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With its capabilities like elimination of intersymbol inference, intercell interfer-
ence averaging, scalability and high bandwidth efficienB{p®IA is becoming the basis
for current wireless communication technologies. In thssdrtation we study the prob-
lem of multiple access and resource allocation for OFDMAdghcellular systems that
support users with various quality of service (QoS) requents.

In Chapters 2 and 3 of the dissertation, we consider the @nobff downlink trans-
mission (from base station to users) for proportional féshof long term averaged re-
ceived rates of data users as well as QoS for voice and vidsmss. Delay requirements
of real time sessions are converted into rate requiremerisch frame. The base station
allocates available power and bandwidth to individual sibased on received rates, rate
constraints and channel conditions. We formulate and gbkweinderlying constrained
optimization problem and propose an algorithm that aclsi¢lie optimal allocation. In
Chapter 3, we obtain a resource allocation scheme that {gesirbut achieves a perfor-

mance comparable to the optimal algorithm proposed in @n&pt The algorithms that



we propose are especially intended for broadband netwaniqgosting mobile users as
the subchannelization scheme we assume averages outithgifadubchannels and per-
forms better under fast fading environment. This also leéa@dgorithms that are simpler
than the ones available in the literature.

In Chapter 4 of the dissertation we include relay statioritkégrevious model. The
use of low-cost relay stations in OFDM based broadband nmé&syeceives increasing at-
tention as they help to improve the cell coverage. For a nétawapporting heterogeneous
traffic we study TDMA based subframe allocation for base atayrstations as well as
joint power/bandwidth allocation for individual sessiolfge propose an algorithm again
using the constrained optimization framework. Our nunariesults prove that our mul-
tihop relay scheme indeed improves the network coverageaingfy QoS requirements
of user at the cell edge.

In the last Chapter, we deviate from the previous chaptet€ansider an OFDMA
based system where the subchannels experience frequédeciveefading. We investi-
gate a standard subchannel allocation scheme that expioitsiser diversity by allocat-
ing each subchannel to the user with maximum normalized SMhg extreme value
theory and generating function approach we did a queueialysia for this system and
estimated the QoS violations through finding the tail disttion of the queue sizes of
users. Simulation results show that our estimates are goaierate and they can be used

in admission control and rate control to improve the reseutdization in the system.
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Chapter 1

Introduction

Design of wireless systems involve finding solutions to sdimelevelandsystem
levelchallenges. Link-level challenges are primarily causegloysical medium, which
are the channel fading (varying with time and frequency)ranttiple access interference.
A variety of modulation and coding schemes have been prelyiqaroposed in order to
overcome these challenges. On the other hand system leaktlpes are caused by
some specific properties of the wireless system, e.g. nuartzetypes of users using the
network, Quality of Service requirements of different tgps traffic. In this thesis we
will mainly concentrate on resource allocation in wirelgsdtiple access which requires

joint consideration of these link and system level chaléeng

1.1 Background and Related Work

Resource allocation and scheduling is of paramount impoetan wireless net-
works, where the resources (power, bandwidth, time) arees@nd channel conditions
like noise, fading and shadowing are much more severe wheipaeed to their wired
counterparts.

What makes this resource allocation problem more chalfgngnd interesting is
that the available resources are shared by users, whiclubjecsto statistically differ-

ent channel conditions and which demand different typesnfises. This requires to



change the classical layered approach to network desigmamagsis, and adopt a new
design paradigm, which is callextoss-layering One of the most common examples
is performing medium access control (MAC) layer functiogstdéking into account the
instantaneous and long term channel conditions, which igyaipal layer quantity. In
fact, using the channel information it is possible to inseethroughput by scheduling at
each time slot, the user with the best channel conditions iSheferred to asmultiuser-
diversity[1], which increases the throughput gain as the number akusereases. The
scheduling schemes that exploit this diversity are refetoeasopportunistic schedulers
[2]. Recent high speed communication technologiesElV-DO and High Speed Packet
Data Access (HSPDA) are based on this phenomenon.

Opportunistic scheduling schemes such a&¥V are initially designed to support
data services. Data user with the best channel conditiochisdgiled at each time slot.
This brings up the issue dairnessbecause users located further away from the Base
Station have much less chance of having the best channelol\fe this problemPro-
portional Fair (PF) schedules are proposed, which look at the ratio of ntiaehievable
rates and long term received rates. This provides a fainbalbetween spectral efficiency
(bits/sec/Hz) and fairness. High Data Rate (HDR) technpl8} for data communica-
tions is based on this technique.

Ever growing demand for online multimedia applicationsuiegs scheduling schemes
that achieve much higher rate and quality of service (Qo6ydoious types of services.
Various applications such as Web Browsing, FTP, VoIP, Vid&®aming and even in-
teractive online gaming have much different traffic loadd delay requirements. Most
commonly, the transmitter (e.g. Base Station (BS)) allesaeparate buffers for incom-

2



ing traffic belonging to different types of applications. Wérscheduling, the buffer oc-
cupancy level and delay of the head-of-line packet (whiehaaiginally Network Layer
parameters) are taken into account. This is another exampbeoss-layering.

In this work we will study scheduling of heterogeneous teafifir multiple access
systems that have multichannel transmission capabiligyugng multichannel transmis-
sion techniques a user can get a number of parallel chanapending on its channel
condition and rate requirements and transmit without faterg with other users. Mul-
tilevel Modulation and Coding Schemes (MCS) are also engalag order to cope with
multipath fading and achieve high data rate and low bit erates (BER). For example
WCDMA based systems such as (HSDPA) use multiple orthoggpralading sequences
and OFDMA based system such as WiMax and Long Term Evolulidbk) use multiple
orthogonal subcatrriers. In this work we consider OFDMA astulticarrier transmis-
sion scheme. Within OFDMA framework, the resources alleddb the users come in
three dimensions: time slots, frequency and power. Thigiresthe scheduler to operate
with higher degree of freedom and more flexibility, and patdly higher multiplexing
capacity. This also makes the notion of resource fairnesslete and makes the prob-
lem more involved. We plan to develop scheduling algorittiatly taking advantage of
the degree of freedom inherent to OFDMA system. Below, weflyrexplain OFDMA
technology and its recent applications. This will also helgxplain the motivation in

choosing this transmission scheme in this thesis.



1.1.1 OFDMA Technology and its Advantages

OFDM is a digital modulation scheme in which a wideband sigaaplit into a
number of narrowband signals. Because the symbol durafiamarrowband signal is
larger than that of a wideband signal, the amount of timead&pn caused by multipath
delay spread is reduced. OFDM is a special case of multezamodulation in which
multiple user symbols are transmitted in parallel usinfedént subcarriers with overlap-
ping frequency bands that are mutually orthogonal. Thisrigpie implements the same
number of channels as conventional FDM with a much reducedwath requirement.
In conventional FDM, adjacent channels are well separasaaijua guard interval. In
order to realize the overlapping technique, interfereret@ben adjacent channels must
be reduced. Therefore, orthogonality between subcarigemsquired. In OFDM each
subcarrier has an integer number of cycles within a givee fimerval , and the number
of cycles by which each adjacent subcarrier differs is dyaxte. This property ensures
OFDM subcarrier orthogonality. The subcarriers are datdutaded and are fed through a
serial- to-parallel conversion process. Each symbol igiaed a subcarrier and an inverse
DFT (IDFT) performed to produce a time domain signal.

OFDM deals with multipath delay spread by dividing the tdiahdwidth B into
K narrowband channels where K is the number of subcarriershoQonal Frequency
Division Multiple Access (OFDMA) is an extension of OFDM, ette multiple users can
transmit at the same time by sharing the subcarriers. Irr dod@ake this resource shar-
ing more practical subcarriers are grouped istibchannelsThere are various ways to

group the subcarriers, i.subchannelizatiomethods. There are two classes of subcar-
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Figure 1.1: OFDM Diagram

rier grouping modegjistributedandadjacent which are roughly illustrated in figure 1.2.
In general, distributed subcarrier permutations perfoery well in mobile applications
while adjacent subcarrier permutations can be properld fmefixed, portable, or low
mobility environments [4]. Adjacentsubchannelization (AMC) uses adjacent subcarri-
ers to form subchannels. When used with fast feedback claitr@an rapidly assign
a modulation and coding combination per subchannel. On ther dvanddistributed
subchannelization (PUSC, FUSC) employs full-channelrditae by distributing the al-
located subcarriers to subchannels using a permutatiohanexn. By this way, a user
observes the same channel quality in all subchannels. Enegudiversity minimizes the
performance degradation due to fast fading charactegisfimobile environments. It has
been previously observed that adjacent subchannelizatoades more capacity(10%
[5],[6], [7]) than distributed methods because of the agerg effect. On the other hand

especially for mobile systems distributed methods probielter channel estimation and



easiness of allocation in a fast fading environment. Hedisgibuted subchannelization

is the method that we used in this work.

subchannel 1:green
subchannel 2: red
subchannel 3: black

T

a) PUSC

subchannel 1:green
subchannel 2: red
subchannel 3: black

N

b) Band AMC

Figure 1.2: PUSC and AMC subchannelization example in adgfsannel OFDMA sys-

tem is shown.

Advantages of OFDM with respect to its counterparts (e.g @)Man be sum-
marized as follows. By using narrowband signals OFDM can latnmultipath delay
spread more effectively. The reason is that the wavelenfjth marrowband signal is
much greater than a typical multipath delay spread. Thisem@FDM successful in
Non-Line-of-Sight (NLOS) communication systems. Morepv@FDM distributes the
information across several subcarriers, with the use e¥dod error correction (FEC), if
an error occurs in one subchannel, those errors are recblgrEEC. OFDM also has
better spectral efficiency since intersymbol interfereisagiminated by using the cyclic
prefix. Therefore OFDM also doesn’t require channel eqatibn. Besides OFDMA has

the scalability advantage through using different FFT si@é&hout changing subcarrier



spacing (521, 1024, 2048 FFT). By this way, increasing systendwidth doesn't affect

multipath fading.

1.1.1.1 WiMax Technology

One of the reasons that we studied OFDMA based schedulitgapplications in
recently developed technologies like WiMax. The systensaered in this work is moti-
vated by the recent IEEE 802.16 standard that defines th&taiface and medium access
control (MAC) specifications for wireless metropolitanaretworks. Such networks in-
tend to provide high speed voice, data and on demand videarsing services for end
users. IEEE 802.16 standard is often referred to as WiMaxtgmavides substantially
higher rates than cellular networks. Besides it elimin#ttescostly infrastructure to de-
ploy cables, therefore it is becoming an alternative toedbletworks, such as fiber optic
and DSL systems [8]. Although originally the standard [&piscommunication in 11-66
GHz range, more recent updates on this standard allows comation in 2-11 GHz fre-
guency range, which is more suitable for non line of sight @8) communications [9],
[10].

WiMax networks are designed for point to multipoint comnuations, where a
base station (BS) transmits to and receives from multipbsstber stations (SS) in a
cellular coverage area of typical size around 5miles. A Stbeeeither an end user itself,
or be the backbone connection of a WLAN. We consider the eed st=nario since it
is more interesting because of user mobility and channéhdadrhe framework that we

adopt in our work is mostly in line with the Mobile WiMax steendl (IEEE 802.16€) that



is updated as of March 2006 [11], [12]. In Korea a system naased/iBro is designed
according to this standard and it will be launched comméycia the middle of 2006
[13]. Initially we focus on the traffic from BS to SSs (dowrkin

In this thesis our goal is to find multicarrier fair schemestthlso satisfy hetero-
geneous stability and delay requirements. We propose mesailocation algorithms for
OFDMA-based downlink and uplink communications. These tivections of commu-

nications reveal different trade-offs, which are worthdsiigating separately.

1.1.2 Downlink Communications

Downlink means the transmission from the base station tosusea cellular area.
Main constraints in OFDM based downlink transmission isttiial power and bandwidth
of the base station. Fair downlink scheduling schemes wits Qonsiderations were
proposed and studied previously for single carrier syste@rdy very recently in [14],
[15], [16], [17], [18], proportional fair scheduling wasustied for multicarrier systems.
However, in [15] it is studied without power control and ng@&ithm was proposed to
find the optimum bandwidth allocation. The work in [14] alsasha proportional rate
constraint, where the rates of individual users has to beeitaim proportions in order
to maintain fairness. In [16] and [18] proportional fair ediling is addressed for a
single time instant, rather than the long term receivedsraesides in all of these works
supporting real time traffic with QoS requirements was natrasised. The scheduling
rules do not apply sufficiently to different QoS requirenseand heterogeneous traffic.

We have to note that the work in [19] jointly considers dataice and video traffic,



however they do not consider power control and they dontirdjsish between best effort
traffic and real time traffic.

A major drawback of proportional fair scheduling is thatasames there are infinite
packets to be transmitted at time zero and no packet arrivieds FTP sessions, it is
reasonable to assume that large files are ready transmatla¢ginning of a session, which
is not the case for real time applications such as VolIP andd/8treaming. Different real
time applications can have different arrival rates, theneefaverage rate in the long run
should be larger than the arrival rate for each session iardmmaintain stability. In
[20] it was shown by some examples that Proportional Faiedaling does not guarantee
stability of the queues in some situations that can actusdlgtabilized. Therefore our
goal is to improve Proportional Fair scheduling in order tamiain stability. This could
be done by putting constraints on transmission rates. Asmatrawback of proportional
fair scheduling is that it does not support heterogeneous i@quirements. For example
in VoIP and Video Streaming applications there is a delayiregnent for each packet.
If a packet can not be transmitted in a certain time interhahtthat packet has to be
dropped, which degrades the quality of real time sessiongtdportional fair scheduling
there is a long term rate requirement, while in real timeisesshere is a short term rate
requirement.

OFDMA based resource allocation has been studied also withe fairness and
QoS objectives in [21], [22], [23], [24], [25], [26]. The wiof21] and [24] propose sub-
carrier and bit allocation algorithms that satisfy rateuiegments of users with minimum
total power. The papers [22] and [25] address maximizingl tistroughput subject to

power and subcarrier constraints and do not address reattafiic. The authors in [23]

9



are interested in maximizing the worst user’s capacity.dti#an et. al. in [26] maximize
a weighted sum of users’ capacities which gives a feelin@iohéss however it doesn'’t
necessarily provide proportional fairness.

Uplink means transmission from users to base station inlal@aehetwork. This
brings different trade-offs than downlink transmissiorntstof all unlike base stations,
mobile devices carry limited-sized power sources and tleeam individual power con-
straint unlike downlink communications. OFDMA-based r@®e allocation in uplink
systems were studied in [27], [28] and [29]. In [27] total aaly was maximized subject
to individual power constraints, while in [28] and [29] syrower was minimized subject
to individual rate constraints.

There are also some papers that study other multicarrigsrirsssion schemes such
as multicode CDMA. For example [30] study a fair queueingessl with time varying
weight assignment. Weights are proportional to the chaometlitions divided by long
term received rates. In [31] throughput maximizing powet apreading code allocation
subject to total power and bandwidth constraints is studMxedi et. al. in [32], propose
a QoS-based packet scheduler for HSPDA systems that areé ti@¥CDMA technique.
The proposed scheme is purely based on heuristics.

In the systems that we consider the Base Station has a lavgeage area. Es-
pecially in urban areas, this may cause problems for thedfreght communication
because tall buildings can create holes in the coverage dmethis thesis we develop
resource allocation algorithms to improve the network grenfince by deploying fixed
relay devices in order to eliminate shadowing and improeg#rformance. This idea has

similarities withMesh Networkswhere each user operates also as a router and packets
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are forwarded from a gateway in a multihop fashion. Unlikesimeetworks we perform
this relaying function by deployingelay stationswhich act like small base stations. Base
Station assigns each user either to itself or one of the stitjons. These relay stations
have a single interface in order to keep them inexpensivaceéldghey can't transmit and
receive simultaneously. This leads us to schedule thertriasgns of base and relay sta-
tions in a TDMA manner. We develop an algorithm that allosdbae , subchannel and

power to each session in a frame.

1.2 System Model

Below, we briefly explain the physical, medium access caérmtnol network layer

assumption that we will use throughout the thesis.

1.2.1 Adaptive Modulation and Coding

We assume a channel that experiences path loss, Rayleigly f@ad Log-normal
shadowing. Although the system we consider is a mobile syste do not change the
distance from the BS to the MS in the analysis and simulatibnswe do simulate a
fast and slow fading channel for each BS-MS link, which isfeeotion of mobility. Let
No be the noise power spectral density. We assume that thisrelemes the inter-cell
interference. Let;(t) be the combined channel gain for user i at time t. Then, théRSIN

for useri, §;) is as follows:

Vi) =Sy (1.1)
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wherep;j(t),w;(t) are the power and bandwidth allocated to usartimet. Using pilot
symbols inserted to the downlink frame the mobiles can gffely estimate the channel
parameteg;(t). We assume perfect channel estimation and feedback. Wenadhat
channel conditions are constant at each frame and ther@dstene AWGN channel with
SINR asin (1.1).

Adaptive Modulation and Coding and fast channel feedbagkiaed in our system
model to enhance the coverage and capacity. It has been $hf8aj, [34] that adaptive
modulation effectively improves the BER performance orelgss channels and relieves
the effects of deep fading. In line with the IEEE 802.16 staddin our model the base
station chooses a modulation level from a set of availahlelsefrom 4-QAM to 64-
QAM depending on the current signal to noise ratio (SNR) angkt bit error rate (BER).
We assume that at each time slot the channel gain (fading @hdigss) hence SNR is
constant, therefore the channel in a time slot can be comsides an AWGN channel.
Performance of adaptive modulation in AWGN channels wadistLin [33], [34]. There,

it was shown that the BER for an M-QAM modulation can be wepiraximated by
BER~ 0.2exp[—1.5y/(M —1)] (1.2)

Let Ti(y;) be the throughput, which is the number of bits that can sisfeks be sent in
a symbol for a given SNRy; for user i. Therefore for a constant BER requirement the

throughput can be approximated by

Ti(vi) = log;M(vi) = logp(1+ Byi) (1.3)

wheref3 is equal to—1.5/In(5BER) from (1.2). The throughput formulation has a form
similar to the Shannon capacity.
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In our model convolutional coding and repetition codingppléed to the uncoded
bit stream before modulation to reduce the BER. Effects ofgudifferent set of modula-
tion and coding pairs is beyond the scope of this thesisedustwe use predefined set of
modulation/coding pairs in the IEEE 802.16 OFDMA standdrt] [ [35]. The table be-
low shows the modulation levels/coding rates and corredipgrthroughput and optimal

SNR values for a targ®ER= 10"

Mod./Coding | Repetition | Rate(bps/Hz) | SNR(dB)
QPSK,1/2 6x 1/6 -2.78
QPSK,1/2 4x 1/4 -1.0
QPSK,1/2 2X 1/2 2.0
QPSK,1/2 1x 1 5
QPSK,3/4 1x 1.5 8

16QAM,1/2 1x 2 10.5
16QAM,3/4 1x 3 14
64QAM,2/3 1x 4 18
64QAM,3/4 1x 4.5 20

Table 1.1: Optimal Modulation and Coding Schemes Corredipgrto SNR Values

We assume that all types of traffic traffic have same BER requents, however,
the proposed schemes can easily be extended for differeRt il8guirements. If we
plot the spectral efficiency values (in bps/Hz) in this tadea function of given SNR'’s,
we see that using formula in (1.3) by settifg= 0.25 is a reasonable approximation.
Therefore in the following chapters we will use (1.3) in th@lgem formulations as
the rate function. Please note that the performance of themsycan be improved by
enlarging the set of available modulation and coding pditswever this is beyond the
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scope of this dissertation.

1.2.2 Subchannel and Power Allocation

In this work our general approach is to formulate the resmaittocation problem
as constrained optimization problems, where the obje&tinetion is maximized subject
to some power , bandwidth and rate constraints. As for theasuler allocation, we
consider the asymptotic case, where the available bankvgidtcontinuous and infinitely
divisible quantity. However, after computing the power &aehdwidth for each node, we
guantize the bandwidti; to an integer multiple of subchannel bandwidy,, Then we
update the powep; for each node i, so that the resulting SNR values are quahte
the closest values in Table 1.1. We can always improve theneance by using more

modulation/coding pairs and less subchannel bandwidth.

1.2.3 MAC Layer Scheduling

We are considering a MAC layer that supports Best Effort ttafic while simulta-
neously supporting Streaming Video and delay sensitiv® Vdffic over the same chan-
nel. The resource allocated to one terminal can vary froglsisubchannel to the entire
frame. Including power control this provides a very largeawyic range of throughput to
a specific user at any time. Normally the resource allocatitormation should be con-
veyed in a portion of the frame, however we neglect the nurabslots and subchannels
allocated for control messages.

In this work we are considering either solely the traffic frtme Base Station(BS)
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to mobile nodes(MS’s)downlink or from MS’s to BS’s (downlink). Normally the two
directions of traffic are separated by forming a duplex lintkex by dividing time or

frequency.

1.2.4 Quality of Service Support

The system that we consider should be able to support a rdmigéfiz types. Each
type of traffic (flow) is associated with certain Quality ofrdee (QoS) parameters. The
base station allocates resources according to these parare constraints. The traffic
arriving at the Base Station is supposed to come from a highaty wired link. The
link from the Base Station to the mobile nodes (i.e. the aerfiace) is considered as

the bottleneck. The types of services that we consider mwhrk are summarized as

follows:
Application QoS Category QoS Specifications
FTP Non-Real Time Packet Service Minimum Reserved Rate
Web Browsing Best Effort Service No delay or rate Requirement
\olP Unsolicited Grant Service Max. Delay Constraint
Video Streaming  Real Time Packet Service | Min. Reserved Rate & Delay Const.

