where a

base station (BS) transmits to and receives from multiple subscriber stations (SS) in a

cellular coverage area of typical size around 5miles. A SS can be either an end user itself,

or be the backbone connection of a WLAN. We consider the end user scenario since it

is more interesting because of user mobility and channel fading. The framework that we

adopt in our work is mostly in line with the Mobile WiMax standard (IEEE 802.16e) that
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is updated as of March 2006 [11], [12]. In Korea a system namedas WiBro is designed

according to this standard and it will be launched commercially in the middle of 2006

[13]. Initially we focus on the traffic from BS to SSs (downlink).

In this thesis our goal is to find multicarrier fair schemes that also satisfy hetero-

geneous stability and delay requirements. We propose resource allocation algorithms for

OFDMA-based downlink and uplink communications. These twodirections of commu-

nications reveal different trade-offs, which are worth investigating separately.

1.1.2 Downlink Communications

Downlink means the transmission from the base station to users in a cellular area.

Main constraints in OFDM based downlink transmission is thetotal power and bandwidth

of the base station. Fair downlink scheduling schemes with QoS considerations were

proposed and studied previously for single carrier systems. Only very recently in [14],

[15], [16], [17], [18], proportional fair scheduling was studied for multicarrier systems.

However, in [15] it is studied without power control and no algorithm was proposed to

find the optimum bandwidth allocation. The work in [14] also has a proportional rate

constraint, where the rates of individual users has to be in certain proportions in order

to maintain fairness. In [16] and [18] proportional fair scheduling is addressed for a

single time instant, rather than the long term received rates. Besides in all of these works

supporting real time traffic with QoS requirements was not addressed. The scheduling

rules do not apply sufficiently to different QoS requirements and heterogeneous traffic.

We have to note that the work in [19] jointly considers data, voice and video traffic,
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however they do not consider power control and they don’t distinguish between best effort

traffic and real time traffic.

A major drawback of proportional fair scheduling is that it assumes there are infinite

packets to be transmitted at time zero and no packet arrivals. For FTP sessions, it is

reasonable to assume that large files are ready transmit at the beginning of a session, which

is not the case for real time applications such as VoIP and Video Streaming. Different real

time applications can have different arrival rates, therefore average rate in the long run

should be larger than the arrival rate for each session in order to maintain stability. In

[20] it was shown by some examples that Proportional Fair scheduling does not guarantee

stability of the queues in some situations that can actuallybe stabilized. Therefore our

goal is to improve Proportional Fair scheduling in order to maintain stability. This could

be done by putting constraints on transmission rates. Another drawback of proportional

fair scheduling is that it does not support heterogeneous QoS requirements. For example

in VoIP and Video Streaming applications there is a delay requirement for each packet.

If a packet can not be transmitted in a certain time interval then that packet has to be

dropped, which degrades the quality of real time sessions. In proportional fair scheduling

there is a long term rate requirement, while in real time sessions there is a short term rate

requirement.

OFDMA based resource allocation has been studied also without the fairness and

QoS objectives in [21], [22], [23], [24], [25], [26]. The work [21] and [24] propose sub-

carrier and bit allocation algorithms that satisfy rate requirements of users with minimum

total power. The papers [22] and [25] address maximizing total throughput subject to

power and subcarrier constraints and do not address real time traffic. The authors in [23]
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are interested in maximizing the worst user’s capacity. Cendrillon et. al. in [26] maximize

a weighted sum of users’ capacities which gives a feeling of fairness however it doesn’t

necessarily provide proportional fairness.

Uplink means transmission from users to base station in a cellular network. This

brings different trade-offs than downlink transmission. First of all unlike base stations,

mobile devices carry limited-sized power sources and thereis an individual power con-

straint unlike downlink communications. OFDMA-based resource allocation in uplink

systems were studied in [27], [28] and [29]. In [27] total capacity was maximized subject

to individual power constraints, while in [28] and [29] sum-power was minimized subject

to individual rate constraints.

There are also some papers that study other multicarrier transmission schemes such

as multicode CDMA. For example [30] study a fair queueing scheme with time varying

weight assignment. Weights are proportional to the channelconditions divided by long

term received rates. In [31] throughput maximizing power and spreading code allocation

subject to total power and bandwidth constraints is studied. Abedi et. al. in [32], propose

a QoS-based packet scheduler for HSPDA systems that are based on WCDMA technique.

The proposed scheme is purely based on heuristics.

In the systems that we consider the Base Station has a large coverage area. Es-

pecially in urban areas, this may cause problems for the line-of-sight communication

because tall buildings can create holes in the coverage area. In this thesis we develop

resource allocation algorithms to improve the network performance by deploying fixed

relay devices in order to eliminate shadowing and improve the performance. This idea has

similarities withMesh Networks, where each user operates also as a router and packets
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are forwarded from a gateway in a multihop fashion. Unlike mesh networks we perform

this relaying function by deployingrelay stations, which act like small base stations. Base

Station assigns each user either to itself or one of the relaystations. These relay stations

have a single interface in order to keep them inexpensive. Hence, they can’t transmit and

receive simultaneously. This leads us to schedule the transmissions of base and relay sta-

tions in a TDMA manner. We develop an algorithm that allocates time , subchannel and

power to each session in a frame.

1.2 System Model

Below, we briefly explain the physical, medium access control and network layer

assumption that we will use throughout the thesis.

1.2.1 Adaptive Modulation and Coding

We assume a channel that experiences path loss, Rayleigh fading and Log-normal

shadowing. Although the system we consider is a mobile system we do not change the

distance from the BS to the MS in the analysis and simulations, but we do simulate a

fast and slow fading channel for each BS-MS link, which is a reflection of mobility. Let

N0 be the noise power spectral density. We assume that this alsoincludes the inter-cell

interference. Letgi(t) be the combined channel gain for user i at time t. Then, the SINR

for user i, (γi) is as follows:

γi(t) =
pi(t)gi(t)
N0wi(t)

, (1.1)
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wherepi(t),wi(t) are the power and bandwidth allocated to useri at timet. Using pilot

symbols inserted to the downlink frame the mobiles can effectively estimate the channel

parametergi(t). We assume perfect channel estimation and feedback. We assume that

channel conditions are constant at each frame and thereforeassume AWGN channel with

SINR as in (1.1).

Adaptive Modulation and Coding and fast channel feedback are used in our system

model to enhance the coverage and capacity. It has been shownin [33], [34] that adaptive

modulation effectively improves the BER performance on wireless channels and relieves

the effects of deep fading. In line with the IEEE 802.16 standard, in our model the base

station chooses a modulation level from a set of available levels from 4-QAM to 64-

QAM depending on the current signal to noise ratio (SNR) and target bit error rate (BER).

We assume that at each time slot the channel gain (fading and path loss) hence SNR is

constant, therefore the channel in a time slot can be considered as an AWGN channel.

Performance of adaptive modulation in AWGN channels was studied in [33], [34]. There,

it was shown that the BER for an M-QAM modulation can be well approximated by

BER≃ 0.2exp[−1.5γ/(M−1)] (1.2)

Let Ti(γi) be the throughput, which is the number of bits that can successfully be sent in

a symbol for a given SNR,γi for user i. Therefore for a constant BER requirement the

throughput can be approximated by

Ti(γi) = log2M(γi) = log2(1+βγi) (1.3)

whereβ is equal to−1.5/ ln(5BER) from (1.2). The throughput formulation has a form

similar to the Shannon capacity.

12



In our model convolutional coding and repetition coding is applied to the uncoded

bit stream before modulation to reduce the BER. Effects of using different set of modula-

tion and coding pairs is beyond the scope of this thesis. Instead, we use predefined set of

modulation/coding pairs in the IEEE 802.16 OFDMA standard [11], [35]. The table be-

low shows the modulation levels/coding rates and corresponding throughput and optimal

SNR values for a targetBER= 10−4.

Mod./Coding Repetition Rate(bps/Hz) SNR(dB)

QPSK,1/2 6× 1/6 -2.78

QPSK,1/2 4× 1/4 -1.0

QPSK,1/2 2× 1/2 2.0

QPSK,1/2 1× 1 5

QPSK,3/4 1× 1.5 8

16QAM,1/2 1× 2 10.5

16QAM,3/4 1× 3 14

64QAM,2/3 1× 4 18

64QAM,3/4 1× 4.5 20

Table 1.1: Optimal Modulation and Coding Schemes Corresponding to SNR Values

We assume that all types of traffic traffic have same BER requirements, however,

the proposed schemes can easily be extended for different BER requirements. If we

plot the spectral efficiency values (in bps/Hz) in this tableas a function of given SNR’s,

we see that using formula in (1.3) by settingβ = 0.25 is a reasonable approximation.

Therefore in the following chapters we will use (1.3) in the problem formulations as

the rate function. Please note that the performance of the system can be improved by

enlarging the set of available modulation and coding pairs.However this is beyond the
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scope of this dissertation.

1.2.2 Subchannel and Power Allocation

In this work our general approach is to formulate the resource allocation problem

as constrained optimization problems, where the objectivefunction is maximized subject

to some power , bandwidth and rate constraints. As for the subcarrier allocation, we

consider the asymptotic case, where the available bandwidth is a continuous and infinitely

divisible quantity. However, after computing the power andbandwidth for each node, we

quantize the bandwidthwi to an integer multiple of subchannel bandwidthWsub. Then we

update the powerpi for each node i, so that the resulting SNR values are quantized to

the closest values in Table 1.1. We can always improve the performance by using more

modulation/coding pairs and less subchannel bandwidth.

1.2.3 MAC Layer Scheduling

We are considering a MAC layer that supports Best Effort datatraffic while simulta-

neously supporting Streaming Video and delay sensitive VoIP traffic over the same chan-

nel. The resource allocated to one terminal can vary from single subchannel to the entire

frame. Including power control this provides a very large dynamic range of throughput to

a specific user at any time. Normally the resource allocationinformation should be con-

veyed in a portion of the frame, however we neglect the numberof slots and subchannels

allocated for control messages.

In this work we are considering either solely the traffic fromthe Base Station(BS)
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to mobile nodes(MS’s) (downlink) or from MS’s to BS’s (downlink). Normally the two

directions of traffic are separated by forming a duplex link either by dividing time or

frequency.

1.2.4 Quality of Service Support

The system that we consider should be able to support a range of traffic types. Each

type of traffic (flow) is associated with certain Quality of Service (QoS) parameters. The

base station allocates resources according to these parameters or constraints. The traffic

arriving at the Base Station is supposed to come from a high capacity wired link. The

link from the Base Station to the mobile nodes (i.e. the air interface) is considered as

the bottleneck. The types of services that we consider in this work are summarized as

follows:

Application QoS Category QoS Specifications

FTP Non-Real Time Packet Service Minimum Reserved Rate

Web Browsing Best Effort Service No delay or rate Requirement

VoIP Unsolicited Grant Service Max. Delay Constraint

Video Streaming Real Time Packet Service Min. Reserved Rate & Delay Const.

Table 1.2: Supported Applications and QoS Specifications

Admission control is beyond the scope of this work thereforewe assume no new

session arrivals throughput the simulation time. In some problem formulations we convert

the minimum reserved rate requirement to delay requirements in order to formulate delay

based optimizations. We also assume that all of the sessionscontinue throughout the

simulation time. Since we are considering simulation timeson the order of seconds this

15



is a realistic assumption.

1.2.5 Queueing Model and Analysis

We assume that the Base Station classifies the arriving packets according to its

traffic type and its intended mobile user. For simplicity we assume that a user can only

demand a single type of traffic. For each user, a separate buffer is allocated .

For data applications like FTP and Web Browsing, we assume that there are always

unlimited number bits waiting to be transmitted at the base station. This is a realistic

assumption since the total bits in these sessions are on the order of MB’s and we consider

simulation times on the order of seconds.

For real time traffic sessions such as Video Streaming and VoIP we assume to have

a queue with infinite capacity. We capture the performance bymeasuring 95th percentile

of packet delays. Letqi(t) be the amount of bits in the queue of useri at framet. During

framet the queue of useri is served at rater i(t). Letai(t) be the number of bits that arrive

at framet. We assume that bits arrive at the beginning of a frame (before the transmission

starts). Then the queue length evolution equation can be written as,

qi(t +1) = qi(t)+ai(t)−min(qi(t)+ai(t), r i(t)Tf ) (1.4)

For VoIP sessions we assume a constant bit rate arrival process, where a constant

number of bits arrive with constant time intervals. For video traffic we assume a bursty

traffic model in IEEE 802.16 specifications. The details of the bit arrival process will be

explained later.

Most of the previous works on multiuser wireless packet communication systems
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decoupled information theory and queueing theory. The references that we sited previ-

ously either considered systems in saturation mode and proposed schemes that maximize

total throughput or proportional fair capacity, and/or satisfy some rate constraints.

Joint consideration of queueing and information theory wasstudied for the case of

single user systems in order to jointly optimize energy expenditure and delay. Energy

efficient transmission has been studied previously for a single user system. For example

in [36], [37], [38], the authors studied the problem of minimizing energy expenditure of

transmitting randomly arriving packets subject to a transmission deadline constraint in a

fading channel. The paper [39], [40] is an extension of [38] that studies joint minimization

of delay and energy. In [41] Berry and Gallager obtain structural results that points out

a tradeoff between delay and energy in a single user transmission. They show that the

optimal power delay curve is convex. The work in [42] extends[41] and finds a closed

form expression of optimal policy in terms of the optimal policy when the signal to noise

ratio is one. They also find some structural results for the optimal policy and bounds for

the optimum cost. However these works don’t offer any formulas or expressions for delay.

For multiuser systems [43] analyze the trade-off between error probability and de-

lay in a multiple access system. However this framework couldn’t be extended because

of the complex nature of wireless multiple access. In this thesis using discrete time multi-

server queueing framework [44] we make a queueing analysis of a simple OFDMA based

system.
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1.3 Thesis Outline

The thesis is organized as follows. In Chapter 2, we considera Base Station trans-

mitting to a set of mobile users that demand voice, video and data sessions. We propose a

power and bandwidth allocation scheme that provides long term proportional fairness to

data users, while satisfying the delay requirements of voice users and rate requirements

of video users. We formulate and solve a constrained optimization problem that captures

these objectives. We then develop an algorithm that finds theoptimal allocation. Using

simulations we compare the performance of the algorithm with a well known benchmark

algorithms from the literature.

In Chapter 3, we consider the complexity of the proposed algorithm in Chapter 2

and propose a simpler algorithm. In order to make the resource allocation computation-

ally simpler, we proposeuser selection metrics, that are used by the Base Station to select

Voice, Data and Video Streaming users from the total set of users. That way we decrease

the number of users entering into the computation process. In addition to this we distin-

guished elastic and non-elastic real time traffic. We determined minimal required rates

for real time sessions and formulate a constrained optimization problem to find the alloca-

tion to maximize the proportional fair capacity for elasticbest effort and real time traffic

subject to rate constraints for elastic real time traffic and, total power and bandwidth. We

compared this algorithm with a benchmark algorithm.

In Chapter 4, we deviate from the classical downlink case andconsider a system that

includes fixed relay stations (RSs) located in the cellular area. These relays are useful

in reducing shadowing and increasing the capacity. We develop a resource allocation
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scheme in which the base station first performs a simple 2-hoprouting that assigns users

either to itself or one of the relays. Then the BS allocates a subframe to each BS-RS-

MS microcell. Then, for each microcell the BS performs subframe allocation for BS-RS

and RS-MS composite links and joint subchannel and power allocation to each link in

order to provide and proportional fairness to data users subject to rate constraints of real

time sessions. We did simulations in order to see the performance of the system with the

performance of a system with no RS.

In Chapter 5 we consider an OFDMA based system that experiences frequency

selective fading at each subchannel. We consider a simple channel-aware resource al-

location scheme that allocates each subchannel to the user with maximum normalized

received SNR. Using queueing theory for discrete time multiserver systems, we perform

a queueing analysis for this system. First using extreme value theory we model the ser-

vice process. Then we analyze the tail probability distribution of the buffer occupancy.

We compare the accuracy of our analysis with the simulation results.
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Chapter 2

Proportional Fair Scheduling in OFDMA-based Wireless Downlink

Systems with QoS Constraints

2.1 Introduction

In this chapter we consider a base station serving users demanding heterogeneous

traffic, which are best effort data, video streaming and voice. We develop a resource allo-

cation algorithm that provides proportional fairness among data users based on their long

term received data rates unlike single instant data rates asin [16] and [18]. We develop a

user selection scheme that selects a number of real time sessions based on their head-of-

line packet delays and received rates. We determine their rate requirements and formulate

a constrained optimization problem that maximizes proportional fairness subject to those

rate requirements and power and bandwidth constraints. In Section 2.2 we describe the

system model. In Section 2.3 we investigate the proportional fairness and formulate the

proportional fair rate allocation. In Section 2.4 we investigate and formulate the user se-

lection and rate requirement determination process for real time sessions. In Section 2.5

we formulate and solve the joint data and real time resource allocation problem. We also

look at the feasibility of a problem given the rate constraints and how to detect infeasibil-

ity. In Section 2.6, based on the solution, we describe the resource allocation algorithm

and prove that it converges to the unique optimal solution. Finally in Section 2.7 we nu-
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merically demonstrate the performance improvement of the proposed resource allocation

algorithm.

2.2 System Model

We adopt the WirelessMAN-OFDMA profile [11], [10] at the physical layer, which

is a multicarrier scheme where multiple access is provided by assigning a subset of carri-

ers to each receiver at each time slot. LetW andP denote the total bandwidth and power,

respectively. Total bandwidthW is divided intoNsubsubchannels of lengthWsubHz, each

consisting of a group of carriers. As we explained in the Introduction, we assume dis-

tributed subcarrier grouping as opposed to adjacent grouping. Therefore each subchannel

experiences the same average fading with respect to a user.

We consider a wireless downlink system, where a base stationtransmits to respec-

tive stations as in Figure 2.1. The noise and interference power density isN0, and the

channel gain averaged over the entire band from the BS to useri at timet is hi(t), where

hi(t) includes path loss, shadowing (log-normal fading) and fastfading. Using the aver-

aging effect of PUSC scheme we assume flat fading, i.e. we assume that fading level is

the same at each subchannel.

There are three classes of users. Users in the classesUD, US andUV demand data,

video and voice traffic, respectively. The system that we consider is time slotted with

time slot lengthTs. The scheduler makes a resource allocation decision at eachtime

slot. Active period in a voice conversation, streaming duration and file size are both very

long with respect to the time slot size. Therefore it is realistic that during the course of
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optimization the number of active sessions are fixed.
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Figure 2.1: Downlink System Model

IEEE 802.16a/e standards allow several combinations of modulation and coding

rates that can be used depending on the signal to noise ratio.Here assuming constant

fading during a time slot, we model the channel as AWGN. Base station allocates the

available power and rate among users, wherepi(t) andwi(t) are the power and bandwidth

allocated to useri in time slott. For an SINRpi(t)hi(t)
N0wi(t)

, the highest order modulation and

coding scheme that guarantees a BER constraint is used. We use the set of modulation

coding pairs in Table 1.1.

Based on Table 1.1 it is reasonable to approximate the optimal transmission rate as

an increasing and concave function of the signal to noise ratio. We will adopt the Shannon

channel capacity for AWGN channel as a function for bandwidth and transmission power
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assigned to useri1:

r i(wi(t), pi(t)) = wi(t) log

(
1+β

pi(t)hi(t)
N0wi(t)

)
(2.1)

The reason for using Shannon capacity is its simplicity, andit also approximates rate-

SINR relation in Table 1.1 withβ = 0.25. The parameter 0< β < 1 compensates the

rate gap between Shannon capacity and rate achieved by practical modulation and coding

techniques.

2.3 Proportional Fair Resource Allocation for Data Traffic

It is proven in [1] by Tse that a proportional fair allocationfor a single carrier system

also maximizes the sum of the logarithms of average user rates:

P = argmax
S

N

∑
i=1

logR(S)
i (2.2)

where is the user set andR(S)
i is the average rate of useri by scheduleS. In a single

carrier system proportional fairness is achieved by scheduling at each time slott, a userj

according to:

j = argmax
i

r i(t)
Ri(t)

(2.3)

Herer i(t) is the instantaneous transmittable rate to user i at the current slot.Ri(t)

is the average data rate that user i receives over time. At each time slot the average rate is

updated according to the following rule:

Ri(t +1) = αiRi(t)+(1−αi)r i(t) (2.4)

1From now on all logarithms are natural and we consider transmission in nats instead of bits
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In the proportional fair schemeT = 1/(1−αi) is the length of the sliding time

window and average rate is computed over this time slot at each time slot. In [1]α was

taken as 0.999. So this method maintains fairness in the longrun, while trying to schedule

the user with the best channel at each slot.

Proportional fair resource allocation problem in OFDMA systems was modeled

previously in [18],[16] as follows. Maximize:

C(w,p) =
N

∑
i=1

log(r i(wi , pi)) (2.5)

subject to

N

∑
i=1

pi ≤ P

N

∑
i=1

wi ≤ W

pi ,wi ≥ 0,∀i

wherer i(wi , pi) is the rate function in equation (2.1). In [18], efficient andlow complexity

algorithms are proposed to solve the above optimization problem. Some algorithms were

also proposed for a similar model in [16]. However this formulation aims proportional

fairness only in a single time slot as opposed to long term requirements.