Table 1.2: Supported Applications and QoS Specifications

Admission control is beyond the scope of this work therefeeesassume no new
session arrivals throughput the simulation time. In sonoblem formulations we convert
the minimum reserved rate requirement to delay requiresriartdrder to formulate delay
based optimizations. We also assume that all of the sessmméue throughout the
simulation time. Since we are considering simulation timeshe order of seconds this
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is a realistic assumption.

1.2.5 Queueing Model and Analysis

We assume that the Base Station classifies the arriving fsaekeording to its
traffic type and its intended mobile user. For simplicity vésw@ame that a user can only
demand a single type of traffic. For each user, a separaterhsifhllocated .

For data applications like FTP and Web Browsing, we assuatdhlere are always
unlimited number bits waiting to be transmitted at the bas&ia®. This is a realistic
assumption since the total bits in these sessions are omdbeaf MB’s and we consider
simulation times on the order of seconds.

For real time traffic sessions such as Video Streaming and W& assume to have
a queue with infinite capacity. We capture the performanceegsuring 98 percentile
of packet delays. Leg;(t) be the amount of bits in the queue of usat framet. During
framet the queue of useris served at ratg (t). Leta;(t) be the number of bits that arrive
at framet. We assume that bits arrive at the beginning of a frame (befa transmission

starts). Then the queue length evolution equation can deewias,

Gi(t+1) = ai(t) +a(t) —min(ai(t) +a(t),ri(t)T) (1.4)

For VoIP sessions we assume a constant bit rate arrival ggpadiere a constant
number of bits arrive with constant time intervals. For ddeaffic we assume a bursty
traffic model in IEEE 802.16 specifications. The details @f ltht arrival process will be
explained later.

Most of the previous works on multiuser wireless packet camigation systems
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decoupled information theory and queueing theory. Theeefes that we sited previ-
ously either considered systems in saturation mode andpeapschemes that maximize
total throughput or proportional fair capacity, and/otisgttsome rate constraints.

Joint consideration of queueing and information theory stadied for the case of
single user systems in order to jointly optimize energy exigere and delay. Energy
efficient transmission has been studied previously for glsinser system. For example
in [36], [37], [38], the authors studied the problem of miing energy expenditure of
transmitting randomly arriving packets subject to a traissiman deadline constraint in a
fading channel. The paper [39], [40] is an extension of [88} studies joint minimization
of delay and energy. In [41] Berry and Gallager obtain strradtresults that points out
a tradeoff between delay and energy in a single user trasgmis They show that the
optimal power delay curve is convex. The work in [42] exteftld and finds a closed
form expression of optimal policy in terms of the optimalipglwhen the signal to noise
ratio is one. They also find some structural results for therad policy and bounds for
the optimum cost. However these works don't offer any foasur expressions for delay.

For multiuser systems [43] analyze the trade-off betweeor @robability and de-
lay in a multiple access system. However this framework dwtibe extended because
of the complex nature of wireless multiple access. In thesigusing discrete time multi-
server queueing framework [44] we make a queueing analysisionple OFDMA based

system.
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1.3 Thesis Outline

The thesis is organized as follows. In Chapter 2, we considgaise Station trans-
mitting to a set of mobile users that demand voice, video atd skessions. We propose a
power and bandwidth allocation scheme that provides lonmg proportional fairness to
data users, while satisfying the delay requirements ofevagers and rate requirements
of video users. We formulate and solve a constrained opditioiz problem that captures
these objectives. We then develop an algorithm that findephienal allocation. Using
simulations we compare the performance of the algorithrh eitvell known benchmark
algorithms from the literature.

In Chapter 3, we consider the complexity of the proposedrdlgn in Chapter 2
and propose a simpler algorithm. In order to make the resaaltocation computation-
ally simpler, we proposaser selection metri¢gshat are used by the Base Station to select
Voice, Data and Video Streaming users from the total set @fsuslhat way we decrease
the number of users entering into the computation procesaddition to this we distin-
guished elastic and non-elastic real time traffic. We detegthminimal required rates
for real time sessions and formulate a constrained opttinizaroblem to find the alloca-
tion to maximize the proportional fair capacity for eladiest effort and real time traffic
subject to rate constraints for elastic real time traffic,dathl power and bandwidth. We
compared this algorithm with a benchmark algorithm.

In Chapter 4, we deviate from the classical downlink casecandider a system that
includes fixed relay stations (RSs) located in the celluteaa These relays are useful

in reducing shadowing and increasing the capacity. We dpvalresource allocation
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scheme in which the base station first performs a simple 2xtajing that assigns users
either to itself or one of the relays. Then the BS allocatesldrame to each BS-RS-
MS microcell. Then, for each microcell the BS performs salvfe allocation for BS-RS
and RS-MS composite links and joint subchannel and powecatiion to each link in
order to provide and proportional fairness to data usergstto rate constraints of real
time sessions. We did simulations in order to see the petgbo of the system with the
performance of a system with no RS.

In Chapter 5 we consider an OFDMA based system that exp&sefiequency
selective fading at each subchannel. We consider a simplengft-aware resource al-
location scheme that allocates each subchannel to the ugemaximum normalized
received SNR. Using queueing theory for discrete time meitier systems, we perform
a queueing analysis for this system. First using extremegeviddeory we model the ser-
vice process. Then we analyze the tail probability distrdouof the buffer occupancy.

We compare the accuracy of our analysis with the simulagsnlts.
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Chapter 2
Proportional Fair Scheduling in OFDMA-based Wireless Diomkn
Systems with QoS Constraints

2.1 Introduction

In this chapter we consider a base station serving usersribBngaheterogeneous
traffic, which are best effort data, video streaming ande/oWe develop a resource allo-
cation algorithm that provides proportional fairness agidata users based on their long
term received data rates unlike single instant data rates[a6] and [18]. We develop a
user selection scheme that selects a number of real timess$sased on their head-of-
line packet delays and received rates. We determine theireguirements and formulate
a constrained optimization problem that maximizes prapoal fairness subject to those
rate requirements and power and bandwidth constraintsedtidh 2.2 we describe the
system model. In Section 2.3 we investigate the proportifamaess and formulate the
proportional fair rate allocation. In Section 2.4 we inwgate and formulate the user se-
lection and rate requirement determination process fditiraa sessions. In Section 2.5
we formulate and solve the joint data and real time resouloceadion problem. We also
look at the feasibility of a problem given the rate constimand how to detect infeasibil-
ity. In Section 2.6, based on the solution, we describe theuree allocation algorithm

and prove that it converges to the unique optimal solutionalfy in Section 2.7 we nu-
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merically demonstrate the performance improvement of thpgsed resource allocation

algorithm.

2.2 System Model

We adopt the WirelessMAN-OFDMA profile [11], [10] at the pigad layer, which
is a multicarrier scheme where multiple access is provigeassigning a subset of carri-
ers to each receiver at each time slot. WeandP denote the total bandwidth and power,
respectively. Total bandwid is divided intoNs,p subchannels of lengisyp Hz, each
consisting of a group of carriers. As we explained in theddtiction, we assume dis-
tributed subcarrier grouping as opposed to adjacent gngufiherefore each subchannel
experiences the same average fading with respect to a user.

We consider a wireless downlink system, where a base stainamits to respec-
tive stations as in Figure 2.1. The noise and interferenegepaensity isNg, and the
channel gain averaged over the entire band from the BS ta as¢imet is h;(t), where
hi(t) includes path loss, shadowing (log-normal fading) andfteding. Using the aver-
aging effect of PUSC scheme we assume flat fading, i.e. werasthat fading level is
the same at each subchannel.

There are three classes of users. Users in the claggdds andUy demand data,
video and voice traffic, respectively. The system that wester is time slotted with
time slot lengthTs. The scheduler makes a resource allocation decision atteaeh
slot. Active period in a voice conversation, streaming tareand file size are both very

long with respect to the time slot size. Therefore it is g@dithat during the course of
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optimization the number of active sessions are fixed.

Traffic for MS4
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Traffic for MS,

FTP
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Channel State
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Figure 2.1: Downlink System Model

IEEE 802.16a/e standards allow several combinations ofutatidn and coding
rates that can be used depending on the signal to noise tdéce assuming constant
fading during a time slot, we model the channel as AWGN. Baagos allocates the
available power and rate among users, wiggfe andw;(t) are the power and bandwidth

allocated to userrin time slott. For an SINRp,‘\g\}vt“(g), the highest order modulation and

coding scheme that guarantees a BER constraint is used. &\iheiset of modulation
coding pairs in Table 1.1.

Based on Table 1.1 it is reasonable to approximate the optiaresmission rate as
an increasing and concave function of the signal to noise rdfe will adopt the Shannon

channel capacity for AWGN channel as a function for bandivadtd transmission power
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assigned to useét:

(1), (1) =t log (14 R 2.1)

The reason for using Shannon capacity is its simplicity, &radlso approximates rate-
SINR relation in Table 1.1 witf8 = 0.25. The parameter & 3 < 1 compensates the
rate gap between Shannon capacity and rate achieved bycptacbdulation and coding

techniques.

2.3 Proportional Fair Resource Allocation for Data Traffic

Itis provenin [1] by Tse that a proportional fair allocatif@n a single carrier system
also maximizes the sum of the logarithms of average uses:rate

N
P=arg mSax log Ri(s) (2.2)

i=
where is the user set aerS) is the average rate of useby scheduleS. In a single
carrier system proportional fairness is achieved by sdivegiat each time sldt, a user;j
according to:
j=arg rqaﬁ% (2.3)
Herer;(t) is the instantaneous transmittable rate to user i at thewcustot. R;(t)
is the average data rate that user i receives over time. Atteae slot the average rate is

updated according to the following rule:

R(t+1) =aiR(t) + (1 —aj)ri(t) (2.4)

LFrom now on all logarithms are natural and we consider tragsom in nats instead of bits
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In the proportional fair schem& = 1/(1— q;) is the length of the sliding time
window and average rate is computed over this time slot dt 8aw slot. In [1]a was
taken as 0.999. So this method maintains fairness in therlomgvhile trying to schedule
the user with the best channel at each slot.

Proportional fair resource allocation problem in OFDMA teyss was modeled

previously in [18],[16] as follows. Maximize:

N
C(w,p) = _;IOg(ri(Wi, pi)) (2.5)

subject to

IN
U

i; p

N

i;Wi

IN

W

o
=
Y

0,Vi

wherer;(w;, p;) is the rate function in equation (2.1). In [18], efficient do@h complexity
algorithms are proposed to solve the above optimizatiohlpm. Some algorithms were
also proposed for a similar model in [16]. However this folation aims proportional
fairness only in a single time slot as opposed to long termirements.

Let us assume that there axedata users. The objective for the data users is to
optimize log sum of the exponential averaged rates of thesidle can model the system
as a Markov decision process. The state of the system at toheis the vector of the

averaged rates received by time 1,

Rt—1) =[Ri(t—1),Ro(t—1),...,Ry(t—1)],
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whereR(t — 1) € R*N. The control variablesi(t) = (p(t),w(t)) are vectors of power
and bandwidth allocation at slétdenoted a(t) = [pa(t), p2(t),..., pn(t)], wW(t) =
[wa(t),wa(t),...,wn(t)]. The control space is denoted dywhere?U = {p,w: TN pi(t) <
P.sN wi(t) <W,pi(t) > 0,wi(t) > 0, Vi}, whereP andW are the total available power
and bandwidth. The state (user rates) is updated at eaclshimna&ccording to the expo-

nential averaging formula:
Ri(t) = aiR(t — 1) + (1 —ai)ri(wi(t), pi(t)), Vi, t (2.6)

where the initial stat®(0) is a constant (possibly 0). This way we consider both current
rate as well as rates given to the user in the past. Observiededt the highest consider-
ation is given to the current ratét), and the rates received at the pastl,t —1,... carry
diminishing importance. We replace the instantaneousrrétewith averaged rat& (t)

in the proportional fair capacity (Equation 2.5)

N
C(R(t)) = _;'C)QRi(t)
N
- .leog(O(Ri(t — 1)+ (1 —aj)ri(wi(t), pi(t)))

_ ingi(t_l) (Gi+ (1—Ui>ri(Wi(t)7pi(t)>)

R(t-1)
N ) (W ().
=C(R(t—1)) +i;|og <on e O";'(i"f(i;a Puﬂ))) (2.7)

As a matter of fact, we limit ourself tgreedyschemes in the sense that at $lot
we try to maximize the proportional fair capacfyR(t)) without considering the future

time slotst + 1t + 2, etc. Only the second term in Equation (2.7) needs coreider
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The objective for data users becomes:

A L (A—airi(wi(t), pi(t))
p(ﬂ%i;log (a' " Ri(t—1) )

N/ (L—ai)r(wi(t), pi(t))
<a|+ R(—1) ) (2.8)

2.4 Resource Allocation for Real Time Traffic

Our primary aim is to find a scheduling scheme that suppottstdaffic as well as
delay sensitive traffic. Proportional fairness objectiv€d.8) aims at providing fairness
to data users. On the other hand, users demanding realrtffie fvoice and video) have
QoS constraints on packet delay or packet drops. We asswahddta traffic adjusts its
transmission rate to suite its throughput (an example is ff&ffic), but it can always use
any bandwidth assigned to it (its transmission queue isrmrawgty). On the other hand,
real time traffic has more strict delay and packet loss requents. We describe below a

common QoS sensitive algorithm that was commonly used glesicarrier systems.

2.4.1 Benchmark Algorithm: M-LWDF-PF

In single channel systems Largest Weighted Delay First (E)WIB shown to be
throughput optimal [50]. In this scheme at each time slouther maximizing the follow-

ing quantity transmits.

aD[ L (t)ri(t), (2.9)
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whereD!OL(t) is the head of line packet delay angt) is the channel capacity of user i

at time slot t. The parametey is a positive constant. If QoS is defined as
P(D; > D"®) < &, (2.10)

whereD"®is the delay constraint anyj is the probability of exceeding this constraint

(typically 0.05), then the constaat can be defined ag = — D?S’x(éigt) , Which is referred
to as M-LWDF-PF [50] [16]. HereRi(t) is the average received rate which is updated as
in (2.6).

Filter constanti; should be chosen such that the average received rate igetktec
within the delay constraint in terms of slot durations. W# uge this metric in real time
session selection. M-LWDF-PF can be adapted to OFDMA sys#sriollows. Power is
distributed equally to all subchannels. Starting from thet Bubchannel , the subchannel
is allocated to the user maximizing (2.9). Then the recerageR(t) is updated according
to (2.6). All the subchannels are allocated one-by-onerdaug to this rule. We will use

this allocation scheme as a benchmark in our simulations.

2.4.2 Proposed Real Time Selection and Allocation Scheme

There are two main disadvantages of M-LWDF-PF- based resa@liocation. First,
the power is divided equally to over subcarriers. Perfortearen be increased by dy-
namic power adjustment. Secondly, data sessions are mifefedt than video and voice
in terms of QoS requirements. Therefore it is hard to use @éngesmetric for data and

real time sessions.
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2.4.2.1 User Selection

We first choose the voice and video streaming sessions torbedsie the current
slot. For the data users our algorithm (which will be definedrdy) inherently selects
some users and give zero rate to others. We use the follovsiegaatisfaction value for
real time sessions:

ro
0 (2.11)

US\(t) = LiDiHOL|Og (1+ BPhi(t))

NoW

The user satisfaction metric that we use is very similar tt\MBF-PF metric ex-
plained above except ttﬁ% part at the end of the expression. If we don’t use the traffic
rate riO at the nominator then low-rate sessions such as VolP gauoessively favored.
Herel; = —'O—SJFQQQ, whereD{"®is the delay requirement of usier

We use a simple formula to determine the fracteft) of real time users scheduled

in each time slot,

1

- - | (g (t) > 0.5DM% 0 2.12
|US| + |UV| iELéUV (ql( ) | | ) ( )

Fr(t)

Here 05DM®Y0 denotes a queue size threshold in bits &hylis the indicator function
taking value one if the argument inside is true. As more useceed this threshold, more
fraction of real time users are scheduled. UgtandU¢ be the set of voice and streaming
users chosen at the current time slot aigbe the total set of chosen real time users .
Next, we describe the joint power and bandwidth allocatlwat ts performed on these

chosen users.
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2.4.2.2 Rate Allocation

The rate constraint for a chosen real time session is defgied a

Cr+\ qi(t> : /
fi (t) = m, I € UR (213)

Hereq;i(t) is the queue size ang(t) is the transmission frequency of user i, which is

updated as follows:
Wi (t) = oo (t— 1) + (1—04)1 (ri(t) > 0), (2.14)

wherel (ri(t) > 0) is the function that takes value one if the node receivesgiadk time

slott, zero otherwise. Therefore this frequency decreases ifdlde transmits less and
less frequently. Using this frequency expression in the faiction, we compensate for
the lack of transmission in the previous time slots posdillky to bad channel conditions.
Choosing the rate requirement this way, we aim to empty atthrrent content in the

gueue in half duration of delay constraint.

2.5 Joint Data and Real Time Resource Allocation - FQPSA

We combine the proportional fair scheduling in (2.8) and teae user selection
and rate definition in (2.11), (2.13) and propose a Fair an8-Qased Power and Sub-
channel Allocation (FQPSA).

We formulate a constrained optimization problem where thjeaiive function is
Equation (2.8) and the constraints are the power/bandvaditistraints and the rate re-

quirements for chosen real time sessions defined in (2.18)n;l= % The resulting
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optimization problem is as follows:Find:

o (1—oy)wilog (1+ 2;) o1
* W) = arg max aj + .
P g o iQD [ R
subject to,
B < P (2.16)
iGUDUU(q
W< W (2.17)
iEUDUUéQ
. p_'* > 1l /
W' log <1+niWi*) > ri,ieUg (2.18)
pi,wW > 0,Vi e Up UUL (2.19)

2.5.1 Solution to the Constrained Optimization Problem

The objective function (2.15) is an increasing functioriwfp), therefore the max-
imum is achieved only when the constraints (2.16, 2.17,)2at8 all met with equality.

For this reason we can replace these inequalities with ggsah the discussion below.

Lemma 2.1 The problem in (2.15),(2.16),(2.17),(2.18) and (2.19) isoavex optimiza-

tion problem.
Proof 2.1 In Appendix A.

Before solving this optimization problem, please note #iahg with the rate con-

straint (2.18), it is required that in (2.15)

oiR + (1—aj) (wi log <1+ﬂ)) >0, Vi € Up. (2.20)

W

2Herep;,w;, nj are the values at timte The time index is not shown for convenience.
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Actually there is no guarantee that a solution can be fouatigatisfies both (2.18) and
2.20. The rate requirements for real time users can be tdathé it may be impossible to

satisfy with the given channel conditions. Below we defirefgasibility of the problem:

Definition 2.1 A feasible set ofp,w) is the set of power and bandwidth vectgvs, p)

such that:
aiR +(1—a;) (Wi log <1+ f—pv\;)) >0, Vi € Up. (2.21)
1VVI
Pi C \;i /
w; log <1+ niWi) > 1y, Vi € Ug (2.22)
<P > wi <W, pi,w > 0,Vi € Up UUR (2.23)
ieUpUUg ieUpUUk

We define a feasible problem as a problem for which the feas#tlis non-empty.

To start with, we assume that the problenfeiasible We will discuss about how to
detect infeasibility of the problem and what to do in thatecasthe next section. We can

write the Lagrangian of the problem as [47]:

(1—aj)wilog <1+ %)
L<W7p7)\p7}\W7)\r): U aj + . +)\p pP_ Z pi
<Up R icUpUU},

A (W s wi) 3N (wi log <1+%) —rf). (2.24)
ieUpUUgL ieUL 1

Taking the derivatives of (p,w,Ap, Aw,A") W.r.t. pi, w; for all usersAp andAy,

andA! for all chosen real-time users we get the following:

e For users € Up:

oL(p, W, Ap,Aw,A") B B 1/n;
ap? : (p*.w*) =0 == (R'W—?“Jrlog(lqt%)) (1+n%)

(2.25)
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OL (P, W, Ap, Aw, A") (1+ 8 )log(1+ &) - 2

ow g T (1+ 7 ) (R&i +wlog (1+ %))
(2.26)
whereq; = 18—'0(. By dividing (2.25) with (2.25) we can write for allc Up:
Aw
Ao =N =ni ((1+x)log(1+x) — ), (2.27)

wherex" = P denotes the optimaffectiveSINR, which is the SINR multiplied

niw;’

by the SINR gap paramet@r

e For users € Uf:

L Ap, Aw, A" A
AL(P, W, A p, Aw, A") Ap_1_ 1 (2.28)
opi (p*,w*) A N1+ ’f—l""r
P
r * nwr
oW (0 ") A niw; 1+t

Combining equation (2.28) and (2.29)(dividi§§) for alli € U again gives:

N A=y (14X)log (LX) %), (2.30)
p

By writing (2.30) we can eliminat&{’s from the problem. It is worth noting that
we get the same relation betwegg/n; andx; for all users (Eq. (2.27) and (2.30)).

At this point it is convenient to define the functidg(x) as:
fx(X) = (14 x)log(1+x) —Xx. (2.31)

Then we have,
Xi(Ax) = f 1 (Ax/mi), Vi € Up UUR. (2.32)
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Lemma 2.2 The following properties hold:

1. Effective SINR (¥/\y)) is a monotonic increasing function &¥ for users

i € Up UU(Q.
2. If nj < nj then x(Ax) > Xj(Ax)

3. If nj > nj then X(Ax)ni > Xj(Ax)n;

Proof 2.2 The proofis in Appendix B

For real time users we also have:

aL<p7W7)\p7}\W7)\r) _ c __ pl* ; /
N oo =0 =r=wlog W Vi e Ug (2.33)
e For all nodes € Up UU
oL Ao, Aw, A"
<p’Wé)\p’ w ) =0 =P= Y p (2.34)
P (p*,w*) ieUpUUgL
oL Ao, Aw, A"
w (p*,w*) icUpUUL

From Equation (2.25) and (2.27) for data users we can write:

[/\*—n.(l-i—f (A Ra.}
log(1+ fx (—))(1+fx LN
[Ny m(+ RG] ()
log(1+ fx *(R)) (14 f H(5))

= w,ieUp (2.36)

= piieUp (2.37)

whereAp = 1/Ap. The[.]" operator in Equations (2.36),(2.37) guaranteeswhgt > 0
for all users. Givem\, and/\x we can compute the power and bandwidth for usertlp
using (2.36) and(2.37). Givefy,, we can calculate the power and bandwidth for users
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i € UL using (2.33). Please note that just from (2.33), (2.36) &87), the bandwidth
and power constraints (2.17) (2.16) aa necessarily satisfied. We need to find the right
Ax and/\p so that the power and bandwidth constraints are satisfietdSj(Ay, Ap) and

Su(Ax,\p) be the total bandwidth and total power corresponding,tandAp:

[/\p—ni<1+f—1(&))aa}+ 0
+ L (2.38)
o log(L+ i () (L+ i RN 1 &G log(1+ fi ()

SN(/\X7/\D) -

. [/\p—ni(1+f 1(n))R.0(.} () 01Ny,
) = - - + '
)= ogn AN+ KR & log(1+ i H(R))
(2.39)
As aresult, the problem is findiny; andA}, such that
SWALAp) = W (2.40)
SN Np) = P (2.41)

using Equations (2.38) and (2.39). Note that althongrand/\, are independent vari-
ables that determine power and bandwidth for each node,bibeyme dependent when
the power and bandwidth constraints (2.40) (2.41) need sabsfied. Using (2.38) and

(2.39), and writingAw 3 y,uu, Wi +Ap Tupuuy P We obtain.

NWENP = Y [1—A;ni(1+f;1(—x>)aa] T+ L i)
i€Up ieUk i
NWHP = ¥ M-+ G ARNREN + 3 rm(1+ 65(5) 242)
icUp icUL i

where/Ap = 1/Ap. Let the functiom\(Ax) be the value of\, that satisfies (2.42) fok.

LetU) be defined agi € Up : Ap—ni(1+ f1(Ax/ni))Ra; > 0},
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2.5.2 Feasibility of the Solution

In the previous section we stated that there exists a saltiohe problem, if the
feasible set is non-empty. The feasibility of a problem nseeonditions (2.21), (2.22),
(2.23) are all met. We now consider how to detect an infeagildblem and what to do in
that case. From Eq. (2.36) and (2.3&), = 0 corresponds to the case that no bandwidth
and power is allocated to data sessions. If the problem slfiea(i.e. if the available
power and bandwidth is enough to satisfy rate requiremeisab time sessions), then

there exists @\ = n; fx(x), Vi € U so that the following inequalities hold:

i

.GZU/ log(1+ fx (X)) =SlA0) < W, (2.49)
rOf (R

=5(N\0) < P (2.44)

iezuge log(1+ fi *(R))
Below, we prove some properties of the functi@g/\x, Ap) and Sp(Ax,\p) that

will be useful in proving the existence and uniqueness aftsm to problem (2.15-2.19).
Lemma 2.3 The following properties hold:

i. Sw(Ax,\p) and §(Ax,\p), are nondecreasing functions &f, for anyAx > 0. Also

|im/\p—>00 SN(/\X7/\D) — 00 and|lm/\p_,°o Sp(/\x,/\p) — 00,

ii. Sw(Ax,/\p) is adecreasing function &%y for all Ap > 0. Moreoverlima,_.o Sw(Ax,\p) =

oo andlima,_. Sw(Ax,\p) = O for all Ap.
iii. Sp(Ax,0) is an increasing function of.

iv. Let A2 be the smallest\ value that satisfies the inequality,@\x,0) <W. There
exists such 4 > 0. The problem is feasible if and only if&\2,0) < P.
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V. For Ay > A}, the derivatived/\dp/(\/x\X) is positive therefore\p(/\x) is an increasing

function ofAy

vi. The following inequalities hold fok;(Ax) and optimalA:

AW +P — iy FEmi(L+ £ () + Sieup Ni(L+ f H(R))RG
Up|

Np(Nx) <

(2.45)

P P
min <nify | — <A< max <{nf | — 2.46
ieUDUUQ{ ' X(niW)} - X_ieUDUUQ{ ' X(niW)} (2.46)

vii. Sy(Ax,N\p(/\x)) is a quasiconvex function &. Specifically, it is a decreasing func-
tion of Ay up to a certain poin\} and takes a value smaller than W at that point; it
is an increasing function fof\y > /\% and takes value W at limity — o. Therefore

for a feasible problem@/\x, AL (/Ax)) takes value W at a unique poirt> Ay > A9,
Proof 2.3 Proof in Appendix I.

Therefore before starting the optimization we can first i{dn order to check for
feasibility (Lemma 2.3.iv). IfSp(/\g, 0) > P, the problem is not feasible and too many
users have been admitted. We will then chose a user that m@sstoo much power and

decrease its rate.

2.6 Proposed Algorithm

Using (2.38) and (2.42) we can develop an algorithms to oeter the power and
bandwidth allocation. The algorithm is also able to detefgtasibility if there no solution
exists.

Algorithm:
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1. Compute\? = BinarySearcl().

2. If S5(A2,0) < P then the problem is feasible from Lemma 2.3.iii. Continuéhwi

Step 3. Otherwise the problem is not feasible.
3. (A, A\;) = BinarySearchy(/A).
4. (Wi pf, %) = ComputePowerBandwidthy, A\)

Subroutine: A? = BinarySearch(): Find A s.tSy(Ax, 0) =W.

i. ChooseAy > 0. Find the smallest integdr> 0 s.t. Sy(2%A4,0) < W. SetAl =

21Ay, AN = 2KA, and AT = (AL +AR) /2
ii. Iteratively computeS, (AT, 0) and updatéAl, AR).

o if \;\\—? —1| <&, returnA? = A
e else ifSy(AD,0) <W, Al = Al andA" = (AN + AL /2;

e elseN, = AT andA" = (AR 4+ AL) /2.

Subroutine A}, = BinarySearch(/Ax, AL, A): Find A5 (Ay) that satisfies (3.21).

i. SetAf = (/\I +/\B)/2 and run(w, p, x) = ComputePowerBandwidthy, AT):
ii. Binary search:

/\h
o If \A—lz — 1] <&, returnAp = AT

o elSe AW -+P < 3icup INF — (L4 i (RDRE] + Zicug roni( 1+ 1 (5)),

Al = AT andAl = (A8 +AL) /2;
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o elseAl, = Al andAl = (Al +AL) /2.

Subroutine (Ay, Ap) = BinarySearchy(/A2): If the problem is feasible findg\y, Ap)

SISW(AAL) =W, andSy (AL, Ap) = P.

i. Determine the upper bound @k, (AL) using (2.46). Based on this bound, find the
upper bound o\, (/\B) using (2.45) (To do this, we have to find the SINR values
corresponding ta\} by the subroutinéx, w, p) = ComputePowerBandwidth?f, 0)).

Set/Al = AL =0 andAf = (AT +A}) /2.

ii. Iteratively compute/ = BinarySearch(AF, A, AB), and update AL, AR AL AT)
based or§y (AL, AD).
h
o if |j\\—§ — 1| < g, return(A;, A) = (A, AR);
o else ifSy(AFAHAD)) <W/, AR = AR, AR = (AR +AL) /2 andAlf =
o elseN} = AP, A = (Al +A))/2 and and\[ = A\
After we find A} and A}, we compute the optimal SNR, bandwidth and power

values for all nodes with the following subroutine:

Subroutine (x,w, p) = ComputePowerBandwidthy, Ap):

i. Optimal SNR values (scaled If) for all chosen users':
X' = f L (AL /ni), Vi e Up UUL (2.47)
wherefy(x) = (14 x)log(1+Xx) —

ii. Optimal bandwidth valuesy:
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e Fori e Up:
[Ap—ni(1+x)Rai] ™

W = 2.48
' log(1+ %) (14 X)n; (2.48)
e Fori e Uk
. (2.49)
' log(1+x) '
iii. Optimal power values for all nodeg;’, i € Up UUZ:
i = niwx /B, Vi € Up UUR (2.50)

Proposition 2.1 If the problem is infeasible, the Algorithm always detetts i

Proof 2.4 From Lemma 2.3.iv we know that if the problem is infeasibéetg,(A2,0) >
P, Where/\)? is the smallest\x such that {(Ax,0) <W. As a corollary of Lemma 2.3.ii
we also know that3/\y, 0) is a monotonic decreasing functionA&§. Therefore we can
use the subroutine BinarySeaf¢hin order to findA$ and compute §A2, 0) in order to

check for feasibility of the problem.

Proposition 2.2 Existence of a unique solution: If the problem is feasiblrdhexists a

unique point(Ay, Ap(Ax)) that satisfies (2.40) and (2.41).

Proof 2.5 From Lemma 2.3.vi/Ax, A (/Ax)) > W for Ax = A2 and from Lemma 2.3.vii
SN(/\X,/\‘E,(/\X)) is a monotonically decreasing function &f. Hence the problem has a

unique solution.

Figure 2.2 illustrates the characteristics of the sum-pev#s(/\x, A\j(/\x)) and
sum-bandwidtts, (A, /\’;,(/\X)) versus/\y for 30 data users for the caseRyf=0, Vi € Up
andR; > 0, Vi € Up at one point in time. From the graph we see that indeed sunepow
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and sum-bandwidth crosses the power and bandwidth camtstiti one point, which is
the unique optimal solution. For the case of non-zero recenates, we observe dis-
continuities in sum-power and bandwidth functions. Thibéxause at each point of
discontinuity, the expressiof(Ax) —ni(1+ fx—l(%x)mai changes sign for one of the

nodes € Up.

Total power/band vs.AX for a typical network (D=30, S=V=0)

S AN

Figure 2.2: Existence of a Solution

Proposition 2.3 Convergence of the algorithm to the unique solution: TheoAllgm

converges to the globally optimum solution to the set of Eiquna (2.40) and (2.41).

Proof 2.6 In Appendix Il, we prove that the objective function in (3.5 strictly con-
cave function of both power and bandwidth for all users. Ve @rove in Appendix Il
that the constraint set defined in (2.17), (2.16), (2.18)d=fia convex set. Together this

means there exists a unique local maximum of the optimizatieblem which is also the
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global maximum. As Equations (2.38) and (2.39) define thal lmaximum of the prob-

lem, its solution is the sole maximum of the problem whicltsig the global maximum.

2.6.1 SINR/Bandwidth Quantization and Reshuffling

In practice, bandwidth allocation is in terms of integer f@mof subchannels. As
mentioned before there also exists a set of modulatiormigopairs and corresponding
SINR thresholds, which also requires power reshuffling @gze the SINR. Hence, we

have to apply the following resource shuffling procedure

1. Quantize the bandwidth values to the nearest number aehsminel. Quantize to
1 subchannel if it is less than that. For the real time sessiecompute the power

value that satisfies rate constraint.

2. Quantize the SINR values to the nearest one in Table 1.anti2e to the lowest

SINR if it is less than that.

3. If the total bandwidth is greater thaM, then find the node that has the largest
bandwidth and decrease one subchannel. Adjust powersts®INR values remain

the same. Repeat this until constraint is satisfied

4. If total power is greater tha than find the node that consumes largest amount of
power and take one subchannel remaining the SINR same. Raeantil power

constraint is satisfied.

5. If total bandwidth is smaller than W, then find the node whté best channel con-

dition and give it one more bandwidth, adjusting the powethsd SINR remains
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the same. This is because users with good channel conditomare dependent

on bandwidth.

6. If total power is smaller than P then find the node with watsinnel condition.
Boost its SINR to the next level (if possible). This is be@users with worse
channel conditions are more dependent on power. Repegirtiisdure until it is

impossible to do so.

A similar resource shuffling procedure can be found in [18].

2.7 Performance Evaluation

For the numerical evalutations we divide the users to 5 elsscording to the
distances, 0.3,0.6,0.9,1.2,1.5 km. For instance if thex&aoice users in the system, at
each distance class a single Voice user is locatedk kdr user there are k users for each
session of the same type is located at each distance poinis&\ine parameters in Table

2.1.

2.7.1 OFDMA-Related Parameters

Table 2.2 summarizes the OFDMA-related parameters usddssimulation and
their derivations. Here FFT Size means the number of sanpteg Fast Fourier Trans-
formation. Number of used subcarridigseq IS smaller tharNFeT because the outer

carriers in a subchannel does not carry modulation data.
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Parameter Value
Cell radius 1.5km
User Distances 0.3,0.6,0.9,1.2,1.5km
Total power (P) 20 W
Total bandwidth (W) 10 MHz
Frame Length 1 msec
Voice Traffic CBR 32kbps
Video Traffic 802.16 - 128kbps
FTP File 5MB
AWGN p.s.d.Np) -169dBm/Hz
Pathloss exponeny) 3.5
WpB ~ N(Hyyg: Oygs) N(0dB,8dB)
Coherent Time (Fast/Slow)  (5msec/400msec.)
Pathloss(dB, d in meters) —31.5— 35logod + Yus

Table 2.1: Simulation Parameters

2.7.2 Performance Criteria

We will compare our algorithm with the benchmark M-WLDF aliglom with pro-
portional fairness. Delay exceeding probability is take®ja= 0.05 for all users. Delay
constraint for voice and video users are 0.1 and 0.4 secesgectively. For M-LWDF
algorithm we assume that the delay constraint is 2 secordi®u@fer length is infinite.
We assume a constant HOL delay of 1 second for the data ses$tonthe FPSQA al-
gorithm resource allocation for data traffic does not depemdlelay. Filter values are
a; = 0.998 0.995 0.98 for data, streaming and voice sessions.

Performance criteria are as follows. We will observe thalttiroughput for all
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Parameter Value

Nominal Channel Bandwidth W = 10MHz
FFT size NreT = 1024.
Number of used Subcarriers Nyseq= 840.
Sampling Factor ns = Fs/W =8/7

Sampling Frequency Fs= |nxW/8000| x 8000= 11.424MHz

Subcarrier spacing Af = Fs/Nept = 1.1156x 10*Hz
Used Bandwidth Nusedx Af = 9.37125MHz
Useful symbol Time Tp=1/Af =89.638us
Guards Period ratio 1/8
OFDM Symbol time Ts=(1+1/8) x Ty, = 0.1008nsec
Subchannelization mode DL-PUSC
Tones per subchannel 24
Subchannel bandwidth Wsup= 24 x Af =267.744KHz
Number of subchannels Nsup= 30

Table 2.2: OFDMA-Related Parameters

data users and also the total throughput for the users adthe @sers at 1500m). For
data users we will also observe total log-sum @te) = .y, logRi(t). For real time

users we will measure the 93ercentile Delay for Voice and Streaming Sessions.

2.7.3 Increasing Number of Voice Users

Figures 2.3, 2.4 show the effects of increasing the numbeoictusers. In Figure
2.3 we observe that FPQS Algorithm is better than M-LWDF athm in terms delay

performance. With FQPSA delay for voice and video sessiteng within acceptable
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bounds, while with M-LWDF, it exceeds the bounds for the wsethe cell edge when
V > 30. Besides, according to Figure 2.4 FQPSA provides at [Hagtercent increase
in total throughput. Total throughput decreases lineaith mcreasing number of voice
users. Although 10 voice users adds up to 0.32 Mbps, addingéf decreases the to-
tal throughput approximately by 1.2-1.4 Mbps. This is beeauoice has a very strict
delay requirement and a voice session may have to be traadmiéspite bad channel
conditions. Throughput for LWDF decreases with a littledddwer rate but that reflects
to the voice and video performance negatively. Log-sumagperédnce of FQPSA is also
better than that of M-LWDF, which shows that our algorithroypdes fairness. We also
observed that a voice session almost always uses one sulethahen scheduled. This
is approximately the case for video sessions. Users at the soimetimes users 2 sub-

channels in a slot.

2.7.4 Increasing Number of Streaming Users

In Figure 2.5 we see the effects of increasing number of vglesaming users on
delay. We see that our algorithm is better than M-LWDF in tecia. 93" percent delay
for edge users demanding voice and video exceeds the ablzerggion forS > 40, while
for our algorithm it stays within the threshold. There idl stiore than 10 percent increase
in total throughput. Log-sum of long term received ratedss greater. Adding 10 video
users (which means 1.28Mbps) decreases the throughput lp2 &h the average. The
inefficiency is less compared to increasing voice usersusecaideo has a looser delay

requirement.
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g5t percentile delay vs. number of voice users (D=S=20)
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Figure 2.3: 95 percentile queue size(bits) vs. number afevasers

Data throughput vs. number of voice users (D=S=20)
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Figure 2.4: 95 percentile delay vs. number of voice users
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o5 percentile delay vs.

number of video users (D=V=20)
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2.7.5 Increasing Number of Data Users

In Figure 2.7 and 2.8 we can observe the effects of increabimgumber of data
users.We observe that delay for both voice and video streaisessions stay approx-
imately constant. Delay performance is much better thandahd-LWDF algorithm.
Data performance is 10 percent better than M-LWDF. Totabughput increases with

number of data users, but the increase diminishes as D sesea

2.8 Summary

In this chapter we formulated and a resource allocationlprotior OFDMA-based
downlink transmission. We proposed an algorithm that caye®to the unique optimal
solution of the problem. Finally we numerically showed tiwaen compared with the M-
LWDF scheme, our scheme both provides better proportiaalidss for data sessions

and provides better QoS for real time sessions.
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o5th percentile delay vs number of data users(D) (S=V=20)
700 T T T T T T T T

== FQPS Voice(Good) L
-9~ FQPS Voice (Bad)
LWDF Voice (Good)
LWDF Voice (Bad)
FQPS Video (Good)
FQPS Video (Bad)
-6~ LWDF Video (Good)
=+ LWDF Video (Bad) -

[+

500~

Video delay const

Delay (msec)

Voice delay const.

100jp = e T DT
o N
v
T - = ——— — —
0 L L L L L L L L L T
10 15 20 25 30 35 40 45 50 55 60

Number of data users (D)

Figure 2.7: 95 percentile queue size(bits) vs. number & daérs

Total data throughput vs number of data users (S=V=20)
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Chapter 3
Practical Scheduling of Heterogeneous Traffic in OFDMAduhs
Wireless Downlink Systems

3.1 Introduction

In Chapter 2 we considered the problem of resource allatdtiolong term pro-
portional fairness of data sessions and satisfying QoSnexgents for real time traffic.
The base station allocates available power and bandwidithdieidual users based on
long term average received rates, QoS constraints and ehemmditions. Although the
proposed scheme in Chapter 2 is theoretically sound, thelexity of the algorithm
motivates us in finding a simpler version of it.

In the proposed algorithm in Chapter 2, although few of thta dassions transmit-
ted most of the time, the algorithm had to involve all dataesoh the computation and
perform the look-up table operation for all data nodes atyestp of the binary search. In
this Chapter we add two new steps such as data user seleactioniaimal resource allo-
cation. We select only a fraction of data users. We formwdatésolve a proportional fair
resource allocation problem for the selected data and widers subject to minimum rate
requirements for video users. For selected voice users lgalage a minimal resource
and exclude them from the optimization. At this point weidigtiish video sessions from

voice sessions in terms of elasticity and give them chanagetanore rates depending
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on their channel conditions. The rest of the chapter is arganas follows: In Section
3.2 we explain the system model. In Section 3.3 we describeisler selection for data
and real time sessions and rate requirement determinatomegs for the real time ses-
sions. In Section 3.4 we formulate the problem of joint poaed bandwidth allocation.
Section 3.5 consists of algorithm description. Finally,avaluate the performance of the

proposed algorithm numerically in Section 3.6 and conclheechapter.

3.2 System Model

We consider a cellular system consisting of a base statorstnitting toN mobile
users. Time is slotted and at each time slot base statioceddls the total bandwidiV
and total poweP among the users. In the simulations we keep the users fixaveo
we simulate mobility by fast and slow fading. Fast fading &yRigh distributed and slow
fading is log-normal distributed. Total channel gain ispneduct of distance attenuation,
fast and slow fading. Lelj(t) be the channel gain of user i at time t. For an AWGN

channel with noise p.s.dNp, signal to interference plus noise ratio (SINR) is,

pi(Dhi(t)
SINR = PO Nowi (1] (3.1)

wherep;(t) andw;(t) are the power and bandwidth allocated to user i at time t. The B
uses a set of modulation and coding (convolutional codimrapetitions) corresponding
to certain SINR thresholds defined in Table 1.1.