Let us assume that there areN data users. The objective for the data users is to

optimize log sum of the exponential averaged rates of the users We can model the system

as a Markov decision process. The state of the system at time slot t is the vector of the

averaged rates received by timet −1,

R(t−1) = [R1(t−1),R2(t−1), . . . ,RN(t−1)] ,
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whereR(t − 1) ∈ R+N. The control variablesu(t) = (p(t),w(t)) are vectors of power

and bandwidth allocation at slott denoted asp(t) = [p1(t), p2(t), . . . , pN(t)], w(t) =

[w1(t),w2(t), . . . ,wN(t)]. The control space is denoted byU whereU = {p,w : ∑N
i=1 pi(t)≤

P,∑N
i=1wi(t) ≤W, pi(t) ≥ 0,wi(t) ≥ 0, ∀i}, whereP andW are the total available power

and bandwidth. The state (user rates) is updated at each timeslot according to the expo-

nential averaging formula:

Ri(t) = αiRi(t −1)+(1−αi)r i(wi(t), pi(t)),∀i, t (2.6)

where the initial stateR(0) is a constant (possibly 0). This way we consider both current

rate as well as rates given to the user in the past. Observed attime t, the highest consider-

ation is given to the current rater(t), and the rates received at the pastt−1, t−1,... carry

diminishing importance. We replace the instantaneous rater i(t) with averaged rateRi(t)

in the proportional fair capacity (Equation 2.5)

C(R(t)) =
N

∑
i=1

logRi(t)

=
N

∑
i=1

log(αRi(t −1)+(1−αi)r i(wi(t), pi(t)))

=
N

∑
i=1

logRi(t−1)

(
αi +

(1−αi)r i(wi(t), pi(t))
Ri(t−1)

)

= C(R(t−1))+
N

∑
i=1

log

(
αi +

(1−αi)r i(wi(t), pi(t))
Ri(t−1)

)
(2.7)

As a matter of fact, we limit ourself togreedyschemes in the sense that at slott,

we try to maximize the proportional fair capacityC(R(t)) without considering the future

time slotst + 1,t + 2, etc. Only the second term in Equation (2.7) needs consideration.
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The objective for data users becomes:

max
p(t),w(t)

N

∑
i=1

log

(
αi +

(1−αi)r i(wi(t), pi(t))
Ri(t−1)

)

= max
p(t),w(t)

N

∏
i

(
αi +

(1−αi)r i(wi(t), pi(t))
Ri(t−1)

)
(2.8)

2.4 Resource Allocation for Real Time Traffic

Our primary aim is to find a scheduling scheme that supports data traffic as well as

delay sensitive traffic. Proportional fairness objective in (2.8) aims at providing fairness

to data users. On the other hand, users demanding real-time traffic (voice and video) have

QoS constraints on packet delay or packet drops. We assume that data traffic adjusts its

transmission rate to suite its throughput (an example is TCPtraffic), but it can always use

any bandwidth assigned to it (its transmission queue is never empty). On the other hand,

real time traffic has more strict delay and packet loss requirements. We describe below a

common QoS sensitive algorithm that was commonly used in single carrier systems.

2.4.1 Benchmark Algorithm: M-LWDF-PF

In single channel systems Largest Weighted Delay First (LWDF) is shown to be

throughput optimal [50]. In this scheme at each time slot theuser maximizing the follow-

ing quantity transmits.

aiD
HOL
i (t)r i(t), (2.9)
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whereDHOL
i (t) is the head of line packet delay andr i(t) is the channel capacity of user i

at time slot t. The parameterai is a positive constant. If QoS is defined as

P(Di > Dmax
i ) < δi , (2.10)

whereDmax
i is the delay constraint andδi is the probability of exceeding this constraint

(typically 0.05), then the constantai can be defined asai = − log(δi)
Dmax

i Ri(t)
, which is referred

to as M-LWDF-PF [50] [16]. Here,Ri(t) is the average received rate which is updated as

in (2.6).

Filter constantαi should be chosen such that the average received rate is detected

within the delay constraint in terms of slot durations. We will use this metric in real time

session selection. M-LWDF-PF can be adapted to OFDMA systems as follows. Power is

distributed equally to all subchannels. Starting from the first subchannel , the subchannel

is allocated to the user maximizing (2.9). Then the receivedrateR(t) is updated according

to (2.6). All the subchannels are allocated one-by-one according to this rule. We will use

this allocation scheme as a benchmark in our simulations.

2.4.2 Proposed Real Time Selection and Allocation Scheme

There are two main disadvantages of M-LWDF-PF- based resource allocation. First,

the power is divided equally to over subcarriers. Performance can be increased by dy-

namic power adjustment. Secondly, data sessions are much different than video and voice

in terms of QoS requirements. Therefore it is hard to use the same metric for data and

real time sessions.
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2.4.2.1 User Selection

We first choose the voice and video streaming sessions to be served in the current

slot. For the data users our algorithm (which will be defined shortly) inherently selects

some users and give zero rate to others. We use the following user satisfaction value for

real time sessions:

USVi(t) = LiD
HOL
i log

(
1+

βPhi(t)
N0W

)
r0
i

Ri(t)
(2.11)

The user satisfaction metric that we use is very similar to M-LWDF-PF metric ex-

plained above except ther
0
i

Ri(t)
part at the end of the expression. If we don’t use the traffic

rate r0
i at the nominator then low-rate sessions such as VoIP gains excessively favored.

HereLi = − log(δi)
Dmax

i
, whereDmax

i is the delay requirement of useri.

We use a simple formula to determine the fractionFR(t) of real time users scheduled

in each time slot,

FR(t) =
1

|US|+ |UV| ∑
i∈US∪UV

I(qi(t) > 0.5Dmax
i r0

i ) (2.12)

Here 0.5Dmax
i r0

i denotes a queue size threshold in bits andI(.) is the indicator function

taking value one if the argument inside is true. As more usersexceed this threshold, more

fraction of real time users are scheduled. LetU ′
V andU ′

S be the set of voice and streaming

users chosen at the current time slot andU ′
R be the total set of chosen real time users .

Next, we describe the joint power and bandwidth allocation that is performed on these

chosen users.
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2.4.2.2 Rate Allocation

The rate constraint for a chosen real time session is defined as:

rc
i (t) =

qi(t)
Dmax

i 0.5ωi(t)
, i ∈U ′

R (2.13)

Hereqi(t) is the queue size andωi(t) is the transmission frequency of user i, which is

updated as follows:

ωi(t) = αiωi(t −1)+(1−αi)I(r i(t) > 0), (2.14)

whereI(r i(t) > 0) is the function that takes value one if the node receives packets in time

slot t, zero otherwise. Therefore this frequency decreases if thenode transmits less and

less frequently. Using this frequency expression in the rate function, we compensate for

the lack of transmission in the previous time slots possiblydue to bad channel conditions.

Choosing the rate requirement this way, we aim to empty out the current content in the

queue in half duration of delay constraint.

2.5 Joint Data and Real Time Resource Allocation - FQPSA

We combine the proportional fair scheduling in (2.8) and real time user selection

and rate definition in (2.11), (2.13) and propose a Fair and QoS-based Power and Sub-

channel Allocation (FQPSA).

We formulate a constrained optimization problem where the objective function is

Equation (2.8) and the constraints are the power/bandwidthconstraints and the rate re-

quirements for chosen real time sessions defined in (2.13). Let ni = N0
βhi

. The resulting
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optimization problem is as follows:2.Find:

(p∗,w∗) = argmax
p,w ∏

i∈UD


αi +

(1−αi)wi log
(

1+ pi
niwi

)

Ri


 (2.15)

subject to,

∑
i∈UD∪U ′

R

p∗i ≤ P (2.16)

∑
i∈UD∪U ′

R

w∗
i ≤ W (2.17)

w∗
i log

(
1+

p∗i
niw∗

i

)
≥ rc

i , i ∈U ′
R (2.18)

p∗i ,w
∗
i ≥ 0,∀i ∈UD ∪U ′

R (2.19)

2.5.1 Solution to the Constrained Optimization Problem

The objective function (2.15) is an increasing function of(w, p), therefore the max-

imum is achieved only when the constraints (2.16, 2.17, 2.18) are all met with equality.

For this reason we can replace these inequalities with equalities in the discussion below.

Lemma 2.1 The problem in (2.15),(2.16),(2.17),(2.18) and (2.19) is aconvex optimiza-

tion problem.

Proof 2.1 In Appendix A.

Before solving this optimization problem, please note thatalong with the rate con-

straint (2.18), it is required that in (2.15)

αiRi +(1−αi)

(
wi log

(
1+

pi

niwi

))
> 0, ∀i ∈UD. (2.20)

2Herepi,wi , ni are the values at timet. The time index is not shown for convenience.
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Actually there is no guarantee that a solution can be found that satisfies both (2.18) and

2.20. The rate requirements for real time users can be too high that it may be impossible to

satisfy with the given channel conditions. Below we define the feasibility of the problem:

Definition 2.1 A feasible set of(p,w) is the set of power and bandwidth vectors(w,p)

such that:

αiRi +(1−αi)

(
wi log

(
1+

βpi

niwi

))
> 0, ∀i ∈UD. (2.21)

wi log

(
1+

pi

niwi

)
≥ rc

i ,∀i ∈U ′
R (2.22)

∑
i∈UD∪U ′

R

pi ≤ P, ∑
i∈UD∪U ′

R

wi ≤W, pi ,wi ≥ 0,∀i ∈UD∪U ′
R (2.23)

We define a feasible problem as a problem for which the feasible set is non-empty.

To start with, we assume that the problem isfeasible. We will discuss about how to

detect infeasibility of the problem and what to do in that case in the next section. We can

write the Lagrangian of the problem as [47]:

L(w,p,λp,λw,λr) = ∏
i∈UD


αi +

(1−αi)wi log
(

1+ pi
niwi

)

Ri


+λp


P− ∑

i∈UD∪U ′
R

pi




+λw



W− ∑
i∈UD∪U ′

R

wi



+ ∑
i∈U ′

R

λr
i

(
wi log

(
1+

pi

niwi

)
− rc

i

)
. (2.24)

Taking the derivatives ofL(p,w,λp,λw,λr) w.r.t. pi , wi for all users,λp andλw,

andλr
i for all chosen real-time users we get the following:

• For usersi ∈UD:

∂L(p,w,λp,λw,λr)

∂pi

∣∣∣∣
(p∗,w∗)

= 0 ⇒ λp =
1/ni(

Ri α̃i
wi

+ log
(

1+
p∗i

niw∗
i

))(
1+

p∗i
niw∗

i

)

(2.25)
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∂L(p,w,λp,λw,λr)

∂wi

∣∣∣∣
(p∗,w∗)

= 0 ⇒ λw =

(
1+

p∗i
niw∗

i

)
log
(

1+
p∗i

niw∗
i

)
− pi

niw∗
i(

1+
p∗i

niw∗
i

)(
Riα̃i +w∗

i log
(

1+
p∗i

niw∗
i

))

(2.26)

whereα̃i = αi
1−αi

. By dividing (2.25) with (2.25) we can write for alli ∈UD:

λw

λp
= Λx = ni ((1+x∗i ) log(1+x∗i )−x∗i ) , (2.27)

wherex∗i =
p∗i

niw∗
i

denotes the optimaleffectiveSINR, which is the SINR multiplied

by the SINR gap parameterβ.

• For usersi ∈U ′
R:

∂L(p,w,λp,λw,λr)

∂pi

∣∣∣∣
(p∗,w∗)

⇒ λp

λr
i

=
1
ni

1

1+
p∗i

niw∗
i

(2.28)

∂L(p,w,λp,λw,λr)

∂wi

∣∣∣∣
(p∗,w∗)

⇒ λw

λr
i

= log

(
1+

p∗i
niw∗

i

)
−

p∗i
niw∗

i

1+
p∗i

niw∗
i

(2.29)

Combining equation (2.28) and (2.29)(dividingλw
λp

) for all i ∈U ′
R again gives:

λw

λp
= Λx = ni ((1+x∗i ) log(1+x∗i )−x∗i ) , (2.30)

By writing (2.30) we can eliminateλr
i ’s from the problem. It is worth noting that

we get the same relation betweenΛx/ni andxi for all users (Eq. (2.27) and (2.30)).

At this point it is convenient to define the functionfx(x) as:

fx(x) = (1+x) log(1+x)−x. (2.31)

Then we have,

xi(Λx) = f−1
x (Λx/ni),∀i ∈UD ∪U ′

R. (2.32)
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Lemma 2.2 The following properties hold:

1. Effective SINR (xi(Λx)) is a monotonic increasing function ofΛx for users

i ∈UD∪U ′
R.

2. If ni < n j then xi(Λx) > x j(Λx)

3. If ni > n j then xi(Λx)ni > x j(Λx)ni

Proof 2.2 The proof is in Appendix B

For real time users we also have:

∂L(p,w,λp,λw,λr)

∂λr
i

∣∣∣∣
(p∗,w∗)

= 0 ⇒ rc
i = w∗

i log

(
1+

p∗i
niw∗

i

)
,∀i ∈ U ′

R (2.33)

• For all nodesi ∈UD∪U ′
R

∂L(p,w,λp,λw,λr)

∂λp

∣∣∣∣
(p∗,w∗)

= 0 ⇒ P = ∑
i∈UD∪U ′

R

p∗i (2.34)

∂L(p,w,λp,λw,λr)

∂λw

∣∣∣∣
(p∗,w∗)

= 0 ⇒W = ∑
i∈UD∪U ′

R

w∗
i (2.35)

From Equation (2.25) and (2.27) for data users we can write:

[
Λ∗

p−ni(1+ f−1
x (

Λ∗
x

ni
))Riα̃i

]+

log(1+ f−1
x (

Λ∗
x

ni
))(1+ f−1

x (
Λ∗

x
ni

))ni

= w∗
i , i ∈UD (2.36)

[
Λ∗

p−ni(1+ f−1
x (

Λ∗
x

ni
))Riα̃i

]+
f−1
x (

Λ∗
x

ni
)

log(1+ f−1
x (

Λ∗
x

ni
))(1+ f−1

x (
Λ∗

x
ni

))
= p∗i , i ∈UD (2.37)

whereΛp = 1/λp. The[.]+ operator in Equations (2.36),(2.37) guarantees thatwi , pi ≥ 0

for all users. GivenΛp andΛx we can compute the power and bandwidth for usersi ∈UD

using (2.36) and(2.37). GivenΛx, we can calculate the power and bandwidth for users
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i ∈ U ′
R using (2.33). Please note that just from (2.33), (2.36) and (2.37), the bandwidth

and power constraints (2.17) (2.16) arenotnecessarily satisfied. We need to find the right

Λx andΛp so that the power and bandwidth constraints are satisfied. Let Sp(Λx,Λp) and

Sw(Λx,Λp) be the total bandwidth and total power corresponding toΛx andΛp:

Sw(Λx,Λp) = ∑
i∈UD

[
Λp−ni(1+ f−1

x (Λx
ni

))Riα̃i

]+

log(1+ f−1
x (Λx

ni
))(1+ f−1

x (Λx
ni

))ni
+ ∑

i∈U ′
R

r0
i

log(1+ f−1
x (Λx

ni
))

(2.38)

Sp(Λx,Λp) = ∑
i∈UD

[
Λp−ni(1+ f−1

x (Λx
ni

))Riα̃i

]+
f−1
x (Λx

ni
)

log(1+ f−1
x (Λx

ni
))(1+ f−1

x (Λx
ni

))
+ ∑

i∈U ′
R

r0
i f−1

x (Λx
ni

)ni

log(1+ f−1
x (Λx

ni
))

(2.39)

As a result, the problem is findingΛ∗
a andΛ∗

p such that

Sw(Λ∗
x,Λ

∗
p) = W (2.40)

Sp(Λ∗
x,Λ

∗
p) = P (2.41)

using Equations (2.38) and (2.39). Note that althoughΛx andΛp are independent vari-

ables that determine power and bandwidth for each node, theybecome dependent when

the power and bandwidth constraints (2.40) (2.41) need to besatisfied. Using (2.38) and

(2.39), and writingλw∑UD∪U ′
R
w∗

i +λp∑UD∪U ′
R

p∗i , we obtain.

λ∗
wW+λ∗

pP = ∑
i∈UD

[1−λ∗
pni(1+ f−1

x (
Λ∗

x

ni
))Riα̃i ]

+ + ∑
i∈U ′

R

rc
i λ∗

pni(1+ f−1
x (

Λ∗
x

ni
))

Λ∗
xW+P = ∑

i∈UD

[Λ∗
p−ni(1+ f−1

x (
Λ∗

x

ni
))Riα̃i ]

+ + ∑
i∈U ′

R

rc
i ni(1+ f−1

x (
Λ∗

x

ni
)) (2.42)

whereΛp = 1/λp. Let the functionΛ∗
p(Λx) be the value ofΛp that satisfies (2.42) forΛx.

Let U ′
D be defined as{i ∈UD : Λp−ni(1+ f−1

x (Λx/ni))Riα̃i > 0}.
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2.5.2 Feasibility of the Solution

In the previous section we stated that there exists a solution to the problem, if the

feasible set is non-empty. The feasibility of a problem means conditions (2.21), (2.22),

(2.23) are all met. We now consider how to detect an infeasible problem and what to do in

that case. From Eq. (2.36) and (2.37),Λp = 0 corresponds to the case that no bandwidth

and power is allocated to data sessions. If the problem is feasible (i.e. if the available

power and bandwidth is enough to satisfy rate requirements of real time sessions), then

there exists aΛx = ni fx(xi),∀i ∈U ′
R so that the following inequalities hold:

∑
i∈U ′

R

r0
i

log(1+ f−1
x (Λx

ni
))

= Sw(Λx,0) ≤ W, (2.43)

∑
i∈U ′

R

r0
i f−1

x (Λx
ni

)ni

log(1+ f−1
x (Λx

ni
))

= Sp(Λx,0) ≤ P. (2.44)

Below, we prove some properties of the functionsSw(Λx,Λp) andSp(Λx,Λp) that

will be useful in proving the existence and uniqueness of solution to problem (2.15-2.19).

Lemma 2.3 The following properties hold:

i. Sw(Λx,Λp) and Sp(Λx,Λp), are nondecreasing functions ofΛp for anyΛx ≥ 0. Also

limΛp→∞ Sw(Λx,Λp) = ∞ and limΛp→∞ Sp(Λx,Λp) = ∞.

ii. Sw(Λx,Λp) is a decreasing function ofΛx for all Λp≥0. Moreover,limΛx→0Sw(Λx,Λp)=

∞ and limΛx→∞ Sw(Λx,Λp) = 0 for all Λp.

iii. Sp(Λx,0) is an increasing function ofΛx.

iv. Let Λ0
x be the smallestΛx value that satisfies the inequality Sw(Λx,0) ≤ W. There

exists such aΛ0
x > 0. The problem is feasible if and only if Sp(Λ0

x,0) ≤ P.
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v. For Λx > Λ0
x, the derivative

dΛ∗
p(Λx)

dΛx
is positive thereforeΛ∗

p(Λx) is an increasing

function ofΛx

vi. The following inequalities hold forΛ∗
p(Λx) and optimalΛ∗

x:

Λ∗
p(Λx) ≤

ΛxW+P−∑i∈U ′
R
rc
i ni(1+ f−1

x (Λx
ni

))+∑i∈UD
ni(1+ f−1

x (Λx
ni

))Riα̃i

|UD|
(2.45)

min
i∈UD∪U ′

R

{
ni fx

(
P

niW

)}
≤ Λ∗

x ≤ max
i∈UD∪U ′

R

{
ni fx

(
P

niW

)}
(2.46)

vii. Sw(Λx,Λ∗
p(Λx)) is a quasiconvex function ofΛx. Specifically, it is a decreasing func-

tion of Λx up to a certain pointΛ1
x and takes a value smaller than W at that point; it

is an increasing function forΛx > Λ1
x and takes value W at limitΛx → ∞. Therefore

for a feasible problem Sw(Λx,Λ∗
p(Λx)) takes value W at a unique point∞ > Λ∗

x ≥ Λ0
x.

Proof 2.3 Proof in Appendix I.

Therefore before starting the optimization we can first findΛ0
x in order to check for

feasibility (Lemma 2.3.iv). IfSp(Λ0
a,0) > P, the problem is not feasible and too many

users have been admitted. We will then chose a user that consumes too much power and

decrease its rate.

2.6 Proposed Algorithm

Using (2.38) and (2.42) we can develop an algorithms to determine the power and

bandwidth allocation. The algorithm is also able to detect infeasibility if there no solution

exists.

Algorithm:
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1. ComputeΛ0
x = BinarySearch0x().

2. If Sp(Λ0
x,0) < P then the problem is feasible from Lemma 2.3.iii. Continue with

Step 3. Otherwise the problem is not feasible.

3. (Λ∗
x,Λ∗

p) = BinarySearchxp(Λ0
x).

4. (w∗
i p∗i ,x

∗
i ) = ComputePowerBandwidth(Λ∗

x,Λ∗
p)

Subroutine: Λ0
x = BinarySearch0x(): FindΛ0

x s.tSw(Λx,0) = W.

i. Choose∆x > 0. Find the smallest integerk > 0 s.t. Sw(2k∆x,0) < W. SetΛl
x =

2k−1∆x, Λh
x = 2k∆x andΛm

x = (Λl
x +Λh

x)/2

ii. Iteratively computeSw(Λm
x ,0) and update(Λl

x,Λh
x).

• if |Λh
x

Λl
x
−1| < ε, returnΛ0

x = Λm
x ;

• else ifSw(Λm
x ,0) < W, Λh

x = Λm
x andΛm

x = (Λh
x +Λl

x)/2;

• elseΛl
x = Λm

x andΛm
x = (Λh

x +Λl
x)/2.

Subroutine Λ∗
p = BinarySearchp(Λx,Λl

p,Λh
p): FindΛ∗

p(Λx) that satisfies (3.21).

i. SetΛm
p = (Λl

p+Λh
p)/2 and run(w,p,x) = ComputePowerBandwidth(Λx,Λm

p):

ii. Binary search:

• If |Λh
p

Λl
p
−1| < ε, returnΛ∗

p = Λm
p ;

• else ifΛxW+P< ∑i∈UD
[Λm

p −ni(1+ f−1
x (Λx

ni
))Riα̃i ]

++∑i∈U ′
R
rc
i ni(1+ f−1

x (Λx
ni

)),

Λh
p = Λm

p andΛm
p = (Λh

p+Λl
p)/2;
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• elseΛl
p = Λm

p andΛm
p = (Λh

p+Λl
p)/2.

Subroutine (Λ∗
x,Λ∗

p) = BinarySearchxp(Λ0
x): If the problem is feasible finds(Λ∗

x,Λ∗
p)

s.tSw(Λ∗
x,Λ∗

p) = W, andSp(Λ∗
x,Λ∗

p) = P.

i. Determine the upper bound onΛx, (Λl
x) using (2.46). Based on this bound, find the

upper bound onΛp, (Λh
p) using (2.45) (To do this, we have to find the SINR values

corresponding toΛh
x by the subroutine(x,w,p)=ComputePowerBandwidth(Λh

x,0)).

SetΛl
x = Λl

p = 0 andΛm
x = (Λh

x +Λl
x)/2.

ii. Iteratively computeΛm
p = BinarySearchp(Λm

x ,Λl
p,Λh

p), and update(Λl
x,Λh

x,Λl
p,Λh

p)

based onSw(Λm
x ,Λm

p).