In order to allocate resources in a fair manner we will soleemstrained optimiza-

tion problem. In that formulation, we will use the followimgte function.

i (t) = wi 1) log (1+ BNEV)V—T(;)) | (3.2)
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The network can support different traffic types such as rea¢ t(\VolP), video
streaming, data applications with some rate requiremdfii®) and best effort traffic.
We assume that each user demands a single type of traffic. Nv@nsider the following

traffic types:

1. FTP: FTP traffic consists of a sequence of file transmissseparated by random
reading times. File sizes are on the order of megabytes. drsithulations we
will consider transmission of a single file and will make d fulffer assumption,
that is, there will always be unlimited number of packetsrem$mit throughout
the simulation. FTP traffic is typically non real time, whibhs a minimum rate

requirement.

2. Video Streaming: A video session consists of video fraaresing at regular in-
tervals There are a fixed number of packets (slices) at eaatefrEach packet in a
frame consists of a random number of bytes. Video traffic hasnamum rate re-
guirement. As long as this minimum rate requirement is Batisthe excess traffic

can be treated equally as FTP and Web traffic.

3. VoIP: A WoIP session consists of a stream of packet asivath deterministic
interarrival time and fixed packet lengths. Therefore gatig the minimum rate

requirement is enough for such traffic types.

We classify the traffic into two groups as elastic and nostedaraffic. BE traf-
fic is elastic, that is, a BE user can use any available traffi@irness and throughput
are the performance objectives for BE traffic. Proportidaahess provides a good bal-
ances between the two. Voice traffic is non-elastic; it is &QBaffic with strict delay
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requirements. If a voice user can receive its short termireduate level, it doesn’t need
excessive resources. On the other hand Video streamirg tiin between the two

types. It has a basic rate requirement with certain delagtcaimts, however it is possible
to achieve higher quality video transmission if the useregigmces good channel condi-
tions. In this work we aim to satisfy the basic rate requiretier voice and video users,
while treating excessive rate allocation for video userslarly as BE users.Typical rates

for these traffic types are listed in Table 3.2.

3.3 User Selection

Our proposed scheduling algorithm consists of user seleend rate allocation.
After selecting the users, the subchannels and power isaéld. We use the same user

satisfaction value as in Chapter 2.

i(Hhi(t)\ P
USV(t) = LiD"°lo (1+Bp'( ' ) ! 3.3
HerelL; = —'%9&2;2 andriO is the data rate requirement for user i. Lgt, UsandUy, be the

BE, Video and Voice users. Lélr = UsUUy be the set of real time users. Liét and
U be the set of users demanding elastic traffic and the repectsgely.

In this setting the quantity or fraction of users chosen faata and real time users
is also an important parameter. Choosing too much real tsaesLgives excessive rate to
those users and is bad for the data users. Choosing too mtecisdeers both bad for
real time users and it may also decrease the achievabléatescheme puts the real time
(streaming, voice) users and data users in separate pclB, SandV be the number
of data , streaming and voice users. We use a simple formuatgymine the fraction
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Fr(t) of real time users scheduled in each time slot,

1

- - 1 (qi(t) > 0.5DM 0 3.4
|US|+|UV|ieL§JUV (Gi(t) ) (3.4)

FR(t)

Here 05D denotes a queue size threshold in bits &hdlis the indicator function

taking value one if the argument inside is true. As more useceed this threshold, more
fraction of real time users are scheduled. For data usersjmgy choose a fraction of
0.2 of users. Next, we describe the joint power and bandvailiibication that is performed

on these chosen users.

3.4 Joint Power and Bandwidth Allocation

After the users are chosen, joint power and bandwidth dilmeas performed. Let
Up, U andU,, be the chosen users that belong to all three traffic classesalforithm

is as follows:

3.4.1 Basic Rate Allocation for Real Time Users

For the real time (voice, streaming) users, first the norrﬁNiR\/iO is determined
according to the uniform power per bandwidth allocationfhs %&). ThenyiO is quan-
tized by decreasin% to the closest SNR level in Table 1.1.\ff is smaller than the
smallest SNR level, then the ceiling is taken. Based on thmsinal SINR, nominal band-
width efficiencyS(t) is determined using Table 1.1. Then the rate is determinée. T

basic rate for real time sessions is,

. 0
re(ai(t), 6a(t)) = (q?“)mr—(t)) iU (3.5)
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Hereq;(t) is the queue size and(t) is the transmission frequency of user i, which is

updated as follows:
o (t) = ajey(t—1) + (1 —o)I(ri(t) > 0), (3.6)

wherel (ri(t) > 0) is the function that takes value one if the node receivesgiadhk time
slott, zero otherwise. Therefore this frequency decreases ffidke transmits less and
less frequently. Using this frequency expression in theclhrase function, we compen-
sate for the lack of transmission in the previous time slaissply due to bad channel
conditions.

For the chosen real time users with non-elastic traffie (g NUR) basic resource
allocation is enough to support the session. For these wgersllocate the basic re-
source as follows, and don’t include them in the rate aliocatvhich will be defined
later. First, the nominal SNF?iO is determined according to the uniform power per
bandwidth allocation aso = NVt/) ThenyiO is quantized by decreasin% to the
closest SNR level in Section 3.2. ¥f is smaller than the smallest SNR level, then
the ceiling is taken. Based on this nominal SINR, nominaldvédth efficiencyS(t)

(in bps/Hz) is determined again using the values above. dJ$iis basic rate and the

nominal bandwidth efficiency, basic bandwidth for non-etatraffic is determined as

winin — f;’“ Lie Ue NUR. Then this bandwidth is quantized to a multiple of subchénne
bandwidth byw™" = max(1, |[w™" | )Wsyp, Minimal power for this user is thep™" =
YPWMiNNg /hj (), Vi € Ug NUL. Hencep; = p™" andw; = w"" for these users:

Let the residual power and bandwidth after non-elastictiead traffic allocations

LAfter the basic allocation, if the total bandwidth or pow&greater then the available resource, the user

with the largest power is chosen, bandwidth is decreased&gabchannel and the power is also decreased
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be P’ = 3icgzru, M andW' = 3 gy, WM. For real time users with elastic traffic
(i € UsNUEg) we include the basic rate as a constraint in joint residaabiwidth-power
R

allocation, which will be explained next.

3.4.2 Proportional Fair Resource Allocation for Data anded Stream-
ing
At this stage the residual poweP’j and bandwidth\W’) is allocated among the
chosen users demanding elastic traffic in a proportionalnf@nner. The PF resource

allocation problem in (3.7) is solved among the chosen stiegand data users.

Find (p*,w*) such that:

. 0
Pi
max (wi log <1+—)) (3.7)
P ieUEml(TJlﬁuUE,) MW

subject to,

wilog <1+ i) > M vi e UgNUL (3.8)
Y
p < P (3.9)
icUeN(URUUE)
w < W (3.10)
icUeN(URUUp)
pi,wi > 0,¥i € UgN(URUUp) (3.11)

Here log-sum is written as a product. The above problem isxaecooptimization
problem with a concave objective function and convex sei.[4% this optimization

we also included the parametgr, which depends on the traffic type. Since data users

in order to keep the SINR fixed. This process is continued thrgitotal bandwidth and power for voice

and video users becomes smaller than the available resource
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typically can tolerate more rate and video users are alredldgated basic bandwidth,
we can give highery for data users. We can solve this problem using the Lagrange

multipliers.

' @
Lw,pApdw)= 5 log (wi log <1+ %))
ieUen(URUUL) 1

+ S N\ (wi log <1+ i) —rimi”) A [P Y
icUeN(URUUY) i icUen(UgUp)

AW - Y W) (3.12)
icUeN(URUUR)
. i\ o
oL(p,wW,Ap,Aw) 0 Ay 1/n; (tﬂ +Awlog <1+ mw?)) o1
w00 (L ) (14 )

Pi

=0 = Ay= . n'W'* -
I (VVT wi (14 0 <1+nﬂ,*>)

X (cn +Aw log <1+ n%\/,ﬁ)) (3.14)

By dividing (3.14) to (3.13) we can write for dlle Ug N (UZUU):

Q—V;:Ax:ni<<1+rq*>log<1+m*>—n*>, (3.15)
wherex’ = rr—'w;* denotes the optimaffectiveSINR, which is the SINR multiplied by the
SINR gap parametes. Let's define functionfy(x) = (1+x)log(1+x) —x. This is an
increasing convex function as proved in Lemma 2.2. For ghkgnp, we can find the
SINR from f;l(%).

Combining Equations (3.13) and (3.14), and denofigg= 1/A, we also write,

@+ AW log (1+ B ) = Appr
W

=\, (3.16)
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Please note that from Kuhn-Tucker conditiddé(mﬁ" log <1+ rf—'wr) - r{”i”) =0,
therefore ifAl > 0, thenw? log <1-|— rf—'m> = ™", Carryingw; to the right hand side and
adding (3.16) for all € Ug N (U5UUp) and using the power and bandwidth constraints
we get,

@+ > Abpmin — \x W' +ALP (3.17)

icUgN(URUUp) icUgN(URUUp)

Using (3.16) we can write,

A = {Ap (1+ fxl(/r\lx)) n— r(“ei”r (3.18)

Finally, using (3.13), (3.15) and (3.18) we can write the saendwidth and using

the relationp; = win; f;l(%x) we can write the sum-power in termsAy,

max(cg/\p, <1+ f 1(AIX)) nirimi”)
Sw(Ax,\p) = > w= > (3.19)
icUeN(O4UUL) icUeN(U4UUL) Nt (n—)
max((n/\p, (1+f 1(AX)>nrm'”>f (%)

SMNp)= 5 pi= P fo i
icUen(O4UUL)  i€Ugn(U4UUY) + K (7

(3.20)

Let us define the function;(/\x) as the relation betweeh, and/\« that satisfies

both sum-power and sum-bandwidth conditions. Using (3at@)(3.20) we can write,

> max< pmin <1+f 1(/\ )) n,,/\*(/\x)(g) =AW +P (3.21)
ieUen(UKUUL) N

Using (3.19) and (3.21) we can find the optimal values of Lageamultipliers.

Please note that for the special case/®f = 0, Vi € Ug N (U5UUL) we can erte/\i =

wr (ApF —1), where® = 3y, u @ Let us define function\;(Ay) that gives the

relationship between, and/\x based on Equation (3.21).

/\W/+P/— ___rninr- 1+f 1(Ax
A (/\x) _ X Zr._rI i ( (n )) (3.22)
P 2ri>rmin @
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Lemma 3.1 The following properties hold:
1. Ap(Ay) < DR YA, where® = ¥icucnugoug) @-

2. Ap(/\) is an increasing function ofy for Ax > A2, A n(0) = %.
1eUgn RU D

3. LetA satisfy the equality W= S,(/x,0). If Sy(Ax,0) > P’ then the problem is

infeasible that there is noAx, Ap) that solves both (3.19) and (3.20).

4. As/\y goes to zero/\p(/\x) goes to%. In this case (/Ax,\p(/\x)) goes to in-
finity and $(Ax,Ap(Ax)) goes to P. On the other hand asy goes to infinity,

Sp(A\x; N(Ax)) goes to infinity and @ Ax, Aj(Ax)) goes to W.
Proof 3.1 1. From equation (3.21) we can write that

max( pmin <1+f 1(/r\]x)) ni, A\’ (/\x)(n) > Np(\)@

for all i. Therefore we can write

Z No(M)d < AW +P
ieUpuug
. /\*W/—l— P/
Np(Mx) -
2icusuuL @
, hence inequality is satisfied.

2. Using equation (3.21) we can take the derivativApf/Ax) w.r.t. Ax and obtain the

following:

rmm
dAp(hw) W T 2= g T(A/m)
dAx Zri >rmin @

As we can see the denominator of the derivative'is\8, (0, Ay). From the defini-

(3.23)

tion of feasibility forAx > A, W’ — S,(0,A) > 0, which implies that the derivative
is positive (function is increasing) for afy > A9.
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3. $(Ax,/\p) is an nondecreasing function B for all Ap. Sy(Ax,Ap) is an non-
increasing function of\x for all Ap. Both §(/Ax,Ap) and §(A\x,Ap) are nonde-
creasing functions ok, for all A. Therefore, if §(A2,0) =W’ and $(A2,0) > P/
then from the above monotonicity propertigg /8, Ap) > P’ for all Ay > N0, We
also know from monotonicity properties thag(Bx,Ap) > W’ for all Ax < A2 and
N\p > 0. Therefore the problem has no solution for this case and tbblem is

infeasible.

Total power/band vs.)\x in a typical setting

S 0, A0,

S Pt A)

Figure 3.1: Convergence of Algorithm

3.5 Proposed Algorithm

In this section we present the algorithm that determinegptveer and bandwidth
allocation. The algorithm is also able to detect infeaibif there no solution exists.

Algorithm:

1. Compute\? = BinarySearcl().
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2. 1f S5(A2,0) < P then the problem is feasible from Lemma 3.1.iii. Continuéhwi

Step 3. Otherwise the problem is not feasible.
3. (A, A\,) = BinarySearchy(/A).
4. (Wi pf, %) = ComputePowerBandwidthy, )

Subroutine: A? = BinarySearch(): FiInd A s.tSy(Ax, 0) =W.

i. ChooseAy > 0. Find the smallest integdr> 0 s.t. Sy(2%A4,0) < W. SetAl =

21Ay, AN = 2KA, and AT = (AL +AR) /2
ii. Iteratively computeS, (AR, 0) and updatéAl, AR).

o if \;\\—? —1| <&, returnA? = A
e else ifSy (AT, 0) <W, Al = Al andA" = (AN + AL /2;

e elseN, = AT andA" = (AR 4+ AL) /2.

Subroutine A}, = BinarySearch(/Ax, A, A): Find A5 (Ax) that satisfies (3.21).

i. SetAy = (/\I +/\B)/2 and run(w, p, x) = ComputePowerBandwidthy, AT):
ii. Binary search:

h
o If \;\Ts — 1] <&, returnAp = AT
o else if yjcyyouymax(r™ (14%) m, AF@) > AW + P, Af = AT andAT =
(NS +Np)/2;

o elseN}, = Al andAl = (AR +AL) /2.
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Subroutine (A, Ap) = BinarySearckp(/A2): If the problem is feasible find\y, Ap)

StSu(ALNh) =W, andSy(A;, Aj) = P.

. ChooseAy > 0. Find the smallest integdr> 0 s.t. Sy(2,, Aj(20y)) > P. Set

A = 2K, If k=0 then set\, = AQ else se\!, = 2€-1A,. SetA = (Al +AR) /2,

s’ /
A}, = BinarySearch(A}, 0, W *P ) andAly = BinarySearcl(A}, 0, AXVY;P )

i. Iteratively computeA = BinarySearch(AD, A}, All), and updateé A}, AR, A, Al)

based or&y (AL, AG).

o if [N — 1] < &, retum (A, A) = (AT, AD);
o else ifSy(ADARAT)) <W/, AR = AR, AR = (AQ+A)) /2 andAl =

o elseNl = AP, A = (AR+A))/2 and and\|, = AT,

After we find Ay andAp,, we compute the optimal SNR, bandwidth and power

values for all nodes with the following subroutine:

Subroutine (w, p,x) = ComputePowerBandwidthy, Ap):

. Optimal SNR values for all chosen usexs,

xi = f H(Ax/mi), Vi € Ug N (URUUD) (3.24)

wherefy(x) = (1+x)log(1+x) —x. We use a look-up table to perform this operation.

i. Fori € Ugn(ULUUp), bandwidth valuesy::

_ max(@Ap, (14x) nir™n)
B A+ Nix

(3.25)
For i € Ue N (ULUUp), power valuesp;:
pi = niwix;, Vi € UpUUg (3.26)
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3.5.1 Bandwidth and SINR quantization and Reshuffling

After the resources are allocated, first the bandwidth fé& dad video streaming
users is quantized ag = max(1, |w;|)\Wsyp Then the SINR is quantized and transmit
power is determined. Unlike FTP transmission, queue sigsn important role in real
time transmissions. As a result of the above optimizatianesgtreaming time sessions
may get more rates than that is enough to transmit all bitbenqueue. Some of the
bandwidth is taken from video users in order to obey this gumnstraint. After these
modifications, if the total bandwidth is grater than the &lde, then the user with the
highest power is found and its bandwidth decreased. Powecadculated in order to keep
the SINR fixed. This process is continued until bandwidthst@int is satisfied. If total
power is still greater than the available then again chaptie user with highest power
and decreasing bandwidth, power constraint is satisfiedftéf these processes there is
a leftover bandwidth, then choosing the user that has theekigchannel a subchannel is
added and power is increased accordingly (if there is enagler to do so). If there
is some leftover power, then starting from the user with loalgannel gains, SINR is
boosted to the next power level (if there is enough power tesa@o For the real time

sessions we don't increase bandwidth or power if there emiugh buffer content.

3.6 Numerical Evaluation

For the numerical evaluations we divide the users to 5 céaaseording to the
distances, 0.3,0.6,0.9,1.2,1.5 km. For instance if thexéaoice users in the system, at

each distance class a single Voice user is locatedk kdr user there are k users for each

63



session of the same type is located at each distance poinis&\ine parameters in Table

3.1.
Parameter Value
Cell radius 1.5km
User Distances 0.3,0.6,0.9,1.2,1.5 km
Total power (P) 20W
Total bandwidth (W) 10 MHz
Frame Length 1 msec
\oice Traffic CBR 32kbps
Video Traffic 802.16 - 128kbps
FTP File 5MB
AWGN p.s.d.No) -169dBm/Hz
Pathloss exponent) 35
WoB ~ N(Hygs: Oygg) N(0dB,8dB)
Coherent Time (Fast/Slow (5msec/300msec.)
Pathloss(dB, d in meters)| —315—35l0g;qd+ Was

Table 3.1: Simulation Parameters

We performed the simulations using MATLAB. We compared dgoathm with
the benchmark M-LWDF algorithm with proportional fairned3elay exceeding proba-
bility is taken ad; = 0.05 for all users. The traffic and resource allocation pararsetre
listed in Table 3.2. Since we choose data users separabeydthers, the parametdrs

and head of line dela" are not used for data users.

Traffic | rO(kbps | r™®kbps | D™Xs) | L | @ |

\VoIP 32 32 0.1 13 | - | 0.98
Streaming 128 1024 0.4 3.25| 1 | 0.995
BE 0 0 2 0.65| - | 0.998

Table 3.2: Minimum required and maximum sustained ratediftarent types of traffic.

64



The measured performance metrics ar® @&rcentile delay for real time sessions
and total throughput for data sessions. We will observeetipasameters with respect to
number of users for each type of sessions. For the delay, serebdthe users in the range

0.3-1.2 separately apodusers and the ones at 1.5kmbasl users.

3.6.1 Fixed Rate Video Traffic

3.6.1.1 Increasing Number of Voice Users

In Figure 3.2 we plotted the 95 percentile delay of real timgssons vs increasing
number of voice users. For this simulation we kept the nurobeiata and Video users
fixed at 20 each. We see that there is a slight increase in déthyincreasing voice
sessions. Delay for bad users exceeds the threshold witi4b&/DF algorithm, while
for DRA they are in the acceptable range. In Figure 3.3 we saeRRA algorithm is
also better in terms of total throughput. We also observettital throughput decreases

linearly with increasing real time sessions.

3.6.1.2 Increasing Number of Video Users

In Figure 3.4, we plotted the 95 percentile delays of reaétg@ssions vs increasing
number of video users. For this simulation we kept the nunolbelata and \Voice users
fixed at 20. Again we observe that 95 percentile delay for wigiessions increases ex-
ponentially with number video users, while delays for therasat the edge is within the
acceptable range for DRA unlike M-LWDF.

In figure 3.5 we see that total data rate decreases lineatly imtreasing video
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Increasing Voice Users (20 Streaming, 20 Data Users)
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Figure 3.2: 95 percentile queue size(bits) vs. number aferasers

Increasing Voice Users (20 Streaming, 20 Data Users)
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Figure 3.3: 95 percentile queue size(bits) vs. number afevand video users
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users. Data performance of DRA is again better than M-LWDF.

3.6.1.3 Increasing Number of FTP Users

In Figure 3.6, 98 percentile delay for video and voice sessions are plotted fo
increasing number of data sessions. The number of Streaamdg/oice sessions are
kept fixed at 20. We observe a linear increase in the delaly wumber of data sessions
with M-LWDF. The delay increase is negligible for DRA.

In Figure 3.7 we see that total throughput increases as thauof FTP users
increases for both algorithms. This is because of multidsersity. After some increase,
the total throughput reaches a capacity. Capacity correpg to DRA is approximately

10 percent higher than that of M-LWDF.