• if |Λh
x

Λl
x
−1| < ε, return(Λ∗

x,Λ∗
p) = (Λm

x ,Λm
p);

• else ifSw(Λm
x ,Λ∗

p(Λm
x )) < W′, Λh

x = Λm
x , Λm

x = (Λh
x +Λl

x)/2 andΛh
p = Λm

p ;

• elseΛl
x = Λm

x , Λm
x = (Λh

x +Λl
x)/2 and andΛl

p = Λm
p .

After we find Λ∗
x and Λ∗

p, we compute the optimal SNR, bandwidth and power

values for all nodes with the following subroutine:

Subroutine (x,w,p) = ComputePowerBandwidth(Λx,Λp):

i. Optimal SNR values (scaled byβ) for all chosen users,x∗i :

x∗i = f−1
x (Λ∗

x/ni), ∀i ∈UD∪U ′
R (2.47)

where fx(x) = (1+x) log(1+x)−x.

ii. Optimal bandwidth values,w∗
i :
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• For i ∈UD:

w∗
i =

[Λ∗
p−ni(1+x∗i )Riα̃i ]

+

log(1+x∗i )(1+x∗i )ni
(2.48)

• For i ∈U ′
R:

w∗
i =

rc
i

log(1+x∗i )
(2.49)

iii. Optimal power values for all nodes,p∗i , i ∈UD ∪U ′
R:

p∗i = niw
∗
i x∗i /β, ∀i ∈UD ∪U ′

R (2.50)

Proposition 2.1 If the problem is infeasible, the Algorithm always detects it.

Proof 2.4 From Lemma 2.3.iv we know that if the problem is infeasible than Sp(Λ0
x,0) >

P, whereΛ0
x is the smallestΛx such that Sw(Λx,0) ≤ W. As a corollary of Lemma 2.3.ii

we also know that Sw(Λx,0) is a monotonic decreasing function ofΛx. Therefore we can

use the subroutine BinarySearch0
a() in order to findΛ0

x and compute Sp(Λ0
x,0) in order to

check for feasibility of the problem.

Proposition 2.2 Existence of a unique solution: If the problem is feasible there exists a

unique point(Λ∗
x,Λ∗

p(Λ∗
x)) that satisfies (2.40) and (2.41).

Proof 2.5 From Lemma 2.3.v Sw(Λx,Λ∗
p(Λx)) ≥W for Λx = Λ0

x and from Lemma 2.3.vii

Sw(Λx,Λ∗
p(Λx)) is a monotonically decreasing function ofΛx. Hence the problem has a

unique solution.

Figure 2.2 illustrates the characteristics of the sum-powers Sp(Λx,Λ∗
p(Λx)) and

sum-bandwidthSw(Λx,Λ∗
p(Λx)) versusΛx for 30 data users for the case ofRi = 0, ∀i ∈UD

andRi > 0, ∀i ∈UD at one point in time. From the graph we see that indeed sum-power

39



and sum-bandwidth crosses the power and bandwidth constraints at one point, which is

the unique optimal solution. For the case of non-zero received rates, we observe dis-

continuities in sum-power and bandwidth functions. This isbecause at each point of

discontinuity, the expressionΛ∗
p(Λx)−ni(1+ f−1

x (Λx
ni

))Riα̃i changes sign for one of the

nodesi ∈UD.
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Figure 2.2: Existence of a Solution

Proposition 2.3 Convergence of the algorithm to the unique solution: The Algorithm

converges to the globally optimum solution to the set of Equations (2.40) and (2.41).

Proof 2.6 In Appendix II, we prove that the objective function in (2.15) is a strictly con-

cave function of both power and bandwidth for all users. We also prove in Appendix II

that the constraint set defined in (2.17), (2.16), (2.18) defines a convex set. Together this

means there exists a unique local maximum of the optimization problem which is also the
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global maximum. As Equations (2.38) and (2.39) define the local maximum of the prob-

lem, its solution is the sole maximum of the problem which is also the global maximum.

2.6.1 SINR/Bandwidth Quantization and Reshuffling

In practice, bandwidth allocation is in terms of integer number of subchannels. As

mentioned before there also exists a set of modulation/coding pairs and corresponding

SINR thresholds, which also requires power reshuffling to quantize the SINR. Hence, we

have to apply the following resource shuffling procedure

1. Quantize the bandwidth values to the nearest number of subchannel. Quantize to

1 subchannel if it is less than that. For the real time sessions recompute the power

value that satisfies rate constraint.

2. Quantize the SINR values to the nearest one in Table 1.1. Quantize to the lowest

SINR if it is less than that.

3. If the total bandwidth is greater thanW, then find the node that has the largest

bandwidth and decrease one subchannel. Adjust powers so that SINR values remain

the same. Repeat this until constraint is satisfied

4. If total power is greater thanP than find the node that consumes largest amount of

power and take one subchannel remaining the SINR same. Repeat this until power

constraint is satisfied.

5. If total bandwidth is smaller than W, then find the node withthe best channel con-

dition and give it one more bandwidth, adjusting the power sothat SINR remains
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the same. This is because users with good channel condition are more dependent

on bandwidth.

6. If total power is smaller than P then find the node with worstchannel condition.

Boost its SINR to the next level (if possible). This is because users with worse

channel conditions are more dependent on power. Repeat thisprocedure until it is

impossible to do so.

A similar resource shuffling procedure can be found in [18].

2.7 Performance Evaluation

For the numerical evalutations we divide the users to 5 classes according to the

distances, 0.3,0.6,0.9,1.2,1.5 km. For instance if there are 5 voice users in the system, at

each distance class a single Voice user is located. Fork×5 user there are k users for each

session of the same type is located at each distance point. Weuse the parameters in Table

2.1.

2.7.1 OFDMA-Related Parameters

Table 2.2 summarizes the OFDMA-related parameters used in this simulation and

their derivations. Here FFT Size means the number of samplesin the Fast Fourier Trans-

formation. Number of used subcarriersNused is smaller thanNFFT because the outer

carriers in a subchannel does not carry modulation data.
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Parameter Value

Cell radius 1.5km

User Distances 0.3,0.6,0.9,1.2,1.5 km

Total power (P) 20 W

Total bandwidth (W) 10 MHz

Frame Length 1 msec

Voice Traffic CBR 32kbps

Video Traffic 802.16 - 128kbps

FTP File 5 MB

AWGN p.s.d.(N0) -169dBm/Hz

Pathloss exponent (γ) 3.5

ψDB ∼ N(µψdB,σψdB) N(0dB,8dB)

Coherent Time (Fast/Slow) (5msec/400msec.)

Pathloss(dB, d in meters) −31.5−35log10d+ ψdB

Table 2.1: Simulation Parameters

2.7.2 Performance Criteria

We will compare our algorithm with the benchmark M-WLDF algorithm with pro-

portional fairness. Delay exceeding probability is taken as δi = 0.05 for all users. Delay

constraint for voice and video users are 0.1 and 0.4 second, respectively. For M-LWDF

algorithm we assume that the delay constraint is 2 seconds and buffer length is infinite.

We assume a constant HOL delay of 1 second for the data sessions. For the FPSQA al-

gorithm resource allocation for data traffic does not dependon delay. Filter values are

αi = 0.998,0.995,0.98 for data, streaming and voice sessions.

Performance criteria are as follows. We will observe the total throughput for all
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Parameter Value

Nominal Channel Bandwidth W = 10MHz

FFT size NFFT = 1024.

Number of used Subcarriers Nused= 840.

Sampling Factor ns = Fs/W = 8/7

Sampling Frequency Fs = ⌊n×W/8000⌋×8000= 11.424MHz

Subcarrier spacing ∆ f = Fs/NFFT = 1.1156×104Hz

Used Bandwidth Nused×∆ f = 9.37125MHz

Useful symbol Time Tb = 1/∆ f = 89.638µs

Guards Period ratio 1/8

OFDM Symbol time Ts = (1+1/8)×Tb = 0.1008msec

Subchannelization mode DL-PUSC

Tones per subchannel 24

Subchannel bandwidth Wsub= 24×∆ f = 267.744KHz

Number of subchannels Nsub= 30

Table 2.2: OFDMA-Related Parameters

data users and also the total throughput for the users at the edge (users at 1500m). For

data users we will also observe total log-sum rateC(t) = ∑i∈UD
logRi(t). For real time

users we will measure the 95th Percentile Delay for Voice and Streaming Sessions.

2.7.3 Increasing Number of Voice Users

Figures 2.3, 2.4 show the effects of increasing the number ofvoiceusers. In Figure

2.3 we observe that FPQS Algorithm is better than M-LWDF algorithm in terms delay

performance. With FQPSA delay for voice and video sessions stay within acceptable
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bounds, while with M-LWDF, it exceeds the bounds for the userat the cell edge when

V ≥ 30. Besides, according to Figure 2.4 FQPSA provides at least10 percent increase

in total throughput. Total throughput decreases linearly with increasing number of voice

users. Although 10 voice users adds up to 0.32 Mbps, adding 10users decreases the to-

tal throughput approximately by 1.2-1.4 Mbps. This is because voice has a very strict

delay requirement and a voice session may have to be transmitted despite bad channel

conditions. Throughput for LWDF decreases with a little bitslower rate but that reflects

to the voice and video performance negatively. Log-sum performance of FQPSA is also

better than that of M-LWDF, which shows that our algorithm provides fairness. We also

observed that a voice session almost always uses one subchannel, when scheduled. This

is approximately the case for video sessions. Users at the edge sometimes users 2 sub-

channels in a slot.

2.7.4 Increasing Number of Streaming Users

In Figure 2.5 we see the effects of increasing number of videostreaming users on

delay. We see that our algorithm is better than M-LWDF in all criteria. 95th percent delay

for edge users demanding voice and video exceeds the acceptable region forS> 40, while

for our algorithm it stays within the threshold. There is still more than 10 percent increase

in total throughput. Log-sum of long term received rates is also greater. Adding 10 video

users (which means 1.28Mbps) decreases the throughput by 2 Mbps on the average. The

inefficiency is less compared to increasing voice users because video has a looser delay

requirement.
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2.7.5 Increasing Number of Data Users

In Figure 2.7 and 2.8 we can observe the effects of increasingthe number of data

users.We observe that delay for both voice and video streaming sessions stay approx-

imately constant. Delay performance is much better than that of M-LWDF algorithm.

Data performance is 10 percent better than M-LWDF. Total throughput increases with

number of data users, but the increase diminishes as D increases.

2.8 Summary

In this chapter we formulated and a resource allocation problem for OFDMA-based

downlink transmission. We proposed an algorithm that converges to the unique optimal

solution of the problem. Finally we numerically showed thatwhen compared with the M-

LWDF scheme, our scheme both provides better proportional fairness for data sessions

and provides better QoS for real time sessions.
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Chapter 3

Practical Scheduling of Heterogeneous Traffic in OFDMA-based

Wireless Downlink Systems

3.1 Introduction

In Chapter 2 we considered the problem of resource allocation for long term pro-

portional fairness of data sessions and satisfying QoS requirements for real time traffic.

The base station allocates available power and bandwidth toindividual users based on

long term average received rates, QoS constraints and channel conditions. Although the

proposed scheme in Chapter 2 is theoretically sound, the complexity of the algorithm

motivates us in finding a simpler version of it.

In the proposed algorithm in Chapter 2, although few of the data sessions transmit-

ted most of the time, the algorithm had to involve all data nodes in the computation and

perform the look-up table operation for all data nodes at every step of the binary search. In

this Chapter we add two new steps such as data user selection and minimal resource allo-

cation. We select only a fraction of data users. We formulateand solve a proportional fair

resource allocation problem for the selected data and videousers subject to minimum rate

requirements for video users. For selected voice users we calculate a minimal resource

and exclude them from the optimization. At this point we distinguish video sessions from

voice sessions in terms of elasticity and give them chance toget more rates depending
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on their channel conditions. The rest of the chapter is organized as follows: In Section

3.2 we explain the system model. In Section 3.3 we describe the user selection for data

and real time sessions and rate requirement determination process for the real time ses-

sions. In Section 3.4 we formulate the problem of joint powerand bandwidth allocation.

Section 3.5 consists of algorithm description. Finally, weevaluate the performance of the

proposed algorithm numerically in Section 3.6 and concludethe chapter.

3.2 System Model

We consider a cellular system consisting of a base station transmitting toN mobile

users. Time is slotted and at each time slot base station allocates the total bandwidthW

and total powerP among the users. In the simulations we keep the users fixed, however

we simulate mobility by fast and slow fading. Fast fading is Rayleigh distributed and slow

fading is log-normal distributed. Total channel gain is theproduct of distance attenuation,

fast and slow fading. Lethi(t) be the channel gain of user i at time t. For an AWGN

channel with noise p.s.d.N0, signal to interference plus noise ratio (SINR) is,

SINRi =
pi(t)hi(t)
N0wi(t)

, (3.1)

wherepi(t) andwi(t) are the power and bandwidth allocated to user i at time t. The BS

uses a set of modulation and coding (convolutional coding and repetitions) corresponding

to certain SINR thresholds defined in Table 1.1.

In order to allocate resources in a fair manner we will solve aconstrained optimiza-

tion problem. In that formulation, we will use the followingrate function.

r i(t) = wi(t) log

(
1+β

pi(t)hi(t)
N0wi(t)

)
, (3.2)
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The network can support different traffic types such as real time (VoIP), video

streaming, data applications with some rate requirements (FTP) and best effort traffic.

We assume that each user demands a single type of traffic. We will consider the following

traffic types:

1. FTP: FTP traffic consists of a sequence of file transmissions separated by random

reading times. File sizes are on the order of megabytes. In the simulations we

will consider transmission of a single file and will make a full buffer assumption,

that is, there will always be unlimited number of packets to transmit throughout

the simulation. FTP traffic is typically non real time, whichhas a minimum rate

requirement.

2. Video Streaming: A video session consists of video framesarriving at regular in-

tervals There are a fixed number of packets (slices) at each frame. Each packet in a

frame consists of a random number of bytes. Video traffic has aminimum rate re-

quirement. As long as this minimum rate requirement is satisfied, the excess traffic

can be treated equally as FTP and Web traffic.

3. VoIP: A VoIP session consists of a stream of packet arrivals with deterministic

interarrival time and fixed packet lengths. Therefore satisfying the minimum rate

requirement is enough for such traffic types.

We classify the traffic into two groups as elastic and non-elastic traffic. BE traf-

fic is elastic, that is, a BE user can use any available traffic.Fairness and throughput

are the performance objectives for BE traffic. Proportionalfairness provides a good bal-

ances between the two. Voice traffic is non-elastic; it is a CBR traffic with strict delay
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requirements. If a voice user can receive its short term required rate level, it doesn’t need

excessive resources. On the other hand Video streaming traffic is in between the two

types. It has a basic rate requirement with certain delay constraints, however it is possible

to achieve higher quality video transmission if the user experiences good channel condi-

tions. In this work we aim to satisfy the basic rate requirement for voice and video users,

while treating excessive rate allocation for video users similarly as BE users.Typical rates

for these traffic types are listed in Table 3.2.

3.3 User Selection

Our proposed scheduling algorithm consists of user selection and rate allocation.

After selecting the users, the subchannels and power is allocated. We use the same user

satisfaction value as in Chapter 2.

USVi(t) = LiD
HOL
i log

(
1+

βpi(t)hi(t)
N0wi(t)

)
r0
i

Ri(t)
(3.3)

HereLi =− log(δi)
Dmax

i
andr0

i is the data rate requirement for user i. LetUD, US andUV be the

BE, Video and Voice users. LetUR = US∪UV be the set of real time users. LetUE and

UE be the set of users demanding elastic traffic and the rest, respectively.

In this setting the quantity or fraction of users chosen fromdata and real time users

is also an important parameter. Choosing too much real time users gives excessive rate to

those users and is bad for the data users. Choosing too much data is users both bad for

real time users and it may also decrease the achievable rate.Our scheme puts the real time

(streaming, voice) users and data users in separate pools. Let D, SandV be the number

of data , streaming and voice users. We use a simple formula todetermine the fraction
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FR(t) of real time users scheduled in each time slot,

FR(t) =
1

|US|+ |UV| ∑
i∈US∪UV

I(qi(t) > 0.5Dmax
i r0

i ) (3.4)

Here 0.5Dmax
i r0

i denotes a queue size threshold in bits andI(.) is the indicator function

taking value one if the argument inside is true. As more usersexceed this threshold, more

fraction of real time users are scheduled. For data users, wesimply choose a fraction of

0.2 of users. Next, we describe the joint power and bandwidthallocation that is performed

on these chosen users.

3.4 Joint Power and Bandwidth Allocation

After the users are chosen, joint power and bandwidth allocation is performed. Let

U ′
D, U ′

S andU ′
V be the chosen users that belong to all three traffic classes. The algorithm

is as follows:

3.4.1 Basic Rate Allocation for Real Time Users

For the real time (voice, streaming) users, first the nominalSNR γ0
i is determined

according to the uniform power per bandwidth allocation asγ0
i = Phi(t)

N0W . Thenγ0
i is quan-

tized by decreasingPhi(t)
N0W

to the closest SNR level in Table 1.1. Ifγ0
i is smaller than the

smallest SNR level, then the ceiling is taken. Based on this nominal SINR, nominal band-

width efficiencyS0
i (t) is determined using Table 1.1. Then the rate is determined. The

basic rate for real time sessions is,

rc
i (qi(t),ωi(t)) =

(
qi(t)
Ts

,
r0
i

ωi(t)
,

)
, i ∈U ′

R (3.5)
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Hereqi(t) is the queue size andωi(t) is the transmission frequency of user i, which is

updated as follows:

ωi(t) = αiωi(t −1)+(1−αi)I(r i(t) > 0), (3.6)

whereI(r i(t) > 0) is the function that takes value one if the node receives packets in time

slot t, zero otherwise. Therefore this frequency decreases if thenode transmits less and

less frequently. Using this frequency expression in the basic rate function, we compen-

sate for the lack of transmission in the previous time slots possibly due to bad channel

conditions.

For the chosen real time users with non-elastic traffic (i ∈UE ∩U ′
R) basic resource

allocation is enough to support the session. For these userswe allocate the basic re-

source as follows, and don’t include them in the rate allocation which will be defined

later. First, the nominal SNRγ0
i is determined according to the uniform power per

bandwidth allocation asγ0
i =

Phi(t)
N0W

. Then γ0
i is quantized by decreasingPhi(t)

N0W
to the

closest SNR level in Section 3.2. Ifγ0
i is smaller than the smallest SNR level, then

the ceiling is taken. Based on this nominal SINR, nominal bandwidth efficiencyS0
i (t)

(in bps/Hz) is determined again using the values above. Using this basic rate and the

nominal bandwidth efficiency, basic bandwidth for non-elastic traffic is determined as

wmin
i =

rmin
i (t)
S0

i (t)
, i ∈UE ∩U ′

R. Then this bandwidth is quantized to a multiple of subchannel

bandwidth bywmin
i = max(1,⌊wmin

i ⌋)Wsub. Minimal power for this user is thenpmin
i =

γ0
i wmin

i N0/hi(t), ∀i ∈UE ∩U ′
R. Hencepi = pmin

i andwi = wmin
i for these users.1

Let the residual power and bandwidth after non-elastic realtime traffic allocations

1After the basic allocation, if the total bandwidth or power is greater then the available resource, the user

with the largest power is chosen, bandwidth is decreased by one subchannel and the power is also decreased
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be P′ = ∑i∈UE∩U ′
R

pmin
i andW′ = ∑i∈UE∩U ′

R
wmin

i . For real time users with elastic traffic

(i ∈U ′
R∩UE) we include the basic rate as a constraint in joint residual bandwidth-power

allocation, which will be explained next.

3.4.2 Proportional Fair Resource Allocation for Data and Video Stream-

ing

At this stage the residual power (P′) and bandwidth (W′) is allocated among the

chosen users demanding elastic traffic in a proportional fair manner. The PF resource

allocation problem in (3.7) is solved among the chosen streaming and data users.

Find (p∗,w∗) such that:

max
p,w ∏

i∈UE∩(U ′
R∪U ′

D)

(
wi log

(
1+

pi

niwi

))φi

(3.7)

subject to,

wi log

(
1+

pi

niwi

)
≥ rmin

i , ∀i ∈UE ∩U ′
R (3.8)

∑
i∈UE∩(U ′

R∪U ′
D)

pi ≤ P′ (3.9)

∑
i∈UE∩(U ′

R∪U ′
D)

wi ≤ W′ (3.10)

pi ,wi ≥ 0,∀i ∈UE ∩ (U ′
R∪U ′

D) (3.11)

Here log-sum is written as a product. The above problem is a convex optimization

problem with a concave objective function and convex set [47]. In this optimization

we also included the parameterφi , which depends on the traffic type. Since data users

in order to keep the SINR fixed. This process is continued until the total bandwidth and power for voice

and video users becomes smaller than the available resources.
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typically can tolerate more rate and video users are alreadyallocated basic bandwidth,

we can give higherφi for data users. We can solve this problem using the Lagrange

multipliers.

L(w,p,λp,λw) = ∑
i∈UE∩(U ′

R∪U ′
D)

log

(
wi log

(
1+

pi

niwi

))φi

+ ∑
i∈UE∩(U ′

R∪U ′
D)

λi
r

(
wi log

(
1+

pi

niwi

)
− rmin

i

)
+λp



P′− ∑
i∈UE∩(U ′

R∪U ′
D)

pi





+λw(W′− ∑
i∈UE∩(U ′

R∪U ′
D)

wi) (3.12)

∂L(p,w,λp,λw)

∂p∗i

∣∣∣∣
(p∗,w∗)

= 0 ⇒ λp =
1/ni

(
φi +λi

rw
∗
i log

(
1+

p∗i
niw∗

i

))

w∗
i log

(
1+

p∗i
niw∗

i

)(
1+

p∗i
niw∗

i

) (3.13)

∂L(p,w,λp,λw)

∂wi

∣∣∣∣
(p∗,w∗)

= 0 ⇒ λw =


 1

w∗
i
−

p∗i
niw∗

i

w∗
i

(
1+

p∗i
niw∗

i

)(
1+

p∗i
niw∗

i

)




×
(

φi +λi
rw

∗
i log

(
1+

p∗i
niw∗

i

))
(3.14)

By dividing (3.14) to (3.13) we can write for alli ∈UE ∩ (U ′
R∪U ′

D):

λw

λp
= Λx = ni ((1+x∗i ) log(1+x∗i )−x∗i ) , (3.15)

wherex∗i =
p∗i

niw∗
i

denotes the optimaleffectiveSINR, which is the SINR multiplied by the

SINR gap parameterβ. Let’s define functionfx(x) = (1+ x) log(1+ x)− x. This is an

increasing convex function as proved in Lemma 2.2. For givenλw, λp, we can find the

SINR from f−1
x ( λw

λpni
).