3.6.2 Elastic Video Traffic

In the second part of the simulations we considered vidd@ictnate that varies
with packet delays. We implemented a simple rate contra@isehthat looks at the aver-
age head of line packet delay and increases or decreasediagdm a threshold policy.
We defined rate Ievei§)\i, (A\i € {1,2,...,8}) that are integer multiples of 128kbps. In-
terarrival times are the same for level 1 dgdowever for levek packet size ik times

larger for each packet. For each userUg NUr and at each update instant.
e if DHOL(t) < 0.125DMthen); = min{\; + 1, AM&}

e if DHOL(t) > 0.25DM then); = max{\A; — 1,1}
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Increasing Streaming Users (20 Voice, 20 Data Users)

700
—A~ DRA (good) Streaming
600 - DRA (bad)
s00l| 2 M-LWDF (good) <o
- M-LWDF (band) o
L o
400 o o
300 P
— o A
g 200 B —R a -
= 9 o
& 1004 A
% 4 o | )/\ | | | | | | |
z 10 15 20 25 30 35 40 45 50 55 60
8
@
o
=
g
—¥— PFQ (good) Voice
150 H —©— PFQ (bad)
*- M-LWDF (good)
O~ M-LWDF (bad) o
[s)
100 o
o o )
e
50 e
* * e @ * ke
__— - e
G @ o —F
0 L L L L L L L L L I}
10 15 20 25 30 35 40 45 50 55 60

Number of Streaming Users

Figure 3.4: 95 percentile queue size(bits) vs. number cdwigsers

Increasing Streaming Users (20 Video, 20 Data Users)
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Figure 3.5: 95 percentile queue size(bits) vs. number afevand video users
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Increasing Data Users (20 Voice, 20 Streaming)
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Figure 3.6: 95 percentile queue size(bits) vs. number of ESd?s
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Figure 3.7: Total throughput(bps) vs. number of FTP users
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Herem(t) denotes mean HOL packet delay in the last 400 frames. Thetegdee
made at each 200 frames.

Figure 3.8 shows the evolution of rate levels along with gusimes for video users
at distances 300, 900 and 1500 meters. We observe that issesto the BS can achieve

higher rates.

x 10° Video rate control process

time (msec) % 10*

Figure 3.8: Evolution of Video rate along with queue sizesusers at 300, 600 and

900meters

In Figure 3.9 we observe the comparison of delay and throuigiopthe DRA and
LWDF schemes.We see that DRA system satisfies delay camtstfar voice users unlike
LWDF. As for throughput, we see that DRA can provide signiittabetter throughput
for video users at all distances. Total data/video througilmd log-sum throughput

(proportional fairness) is also better for DRA scheme.
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95™ percentile delay (D=20,5=30,v=20)
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[ DRA: Video
500 M =7 LwDF: Voice
B LWDF: Video

400
o
& 300
£
200
100
0
0 200 400 600 800 1000 1200 1400 1600 1800
x 10° Average throughput
Hl DRA: Data
[ DRA: Video
Total throughput (26.5, 24.8Mbps) ] LWDF: Data
151 Log-sum (648.3,639.6) Hl LWDF: Video

0 200 400 600 800 1000 1200 1400 1600 1800
distances (m)

Figure 3.9: 98 percentile delay and average throughput for users at diffefistances.
3.7 Summary

In this chapter we proposed a simpler resource allocatgorighm as an alternative
to the algorithm proposed in Chapter 2. The simulation tesliow that the algorithm

has a better performance than the benchmark algorithm asd¢amparable to the one

proposed in 2.
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Chapter 4

Resource Allocation for Wireless Downlink System with Resla

4.1 Introduction

In Chapters 2 and 3 we considered a cellular system corgisfia single base
station and mobile users. We observed that users at thedgml @ten suffer from bad
channel conditions and observe lower SINR. In an urban enkrient, big buildings pose
a serious blockage to users behind and sometimes genevat@age holes. Signal pen-
etration and attenuation inside buildings or tunnels aksgrade the signal quality sig-
nificantly. Often it is not possible to improve the signal bijiess to these under-serviced
areas by increasing the transmission power or changingnie®@a configurations. Re-
ducing the cell size and deploying more base stations wpkrowe the situation, but this
is often not possible due to limited access to traditiondll siees and wired backhaul
links and the associated high operating cost. Using rathy stations is an effective way
to increase the signal quality of the users by replacing g,ltow quality link between
a Base Station(BS) and a Mobile Station(MS) with multiplersér, high quality links
through one or multiple Relay Stations (RS). As relay stetido not require their own
wired backhauls, and are often less sophisticated than fufdtional BS, relay stations
are less expensive to deploy and operate than a traditiasal &tation. The standard for
relay in WiMax networks is being developed by the 802.16jgelorking group [51].

In this chapter we address the problem of OFDM based resa@li@eation in a
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cellular network with fixed relay stations. In a realistic ltiop relay network the traffic
between the BS and MSs can be forwarded via multiple hopsigirdRSs. However
in this work we assume that there is at most one RS between$henl a MS. A RS
communicates to the BS like a MS, and communicates with tharitS coverage area
(called RSmicrocel)) like a BS. We describe the system model in Section 4.2. &nwiith
recent IEEE 802.16j standard we schedule microcell trassons in a TDMA manner
in a MR frame. We first allocate a time interval of the frame aslemicrocell. As in the
previous chapters we apply a user selection and rate regeitedetermination for each
real time session link. We study real time rate assignmeshtiame allocation problem in
Section 4.3. In Section 4.4 we formulate a constrained apéition problem that allocates
the available bandwidth, power and time to sessions in th&B&nd RS-ME&omposite
links. Our objective is to maintain proportional fairness amolng tlata sessions in a
microcell while guaranteeing required rates for real tim@de and video) sessions. We
propose an algorithm that solves this problem in SectiomAdnumerically evaluate the
proposed algorithm in Section 4.6. We compare the perfocenaf the relay network
with our proposed algorithm in Chapter 2.

The use of relays in broadband cellular networks have not bealied sufficiently
in the past. The existing studies involve TDMA based sche2l[53],[54]. In these
models, transmission from the BS to RS and from RS to MS hajpemmsecutive equal-
length time intervals. The work in [52] concentrates on gk&rtandem link. At each
time slot either one of the queues are served and the authomsltate the problem in
the context of dynamic programming and propose a link sdimregland power control
scheme to jointly optimize energy expenditure and delay{58}, the authors consider
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high speed network with multiple CDMA codes and constantgrowhey allocate two
consecutive slots to a tandem queue (fixed), therefore eakhn the tandem queue
transmits every other time slot. The paper only consideta dammunication. In [54],
the authors propose a power control scheme that minimizesthrference in a relay
network. Unlike all these works we propose a frame-by-fracteeduler, where in each
time slot, the time slots and subcarriers in a frame are afiémtto each transmission in

order to optimize a QoS-based objective.

4.2 System Model and Notation

Figure 4.1 shows a typical multihop relay (MR) network. Tlesé station is at the
center, and there are a number of RSs located in the cell #eassume that the MSs
are located randomly in the cell are and they are fixed. Rektioss are also fixed and
each MS is assigned to the BS or one of the RSs, based on thaaist

In this work we consider frame by frame downlink resourceddtion. Total frame
duration isTs seconds and it is divided into time slots of duratin Total bandwidth is
W Hz, which is divided intd\syp Subchannels oV, jHz bandwidth. We assume PUSC as
the subchannelization method [9], where a subchannel msddrby randomly sampling
subcarriers from the entire frequency range. Because gblgagmall subchannels are of
equal channel quality with respect to a user. While modelvagallocation problem we
will consider time and bandwidth as a continuously divisiguantity. After finding the

optimal values, we will quantize them to the integer muéigpbf subchannel bandwidth

We consider a fixed system but simulate mobility of MSs thiofast Rayleigh fading and slow Log-

normal shadowing.
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MMR-cell

Figure 4.1: Topology of a MR cell with a BS and two relay staidRS andRS). The
BS is serving the MSs in the sBtSzsdirectly MS; andMS,). Two relay stationsRS,
RS) are used to extend the coverage of BS and serve MSs in thweSsgt (MS3, M)
andMSRe (MS;, MS). The MR cell includes the coverage area of the BS and all the

RSs.

and time slot duration. We assume for simplicity that eadr demands only one type

of traffic, data, video streaming or voice. Ldp andUgr be the set of data and real
time sessions. Set of nodes assigneB%ois denoted aM Sgsjand set of nodes directly
connected to BS is calldd Szs. This assignment is based on path loss. A node is assigned
directly to the BS or one of the RSs that maximizes the redesignal strength. We
assume that this assignment is fixed. The BS keeps sepamiegfor each user, while
each RS also keeps separate queues for the set of Miglgs We make the following

definitions:

e Microcell: A microcell is formed by a group of MSs directly connectedtstation

(BS or RS). Let M-1 be the number of RSs. Including the MSsatliyeconnected
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to the BS, there are M microcells. LEIC; be theit" microcell, whereMiCyy denotes
the microcell that contains the MSs directly connected &oBB. In the example in

Figure 4.1 there are 3 microcells.

e Composite LinkThere are three types of composite links. The set of trassions
throughBS— RS, RS — M&siforalli=1,...,M —1 andBS— MSss are all
composite links. Figure 4.2 illustrates a typical downlirdme. As seen in the fig-
ure, transmissions belonging to different composite laesscheduled in a TDMA
fashion in a downlink frame. As an example in Figure 4.1, ¢here 5 composite

links and hence the downlink frame is divided into 5 TDMA sualnfies.

e Tandem queueA tandem queug; is the two cascading queuBS— RS — MS;,
wherej € MSgs; Let hjBS andh'lRs be the channel gains for the linBS— RS and
RS — MS;, respectively. ObviousiyiS = h2Sfor all j, k € MSzs, because those
queues follows the sanS— RS link. Let ¢° and ¢S be the number of bits

waiting in those queues to be transmitted.

In an MR network, bandwidth is often limited and has to be stidry the base
stations and multiple relay stations to serve all the MS&i&nNIR-cell. We assume that
a relay station has a single radio interface in order to redhe cost, which also man-
dates the RS to use the same channel to communicate with taad®ith its MSs (and
potentially with other RSs). Because of the single integfaonstraint of relay stations,
transmissionB8S— RS andRS — MSgsishould also be scheduled in a TDMA fashion.
Considering this and for simplicity we follow a TDMA apprdam scheduling transmis-
sions of each composite link.
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Figure 4.2: Downlink subframe for the TDD frame structur@a®R cell. BS and N RSs
share the DL subframes on a TDMA basis. The order of the medicsass in a DL or
UL subframe is arbitrary and can be interchanged withoetcéiffig the proposed scheme.
On the downlink TBSincludes all the time slots assigned to the traffic destineohfBS
and RS, whiIeTiRSis for the traffic destined frorRS to MSgs; Uplink subframe is just

the symmetric of DL subframe.

Let PBS and PRS be the available power budget for the BS and each RS, respec-
tively. We consider a channel with Rayleigh fading and Lagmal shadowing. At each
time frame the channel gain is assumed constant and we eoraicequivalent AWGN
channel. In order to determine the bandwidth efficiency asmatfon of SNR, we use the
values in Table 1.1.

In the problem formulation we use the following function thie number of bits

that is transmitted through a link

(Ph<P
rf =T ‘plog<1+Br:p] J
Wi No

>,cp=BSRSj € M&si (4.1)
Here'l'i(p is the part of the frame (in seconds) that is allocated to tmeposite linkg (BS
or RS) of microcelli. Let p w be the power and bandwidth user j in microdeglets

(9= BYRS for the BS-RS (RS-MS) link). We perform resource allocaiiotwo main

steps:
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1. Cellular Time Allocation: In this step we consider a TDMé&hgme among com-
posite links, where all sessions in a composite link trahsimmultaneously in ai“’
second subframe and share the available bandwidth and pBefere performing

TDMA allocation we also determine rate requirements foheaal time session.

2. Microcell Resource allocation: In this step we sepayaietform joint power/bandwidth

allocation for eaclBS— RS— MSs;, Vi € MC.

4.3 Cellular Time Allocation

In this section we consider resource allocation in a singtganell, which includes

the transmissions through composite liMBS — RS and RS — MSgs; For the data

sessions leR; be the average transmitted rate through the tandem queuatafuder

Cc,RS

] € M&sinUp. For the real time sessions, @Bs andr;""~be the required rates for the

tandem queues of sessipn

4.3.1 Real Time Session Rates

Firsta number of real time session links are chosen in BSHRIR&-MS composite

links to be transmitted in the current frame. We use the Wahg user satisfaction value

for real time sessions:

~ log(5;) BPONP(t)\ A
USV(t) = — o Dflog <1+ o) R (4.2)

This metric resembles the Largest Weighted Delay First (IB)/Detric except the

)\,-/R‘jp(t) term at the end. Her®; is the bit arrival rate anﬁz‘jp(t) is the service rate for
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user j. Service rate is updatedl%;g(t +1)= O(R‘jp(t) +(1—0o)rf(t), wherep= BSfor the
BS-RS transmission ang= RSfor RS-MS transmissiorD?“"?‘XandD(jp are the maximum
allowable delay and current head of line delay for the libkis typically chosen as 0.05
and reflects the probability of exceeding the delay constrdihe BS chooses a number
of real time sessions according to this metric, whefedenotes the set of chosen real

time users. The rate constraint for a chosen real time sessdefined as:

¢
rial(t), wi(t)) = max<)\j, A (t)) , jeUR (4.3)

Dﬁna’O.Sco‘jp
Hereco‘jp is the transmission frequency of the corresponding linksafry, which is

calculated as follows:
Wi (t) = aw(t— 1)+ (1—a)l (rf(t) > 0), (4.4)

wherel (r(jp(t) > 0) is the function that takes value one if the node receivesgiadhk time
slott, zero otherwise. Therefore this frequency decreases llinkdransmits less and
less frequently. Using this frequency expression in the faiction, we compensate for

the lack of transmission in the previous time slots posdioky to bad channel conditions.

4.3.2 Time Allocation for each Microcell

In this section we will propose a method for allocating timeervals for each mi-
crocell. We assume uniform power allocation. By this assiong we will be able to
allocate times for each microcell in a simple manner, theth whese time values we
will determine the times for each composite link along whk power and bandwidth of

each individual link in these composite links. Let the spaatfficiency be defined as
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nw

J

S‘jp =log (1+ P—"’) , Vj €U, =BSRS Then the number of nats transmitted is equal
to r‘jp = 'I'i“’w‘jps‘jp nats. We can define time-bandwidth producb}‘i& 'I'i‘pw(jp for j € MSgsi
and allocate resources subject to a time bandwidth consFaiy, us b]BSJr bleg WT;.

For a real time session link j required time bandwidth pradam be directly computed

ro® . :
asb(jp = 0= BSRS So we can do a resource allocation only for data sessions and
! I,(_:A,BS c,RS

. . I .
subject to the constraifyt;cy, b¥S+bRS< (WTp) =W Tr — 5 jcuy ? + ? Since we

assume uniform power allocation , it becomes a much simasdrto allocate times.

max § log(ajRj+ (1—aj)rj) (4.5)
b &
% bfS+bfS < (WTp)’ (4.6)
1€lp
bjS] > rj, =BSRSVjUp (4.7)

The problem above has a concave objective function inargasieach data session rate.
The constraint set is convex, hence we can solve the probfamibg Lagrange multipli-

ers.

L(b,r Ao, Ar) = § log(ajRj+ (1—aj)rj) +Ap(WTp) — § bBS+bR9

i€0p i€Up

+ gs @ (b‘j"s‘j"— r,—) (4.8)
¢=BSRSjelp
We won't go into details of the solution. Using similar metisas in the microcell prob-

lem solution of this problem requires a simple binary searthy that solves the follow-

ing equations:

riAp) = —) —aRj VjeUp (4.9)

I’}:’BS r(j:,RS
WT = Fi(Ap) | ==+ —= | + J o+ (4.10)
PR ”(s,-BS sR) %<SB sR)



As we see sum of time-bandwidth resources is a monotoni@dsitrg function of\p,.
Based on these result of this optimization in order to sHa@drame in a TDMA manner
time allocated to composite links in microcetian be computed &"(A) = i ¥ jemszs i (Ab)P], @=

BSRSVi € MC.

4.3.3 Feasibility of the Problem

The analysis above is made with a feasibility assumptionfegibility we mean
that the available resources are enough to support at leastquired rates for real time
sessions. Let us defirEBS andLRS be the minimum required time to support the real
time sessions in BS-RS and RS-MS links. We can find them bygattie IimitL‘p =
Iim;\b_,w'l'i‘p()\b). Looking at the rate equation in (4.28) we see that likgit— o makes
the data session rates equal to zero and real time sesseusaifected. I§ieMcIFS+
TRS> T¢, then we find the non-zero-rate link with worst channel ctiadiand change

its required rate equal to zero.

4.4 Composite Link Resource Allocation

Letp = {pfS,pf9j € MSrsi}, p = {WFS wPS|j € MSsi} be the set of powers and
rates allocated for links in this microcell and lBt= {T.2S T.RS} be the allocated time
for BS— RSandRS— MSgstransmissions. The objective is to maximize the log sum of

data rates.

Ci(w,p,Ti) = g log (aRj + (1—a)rj) (4.11)
jeEM&sUp
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The constraints are the real time sessions rate requirerdefined in the previous part,

and total power, rate, time constraints. The problem is tdated as follow:

maxC(w,p, T;) (4.12)
vavTi
st. TBS+TRS < 7 (4.13)
p)] < P?@=BSRS (4.14)
JEM&XRsi
? < W, ¢=BSRS (4.15)
JEM&Rsi
p?
Tw{log <1+ (p—‘(p> > rj, =BSRSYj € MSRsiNUp (4.16)
n:w:
]
p?
Tw?log <1+ (p—'(p> > r?’“’, @=BSRSVj € MRsinUR (4.17)
nyW:;
]

The problem above has a concave objective function ingrgasieach data session rate.
The constraint set is convex, hence we can solve the probfamibg Lagrange multipli-

ers.

L(W, P, Ti,Ap. Aw, Ar, AT) = Ci(w, p, Ti) + A7 (T — TBS—TR9)
LR B g
¢=B3RS jeEMSsi ¢=BSRS JEMSRsi
. p?
+ AL® (T—‘pw(-plog <1+—J> —r,—)
wéRSjeM%nuD B njw}
p‘.P
+ é g A ('I'i“’w‘j"log (1—1— (p—‘(p> — r?"") (4.18)
@=BSRSjeMSzsinUr n]WJ

The problem can be solved by taking derivative with respecesources and Lagrange
multipliers. Since the rate is an increasing function ofoteses the optimal can be
achieved only when all the time, power and bandwidth is u3éterefore all Lagrange

multipliers are positive. Derivatives with respect to neses are as follows:
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4.4.0.1 Derivative w.r.trj for usersj € MSsinUp, §=BSRS

OL(W, P, Ti, Ap, Aw, Ar, AT)
ar,-

1 aR;

)\?Bs_i_ }\?Rs_ 1—a

= (4.19)

4.4.0.2 Derivative w.r.twj andp; for usersj € MSgs; 9= BSRS

Wb @ 0.0 @
OLW.p. TiAp A A AT) _ o gl joq (g4 P} W | _ A o)
ow® nfw? P} D
J M 1+ 53 j
i
aL(W7p7Ti7}\_p7m7}\_r7)\T) —0= Ti(p _ )\_(8 (4 21)
op’ YO A |
Pj n; <1+ F"]"jp) j
Dividing Eq. (4.20) to (4.21) we get the following relation:
A A p} o o
2% —(14—L |log| 1+ — (4.22)
n}  nfAp nfw? nw? /) nfw?

Let's defineAf = Afi/A§ and the functionfy(x) = (1+x)log(1+x) —x. This is a

(0
monotonic increasing and convex function. Usk{gi) we can find the SINF)I(‘J-p = %
nyw;
asf, L(/n)).
4.4.0.3 Derivative w.r.tT?, for = BSRS
I ¢
L Ti,Ap, Aw, Ar, A -
6 (W7p7 [REAY IRANARAY ) T) —0= }\:7(\0ij|09 1_1_& :}\T (423)
ot el nf?
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Using Equations (4.23), (4.21) and (4.22) we can write,

) () ¢
A= gsa)\gn‘fj"l-rs(plogl-%s(p
je S|T| NyW; nyw;

A pj >
A = < + -
o™ (S
_ W(jp)“(”i’ }\ppl
AT = 25; ot o
jeM&si\ Ti T
o @) P
-|-i<P — w (4.24)

Using Equation (4.21) and (4.24) we get:

® —1(M
ni(1+f (—X))
A9 = ArAg J< o

: ® WAS + PoAY

nj <1+ f;l(%)
— A j (4.25)
WAL + P9

Combining (4.19) and (4.25) we obtain the rate function fatadusers in terms of

ABS ARSandAr as,

+

1 ~

ri(ABSARS A1) = — QR (4.26)
ATn,BS<1+fx1(§§§)> Mn?%mﬁ(ﬁ%@))
+

J J
WARS+PBS WARSHPRS

Taking the derivative of (4.18) w.r.tk‘{,’ we obtain the power constraints and com-

bining it with (4.22) we obtain,

¢
o= gs? ft (%) nw?, =BSRS (4.27)
jeMSrs j

Sincen?sz nBSfor j € MSks; SINR’s in those links are the same using (4.22).

Therefore optimal SINRs of all users in the BS-RS links angattpxBS = f;l();‘%i) =
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%. After some arrangements in (4.26) we can write the ratedl dbta sessions as a

function of only)\)'?Sand}\T as follows:

FARSAT) = —aR; (4.28)

pBS ) ARS pRS
Iog<1+ BSw H]é_SJr ;

Raterj(ARS A1) is a nonincreasing function afSfor 0 < ARS< n?sfx(nﬁzi/) and
J

it is a nondecreasing function aitSfor n'fsfx(n_ﬁgi/) < ARS For finite At it always takes
J

finite values.