Combining Equations (3.13) and (3.14), and denotingΛp = 1/λp we also write,

φi +λi∗
r w∗

i log
(

1+
p∗i

niw∗
i

)
−Λ∗

pp∗i

w∗
i

= λ∗
w (3.16)
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Please note that from Kuhn-Tucker conditionsλi∗
r

(
w∗

i log
(

1+
p∗i

niw∗
i

)
− rmin

i

)
= 0,

therefore ifλi
r > 0, thenw∗

i log
(

1+
p∗i

niw∗
i

)
= rmin

i . Carryingw∗
i to the right hand side and

adding (3.16) for alli ∈ UE ∩ (U ′
R∪U ′

D) and using the power and bandwidth constraints

we get,

∑
i∈UE∩(U ′

R∪U ′
D)

φi + ∑
i∈UE∩(U ′

R∪U ′
D)

λi∗
r rmin

i = λ∗
wW′+λ∗

pP′ (3.17)

Using (3.16) we can write,

λi∗
r =

[
λp

(
1+ f−1

x (
Λx

ni
)

)
ni −

φi

rmin
i

]+

(3.18)

Finally, using (3.13), (3.15) and (3.18) we can write the sum-bandwidth and using

the relationpi = wini f−1
x (Λx

ni
) we can write the sum-power in terms ofΛx,

Sw(Λx,Λp) = ∑
i∈UE∩(U ′

R∪U ′
D)

wi = ∑
i∈UE∩(U ′

R∪U ′
D)

max
(

φiΛp,
(

1+ f−1
x (Λx

ni
)
)

nirmin
i

)

Λx +ni f−1
x (Λx

ni
)

(3.19)

Sp(Λx,Λp) = ∑
i∈UE∩(U ′

R∪U ′
D)

pi = ∑
i∈UE∩(U ′

R∪U ′
D)

max
(

φiΛp,
(

1+ f−1
x (Λx

ni
)
)

nirmin
i

)
f−1
x (Λx

ni
)

Λx
ni

+ f−1
x (Λx

ni
)

(3.20)

Let us define the functionΛ∗
p(Λx) as the relation betweenΛp andΛx that satisfies

both sum-power and sum-bandwidth conditions. Using (3.19)and (3.20) we can write,

∑
i∈UE∩(U ′

R∪U ′
D)

max

(
rmin
i

(
1+ f−1

x (
Λx

ni
)

)
ni ,Λ∗

p(Λx)φi

)
= ΛxW

′ +P′ (3.21)

Using (3.19) and (3.21) we can find the optimal values of Lagrange multipliers.

Please note that for the special case ofrmin
i = 0,∀i ∈ UE ∩ (U ′

R∪U ′
D) we can writeΛ∗

x
ni

=

P
Wni

(
Λ∗

p
Φ
P −1

)
, whereΦ = ∑i∈U ′

D∪U ′
S
φi. Let us define functionΛ∗

p(Λx) that gives the

relationship betweenΛp andΛx based on Equation (3.21).

Λp(Λx) =
ΛxW′ +P′−∑r i=rmin

i
rmin
i ni(1+ f−1

x (Λx
ni

))

∑r i>rmin
i

φi
(3.22)
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Lemma 3.1 The following properties hold:

1. Λp(Λx) < ΛxW′+P′
Φ ,∀Λx, whereΦ = ∑i∈UE∩(U ′

R∪U ′
D) φi .

2. Λp(Λx) is an increasing function ofΛx for Λx > Λ0
x. Λ′

p(0) = W′
∑i∈UE∩(U ′

R∪U ′
D) φi

.

3. Let Λ0
x satisfy the equality W′ = Sw(Λx,0). If Sw(Λx,0) > P′ then the problem is

infeasible, that there is no (Λx,Λp) that solves both (3.19) and (3.20).

4. AsΛx goes to zero,Λp(Λx) goes toP′
Φ . In this case Sw(Λx,Λ∗

p(Λx)) goes to in-

finity and Sp(Λx,Λ∗
p(Λx)) goes to P′. On the other hand asΛx goes to infinity,

Sp(Λx,Λ∗
p(Λx)) goes to infinity and Sw(Λx,Λ∗

p(Λx)) goes to W′.

Proof 3.1 1. From equation (3.21) we can write that

max

(
rmin
i

(
1+ f−1

x (
Λx

ni
)

)
ni,Λ∗

p(Λx)φi

)
≥ Λ∗

p(Λx)φi

for all i. Therefore we can write

∑
i∈U ′

D∪U ′
S

Λ∗
p(Λx)φi ≤ Λ∗

xW
′+P′

Λ∗
p(Λx) ≤ Λ∗

xW
′+P′

∑i∈U ′
D∪U ′

S
φi

, hence inequality is satisfied.

2. Using equation (3.21) we can take the derivative ofΛ∗
p(Λx) w.r.t. Λx and obtain the

following:

dΛp(λw)

dΛx
=

W′−∑r i=rmin
i

rmin
i

log(1+ f−1
x (Λx/ni))

∑r i>rmin
i

φi
(3.23)

As we can see the denominator of the derivative is W′−Sw(0,Λx). From the defini-

tion of feasibility forΛx ≥Λ0
x, W′−Sw(0,Λx) > 0, which implies that the derivative

is positive (function is increasing) for allΛx ≥ Λ0
x.
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3. Sp(Λx,Λp) is an nondecreasing function ofΛx for all Λp. Sw(Λx,Λp) is an non-

increasing function ofΛx for all Λp. Both Sp(Λx,Λp) and Sw(Λx,Λp) are nonde-

creasing functions ofΛp for all Λx. Therefore, if Sw(Λ0
x,0) =W′ and Sp(Λ0

x,0) > P′

then from the above monotonicity properties Sp(Λx,Λp) > P′ for all Λx > Λ0
x. We

also know from monotonicity properties that Sw(Λx,λp) > W′ for all Λx < Λ0
x and

Λp > 0. Therefore the problem has no solution for this case and the problem is

infeasible.
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Figure 3.1: Convergence of Algorithm

3.5 Proposed Algorithm

In this section we present the algorithm that determines thepower and bandwidth

allocation. The algorithm is also able to detect infeasibility if there no solution exists.

Algorithm:

1. ComputeΛ0
x = BinarySearch0x().
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2. If Sp(Λ0
x,0) < P then the problem is feasible from Lemma 3.1.iii. Continue with

Step 3. Otherwise the problem is not feasible.

3. (Λ∗
x,Λ∗

p) = BinarySearchxp(Λ0
x).

4. (w∗
i p∗i ,x

∗
i ) = ComputePowerBandwidth(Λ∗

x,Λ∗
p)

Subroutine: Λ0
x = BinarySearch0x(): FindΛ0

x s.tSw(Λx,0) = W.

i. Choose∆x > 0. Find the smallest integerk > 0 s.t. Sw(2k∆x,0) < W. SetΛl
x =

2k−1∆x, Λh
x = 2k∆x andΛm

x = (Λl
x +Λh

x)/2

ii. Iteratively computeSw(Λm
x ,0) and update(Λl

x,Λh
x).

• if |Λh
x

Λl
x
−1| < ε, returnΛ0

x = Λm
x ;

• else ifSw(Λm
x ,0) < W, Λh

x = Λm
x andΛm

x = (Λh
x +Λl

x)/2;

• elseΛl
x = Λm

x andΛm
x = (Λh

x +Λl
x)/2.

Subroutine Λ∗
p = BinarySearchp(Λx,Λl

p,Λh
p): FindΛ∗

p(Λx) that satisfies (3.21).

i. SetΛm
p = (Λl

p+Λh
p)/2 and run(w,p,x) = ComputePowerBandwidth(Λx,Λm

p):

ii. Binary search:

• If |Λh
p

Λl
p
−1| < ε, returnΛ∗

p = Λm
p ;

• else if∑i∈U ′
D∪U ′

S
max

(
rmin
i (1+xi)ni ,Λm

pφi
)

> ΛxW′ +P′ , Λh
p = Λm

p andΛm
p =

(Λh
p+Λl

p)/2;

• elseΛl
p = Λm

p andΛm
p = (Λh

p+Λl
p)/2.
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Subroutine (Λ∗
x,Λ∗

p) = BinarySearchxp(Λ0
x): If the problem is feasible finds(Λ∗

x,Λ∗
p)

s.tSw(Λ∗
x,Λ∗

p) = W, andSp(Λ∗
x,Λ∗

p) = P.

i. Choose∆x > 0. Find the smallest integerk > 0 s.t. Sw(2k∆x,Λ∗
p(2

k∆x)) > P. Set

Λh
x = 2k∆x. If k = 0 then setΛl

x = Λ0
x else setΛl

x = 2k−1∆x. SetΛm
x = (Λl

x +Λh
x)/2.

Λl
p = BinarySearchp(Λl

x,0,
Λl

xW
′+P′

Φ ) andΛh
p = BinarySearchp(Λl

x,0,
Λh

xW′+P′

Φ )

ii. Iteratively computeΛm
p = BinarySearchp(Λm

x ,Λl
p,Λh

p), and update(Λl
x,Λh

x,Λl
p,Λh

p)

based onSw(Λm
x ,Λm

p).

• if |Λh
x

Λl
x
−1| < ε, return(Λ∗

x,Λ∗
p) = (Λm

x ,Λm
p);

• else ifSw(Λm
x ,Λ∗

p(Λm
x )) < W′, Λh

x = Λm
x , Λm

x = (Λh
x +Λl

x)/2 andΛh
p = Λm

p ;

• elseΛl
x = Λm

x , Λm
x = (Λh

x +Λl
x)/2 and andΛl

p = Λm
p .

After we find Λ∗
x and Λ∗

p, we compute the optimal SNR, bandwidth and power

values for all nodes with the following subroutine:

Subroutine (w,p,x) = ComputePowerBandwidth(Λx,Λp):

i. Optimal SNR values for all chosen users,xi :

xi = f−1
x (Λx/ni), ∀i ∈UE ∩ (U ′

R∪U ′
D) (3.24)

wherefx(x) = (1+x)log(1+x)−x. We use a look-up table to perform this operation.

ii. For i ∈UE ∩ (U ′
R∪U ′

D), bandwidth values,wi :

wi =
max

(
φiΛp,(1+xi)nirmin

i

)

Λx +nixi
(3.25)

iii. For i ∈UE ∩ (U ′
R∪U ′

D), power values,pi :

pi = niwixi , ∀i ∈U ′
D∪U ′

S (3.26)
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3.5.1 Bandwidth and SINR quantization and Reshuffling

After the resources are allocated, first the bandwidth for data and video streaming

users is quantized aswi = max(1,⌊wi⌋)Wsub. Then the SINR is quantized and transmit

power is determined. Unlike FTP transmission, queue size plays an important role in real

time transmissions. As a result of the above optimization some streaming time sessions

may get more rates than that is enough to transmit all bits in the queue. Some of the

bandwidth is taken from video users in order to obey this queue constraint. After these

modifications, if the total bandwidth is grater than the available, then the user with the

highest power is found and its bandwidth decreased. Power isrecalculated in order to keep

the SINR fixed. This process is continued until bandwidth constraint is satisfied. If total

power is still greater than the available then again choosing the user with highest power

and decreasing bandwidth, power constraint is satisfied. Ifafter these processes there is

a leftover bandwidth, then choosing the user that has the highest channel a subchannel is

added and power is increased accordingly (if there is enoughpower to do so). If there

is some leftover power, then starting from the user with lower channel gains, SINR is

boosted to the next power level (if there is enough power to doso). For the real time

sessions we don’t increase bandwidth or power if there isn’tenough buffer content.

3.6 Numerical Evaluation

For the numerical evaluations we divide the users to 5 classes according to the

distances, 0.3,0.6,0.9,1.2,1.5 km. For instance if there are 5 voice users in the system, at

each distance class a single Voice user is located. Fork×5 user there are k users for each
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session of the same type is located at each distance point. Weuse the parameters in Table

3.1.

Parameter Value

Cell radius 1.5km

User Distances 0.3,0.6,0.9,1.2,1.5 km

Total power (P) 20 W

Total bandwidth (W) 10 MHz

Frame Length 1 msec

Voice Traffic CBR 32kbps

Video Traffic 802.16 - 128kbps

FTP File 5 MB

AWGN p.s.d.(N0) -169dBm/Hz

Pathloss exponent (γ) 3.5

ψDB ∼ N(µψdB,σψdB) N(0dB,8dB)

Coherent Time (Fast/Slow) (5msec/300msec.)

Pathloss(dB, d in meters) −31.5−35log10d+ψdB

Table 3.1: Simulation Parameters

We performed the simulations using MATLAB. We compared our algorithm with

the benchmark M-LWDF algorithm with proportional fairness. Delay exceeding proba-

bility is taken asδi = 0.05 for all users. The traffic and resource allocation parameters are

listed in Table 3.2. Since we choose data users separately from others, the parametersLi

and head of line delayDHOL
i are not used for data users.

Traffic r0(kbps) rmax(kbps) Dmax(s) Li φi αi

VoIP 32 32 0.1 13 - 0.98

Streaming 128 1024 0.4 3.25 1 0.995

BE 0 ∞ 2 0.65 - 0.998

Table 3.2: Minimum required and maximum sustained rates fordifferent types of traffic.
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The measured performance metrics are 95th percentile delay for real time sessions

and total throughput for data sessions. We will observe these parameters with respect to

number of users for each type of sessions. For the delay, we observe the users in the range

0.3-1.2 separately asgoodusers and the ones at 1.5km asbadusers.

3.6.1 Fixed Rate Video Traffic

3.6.1.1 Increasing Number of Voice Users

In Figure 3.2 we plotted the 95 percentile delay of real time sessions vs increasing

number of voice users. For this simulation we kept the numberof data and Video users

fixed at 20 each. We see that there is a slight increase in delaywith increasing voice

sessions. Delay for bad users exceeds the threshold with theM-LWDF algorithm, while

for DRA they are in the acceptable range. In Figure 3.3 we see that DRA algorithm is

also better in terms of total throughput. We also observe that total throughput decreases

linearly with increasing real time sessions.

3.6.1.2 Increasing Number of Video Users

In Figure 3.4, we plotted the 95 percentile delays of real time sessions vs increasing

number of video users. For this simulation we kept the numberof data and Voice users

fixed at 20. Again we observe that 95 percentile delay for video sessions increases ex-

ponentially with number video users, while delays for the users at the edge is within the

acceptable range for DRA unlike M-LWDF.

In figure 3.5 we see that total data rate decreases linearly with increasing video
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users. Data performance of DRA is again better than M-LWDF.

3.6.1.3 Increasing Number of FTP Users

In Figure 3.6, 95th percentile delay for video and voice sessions are plotted for

increasing number of data sessions. The number of Streamingand Voice sessions are

kept fixed at 20. We observe a linear increase in the delay w.r.t. number of data sessions

with M-LWDF. The delay increase is negligible for DRA.

In Figure 3.7 we see that total throughput increases as the number of FTP users

increases for both algorithms. This is because of multiuserdiversity. After some increase,

the total throughput reaches a capacity. Capacity corresponding to DRA is approximately

10 percent higher than that of M-LWDF.

3.6.2 Elastic Video Traffic

In the second part of the simulations we considered video traffic rate that varies

with packet delays. We implemented a simple rate control scheme that looks at the aver-

age head of line packet delay and increases or decreases according to a threshold policy.

We defined rate levelsr0
i λi , (λi ∈ {1,2, . . . ,8}) that are integer multiples of 128kbps. In-

terarrival times are the same for level 1 andk, however for levelk packet size isk times

larger for each packet. For each useri ∈UE ∩UR and at each update instant.

• if DHOL
i (t) < 0.125Dmax

i thenλi = min{λi +1,λmax}

• if DHOL
i (t) > 0.25Dmax

i thenλi = max{λi −1,1}
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10 15 20 25 30 35 40 45 50 55 60
14

16

18

20

22

24

26

28
Increasing Streaming Users (20 Video, 20 Data Users)

Number of Streaming Video User

T
ot

al
 d

at
a 

th
ro

ug
hp

ut
 (

M
bp

s)

DRA
M−LWDF

Figure 3.5: 95 percentile queue size(bits) vs. number of voice and video users
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HereDHOL
i (t) denotes mean HOL packet delay in the last 400 frames. The updates are

made at each 200 frames.

Figure 3.8 shows the evolution of rate levels along with queue sizes for video users

at distances 300, 900 and 1500 meters. We observe that users closer to the BS can achieve

higher rates.
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Figure 3.8: Evolution of Video rate along with queue sizes for users at 300, 600 and

900meters

In Figure 3.9 we observe the comparison of delay and throughput for the DRA and

LWDF schemes.We see that DRA system satisfies delay constraints for voice users unlike

LWDF. As for throughput, we see that DRA can provide significantly better throughput

for video users at all distances. Total data/video throughput and log-sum throughput

(proportional fairness) is also better for DRA scheme.
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3.7 Summary

In this chapter we proposed a simpler resource allocation algorithm as an alternative

to the algorithm proposed in Chapter 2. The simulation results show that the algorithm

has a better performance than the benchmark algorithm and itis comparable to the one

proposed in 2.
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Chapter 4

Resource Allocation for Wireless Downlink System with Relays

4.1 Introduction

In Chapters 2 and 3 we considered a cellular system consisting of a single base

station and mobile users. We observed that users at the cell edge often suffer from bad

channel conditions and observe lower SINR. In an urban environment, big buildings pose

a serious blockage to users behind and sometimes generate coverage holes. Signal pen-

etration and attenuation inside buildings or tunnels also degrade the signal quality sig-

nificantly. Often it is not possible to improve the signal qualities to these under-serviced

areas by increasing the transmission power or changing the antenna configurations. Re-

ducing the cell size and deploying more base stations will improve the situation, but this

is often not possible due to limited access to traditional cell sites and wired backhaul

links and the associated high operating cost. Using radio relay stations is an effective way

to increase the signal quality of the users by replacing a long, low quality link between

a Base Station(BS) and a Mobile Station(MS) with multiple shorter, high quality links

through one or multiple Relay Stations (RS). As relay stations do not require their own

wired backhauls, and are often less sophisticated than a full functional BS, relay stations

are less expensive to deploy and operate than a traditional base station. The standard for

relay in WiMax networks is being developed by the 802.16j Relay working group [51].

In this chapter we address the problem of OFDM based resourceallocation in a
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cellular network with fixed relay stations. In a realistic multihop relay network the traffic

between the BS and MSs can be forwarded via multiple hops through RSs. However

in this work we assume that there is at most one RS between the BS and a MS. A RS

communicates to the BS like a MS, and communicates with the MSin its coverage area

(called RS-microcell) like a BS. We describe the system model in Section 4.2. In line with

recent IEEE 802.16j standard we schedule microcell transmissions in a TDMA manner

in a MR frame. We first allocate a time interval of the frame to each microcell. As in the

previous chapters we apply a user selection and rate requirement determination for each

real time session link. We study real time rate assignment and time allocation problem in

Section 4.3. In Section 4.4 we formulate a constrained optimization problem that allocates

the available bandwidth, power and time to sessions in the BS-RS and RS-MScomposite

links. Our objective is to maintain proportional fairness among the data sessions in a

microcell while guaranteeing required rates for real time (voice and video) sessions. We

propose an algorithm that solves this problem in Section 4.5and numerically evaluate the

proposed algorithm in Section 4.6. We compare the performance of the relay network

with our proposed algorithm in Chapter 2.

The use of relays in broadband cellular networks have not been studied sufficiently

in the past. The existing studies involve TDMA based schemes[52],[53],[54]. In these

models, transmission from the BS to RS and from RS to MS happenin consecutive equal-

length time intervals. The work in [52] concentrates on a single tandem link. At each

time slot either one of the queues are served and the authors formulate the problem in

the context of dynamic programming and propose a link scheduling and power control

scheme to jointly optimize energy expenditure and delay. In[53], the authors consider
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high speed network with multiple CDMA codes and constant power. They allocate two

consecutive slots to a tandem queue (fixed), therefore each link in the tandem queue

transmits every other time slot. The paper only considers data communication. In [54],

the authors propose a power control scheme that minimizes the interference in a relay

network. Unlike all these works we propose a frame-by-framescheduler, where in each

time slot, the time slots and subcarriers in a frame are allocated to each transmission in

order to optimize a QoS-based objective.

4.2 System Model and Notation

Figure 4.1 shows a typical multihop relay (MR) network. The base station is at the

center, and there are a number of RSs located in the cell area.We assume that the MSs

are located randomly in the cell are and they are fixed. Relay stations are also fixed and

each MS is assigned to the BS or one of the RSs, based on the distance.1

In this work we consider frame by frame downlink resource allocation. Total frame

duration isTf seconds and it is divided into time slots of durationTs. Total bandwidth is

W Hz, which is divided intoNsubsubchannels ofWsubHz bandwidth. We assume PUSC as

the subchannelization method [9], where a subchannel is formed by randomly sampling

subcarriers from the entire frequency range. Because of sampling, all subchannels are of

equal channel quality with respect to a user. While modelingthe allocation problem we

will consider time and bandwidth as a continuously divisible quantity. After finding the

optimal values, we will quantize them to the integer multiples of subchannel bandwidth

1We consider a fixed system but simulate mobility of MSs through fast Rayleigh fading and slow Log-

normal shadowing.
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MMR-cell

BS
RS2

RS1

MS1

MS4

MS2

MS3

MS5

MS6

MSRS2
MSRS1

MSBS

Figure 4.1: Topology of a MR cell with a BS and two relay stations (RS1 andRS2). The

BS is serving the MSs in the setMSBS directly (MS1 andMS2). Two relay stations (RS1,

RS2) are used to extend the coverage of BS and serve MSs in the setMSRS1 (MS3, MS4)

andMSRS2 (MS5, MS6). The MR cell includes the coverage area of the BS and all the

RSs.

and time slot duration. We assume for simplicity that each user demands only one type

of traffic, data, video streaming or voice. LetUD andUR be the set of data and real

time sessions. Set of nodes assigned toRSi is denoted asMSRSi and set of nodes directly

connected to BS is calledMSBS. This assignment is based on path loss. A node is assigned

directly to the BS or one of the RSs that maximizes the received signal strength. We

assume that this assignment is fixed. The BS keeps separate queues for each user, while

each RS also keeps separate queues for the set of nodesMSRS. We make the following

definitions:

• Microcell: A microcell is formed by a group of MSs directly connected toa station

(BS or RS). Let M-1 be the number of RSs. Including the MSs directly connected
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to the BS, there are M microcells. LetMCi be theith microcell, whereMCM denotes

the microcell that contains the MSs directly connected to the BS. In the example in

Figure 4.1 there are 3 microcells.

• Composite Link: There are three types of composite links. The set of transmissions

throughBS→ RSi, RSi → MSRSi for all i = 1, . . . ,M − 1 andBS→ MSBS are all

composite links. Figure 4.2 illustrates a typical downlinkframe. As seen in the fig-

ure, transmissions belonging to different composite linksare scheduled in a TDMA

fashion in a downlink frame. As an example in Figure 4.1, there are 5 composite

links and hence the downlink frame is divided into 5 TDMA subframes.

• Tandem queue: A tandem queuel j is the two cascading queuesBS→ RSi → MSj ,

where j ∈ MSRSi. Let hBS
j andhRS

j be the channel gains for the linksBS→ RSi and

RSi → MSj , respectively. ObviouslyhBS
j = hBS

k for all j,k ∈ MSRSi , because those

queues follows the sameBS→ RSi link. Let qBS
j andqRS

j be the number of bits

waiting in those queues to be transmitted.

In an MR network, bandwidth is often limited and has to be shared by the base

stations and multiple relay stations to serve all the MSs in the MR-cell. We assume that

a relay station has a single radio interface in order to reduce the cost, which also man-

dates the RS to use the same channel to communicate with the BSand with its MSs (and

potentially with other RSs). Because of the single interface constraint of relay stations,

transmissionsBS→ RSi andRSi → MSRSi should also be scheduled in a TDMA fashion.

Considering this and for simplicity we follow a TDMA approach in scheduling transmis-

sions of each composite link.
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Figure 4.2: Downlink subframe for the TDD frame structure ofa MR cell. BS and N RSs

share the DL subframes on a TDMA basis. The order of the mediumaccess in a DL or

UL subframe is arbitrary and can be interchanged without affecting the proposed scheme.

On the downlink,TBS
i includes all the time slots assigned to the traffic destined from BS

and RSi, whileTRS
i is for the traffic destined fromRSi to MSRSi. Uplink subframe is just

the symmetric of DL subframe.

Let PBS andPRS be the available power budget for the BS and each RS, respec-

tively. We consider a channel with Rayleigh fading and Log-normal shadowing. At each

time frame the channel gain is assumed constant and we consider an equivalent AWGN

channel. In order to determine the bandwidth efficiency as a function of SNR, we use the

values in Table 1.1.

In the problem formulation we use the following function forthe number of bits

that is transmitted through a link

rφ
j = Tφ

i wφ
j log

(
1+

βpφ
j h

φ
j

wφ
j N0

)
,φ = BS,RS, j ∈ MSRSi (4.1)

HereTφ
i is the part of the frame (in seconds) that is allocated to the composite linkφ (BS

or RS) of microcelli. Let pφ
j wφ

j be the power and bandwidth user j in microcelli gets

(φ = BS(RS) for the BS-RS (RS-MS) link). We perform resource allocationin two main

steps:
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1. Cellular Time Allocation: In this step we consider a TDMA scheme among com-

posite links, where all sessions in a composite link transmit simultaneously in aTφ
i

second subframe and share the available bandwidth and power. Before performing

TDMA allocation we also determine rate requirements for each real time session.

2. Microcell Resource allocation: In this step we separately perform joint power/bandwidth

allocation for eachBS→ RS→ MSRSi,∀i ∈ MC.

4.3 Cellular Time Allocation

In this section we consider resource allocation in a single microcell, which includes

the transmissions through composite linksBS→ RSi and RSi → MSRSi. For the data

sessions letRj be the average transmitted rate through the tandem queue of data user

j ∈ MSRSi∩UD. For the real time sessions, letrc,BS
j andrc,RS

j be the required rates for the

tandem queues of sessionj.

4.3.1 Real Time Session Rates

First a number of real time session links are chosen in BS-RS and RS-MS composite

links to be transmitted in the current frame. We use the following user satisfaction value

for real time sessions:

USVφ
j (t) = − log(δ j)

Dmax
j

Dφ
j log

(
1+

βPφhφ
j (t)

N0W

)
λ j

Rφ
j (t)

(4.2)

This metric resembles the Largest Weighted Delay First (LWDF) metric except the

λ j/Rφ
j (t) term at the end. Hereλ j is the bit arrival rate andRφ

j (t) is the service rate for
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user j. Service rate is updated asRφ
j (t +1) = αRφ

j (t)+(1−α)rα
j (t), whereφ = BSfor the

BS-RS transmission andφ = RSfor RS-MS transmission.Dmax
j andDφ

j are the maximum

allowable delay and current head of line delay for the link.δ j is typically chosen as 0.05

and reflects the probability of exceeding the delay constraint. The BS chooses a number

of real time sessions according to this metric, whereU ′
R denotes the set of chosen real

time users. The rate constraint for a chosen real time session is defined as:

rc,φ
j (qφ

j (t),ω
φ
j (t)) = max

(
λ j ,

qφ
j (t)

Dmax
j 0.5ωφ

j (t)

)
, j ∈U ′

R (4.3)

Hereωφ
j is the transmission frequency of the corresponding link of user j, which is

calculated as follows:

ωi(t) = αωφ
j (t −1)+(1−α)I(rφ

j (t) > 0), (4.4)

whereI(rφ
j (t) > 0) is the function that takes value one if the node receives packets in time

slot t, zero otherwise. Therefore this frequency decreases if thelink transmits less and

less frequently. Using this frequency expression in the rate function, we compensate for

the lack of transmission in the previous time slots possiblydue to bad channel conditions.

4.3.2 Time Allocation for each Microcell

In this section we will propose a method for allocating time intervals for each mi-

crocell. We assume uniform power allocation. By this assumption , we will be able to

allocate times for each microcell in a simple manner, then with these time values we

will determine the times for each composite link along with the power and bandwidth of

each individual link in these composite links. Let the spectral efficiency be defined as
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Sφ
j = log

(
1+ Pφ

nφ
jW

)
, ∀ j ∈U,φ = BS,RS. Then the number of nats transmitted is equal

to rφ
j = Tφ

i wφ
j S

φ
j nats. We can define time-bandwidth product asbφ

j = Tφ
i wφ

j for j ∈ MSRSi

and allocate resources subject to a time bandwidth constraint ∑ j∈UD∪UR
bBS

j +bRS
j ≤WTf .

For a real time session link j required time bandwidth product can be directly computed

asbφ
j =

rc,φ
j

Sφ
j

,φ = BS,RS. So we can do a resource allocation only for data sessions and

subject to the constraint∑ j∈UD
bBS

j +bRS
j ≤ (WTf )

′ = WTf −∑ j∈UR

rc,BS
j

SBS
j

+
rc,RS

j

SRS
j

. Since we

assume uniform power allocation , it becomes a much simpler task to allocate times.

max
b,r

∑
j∈UD

log
(
α jRj +(1−α j)r j

)
(4.5)

∑
j∈UD

bBS
j +bRS

j ≤ (WTf )
′ (4.6)

bφ
j S

φ
j ≥ r j , φ = BS,RS,∀ jUD (4.7)

The problem above has a concave objective function increasing in each data session rate.

The constraint set is convex, hence we can solve the problem by using Lagrange multipli-

ers.

L(b, r ,λb,λr) = ∑
j∈UD

log
(
α jRj +(1−α j)r j

)
+λb((WTf )

′− ∑
j∈UD

bBS
j +bRS

j )

+ ∑
φ=BS,RS

∑
j∈UD

λ j ,φ
r

(
bφ

j S
φ
j − r j

)
(4.8)

We won’t go into details of the solution. Using similar methods as in the microcell prob-

lem solution of this problem requires a simple binary searchonλb that solves the follow-

ing equations:

r j(λb) =



 1

λb(
1

SBS
j

+ 1
SRS

j
)
− α̃Rj




+

∀ j ∈UD (4.9)

WTf = ∑
j∈UD

r j(λb)

(
1

SBS
j

+
1

SRS
j

)
+ ∑

j∈UR

(
rc,BS

j

SBS
j

+
rc,RS

j

SRS
j

)
(4.10)
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As we see sum of time-bandwidth resources is a monotonic decreasing function ofλb.

Based on these result of this optimization in order to share the frame in a TDMA manner

time allocated to composite links in microcelli can be computed asTφ
i (λb) = 1

W ∑ j∈MSRSi
r j(Λb)b

φ
j ,φ =

BS,RS,∀i ∈ MC.

4.3.3 Feasibility of the Problem

The analysis above is made with a feasibility assumption. Byfeasibility we mean

that the available resources are enough to support at least the required rates for real time

sessions. Let us defineTBS
i andTRS

i be the minimum required time to support the real

time sessions in BS-RS and RS-MS links. We can find them by taking the limit Tφ
i =

limλb→∞ Tφ
i (λb). Looking at the rate equation in (4.28) we see that limitλb → ∞ makes

the data session rates equal to zero and real time sessions are unaffected. If∑i∈MC TBS
i +

TRS
i > Tf , then we find the non-zero-rate link with worst channel condition and change

its required rate equal to zero.

4.4 Composite Link Resource Allocation

Let p = {pBS
j , pBS

j | j ∈ MSRSi}, p = {wBS
j ,wBS

j | j ∈ MSRSi} be the set of powers and

rates allocated for links in this microcell and letT i = {TBS
i ,TRS

i } be the allocated time

for BS→ RSandRS→ MSRStransmissions. The objective is to maximize the log sum of

data rates.

Ci(w,p,T i) = ∑
j∈MSRSi∩UD

log
(
αRj +(1−α)r j

)
(4.11)
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The constraints are the real time sessions rate requirements defined in the previous part,

and total power, rate, time constraints. The problem is formulated as follow:

max
w,p,Ti

C(w,p,T i) (4.12)

s.t. TBS
i +TRS

i ≤ Ti (4.13)

∑
j∈MSRSi

pφ
j ≤ Pφ φ = BS,RS (4.14)

∑
j∈MSRSi

wφ
j ≤ W, φ = BS,RS (4.15)

Tφ
i wφ

j log

(
1+

pφ
j

nφ
j w

φ
j

)
≥ r j , φ = BS,RS,∀ j ∈ MSRSi∩UD (4.16)

Tφ
i wφ

j log

(
1+

pφ
j

nφ
j w

φ
j

)
≥ r0,φ

j , φ = BS,RS,∀ j ∈ MSRSi∩UR (4.17)

The problem above has a concave objective function increasing in each data session rate.

The constraint set is convex, hence we can solve the problem by using Lagrange multipli-

ers.

L(w,p,T i ,λp,λw,λr ,λT) = Ci(w,p,T i)+λT(Ti −TBS
i −TRS

i )

+ ∑
φ=BS,RS

λφ
p

(
Pφ − ∑

j∈MSRSi

pφ
j

)
+ ∑

φ=BS,RS

λφ
w

(
W− ∑

j∈MSRSi

wφ
j

)

+ ∑
φ=BS,RS

∑
j∈MSRSi∩UD

λ j ,φ
r

(
Tφ

i wφ
j log

(
1+

pφ
j

nφ
j w

φ
j

)
− r j

)

+ ∑
φ=BS,RS

∑
j∈MSRSi∩UR

λr,φ
j

(
Tφ

i wφ
j log

(
1+

pφ
j

nφ
j w

φ
j

)
− r0,φ

j

)
(4.18)

The problem can be solved by taking derivative with respect to resources and Lagrange

multipliers. Since the rate is an increasing function of resources the optimal can be

achieved only when all the time, power and bandwidth is used.Therefore all Lagrange

multipliers are positive. Derivatives with respect to resources are as follows:
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4.4.0.1 Derivative w.r.t.r j for usersj ∈ MSRSi∩UD, φ = BS,RS

∂L(w,p,T i ,λp,λw,λr ,λT)

∂r j
= 0⇒

[
1

λr,BS
j +λr,RS

j

− αRj

1−α

]+

= r j (4.19)

4.4.0.2 Derivative w.r.t.wφ
j andpφ

j for usersj ∈ MSRSi, φ = BS,RS

∂L(w,p,T i ,λp,λw,λr ,λT)

∂wφ
j

= 0⇒ Tφ
i


log

(
1+

pφ
j

nφ
j w

φ
j

)
−

pφ
j

nφ
j w

φ
j

1+
pφ

j

nφ
j w

φ
j


=

λφ
w

λr,φ
j

(4.20)

∂L(w,p,T i,λp,λw,λr ,λT)

∂pφ
j

= 0⇒ Tφ
i

nφ
j

(
1+

pφ
j

nφ
j w

φ
j

) =
λφ

p

λr,φ
j

(4.21)

Dividing Eq. (4.20) to (4.21) we get the following relation:

λφ
x

nφ
j

=
λφ

w

nφ
j λ

φ
p

=

(
1+

pφ
j

nφ
j w

φ
j

)
log

(
1+

pφ
j

nφ
j w

φ
j

)
−

pφ
j

nφ
j w

φ
j

(4.22)

Let’s defineλφ
x = λφ

w/λφ
p and the functionfx(x) = (1+x) log(1+x)−x. This is a

monotonic increasing and convex function. Usingλφ
x(i) we can find the SINRxφ

j =
pφ

j

nφ
i wφ

j

as f−1
x (λφ

x/nφ
j ).

4.4.0.3 Derivative w.r.t.Tφ
i , for φ = BS,RS

∂L(w,p,T i ,λp,λw,λr ,λT)

∂Tφ
i

= 0⇒ ∑
j∈MSRSi

λr,φ
j wφ

j log

(
1+

pφ
j

nφ
j w

φ
j

)
= λT (4.23)
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Using Equations (4.23), (4.21) and (4.22) we can write,

λT = ∑
j∈MSRSi

λφ
p

Tφ
i

nφ
j w

φ
j

(
1+

pφ
j

nφ
j w

φ
j

)
log

(
1+

pφ
j

nφ
j w

φ
j

)

λT = ∑
j∈MSRSi

λφ
p

Tφ
i

nφ
j w

φ
j

(
λφ

w

λφ
pnφ

j

+
pφ

j

nφ
j w

φ
j

)

λT = ∑
j∈MSRSi

(
wφ

j λ
φ
w

Tφ
i

+
λφ

ppφ
j

Tφ
i

)

Tφ
i =

Wλφ
w+Pφλφ

p

λT
(4.24)

Using Equation (4.21) and (4.24) we get:

λr,φ
j = λTλφ

p

nφ
j

(
1+ f−1

x (λφ
x

nφ
j

)

)

Wλφ
w +Pφλφ

p

= λT

nφ
j

(
1+ f−1

x (λφ
x

nφ
j

)

Wλφ
x +Pφ

(4.25)

Combining (4.19) and (4.25) we obtain the rate function for data users in terms of

λBS
x , λRS

x andλT as,

r j(λBS
x ,λRS

x ,λT) =




1

λTnBS
j

(
1+ f−1

x (
λBS
x

nBS
j

)

)

WλBS
x +PBS +

λTnRS
j

(
1+ f−1

x (
λRS
x

nRS
j

)

)

WλRS
x +PRS

− α̃Rj




+

(4.26)

Taking the derivative of (4.18) w.r.t.λφ
p we obtain the power constraints and com-

bining it with (4.22) we obtain,

Pφ = ∑
j∈MSRSi

f−1
x

(
λφ

x

nφ
j

)
nφ

j w
φ
j , φ = BS,RS (4.27)

SincenBS
j = nBS for j ∈ MSRSi, SINR’s in those links are the same using (4.22).

Therefore optimal SINRs of all users in the BS-RS links are equal toxBS∗ = f−1
x (

λBS∗
x

nBS ) =
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PBS

nBSW . After some arrangements in (4.26) we can write the rates of all data sessions as a

function of onlyλRS
x andλT as follows:

r j(λRS
x ,λT) =




W/λT

1

log
(

1+ PBS

nBSW

) +

(
1+ f−1

x (
λRS
x

nRS
j

)

)

λRS
x

nRS
j

+ PRS

nRS
j W

− α̃Rj




+

(4.28)

Rater j(λRS
x ,λT) is a nonincreasing function ofλRS

x for 0≤ λRS
x ≤ nRS

j fx( PRS

nRS
j W

) and

it is a nondecreasing function ofλRS
x for nRS

j fx( PRS

nRS
j W

) ≤ λRS
x . For finiteλT it always takes

finite values.

4.4.0.4 Calculation of times

Sum of the time-bandwidth products in BS-RS and RS-MS composite links is as

follows,

∑
j∈MSRSi

Tφ
i (λRS

x ,λT)wφ
j = ∑

j∈MSRSi∩UD

r j(λRS
x ,λT)

log

(
1+ f−1

x (λφ
x

nφ
j

)

)

+ ∑
j∈MSRSi∩UR

rc,φ
j

log

(
1+ f−1

x (λφ
x

nφ
j

)

) (4.29)

Each node in a composite link transmits using the same time interval, but different

frequency bands, where the sum of the bandwidths is equal toW. Dividing the total time-

bandwidth product toW we can find the time intervals allocated to BS-RS and RS-MS
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composite links:

TBS
i (λRS

x ,λT) = ∑
j∈MSRSi∩UD

r j(λRS
x ,λT)

W log
(

1+ PBS

nBSW

)

+ ∑
j∈MSRSi∩UR

rc,BS
j

W log
(

1+ PBS

nBSW

) (4.30)

TRS
i (λRS

x ,λT) = ∑
j∈MSRSi∩UD

r j(λRS
x ,λT)

W log

(
1+ f−1

x (
λRS

x
nRS

j
)

)

+ ∑
j∈MSRSi∩UR

rc,RS
j

W log

(
1+ f−1

x (
λRS

x
nRS

j
)

) (4.31)

Total time equation is,

ST(λRS
x ,λT) = TBS

i (λRS
x ,λT)+TRS

i (λRS
x ,λT) (4.32)

4.4.0.5 Calculation of total power

Sum of the powers in BS-RS and RS-MS transmissions can be found as follows:

SBS
p (λRS

x ,λT) = ∑
j∈MSRSi∩UD

r j(λRS
x ,λT)nBS PBS

nBSW

TBS
i (λRS

x ,λT) log
(

1+ PBS

nBSW

)

+ ∑
j∈MSRSi∩UR

rc,BS
j nBS PBS

nBSW

TBS
i (λRS

x ,λT) log
(

1+ PBS

nBSW

) (4.33)

SRS
p (λRS

x ,λT) = ∑
j∈MSRSi∩UD

r j(λRS
x ,λT)nRS

j f−1
x (

λRS
x

nRS
j

)

TRS
i (λRS

x ,λT) log

(
1+ f−1

x (
λRS

x
nRS

j
)

)

+ ∑
j∈MSRSi∩UR

rc,RS
j nRS

j f−1
x (

λRS
x

nRS
j

)

TRS
i (λRS

x ,λT) log

(
1+ f−1

x (
λRS

x
nRS

j
)

) (4.34)
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Combining Equations (4.30),(4.31),(4.33) and (4.34) we obtain a second equation

for total time,

Ti =

∑
j∈UD




1
λ∗

T
− α̃Rj




nBS
j (1+ f−1

x (
λBS

x
nBS

j
))

WΛBS
x +PBS +

nRS
j (1+ f−1

x (
λRS

x
nRS

j
))

WΛRS
x +PRS







+

+ ∑
j∈U ′

R




rc,BS
j nBS

j (1+ f−1
x (

λBS
x

nBS
j

))

WΛBS
x +PBS +

rc,RS
j nRS

j (1+ f−1
x (

λRS
x

nRS
j

))

WΛRS
x +PRS


 (4.35)

Ti =

∑
j∈UD




1
λ∗

T
− α̃Rj




1

W log(1+ PBS

nBSW
)
+

nRS
j (1+ f−1

x (
λRS

x
nRS

j
))

WΛRS
x +PRS







+

+ ∑
j∈U ′

R




rc,BS
j

W log(1+ PBS

nBSW)
+

rc,RS
j nRS

j (1+ f−1
x (

λRS
x

nRS
j

))

WΛRS
x +PRS


 (4.36)

∑
j∈MSRSi∩UD

r j(λRS
x ,λT)(A j(λRS

x )−B j(λRS
x ))

+ ∑
j∈MSRSi∩UR

rc,RS
j (A j(λRS

x )−B j(λRS
x )) = 0 (4.37)

whereA j(λRS
x ) = 1

W log

(
1+ f−1

x (
λRS
x

nRS
j

)

) andB j(λRS
x ) = 1

W log

(
1+ f−1

x (
λRS
x

nRS
j

)

)
f−1
x (

λRS
x

nRS
j

)

PRS

nRS
j W

A j(λRS
x ) is

a decreasing andB j(λRS
x ) is an increasing function ofλRS

x .

Lemma 4.1 Left hand side of (4.37) is a monotonic nonincreasing function of λRS
x that

decreases from+∞ to−∞ and crosses zero at a single point.
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Proof 4.1 We will start the analysis from a single user. For a data user jand forλT >

0, the function rj(λRS
x ,λT) takes finite values for all0 < λRS

x . It is a either zero or a

decreasing function ofλRS
x for λRS

x < nRS
j fx( PRS

nRS
j W

) and either zero or increasing function

of λRS
x for λRS

x > nRS
j fx( PRS

nRS
j W

). For real time users rate function is constant.