4.4.0.4 Calculation of times

Sum of the time-bandwidth products in BS-RS and RS-MS coitgbeks is as

follows,
. )\RS)\
Ti(pO\ES,)\T)W(jp: ; rj( X T)
jeMs; jeM&sUo |og <1+fx—1(&$))
n.
]
ro®
+ ) (4.29)

ieM'aZsﬁUR log <1+ fxl(i‘]—(({))
j

Each node in a composite link transmits using the same titeevial, but different
frequency bands, where the sum of the bandwidths is eqifdl @ividing the total time-

bandwidth product t&V we can find the time intervals allocated to BS-RS and RS-MS
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composite links:

ri(ARS A
LACRUE: O
jem&snup Wlog (1+ n%/v)
_c,BS
J
n (4.30)
jeMgsnuRWIog (1+5)
RS()\RS )\ ; ()\RS }\T)
jem sUo W og <1+fx (n%)
J
r(;,RS
+ g ) s (4.31)
JEMSrsUr W log <1+fx (nRS))
J
Total time equation is,
Sr(AEAT) = TESALEAT) + TRAAE M) (4.32)

4.4.0.5 Calculation of total power

Sum of the powers in BS-RS and RS-MS transmissions can bel fasifollows:

PBS

jeM;anD TBS()\RS )\T) log (1+ P )

SIS A7) =

BS
rS BSnBS P

J nBSW
n (4.33)
jeM;SﬂUR TBS(ARS A1) log <1+ P )

rj ()\587)\ )nRsf 1(nRS>

J

S‘;S()\RS —

jeM;sﬁUD TiRS(}\)'?S, )\T) log (1+ fx%%))
J

(RIS 2e)

! (4.34)

+ g
JeMSRsNUR TRYARS A1) log <1+ fﬁ(%f))
J
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Combining Equations (4.30),(4.31),(4.33) and (4.34) wiioba second equation

for total time,

T =
1 \BS _1,A\Rs +
. nBS(1+ f, 1(%5)) N1+ fy 1(f5))
— —0oR;
J'e%D A% I\ TWABSTPBS T T WARS RS
S - )\RS
rTB BS(1+f 1( ?S)> r?RSnIJ?S(l'i‘ fx 1(%8))
4.35
: iezu/ WABSHPBS | WARSLPRS %
R
T =
RS +
L N 1 n?s(l‘i‘ fx 1($S>)
20 |3 Wiog way)  WASHPRS
R —1ASE
r};BS 5 Sans(lJr fy 1(@))
N . N (4.36)

g (NS AT) (A (ARS) — B (AR9)
JEMXRsnUp

n g rPRYAIATD - Bj(ARS) =0 (4.37)
JEMRsNUR

RS
i) .
whereA (ARS) = L andBj(A%S) = e AR s

Wlog(1+fx1(%>j|§—s)> Wlog<l+fx1(%;§—s)> R
a decreasing anBlj (AR®) is an increasing function of®

Lemma 4.1 Left hand side of (4.37) is a monotonic nonincreasing fumctif ARS that

decreases from-c to —co and crosses zero at a single point.
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Proof 4.1 We will start the analysis from a single user. For a data usangl forAt >

0, the function [(ARS A1) takes finite values for ald < ARSIt is a either zero or a

. . RS . . . .
decreasing function offSfor ARS < nSfy (<) and either zero or increasing function
j

RS . . .
of ARSfor ARS> n¥Sfy( L) For real time users rate function is constant.
j

It can also easily be shown thatj ARS) — Bj(AR®) is a decreasing function of

ARS which takes positive values fo&S < n?sfx(nﬁgi/) and negative values foxRS >
J

pRS

anﬁN

PRS

RS
Nyt R

). For ARS < nftSfy(

) the LHS of (4.37) is a product of two positive de-
creasing functions and it is decreasing for user j. RG> n?sfx(%) it is the product

J
of a positive increasing and negative decreasing functience it is also decreasing in

this region for user j. Hence, LHS of (4.37), summation ohduactions for all users is

a monotonic decreasing function

LetARS (A1) be the Lagrangian multiplier that satisfies Equation (4(B®ase note

that the power constraint is automatically satisfied for BS-by setting(JBS: Pfss for

j € MSs). Since the total power is an increasing functiod ¥, this value can be found
by a simple binary search. ThaPS(ARS (A1), A1) and TRYARS (A1), A1) become the
corresponding time allocated to BS-RS and RS-MS transamssiWe are looking for
the Lagrange multiplier valug@R> (At),A}) that satisfies botBy AR (A1), A7) = P
andTBSOARS (Ax), M%) + TRAR™ (M%), %) = Ti. We need another binary searchon
Hence we can find the optimal power,bandwidth and time by tesied binary searches.

The algorithm will be described later in more detail.
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4.5 Algorithm

Main Algorithm:

1. Determine required rates for real time sessions

2. Test feasibility: IfTBS+ TRS> T; then find the real time transmitting link with

non-zero rate and worst channel condition and drop it.
3. Run (ARS A\%) = BinarySearchTim@
4. Run (p,w, T;) = ComputePowerBand Tire>, \%)

Procedure (A% A7) = BinarySearchTim@:

1. Run BinarySearcf2%AAt) and find the smallegtsuch thal; BS(ARS (2%ANT), 2AAT) +

TRYARS (2KAAT), 2%ANT) > Ti. SetA\h = 2%ANT, A = 2%-1ANT.

T —1)<e
IW

2. Set\™ = (A1 +AL)/2 andrun ARS(AT) = BinarySearcfIAM).

Repeat Step 2 unt

o If TSRS (AF),AT) + TRIARS (AF), AF) > Ti thenh = AT

o elsel =\,

Procedure A3 (A1) = BinarySearcffAr): Finds the\{> (A1) so thatS3XARS (A1), A1) =

1. Find the smallest such thatSR(2“AARS At) > PRS SetAlS" = 2kaaRS AT =

2-IANRS

Repeat Step 2 unt

RSmM
SO 1) —e
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2. Set\P = (N + A1) /2. If AT A7) < PRSthenAl = AT elseA} = AP

Procedurgp,w, T;) = ComputePowerBand TirthS A1)

1. Calculatej, j € MSsjusing (4.28).

2. CalculateT,RSandT.BS using (4.31) and (4.30).

Proposition 4.1 The problem presented in (4.12)-(4.17) (for a feasible Lhss a con-

cave objective function and a convex constraint set. Thegef has a solution.
Proof 4.2 The proof is very similar to the proof for Lemma 2.1 and it igtted.

Figure 4.3 shows a typical binary search process for a metlitoét each step a
(A1, ARS\1)) pair is found such that the sum of powers is equaP®ts. Since for such
pairs timeTiRS+ TiBS is monotonic decreasing ik (as seen in the figure), we are able
to find the optimalt by a binary search. Since the channel condition in the a¢&3s
RS) link is usually much better, usualys < T.RS In this example time slot length is
0.1mse¢ and after the optimization, all times will be rounded testhalue. Therefore we
can stop the search when we come less that 0.05msec clogetiméhconstraint (which

is 2msec in this example)

4.6 Numerical Evaluation

Figure 4.4 shows a sample MR system. We consider a tandenorketf 2km
radius, where the BS is at the (0,0) coordinate. The RSs aatdd at 1400m to the end

of the MR-cell. MSs are located at 400,800,1200,1600 an@ 2@&ters. In order to make
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X107 Sample search process

;
—o— 78S, 7RS
- TBS
4 =574 - RS

A=67.0 : ; : i

Time (msec)
w

)\1269‘4
A=70.6

- = AET0T )=
AET12 NET09 A A=70.8

search steps

Figure 4.3: A sample binary search process

the station assignment, all the stations (BS and RSs) sead tast signals (Transmission
power for the BS and RSs®SandPRS, respectively). Each MS is assigned to the station

(either the BS or one of the RSs) that maximizes the receiveap?

Figure 4.4: A sample MR model for numerical evaluation

As for the path loss, we use the IEEE 802.16j channel modedgsed in [55].
For BS— MS andRS— MS we use the Non-line-of-sight (NLOS) and f&S— RS

and we use the LOS model. We assume log-normal fading witlanvae equal to 8Db

2In a real system RSs can be located according to the usetylentie MR cell area.
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for BS transmissions and 3.1dB for RS transmissions, andeRgwyfading with mean
equal to 0.6. We assume that rayleigh fading stays constaath frame and log-normal
fading stays constant during 5 frames. Frame length is equad slots and each slot
is Ts = 1Imsec Base station and each relay HR® = 20W and PRS= 5Ws of power,
respectively. Bandwidth is equal BB= 10MHz

Our traffic model is based on [56], and it is as follows: Fortedata (FTP) session
we assume a single 5MB file arriving at the queue at time zema¥8ume 32kbps VoIP
sessions, where a 320-bit packet arrives at every 10 tine $lmally we assume 128kbps
video streaming sessions, with a fixed video frame duratiobOOmsec. During each
frame there are 8 packets (slices). Packet size is Trun€aterdo distributed with certain
min, max and shape parameters. Interarrival time betweekepais also Truncated
Pareto distributed with certain min, max and shape parassteh that all packets arrive
during a 100ms frame. We assume that bits arrive at the endiwfeaslot and they are
ready to transmit at the beginning of the next time slot.

Performance Criteria are

1. 95 percentile delay for voice sessions
2. 95 percentile delay for video sessions

3. average throughput for data sessions

Keeping the number of data and voice users at 20 each, we largumber of video
user from 20 to 50. Figure 4.5 shows thé"9percentile delay for voice sessions. We
can observe that in the 2-RS system users at all distancayg stelys under the required
100msec level, while for the system with no RSs, users atni.&kd 2.0km experience
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severe delays. Since the coherence time for the log-noadadd is much longer than the
voice delay constraint, delays for edge users by far exdezceguired levels.

95th percentile voice delay (increasing number of video users (S)): D=V=20
300

250

O

s B W

200

B bt T

‘.{’

150

B e Skl bbbl

msec

——————
B et e

S SO \ 1

1000 1200
distances(m)

1400 2000

Figure 4.5: 98 percentile voice delay vs. distance to the BS for increasimgber of

video sessions.

Figure 4.6 shows the §5percentile delay for video sessions. We again observe
that using relays we can prevent QoS violation for usersl alisthnce levels in the cell.
Without RSs, users at the cell edge experience high delays.

Figure 4.7 shows the total throughput for users at diffedéstance levels. Here we
observe the negative effect of using relays on throughpegsi®ns in the RS-microcells
have to travel two links. These two links are both very likébyexperience a better
channel condition than a single BS-MS link, however trassion of a packet requires

two frames. Because of this trade-off be observe from Figufehat users at 0.4, 0.8km
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95th percentile video delay (increasing number of video users): D=V=20
550

500

msec

éﬂs

1 1 1 1 1 1
400 600 800 1000 1200 1400 1600 1800 2000
distances (m)

Figure 4.6: 98 percentile video delay vs. distance to the BS for increasimgber of

video sessions.

receive more throughput in the 0-RS case. On the other hasrd as1.2, 1.6 and 2.0km
receive more throughput in the 2-RS system.

We also observe that total throughput decreases more witkasing number of
video users in the 0-RS case. In the 2-RS case a video ussrlésssthroughput. There-
fore in the case of large number of video users, a system wi#lys is expected to pro-
vide more throughput to data users. We can better obsewetRigure 4.8. We see that
throughput for the 2-RS case is better &r 40, and log-sum of throughput s better for

the 2-RS case fo > 30.
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x 108 Data throughput (increasing number of video users) D=V=20

bps

1400 1600 1800

distances (m)

Figure 4.7: Total throughput of data users vs. distanceda®h for increasing number of

video sessions.

4.7 Summary

In this Chapter we proposed a joint time, power and bandwatltdtation scheme
for downlink transmission in the presence of single-irdeefrelay stations. The proposed
scheme consists of two steps, namely subframe allocatioadch microcell and joint
time , power,bandwidth allocation for links in each micrbcé&umerical results show
that it is possible to increase the cell size and decreasauhmber of base stations by
adding low-cost relay stations. Multihop relay systemssfathe QoS requirements of

all real time sessions, for the cases, in which regular leglkystems are not sufficient.
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Figure 4.8: Total throughput and log-sum of throughput dddesers vs. number of video

sessions.
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Parameter

Value

Cell radius

2km

User Distances

0.4,0.8,1.2,1.6,2.0km

RS Distance 1.4km
# microcells (M) 3
BS,RS PowerRBS PRS (20,5) W
Wsub, Nsyp 267KHz, 30
Frame LengtiTt 2 msec
Slot LengthTs 0.1 msec
Voice Traffic CBR 32kbps
Video Traffic 802.16 - 128kbps
FTP File 5MB
AWGN p.s.d.No) -174dBm/Hz

Coherent Time (Fast/Slow

)

(4msec/400msec.)

BS-RS PL(d)(in dB)

365+ 235l0gy,d + YES RS

RS-MS PL(d)(in dB)

315+ 35l0god + YRS MS

BS-MS PL(d)(in dB)

315+ 35logod + YBSMS

BS-MS | |RS-MS
Wgg " Wae

~ N(0dB,8dB)

BS-RS
Was

~N(0dB, 3.1dB)

Table 4.1: Simulation Parameters
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Chapter 5
Queueing Analysis of an OFDMA-based Resource Allocatidmefte

5.1 Introduction

In the previous chapters we have studied power-bandwittibadlon for downlink
communication. We considered systems supporting heteeagss traffic. For real time
sessions we determined rate constraints and developadcesallocation algorithm that
maximizes proportional fair capacity for data users, whdasfying rate requirements for
real time sessions. A crucial assumption in previous chigptas that frequency selective
fading among subcarriers was eliminated with the help dfibisted subcarrier grouping.
This leads to simpler resource allocation algorithms ap@sed in previous chapters.

If we use adjacent grouping instead, each subchannel expes different fading,
as we mentioned before. Pursuing our previous objectivéisisnsetting requires more
complex algorithms, however in this setting we can propasple schemes that take
advantage of multiuser diversity. In this chapter we wilhsiwer such a scheme. We
will consider an OFDMA based system, where each user expm#eindependent and
identically distributed fading (i.i.d.) at each subchadnaed time slot. A fixed power
level is used at each subchannel and each subchannel istetldo the user that maxi-
mizes the signal to noise ratio (SNR). Such a system was zethly [57], [58], where
the author studied the asymptotic throughput analysisgusxktreme value theory [59].

Moreover, for users with different distances to the BS (leedifferent average SINRS)
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the author considered allocation of the subchannel to teenlbemalizedSINR. Extreme
order statistics can be used to approximate the distributfanaximizing random vari-
able in a large set of random variables. Using this methoadtieor in [57], [58] carried
out a throughput analysis of the system and proved that asyimpnalysis is quite accu-
rate. In [57] an analysis of delay was also attempted, hongygarently it is not realistic.
The author models the system as a continuous time M/G/1mys$tewever the system
is inherently discrete-time, since the channel conditioanges and new allocations are
made at every time slot. In this chapter, modeling as a distirae multiserver queueing
system [44] and using generating function approach we astitthe tail probability of
buffer occupancy at a node. Probability of exceeding a icebiaffer occupancy thresh-
old is determined as the QoS metric. We look at the tradeadifilben transmission power
and QoS.

If the nodes have different average SNRs (due to differeircestance or log-
normal fading) we can revise the scheme to schedule usebestnormalized SNR. The
rest of the chapter is organized as follows. In Section 5.2i@szribe our system model.
In this section we also describe the extreme value methggiola Section 5.3 we make
an analysis for the tail probability of queue size. In Setto4, we evaluate accuracy of
tail probability analysis by simulations. We also look a thade-off between transmis-
sion power and supported traffic rate. In Section 5.5 we ladkeacase of heterogeneous
average SNRs. We numerically compare tail probabilitynestes with simulations re-
sults. This scheme is especially suitable for uplink trassmn, since the user can adjust

its traffic rate depending on the tail probability estimates
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5.2 System Model

We consider a system, where total bandwidtMbHz is divided intoK subchan-
nels of bandwidtWg,, A fixed power P per subchannel is used by all nodes. We assume
that each subchannel is subject to i.i.d. fading which istamt each slot and varies from
slot to slot. In a realistic OFDMA system this can be achiebgdorming the subchan-
nels using Adaptive Modulation and Coding (AMC) method véheach subchannel is a
superposition of a number of adjacent subcarriers. Sirdiaddevel is fixed at each slot,
we assume an AWGN channel and use the tight SNR-BER reladiemged in [45]. Let
Y k be the instantaneous SNR of usat subchannek. For a target BER the number of
packets transmitted in a subchannel as a function of SNR is,

_ Wasubls

k= —] log,(1+ Byi k) (5.1)

wheref3 = —1.5/In(5 x BER). This formulation was proposed for M-QAM modulation
however, it also effectively models continuous rate adapid34]. The scheduling mech-
anism is as follows, each subchannel is allocated to thewifiemaximum SNR on that
subchannel. We assume that each user has identical avaxdy@r®l identical fading
distribution.

We will start from a simple case, the channel condition ofheaser at each sub-

Yik

channelisi.i.d Rayleigh distributed with megyfor all i andk, that isF,(yix) =1—e Y.

5.2.1 Extreme Value Theory

In order to analyze such a system we need to derive the pildapalistribution of
the maximizing SNR at each subchannel. We can use extreme thaory in finding the
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asymptotic distributions of extreme values in a set of.ivakiables.

Let 'k = maX.4Yik as the maximizing SNR in subchanikelFor largeN, we can
approximate the distribution df, as an extreme value distribution, if some conditions
are satisfied [59]. Lefy k. Yok, - - -, Yn k be independent and identically distributed random
variables with distribution functiofy(x). If there exists constane € R by > 0, and
some nondegenerate distribution functidnsuch that the distribution dff x — an) /by
converges taH, thenH belongs to one of the three standard extreme value distribu-
tions:Frechet, Weibull and Gumbel distributions. Sincargkel conditions are i.i.d. and
average SNR’s are same for all users we can drop the subdrarrseript. The distri-
bution function ofy; x, F(X), determines the exact limiting distribution. If a distritmn
function F(x) results in one limiting distribution, theR (x) belongs to the domain of

attraction of this function.

Lemma 5.1 [57], [59] Let y1k, Y2k ---, YNk b€ Li.d. random variables distribution func-
tion F(x). Definew(F) = sup{x: F(x) < 1}. Assume that there is a real numbersuch

that, for all x < x < w(F), f(x) = F’(x) and F’(x) exist and fx) # 0. If

d (1-F(X)\
xﬂﬂp)dx< a0 )_

then there exists constantgy @nd by > 0 such that(" — ay) /by uniformly converges

in distribution to a normalized Gumbel random variable asNw. The normalized

constants are

ay = F_1<1—%) (5.2)
by = F_1<1—Nie)—F_1(1—%) (5.3)
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where F1 = inf{y: F(y) > x}
Rayleigh distributed random i.i.d random variable§({§ = y—loe_% and R(y) =

_y .
1—e Y) satisfy the above Lemma.

Fory; x Rayleigh distributed with meayy , the parameters aray = yoInN andby = Yo.
Therefore the random variab[e’\\’z)ﬂ can be approximated as a normalized Gumbel
random variable. A normalized Gumbel distributed randonelde, I with distribution

functione ¢, —w < z<  has expectation E)=Eo=0.5772. and variance Vdf ) =

i

&
Letr(yik) = V% log,(1+ By: k) be the number of packets that can be transmitted
by usei in subchannék. Let’s define the rate of the SNR-maximizing user in subclkénn
k as RﬁmN = MmaXcq (r(Yik)). Since the SNR's are i.i.d, the distribution E:[‘naxN is
invariant of subchannels, therefore we can drop the sulmehamdexk. In [57], it was
proven that if the SNR distribution satisfies Lemma 5.1, trega of the maximum-SNR

user also converges to Gumbel distribution. More speci?ic%l“'j‘f;,ii_"le converges to

normalized Gumbel distribution, where,

= WSEbTS log,(1+ ByoInN) (5.4)
by = — 1o 2( 1+ ByoInN (5-5)

Mean and standard deviation of rate of maximum-SNR user ynsavchannel is the

following,

E{Rmaxn} = bnEo+an (5.6)
Std{Rmaxn} = bN%5 (5.7)
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Figure 5.1: Mean and standard deviation

Looking at (5.5), we see that & — «, ay — o andby — 0, andRy converges to

its mean valueRmaxn ~ bnEo + an.

E[Rmaxn] = WSEbTS ('092 (l—l_l?(é;;l;m) Eo+10g,(1+Byoln N)) (5.8)

Figure 5.1 shows the mean and standard deviatioR,@f,. These results nu-
merically verify that standard deviation decreases andnmea@eases al — o. Stan-
dard deviation is smaller than 1 packet even for moderatebeuraf users, therefore
we can assume that a user can transibifEo +an]| — 1, |bnEo+ an] or [bnEo +
an| packets, if allocated. Lets defif{z) = P(Rmaxn < |nEo + ay |) ztPnEotan]—1 ¢
P([bnEo+an] < Rnaxn < [bnEo+an]) z™NEotan] + P (Ryaxn > [byEg+ an]) ZINEotan]
Each user has equal chance of allocating a subchannelidteepeobability of allocation
of channel k by a user i% for all users and subchannels. Therefore number of alldcate

subchannels is Binomial distributed. Lefs) be the probability of total number of pack-
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ets that can be transmitted in a time slot being equal tbet 2(z) be the probability

generating function ofi(z).