It can also easily be shown that Aj(λRS
x )− B j(λRS

x ) is a decreasing function of

λRS
x which takes positive values forλRS

x < nRS
j fx(

PRS

nRS
j W

) and negative values forλRS
x >

nRS
j fx( PRS

nRS
j W

). For λRS
x < nRS

j fx( PRS

nRS
j W

) the LHS of (4.37) is a product of two positive de-

creasing functions and it is decreasing for user j. ForλRS
x > nRS

j fx( PRS

nRS
j W

) it is the product

of a positive increasing and negative decreasing function hence it is also decreasing in

this region for user j. Hence, LHS of (4.37), summation of such functions for all users is

a monotonic decreasing function

Let λRS∗
x (λT) be the Lagrangian multiplier that satisfies Equation (4.37)(Please note

that the power constraint is automatically satisfied for BS-RS by settingxBS
j = PBS

WnBS for

j ∈ MSRSi). Since the total power is an increasing function ofλRS
x , this value can be found

by a simple binary search. ThenTBS
i (λRS∗

x (λT),λT) andTRS
i (λRS∗

x (λT),λT) become the

corresponding time allocated to BS-RS and RS-MS transmissions. We are looking for

the Lagrange multiplier values(λRS∗
x (λ∗

T),λ∗
T) that satisfies bothSRS

p (λRS∗
x (λ∗

T),λ∗
T) = P

andTBS
i (λRS∗

x (λ∗
T),λ∗

T)+TRS
i (λRS∗

x (λ∗
T),λ∗

T) = Ti . We need another binary search onλT .

Hence we can find the optimal power,bandwidth and time by two nested binary searches.

The algorithm will be described later in more detail.
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4.5 Algorithm

Main Algorithm:

1. Determine required rates for real time sessions

2. Test feasibility: IfTBS
i + TRS

i > Ti then find the real time transmitting link with

non-zero rate and worst channel condition and drop it.

3. Run (λRS∗
x ,λ∗

T) = BinarySearchTime()

4. Run (p,w,T i) = ComputePowerBandTime(λRS∗
x ,λ∗

T)

Procedure: (λRS∗
x ,λ∗

T) = BinarySearchTime():

1. Run BinarySearchRS
x (2k∆λT) and find the smallestk such thatTBS

i (λRS∗
x (2k∆λT),2k∆λT)+

TRS
i (λRS∗

x (2k∆λT),2k∆λT) > Ti . Setλh
T = 2k∆λT , λl

T = 2k−1∆λT .

Repeat Step 2 until
∣∣∣ Ti

TBS∗
i +TBS∗

i
−1
∣∣∣< ε

2. Setλm
T = (λh

T +λl
T)/2 andrun λRS∗

x (λm
T) = BinarySearchRS

x (λm
T ).

• If TBS
i (λRS∗

x (λm
T),λm

T )+TRS
i (λRS∗

x (λm
T),λm

T) > Ti thenλl
T = λm

T .

• elseλh
T = λm

T .

Procedure: λRS∗
x (λT) = BinarySearchRS

x (λT): Finds theλRS∗
x (λT) so thatSRS

p (λRS∗
x (λT),λT) =

PRS.

1. Find the smallestk such thatSRS
p (2k∆λRS

x ,λT) > PRS. SetλRS,h
x = 2k∆λRS

x , λRS,l
x =

2k−1∆λRS
x .

Repeat Step 2 until

∣∣∣∣
Sp(λRS,m

x ,λT)

PRS −1

∣∣∣∣< ε
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2. Setλm
T = (λl

T +λh
T)/2. If SRS

p (λRS,m
x ,λT) < PRS thenλl

T = λm
T elseλh

T = λm
T

Procedure:(p,w,T i) = ComputePowerBandTime(λRS
x ,λT)

1. Calculater j , j ∈ MSRSiusing (4.28).

2. CalculateTRS
i andTBS

i using (4.31) and (4.30).

Proposition 4.1 The problem presented in (4.12)-(4.17) (for a feasible case) has a con-

cave objective function and a convex constraint set. Therefore it has a solution.

Proof 4.2 The proof is very similar to the proof for Lemma 2.1 and it is omitted.

Figure 4.3 shows a typical binary search process for a microcell. At each step a

(λT ,λRS
x (λT)) pair is found such that the sum of powers is equal toPRS. Since for such

pairs timeTRS
i + TBS

i is monotonic decreasing inλT (as seen in the figure), we are able

to find the optimalλT by a binary search. Since the channel condition in the access(BS-

RS) link is usually much better, usuallyTBS
i < TRS

i . In this example time slot length is

0.1msec, and after the optimization, all times will be rounded to this value. Therefore we

can stop the search when we come less that 0.05msec close to the time constraint (which

is 2msec in this example)

4.6 Numerical Evaluation

Figure 4.4 shows a sample MR system. We consider a tandem network of 2km

radius, where the BS is at the (0,0) coordinate. The RSs are located at 1400m to the end

of the MR-cell. MSs are located at 400,800,1200,1600 and 2000 meters. In order to make
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Figure 4.3: A sample binary search process

the station assignment, all the stations (BS and RSs) send broadcast signals (Transmission

power for the BS and RSs isPBSandPRS, respectively). Each MS is assigned to the station

(either the BS or one of the RSs) that maximizes the received power.2

BS

2000m1400m

Figure 4.4: A sample MR model for numerical evaluation

As for the path loss, we use the IEEE 802.16j channel model proposed in [55].

For BS→ MS and RS→ MS we use the Non-line-of-sight (NLOS) and forBS→ RS

and we use the LOS model. We assume log-normal fading with variance equal to 8Db

2In a real system RSs can be located according to the user density in the MR cell area.
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for BS transmissions and 3.1dB for RS transmissions, and Rayleigh fading with mean

equal to 0.6. We assume that rayleigh fading stays constant at each frame and log-normal

fading stays constant during 5 frames. Frame length is equalto 20 slots and each slot

is Ts = 1msec. Base station and each relay hasPBS = 20W andPRS= 5Ws of power,

respectively. Bandwidth is equal toB = 10MHz.

Our traffic model is based on [56], and it is as follows: For each data (FTP) session

we assume a single 5MB file arriving at the queue at time zero. We assume 32kbps VoIP

sessions, where a 320-bit packet arrives at every 10 time slots. Finally we assume 128kbps

video streaming sessions, with a fixed video frame duration of 100msec. During each

frame there are 8 packets (slices). Packet size is TruncatedPareto distributed with certain

min, max and shape parameters. Interarrival time between packets is also Truncated

Pareto distributed with certain min, max and shape parameters such that all packets arrive

during a 100ms frame. We assume that bits arrive at the end of atime slot and they are

ready to transmit at the beginning of the next time slot.

Performance Criteria are

1. 95 percentile delay for voice sessions

2. 95 percentile delay for video sessions

3. average throughput for data sessions

Keeping the number of data and voice users at 20 each, we vary the number of video

user from 20 to 50. Figure 4.5 shows the 95th percentile delay for voice sessions. We

can observe that in the 2-RS system users at all distances delay stays under the required

100msec level, while for the system with no RSs, users at 1.6km and 2.0km experience
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severe delays. Since the coherence time for the log-normal fading is much longer than the

voice delay constraint, delays for edge users by far exceed the required levels.

400 600 800 1000 1200 1400 1600 1800 2000

0

50

100

150

200

250

300

95th percentile voice delay (increasing number of video users (S)): D=V=20

distances(m)

m
se
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2 RS
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no RS

S=20-50

S=20-50

Figure 4.5: 95th percentile voice delay vs. distance to the BS for increasingnumber of

video sessions.

Figure 4.6 shows the 95th percentile delay for video sessions. We again observe

that using relays we can prevent QoS violation for users at all distance levels in the cell.

Without RSs, users at the cell edge experience high delays.

Figure 4.7 shows the total throughput for users at differentdistance levels. Here we

observe the negative effect of using relays on throughput. Sessions in the RS-microcells

have to travel two links. These two links are both very likelyto experience a better

channel condition than a single BS-MS link, however transmission of a packet requires

two frames. Because of this trade-off be observe from Figure4.7 that users at 0.4, 0.8km
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Figure 4.6: 95th percentile video delay vs. distance to the BS for increasingnumber of

video sessions.

receive more throughput in the 0-RS case. On the other hand users at 1.2, 1.6 and 2.0km

receive more throughput in the 2-RS system.

We also observe that total throughput decreases more with increasing number of

video users in the 0-RS case. In the 2-RS case a video user takes less throughput. There-

fore in the case of large number of video users, a system with relays is expected to pro-

vide more throughput to data users. We can better observe this in Figure 4.8. We see that

throughput for the 2-RS case is better forS≥ 40, and log-sum of throughput s better for

the 2-RS case forS≥ 30.
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Figure 4.7: Total throughput of data users vs. distance to the BS for increasing number of

video sessions.

4.7 Summary

In this Chapter we proposed a joint time, power and bandwidthallocation scheme

for downlink transmission in the presence of single-interface relay stations. The proposed

scheme consists of two steps, namely subframe allocation for each microcell and joint

time , power,bandwidth allocation for links in each microcell. Numerical results show

that it is possible to increase the cell size and decrease thenumber of base stations by

adding low-cost relay stations. Multihop relay systems satisfy the QoS requirements of

all real time sessions, for the cases, in which regular cellular systems are not sufficient.
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sessions.
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Parameter Value

Cell radius 2km

User Distances 0.4,0.8,1.2,1.6,2.0km

RS Distance 1.4km

# microcells (M) 3

BS,RS Power (PBS,PRS) (20,5) W

Wsub, Nsub 267KHz, 30

Frame LengthTf 2 msec

Slot LengthTs 0.1 msec

Voice Traffic CBR 32kbps

Video Traffic 802.16 - 128kbps

FTP File 5 MB

AWGN p.s.d.(N0) -174dBm/Hz

Coherent Time (Fast/Slow) (4msec/400msec.)

BS-RS PL(d)(in dB) 36.5+23.5log10d+ ψBS−RS
dB

RS-MS PL(d)(in dB) 31.5+35log10d+ ψRS−MS
dB

BS-MS PL(d)(in dB) 31.5+35log10d+ ψBS−MS
dB

ψBS−MS
dB , ψRS−MS

dB ∼ N(0dB,8dB)

ψBS−RS
dB ∼ N(0dB,3.1dB)

Table 4.1: Simulation Parameters
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Chapter 5

Queueing Analysis of an OFDMA-based Resource Allocation Scheme

5.1 Introduction

In the previous chapters we have studied power-bandwidth allocation for downlink

communication. We considered systems supporting heterogeneous traffic. For real time

sessions we determined rate constraints and developed resource allocation algorithm that

maximizes proportional fair capacity for data users, whilesatisfying rate requirements for

real time sessions. A crucial assumption in previous chapters was that frequency selective

fading among subcarriers was eliminated with the help of distributed subcarrier grouping.

This leads to simpler resource allocation algorithms as proposed in previous chapters.

If we use adjacent grouping instead, each subchannel experiences different fading,

as we mentioned before. Pursuing our previous objectives inthis setting requires more

complex algorithms, however in this setting we can propose simple schemes that take

advantage of multiuser diversity. In this chapter we will consider such a scheme. We

will consider an OFDMA based system, where each user experiences independent and

identically distributed fading (i.i.d.) at each subchannel and time slot. A fixed power

level is used at each subchannel and each subchannel is allocated to the user that maxi-

mizes the signal to noise ratio (SNR). Such a system was analyzed in [57], [58], where

the author studied the asymptotic throughput analysis using extreme value theory [59].

Moreover, for users with different distances to the BS (hence different average SINRs)
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the author considered allocation of the subchannel to the bestnormalizedSINR. Extreme

order statistics can be used to approximate the distribution of maximizing random vari-

able in a large set of random variables. Using this method theauthor in [57], [58] carried

out a throughput analysis of the system and proved that asymptotic analysis is quite accu-

rate. In [57] an analysis of delay was also attempted, however apparently it is not realistic.

The author models the system as a continuous time M/G/1 system, however the system

is inherently discrete-time, since the channel condition changes and new allocations are

made at every time slot. In this chapter, modeling as a discrete time multiserver queueing

system [44] and using generating function approach we estimate the tail probability of

buffer occupancy at a node. Probability of exceeding a certain buffer occupancy thresh-

old is determined as the QoS metric. We look at the trade-off between transmission power

and QoS.

If the nodes have different average SNRs (due to differencesin distance or log-

normal fading) we can revise the scheme to schedule user withbest normalized SNR. The

rest of the chapter is organized as follows. In Section 5.2 wedescribe our system model.

In this section we also describe the extreme value methodology. In Section 5.3 we make

an analysis for the tail probability of queue size. In Section 5.4, we evaluate accuracy of

tail probability analysis by simulations. We also look at the trade-off between transmis-

sion power and supported traffic rate. In Section 5.5 we look at the case of heterogeneous

average SNRs. We numerically compare tail probability estimates with simulations re-

sults. This scheme is especially suitable for uplink transmission, since the user can adjust

its traffic rate depending on the tail probability estimates.
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5.2 System Model

We consider a system, where total bandwidth ofW Hz is divided intoK subchan-

nels of bandwidthWsub. A fixed power P per subchannel is used by all nodes. We assume

that each subchannel is subject to i.i.d. fading which is constant each slot and varies from

slot to slot. In a realistic OFDMA system this can be achievedby forming the subchan-

nels using Adaptive Modulation and Coding (AMC) method where each subchannel is a

superposition of a number of adjacent subcarriers. Since fading level is fixed at each slot,

we assume an AWGN channel and use the tight SNR-BER relationsderived in [45]. Let

γi,k be the instantaneous SNR of useri at subchannelk. For a target BER the number of

packets transmitted in a subchannel as a function of SNR is,

r i,k =
WsubTs

L
log2(1+βγi,k) (5.1)

whereβ = −1.5/ ln(5×BER). This formulation was proposed for M-QAM modulation

however, it also effectively models continuous rate adaptation [34]. The scheduling mech-

anism is as follows, each subchannel is allocated to the userwith maximum SNR on that

subchannel. We assume that each user has identical average SNR and identical fading

distribution.

We will start from a simple case, the channel condition of each user at each sub-

channel is i.i.d Rayleigh distributed with meanγ0 for all i andk, that isFγ(γi,k) = 1−e
− γik

γ0 .

5.2.1 Extreme Value Theory

In order to analyze such a system we need to derive the probability distribution of

the maximizing SNR at each subchannel. We can use extreme value theory in finding the
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asymptotic distributions of extreme values in a set of i.i.d. variables.

Let Γk = maxi∈N γi,k as the maximizing SNR in subchannelk. For largeN, we can

approximate the distribution ofΓk as an extreme value distribution, if some conditions

are satisfied [59]. Letγ1,k,γ2,k, . . . ,γN,k be independent and identically distributed random

variables with distribution functionFγ(x). If there exists constantsaN ∈ R,bN > 0, and

some nondegenerate distribution functionH such that the distribution of(Γk −aN)/bN

converges toH, then H belongs to one of the three standard extreme value distribu-

tions:Frechet, Weibull and Gumbel distributions. Since channel conditions are i.i.d. and

average SNR’s are same for all users we can drop the subchannel subscript. The distri-

bution function ofγi,k, F(x), determines the exact limiting distribution. If a distribution

function F(x) results in one limiting distribution, thenF(x) belongs to the domain of

attraction of this function.

Lemma 5.1 [57], [59] Let γ1,k,γ2,k, . . . ,γN,k be i.i.d. random variables distribution func-

tion F(x). Defineω(F) = sup{x : F(x) < 1}. Assume that there is a real number x1 such

that, for all x1 < x < ω(F), f(x) = F ′(x) and F′′(x) exist and f(x) 6= 0. If

lim
x→ω(F)

d
dx

(
1−F(x)

f (x)

)
= 0

then there exists constants aN and bN > 0 such that(Γ− aN)/bN uniformly converges

in distribution to a normalized Gumbel random variable as N→ ∞. The normalized

constants are

aN = F−1
(

1− 1
N

)
(5.2)

bN = F−1
(

1− 1
Ne

)
−F−1

(
1− 1

N

)
(5.3)
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where F−1 = inf{y : F(y) ≥ x}

Rayleigh distributed random i.i.d random variables ( fγ(γ) = 1
γ0

e
− γ

γ0 and Fγ(γ) =

1−e
− γ

γ0 ) satisfy the above Lemma.

For γi,k Rayleigh distributed with meanγ0 , the parameters are:aN = γ0 lnN andbN = γ0.

Therefore the random variableΓ−γ0 lnN
γ0

can be approximated as a normalized Gumbel

random variable. A normalized Gumbel distributed random variable,Γ with distribution

functione−e−Γ
,−∞ < z< ∞ has expectation E(Γ) = E0 = 0.5772.. and variance Var(Γ) =

π2

6 .

Let r(γi,k) = WsubTs
L log2(1+βγi,k) be the number of packets that can be transmitted

by useri in subchannelk. Let’s define the rate of the SNR-maximizing user in subchannel

k asRk
max,N = maxi∈N (r(γi,k)). Since the SNR’s are i.i.d, the distribution ofRk

max,N is

invariant of subchannels, therefore we can drop the subchannel indexk. In [57], it was

proven that if the SNR distribution satisfies Lemma 5.1, thenrate of the maximum-SNR

user also converges to Gumbel distribution. More specifically Rmax,N−aN
bN

converges to

normalized Gumbel distribution, where,

aN =
WsubTs

L
log2(1+βγ0 lnN) (5.4)

bN =
WsubTs

L
log2

(
1+βγ0(1+ lnN)

1+βγ0 lnN

)
(5.5)

Mean and standard deviation of rate of maximum-SNR user in any subchannel is the

following,

E{Rmax,N} = bNE0+aN (5.6)

Std{Rmax,N} = bN
π√
6

(5.7)
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Figure 5.1: Mean and standard deviation

Looking at (5.5), we see that asM → ∞, aN → ∞ andbN → 0, andRN converges to

its mean value,Rmax,N ≈ bNE0+aN.

E[Rmax,N] =
WsubTs

L

(
log2

(
1+βγ0(1+ lnN)

1+βγ0 lnN

)
E0+ log2(1+βγ0 lnN)

)
(5.8)

Figure 5.1 shows the mean and standard deviation ofRmaxN. These results nu-

merically verify that standard deviation decreases and mean increases asN → ∞. Stan-

dard deviation is smaller than 1 packet even for moderate number of users, therefore

we can assume that a user can transmit⌊bNE0 + aN⌋ − 1, ⌊bNE0 + aN⌋ or ⌈bNE0 +

aN⌉ packets, if allocated. Lets defineR(z) = P(Rmax,N < ⌊bNE0 +aN⌋)z⌊bNE0+aN⌋−1 +

P(⌊bNE0+aN⌋ < Rmax,N < ⌈bNE0+aN⌉)z⌊bNE0+aN⌋+P(Rmax,N > ⌈bNE0+aN⌉)z⌈bNE0+aN⌉

Each user has equal chance of allocating a subchannel, therefore probability of allocation

of channel k by a user is1N for all users and subchannels. Therefore number of allocated

subchannels is Binomial distributed. Letσ(s) be the probability of total number of pack-
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ets that can be transmitted in a time slot being equal tos. Let Σ(z) be the probability

generating function ofσ(z).

Σ(z) = C(K,0)

(
1− 1

N

)K

+
K

∑
k=1

C(K,k)

(
1
N

)k(
1− 1

N

)K−k

(R(z))k (5.9)

5.3 Queueing Analysis

Since the channel conditions for each user and at every subchannel is i.i.d. and

channel allocation is performed purely based on normalizedchannel condition we can

decouple the queues of each user and avoid the problem of interacting queues. In queueing

theory this system can be modeled as a multiserver system, where the number of active

servers is random according to probability vectorσ and an active server can transmit a

packet in one time slot. We use the generating function approach that was used in [44]

for different system. Queueing model for our system can be summarized as follows.

1. Arrivals: A random number ofL-bit packets arrive at each time slot. The arrivals

occur at the end of the time slot, which means that the data unit that arrives in the

current slot can be transmitted in the future time slots. Letat denote the number

of data units arriving at time slott. Let A(z) = E[za] be the probability generat-

ing function function (p.g.f.) ofat , where E[.] denotes the expected value. For

poisson distributed arrivalsA(z) = eλ(z−1), whereE[a] = λ packets. For geometric

distribution it isA(z) = 1
1+λ−λz.

2. Service:We assume that services start at the beginning of a time slot and end before

the new arrivals come.
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Let’s definec = K ×⌈Rmax,N⌉ as the number of servers and letst be the number of

packets served at time slott.

st = s, w.p. σ(s),s= 0,1, . . . ,min(qt ,c) (5.10)

We define the conditional probability generating functionSi(z) (given that there are

i packets in the buffer o a node) as,

Si(z) = E[zst |min(qt ,c) = i], i = 0,1, . . . ,c (5.11)

=
i−1

∑
s=0

σ(s)zs+
c

∑
s=i

σ(s)zi (5.12)

Channel allocation is purely based on SNR values and sometimes a user may be

allocated more resources than that is enough to empty out thequeue. For the sim-

plicity of analysis, in this case we assume that dummy packets are transmitted on

the excess subchannels. We also assume that services are independent of arrivals.

3. Overflows:Let Dmaxbe the delay constraint in slots. We convert this to a queue size

constraintQmax= λ×Dmax packets using Little’s result. Normally, if an arriving

packet finds the system full, then it is considered dropped. However, for the sim-

plicity of analysis we are considering an infinite capacity buffer and define the QoS

metric as the overflow probability, which is the tail probability of buffer content

distribution (Prob[qt > Qmax]).

The system equation of the buffer content with respect to time can be written as

follows,

qt+1 = qt −st +at (5.13)
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Let Qt(z) denote the pgf ofqt . Considering the independence of arrival and service

processes and using standard z-transform techniques, we can convert the system equation

into the z-domain as follows,

Qt+1(z) = A(z)E[zqt−st ] = A(z)

(
Qt(z)Sc(

1
z
)+

c−1

∑
i=0

q(i)zi
(

Si(
1
z
)−Sc(

1
z
)

))
, (5.14)

whereq(i) denotes the probability that there arei packets in the queue. We are interested

in stable systems, where the buffer content distribution reaches a steady state. When the

steady state is reached,Qt(z) andQt+1(z) converge to a steady state p.g.f.Q(z). Solving

the above equation for equilibrium, we get the expression for Q(z).