5(2) = C(K,0) (1— %) ‘. % C(K,K) <%)k (1— %) ““ROF 69

k=1
5.3 Queueing Analysis

Since the channel conditions for each user and at every anbehis i.i.d. and
channel allocation is performed purely based on normalctexhnel condition we can
decouple the queues of each user and avoid the problem catiteg queues. In queueing
theory this system can be modeled as a multiserver systeerewhe number of active
servers is random according to probability veatoand an active server can transmit a
packet in one time slot. We use the generating function amprdhat was used in [44]

for different system. Queueing model for our system can loensarized as follows.

1. Arrivals: A random number oL-bit packets arrive at each time slot. The arrivals
occur at the end of the time slot, which means that the datahati arrives in the
current slot can be transmitted in the future time slots. d.aetenote the number
of data units arriving at time sldt Let A(z) = E[Z%] be the probability generat-
ing function function (p.g.f.) ok, where E[.] denotes the expected value. For
poisson distributed arrivals(z) = €% 1, whereE[a] = \ packets. For geometric

distribution it isA(z) = 1L

2. ServiceWe assume that services start at the beginning of a timersdictiad before

the new arrivals come.
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Let’s definec = K x [Rmaxn | @s the number of servers and $ebe the number of

packets served at time slot
& =S, wp.o(s),s=0,1,...,min(g,c) (5.10)

We define the conditional probability generating functi(z) (given that there are
i packets in the buffer o a node) as,

S(z = E[Z*|min(q,c)=i],i=0,1,...,c (5.11)

= iiG(S)ZSJr io(s)z‘ (5.12)
é= =
Channel allocation is purely based on SNR values and sorestaruser may be
allocated more resources than that is enough to empty oufuttige. For the sim-
plicity of analysis, in this case we assume that dummy packed transmitted on

the excess subchannels. We also assume that services gperna@nt of arrivals.

3. Overflows1l et Dnaxbe the delay constraint in slots. We convert this to a queage si
constraintQmax = A x Dmax packets using Little’s result. Normally, if an arriving
packet finds the system full, then it is considered droppealweéver, for the sim-
plicity of analysis we are considering an infinite capaciijfér and define the QoS
metric as the overflow probability, which is the tail proldapiof buffer content

distribution Prob[g: > Qmax)-

The system equation of the buffer content with respect t@ tban be written as
follows,

Ghe1 =0k — S +a (5.13)
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Let Q;(z) denote the pgf ofy. Considering the independence of arrival and service
processes and using standard z-transform techniques w®ngert the system equation

into the z-domain as follows,

, 1. <t 1 1
Qu11(2) =A(QE[Z* 3] =A(2) (Qt(Z)Sc(E)f;OI(I)Z' <S(E)—Sc(5))>, (5.14)

whereq(i) denotes the probability that there amgackets in the queue. We are interested
in stable systems, where the buffer content distributiaches a steady state. When the
steady state is reache@;(z) andQ;1(z) converge to a steady state p.dX(z). Solving
the above equation for equilibrium, we get the expressioi@).

A1) 3L (S(3) —s(2))q(i)Z
o = O 19
(

ZA2) 385 (30(s)(z ' —279)) q(i)Z

- - 25 ,0(s)2 *A®2) (5-16)
A2 575 (38199 2 ) q(i) 5.17)
£35S 40(97 A |
whereq(i) = Prob[g, = i],i = 0,1,...,c— 1 are the buffer occupancy probabilities.

In order to deriveQ(z) completely, we need to find theunknown probabilities
q(i) fori =0,2,...,c— 1. Here we need the analyticity property@fz) inside the unit
disk (z: |z| < 1). A complex function is said to be analytic in a region ifstdefined and
differentiable at every point in the region. In order to h#ve analyticity property, poles
of Q(z) inside the unit disk must also be the zeros of Q(z).hs point Rouche’s theorem
[61] stated below can be utilized to show the number of robth® denominator inside

the unit disk.

Theorem 5.1 Rouche’s Theorem[61] says that: I1{4) and gz) are analytic functions
of s inside and on a closed contour C, and als¢gifz)| < |f(z)| on C, then fz) and
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f(z) + 9(z) have the same number of zeroes inside C. Assuming geomistributed
arrivals ﬁ the denominator of ), Z(1+ A —Az) — < ,0(s)Z 5, has c roots

inside and including (z|7] < 1).

Proof 5.1 Let's define fz) = Z(1+A) and gz) = - A2~ ¢ ,0(s)Z 5. Forthe value
|7l =1+¢:
Cc
f@ 192 = [Z(1+N)]— AL+ %0(8)2“5\
S=
c
> [Z°(14+A) —(NZ+ Z}O(S)\ZIC’S)
S—=
c
> (148)°%(1+A) — (A(1+e)°H Z}o(s)(l—i—e)c‘s)
S=
Cc
= (14ce)(14+A)— A1+ (c+1)e)+ %O(S)(l—i— (c—s)¢))+0(g)
S=
C
= g(-A+ %o(s)s) +o0(g) >0 (5.18)
S=
We see that under the conditili_,o(s)s= cp> A (which is also the stability condition)
|f(2)| > |g(z)|. Since {z) has c roots, then the denominator has also c zeros. One of them

is at z= 1, and the others are inside the unit disk. Denominator pahyiab has order

c+ 1, therefore there is a single zero outside unit disk.

Let’s denote these roots fay, j = 1,2,...,c— 1. Because of the analyticity ¢J(z)

for |z] < 1, the numerator must also be zero at these points.

CZ? (iG(SMl—Z,-‘S“)) qi)=0, j=12,....,c—1 (5.19)
We obtain the!" equation from the equalit®(1) = 1.
c—1 c c
; (ZC’@(S—D) ai = o(s)s—A'(1) (5.20)
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From the stability assumption, the right hand side of (5!248 to be greater than

zero. From thesK equations, the probabilitiegi), i=0,1,...,K —1 can be calculated

5.3.1 Tail Probabilities of the Queue Size

Let P(g > Qmax) denote the tail probability of the queue size. Tail proigbdan
be used to approximate the overflow probability of a limiteéfér. It has been previously
found in [44],[62],[63],[64] that for sufficiently large W@es of Qmay the tail distribution
of queue size can be approximated as,

*Qmarl

PrOb[q > Qma)a ~ —quqzqi_l

, (5.21)
wherez, is the real positive pole d(z) with the smallest modulus outside the unit disk,
i.e. it is the dominant pole oQ(z). Ry is the residue of(z) at z= z;. Assuming
geometric distributed arrivals the p.g.f of queue &) has only one pole outside unit

circle (therefore it is real), one pole at z=1 and the restashe unit circle. It can be

derived by evaluatingz — 74)Q(z) atz = z,.

1Since we consider a large number of users, allocation piliyaif a subchannel to a user is very low.
Probability of allocation of k subchannels to a user dinfies very quickly as k increases. When solving
equations (5.19), (5.20) in MATLAB, errors occur becausthefprecision of the software. To prevent this,

we can crop the probability vectorwithout losing accuracy. This also speeds up the computatio

108



Ry = (2-2)Q2)| ., (5.22)

(- 2)A@ 354 (5L 0(9) (2~ 25)) (i)
- 55 0097 A[D)

(5.23)

=7

A2) 583 (580(8)(Z — 275) q(i)
cF 1= 58 40(5)(C— 97 5 AZ) — 3¢ o0(8)7 A (2)

(5.24)

=24

AD 375 (5809 —2 ) a(i)

158 00(8)s2%A() - T
_ Alz) 515 (584091 -7%°) a(i) (5.26)
% 38 00(5)5% °Alzg) — Az

(5.25)

=2

=

Alzq)
Equation (5.24) come from the L'Hospital rule and (5.25) istten using the fact

that denominator oQ(z) is zero atz = z;. As the system load increaseg,approaches

to 1, the probability of exceeding a buffer occupancy thoé$increases. For geometric

arrival process (i.eA(z) = 15;) the residue is written as follows:

36 (38i0(9(1-2°)) q()
% 5500(5)5%° A

Ry (5.27)

5.4 Numerical Evaluations

We performed a numerical study to evaluate the accuracyilgir@bability esti-
mates and see the energy-QoS trade-off by varying the tiasgm power. We assume
a system of K=30 subchannels, where each subchanneWsubf= 200KHz. System is
slotted with slot lengtils = 0.001sec. Pathloss in (dB’s) is B+ 35« log,o(d), where
d is the distance of the node to the base station. We assumei§ayading with mean
equal to one that is constant at each time slot and is i.iah §lot to slot. In Figure 5.2,
we considered 100 users and two packets dizes100 and 50 bits,
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Figure 5.2: Tail probability vs. traffic rate

Distances of users agk= 1000m for each user, therefore their average SNRs are
the same. Arrival process for each user is geometric diggtwith mean varying from
220Kbps to 260Kbps. Delay constraint idfhsec, which is converted @max=A x 0.1
bits for each arrival rate. Figure 5.2 shows the analytiodl simulation results for over-
flow probability versus power per subchannel for this systéfa observe that analytical
results are very close to the simulation results and ovendlabability is increasing and

convex as a function of arrival rate.

5.5 Normalized SNR-based scheduling

In reality average SNRs of users are different due to diffees in distances to
the base stations and effects of shadowing. In this caselslihg the best user causes

unfairness in the network. However, when we schedule usssdon their normalized
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Power vs. total throughput (100 users, d=1000m, 0.005 overflow probability)
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Figure 5.3: Energy-throughput trade-off

SNR, resource allocation becomes both fair and analyzéblbis case, subchannlels
allocated to the user argmax, %,0—" Since the SNR of a users is the product of normalized
SNR and a random variable that is i.i.d. for each user andnautyel, previous results on
extreme value statistics and subsequent queueing analjsbslds. If useri is allocated
a subchannel, then expected number of packets that it casntrais R‘maxN which is
found by replacingy, by y"o, average SNR of the user that maximizes the normalized
SNR.

In this system each user has the same channel access pitgbhbivever users
with higher average SNR can support sessions with highes.rathe ratio of session

i
rates of usersandj is, ;‘—; = g:,a—x’“ If e set the following proportionality among different

axN

user traffic rates, we can better utilize the resources.
1.32. .2 N 1 . . . N
AGIAG . A = Rhaxn - Riaxn & -+ - Rhaxn (5.28)
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Figure 5.4: Tail probability vs. rate for heterogeneous SidRe

In Figure 5.4 we considered a system of 50 users at 500m ande&s8 at 1000m
distances. For near use®§,,n = 16.6871 and for far useiR) ., = 9.7777 packets/slot.
The ratio is 17 and we increase the rate, maintaining this ratio among tdtisvo classes

of users. We see that analytical results closely follow theutation results.

5.5.1 Implementation of the system

A realistic system has to support users with different ayei®NRs and demanding
services with different QoS requirements. For example dataices have very loose
delay requirements. Besides these sessions can use whattye¢hat is available to
them. On the other hand video streaming sessions haveestilielay requirements and

they can be transmitted in varying quality levels (e.g. 288,512,1024Kbps). Since we
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can estimate maximum supportable rate throE@ng for all users, a video user can
choose one of the available levels based on this estimatesaQdS requirements. This
system is suitable for implementation especially in uplirdasmission, since it is easier
for a user to control the traffic it generates. On the othedhanice sessions (e.g. VoIP)
have a single rate level (e.g. 32kbps), therefore for thessiens overutilization may
occur. This problem can be relieved if a voice user doesr#retime competitionif it

doesn’t have any packets in its buffer.

5.6 Summary

In this chapter we studied queueing analysis of an OFDMA dbassource alloca-
tion scheme using extreme value theory and generatingiumapproach. We performed
a queueing analysis to estimate the tail probability of @usme distribution for this sys-
tem. We tested the accuracy of the estimates by simulatinth®lserved that estimates
are quite accurate. We both considered systems where wwsarsame average SNR and
different average SNRs. The analysis we performed can ke toseasily estimate the
probability of quality of service violation given the systeparameters and to adjust the

session rate or transmission power to improve the utibrati
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Chapter 6

Conclusions

In this dissertation we focused on resource allocation th&@onal Frequency Di-
vision Multiple Access systems that support users withrogneous quality of service
requirements. In Chapters 2 and 3 we proposed joint powsdhkiath allocation algo-
rithms that are suitable for transmission of data, voice\adeo sessions from Base Sta-
tions to mobile users. We consider systems in which the stibcagrouped into subchan-
nels by taking samples across the frequency spectrum irtrébdied manner. This way
we can assume that each subchannel experiences the saagedageling with respect to
a user. We assumed bandwidth as a continuously divisibletijyand formulated con-
strained optimization problems that can be solved by radbtisimple algorithms. We
converted the delay requirements of voice and video sessitto rate requirements at
each frame. Our objective is maximizing proportional fapacity of data users subject
to rate constraints for voice and video sessions. SimulaBeults showed that our algo-
rithms perform significantly better than a multichannelsien of M-LWDF, which is a
well known algorithm that can support heterogeneous trdfii€hapter 3 we also distin-
guished video and voice sessions in terms of elasticityndJaisimple video rate control
scheme for both our algorithm and benchmark algorithm weiesl that the proposed
algorithm can provide more rate for video users than the lr@ack algorithm.

In Chapter 4, we considered the use of low-cost Relay S&t{®ss), that are

114



able to improve the cell coverage by relaying the infornratioming from the Base Sta-
tion(BS) to mobile stations (MS). Such networks are regegglining interest along with
the IEEE 802.16j standard that is being developed. Low-gatire of the relay station
equipment doesn't allow simultaneous transmission anelptéan, therefore we need to
divide the frame into TDMA subframes, in which differeB6— RS BS— MSs and
RS— MSgspairs (i.e. composite links) schedule their transmissi®esource allocation
comes in three dimensions, power, bandwidth and time. Wegsed an efficient algo-
rithm that first allocates the TDMA subframes and then penfojoint power-bandwidth
allocation for each BS-RS-MS pair. Simulation results shibat using RSs provides
significant performance improvement especially for Vidad &oice sessions at the cell
edge and that it is possible to increase the cell size aneédserthe number of BSs in a
multicell environment by the use of RSs, which makes mobiléifmop relay networks a
promising approach.

The work we did in Chapter 5 presents a different approachthi;nChapter we
addressed frequency selective fading channels, unlikeque chapters, and considered
a simple subchannel allocation scheme that allocates edcihannel to user with maxi-
mum normalized SNR. Although this scheme doesn’t guaraageperformance objec-
tives as in our previously proposed algorithms, it exploitdtiuser diversity and it can be
theoretically analyzed. Using extreme value theory aneéggimg functions approach we
analyzed the tail distribution of the queue sizes in thigesys Simulation results show
that our estimates are quite close to the actual values. mMpped method can be used

for admission control and rate control in the presence of Qutraints.
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6.1 Future Work

We can extend the work done in each chapter in order to make there suitable

to use in real-time environments. Here are some possil@etdins.

6.1.1 Realistic evaluation and comparison of resourcecation algo-
rithms

Resource allocation algorithms that we proposed in thetfirse contributions are
especially suitable for mobile networks with fast fadingnce we assume distributed
subcarrier grouping (e.g. PUSC in WiMax), frequency seélégtin fading is eliminated
and base station doesn't need to estimate the fading lew&ldh subchannel separately.
Another advantage of this way of subchannelization is thahesubchannel is equivalent
with respect to a user, therefore we are able to proposedesglex algorithms that treat
the entire frequency spectrum as a continuously divisibbndjty.

Although we equalize the average fading level in each subaaby distributed
subcarrier grouping, frequency selectivity is still thamong the subcarriers in a sub-
channel. It would be interesting to create a realistic satioh environment and test our
algorithms. It would be also interesting to compare our algms with the algorithms in
the literature that are proposed for the frequency seketaiding. Our algorithms are less

complex and they are supposed to perform well under fastdadi
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6.1.2 Frequency reuse and cooperation in multinop relayorés

We proposed a joint power, bandwidth and time allocatiow@tigm for multihop
relay networks. In this setting transmissions of relay aadebstations are scheduled
in a TDMA fashion. It is possible to increase the network cayahrough frequency
reuse. Depending on the path losses and fading betweenstaliyns and users, two or
even more relay stations can transmit simultaneously. timtaf the relay stations are
also important in frequency. Intercell interference alspehds on the location of relay
stations, therefore network topology management shostullz studied.

Cooperation in relay channels was extensively studiededitérature. Relays can
take the advantage of statistical dependence betweertttainel outputs and destination
channel outputs [65], [66]. In our system model we did notsid@r cooperation. In fact
cooperation may provide significant room for improvement #is a direction of future

research.

6.1.3 Extensions for queueing analysis of OFDMA-basedesyst

In Chapter 5 we made a queueing analysis for an OFDMA basethanbel alloca-
tion scheme, in the presence of frequency selective fadlifegsaw that our tail probability
estimates for the queue sizes are quite accurate, howeéveatsp important to investigate
the block fading case. If the fading level is fixed for sevénale slots, service process
for a node becomes more bursty and packet delays are supjposedease. It is also a
future research direction to pursue the analysis for diffearrival processes and see the

performance of the algorithm for heterogeneous traffic.
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Research directions listed above are possible extensfahs avork we did in this
thesis. Besides, there are more diverse future directlamsstigating the use of multiple
antennas is one of them. We also assumed fixed number of sessiour simulations.
It is also important to consider admission control and ratetrol and investigate possi-
ble interactions between MAC Layer and Network and Trartspayers to improve the

performance.
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Appendix A

Proof of Lemma 2.1

Lemma A.1 The reward function

C(w"p") = 2 log (oriRi +(1—aj) (wilog(1+ Lviv) — rio)) (A.1)

NiWj

is a concave function ofjvand p for all i € Up.
Proof A.1 If we take the Hessiald g of g(w, p) = log (aR+ (1—a) (wlog(1+ £.) —r9)),

_ —(1-a) | W P
9 (p+nw)2 0 P2

w

(A.2)

we see that it is negative definite, therefore the functiatristly concave. Therefore the

linear combination (A.1) is also concave.

A.0.4 Convexity of the Feasible Set

Lemma A.2 The feasible set of power and bandwidth leyglsp) defined by (2.21),

(2.22) and (2.23) defines a convex set.

Proof A.2 Consider two power-bandwidth vectaps?!, p!) and (w?,p?) that are in the
feasible set. Now let us consider power-bandwidth ve@tart + (1 —A)w?, Apt + (1 —

A)p?). ltis clear that this vector satisfies the feasibility caasits in (2.23).
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Now consider a userd Uy. This user has a rate constrairft n (2.22). If (w!, p!)

and (W2, p?) both satisfy constraint (2.22):

0

1
)=t

N; Wil

r(w,p) = wilog(1+

2
(W 07) = whlog(L+ ) = if.vi < Uy

(A.3)

(A.4)

From the concavity of the Shannon capacity with respect &and p, we can write

(A =1—M\):
R SN e N S _APEEAR
rOW! +AW2 Apt+Ap?) = (AW.+MN.2>I0<.>J<1+ni(MVil Y W?)) (A.5)
S awtog(1 4 Py 4 wlog(1 4 P A6
z rlog( +ni—Wil)+ rlog( +W) (A.6)
= AP Ar0=10 (A7)

Hence the power bandwidth valuésw! + Aw? Apl + Ap?) also satisfy the rate

constraints for users& Uy.

For users ic Up the same method can be used, only by replac,-‘i)i'igyyrpio in fea-

sibility condition (2.21). Hence it is proven that the fddsiset of power and bandwidth

levels(w, p) defines a convex set.
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Appendix B

Proof of Lemma 2.2

Lemma B.1 The following properties hold:

1. Effective SINR (¥\y)) is a monotonic increasing function 6§ for users i€ Up U

Ui
2. If m < nj then x(Ax) > Xj(Ax)
3. If nj > nj then X(Ax)ni > X (Ax)n;
Proof B.1 1. The derivative of function(x) is:
fe(X) =log(1+x) >0

for x > 0. Therefore f(x) is a strictly increasing function of;Xor all users i.

Hence the inversg (\x) = f, 1(Ax/ni) is also increasing inf\y.

2. Since f1(Ax/ni) is a monotonic increasing function o, it is a monotonic de-

creasing function ofntherefore the property holds.

3. For afixed/\y let us define @n;) = f;l(/\x/ni)ni. Then after some derivations

da; aj/n
— =14+ ——>0 B.1
dn log(1+a;/n;) (B.1)

The derivative is greater than zero because of the logaiithdentity x> log(1+

X). Therefore if > nj then x(Ax)ni > X; (Ax)n;
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Appendix C

Proof of Lemma 2.3

i. ForanyA, > 0, we can write the following,

[Ap+Ap—ni(1+x)Rai]*
log(1+ ) (14 X% )n;
[/\p—ni(1+xi)Riai]+
145, 109(1+x)(1+X)n;

Sw(Axs Ap+8Bp) = Sw(Ax, Ap) = %
1€Up

HenceSy(Ax, \p) is nondecreasing inp. Also,

lim [/\p—ni(1+x;)Ria“i]+ = 00, V/\«

Ap—0
Therefore lim\, . Sw(/Ax,\p) =
We can similarly verify thaB,(Ax, /\p) is nondecreasing i, and lim ;e Sp(Ax, Ap) =
oo for all Ay.

ii. We know for all users € Up UU} that:

o X = f71(Ax/m) is increasing imy (From Lemma 2.2).

e The expressiof\p —ni(1+x)Ra;] " is nonincreasing ix; for anyAy. It goes

to zero asq goes to infinity for allAp. It is equal to/A, —nRa;] ™ atx = 0.

e The expression,%g(llﬂq) and Iog(1+x1i)(l+xi) are decreasing ig and both go to

zero asy goes to infinity and they go to infinity ag goes to zero.
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From these properties we can deduce 8df\x, \p) in (2.38) is a decreasing func-

tion of Ax and limy, .0 Sw(Ax, Ap) = %, and limy, .« Sw(Ax,Ap) = 0 for all Ap.
iii. We know for all users € Up UU that:

o X = f71(Ax/m) is increasing in\y.
e The expressionam is strictly increasing irx;.

e The expressio ;&?ﬂ;’)‘i is equal to zero sincig > 0.

From these properties we can deduce 8éf\y, 0) in (2.44) is an increasing function

of Ay.

iv. There exists such A becauseS,(/\x,0) is a strictly decreasing function which is

infinity for Ax = 0 and zero for\y = « as a corollary of Lemma 2.3.ii.

o = If SH(A2,0) < P then both feasibility conditions (2.43) and (2.44) hold,

therefore the problem is feasible.

e < If the problem is feasible, then there exigtg such that both (2.43) and
(2.44) hold. Now let's assume th&§(A,0) > P, then from Lemma 2.3.i and iii
So(A2,Ap) > Pforall Ay > A2 andAp > 0. Note thaS, (A2, Ap) > W for Ax <
/\Q, Ap > 0 from Lemma 2.3.i. This means that there is/Rpsuch that both
(2.43) and (2.44) hold and the problem is infeasible. Thia ontradiction,

thereforeSy(A,0) < P. The property holds.

123



dAp(Ax)

v. We can derlveT as follows:

Vi.

Np(A)IUB| = AW + P+ 5 i (1 A /m))RE — 3 rini(1+ £ (A /)
UL U/

(C.1)
(N Rai i
ane UZD log(1+ fx X(AL/m)) UZR l0g(1-+ K (A/m))

(C.2)

rc

2Uf log(1+ f;ll(/\i/ni))

We know that for\, > A2, the problem is feasible ar®,(/\x, 0) = <

W. Therefore the right hand side of (C.2) is greater than zehnich obviously means
dAL(Ax)
dAx

that > 0. Hence the function\;(/\) is an increasing function df.

For a feasible problem, using (2.42) and the facj(A,) —ni(1+ f;l(n—X))R.a ]+
Ay(Ax) —ni(1+ fi 1 (5%))Ridi the following can be written:

Ax

AW +P > /\*(/\x)—n|(1+f 1(/\ ))R|G|—|— Z ricni<1+ f;l(ﬁ))
S iUk !
/\E(Ax) < AXW+P_ZieU,§riCni(1+ fx1|(L/JnLix>|) + Yieup Ni(1+ f;l(n—x))Ral
D

Hence the inequality is proved.

We can prove the inequalities for the optinfg] using contradiction. Suppose that
Ny > MaXey,uug {ni fx (nliw) } Vi € UpUUL, thenf H(AL/n) > o5, Vi, from the
monotonicity property. Then the total power is greater tgag%uu/ vv,*nI =P,
which contradicts with the power constraint, therefore dipger bound is proven.
For the lower bound assume that < minieUDUUé{ni fx (niiw)},Vi € Up U UL,
then f, L(AL/m) < niiW,Vi, from the monotonicity property. Then the total power
Is smaller thanzie%uuﬁwfnw = P. This is not optimal because proportional fair
capacity can be increased by using the residual power,ftrerthe lower bound is
also proven.
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vii. For afeasible probler,(Ax,0) <W for Ax > /\Q (Lemma 2.3.iv). Sinc&y(Ax,\p)
is a nondecreasing function 6§, and goes to infinity ad, goes to infinity (Lemma

2.3.1) there exists A} (/\x) such thaS,(/A\x, Ap(Ax)) =W.

SinceA{ is a feasibleAy value, the sum of user powers is smaller tiafor A9
from Lemma 2.3.iv. As/\x goes to infinityx; goes to infinity for alli. Since 0<
Wi (Ax, Ap(AAx)) < W for all usersSy(Ax, Ap(Ax)) = 3i Wi (Ax, Ap(Ax)))%i (Ax)ni goes

to infinity as/\x goes to infinity.

viii. Using 2.42 the relation betweemf;,(/\x) and/\y is as follows:

No(A) ML+ H(E))RG ren (14 ()
W:ie | AEP/W /\x-i—P/W ] & AMNAP/W (€3)
Also from 2.38,
. - . i N+ P/W
Sw(Mx, Np(A\x)) = ieuéuéai(/\m/\p(/\x))/\x_i_ fx_l(/\x/ni)ni (C.4)

* +
As(A)  MAHRCHR))RG . .
XA Aﬂv i ] fori € Up andai (A, Aj(Ax)) =

wherea; (Ax, Aj(Ax)) = [

rem (1+f 1 ))
—ATPW for i € Us. Combining the two equations we obtain

_f-1 N
SN(/\XvAE(/\x))—W: Z a;(/\x,/\};(/\x))P/W f *(Ax/ni)n;

— (C.5)
icUpUUg Nx+ fx (/\x/ni)ni

(14 L (5%)Ra

The function— +P/W takes valueR.a. N at/Ax = 0. Itis increasing for <

Ny < n; fy(P/Wn) and takes valugj% atA\x=n; fx(P/Wn). Itis decreasing
atn; fy(P/Wn) < Ax < « and goes to zero @ty — oo.

P/W—f 1 (Ax/ni)ny

The function At A/

is greater than zeros for@Q Ax < n;fy(P/Wn) and
smaller than zeros far fy(P/Wn) < Ax < . It goes to zero af\y — oo.
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Using (C.3) and plugging the expression fg(/x) into (C.4) we get the following

expression foSy(Ax, Ap(Ax)),

1 WAy +P
|UI/D| ic0l, Nx+n; ffl(Ax/ni)

SuAAH(A) =

(141 1(AJX>) 1
|eU’ jEU’ /\x+nlfx LAx/mi)  log(1+ fict (%)))
Z
UD

ARG 1 co
,ezu/ (/\x+n.fx (/\x/ni)_|09(1+fxl(/r}—jx))> (0

where the sdt, is defined as)}, = {i € Up|Ap(Ax) —ni(1+ f;l(n—x))R.(x }

1 P-Wnfg 1(/\x/n.)
‘UD‘|EU/ Nx+njifx (/\X/nl)

= i~ nj fx 1(Ax/ng) —mifc L (Ax/n)
+ ‘UI/D iE%E) (J'EZUISR]GJ ((/\x-l-ni f;l(/\x/ni))log(1+ fx (m))))
>

r;:< (/) 1 /) ) )
i€0, \ jcU4 (/\x+n|fx H(Ax/mi)) log(1+ fx (n—x))
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Appendix D
Energy Efficient Power and Rate Control Fading Channels

D.1 Introduction

A key concern for uplink transmission in wireless networksnergy efficiency.
Limited and non-renewable battery supplies in most of threl@ss devices require some
adaptive transmission schemes that efficiently use theseirees. Power control is one
of those adaptive schemes. Choice of transmission powanhag implications in wire-
less networking, such as interference, success probyakitiergy, delay and buffer over-
flow. The main motivation in the past work on power control waitigating the effects
of interference and fading in order to maximize the achievabpacity (e.g. [67],[68]).
The previous studies on power control assumed that thereirgiaite number of packets
waiting to be transmitted and they concentrated on maxigithe throughput. An impor-
tant issue that is not considered in the traditional studiepower control is the random
characteristic of packet arrivals to the buffer. For ins&grconsidering a limited buffer
capacity, if the transmission power is lowered or channetidns worsen, transmission
success rate decreases. When the queue length is closectaptiaty, a burst of buffer
overflows occurs in case of an arrival burst. In order to min@renergy expenditure in
the presence of queueing related constraints such as qgedelay or buffer overflow,
power control decisions must also be a function of the qué&ee fraffic and channel

conditions.
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In this work we studied power control for transmission thgbwa fading channel.
Data packets come randomly from higher network layers amti@ld in an infinite capac-
ity buffer until they are transmitted. Channel gain is canstluring a time slot and varies
i.i.d. according to Rayleigh distribution from slot to sld@ihe node sends its queue size to
the base station as a feedback at every time slot. Then teesta®on decides the optimal
number of packets to be transmitted and the node transnuitsdingly. The transmitter
is able choose from a set of modulation and coding pairs. Enfpnance considera-
tions are average queue size and energy expenditure. Eeffiggnt transmission has
been studied previously for a single user system. For exam88], the authors studied
the problem of minimizing energy expenditure of transmgtrandomly arriving packets
subject to a transmission deadline constraint in a fadirapohll. The paper [40] is an
extension of [38] that studies joint minimization of delaydeenergy. In [41] Berry and
Gallager obtain structural results that points out a tréfdesiween delay and energy in a
single user transmission. They show that the optimal powkxydcurve is convex. They
also proposed simple buffer control policies that achiem@ts on this curve. We have
previously considered such a setting and studied optimakpagontrol in a single user
channel [69]. The transmitter has two transmission powesl$eand we proved that the
relation between queue size and optimal power control padiof threshold type. That
is, in order to jointly optimize energy expenditure and bufiverflow, the transmitter has
to transmit with the higher power level if the queue size sager than a threshold. The
work in [42] extends [41] and finds a closed form expressionmifmal policy in terms
of the optimal policy when the signal to noise ratio is oneeyhlso find some structural

results for the optimal policy and bounds for the optimuntctsthis work we perform
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a numerical study based on [42] and investigate the optiatalagontrol as a function of

gueue size and channel condition.

D.2 Single User System Model

We assume a user transmitting to a Base Station. We assum@/@&NAchannel
with p.s.d. equal tdNg. The system bandwidth W Hz. Signal attenuation consists of
a constant path loggand fading. Fading gain procek&) € [0,0) remains fixed over
a time slot and varies i.i.d. according to a Rayleigh distitn with meanu from slot
to slot. Let us quantize fading with thresholl3= h; < hy,... < hx = o}, wherep(k)
denotes the probability thaf < h(t) < hg,1.

We consider a random traffic, where a number of packets otleingbits arrive
each time slot. Number of packet that arrive in a time slotas$bn distributed with
meanA. Let A(a) be the probability thaa packets arrive. TheA(a) = # Letq(t)
be the number of packets in the buffer at time $)aind letr (t) be the amount of packets
transmitted in time slot. Considering the constrainin] < s[n|, the evolution equation

can be written as

qt+1) =q(t) +a(t) —r(t) (D.1)

Our aim in this system to use minimum power , while achievingi@an delay

constraint.
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fading channel

node é]annel feedback
(controller) receiver

Figure D.1: System Model

D.3 Markov Decision Process Model

D.3.1 Single stage Cost function

The cost of transmitting(t) units of data (%) rate) at time slot t is a combination
of total amount of energy required for transmission, queze @and buffer overflow cost.

LetW be the system bandwidth. We use the following rate function.

r(t) = TWlog <1+ B%) (D.2)

From this formula the power required to transmitnits of packets is

Rih) = g (29 -1) (0.3)

Bah(t)
Let X(t),t € X = {0,1,...} denote a controlled Markov chain with state space
(q(t),h(t)) =X €{0,1,2,...} x {h1,hy,...,hx}. and let the action space be= X =
{0,1,2,...,q} NR(h,r) < P™X when the queue state i We consider the following

constrained optimization problem. Find

- NoW LUl
! 2TW — 1 D.4
aW%L“mm( ) (04
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subject to

00

Zia‘q(w < DM (D.5)

t=
q(t+1) =q(t) —r(t)+a(t) (D.6)

Objective function above is convex , while the constraintisalso convex. Therefore

writing the Langrange multiplier the single stage a3t r) of transmittingr packets at

stateX = (qg,h) is:

NoW L\tlzl
c(X,r) =Adq+ Boh(D) (2 W — 1) (D.7)

Here)q is the coefficient of energy cost which is used to adjust itgttein the
overall cost. Letrtbe a policy that generates at time digtan actiorr (t) depending on
the history of the process (i.e. decisions at instars{1,2,...} ), that is a mapping
from the state space to the action space.lLée the set of all those policies. For a policy
me I and initial statex € X , we define the discounted cost problem with discount factor

a. For initial statex = (s, h) define:

men

Vo (X) = minEY [iatg(X(t),r(t))] (D.8)
t

for everyX = (qg,h) in {0,1,2,...,L} x {hg,hy,...,hx} and policyrt It is worth noting
that the discount factor a has a practical meaning in theesysSince we have a delay
constraint, we need to satisfy a short term rate constrahdrefore, for a delay constraint
DM choosingy < 1-— %ax , isreasonable. We can also interpxets the probability that
the communication session terminates in the current tiote Sherefore session duration
becomes geometrically distributed.
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In order to ensure the existence of the expected infiniteborliscounted cost, itis
sufficient that the cost-per-stage function is uniformlybded, that isc(X(t))| < B <
for all t and O<
lambda< 1 [70]. Looking at the single stage cost function (D.7), wedhthat the system

is stable (q(t) finite for alt). In order to satisfy this, it is sufficient that the systemtable

if the maximum power is used at all time slots. the condiEEqnﬁTsWIog <1+ Bpm,?vc(t) )) <

E[alL. If g < o the following inequality holds:
9(X(1))] < Agal(t) +PT5t (D.9)

This set of conditions is sufficient for the existence of tbkison of the problem
in equation (D.8). Well known result in [70] states that apiim discounted cost value
function V(.) satisfies the following discounted cost oglity equation:

o K

Vo = OLTJienR{g(x, r) +ora;)k;A(a) PVa (g —T + &, hK)} (D.10)

whereX = (q, h) is the initial state of the systerp(k) is the probability thaby <h < hy1
andA(a) is the probability that packets arrive in a time slot. According to (D.10), the
cost incurred by choosing an actioris the sum of the instantaneous coéX, r) and the
expected cost for the futufg,_, zﬁzlA(a) pPVa (Q—r +a, hk ), multiplied by the discount

factora.
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D.4 Analysis of the Discounted Cost Function
We can write the discounted cost optimality equation as:

R NoW /.
VQ(S,h)—[QIQI’{l{)\dq—l—W<2TW—1>+O(H(U)} (D.11)

whereu = q—r is the number of packets remaining in the queue after thegtsaité be
transmitted are removed from the buffer and before a newadrriThe functionH (u) is
defined as

o K
H(u) = Z)kz A(a) pVa (u+a, hg) (D.12)
a=0k=1

Theorem D.1 H(u) is a convex function

Proof D.1 H(u) is a convex combination of (M + a, h) for different values of a, and h,
therefore it is sufficient to show the convexity of this fiomctOptimum value of the cost

function and the optimal policy can be found by the followrague iteration.

. NoW [/ _tp
V(s h) = OQL”K{M“ Bgh <2TsW _ 1)

+GaiélA<a) p(K)Vh-1(q—r+a,h)} (D.13)

We will show it through induction that at every step of theat®n , the value

function stays convex.

1. Forn=0, for any r, \6(g, h) is a convex function. This is because g is convex, and

the energy cost is an increasing exponential function offg¢cvis convex.

2. Assume that\/1(q,h) is convex in q for each h. For a fixed fading level h, let
u(q) = q—r(q) be the optimal policy in state ¥ (s, h) in the " iteration. Define
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1-A=\and g= )\q1+)_\q2. Let the operator En(.) denote the averaging with
respect to arrivals a and fading in the next slot h, given theent queue size

and fading h.

We can write the following,

AVh(Q1,h) +XVn(QZ,h)

NoW ( — L u(dp))
—Adq+'[30_h(A2 R )

+ OEanAVn_1(U(q) + 8, h) +AVa_1(u(gp) +a,h)] (D.14)

> Mo+ W o (M-t A @-uie) 1

Bgh

+ 0Ean Vo 1(AM(u(ay) +a) +A(u(a) +a),h)] (D.15)

NOW A
=ApQ+ 5 Bah (2Tw(q u(cn) —Au(Gz)) ~1)

+ aEanVa-1(Au(ar) +Au(dp) +a,h)] (D.16)

NoW Lo (g u(q)
> NpQ+ ——— (2w 474D 1
pd th( )

+ 0Eaqn[Va-1(u(a) +a,h)] (D.17)
— Va(Aq1+Ad2,h) = Va(q, h) (D.18)

Here the inequality (D.15) comes from the convexity of thetfions2* and \,_1(s, h)
and the fact that the arrival probability @) is the same for the stat€g, h) and (g, h).
The inequality (D.17) comes from the optimality @fufor the state(q,h). The last
equality comes from the definition. Hence we proved thatuhetion V(q, h) is convex
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in g for all h. Therefore as a linear combination of ¥+ a,h), H(u) is also a convex

function.

Theorem D.2 The optimal rate allocation policy(g,h) = g— u(q, h) is nondecreasing

ing.

Proof D.2 We prove this by contradiction. Assume thakqgagp but r(qr) > r(gz). From

the optimality equations it follows that:

NoW L
N+ g (270 — 1) - aH (o — r () <
NoW L
Mtl+ o (250 1)+ ak (G —r(@2) (019)

NoW L
Aﬂﬁﬁ(zﬁ—@v“@ —1)+aH(g—r(gp) <

NoW _ Ltp
N+ (287 — 1) - aH (g~ r(aw) (0-20)

Adding the two equations, we get,

a(H(gr—r(g)) +H(g2—r(g))) <

a(H(qr—r(gz)) +H(gz—r(m))) (D.21)

Here there is a contradiction because if the inequalitiescag and r(gy) > r(Qg2)
are true then the functioaH (u) cant be convex, therefore the inequalitgt) > r (o) is
wrong. From this contradiction it is proved that if g g2 then r(q1) <r(qg) for allg; and
g2. Hence we proved that optimal number of packets to be tratesis a nondecreasing

function of queue size.
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The optimal policyrt can be found by initializing witNp(qg, h) = 0, Vg, h and find-
ing the maximum in (D.13). Because of the monotonicityHdil), value iteration con-

verges.

Theorem D.3 The optimal rate allocation policy(g,h) = q— u(g,h) is nondecreasing

in h.

Proof D.3 We prove this by contradiction. Assume thakhh; but r(qg, hj) > r(q, hj).

From the optimality equations it follows that:

NoW _Lp oo
Aaq-+ ﬁ(%&mqn) —~1)+aH(g-r(g,h)) <
NoW L )
Adq+[£—h(2ﬁ“(q’h’)—1)+0(H(Q—f(q,hj)) (D.22)
NoW Lo op
Aad+ ﬁhsza"w“‘*hﬂ ~1)+aH(q-r(gh)) <
NoW _Lte '
AdQ‘*‘%(ZNOWr(q’h')—l)-i—CxH(q—r(q,hi)) (D.23)
]

Adding these two equations, some of the terms cancel, anétve g

2r(q,hi)L 1 2r<q-,h,->L 1 2r(q.hj)L 1 2r(q.hi)L 1
TW TW TSW TsW
D.24
N h - h ' n (D-24)
r(ghj)L r(ghj)L r(g,h)L r(ahj)L
h; (2 W — 27 TsW ) < h (2 W — 27 TsW ) (D.25)
hj < hi, (D.26)

which contradicts with h< hj, therefore we can conclude that if f1 hj then (g, hj) <

r(g,hj) and hence (q,h) is nondecreasing in h.
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D.5 Computational Results

In the previous section we found some structural resultierost function and op-
timal policy. In this section, we present some computalioggults for the solution of the
power control that verify the above results. In these sitmuta, value iteration method
in (D.13) is used to solve the dynamic programming equata.consider a single user
system with AWGN channel with psidp = —174dBmand Rayleigh fading with mean
1. Transmitter power i® = 1 Watt and path loss (in dB ) is31.5— 35log,,d + Wys,
whered is the distance in meters. We assume a distance of 900m. Alsedrandwidth,
we consider a single subchannel of an OFDMA system with baftthv250 KHz. We
consider arrivals of 250-bit packets arriving according feoisson distribution with rate

0.8 packets/slot (corresponds to 200 kbps).

Optimal Policy (d=900m, A4 = 0.1)

Number of Transmitted Packets

Queue Size (packets) channel index

Figure D.2: Optimal number of packets transmitted. Paramsgty = 0.1

In Figures D.2 and D.3 we observe the result of value itemafito Ay = 0.1 and
Ag —0.12. We see that optimal rate is nondecreasing w.r.t. queeeasid channel gain.
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Optimal Policy (d=900m, 24 =0.12)

Number of Transmitted Packets

Queue Size (packets)

Channel Index

Figure D.3: Optimal number of packets transmitted. Paramsgty = 0.12

When we increaskg from 0.1 to 0.12 optimal number of transmitted packets decrease for
all queue sizes and channel conditions.

In Figure D.4 we see the average power versus average delawdodifferent
distances. We observe that average power is a decreasimgxchumction of average

delay.
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Delay-Energy Characteristics
0.11F T T T T

Av. Power (W)

0.085

0351 —%— 1200m

Av. Power (W)

I I I I I |
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Figure D.4: Average power versus average delay for diftexgivalues.
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