Q(z) =
zcA(z)∑c−1

i=0

(
Si(

1
z)−Sc(

1
z)
)

q(i)zi

zc−zcSc(
1
z)A(z)

(5.15)

=
zcA(z)∑c−1

i=0

(
∑c

s=i σ(s)(z−i −z−s)
)

q(i)zi

zc−zc∑c
s=0 σ(s)z−sA(z)

(5.16)

=
A(z)∑c−1

i=0

(
∑c

s=i σ(s)(zc−zc−s+i)
)

q(i)

zc−∑c
s=0 σ(s)zc−sA(z)

(5.17)

whereq(i) = Prob[qn = i], i = 0,1, . . . ,c−1 are the buffer occupancy probabilities.

In order to deriveQ(z) completely, we need to find thec unknown probabilities

q(i) for i = 0,2, . . . ,c−1. Here we need the analyticity property ofQ(z) inside the unit

disk (z : |z| < 1). A complex function is said to be analytic in a region if it is defined and

differentiable at every point in the region. In order to havethe analyticity property, poles

of Q(z) inside the unit disk must also be the zeros of Q(z). At this point Rouche’s theorem

[61] stated below can be utilized to show the number of roots of the denominator inside

the unit disk.

Theorem 5.1 Rouche’s Theorem[61] says that: If f(z) and g(z) are analytic functions

of s inside and on a closed contour C, and also if|g(z)| < | f (z)| on C, then f(z) and
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f (z) + g(z) have the same number of zeroes inside C. Assuming geometric distributed

arrivals 1
1+λ−λz the denominator of Q(z), zc(1+ λ − λz)−∑c

s=0 σ(s)zc−s, has c roots

inside and including (z: |z| < 1).

Proof 5.1 Let’s define f(z) = zc(1+λ) and g(z) =−λzc+1−∑c
s=0σ(s)zc−s. For the value

|z| = 1+ ε:

| f (z)|− |g(z)| = |zc(1+λ)|− |λzc+1+
c

∑
s=0

σ(s)zc−s|

≥ |z|c(1+λ)− (λ|z|c+1+
c

∑
s=0

σ(s)|z|c−s)

≥ (1+ ε)c(1+λ)− (λ(1+ ε)c+1+
c

∑
s=0

σ(s)(1+ ε)c−s)

= (1+cε)(1+λ)− (λ(1+(c+1)ε)+
c

∑
s=0

σ(s)(1+(c−s)ε))+o(ε)

= ε(−λ+
c

∑
s=0

σ(s)s)+o(ε) > 0 (5.18)

We see that under the condition∑c
s=0σ(s)s= cp> λ (which is also the stability condition)

| f (z)|> |g(z)|. Since f(z) has c roots, then the denominator has also c zeros. One of them

is at z= 1, and the others are inside the unit disk. Denominator polynomial has order

c+1, therefore there is a single zero outside unit disk.

Let’s denote these roots byzj , j = 1,2, . . . ,c−1. Because of the analyticity ofQ(z)

for |z| < 1, the numerator must also be zero at these points.

c−1

∑
i=0

(
c

∑
s=i

σ(s)(1−z−s+i
j )

)
q(i) = 0, j = 1,2, . . . ,c−1 (5.19)

We obtain thecth equation from the equalityQ(1) = 1.

c−1

∑
i=0

(
c

∑
s=i

σ(s)(s− i)

)
q(i) =

c

∑
s=0

σ(s)s−A′(1) (5.20)
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From the stability assumption, the right hand side of (5.20)has to be greater than

zero. From theseK equations, the probabilitiesq(i), i = 0,1, . . . ,K−1 can be calculated1.

5.3.1 Tail Probabilities of the Queue Size

Let P(q > Qmax) denote the tail probability of the queue size. Tail probability can

be used to approximate the overflow probability of a limited buffer. It has been previously

found in [44],[62],[63],[64] that for sufficiently large values ofQmax, the tail distribution

of queue size can be approximated as,

Prob[q > Qmax] ≈−Rq
z−Qmax−1
q

zq−1
, (5.21)

wherezq is the real positive pole ofQ(z) with the smallest modulus outside the unit disk,

i.e. it is the dominant pole ofQ(z). Rq is the residue ofQ(z) at z = zq. Assuming

geometric distributed arrivals the p.g.f of queue sizeQ(z) has only one pole outside unit

circle (therefore it is real), one pole at z=1 and the rest inside the unit circle. It can be

derived by evaluating(z−zq)Q(z) atz= zq.

1Since we consider a large number of users, allocation probability of a subchannel to a user is very low.

Probability of allocation of k subchannels to a user diminishes very quickly as k increases. When solving

equations (5.19), (5.20) in MATLAB, errors occur because ofthe precision of the software. To prevent this,

we can crop the probability vectorσ without losing accuracy. This also speeds up the computation
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Rq = (z−zq)Q(z)
∣∣
z=zq

(5.22)

=
(z−zq)A(z)∑c−1

i=0

(
∑c

s=i σ(s)(zc−zc−s+i)
)

q(i)

zc−∑c
s=0σ(s)zc−sA(z)

∣∣∣∣∣
z=zq

(5.23)

=
A(z)∑c−1

i=0

(
∑c

s=i σ(s)(zc−zc−s+i)
)

q(i)

czc−1−∑c
s=0 σ(s)(c−s)zc−s−1A(z)−∑c

s=0 σ(s)zc−sA′(z)

∣∣∣∣∣
z=zq

(5.24)

=
A(z)∑c−1

i=0

(
∑c

s=i σ(s)(zc−zc−s+i)
)

q(i)
1
z ∑c

s=0σ(s)szc−sA(z)− zcA′(z)
A(z)

∣∣∣∣∣∣
z=zq

(5.25)

=
A(zq)∑c−1

i=0

(
∑c

s=i σ(s)(1−z−s+i
q )

)
q(i)

1
zq

∑c
s=0 σ(s)sz−s

q A(zq)− A′(zq)
A(zq)

(5.26)

Equation (5.24) come from the L’Hospital rule and (5.25) is written using the fact

that denominator ofQ(z) is zero atz= zq. As the system load increases,zq approaches

to 1, the probability of exceeding a buffer occupancy threshold increases. For geometric

arrival process (i.e.A(z) = 1
1+λ−λz) the residue is written as follows:

Rq =
∑c−1

i=0

(
∑c

s=i σ(s)(1−z−s+i
q )

)
q(i)

1
zq

∑c
s=0 σ(s)sz−s

q −λ
(5.27)

5.4 Numerical Evaluations

We performed a numerical study to evaluate the accuracy of tail probability esti-

mates and see the energy-QoS trade-off by varying the transmission power. We assume

a system of K=30 subchannels, where each subchannel is ofWsub= 200KHz. System is

slotted with slot lengthTs = 0.001sec. Pathloss in (dB’s) is 31.5+ 35∗ log10(d), where

d is the distance of the node to the base station. We assume Rayleigh fading with mean

equal to one that is constant at each time slot and is i.i.d. from slot to slot. In Figure 5.2,

we considered 100 users and two packets sizesL = 100 and 50 bits,
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Figure 5.2: Tail probability vs. traffic rate

Distances of users ared = 1000m for each user, therefore their average SNRs are

the same. Arrival process for each user is geometric distributed with mean varying from

220Kbps to 260Kbps. Delay constraint is 0.1msec, which is converted toQmax= λ×0.1

bits for each arrival rate. Figure 5.2 shows the analytical and simulation results for over-

flow probability versus power per subchannel for this system. We observe that analytical

results are very close to the simulation results and overflowprobability is increasing and

convex as a function of arrival rate.

5.5 Normalized SNR-based scheduling

In reality average SNRs of users are different due to differences in distances to

the base stations and effects of shadowing. In this case scheduling the best user causes

unfairness in the network. However, when we schedule users based on their normalized
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Figure 5.3: Energy-throughput trade-off

SNR, resource allocation becomes both fair and analyzable.In this case, subchannelk is

allocated to the user argmaxi∈N
γi,k

γi
0

. Since the SNR of a users is the product of normalized

SNR and a random variable that is i.i.d. for each user and subchannel, previous results on

extreme value statistics and subsequent queueing analysesstill holds. If useri is allocated

a subchannel, then expected number of packets that it can transmit isRi
max,N, which is

found by replacingγ0 by γi
0, average SNR of the user that maximizes the normalized

SNR.

In this system each user has the same channel access probability, however users

with higher average SNR can support sessions with higher rates. The ratio of session

rates of usersi and j is, λi
λ j

=
Ri

max,N

Rj
max,N

. If e set the following proportionality among different

user traffic rates, we can better utilize the resources.

λ1
0 : λ2

0 : . . . : λN
0 = R1

max,N : R2
max,N : . . . : RN

max,N (5.28)
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Figure 5.4: Tail probability vs. rate for heterogeneous SNRcase

In Figure 5.4 we considered a system of 50 users at 500m and 50 users at 1000m

distances. For near usersRi
max,N = 16.6871 and for far usersRi

max,N = 9.7777 packets/slot.

The ratio is 1.7 and we increase the rate, maintaining this ratio among rates of two classes

of users. We see that analytical results closely follow the simulation results.

5.5.1 Implementation of the system

A realistic system has to support users with different average SNRs and demanding

services with different QoS requirements. For example dataservices have very loose

delay requirements. Besides these sessions can use whatever rate that is available to

them. On the other hand video streaming sessions have stricter delay requirements and

they can be transmitted in varying quality levels (e.g. 128,256,512,1024Kbps). Since we
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can estimate maximum supportable rate throughRi
max,N for all users, a video user can

choose one of the available levels based on this estimate andits QoS requirements. This

system is suitable for implementation especially in uplinktransmission, since it is easier

for a user to control the traffic it generates. On the other hand voice sessions (e.g. VoIP)

have a single rate level (e.g. 32kbps), therefore for these sessions overutilization may

occur. This problem can be relieved if a voice user doesn’t enter thecompetition if it

doesn’t have any packets in its buffer.

5.6 Summary

In this chapter we studied queueing analysis of an OFDMA based resource alloca-

tion scheme using extreme value theory and generating function approach. We performed

a queueing analysis to estimate the tail probability of queue size distribution for this sys-

tem. We tested the accuracy of the estimates by simulations and observed that estimates

are quite accurate. We both considered systems where users have same average SNR and

different average SNRs. The analysis we performed can be used to easily estimate the

probability of quality of service violation given the system parameters and to adjust the

session rate or transmission power to improve the utilization.
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Chapter 6

Conclusions

In this dissertation we focused on resource allocation in Orthogonal Frequency Di-

vision Multiple Access systems that support users with heterogeneous quality of service

requirements. In Chapters 2 and 3 we proposed joint power/bandwidth allocation algo-

rithms that are suitable for transmission of data, voice andvideo sessions from Base Sta-

tions to mobile users. We consider systems in which the subcarriers grouped into subchan-

nels by taking samples across the frequency spectrum in a distributed manner. This way

we can assume that each subchannel experiences the same average fading with respect to

a user. We assumed bandwidth as a continuously divisible quantity and formulated con-

strained optimization problems that can be solved by relatively simple algorithms. We

converted the delay requirements of voice and video sessions into rate requirements at

each frame. Our objective is maximizing proportional fair capacity of data users subject

to rate constraints for voice and video sessions. Simulation results showed that our algo-

rithms perform significantly better than a multichannel version of M-LWDF, which is a

well known algorithm that can support heterogeneous traffic. In Chapter 3 we also distin-

guished video and voice sessions in terms of elasticity. Using a simple video rate control

scheme for both our algorithm and benchmark algorithm we observed that the proposed

algorithm can provide more rate for video users than the benchmark algorithm.

In Chapter 4, we considered the use of low-cost Relay Stations (RSs), that are
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able to improve the cell coverage by relaying the information coming from the Base Sta-

tion(BS) to mobile stations (MS). Such networks are recently gaining interest along with

the IEEE 802.16j standard that is being developed. Low-costnature of the relay station

equipment doesn’t allow simultaneous transmission and reception, therefore we need to

divide the frame into TDMA subframes, in which differentBS−RS, BS−MSBS, and

RS−MSRSpairs (i.e. composite links) schedule their transmissions. Resource allocation

comes in three dimensions, power, bandwidth and time. We proposed an efficient algo-

rithm that first allocates the TDMA subframes and then performs joint power-bandwidth

allocation for each BS-RS-MS pair. Simulation results showthat using RSs provides

significant performance improvement especially for Video and Voice sessions at the cell

edge and that it is possible to increase the cell size and decrease the number of BSs in a

multicell environment by the use of RSs, which makes mobile multihop relay networks a

promising approach.

The work we did in Chapter 5 presents a different approach. Inthis Chapter we

addressed frequency selective fading channels, unlike previous chapters, and considered

a simple subchannel allocation scheme that allocates each subchannel to user with maxi-

mum normalized SNR. Although this scheme doesn’t guaranteeany performance objec-

tives as in our previously proposed algorithms, it exploitsmultiuser diversity and it can be

theoretically analyzed. Using extreme value theory and generating functions approach we

analyzed the tail distribution of the queue sizes in this system. Simulation results show

that our estimates are quite close to the actual values. The proposed method can be used

for admission control and rate control in the presence of QoSconstraints.
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6.1 Future Work

We can extend the work done in each chapter in order to make them more suitable

to use in real-time environments. Here are some possible directions.

6.1.1 Realistic evaluation and comparison of resource allocation algo-

rithms

Resource allocation algorithms that we proposed in the firstthree contributions are

especially suitable for mobile networks with fast fading. Since we assume distributed

subcarrier grouping (e.g. PUSC in WiMax), frequency selectivity in fading is eliminated

and base station doesn’t need to estimate the fading level ineach subchannel separately.

Another advantage of this way of subchannelization is that each subchannel is equivalent

with respect to a user, therefore we are able to propose less complex algorithms that treat

the entire frequency spectrum as a continuously divisible quantity.

Although we equalize the average fading level in each subchannel by distributed

subcarrier grouping, frequency selectivity is still thereamong the subcarriers in a sub-

channel. It would be interesting to create a realistic simulation environment and test our

algorithms. It would be also interesting to compare our algorithms with the algorithms in

the literature that are proposed for the frequency selective fading. Our algorithms are less

complex and they are supposed to perform well under fast fading.
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6.1.2 Frequency reuse and cooperation in multihop relay networks

We proposed a joint power, bandwidth and time allocation algorithm for multihop

relay networks. In this setting transmissions of relay and base stations are scheduled

in a TDMA fashion. It is possible to increase the network capacity through frequency

reuse. Depending on the path losses and fading between relaystations and users, two or

even more relay stations can transmit simultaneously. Location of the relay stations are

also important in frequency. Intercell interference also depends on the location of relay

stations, therefore network topology management should also be studied.

Cooperation in relay channels was extensively studied in the literature. Relays can

take the advantage of statistical dependence between theirchannel outputs and destination

channel outputs [65], [66]. In our system model we did not consider cooperation. In fact

cooperation may provide significant room for improvement and it is a direction of future

research.

6.1.3 Extensions for queueing analysis of OFDMA-based system

In Chapter 5 we made a queueing analysis for an OFDMA based subchannel alloca-

tion scheme, in the presence of frequency selective fading.We saw that our tail probability

estimates for the queue sizes are quite accurate, however itis also important to investigate

the block fading case. If the fading level is fixed for severaltime slots, service process

for a node becomes more bursty and packet delays are supposedto increase. It is also a

future research direction to pursue the analysis for different arrival processes and see the

performance of the algorithm for heterogeneous traffic.
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Research directions listed above are possible extensions of the work we did in this

thesis. Besides, there are more diverse future directions.Investigating the use of multiple

antennas is one of them. We also assumed fixed number of sessions in our simulations.

It is also important to consider admission control and rate control and investigate possi-

ble interactions between MAC Layer and Network and Transport Layers to improve the

performance.
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Appendix A

Proof of Lemma 2.1

Lemma A.1 The reward function

C(wn,pn) = ∑
i∈U

log

(
αiRi +(1−αi)

(
wi log(1+

pi

niwi
)− r0

i

))
(A.1)

is a concave function of wi and pi for all i ∈UD.

Proof A.1 If we take the HessianHg of g(w, p) = log
(
αR+(1−α)

(
wlog(1+ p

nw)− r0
))

,

Hg =
−(1−α)

(p+nw)2




w −p

p p2

w


 (A.2)

we see that it is negative definite, therefore the function isstrictly concave. Therefore the

linear combination (A.1) is also concave.

A.0.4 Convexity of the Feasible Set

Lemma A.2 The feasible set of power and bandwidth levels(w, p) defined by (2.21),

(2.22) and (2.23) defines a convex set.

Proof A.2 Consider two power-bandwidth vectors(w1,p1) and (w2,p2) that are in the

feasible set. Now let us consider power-bandwidth vector(λw1 +(1−λ)w2,λp1 +(1−

λ)p2). It is clear that this vector satisfies the feasibility constraints in (2.23).
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Now consider a user i∈UV . This user has a rate constraint r0
i in (2.22). If(w1

i , p1
i )

and(w2
i , p2

i ) both satisfy constraint (2.22):

r(w1
i , p1

i ) = w1
i log(1+

p1
i

niw1
i

) = r0
i (A.3)

r(w2
i , p2

i ) = w2
i log(1+

p2
i

niw2
i

) = r0
i ,∀i ∈UV (A.4)

From the concavity of the Shannon capacity with respect to wi and pi , we can write

(λ = 1−λ):

r(λw1
i +λw2

i ,λp1
i +λp2

i ) = (λw1
i +λw2

i )log(1+
λp1

i +λp2
i

ni(λw1
i +λw2

i )
) (A.5)

≥ λw1
i log(1+

p1
i

niw1
i

)+λw2
i log(1+

p2
i

niw2
i

) (A.6)

= λr0
i +λr0

i = r0
i (A.7)

Hence the power bandwidth values(λw1
i + λw2

i ,λp1
i + λp2

i ) also satisfy the rate

constraints for users i∈UV .

For users i∈ UD the same method can be used, only by replacing r0
i by ρ0

i in fea-

sibility condition (2.21). Hence it is proven that the feasible set of power and bandwidth

levels(w,p) defines a convex set.
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Appendix B

Proof of Lemma 2.2

Lemma B.1 The following properties hold:

1. Effective SINR (xi(Λx)) is a monotonic increasing function ofΛx for users i∈UD∪

U ′
R.

2. If ni < n j then xi(Λx) > x j(Λx)

3. If ni > n j then xi(Λx)ni > x j(Λx)ni

Proof B.1 1. The derivative of function fx(x) is:

f ′x(x) = log(1+x) > 0

for x > 0. Therefore fx(xi) is a strictly increasing function of xi for all users i.

Hence the inverse xi(Λx) = f−1
x (Λx/ni) is also increasing inΛx.

2. Since f−1
x (Λx/ni) is a monotonic increasing function ofΛx, it is a monotonic de-

creasing function of ni , therefore the property holds.

3. For a fixedΛx let us define ai(ni) = f−1
x (Λx/ni)ni . Then after some derivations

dai

dni
= −1+

ai/ni

log(1+ai/ni)
> 0 (B.1)

The derivative is greater than zero because of the logarithmic identity x> log(1+

x). Therefore if ni > n j then xi(Λx)ni > x j(Λx)ni
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Appendix C

Proof of Lemma 2.3

i. For any∆p > 0, we can write the following,

[Λp+∆p−ni(1+xi)Riα̃i ]
+ ≥ [Λp−ni(1+xi)Riα̃i ]

+,∀i ∈UD

Sw(Λx,Λp+∆p)−Sw(Λx,Λp) = ∑
i∈UD

[Λp+∆p−ni(1+xi)Riα̃i ]
+

log(1+xi)(1+xi)ni

− ∑
i∈UD

[Λp−ni(1+xi)Riα̃i ]
+

log(1+xi)(1+xi)ni
≥ 0

HenceSw(Λx,Λp) is nondecreasing inΛp. Also,

lim
Λp→∞

[Λp−ni(1+xi)Riα̃i ]
+ = ∞,∀Λx

Therefore limΛp→∞ Sw(Λx,Λp) = ∞

We can similarly verify thatSp(Λx,Λp) is nondecreasing inΛp and limΛp→∞ Sp(Λx,Λp) =

∞ for all Λx.

ii. We know for all usersi ∈UD ∪U ′
R that:

• xi = f−1
a (Λx/ni) is increasing inΛx (From Lemma 2.2).

• The expression[Λp−ni(1+xi)Riα̃i ]
+ is nonincreasing inxi for anyΛp. It goes

to zero asxi goes to infinity for allΛp. It is equal to[Λp−niRiα̃i ]
+ at xi = 0.

• The expressions 1
log(1+xi)

and 1
log(1+xi)(1+xi)

are decreasing inxi and both go to

zero asxi goes to infinity and they go to infinity asxi goes to zero.
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From these properties we can deduce thatSw(Λx,Λp) in (2.38) is a decreasing func-

tion of Λx and limΛx→0Sw(Λx,Λp) = ∞, and limΛx→∞ Sw(Λx,Λp) = 0 for all Λp.

iii. We know for all usersi ∈UD ∪U ′
R that:

• xi = f−1
a (Λx/ni) is increasing inΛx.

• The expression xi
log(1+xi)

is strictly increasing inxi .

• The expression[−Ri α̃i ]
+xi

log(1+xi)
is equal to zero sinceRi ≥ 0.

From these properties we can deduce thatSp(Λx,0) in (2.44) is an increasing function

of Λx.

iv. There exists such aΛ0
x becauseSw(Λx,0) is a strictly decreasing function which is

infinity for Λx = 0 and zero forΛx = ∞ as a corollary of Lemma 2.3.ii.

• ⇒: If Sp(Λ0
x,0) ≤ P then both feasibility conditions (2.43) and (2.44) hold,

therefore the problem is feasible.

• ⇐: If the problem is feasible, then there existsΛx such that both (2.43) and

(2.44) hold. Now let’s assume thatSp(Λ0
x,0) > P, then from Lemma 2.3.i and iii

Sp(Λ0
x,Λp) > P for all Λx ≥ Λ0

x andΛp ≥ 0. Note thatSw(Λ0
x,Λp) >W for Λx <

Λ0
x, Λp ≥ 0 from Lemma 2.3.i. This means that there is noΛx such that both

(2.43) and (2.44) hold and the problem is infeasible. This isa contradiction,

thereforeSp(Λ0
x,0) ≤ P. The property holds.
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v. We can derivedΛp(Λx)
dΛx

as follows:

Λ∗
p(Λx)|U ′

D| = ΛxW+P+∑
U ′

D

ni(1+ f−1
x (Λ∗

x/ni))Riα̃i −∑
U ′

R

rc
i ni(1+ f−1

x (Λ∗
x/ni))

(C.1)

|U ′
D|

dΛ∗
p(Λx)

dΛx
= W+∑

U ′
D

Riα̃i

log(1+ f−1
x (Λ∗

x/ni))
−∑

U ′
R

rc
i

log(1+ f−1
x (Λ∗

x/ni))
(C.2)

We know that forΛx > Λ0
x, the problem is feasible andSw(Λx,0) = ∑U ′

R

rc
i

log(1+ f−1
x (Λ∗

x/ni))
<

W. Therefore the right hand side of (C.2) is greater than zero,which obviously means

that
dΛ∗

p(Λx)

dΛx
> 0. Hence the functionΛ∗

p(Λx) is an increasing function ofΛx.

vi. For a feasible problem, using (2.42) and the fact[Λ∗
p(Λx)−ni(1+ f−1

x (Λx
ni

))Riα̃i ]
+ ≥

Λ∗
p(Λx)−ni(1+ f−1

x (Λx
ni

))Riα̃i the following can be written:

ΛxW+P ≥ ∑
i∈UD

Λ∗
p(Λx)−ni(1+ f−1

x (
Λx

ni
))Riα̃i + ∑

i∈U ′
R

rc
i ni(1+ f−1

x (
Λx

ni
))

Λ∗
p(Λx) ≤

ΛxW+P−∑i∈U ′
R
rc
i ni(1+ f−1

x (Λx
ni

))+∑i∈UD
ni(1+ f−1

x (Λx
ni

))Riα̃i

|UD|

Hence the inequality is proved.

We can prove the inequalities for the optimalΛ∗
x using contradiction. Suppose that

Λ∗
x > maxi∈UD∪U ′

R

{
ni fx

(
P

niW

)}
,∀i ∈UD∪U ′

R, then f−1
x (Λ∗

x/ni) > P
niW

,∀i, from the

monotonicity property. Then the total power is greater than∑i∈U ′
D∪U ′

R
w∗

i
P

niW
= P,

which contradicts with the power constraint, therefore theupper bound is proven.

For the lower bound assume thatΛ∗
x < mini∈UD∪U ′

R

{
ni fx

(
P

niW

)}
,∀i ∈ UD ∪U ′

R,

then f−1
x (Λ∗

x/ni) < P
niW

,∀i, from the monotonicity property. Then the total power

is smaller than∑i∈U ′
D∪U ′

R
w∗

i
P

niW
= P. This is not optimal because proportional fair

capacity can be increased by using the residual power, therefore the lower bound is

also proven.
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vii. For a feasible problemSw(Λx,0)≤W for Λx ≥Λ0
x (Lemma 2.3.iv). SinceSw(Λx,Λp)

is a nondecreasing function ofΛp and goes to infinity asΛp goes to infinity (Lemma

2.3.i) there exists aΛ∗
p(Λx) such thatSw(Λx,Λ∗

p(Λx)) = W.

SinceΛ0
x is a feasibleΛx value, the sum of user powers is smaller thanP for Λ0

x

from Lemma 2.3.iv. AsΛx goes to infinityxi goes to infinity for alli. Since 0≤

wi(Λx,Λ∗
p(Λx))≤W for all usersSp(Λx,Λ∗

p(Λx)) = ∑i wi(Λx,Λ∗
p(Λx)))xi(Λx)ni goes

to infinity asΛx goes to infinity.

viii. Using 2.42 the relation betweenΛ∗
p(Λx) andΛx is as follows:

W = ∑
i∈UD

[
Λ∗

p(Λx)

Λx +P/W
−

ni(1+ f−1
x (

Λ∗
x

ni
))Riα̃i

Λx +P/W

]+

+ ∑
i∈U ′

R

rc
i ni(1+ f−1

x (
Λ∗

x
ni

))

Λx +P/W
(C.3)

Also from 2.38,

Sw(Λx,Λ∗
p(Λx)) = ∑

i∈UD∪U ′
R

ai(Λx,Λ∗
p(Λx))

Λx +P/W

Λx + f−1
x (Λx/ni)ni

(C.4)

whereai(Λx,Λ∗
p(Λx)) =

[
Λ∗

p(Λx)

Λx+P/W −
ni(1+ f−1

x (
Λ∗

x
ni

))Ri α̃i

Λx+P/W

]+

for i ∈UD andai(Λx,Λ∗
p(Λx)) =

rc
i ni(1+ f−1

x (
Λ∗

x
ni

))

Λx+P/W for i ∈U ′
R. Combining the two equations we obtain

Sw(Λx,Λ∗
p(Λx))−W = ∑

i∈UD∪U ′
R

ai(Λx,Λ∗
p(Λx))

P/W− f−1
x (Λx/ni)ni

Λx + f−1
x (Λx/ni)ni

(C.5)

The function
ni(1+ f−1

x (
Λ∗

x
ni

))Riα̃i

Λx+P/W takes valueRiα̃i
Wni

P at Λx = 0. It is increasing for 0<

Λx < ni fx(P/Wni) and takes value Ri α̃i
log(1+P/Wni)

atΛx = ni fx(P/Wni). It is decreasing

at ni fx(P/Wni) ≤ Λx < ∞ and goes to zero atΛx → ∞.

The functionP/W− f−1
x (Λx/ni)ni

Λx+ f−1
x (Λx/ni)ni

is greater than zeros for 0< Λx < ni fx(P/Wni) and

smaller than zeros forni fx(P/Wni) < Λx < ∞. It goes to zero atΛx → ∞.
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Using (C.3) and plugging the expression forΛ∗
p(Λx) into (C.4) we get the following

expression forSw(Λx,Λ∗
p(Λx)),

Sw(Λx,Λ∗
p(Λx)) =

1
|U ′

D|
∑

i∈U ′
D

WΛx +P

Λx +ni f−1
x (Λx/ni)

+
1

|U ′
D|

∑
i∈U ′

D


 ∑

j∈U ′
D

Rj α̃ j

(
n j(1+ f−1

x (Λx
n j

))

Λx +ni f−1
x (Λx/ni)

− 1

log(1+ f−1
x (Λx

n j
))

)


− 1
|U ′

D|
∑

i∈U ′
D



 ∑
j∈U ′

R

rc
j

(
n j(1+ f−1

x (Λx
n j

))

Λx +ni f−1
x (Λx/ni)

− 1

log(1+ f−1
x (Λx

n j
))

)

 (C.6)

where the setU ′
D is defined asU ′

D = {i ∈UD|Λ∗
p(Λx)−ni(1+ f−1

x (Λx
ni

))Riα̃i}

Sw(Λx,Λ∗
p(Λx)) = W+

1
|U ′

D|
∑

i∈U ′
D

P−Wni f−1
x (Λx/ni)

Λx +ni f−1
x (Λx/ni)

+
1

|U ′
D|

∑
i∈U ′

D


 ∑

j∈U ′
D

Rj α̃ j

(
n j f−1

x (Λx/n j)−ni f−1
x (Λx/ni)

(Λx +ni f−1
x (Λx/ni)) log(1+ f−1

x (Λx
n j

))

)


− 1
|U ′

D|
∑

i∈U ′
D


 ∑

j∈U ′
R

rc
j

(
n j f−1

x (Λx/n j)−ni f−1
x (Λx/ni)

(Λx +ni f−1
x (Λx/ni)) log(1+ f−1

x (Λx
n j

))

)
 (C.7)
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Appendix D

Energy Efficient Power and Rate Control Fading Channels

D.1 Introduction

A key concern for uplink transmission in wireless networks is energy efficiency.

Limited and non-renewable battery supplies in most of the wireless devices require some

adaptive transmission schemes that efficiently use these resources. Power control is one

of those adaptive schemes. Choice of transmission power hasmany implications in wire-

less networking, such as interference, success probability, energy, delay and buffer over-

flow. The main motivation in the past work on power control wasmitigating the effects

of interference and fading in order to maximize the achievable capacity (e.g. [67],[68]).

The previous studies on power control assumed that there is an infinite number of packets

waiting to be transmitted and they concentrated on maximizing the throughput. An impor-

tant issue that is not considered in the traditional studieson power control is the random

characteristic of packet arrivals to the buffer. For instance, considering a limited buffer

capacity, if the transmission power is lowered or channel conditions worsen, transmission

success rate decreases. When the queue length is close to thecapacity, a burst of buffer

overflows occurs in case of an arrival burst. In order to minimize energy expenditure in

the presence of queueing related constraints such as queueing delay or buffer overflow,

power control decisions must also be a function of the queue size, traffic and channel

conditions.
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In this work we studied power control for transmission through a fading channel.

Data packets come randomly from higher network layers and are held in an infinite capac-

ity buffer until they are transmitted. Channel gain is constant during a time slot and varies

i.i.d. according to Rayleigh distribution from slot to slot. The node sends its queue size to

the base station as a feedback at every time slot. Then the base station decides the optimal

number of packets to be transmitted and the node transmits accordingly. The transmitter

is able choose from a set of modulation and coding pairs. The performance considera-

tions are average queue size and energy expenditure. Energyefficient transmission has

been studied previously for a single user system. For example in [38], the authors studied

the problem of minimizing energy expenditure of transmitting randomly arriving packets

subject to a transmission deadline constraint in a fading channel. The paper [40] is an

extension of [38] that studies joint minimization of delay and energy. In [41] Berry and

Gallager obtain structural results that points out a tradeoff between delay and energy in a

single user transmission. They show that the optimal power delay curve is convex. They

also proposed simple buffer control policies that achieve points on this curve. We have

previously considered such a setting and studied optimal power control in a single user

channel [69]. The transmitter has two transmission power levels and we proved that the

relation between queue size and optimal power control policy is of threshold type. That

is, in order to jointly optimize energy expenditure and buffer overflow, the transmitter has

to transmit with the higher power level if the queue size is greater than a threshold. The

work in [42] extends [41] and finds a closed form expression ofoptimal policy in terms

of the optimal policy when the signal to noise ratio is one. They also find some structural

results for the optimal policy and bounds for the optimum cost. In this work we perform
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a numerical study based on [42] and investigate the optimal rate control as a function of

queue size and channel condition.

D.2 Single User System Model

We assume a user transmitting to a Base Station. We assume an AWGN channel

with p.s.d. equal toN0. The system bandwidth isW Hz. Signal attenuation consists of

a constant path lossg and fading. Fading gain processh(t) ∈ [0,∞) remains fixed over

a time slot and varies i.i.d. according to a Rayleigh distribution with meanµ from slot

to slot. Let us quantize fading with thresholds{0 = h1 < h2, . . . < hK = ∞}, wherep(k)

denotes the probability thathk ≤ h(t) < hk+1.

We consider a random traffic, where a number of packets of length Lp bits arrive

each time slot. Number of packet that arrive in a time slot is Poisson distributed with

meanλ. Let A(a) be the probability thata packets arrive. ThenA(a) = e−λλk

k! . Let q(t)

be the number of packets in the buffer at time slott, and letr(t) be the amount of packets

transmitted in time slott. Considering the constraintr[n] ≤ s[n], the evolution equation

can be written as

q(t +1) = q(t)+a(t)− r(t) (D.1)

Our aim in this system to use minimum power , while achieving amean delay

constraint.
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Figure D.1: System Model

D.3 Markov Decision Process Model

D.3.1 Single stage Cost function

The cost of transmittingr(t) units of data (r(t)Ts
rate) at time slot t is a combination

of total amount of energy required for transmission, queue size and buffer overflow cost.

Let W be the system bandwidth. We use the following rate function.

r(t) = TsW log

(
1+β

p(t)gh(t)
N0W

)
(D.2)

From this formula the power required to transmitr units of packets is

Pt(h, r) =
N0W

βgh(t)

(
2

r(t)
TsW −1

)
(D.3)

Let X(t), t ∈ X = {0,1, . . .} denote a controlled Markov chain with state space

(q(t),h(t)) = X ∈ {0,1,2, . . .}× {h1,h2, . . . ,hK}. and let the action space ber ∈ R =

{0,1,2, . . . ,q}∩Pt(h, r) ≤ Pmax, when the queue state isq. We consider the following

constrained optimization problem. Find

argmin
r∈R

∞

∑
t=1

αt N0W
βgh(t)

(
2

r(t)
TsW −1

)
(D.4)
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subject to

∞

∑
t=1

αtq(t)≤ Dmax (D.5)

q(t +1) = q(t)− r(t)+a(t) (D.6)

Objective function above is convex , while the constraint set is also convex. Therefore

writing the Langrange multiplier the single stage costc(X, r) of transmittingr packets at

stateX = (q,h) is:

c(X, r) = λdq+
N0W

βgh(t)

(
2

r(t)
TsW −1

)
(D.7)

Hereλd is the coefficient of energy cost which is used to adjust its weight in the

overall cost. Letπ be a policy that generates at time slott , an actionr(t) depending on

the history of the process (i.e. decisions at instantst ∈ {1,2, . . .} ) , that is a mapping

from the state space to the action space. LetΠ be the set of all those policies. For a policy

π ∈ Π and initial statex∈ X , we define the discounted cost problem with discount factor

α. For initial statex = (s,h) define:

Vα(X) = min
π∈Π

Eπ
X

[
∞

∑
t=1

αtg(X(t), r(t))

]
(D.8)

for everyX = (q,h) in {0,1,2, . . . ,L}×{h1,h2, . . . ,hK} and policyπ. It is worth noting

that the discount factor a has a practical meaning in the system. Since we have a delay

constraint, we need to satisfy a short term rate constraint.Therefore, for a delay constraint

Dmax, choosingα ≤ 1− Dmax

Ts
, is reasonable. We can also interpretα as the probability that

the communication session terminates in the current time slot. Therefore session duration

becomes geometrically distributed.
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In order to ensure the existence of the expected infinite horizon discounted cost, it is

sufficient that the cost-per-stage function is uniformly bounded, that is|c(X(t))|< B < ∞

for all t and 0<

lambda< 1 [70]. Looking at the single stage cost function (D.7), we need that the system

is stable (q(t) finite for allt). In order to satisfy this, it is sufficient that the system isstable

if the maximum power is used at all time slots. the conditionEh

(
TsW log

(
1+βPmaxgh(t)

N0W

))
<

E[a]L. If q < ∞ the following inequality holds:

|g(X(t))| ≤ λdq(t)+Pmax∀t (D.9)

This set of conditions is sufficient for the existence of the solution of the problem

in equation (D.8). Well known result in [70] states that optimum discounted cost value

function V(.) satisfies the following discounted cost optimality equation:

Vα = min
0≤r∈R

{
g(X, r)+α

∞

∑
a=0

K

∑
k=1

A(a)pkVα(q− r +a,hK)

}
(D.10)

whereX = (q,h) is the initial state of the system,p(k) is the probability thathk ≤ h< hk+1

andA(a) is the probability thata packets arrive in a time slot. According to (D.10), the

cost incurred by choosing an actionr, is the sum of the instantaneous costg(X, r) and the

expected cost for the future∑∞
a=0 ∑K

k=1 A(a)pkVα(q−r +a,hK), multiplied by the discount

factorα.
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D.4 Analysis of the Discounted Cost Function

We can write the discounted cost optimality equation as:

Vα(s,h) = min
r∈R

{
λdq+

N0W
βgh

(
2

rL
TsW −1

)
+αH(u)

}
(D.11)

whereu = q− r is the number of packets remaining in the queue after the packets to be

transmitted are removed from the buffer and before a new arrival. The functionH(u) is

defined as

H(u) =
∞

∑
a=0

K

∑
k=1

A(a)pkVα(u+a,hK) (D.12)

Theorem D.1 H(u) is a convex function

Proof D.1 H(u) is a convex combination of V(u+ a,h) for different values of a, and h,

therefore it is sufficient to show the convexity of this function. Optimum value of the cost

function and the optimal policy can be found by the followingvalue iteration.

Vn(s,h) = min
0≤r∈R

{λdq+
N0W
βgh

(
2

rLp
TsW −1

)

+α
∞

∑
a=0

K

∑
k=1

A(a)p(k)Vn−1(q− r +a,h)} (D.13)

We will show it through induction that at every step of the iteration , the value

function stays convex.

1. For n= 0, for any r, V0(q,h) is a convex function. This is because q is convex, and

the energy cost is an increasing exponential function of q, which is convex.

2. Assume that Vn−1(q,h) is convex in q for each h. For a fixed fading level h, let

u(q) = q− r(q) be the optimal policy in state X= (s,h) in the nth iteration. Define
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1−λ = λ̄ and q= λq1 + λ̄q2. Let the operator Ea,h(.) denote the averaging with

respect to arrivals a and fading in the next slot h, given the current queue size q

and fading h.

We can write the following,

λVn(q1,h)+ λ̄Vn(q2,h)

= λdq+
N0W
βgh

(λ2
Lp(q1−u(q1))

TsW + λ̄2
Lp(q2−u(q2))

TsW −1)

+αEa,h[λVn−1(u(q1)+a,h)+ λ̄Vn−1(u(q2)+a,h)] (D.14)

≥ λpq+
N0W
βgh

(2
Lp

TsW
(λ(q1−u(q1))+λ̄(q2−u(q2))−1)

+αEa,h[Vn−1(λ(u(q1)+a)+ λ̄(u(q2)+a),h)] (D.15)

= λpq+
N0W
βgh

(2
Lp

TsW
(q−λu(q1)−λ̄u(q2))−1)

+αEa,h[Vn−1(λu(q1)+ λ̄u(q2)+a,h)] (D.16)

≥ λpq+
N0W
βgh

(2
Lp

TsW
(q−u(q)) −1)

+αEa,h[Vn−1(u(q)+a,h)] (D.17)

= Vn(λq1+ λ̄q2,h) = Vn(q,h) (D.18)

Here the inequality (D.15) comes from the convexity of the functions2x and Vn−1(s,h)

and the fact that the arrival probability A(a) is the same for the states(q1,h) and(q2,h).

The inequality (D.17) comes from the optimality of u(q) for the state(q,h). The last

equality comes from the definition. Hence we proved that the function V(q,h) is convex
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in q for all h. Therefore as a linear combination of V(u+ a,h), H(u) is also a convex

function.

Theorem D.2 The optimal rate allocation policy r(q,h) = q−u(q,h) is nondecreasing

in q.

Proof D.2 We prove this by contradiction. Assume that q1 < q2 but r(q1) > r(q2). From

the optimality equations it follows that:

λdq1+
N0W
βgh

(2
Lp

TsW
r(q1)−1)+αH(q1− r(q1)) <

λdq1+
N0W
βgh

(2
Lp

TsW
r(q2)−1)+αH(q1− r(q2)) (D.19)

λdq2+
N0W
βgh

(2
Lp

TsW
r(q2)−1)+αH(q2− r(q2)) <

λdq2+
N0W
βgh

(2
Lp

N0W r(q1)−1)+αH(q2− r(q1)) (D.20)

Adding the two equations, we get,

α(H(q1− r(q1))+H(q2− r(q2))) <

α(H(q1− r(q2))+H(q2− r(q1))) (D.21)

Here there is a contradiction because if the inequalities q1 < q2 and r(q1) > r(q2)

are true then the functionαH(u) cant be convex, therefore the inequality r(q1) > r(q2) is

wrong. From this contradiction it is proved that if q1 < q2 then r(q1)≤ r(q2) for all q1 and

q2. Hence we proved that optimal number of packets to be transmitted is a nondecreasing

function of queue size.
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The optimal policyπ∗ can be found by initializing withV0(q,h) = 0,∀q,h and find-

ing the maximum in (D.13). Because of the monotonicity ofH(u), value iteration con-

verges.

Theorem D.3 The optimal rate allocation policy r(q,h) = q−u(q,h) is nondecreasing

in h.

Proof D.3 We prove this by contradiction. Assume that hi < h j but r(q,hi) > r(q,h j).

From the optimality equations it follows that:

λdq+
N0W
βghi

(2
Lp

TsW
r(q,hi)−1)+αH(q− r(q,hi)) <

λdq+
N0W
βghi

(2
Lp

TsW
r(q,h j )−1)+αH(q− r(q,h j)) (D.22)

λdq+
N0W
βghj

(2
Lp

TsW
r(q,h j )−1)+αH(q− r(q,h j)) <

λdq+
N0W
βghj

(2
Lp

N0W r(q,hi)−1)+αH(q− r(q,hi)) (D.23)

Adding these two equations, some of the terms cancel, and we get,

2
r(q,hi )L

TsW −1
hi

+
2

r(q,hj )L
TsW −1

h j
<

2
r(q,hj )L

TsW −1
hi

+
2

r(q,hi)L
TsW −1

h j
(D.24)

h j

(
2

r(q,hi )L
TsW −2

r(q,hj )L
TsW

)
< hi

(
2

r(q,hi )L
TsW −2

r(q,hj )L
TsW

)
(D.25)

h j < hi, (D.26)

which contradicts with hi < h j , therefore we can conclude that if hi < h j then r(q,hi) <

r(q,h j) and hence r(q,h) is nondecreasing in h.
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D.5 Computational Results

In the previous section we found some structural results on the cost function and op-

timal policy. In this section, we present some computational results for the solution of the

power control that verify the above results. In these simulations, value iteration method

in (D.13) is used to solve the dynamic programming equation.We consider a single user

system with AWGN channel with psdN0 = −174dBmand Rayleigh fading with mean

1. Transmitter power isP = 1 Watt and path loss (in dB ) is−31.5−35log10d + ψdB,

whered is the distance in meters. We assume a distance of 900m. As forthe bandwidth,

we consider a single subchannel of an OFDMA system with bandwidth 250 KHz. We

consider arrivals of 250-bit packets arriving according toa poisson distribution with rate

0.8 packets/slot (corresponds to 200 kbps).

Figure D.2: Optimal number of packets transmitted. Parameters,λd = 0.1

In Figures D.2 and D.3 we observe the result of value iteration for λd = 0.1 and

λd −0.12. We see that optimal rate is nondecreasing w.r.t. queue size and channel gain.

137



Figure D.3: Optimal number of packets transmitted. Parameters,λd = 0.12

When we increaseld from 0.1 to 0.12 optimal number of transmitted packets decrease for

all queue sizes and channel conditions.

In Figure D.4 we see the average power versus average delay for two different

distances. We observe that average power is a decreasing convex function of average

delay.
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